An optical study of the high mass star forming region RCW 34

ROBERT JOHANN CZANIK

20175132

Dissertation submitted in the partial fulfilment of the requirements for the degree Master of Science in Astrophysics at the Potchefstroom campus of the North-West University

Supervisor: Prof. D.J. van der Walt
Co-supervisor: Dr. S.I. Loubsers

March 4, 2013
He shakes the earth out of its place,
 And its pillars tremble;
He commands the sun, and it does not rise;
 He seals off the stars;
He alone spreads out the heavens,
 And treads on the waves of the sea;
He made the Bear, Orion and the Pleiades,
 and the chambers of the south;"

Job 9:6-9, NKJV
Acknowledgements

I would firstly like to thank God, my creator for blessing me with the talent, health, wonderful people in my life and opportunity to fulfil my studies up to the level of my Master’s degree. Without Your grace and mercy I would not have been able to complete this study piece of the wonderful Universe that we are blessed with.

I would like to thank my supervisor Prof Johan van der Walt for his enduring support, advice, insight and believing in me for having the ability to complete this project. Also for his unending patience and the opportunity for me to pursue my dreams. Then my co-supervisor Ilani Loubser for advice when sought, a good laugh when needed and good tips saving me hours of needless struggling. Also Prof Adri Burger, the director of the Center for Space Research for also believing in me to complete this project and for all of the unseen tasks in keeping the big physics boat afloat. For Prof Chris Engelbrecht who gave me extra opportunities to observe at the SAAO and teaching how to use an archaic photometer.

Many thanks to my parents Benti and Marietjie and sister Minette for their love and support throughout my life and trying to understand what this project was about. My dad for always being and always continuing to be my hero, teaching me to think for myself and introducing me to the subject of physics which has become my life. My mother for teaching me compassion, patience, always having the right advice and support throughout the years. My sister for always giving a smile or having a good laugh with, and for the colourful fish in my tank at the most unexpected of times.

Also to my friends for the great times, coffees, braaais and going through all of the experiences of the past few years. Thank you Marna, Barend, Coenie, Daniél, Monica, Carl, Ivan, Dirk, Marius, Stephan, Tinus and all the others in Pretoria, Potchefstroom, Cape Town or wherever you find yourselves at this current moment.

I would also like to thank Golden Njambula for conducting the observations on the 1-m telescope making is possible for me to conduct my photometry. Also for Lientjie de Villiers for doing the pioneering research in her dissertation for the NIR study on RCW 34. The SAAO for providing me with the facilities to conduct my spectroscopic study on the 1.9-m telescope and for serving the legendary mutton shanks on the last night of observations. Then for the NRF, NWU and Center for Space Research in providing me with the financial support which made this project possible.
Abstract

This study consisted of an optical photometric and spectroscopic analysis on a $7' \times 7'$ field around the Southern high mass star forming region RCW 34. A previous study on RCW 34 in the NIR discovered many deeply embedded young stellar objects which were suspected to be T Tauri stars and which justified further investigation. The data used in this study consisted of three sets, the first two are photometric and spectroscopic data sets which were obtained during the first two weeks of February 2002. A third data set of spectroscopic observations was obtained by the author during the second week of 2011 of selected candidates using results from the NIR study and from the photometric data sets. All of the spectroscopy was conducted with the long slit spectrograph on the 1.9-m telescope and the photometry with DANDICAM on the 1.0-m telescope at the South African Astronomical Observatory (SAAO) in Sutherland. Objectives accomplished in the course of this study were to understand, obtain, reduce and interpret photometric and long slit spectroscopic CCD images. From the photometric results 57 stars showed excess blue emission on a colour-colour diagram which could be generated by circumstellar matter. The spectroscopic study showed 5 stars that showed H$_\alpha$ emission and 2 with strong Li absorption lines which confirm the suspicions of the NIR study about T Tauri stars in the region. All of the stars from the spectroscopic study in 2011 were identified as low-mass K or M type stars. Using colour-magnitude diagrams it was possible to see that the majority of the stars in the cluster are low-mass pre-main sequence stars. The stars matching between the optical and NIR filters were plotted on NIR colour-colour diagrams showing that the 5 stars that had H$_\alpha$ emission lines also had NIR colours characteristic to T Tauri stars. Out of the 5 stars that showed H$_\alpha$ emission, 2 were found to be classical T Tauris and three were found to be weak line T Tauris.

Keywords: RCW 34; T Tauri; GUM 19; HII region; Pre-main sequence stars; Star formation; Photometry; Spectroscopy; SAAO; IRAF; DANDICAM
Opsomming

Hierdie studie dek die optiese fotometriese en spektroskopiese analises van ’n veld in die suidelike hoë-massa stervormende gebied RCW 34. ’n Vorige studie in die naby-infrarooi (NIR) van RCW34 het die bestaan van ’n groot aantal jong diep-liggende sterliggame onthul. Onsekerheid oor die vermoedelike T Tauri aard van hierdie sterliggame, het verdere ondersoek regverdig. Drie datastelle is as basisinligting vir hierdie studie gebruik. Die eerste twee datastelle was fotometriese en spektroskopiese datastelle, verkry tydens die eerste twee weke van Februarie 2002. Spektroskopiese waarnemings versamel deur die skrywer gedurende die tweede week van Januarie 2011 van uitgesoekte kandidaatsterre uit die vorige NIR studie en optiese fotometriese, het gedien as die derde datastel. Die spektroskopiese waarnemings is gedoen met die langspleetspektrograaf op die 1.9-m teleskoop, en die fotometrie met DANDICAM op die 1.0-m teleskoop by die Suid Afrikaanse Astronomiese Observatorium (SAAO) in Sutherland. Die doelwitte bereik met hierdie studie was om fotometriese en langspleet spektroskopieafbeeldings met ’n lading-gekoppelde toestel (Eng. Charge-Coupled Device (CCD)) te verkry, te reduceer, te interpreter en te verstaan. Die fotometriese resultate het oormatige blou uitstraling van 57 sterre getoon op ’n kleur-kleur diagram. Hierdie uitstraling kon moontlik onstaan deur materie wat die sterre omring. Die spektroskopiestudie het Hα uitstraling vanaf 5 sterre getoon en ook getoon dat 2 sterre sterk Li absorpsielin bevat, wat die vermoedens bevestig van die NIR studie oor T Tauri sterre. Al die sterre van die spektroskopiestudie van 2011 is aangetoon as lae-massa K- of M-tipe sterre. Die gebruik van kleur-magnitude diagramme het dit moontlik gemaak om te bevestig dat die meerderheid van sterre lae-massa voor-hoofrees sterre is. Sterre met geslaagde passing van optiese en NIR filters, was uitgestip op NIR kleur-kleur diagramme om te toon dat die 5 sterre met Hα uitstraallyne ook NIR-kleureienkappe eie aan T Tauri sterre besit. Uit die 5 sterre met Hα uitstraling is 2 moontlik klassieke T Tauri sterre, en die 3 ander was swaklyn T Tauri sterre.

Sleutelwoorde: RCW34; T Tauri; GUM 19; HII-gebied; Voor-hoofsiklus sterre; Stervormasie; Fotometrie; Spektroskopie; SAAO; IRAF; DANDICAM
List of Figures

1.1 Reproductions of the colour-colour diagrams in Van der Walt et al. (2012). The green solid line is the classical T Tauri locus. The dashed green lines are the upper and lower limit of the T Tauri locus. The blue solid line is the main-sequence. The blue triangles are weak line T Tauris and the black dots are classical T Tauris from Strom et al. (1989).

1.2 Figure 1 from Hill et al. (2011) is shown as a composite of three micrometer filter bands for the Vela star forming region. The red is 250 μm, the green is 160 μm and the blue is 70 μm. The central region is the HII region RCW 36 and the one at the bottom towards the right side is RCW 34. The blue shows the warmer gas in the HII regions and the red shows colder gas in dense filaments that are contracting in on themselves. In the filamentary structures there are embedded emission sources which are probably protostars.

1.3 SIMBAD objects and DSS diagrams of the 7' × 7' field of view around RCW 34.

1.4 NIR images of the 7' × 7' around RCW 34.

1.5 A colour stacked image of the B, V and R filters used for the blue, green and red colours respectively of the photometric images that were used in this study. The field shown is roughly 7.7' × 7.7'.

2.1 A reproduction of Fig 6.3 in Seeds (1997) showing which parts of the electromagnetic spectrum propagate through the atmosphere.

2.2 The number of ionised particles as a function of frequency for O3, O7 and B0 type stars. The number of ionised particles decreases for stars with a lower surface temperature.

2.3 A reproduction of a schematic drawing from Hartman (1998) representing the accretion disk around a classical T Tauri star.

2.4 Eight different spectral profiles of T Tauri stars as shown in Fig 6.6 of Hartman (1998).

2.5 This is a reproduction of Fig 1 in Bessell (2005), on the x-axis is the wavelength in Å and on the y-axis is an arbitrary unit representing sensitivity. The five Johnson filters are plotted for the amount of light that each lets through against the wavelength.

2.6 The extinction for visual filters as a factor of the visual extinction A_v. The optical filters are the same as those shown in Fig 2.5. Extinction is wavelength dependent and photons in the ultra-violet are much better absorbed by interstellar gas than infrared photons.

3.1 A layout of the optical systems for the DANDICAM and ANDICAM cameras as found on the DANDICAM webpage.

3.2 This image was taken from the manual for the 1.9-m telescope, found on the website for the SAAO (http://www.saao.ac.za/). When light moves into the 1.9-m telescope, it gets distributed onto a larger scale, depending on the slit width and the angle of the grating, making the absorption and emission lines which fall into the specific region of interest much more apparent.
3.3 Lines, columns and middle line plots through the B flatfield image. 44
3.4 The I image on which crowded field photometry had to be conducted with a point-
spread-function. .. 50
3.5 Aids to selecting the OVERSCAN regions of the spectral images of 2002. 54
3.6 Light distribution of dome flat image and usable regions of the spectral images. 54
3.7 Aids to fitting the aperture and extracted profile from the aperture. 55
3.8 Cross section of reduced spectral image and extracted spectral profile. 56
3.9 The standard star that was used for calibration and the average atmospheric extinction
for Sutherland. ... 57

4.1 The spectral emission profile for star A. ... 62
4.2 The spectral emission profile for star B. ... 63
4.3 The spectral emission profile for star C. ... 63
4.4 The spectral emission profile for star D. ... 64
4.5 The spectral emission profile for star E. ... 65
4.6 The two stars that were observed in 2002 and showed Hα emission are stars C and D.
The other stars that showed Hα emission were discovered from the observations taken
in 2011. North is at the top of this image. ... 67
4.7 $V - R$ against $R - I$ colour-colour diagram for the 76 sources that matched in the V, R
and I filters. The green datapoints are the sources that could be dereddened onto the
MS and the blue datapoints are not dereddened. The red dashed line is the MS from
Allen (1999) and the green solid line are the giants. .. 72
4.8 The V against $V - I$ colour-magnitude diagram for the 76 sources that matched in the
V, R and I filters. .. 74
4.9 The V versus $V - R$ colour-magnitude diagram for the 76 sources that matched in the
V, R and I filters .. 74
4.10 The R versus $R - I$ colour-magnitude diagram for the 76 sources that matched in the V,R
and I filters ... 76
4.11 The R versus $R - I$ colour-magnitude diagram for the 214 sources that matched in the R
and I filters ... 77
4.12 The sources that matched in the V, R, I, J, H and K filters 78
4.13 Location of the sources that matched in the V, R and I 79
4.14 The sources that matched in the R, I, J, H and K filters 80
4.15 Location of the sources that matched in the R and I .. 80
4.16 The sources that matched in the I, J, H and K filters. 81
4.17 Location of the sources that were detected in the I filter. 81
4.18 Colour-colour diagram for the sources that match up in the V, R, I, J, H and K filters.83
4.19 Colour-colour diagram for the 174 sources that match up in the R, I, J, H and K filters.84
4.20 Colour-colour diagram for the 189 sources that match up in the I, J, H and K filters. 85
5.1 An overlay of all the objects that are shown in Figs 4.12, 4.14, 4.16, the stars that are catalogued on the SIMBAD database. Also the stars of which spectroscopic observations were obtained in 2002 and 2011. The stars that showed Hα emission are also shown.
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The interstellar extinction law as given in Table 3 of Rieke & Lebofsky (1985)</td>
<td>34</td>
</tr>
<tr>
<td>3.1</td>
<td>The total exposure times for various colour filters.</td>
<td>39</td>
</tr>
<tr>
<td>3.2</td>
<td>The properties for the CCDs of ANDICAM and DANDICAM.</td>
<td>43</td>
</tr>
<tr>
<td>3.3</td>
<td>The usable region for each filter.</td>
<td>45</td>
</tr>
<tr>
<td>3.4</td>
<td>The apparent magnitudes for the 25 standard stars and their intrinsic colours used to calculate the extinction coefficients to compensate for atmospheric extinction.</td>
<td>48</td>
</tr>
<tr>
<td>3.5</td>
<td>Standard stars used for atmospheric calibration.</td>
<td>52</td>
</tr>
<tr>
<td>3.6</td>
<td>Coefficients for atmospheric extinction.</td>
<td>53</td>
</tr>
<tr>
<td>4.1</td>
<td>The 38 stars from which spectroscopic images were taken in 2011.</td>
<td>61</td>
</tr>
<tr>
<td>4.2</td>
<td>Summary of the stars that displayed Hα emission.</td>
<td>66</td>
</tr>
<tr>
<td>4.3a</td>
<td>Main sequence stars</td>
<td>69</td>
</tr>
<tr>
<td>4.3b</td>
<td>Giant stars</td>
<td>69</td>
</tr>
<tr>
<td>4.4</td>
<td>Super giant stars</td>
<td>70</td>
</tr>
<tr>
<td>4.5</td>
<td>The sources that matched in the V, R and I filters.</td>
<td>86</td>
</tr>
<tr>
<td>4.6</td>
<td>The sources that matched in the V, R and I filters.</td>
<td>87</td>
</tr>
<tr>
<td>4.7</td>
<td>The sources that matched in V, R and I that were dereddened onto the MS, with their colours converted to the Johnson-Cousins colours, the colours dereddened to the MS and then their visual extinctions.</td>
<td>88</td>
</tr>
<tr>
<td>4.8</td>
<td>The sources that matched in V, R and I that could not be dereddened onto the MS, with their colours converted to the Johnson-Cousins colours.</td>
<td>89</td>
</tr>
<tr>
<td>4.9</td>
<td>The dereddened colours of stars D and E</td>
<td>89</td>
</tr>
</tbody>
</table>
Contents

1 Introduction
1.1 About this project .. 1
1.2 Rationale and aim of this project 2
1.3 Vela and RCW 34 .. 4
 1.3.1 Vela .. 4
 1.3.2 The Vela molecular cloud complex and RCW 36 5
 1.3.3 RCW 34 ... 5
1.4 The outline of this dissertation 8

2 Theoretical background
2.1 Introduction ... 11
2.2 Light - the information carrier of astronomy 12
 2.2.1 Light and its interaction with the atmosphere 12
 2.2.2 Stellar emission 12
2.3 The interstellar medium 13
 2.3.1 Molecular clouds 14
 2.3.2 Diffuse interstellar clouds 16
 2.3.3 HII Regions ... 16
2.4 Star formation ... 18
 2.4.1 Pre-main sequence stars and accretion disks 19
2.5 T Tauri stars ... 21
 2.5.1 Introduction .. 21
 2.5.2 General properties of T Tauri stars 21
 2.5.3 Classical T Tauri stars 22
 2.5.4 Weak line T Tauri stars 25
 2.5.5 The third class of T Tauri star 26
 2.5.6 Groups of T Tauri stars 27
2.6 Photometry ... 27
 2.6.1 The magnitude scale, flux and luminosity 27
 2.6.2 The CCD and filter systems 29
 2.6.3 Interstellar extinction 32
2.7 Spectroscopy .. 33

3 Data acquisition and reduction
3.1 Introduction ... 37
3.2 Data acquisition ... 38
 3.2.1 DANDICAM ... 38
3.2.2 Photometric observations .. 39
3.2.3 The 1.9-m telescope and long slit spectrograph 40
3.2.4 Spectroscopic observations 40

3.3 Reduction of the photometric images 41
3.3.1 Bias subtraction .. 42
3.3.2 Trim and OVERSCAN ... 42
3.3.3 Bad pixel mask and flat-field division 43
3.3.4 Photometric calibration with standard stars 45
3.3.5 Point-spread-function photometry 49
3.3.6 Matching source in V, R, I and R, I sets and correspondence with NIR sources . 51

3.4 Spectroscopic reduction ... 53
3.4.1 Manual reduction .. 53
3.4.2 Automatic reduction ... 57

4 Results and discussion ... 59
4.1 Introduction ... 59
4.2 Spectroscopic results ... 60
4.2.1 Introduction ... 60
4.2.2 The SEDs for the stars with an Hα emission line 60
4.2.3 The location of the stars that showed Hα emission lines 67
4.3 Photometric results ... 68
4.3.1 Introduction ... 68
4.3.2 Main sequence, giant and super giant stars 69
4.3.3 Colour-colour and colour-magnitude diagrams 70
4.3.4 Sources that only matched in the R and I filters 76
4.4 Sources that matched in the optical and NIR filters 78
4.4.1 Correspondence between the coordinates for the optical and near infrared sources 78
4.4.2 NIR colour-colour diagrams 82

5 Summary, conclusion and future prospects 91
5.1 Introduction ... 91
5.2 Summary of this research project 92
5.2.1 Spectroscopy ... 92
5.2.2 Photometry ... 93
5.2.3 Layout of the stars .. 95
5.3 Conclusion and final thoughts 96
5.4 Future prospects ... 97

A IRAF script for the calculation of overscan region for DANDICAM 99

B Script for calculation of average background value 101
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C C++ program for recursively finding matching sources between optical and NIR sources</td>
<td>103</td>
</tr>
<tr>
<td>D Spectral profiles for all of the stars that were observed in 2002</td>
<td>109</td>
</tr>
<tr>
<td>D.1 Blue part of the spectrum</td>
<td>110</td>
</tr>
<tr>
<td>D.2 Red part of the spectrum</td>
<td>111</td>
</tr>
<tr>
<td>E Spectral profiles for all of the stars that were observed in 2002</td>
<td>117</td>
</tr>
<tr>
<td>Bibliography</td>
<td>125</td>
</tr>
</tbody>
</table>