CHAPTER 4

THE USE OF PREDEFINED DIET QUALITY SCORES IN THE CONTEXT OF CARDIOVASCULAR DISEASE RISK DURING URBANISATION IN THE SOUTH AFRICAN PURE STUDY

Robin C Dolman¹, Edelweiss Wentzel-Viljoen¹, Johann C Jerling¹, Edith JM Feskens², Annamarie Kruger³, Marlien Pieters¹

¹Centre of Excellence for Nutrition (CEN), North West University, Potchefstroom, South Africa
²Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
³Africa Unit for Transdisciplinary Health Research (AUTHeR), North West University, Potchefstroom, South Africa

Submitted for publication in Public Health Nutrition
From: <phn@nusoc.org.uk>
To: robin.dolman@nwu.ac.za
Date: 2012/10/02 12:43 PM
Subject: PHN-2012-006037 Acknowledgement of new submission to PHN

PHN-2012-006037
The use of predefined Diet Quality Scores in the context of cardiovascular disease risk during urbanization in the South African PURE study

Dear Mrs. Dolman,

Your paper has been assigned the reference number PHN-2012-006037.

You may check on the status of the paper by selecting the "Check Status" link under the following URL:
http://phn.msubmit.net/cgi-bin/main.pl?el=A2CT2CfZ7A4tN3F6A9w8h1Nt2hDb10we8t6uOdgyZ

(Sometimes this link may wrap around so that it appears on two lines of this email - We suggest that you copy and paste the full address into your browser ensuring that the full link is used.)

Alternatively you can access your manuscript by logging into the PHN on-line peer-review system at http://phn.msubmit.net using your unique Username: rodolman, and Password (which will be e-mailed to you immediately if you use the "Unknown/Forgotten password?" link).

You can change your password at any time by clicking on the "Modify Password" link from your "Home" page.

Your paper is being considered for publication and you will be notified of our decision in due course.

If you have any questions, do not hesitate to contact us. Please refer to your paper by the assigned manuscript number.

Thank you for your interest in Public Health Nutrition.

Yours sincerely,

Professor Agneta Yngve
Editor-in-Chief
Public Health Nutrition

PHN online submission: http://phn.msubmit.net
INSTRUCTIONS FOR AUTHORS FOR PUBLIC HEALTH NUTRITION

Directions to Contributors

Public Health Nutrition

(Revised September 2012)

Public Health Nutrition provides a forum for the presentation of original research findings in the field of Public Health Nutrition. It offers a population-based approach to the practical application of research findings. The Journal provides a timely vehicle for lively discussion of current controversies. In addition, it also includes high quality reviews of key topics and seeks to identify and publish special supplements on major topics of interest to readers.

As a contributor you are asked to follow the guidelines set out below. Prospective authors may also contact the Editorial Office directly on +44 20 7605 6555 (telephone), +44 20 7602 1756 (fax) or phn@nutsoc.org.uk (email).

Papers submitted for publication should be written in English and be as concise as possible. If English is not the first language of the authors then the paper should be checked by an English speaker. Public Health Nutrition operates an on-line submission and reviewing system (eJournalPress). Authors should submit to the following address: http://phn.submit.net/. Receipt of papers will be acknowledged immediately.

Papers should be accompanied by a statement of acceptance of the conditions laid down in the Directions to Contributors. The statement should affirm that the submission represents original work that has not been published previously, that it is not currently being considered by another journal, and that if accepted for Public Health Nutrition it will not be published elsewhere in the same form, in English or in any other language, without the written consent of the Nutrition Society. It should also confirm that each author has seen and approved the contents of the submitted manuscript.

The submission must include a statement reporting any conflicts of interest, all sources of funding and the contribution of each author to the manuscript. Conflict of interest exists when an author (or the author’s institution) has financial or personal relationships that inappropriately influence (bias) his or her actions (such relationships are also known as dual commitments, competing interests, or competing loyalties); for further detail, see http://www.icmje.org/ethical_4conflicts.html. If there are no conflicts of interest this must be stated.

If the work was funded, please state “This work was supported by (for example) The Medical Research Council [grant number xxx (if applicable)]”. If the research was not funded by any specific project grant, state “This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.” All potential conflicts of interest, or financial interests of the author in a product or company that is relevant to the article, should be declared. The author will be asked to provide this information during the submission process. The information should be added at the bottom of the Title Page to enable double-blind reviewing.

This journal adheres to the Committee on Publication Ethics (COPE) guidelines on research and publications ethics at http://publicationethics.org/resources/guidelines.

It is the author’s responsibility to obtain written permission to reproduce any material (including text and figures) that has appeared in another publication.

At the time of acceptance the authors should provide a completed copy of the ‘Licence to Publish’ (in lieu of copyright transfer), which is available on the Nutrition Society’s web pages (http://www.nutritionssociety.org/publications/nutrition-society-journals/public-health-nutrition); the Society no longer requires copyright of the material published in the journal, only a ‘Licence to Publish.’ The authors or their institutions retain the copyright.

When substantial revisions are required to manuscripts, authors are given the opportunity to do this once only, the need for any further changes should at most reflect only minor issues. If a paper requiring revision is not resubmitted within 3 months, it may, on resubmission, be deemed a new paper and the date of receipt altered accordingly.

Public Health Nutrition publishes the following: Full Papers, Short Communications, Review Articles, Letters to the Editors, Commentaries, Debate and Opinion Papers and Editorials.

Full Papers, Short Communications and Reviews should be submitted to: http://phn.msubmit.net/ Please contact the Editorial Office on phn@nutsoc.org.uk regarding any other types of article.

Short Communications. Papers submitted as Short Communications should consist of about 2000 words.

Review Articles. Please contact the Editorial Office with any queries regarding the submission of potential review articles.

Letters to the Editor/Debate and Opinion Papers. Letters are invited that discuss, criticise or develop themes put forward in papers published in the Public Health Nutrition or that deal with matters relevant to it. They should not be used as a means of publishing new work. Acceptance will be at the discretion of the Editorial Board, and editorial changes may be required. Wherever possible, letters from responding authors will be included in the same issue.

Form of full papers submitted for publication. A typical paper should be no more than 4000 words long. This word count does not include the heading, references, tables, graphs and acknowledgements. The onus of preparing a paper in a form suitable for sending to press lies with the author. Authors are advised to consult a current issue in order to make themselves familiar with the Public Health Nutrition as to typographical and other conventions, layout of tables etc. Authors are encouraged to consult the latest guidelines produced by the ICMJE, which contains a lot of useful generic information about preparing scientific papers http://www.icmje.org/ and also the CONSORT guidelines for reporting results of randomised trials http://www.consort-statements.org/. The journal endorses the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement, a guideline to help authors report a systematic review and meta-analysis http://prisma-statements.org (see British Medical Journal (2009) 339, b2535). A systematic review or meta-analysis of randomised trials and other evaluation studies should follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (http://prisma-statements.org).

Plagiarism: Text taken directly or closely paraphrased from earlier published work that has not been acknowledged or referenced will be considered plagiarism. Submitted manuscripts in which such text is identified will be withdrawn from the editorial process.

Authors are invited to nominate up to four potential referees who may then be asked by the Editorial Board to help review the work.

Typescripts should be prepared with 1·5 line spacing and wide margins (2 cm), the preferred font being Times New Roman size 12. At the ends of lines words should not be hyphenated unless hyphens are to be printed. Page and line numbering are required.

Spelling should generally be that of the Concise Oxford Dictionary (1995), 9th ed. Oxford: Clarendon Press. Papers should normally be divided into the following parts:
(a) **Title page:** authors' names should be given without titles or degrees and one forename may be given in full. The name and address of the institution where the work was performed should be given, as well as the main address for each author.

The name and address of the author to whom correspondence should be sent should be clearly stated, together with telephone and fax numbers and email address. Other authors should be linked to their address using superscript Arabic numerals.

The title page should also contain a shortened version of the paper's title, not exceeding forty-five letters and spaces in length, suitable for use as a running title in the published paper.

Authors are asked to supply three or four key words or phrases on the title page of the typescript.

The title page should also include a statement reporting any conflicts of interest, all sources of funding, the contribution of each author to the manuscript and any ethical information as detailed above.

The title page should be submitted online as a separate cover letter. This enables double-blind reviewing.

(b) **Abstract:** each paper must open with a structured abstract of **not more than 250 words.** The abstract should consist of the following headings: Objective, Design, Setting, Subjects, Results, Conclusions. All the headings should be used, and there should be a separate paragraph for each one. The abstract should be intelligible without reference to text or figures.

(c) **Introduction:** it is not necessary to introduce a paper with a full account of the relevant literature, but the introduction should indicate briefly the nature of the question asked and the reasons for asking it.

(d) **Experimental methods:** methods should appear after the introduction. A paper describing any research including human subjects must include the following statement: "This study was conducted according to the guidelines laid down in the Declaration of Helsinki and all procedures involving human subjects/patients were approved by the [name of the ethics committee removed for blinding]. Written [or Verbal] informed consent was obtained from all subjects/patients. [Where verbal consent was obtained this must be followed by a statement such as: 'Verbal consent was witnessed and formally recorded]." The name of the ethics committee should be included in the acknowledgements section (see (g) below), for information. This will be re-inserted into the manuscript if accepted for publication.

(e) **Results:** these should be given as concisely as possible, using figures or tables as appropriate.

(f) **Discussion:** while it is generally desirable that the presentation of the results and the discussion of their significance should be presented separately, there may be occasions when combining these sections may be beneficial. Authors may also find that additional or alternative sections such as 'conclusions' may be useful.

(g) **Acknowledgments:** these should include information on source of funding, declaration of any conflicts of interest and a brief statement of the contribution(s) of each author, as specified above. The name of the approving ethics committee should also be included in this section. **The author will be asked to provide this information during the submission process and should also include it at the bottom of the Title Page. This enables double-blind reviewing.**

(h) **References:** these should be given in the text using the Vancouver system. They should be numbered consecutively in the order in which they first appear in the text using superscript Arabic numerals in parentheses, e.g. 'The conceptual difficulty of this approach has recently been highlighted(1,2–4)'. If a reference is cited more than once the same number should be used each time. References cited only in tables and figure legends and not in the text should be numbered in sequence from the last number used in the text and in the order of mention of the individual tables and figures in the text. At the end of the paper, on a page(s) separate from the text, references should be listed in numerical order. When an article has more than three authors only the names of the first three authors should be given followed by 'et al.' The issue number should be omitted if there is continuous pagination throughout a volume. Names and initials of authors of unpublished work should be given in the text as ‘unpublished results’ and not included in the References. Titles of journals should appear in their abbreviated form using the NCBI LinkOut page http://www.ncbi.nlm.nih.gov/projects/linkout/journals/jourlists.fcgi?typeid=1&type=jourlists&operation=Sho
References to books and monographs should include the town of publication and the number of the edition to which reference is made. Thus:

References to material available on websites should include the full Internet address, and the date of the version cited. Thus:

(j) **Supplementary data:** Additional data (e.g. data files, large tables) relevant to the paper can be submitted for publication online only, where they are made available via a link from the abstract and the paper. The paper should stand alone without these data. Supplementary data should be supplied as a PDF for the review process and must be cited in a relevant place in the text of the paper.

Mathematical modelling of nutritional processes. Papers in which mathematical modelling of nutritional processes forms the principal element will be considered for publication provided: (a) they are based on sound biological and mathematical principles; (b) they advance nutritional concepts or identify new avenues likely to lead to such advances; (c) assumptions used in their construction are fully described and supported by appropriate argument; (d) they are described in such a way that the nutritional purpose is clearly apparent; (e) the contribution of the model to the design of future experimentation is clearly defined.

Units. Results should be presented in metric units according to the International System of Units (see Quantities, Units and Symbols in Physical Chemistry, 3rd ed. (2007) Cambridge: RSC Publishing), and Metric Units, Conversion Factors and Nomenclature in Nutritional and Food Sciences (1972) London: The Royal Society – as reproduced in *Proceedings of the Nutrition Society* (1972) 31, 239–247). SI units should be used throughout the paper. The author will be asked to convert any values that are given in any other form. The only exception is where there is a unique way of expressing a particular variable that is in widespread use. Energy values must be given in Joules (MJ or kJ) using the conversion factor 1 kcal = 4.184 kJ. If required by the author, the value in kcal can be given afterwards in parentheses. Temperature is given in degrees Celsius (ºC). Vitamins should be given as mg or μg, not as IU.

For substances of known molecular mass (Da) or relative molecular mass, e.g. glucose, urea, Ca, Na, Fe, K, P, values should be expressed as mol/l; for substances of indeterminate molecular mass (Da) or relative molecular mass, e.g. phospholipids, proteins, and for trace elements, e.g. Cu, Zn, then g/l should be used.

Time. The 24 h clock should be used, e.g. 15.00 hours.

Units are: year, month, week, d, h, min, s, kg, g, mg, μg, litre, ml, μl, fl. To avoid misunderstandings, the word litre should be used in full, except in terms like g/l. Radioactivity should be given in becquerels (Bq or GBq) not in Ci. 1 MBq = 27.03 μCi (1Bq = 1 disintegration/s).

Statistical treatment of results. Data from individual replicates should not be given for large experiments, but may be given for small studies. The methods of statistical analysis used should be described, and references to statistical analysis packages included in the text, thus: Statistical Analysis Systems statistical software package version 6.11 (SAS Institute, Cary, NC, USA). Information such as analysis of variance tables should be given in the paper only if they are relevant to the discussion. A statement of the number of replicates, their average value and some appropriate measure of variability is usually sufficient.
Comparisons between means can be made by using either confidence intervals (CI) or significance tests. The most appropriate of such measures is usually the standard error of a difference between means (SED), or the standard errors of the means (SE or SEM) when these vary between means. The standard deviation (SD) is more useful only when there is specific interest in the variability of individual values. The degrees of freedom (df) associated with SED, SEM or SD should also be stated. The number of decimal places quoted should be sufficient but not excessive. Note that pH is an exponential number, as are the log(10) values often quoted for microbial numbers. Statistics should be carried out on the scalar rather than the exponential values.

If comparisons between means are made using CI, the format for presentation is, e.g. ‘difference between means 0.73 (95% CI 0.314, 1.36) g’. If significance tests are used, a statement that the difference between the means for two groups of values is (or is not) statistically significant should include the level of significance attained, preferably as an explicit P value (e.g. P=0.016 or P=0.32) rather than as a range (e.g. P<0.05 or P>0.05). It should be stated whether the significance levels quoted are one-sided or two-sided. Where a multiple comparison procedure is used, a description or explicit reference should be given. Where appropriate, a superscript notation may be used in tables to denote levels of significance; similar superscripts should denote lack of a significant difference.

Where the method of analysis is unusual, or if the experimental design is at all complex, further details (e.g. experimental plan, raw data, confirmation of assumptions, analysis of variance tables, etc.) should be included.

Figures. Figures should not be incorporated into the article file and should be supplied as separate electronic files. Figure legends should be grouped in a section at the end of the text. Each figure should be clearly marked with its number and separate panels within figures should be clearly marked (a), (b), (c) etc. so that they are easily identifiable when the article and figure files are merged for review.

In curves presenting experimental results the determined points should be clearly shown, the symbols used being, in order of preference, ○, ●, △, ▲, □, ■. Curves and symbols should not extend beyond the experimental points. Scale-marks on the axes should be on the inner side of each axis and should extend beyond the last experimental point. Ensure that lines and symbols used in graphs and shading used in histograms are large enough to be easily identified when the figure is reduced to fit the printed page.

Figures and diagrams can be prepared using most applications but please do not use the following: cdx, chm, jnb or PDF. All figures should be numbered and legends should be provided. Each figure, with its legend, should be comprehensible without reference to the text and should include definitions of abbreviations. Latin names for unusual species should be included unless they have already been specified in the text. Each figure will be positioned near the point in the text at which it is first introduced unless instructed otherwise.

Refer to a recent copy of the journal for examples of figures.

Plates. The size of photomicrographs may have to be altered in printing; in order to avoid mistakes the magnification should be shown by scale on the photograph itself. The scale with the appropriate unit together with any lettering should be drawn by the author, preferably using appropriate software.

Tables. Tables should carry headings describing their content and should be comprehensible without reference to the text. Tables should not be subdivided by ruled lines. The dimensions of the values, e.g. mg/kg, should be given at the top of each column. Separate columns should be used for measures of variance (SD, SE etc.), the ± sign should not be used. The number of decimal places used should be standardized; for whole numbers 1.0, 2.0 etc. should be used. Shortened forms of the words weight (wt) height (ht) and experiment (Expt) may be used to save space in tables, but only Expt (when referring to a specified experiment, e.g. Expt 1) is acceptable in the heading.

Footnotes are given in the following order: (1) abbreviations, (2) superscript letters, (3) symbols. Abbreviations are given in the format: RS, resistant starch. Abbreviations appear in the footnote in the order that they appear in the table (reading from left to right across the table, then down each column). Abbreviations in tables must be defined in footnotes. Symbols for footnotes should be used in the sequence: *†$¶, then ** etc. (omit * or †, or both, from the sequence if they are used to indicate levels of significance).

For indicating statistical significance, superscript letters or symbols may be used. Superscript letters are useful where comparisons are within a row or column and the level of significance is uniform, e.g. ‘a,b,c Mean values
within a column with unlike superscript letters were significantly different \((P<0.05) \). Symbols are useful for indicating significant differences between rows or columns, especially where different levels of significance are found, e.g. ‘Mean values were significantly different from those of the control group: \(*P<0.05, **P<0.01, ***P<0.001 \). The symbols used for \(P \) values in the tables must be consistent.

Tables should be placed at the end of the text. Each table will be positioned near the point in the text at which it is first introduced unless instructed otherwise.

Please refer to a recent copy of the journal for examples of tables.

Chemical formulas. These should be written as far as possible on a single horizontal line. With inorganic substances, formulas may be used from first mention. With salts, it must be stated whether or not the anhydrous material is used, e.g. anhydrous CuSO4, or which of the different crystalline forms is meant, e.g. CuSO4.5H2O, CuSO4.H2O.

Descriptions of solutions, compositions and concentrations. Solutions of common acids, bases and salts should be defined in terms of molarity (M), e.g. 0-1 M-NaH2PO4. Compositions expressed as mass per unit mass (w/w) should have values expressed as ng, μg, mg or g per kg; similarly for concentrations expressed as mass per unit volume (w/v), the denominator being the litre. If concentrations or compositions are expressed as a percentage, the basis for the composition should be specified (e.g. % (w/w) or % (w/v) etc.). The common measurements used in nutritional studies, e.g. digestibility, biological value and net protein utilization, should be expressed as decimals rather than as percentages, so that amounts of available nutrients can be obtained from analytical results by direct multiplication. See *Metric Units, Conversion Factors and Nomenclature in Nutritional and Food Sciences*. London: The Royal Society, 1972 (para. 8).

Nomenclature of vitamins. Most of the names for vitamins and related compounds that are accepted by the Editors are those recommended by the IUNS Committee on Nomenclature. See *Nutrition Abstracts and Reviews* (1978) **48A**, 831–835.

<table>
<thead>
<tr>
<th>Acceptable name</th>
<th>Other names*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin A</td>
<td></td>
</tr>
<tr>
<td>Retinol</td>
<td>Vitamin A1</td>
</tr>
<tr>
<td>Retinaldehyde,</td>
<td>retinal</td>
</tr>
<tr>
<td>Retinoic acid</td>
<td>Vitamin A1 acid</td>
</tr>
<tr>
<td>3-Dehydroretinol</td>
<td>Vitamin A2</td>
</tr>
<tr>
<td>Vitamin D</td>
<td></td>
</tr>
<tr>
<td>Ergocalciferol,</td>
<td>Vitamin D2 calciferol</td>
</tr>
<tr>
<td>Cholecalciferol,</td>
<td>Vitamin D3</td>
</tr>
<tr>
<td>Vitamin E</td>
<td></td>
</tr>
<tr>
<td>α-, β- and γ-tocopherols plus tocotrienols</td>
<td></td>
</tr>
<tr>
<td>Vitamin K</td>
<td></td>
</tr>
<tr>
<td>Phylloquinone</td>
<td>Vitamin K1</td>
</tr>
</tbody>
</table>
Menaquinone-n (MK-n)† Vitamin K2
Menadione Vitamin K3, menaquinone, menaphthone

Vitamin B1
Thiamin Aneurin(e), thiamine

Vitamin B2
Riboflavin Vitamin G, riboflavine, lactoflavin

Niacin
Nicotinamide Vitamin PP
Nicotinic acid

Folic Acid
Pteroyl(mono)glutamic acid Folacin, vitamin Bc or M

Vitamin B6
Pyridoxine Pyridoxol
Pyridoxal
Pyridoxamine

Vitamin B12
Cyanocobalamin
Hydroxocobalamin Vitamin B12a or B12b
Aquocobalamin
Methylcobalamin
Adenosylcobalamin

Inositol
Myo-inositol Meso-inositol

Choline

Pantothenic acid

Biotin Vitamin H

Vitamin C
Ascorbic acid
Dehydroascorbic acid

*Including some names that are still in use elsewhere, but are not used by Public Health Nutrition.
Details of the nomenclature for these and other naturally-occurring quinones should follow the Tentative Rules of the IUPAC-IUB Commission on Biochemical Nomenclature (see European Journal of Biochemistry (1975) 53, 15–18).

Generic descriptors. The terms vitamin A, vitamin C and vitamin D may still be used where appropriate, for example in phrases such as ‘vitamin A deficiency’, ‘vitamin D activity’.

Vitamin E. The term vitamin E should be used as the descriptor for all tocol and tocotrienol derivatives exhibiting qualitatively the biological activity of α-tocopherol. The term tocopherols should be used as the generic descriptor for all methyl tocols. Thus, the term tocopherol is not synonymous with the term vitamin E.

Vitamin K. The term vitamin K should be used as the generic descriptor for 2-methyl-1,4-naphthoquinone (menaphthone) and all derivatives exhibiting qualitatively the biological activity of phylloquinone (phytylmenaquinone).

Niacin. The term niacin should be used as the generic descriptor for pyridine 3-carboxylic acid and derivatives exhibiting qualitatively the biological activity of nicotinamide.

Vitamin B6. The term vitamin B6 should be used as the generic descriptor for all 2-methylpyridine derivatives exhibiting qualitatively the biological activity of pyridoxine.

Folate. Due to the wide range of C-substituted, unsubstituted, oxidized, reduced and mono- or polyglutamyl side-chain derivatives of pteroylmonoglutamic acid that exist in nature, it is not possible to provide a complete list. Authors are encouraged to use either the generic name or the correct scientific name(s) of the derivative(s), as appropriate for each circumstance.

Vitamin B12. The term vitamin B12 should be used as the generic descriptor for all corrinoids exhibiting qualitatively the biological activity of cyanocobalamin. The term corrinoids should be used as the generic descriptor for all compounds containing the corrin nucleus and thus chemically related to cyanocobalamin. The term corrinoid is not synonymous with the term vitamin B12.

Vitamin C. The terms ascorbic acid and dehydroascorbic acid will normally be taken as referring to the naturally-occurring L-forms. If the subject matter includes other optical isomers, authors are encouraged to include the L- or D- prefixes, as appropriate. The same is true for all those vitamins which can exist in both natural and alternative isomeric forms.

Amounts of vitamins and summation. Weight units are acceptable for the amounts of vitamins in foods and diets. For concentrations in biological tissues, SI units should be used; however, the authors may, if they wish, also include other units, such as weights or international units, in parentheses.

Nomenclature of fatty acids and lipids. In the description of results obtained for the analysis of fatty acids by conventional GLC, the shorthand designation proposed by Farquhar JW, Insull W, Rosen P, Stoffel W & Ahrens EH (Nutrition Reviews (1959), 17, Suppl.) for individual fatty acids should be used in the text, tables and figures. Thus, 18 : 1 should be used to represent a fatty acid with eighteen carbon atoms and one double bond, if the position and configuration of the double bond is unknown. The shorthand designation should also be used in the abstract. If the positions and configurations of the double bonds are known, and these are important to the discussion, then a fatty acid such as linoleic acid may be referred to as cis-9,cis-12-18 : 2 (positions of double bonds related to the carboxyl carbon atom 1). However, to illustrate the metabolic relationship between different unsaturated fatty acid families, it is sometimes more helpful to number the double bonds in relation to the terminal methyl carbon atom, n. The preferred nomenclature is then: 18 : 3n-3 and 18 : 3n-6 for α-linolenic and γ-linolenic acids respectively; 18 : 2n-6 and 20 : 4n-6 for linoleic and arachidonic acids respectively and 18 : 1n-9 for oleic acid. Positional isomers such as α- and γ-linolenic acid should always be clearly distinguished. It is assumed that the double bonds are methylene-interrupted and are of the cis-configuration (see Holman RT in Progress in the Chemistry of Fats and Other Lipids (1966) vol. 9, part 1, p. 3. Oxford: Pergamon Press). Groups of fatty acids that have a common chain length but vary in their double bond content or double bond position should be referred to, for example, as C20 fatty acids or C20 PUFA. The
modern nomenclature for glycerol esters should be used, i.e. triacylglycerol, diacylglycerol, monoacylglycerol not triglyceride, diglyceride, monoglyceride. The form of fatty acids used in diets should be clearly stated, i.e. whether ethyl esters, natural or refined fats or oils. The composition of the fatty acids in the dietary fat and tissue fats should be stated clearly, expressed as mol/100 mol or g/100 g total fatty acids.

Nomenclature of micro-organisms. The correct name of the organism, conforming with international rules of nomenclature, should be used: if desired, synonyms may be added in parentheses when the name is first mentioned. Names of bacteria should conform to the current Bacteriological Code and the opinions issued by the International Committee on Systematic Bacteriology. Names of algae and fungi must conform to the current International Code of Botanical Nomenclature. Names of protozoa should conform to the current International Code of Zoological Nomenclature.

Nomenclature of plants. For plant species where a common name is used that may not be universally intelligible, the Latin name in italics should follow the first mention of the common name. The cultivar should be given where appropriate.

Other nomenclature, symbols and abbreviations. Authors should consult recent issues of *Public Health Nutrition* for guidance. The IUPAC rules on chemical nomenclature should be followed, and the recommendations of the Nomenclature Committee of IUBMB and the IUPAC-IUBMB Joint Commission on Biochemical Nomenclature and Nomenclature Commission of IUBMB in *Biochemical Nomenclature and Related Documents* (1992), 2nd ed., London: Portland Press (http://www.chem.qmul.ac.uk/iupac/bibliog/white.html). The symbols and abbreviations, other than units, are essentially those listed in *British Standard 5775 (1979–1982), Specifications for Quantities, Units and Symbols*, parts 0–13. Day should be abbreviated to d, for example 7 d, except for ‘each day’, ‘7th day’ and ‘day 1’.

Elements and simple chemicals (e.g. Fe and CO2) can be referred to by their chemical symbol (with the exception of arsenic and iodine, which should be written in full) or formula from the first mention in the text; the title, text and table headings, and figure legends can be taken as exceptions. Well-known abbreviations for chemical substances may be used without explanation, thus: RNA for ribonucleic acid and DNA for deoxyribonucleic acid. Other substances that are mentioned frequently (five or more times) may also be abbreviated, the abbreviation being placed in parentheses at the first mention, thus: lipoprotein lipase (LPL), after that, LPL, and an alphabetical list of abbreviations used should be included. Only accepted abbreviations may be used in the title and text headings. If an author’s initials are mentioned in the text, they should be distinguished from other abbreviations by the use of stops, e.g. ‘one of us (P. J. H.)...’. For UK counties the official names given in the *Concise Oxford Dictionary* (1995) should be used and for states of the USA two-letter abbreviations should be used, e.g. MA (not Mass.) and IL (not Ill.). Terms such as ‘bioavailability’ or ‘available’ may be used providing that the use of the term is adequately defined.

Spectrophotometric terms and symbols are those proposed in *IUPAC Manual of Symbols and Terminology for Physicochemical Quantities and Units* (1979) London: Butterworths. The attention of authors is particularly drawn to the following symbols: m (milli, 10⁻³), μ (micro, 10⁻⁶), n (nano, 10⁻⁹) and p (pico, 10⁻¹²). Note also that ml (millilitre) should be used instead of cc, μm (micrometre) instead of μ (micron) and μg (microgram) instead of γ.

Numbers. Numerals should be used with units, for example, 10 g, 7 d, 4 years (except when beginning a sentence, thus: ‘Four years ago...’); otherwise, words (except when 100 or more), thus: one man, ten ewes, ninety-nine flasks, three times (but with decimal, 2.5 times), 100 patients, 120 cows, 136 samples.

Abbreviations. The following abbreviations are accepted without definition by *Public Health Nutrition*:

- ADP (GDP) adenosine (guanosine) 5'-disphosphate
- AIDS acquired immune deficiency syndrome
- AMP (GMP) adenosine (guanosine) 5'-monophosphate
- ANCOVA analysis of covariance
- ANOVA analysis of variance
apo apolipoprotein
ATP (GTP) adenosine (guanosine) 5′-triphosphate
AUC area under the curve
BMI body mass index
BMR basal metabolic rate
bp base pair
BSE bovine spongiform encephalopathy
CHD coronary heart disease
CI confidence interval
CJD Creutzfeldt-Jacob disease
CoA and acyl-CoA co-enzyme A and its acyl derivatives
CV coefficient of variation
CVD cardiovascular disease
Df degrees of freedom
DHA docosahexaenoic acid
DM dry matter
DNA deoxyribonucleic acid
dpm disintegrations per minute
EDTA ethylenediaminetetra-acetic acid
ELISA enzyme-linked immunosorbent assay
EPA eicosapentaenoic acid
Expt experiment (for specified experiment, e.g. Expt 1)
FAD flavin-adenine dinucleotide
FAO Food and Agriculture Organization (except when used as an author)
FFQ food-frequency questionnaire
FMN flavin mononucleotide
GC gas chromatography
GLC gas–liquid chromatography
GLUT glucose transporter
GM genetically modified
Hb haemoglobin
HDL high-density lipoprotein
HEPES 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid
HIV human immunodeficiency virus
HPLC high-performance liquid chromatography
Ig immunoglobulin
IHD ischaemic heart disease
IL interleukin
IR infra red
kb kilobases
Km Michaelis constant
LDL low-density lipoprotein
MHC major histocompatibility complex
MRI magnetic resonance imaging
MS mass spectrometry
MUFA monounsaturated fatty acids
NAD+, NADH oxidized and reduced nicotinamide-adenine dinucleotide
NADP+, NADPH oxidized and reduced nicotinamide-adenine dinucleotide phosphate
NEFA non-esterified fatty acids
NF-κB nuclear factor kappa B
NMR nuclear magnetic resonance
NS not significant
NSP non-starch polysaccharide
OR odds ratio
PAGE polyacrylamide gel electrophoresis
PBS phosphate-buffered saline
PCR polymerase chain reaction
PG prostaglandin
PPAR peroxisome proliferator-activated receptor
PUFA polyunsaturated fatty acids
RDA recommended dietary allowance
RER respiratory exchange ratio
RIA radioimmunoassay
RMR resting metabolic rate
RNA, mRNA etc. ribonucleic acid, messenger RNA etc.
rpm revolutions per minute
RT reverse transcriptase
SCFA short-chain fatty acids
SDS sodium dodecyl sulphate
SED standard error of the difference between means
SFA saturated fatty acids
SNP single nucleotide polymorphism
TAG triacylglycerol
TCA trichloroacetic acid
TLC thin-layer chromatography
TNF tumour necrosis factor
UN United Nations (except when used as an author)
UNICEF United Nations International Children’s Emergency Fund
UV ultra violet
VLDL very-low-density lipoprotein
VO2 O2 consumption
VO2max maximum O2 consumption
WHO World Health Organization (except when used as an author)
Use of three-letter versions of amino acids in tables: Leu, His, etc.
CTP, UTP, GTP, ITP, as we already use ATP, AMP etc.

Disallowed words and phrases. The following are disallowed by *Public Health Nutrition*:
deuterium or tritium (use 2H and 3H)
c.a. or around (use approximately or about)
canola (use rapeseed)
ether (use diethyl ether)
free fatty acids (use NEFA)
isocalorific/calorie (use isoenergetic/energy)
quantitate (use quantify)
unpublished data or observations (use unpublished results)

Proofs. PDF proofs are sent to authors in order that they make sure that the paper has been correctly set up in type. Only changes to errors induced by typesetting/copy editing or typographical errors will be accepted. Any further changes, including notes added, must be agreed by the Editor-in-Chief. All corrections should be made in ink in the margins: marks made in the text should be only those indicating the place to which the corrections refer.

Corrected proofs should be returned within 3 days either by Express mail or email to:

Gill Watling 3 Gramercy Fields Southdown Hill

Brixham Devon TQ5 0AF UK gillwatling@btinternet.com

If corrected proofs are not received from authors within 7 days the paper may be published as it stands.

Offprints. A copy of the issue and a PDF file of the paper will be supplied free of charge to the corresponding author of each paper or short communication, and offprints may be ordered on the order form sent with the proofs.
ABSTRACT

Objective: Urbanisation is generally associated with increased CVD risk and accompanying dietary changes. Little is known regarding the association between increased CVD risk and dietary changes using approaches such as diet quality. The relevance of predefined diet quality scores (DQS) in non-Western developing countries has not yet been established.

Design: The association between dietary intakes and CVD risk factors was investigated using two variations of DQS, adapted to the black South African diet. Dietary intake data were collected using a quantitative FFQ. CVD risk was determined by analysing known CVD risk factors.

Setting: Urban and rural areas in North West Province, South Africa

Subjects: Apparently healthy volunteers from the South African PURE study population (n=1710)

Results: CVD risk factors were significantly increased in the urban participants, especially the women. Urban men and women had significantly higher intakes of both macronutrients and micronutrients, with macronutrient intakes well within the recommended CVD guidelines. While micronutrient intakes of the urban groups were generally higher than the rural groups, intakes of selected micronutrients were low in both groups. Both variations of DQS indicated improved diet quality in the urban groups and showed good agreement between the scores although they seem to measure different aspects of diet quality.

Conclusion: The apparent paradox between improved diet quality and increased CVD risk in the urban group can be explained when interpreting the cut-offs used in the scores against the absolute intakes of individual nutrients. Predefined DQS as well as current guidelines for CVD prevention should be interpreted with caution in non-Western developing countries.
INTRODUCTION

In developing countries, the process of urbanisation and the modernisation of lifestyles has marked effects on populations. While still battling infectious diseases, these countries are also facing an increase in non-communicable diseases (1). With urbanisation in low- and middle-income countries there is an increase in socio-economic status, which is usually accompanied by an increase in most risk factors for CVD(2). These risk factors include obesity and increased dietary intake of total fat and saturated fat, as has been observed in the North West province of South Africa in the Transition and Health during Urbanisation of South Africans (THUSA) study(3), as well as in other developing countries(4). Among numerous other factors, this increase in CVD risk has been ascribed to a worsening diet in populations as they transition from a rural to an urban lifestyle. Traditionally, in South Africa, the diet was low in fat and sugar and rich in fibre(5). As a consequence of urbanisation, the diet now tends to be richer in animal products, refined grains, fats, salt and sugar as well as lower in fibre(6).

Until now, the effect of urbanisation on diet has been investigated by examining mostly the nutrient composition of diets. However, the failure of single-nutrient supplementation to protect against CVD(7) and cancers(8,9) highlighted the fact that it was important to develop a more holistic view of food intake. Foods are biochemically complex and contain compounds that may interact with each other. By investigating not only nutrients but also foods and dietary quality, the complexity of dietary behaviours and interactions are taken into account. One way of assessing dietary quality is to use theoretically defined dietary patterns that are based on current nutrition knowledge. These theoretical or predefined diet quality scores consist of foods and/or nutrients which are considered to be important to health(10).

In a critical review of predefined diet quality scores (DQS), Waijers et al. (2007)(10) made recommendations regarding the decisions that need to be taken when constructing a DQS. It is advised that a score should contain two macronutrients (fat, carbohydrate or protein) to ensure overall balance. It is also desirable that the score be proportional to intake, rather than using simple cut-off values, or else that a scoring range be designed. To avoid confounding by energy intake, scores should depend on, or be adjusted for, energy intake. Another important issue to be taken
into account is that, because food intake is culturally determined, general dietary habits within the population being studied need to be considered when the score items and their cut-offs are chosen. The score should also be constructed in such a way that an acceptable dietary variety is ensured of obtaining a high score, although variety does not necessarily have to be included as a score item. It is also advisable to select more than one score when evaluating diet quality(11).

Using these criteria, two scores were selected from the numerous available variations of DQS to assess diet quality in this study population. The first is a score developed by Thiele \textit{et al.}(12), which was adapted to the South African diet and renamed the Adapted Thiele Score (see methods section for more details), and the second, the Healthy Diet Indicator (HDI)(13). The rationale for electing to use these specific variations of DQS over the other known scores is that not only nutrients but also food groups are included, and that diet quality is assessed in relation to known and proven dietary guidelines specifically for the prevention of CVD. It will also be relatively simple to fit South African foods into the food groups used in these scores.

The aim of this study is, therefore, to relate the dietary intakes of the South African Prospective Urban and Rural Epidemiological (PURE) study population (n=2010) using both nutrient intakes and diet quality, to CVD risk associated with urbanisation. The PURE study is a large-scale cohort study that tracks changing lifestyles, risk factors and chronic disease using periodic standardised data collection in urban and rural areas of 17 countries in transition(14).

\textbf{MATERIALS AND METHODS}

This study used baseline data collected over a twelve-week period in 2005 from 2010 randomly selected subjects in the South African arm of the PURE study. This study was conducted according to the guidelines laid down in the Declaration of Helsinki and all procedures involving human volunteers were approved by the Ethics Committee of the North West University, South Africa (No. 04M10). The subjects signed informed consent before commencement of the study, after the study was explained to them in their home language (Annexure F). All data were treated confidentially and all analysis was performed with coded data. Black South African
men (n=750) and women (n=1260) older than 35 years were recruited from 6000 randomly selected households. From these households, 1006 volunteers were recruited from rural areas (living under tribal law) and 1004 from urban areas (living in informal and formal settlements surrounding cities) in the North West Province of South Africa. Volunteers were included if they were apparently healthy. Exclusion criteria were the use of chronic medication for non-communicable diseases and/or any self-reported illness. For various reasons, dietary intake and anthropometric data could not be collected from some volunteers and these were consequently excluded from the data set, resulting in the total study population of 1710.

Details regarding the collection of socio-economic information, anthropometry measurements, blood collection, blood pressure and physical activity have been reported previously\(^{(15-17)}\).

A culturally sensitive quantified food frequency questionnaire (QFFQ) (Annexure E) was completed by trained fieldworkers in the respondents' language of choice. The QFFQ, which demonstrated good reproducibility\(^{(18)}\), had been previously developed\(^{(19)}\) and validated in this population, using seven-day weighed records and biomarkers\(^{(20)}\). Portion sizes were estimated using food portion photographs\(^{(21)}\), appropriate utensils and containers and examples of specific foods. Portion sizes were reported in household measurements and converted to weights using standard tables\(^{(22)}\). The QFFQ was completed for foods eaten over the previous 30 days. The food intake was coded according to the South African Food Composition Database System of the South African Medical Research Council and then used to calculate the nutrient and food group intake\(^{(23-25)}\).

Diet quality scores. Table 1 presents the components and cut-off points of the HDI\(^{(13)}\) and the Deficiency and Excess Score by Thiele et al.\(^{(12)}\) which were used in this study. The score by Thiele et al. suggested using up to 30 nutrients in a Deficiency Score to identify a preferable diet quality and using six nutrients in an Excess Score to identify a non-preferable diet quality. After assessing the completeness of the relevant micronutrients in the South African Food Composition Database System, 19 nutrients were used for the Deficiency Score in this study, and the suggested six were used for the Excess Score. The estimated average requirements (EAR) or adequate intake (AI) (when EAR are not available) were used
as cut-off points in the score$^{(26-30)}$. Intake was then calculated as a percentage of the EAR or AI. Intake equal to or higher than the EAR or AI was allocated 100%. The scores were added up, giving a total of 1900 for the Deficiency Score and 600 for the Excess Score. To simplify the interpretation, it was decided to combine the Deficiency and Excess Scores into one score by subtracting the Excess from the Deficiency Score, now called the Adapted Thiele Score. This principle of being ‘penalised’ for non-preferable dietary intakes is used in most variations of DQS$^{(31-33)}$.

The original HDI score was adapted for this study, firstly, by using the more recent guidelines of the WHO for prevention of CVD$^{(34)}$ for the cut-off points and secondly, by changing the scoring system from a dichotomous variable (1 or 0) to a continuous score in order to provide a more sensitive scoring range, instead of using very strict cut-offs.

An additional modification regarding sodium intake was made because the QFFQ did not specifically evaluate the intake of discretionary salt. Charlton et al.$^{(35)}$ showed that discretionary salt intake made up 45.5% of total sodium intakes in black South African subjects. The sodium intake of the population was therefore adjusted by adding 46% to the sodium intake. Another modification was made regarding the cut-off point for fat, since the fat intake of this population was quite low, with a mean of 24% of total energy. The cut-off for total fat intake in the Excess Score was lowered from 35% to 30%, so that those with a higher fat intake within the study population would be ‘penalised’. The last adjustment made was to remove the contribution of alcohol to total energy intake. The median intake of alcohol was alarmingly high, particularly in the men, as has been previously described$^{(36)}$. This was diluting the contribution of the macronutrients to energy, particularly in those with a very high alcohol intake.

Statistical analysis. Data were analysed using the SPSS (Statistical Package for Social Sciences, version 20) software package. A p-value ≤ 0.05 was regarded as statistically significant. Normally distributed variables are reported as mean (95% confidence interval), and non-normally distributed data as median [25th−75th percentile]. Mann-Whitney U tests were used for comparisons between two groups. ANOVA, with post-hoc comparisons, was used for comparison between three or more groups. Bland Altman graphs were constructed to assess the agreement between the two variations of DQS.
Table 1 Components of Diet Quality Scores

<table>
<thead>
<tr>
<th>Nutrient or food group (daily intake)</th>
<th>Age (Years)</th>
<th>Cut-off values</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Men</td>
<td>Women</td>
</tr>
<tr>
<td>Healthy Diet Indicator<sup>13</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SFA * (g)</td>
<td><10</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>PUFA (g)</td>
<td>6-10</td>
<td>6-10</td>
<td></td>
</tr>
<tr>
<td>Protein (% of TE)</td>
<td>10-15</td>
<td>10-15</td>
<td></td>
</tr>
<tr>
<td>Complex carbohydrates * (% of TE)</td>
<td>50-70</td>
<td>50-70</td>
<td></td>
</tr>
<tr>
<td>Dietary fibre * (g)</td>
<td>>25</td>
<td>>25</td>
<td></td>
</tr>
<tr>
<td>Fruit and vegetables * (g)</td>
<td><400</td>
<td><400</td>
<td></td>
</tr>
<tr>
<td>Pulses, nuts and seeds (g)</td>
<td>>30</td>
<td>>30</td>
<td></td>
</tr>
<tr>
<td>Mono- and disaccharides (% of TE)</td>
<td><10</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>Cholesterol (mg)</td>
<td><300</td>
<td><300</td>
<td></td>
</tr>
<tr>
<td>Deficiency Score<sup>12</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein † (% of TE)</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Carbohydrate † (% of TE)</td>
<td>55</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Total fibre ‡ (g)</td>
<td><51</td>
<td>38</td>
<td>25</td>
</tr>
<tr>
<td>Calcium ‡ (mg)</td>
<td>19-50</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Magnesium § (mg)</td>
<td>>31</td>
<td>350</td>
<td>265</td>
</tr>
<tr>
<td>Iron § (mg)</td>
<td>31-50</td>
<td>6.0</td>
<td>8.1</td>
</tr>
<tr>
<td>Zinc § (mg)</td>
<td>>31</td>
<td>9.4</td>
<td>6.8</td>
</tr>
<tr>
<td>Manganese † (mg)</td>
<td>>31</td>
<td>2.3</td>
<td>1.8</td>
</tr>
<tr>
<td>Potassium ‡ (mg)</td>
<td>>31</td>
<td>4700</td>
<td>4700</td>
</tr>
<tr>
<td>Copper § (µg)</td>
<td>>31</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td>Vitamin A § (µgRAE)</td>
<td>>31</td>
<td>625</td>
<td>500</td>
</tr>
<tr>
<td>Thiamine § (mg)</td>
<td>>31</td>
<td>1.0</td>
<td>0.9</td>
</tr>
<tr>
<td>Riboflavin § (mg)</td>
<td>>31</td>
<td>1.1</td>
<td>0.9</td>
</tr>
<tr>
<td>Niacin § (mg)</td>
<td>>31</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Vitamin B6 § (mg)</td>
<td>31-50</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Folate § (µg)</td>
<td>>31</td>
<td>320</td>
<td>320</td>
</tr>
<tr>
<td>Vitamin B12 § (µg)</td>
<td>>31</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Pantothenic acid ‡ (mg)</td>
<td>>31</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Vitamin C § (mg)</td>
<td>>31</td>
<td>75</td>
<td>60</td>
</tr>
<tr>
<td>Excess Score<sup>12</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total fat † (% of TE)</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Saturated: unsaturated fatty acid ratio</td>
<td>1:2</td>
<td>1:2</td>
<td></td>
</tr>
<tr>
<td>Cholesterol † (mg)</td>
<td><300</td>
<td><300</td>
<td></td>
</tr>
<tr>
<td>Alcohol † (g)</td>
<td>30</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Added sugar † (mg)</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Sodium ‡ (mg)</td>
<td>31-50</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>>51</td>
<td>1300</td>
<td>1300</td>
<td></td>
</tr>
</tbody>
</table>

TE, Total energy (excluding energy from alcohol); RAE, retinol activity equivalent

* Criteria used for cut-off values are WHO guidelines for prevention of chronic disease³⁴
† DRIs: Acceptable Macronutrient distribution ranges³⁰
‡ Adequate Intake²⁶⁻²⁹
§ Estimated average requirement²⁶⁻²⁹
RESULTS

Table 2 provides details on the general characteristics of the total study population, as well as for the rural men and women and urban men and women separately. The urban women had significantly higher BMI, waist circumference, triglyceride, C-reactive protein and fasting glucose levels than their rural counterparts. Both systolic and diastolic blood pressures were significantly higher in the urban men and women, compared with the rural groups. The same was seen for the plasminogen activator-inhibitor-1 levels. The rural groups were significantly more active than their urban counterparts. In the rural group, the majority of men and women were uneducated, while in the urban group, the majority had a primary school education. Around 17% of the total group were newly diagnosed HIV positive, with no significant differences between the rural and urban groups.

Table 3 provides the means of the DQS and of the nutrients and foods that were used in the calculation of the DQS for the rural and urban groups. This table shows that the dietary intake of the urban men and women was significantly higher than that of their rural counterparts for all nutrients and foods, except for carbohydrate percentage from energy. Table 3 also provides the percentage difference between the intakes of the urban and rural groups, where urban intakes are expressed as a percentage increase or decrease compared with the rural intake. Fat intake was over 40% and sodium over 100% higher in the urban groups. Intakes of vitamin C, vitamin B12, vitamin A and riboflavin the urban groups were more than double the intakes in rural groups, with calcium intake in urban women being more than twice as high as that seen in rural women.

It is also evident that, although nutrients such as total fat as percentage of energy and cholesterol as well as foods such as fruit and vegetables and pulses, nuts and seeds were significantly higher in the urban than the rural group, they were still below the relevant guidelines. The median percentage energy fat intake in the urban groups, although still below the CVD guideline of 30%, was, however, approaching this level. When looking at Table 4, it is clear that the micronutrient intakes of this population are of concern, as can be seen from the large percentage of both the rural and urban groups that did not meet the EAR/AI. When micronutrients expressed as a percentage of the EAR/AI are compared, it is clear that the urban groups’ median...
intakes were above 100% for 12 of the 18 micronutrients, while this was not the case for the rural groups (4 only). Despite the higher micronutrient intakes in the urban groups in comparison with the rural groups, micronutrients specifically linked to CVD prevention, such as calcium, potassium and vitamin C, as well as fibre were far below the EAR/AI in both the rural and urban groups.

Both versions of DQS also indicated improved diet quality in the urban group in comparison with the rural groups (Table 3). The HDI indicated a 7% and 5% increase in diet quality in the urban men and women respectively, compared with their rural counterparts. When comparing the Deficiency and Excess Scores which make up the Adapted Thiele Score, it is clear that the rural-urban increases of the Deficiency Score (17% and 17%) were higher than the increases in the Excess Score (0.4% and 2%) for men and women respectively. In order to determine the agreement between the two DQS, each participant’s scores were expressed as a percentage of the total score. The scores as percentages of the total were then correlated with each other. The two scores correlated significantly with each other for both the rural ($r = 0.6; p < 0.0001$) and the urban ($r = 0.7; p < 0.0001$) groups. In order to determine whether the differences between the scores were consistent across the total range of DQS values, Bland Altman plots were constructed (Figure 1). At a percentage of less than 70% of the total possible DQS, the HDI score gave consistently higher scores than the Adapted Thiele Score, while at a percentage of greater than 70%, the Adapted Thiele Score gave consistently higher scores. This explains the agreement between the two scores in the rural group, where the median DQS expressed as a percentage of the total was around 70% (72% for HDI men and women; 72% and 73% for Adapted Thiele Score for men and women), and the disagreement between the two scores in the urban groups with the higher DQS, where the median HDI was 77% and 76% for men and women respectively and 84% for both men and women in the Adapted Thiele Score.
Table 2 Comparison of general characteristics of rural and urban participants

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rural</td>
<td>Urban</td>
<td>Rural</td>
</tr>
<tr>
<td></td>
<td>n=1710</td>
<td>n=314</td>
<td>n=328</td>
</tr>
<tr>
<td></td>
<td>n=314</td>
<td>n=328</td>
<td>n=588</td>
</tr>
<tr>
<td>Age (Years)</td>
<td>48.0 [41.0-56.0]</td>
<td>48.0 [41.0 -56.3]</td>
<td>49.0 [42.0-58.0]</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>22.8 [19.3-28.4]</td>
<td>19.7 [18.1-22.3]</td>
<td>20.0 [18.3-22.8]</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>77.0 [70.2-87.4]</td>
<td>74.6 [70.1-80.5]</td>
<td>74.4 [70.0-81.4]</td>
</tr>
<tr>
<td>Total cholesterol (mmol/L)</td>
<td>5.03 [1.33,1.42]</td>
<td>4.72 [1.24,1.45]</td>
<td>4.89 [1.20,1.40]</td>
</tr>
<tr>
<td>HDL-cholesterol (mmol/L)</td>
<td>1.42 [1.06-1.89]</td>
<td>1.41 [1.02-1.95]</td>
<td>1.52 [1.13-2.05]</td>
</tr>
<tr>
<td>LDL-cholesterol (mmol/L)</td>
<td>3.25 [1.18, 1.26]</td>
<td>2.96 [1.10,1.29]</td>
<td>3.02 [1.09,1.28]</td>
</tr>
<tr>
<td>TAG (mmol/L)</td>
<td>1.09 [0.82-1.54]</td>
<td>0.96 [0.75-1.34]</td>
<td>1.00 [0.79-1.46]</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>133 (132,134)</td>
<td>132 (129,135)</td>
<td>138 (135,140)</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>87.4 (86.7-88.0)</td>
<td>84.9 (83.2-86.6)</td>
<td>88.0 (86.5-89.6)</td>
</tr>
<tr>
<td>C-Reactive protein (mg/L)</td>
<td>3.20 [0.93-9.20]</td>
<td>2.70 [0.63-8.04]</td>
<td>2.29 [0.83-7.53]</td>
</tr>
<tr>
<td>Fasting glucose, (mmol/L)</td>
<td>4.80 [4.30-5.30]</td>
<td>4.70 [4.40-5.10]</td>
<td>4.80 [4.20-5.50]</td>
</tr>
<tr>
<td>PAI-1 (U/ml)</td>
<td>4.27 [1.24-7.99]</td>
<td>1.95 [0.00-4.72]</td>
<td>2.85 [0.18-6.74]</td>
</tr>
<tr>
<td>Physical Activity Index, n=1645</td>
<td>3.0(2.5-3.2)</td>
<td>3.0(2.6-3.4)</td>
<td>2.7(2.4-3.0)</td>
</tr>
<tr>
<td>Education</td>
<td>n=1608</td>
<td>n=294</td>
<td>n=311</td>
</tr>
<tr>
<td>None</td>
<td>592 (36.8%)</td>
<td>155 (52.7%)</td>
<td>79 (25.4%)</td>
</tr>
<tr>
<td>Primary school</td>
<td>668 (41.5%)</td>
<td>92 (31.3%)</td>
<td>150 (48.2%)</td>
</tr>
<tr>
<td>Secondary School</td>
<td>336 (20.9%)</td>
<td>43 (14.6%)</td>
<td>78 (25%)</td>
</tr>
<tr>
<td>University/College</td>
<td>12 (0.8%)</td>
<td>4 (1.4%)</td>
<td>4 (1.3%)</td>
</tr>
<tr>
<td>HIV status (Newly diagnosed)</td>
<td>n=1703</td>
<td>n=314</td>
<td>n=327</td>
</tr>
<tr>
<td>Positive</td>
<td>290 (17.0%)</td>
<td>56 (17.8%)</td>
<td>49 (15.0%)</td>
</tr>
<tr>
<td>Negative</td>
<td>1413 (83.0%)</td>
<td>258 (82.2%)</td>
<td>278 (85.0%)</td>
</tr>
<tr>
<td>Smoking status, %</td>
<td>n=1702</td>
<td>n=313</td>
<td>n=325</td>
</tr>
<tr>
<td>Former</td>
<td>69 (4.05%)</td>
<td>21 (6.69%)</td>
<td>24 (7.32%)</td>
</tr>
<tr>
<td>Current</td>
<td>897 (52.7%)</td>
<td>173 (55.2%)</td>
<td>209 (64.3%)</td>
</tr>
<tr>
<td>Never</td>
<td>736 (43.2%)</td>
<td>119 (38.0%)</td>
<td>325 (88.3%)</td>
</tr>
</tbody>
</table>

BP, Blood pressure; PAI-1: Plasminogen activator-inhibitor-1

Normally distributed data reported as: mean (95% CI) and non-parametric data reported as median [25th – 75th percentile].
Table 3 Nutrient intake, food group intake and Diet Quality Scores of rural and urban men and women

<table>
<thead>
<tr>
<th>NUTRIENTS</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (kJ)</td>
<td>6029 [4765;7757]</td>
<td>8603</td>
</tr>
<tr>
<td>Carbohydrate (%TE)</td>
<td>69.9 [64.9;73.9]</td>
<td>59.9 [56.0;64.2]</td>
</tr>
<tr>
<td>Total Fat (%TE)</td>
<td>18.7 [15.0;23.3]</td>
<td>26.7 [22.8;29.8]</td>
</tr>
<tr>
<td>Cholesterol (mg)</td>
<td>106 [55.9;153]</td>
<td>234 [149;331]</td>
</tr>
<tr>
<td>Alcohol (g)</td>
<td>2.04 [0.00;28.6]</td>
<td>11.6 [0.00;26.7]</td>
</tr>
<tr>
<td>Dietary fibre (g)</td>
<td>18.1 [12.6;24.2]</td>
<td>24.0 [16.5;33.2]</td>
</tr>
<tr>
<td>Calcium (mg)</td>
<td>213 [139;309]</td>
<td>369 [277;535]</td>
</tr>
<tr>
<td>Magnesium (mg)</td>
<td>277 [194;421]</td>
<td>379 [277;519]</td>
</tr>
<tr>
<td>Iron (mg)</td>
<td>11.9 [8.7;15.2]</td>
<td>15.1 [10.8;20.9]</td>
</tr>
<tr>
<td>Manganese (mg)</td>
<td>1554 [834;3051]</td>
<td>2488 [1765;3482]</td>
</tr>
<tr>
<td>Potassium (mg)</td>
<td>1309 [956;1714]</td>
<td>1988 [1449;2741]</td>
</tr>
<tr>
<td>Sodium (mg)</td>
<td>726 [361;1063]</td>
<td>1673 [1179;2370]</td>
</tr>
<tr>
<td>Copper (µg)</td>
<td>102 [75.5;139]</td>
<td>139 [103;186]</td>
</tr>
<tr>
<td>Thiamine (mg)</td>
<td>1.54 [1.2;2.02]</td>
<td>1.78 [1.31;2.68]</td>
</tr>
<tr>
<td>Riboflavin (mg)</td>
<td>0.8 [0.6;1.4]</td>
<td>1.5 [1.1;2.0]</td>
</tr>
<tr>
<td>Vitamin B6 (mg)</td>
<td>1.21 [0.84;1.61]</td>
<td>1.67 [1.1;2.56]</td>
</tr>
<tr>
<td>Vitamin B12 (µg)</td>
<td>1.52 [0.82;2.90]</td>
<td>4.47 [2.45;7.47]</td>
</tr>
<tr>
<td>Pantothenic acid (mg)</td>
<td>2.70 [1.92;3.63]</td>
<td>4.63 [3.7;16.22]</td>
</tr>
<tr>
<td>Vitamin C (mg)</td>
<td>11.2 [6.05;15.5]</td>
<td>30.7 [17.8;55.4]</td>
</tr>
</tbody>
</table>

FOODS

| % difference between R and U † |
|---|---|---|
| Rural | Urban | Rural | Urban |
| 58.9 [33.8;83.0] | 129 [81.4;216] | 83 | 69.3 [43.6;100] | 148 [84.6;231] | 114 |
| 0.0 [0.0;10.0] | 9.6 [0.0;28.6] | 860 | 0.0 [0.0;11.6] | 11.0 [0.0;29.4] | 900 |

DIET QUALITY SCORES

<table>
<thead>
<tr>
<th>% of total score</th>
<th>Adapted Thiele</th>
<th>Deficiency score</th>
<th>New Excess score</th>
<th>HDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural</td>
<td>Urban</td>
<td>Rural</td>
<td>Urban</td>
<td>Rural</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% of total score</th>
<th>Adapted Thiele</th>
<th>Deficiency score</th>
<th>New Excess score</th>
<th>HDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural</td>
<td>Urban</td>
<td>Rural</td>
<td>Urban</td>
<td>Rural</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% of total score</th>
<th>Adapted Thiele</th>
<th>Deficiency score</th>
<th>New Excess score</th>
<th>HDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural</td>
<td>Urban</td>
<td>Rural</td>
<td>Urban</td>
<td>Rural</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

H: Rural; U: Urban; Data reported as median [25th–75th percentile].

* indicates significant difference p<0.01 between rural and urban men and superscript † indicates significant difference p<0.01 between rural and urban women.

‡% indicates a higher intake from rural to urban except for † at carbohydrates which indicates a lower percentage intake.
Table 4 Nutrient intake expressed as a percentage of EAR/AI of micronutrients and percentage of population that did not meet the EAR/AI

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Median [25th; 75th percentile] % OF EAR/AI</th>
<th>% [n] THAT DID NOT MEET EAR/AI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dietary fibre (g)</td>
<td>52.7 [36.4-71.4]†</td>
<td>70.0 [52.9-89.8]†</td>
</tr>
<tr>
<td>Calcium (mg)</td>
<td>19.4 [12.4-28.9]†</td>
<td>15.5 [9.5-22.2]†</td>
</tr>
<tr>
<td>Magnesium (mg)</td>
<td>79.2 [55.5-120]†</td>
<td>70.4 [53.8-93.6]†</td>
</tr>
<tr>
<td>Zinc (mg)</td>
<td>88.0 [66.4-114]†</td>
<td>108 [82.7-137.3]†</td>
</tr>
<tr>
<td>Manganese (mg)</td>
<td>67.6 [36.2-133]†</td>
<td>64.3 [37.0-102]†</td>
</tr>
<tr>
<td>Potassium (mg)</td>
<td>27.9 [20.3 – 36.5]†</td>
<td>24.7 [19.2-31.9]†</td>
</tr>
<tr>
<td>Sodium (mg)</td>
<td>30.9 [18.1-47.6]†</td>
<td>29.3 [17.0-44.9]†</td>
</tr>
<tr>
<td>Vitamin A (µg)</td>
<td>81.8 [51.5-130]†</td>
<td>72.3 [46.2-111]†</td>
</tr>
<tr>
<td>Riboflavin (mg)</td>
<td>75.4 [56-122]†</td>
<td>77.9 [57-108]†</td>
</tr>
<tr>
<td>Niacin (mg)</td>
<td>94.5 [71.6-136]†</td>
<td>90.0 [68.7-114]†</td>
</tr>
<tr>
<td>Vitamin B6 (mg)</td>
<td>98.1 [69-128]†</td>
<td>95.8 [69.9-122]†</td>
</tr>
<tr>
<td>Folate (µg)</td>
<td>112 [71.3-144]†</td>
<td>98.9 [69.9-130]†</td>
</tr>
<tr>
<td>Pantothenic acid (mg)</td>
<td>54.1 [38.5-72.6]†</td>
<td>49.4 [37.4-66.3]†</td>
</tr>
<tr>
<td>Vitamin C (mg)</td>
<td>14.9 [8.1-20.7]†</td>
<td>19.8 [12.1-29.3]†</td>
</tr>
</tbody>
</table>

Indicates significant difference p<0.00001 between rural and urban men

† Indicates significant difference p<0.01 between rural and urban women

‡ Refer to Table 1 for EAR/AI
Figure 1 Bland Altman graphs for the rural group (A) and the urban group (B)
DISCUSSION

This is one of only a few studies to investigate the association between increased CVD risk during urbanisation in a developing country and dietary intake by not only considering individual nutrients, but also investigating dietary patterns by means of predefined DQS. It should be kept in mind that DQS have primarily been developed for Western countries and that their relevance for non-Western populations has not yet been confirmed\(^\text{(37)}\). As can be seen from the increased levels of known CVD risk factors, it is clear that the urban participants, especially urban women, were at an increased risk of CVD in comparison with their rural counterparts. The rural group was, furthermore, less educated than the urban group, and significantly more active. Increasing CVD risk in populations undergoing urbanisation has been described previously, and changing dietary intake is accepted as one of the contributing factors\(^\text{(3,4)}\).

It has been understood that the traditional African rural diet is healthier and protects against CVD in that it is higher in fibre and fruit and vegetables and lower in animal products\(^\text{(5)}\). As can be seen from Table 3, in this population, however, the urban groups (men and women) had significantly higher intakes of all the macronutrients and micronutrients, except for carbohydrate as percentage energy, which was significantly lower in the urban group. These levels of intakes were markedly higher when looking at the percentage difference in intake between the rural and urban groups. Of particular interest is the total fat as percentage energy intake, which was 40% higher in the urban than in the rural group. Although the median fat intake in the urban groups was still below the CVD guideline of 30%, it was, however, only just below, suggesting that at least 50% of the population was consuming fat at the level of (and higher than) the guideline. Saturated fat, polyunsaturated fatty acids and cholesterol intakes were, however, well within the recommended ranges in both groups. This relatively low fat intake is similar to what has been seen in previous studies (THUSA) in this population\(^\text{(38)}\).

Despite the increased micronutrient intakes in the urban group, intakes for some of the micronutrients were disconcertingly low when compared with the EAR/AI. More than 80% of the population (in both urban and rural groups), for example, did not reach the EAR/AI for dietary fibre, calcium, vitamin C and potassium. Interestingly,
these are also the micronutrients for which some evidence exists for protection against CVD, although most authors agree that dietary advice should not focus on the individual micronutrients but rather on food sources, such as fruit and vegetables\(^{(39-42)}\). In this population, fruit and vegetable intake was less than half the recommended 400g of fruit and vegetables per day, even in the urban group. Fruit and vegetables are good sources of dietary fibre, potassium, folate, antioxidants and minerals such as magnesium\(^{(43)}\) and a low intake has been shown to contribute to CVDs such as IHD and ischaemic stroke\(^{(44)}\). On the other hand, for the other micronutrients, the urban group had median intakes above 100% of the EAR/AI. In 2003, the South African Department of Health embarked on a National Food Fortification Programme, resulting in the fortification of staple foods, such as maize meal and bread flour, with vitamin A, thiamine, riboflavin, niacin, pyridoxine, folic acid, iron, and zinc\(^{(45)}\). Therefore, the bread and maize meal porridge that make up the major component of the diet in this population are fortified, probably explaining the higher intakes of these micronutrients.

When comparing dietary intakes of the rural and urban participants using predefined DQS, both scores indicated an improved diet quality in the urban participants. The two scores agreed relatively well, although the HDI gave consistently higher values at low scores (<70% of the total) and the Adapted Thiele Score consistently higher values at high scores (>70% of the total). This could be due to the fact that they are designed to measure different aspects of diet quality, in that HDI measures diet quality according to dietary risk for chronic diseases of lifestyle such as CVD (prudence), while the Adapted Thiele Score additionally measures adequacy, as can be seen from the cut-offs used in each score.

An additional factor that may contribute to the discrepancy between the two scores is that the weights of the constituting factors differ in the two scores. In the Adapted Thiele Score micronutrient intakes contribute to 1700 of the total 1900 (100 points allocated for each nutrient), while in the HDI, micronutrient intakes are reflected in only three of the nine components, i.e. dietary fibre; fruit, vegetables and pulses; and nuts and seeds. Therefore, in the urban group, where more participants had micronutrient intakes higher than the EAR/AI, this improved micronutrient intake will result in a greater improvement in the Adapted Thiele Score, in which micronutrient intakes
represent a larger portion of the score in comparison with the HDI. Regardless of the differences between the two variations of DQS discussed above, however, both scores indicated improved diet quality in the urban group, despite the increased CVD risk, placing doubt on the use of these DQS in this population in relation to CVD risk prevention. On a nutrient level however, the urban groups also showed ‘improved’ intakes, with higher micronutrient intakes in the urban groups and, although macronutrients were also higher, they were still below CVD prevention guidelines.

A different picture emerges, however, when looking at the results from a different perspective. It is clear that the fat intakes in the urban groups are fast approaching the CVD guideline of 30% of total energy and also that the intakes of micronutrients with suggested CVD protection were particularly low, even in the urban groups. It is therefore possible that without the protective effect of these micronutrients, the 40% higher fat intakes in the urban group, despite not being higher than the CVD prevention cut-off, may even at this level result in increased CVD risk factors. Macronutrient guidelines in populations with low micronutrient intakes therefore need to be interpreted with caution and may need to be revisited to take these low intakes into consideration.

Lastly, the use of the DQS in populations with such low intakes of macronutrients and micronutrients should also be interpreted with caution. The probable reason why the DQS indicated improved diet quality in the urban compared with the rural group is that the urban group had higher micronutrient intakes than the rural group, as well as in comparison with the EAR. From Table 4 it is clear that the median intake of the urban group for 12 of the 18 micronutrients was greater than 100%, while in the rural group only 4 were higher. Since the EAR/AI was used as the cut-off values in the Adapted Thiele Score, this would mean more urban participants would have a higher Deficiency Score than the rural participants, as can be seen from the median 17% higher Deficiency Score of the urban groups. Owing to the relatively low fat intakes of this population, however, while intakes were higher in the urban group, they did not yet reach the CVD cut-off and those participants would therefore not be penalised in the DQS for high fat intakes. This is supported by the small increase in the Excess Score in the urban compared with the rural groups (0.4 and 2%). Therefore, the
higher micronutrient intake in the urban group is reflected in the DQS while the higher fat intake is not, resulting in a net higher DQS.

In conclusion, urbanisation in black South Africans is associated with increased CVD risk, especially in women. Urban men and women had significantly higher intakes of both macronutrients and micronutrients, with macronutrient intakes well within the recommended CVD guidelines. While micronutrient intakes of the urban groups were generally higher than those of the rural groups, intakes of selected micronutrients were disconcertingly low in both groups. Both versions of DQS indicated improved diet quality in the urban groups and showed good agreement between the scores, although they seem to measure different aspects of diet quality. When interpreting and selecting a DQS, it should be clear how these cut-offs protect against the development of CVD, in other words, will a higher amount of a specific nutrient protect against (adequacy) or cause (prudence) CVD? When applying a predefined DQS in non-Western populations for the purpose of prevention of CVD risk, the scores, furthermore, should be interpreted against the background of the absolute levels of nutrient intakes and how these intakes relate to the cut-offs used, and should also be tailored to the specific population. Current guidelines for prevention of CVD may need to be revisited for populations with low dietary intakes, owing to the absence of the protective effect that results from adequate micronutrient intake.

ACKNOWLEDGEMENTS

The authors would like to thank all participants of the PURE study, as well as the South African PURE research team, fieldworkers and office staff in the Africa Unit for Transdisciplinary Health Research (AUTHeR), North West University, South Africa. Also, PURE International: Dr S Yusuf and the PURE project office staff at the Population Health Research Institute, Hamilton Health Sciences and McMaster University, ON, Canada. This project was funded by the South Africa-Netherlands Research Programme on Alternatives in Development (SANPAD), the South African National Research Foundation (NRF GUN Nos. 2069139 and FA2006040700010), North-West University, the Public Health Research Institute and the South African Medical Research Council.
REFERENCES

144 | P a g e

