Development of a simulation model for a small scale renewable energy system

Dissertation submitted in fulfilment of the requirements for the degree Master of Engineering in Computer Engineering at the Potchefstroom campus of the North-West University

M.G. De Klerk

20555466

Supervisor: Prof. W.C. Venter

November 2012
Declaration

I, Martinus Gerhardus de Klerk hereby declare that the dissertation entitled “Simulation model of a small scale renewable energy system” is my own original work and has not already been submitted to any other university or institution for examination.

M.G. de Klerk
Student number: 20555466
Signed on the 21th day of November 2012 at Potchefstroom.
Acknowledgements

First and above all, I praise God, the almighty for providing me this opportunity and granting me the capability to successfully complete my Masters.

I have been indebted in the preparation of this dissertation to my supervisor, Prof. W.C. Venter of the North West university, whose patience and kindness, as well as his academic experience, have been invaluable to me.

I would like to thank HySA Infrastructure for providing financial support during these postgraduate years.
Abstract

In this dissertation I present my approach and findings regarding the development of a simulation model for a small scale renewable energy system.

A brief introduction provides the reader with the background as to why there is a need for such a simulation package. The project objectives, research methodology and the research contributions originating from the project is also described.

A literature study was done on all the relevant technologies constituting the renewable energy system as well as the techniques required to model the system. A system breakdown identified the various sub modules as well as how they interface with each other.

The simulation model was tested by using Alexander bay, South Africa, as a case study. The results obtained from the various modules were discussed and found to correlate with what was expected.

Although not contained within the project’s scope, an additional analysis of the effect of the wind data’s resolution on the probable power output of a wind turbine was performed leading to a hypothesis regarding the estimation of a more accurate probable power output extrapolation from data with a coarse resolution.

Keywords: Renewable energy, Wind, Solar, Optimal tilt, Weibull, Resolution analysis
Contents

List of Figures viii

List of Tables xi

List of Acronyms xii

1 Introduction 1

1.1 Introduction .. 1

1.2 Background .. 2

1.3 Purpose of research .. 3

1.3.1 Primary objective .. 3

1.3.2 Secondary objective ... 4

1.3.3 Project demarcation .. 5

1.4 Research methodology ... 5

1.5 Dissertation outline .. 6

2 Literature study 8

2.1 Overview .. 8

2.2 Software .. 9

2.2.1 Existing simulation packages 9
2.2.2 Integrated design environment .. 9
2.3 Solar ... 9
 2.3.1 Photovoltaic Panels .. 10
 2.3.2 Shading ... 15
 2.3.3 Optimal Tilt .. 17
 2.3.4 Solar Irradiance .. 19
2.4 Wind .. 22
 2.4.1 Wind Turbines ... 22
 2.4.2 Wind speed modelling ... 24
 2.4.3 Data resolution .. 34

3 Component modelling .. 36
 3.1 System modelling .. 36
 3.2 Functional Architecture ... 37
 3.3 Hardware modelling ... 40
 3.3.1 PV panel ... 40
 3.3.2 Wind turbine .. 43
 3.3.3 Battery bank ... 46
 3.4 Environmental data ... 48
 3.4.1 Solar .. 48
 3.4.2 Wind .. 49
 3.5 Verification and validation .. 52

4 Simulation Results ... 53
 4.1 Model results ... 54
 4.1.1 Optimal tilt .. 54

vi
4.1.2 PV Panels .. 55
4.1.3 PV panel array shading 57
4.1.4 Wind analysis .. 57
4.1.5 Wind turbine .. 60
4.1.6 Probable wind power output 63
4.1.7 Battery bank ... 67
4.2 Data resolution analysis 68
4.2.1 DRAS Anomaly .. 73
4.3 Integrated model results 75

5 Conclusion .. 76
 5.1 Verification and Validation 77
 5.2 Research contribution 78
 5.3 Recommendations and future work 78

Bibliography .. 79

Appendices

A Code ... 84
 A.1 FFT implementation in Matlab 84
List of Figures

1.1 Hydrogen South Africa (HySA) family structure 2
1.2 High level block diagram of a hybrid renewable energy system [1] ... 4
1.3 Simplified waterfall life-cycle model [2] .. 6

2.1 Exploded view of a solar array ... 10
2.2 Schematic representation of a conventional solar cell [3] 11
2.3 PV module array row spacing [3] .. 16
2.4 SBR Latitude regions [4] .. 17
2.5 Solar angles [5] .. 18
2.6 Hukslelux SR03 pyranometer [6] .. 20
2.7 Incident solar irradiation angles ... 21
2.8 Daily variation in solar insolation .. 21
2.9 Vestas V112-3MW Wind turbine Courtesy of Vestas Wind Systems A/S [7] 22
2.10 The energy extracting stream-tube of a wind turbine [8] 23
2.11 Wind turbine type comparison [9] ... 25
2.12 Technical document depicting one of the WASA towers [10] 26
2.13 Histogram illustration with a bin width Δx of $\frac{2m}{5}$ for 12 bins 27
2.14 Weibull probability curve overlaid on the data’s normalised histogram 28
2.15 Weibull probability curves for a variable shape parameter 29
List of Tables

2.1 PV technology summary .. 14

3.1 PV Panel nomenclature ... 41

3.2 Typical power law exponent values for varying terrain 46

3.3 Battery bank nomenclature 46

3.4 Optimal tilt nomenclature ... 49

3.5 Parameter estimation method comparison 51

4.1 PV panel power output comparison 56

4.2 Weibull parameters comparison 61

4.3 CFM and MLE Weibull curve deviations from the raw data histogram . 61

4.4 Mean monthly power output comparison 66

4.5 Trend line gradients ... 73
List of Acronyms

CSP Concentrating solar thermal power

HySA Hydrogen South Africa

IDE Integrated Development Environment

MLE Maximum Likelihood Estimation

NASA National Aeronautics and Space Administration

PDF Probability Density Function

PEM Proton Exchange Membrane

PGM Platinum Group Metals

PV Photovoltaic

SSE Surface meteorology and Solar Energy

VI Virtual Instrument

WASA Wind Atlas of South Africa