The *in vitro* and *in vivo* pharmacokinetic parameters of polylactic-co-glycolic acid nanoparticles encapsulating anti-tuberculosis drugs

LLIJ Booysen
St. No.12019798
B.Pharm, M.Sc. (Pharmaceutics)

Thesis submitted for the degree Philosophiae Doctor in Pharmaceutics at the Potchefstroom Campus of the North-West University

Promoter: Dr. L. du Plessis

Co-Promoter: Prof. A.F. Kotze

October 2012
It always seems impossible until it’s done.” ~ Nelson Mandela

Dedicated to my love, my husband, my best friend

Eswhin Booysen
Preface

This thesis was written in accordance with the guidelines for postgraduate study as set out by the North-West University, Potchefstroom campus. Unless otherwise referenced, chemical drawings were self-drawn using Symyx Draw 3.2 software. Harvard style referencing was used throughout the thesis. Each Chapter include a list of abbreviations, introduction, body of text and conclusion sections with the references for each Chapter provided at the end of the Chapter. The Introduction and aim of study introduces the reasons for the proposed study and how the study was designed. Chapters 1 and 2 are literature reviews relevant to the focus of this thesis. Permissions for all cited illustrations were obtained from either author or journal as copyright rules indicated. Chapters 3, 4 and 5 consist of experimental chapters demonstrating the results obtained. The work described in chapters 3 and 4 were conducted as part of a PhD studentship by myself at the Council for Scientific and Industrial Research (CSIR) in Pretoria, South Africa. The CSIR and the Department of Science and Technology (DST) provided all funding for the research. I also conducted the work described in chapter 5 at the Department of Microbiology, Pathology and Immunology of the Colorado State University, Fort Collins, Colorado, USA where I was hosted as a visiting scholar in the laboratory of Prof. Anne Lenaerts. A Summary and Future Prospects are included at the end of the thesis to discuss the main findings of the studies presented in the thesis as well as formulated conclusions on what was observed and what can be done to further contribute to the scientific outcomes of this study.

Three Appendices (A, B and C) are included in this thesis. Appendix A includes ethics approval letters for studies conducted at different institutions. Appendix B includes publications and conference proceedings where I made specific contributions as a PhD student. In Appendix B1, a first authorship of a submitted manuscript is included. In this manuscript, some of the work described in Chapter 5 was used to prepare a manuscript for publication. As first author, I conducted the experiments, analysed the data and prepared the manuscript, with co-authors’ contribution being in assistance in conducting of experiments and review of the final manuscript. In Appendix B2, a published co-first authorship manuscript is included. In this manuscript, conducting of macrophage uptake and cytokine expression experiments and data analysis was done by me (Chapter 3) and the preparation of the manuscript and additional experiments done by the other co-first author Dr. B. Semete. It
is indicated on the publication that we contributed equally to this work. Appendix B3 and B4 are publications where personal second author contributions are demonstrated in terms of work conducted in Chapter 4. Appendix B5 is a first author contribution poster presentation accepted as part of the Council for Scientific and Industrial Research (CSIR) Conference 2010~ General science, engineering & technology. Appendix C is supporting data referred to but not shown in text.
Acknowledgements

To my God and Father, thank You for the strength, patience and wisdom You have given me to pursue this goal of mine. Thank you for the trials, which taught me patience. Thank you for showing me time and time again that I can do all things through Christ Who gives me strength. Thank you Abba Father.

To the love of my life, my husband and best friend, Eswhin Boosyen, I don’t know how I could have done this without you. Thank you for believing in me and always pushing me to keep going when I wanted to give up. You have been my rock and I will be forever grateful. I love you with all my heart.

To my babies, Eliana and Noah, you were born during this journey of mine and are therefore a very, very big part of it. You may not remember this, but I thank you for allowing me the time to finish my thesis when it meant being away from you, but just in the next room. The two of you are by far my greatest achievements. I love you.

To my family, my mom and dad, Cornelius and Irina Koopman, thank you for always encouraging me and loving me unconditionally. You have set the foundation that made me the woman I am today – one who believes that you should always try to better yourself. I’m blessed to have you as my parents.

My brother and sister, Irene Da Gama and Cornelius Koopman (Jnr), you two are the best. I learn from you all the time. Irene, you’ve forced to better myself to be a good example for you and Cornelius, you’ve taught me about hard work and determination. You two are the gems in my life.

My in-laws, Whinray and Sybil Boosyen, thank you for your love and support. Thank you that I can always count on you when the need arises.

My dear friends, Beverly Willemse and Lara Kotze-Jacobs, thank you for your unwavering and unconditional support. You two have meant so much to me. Lara, you were a colleague who became a dear friend and you were there for all the rainy days and celebrated the good
ones. Beverly, you listened to my rants and raves, my tears (both joy and sadness) and you celebrated with me. Our journeys have different lengths but you both are so close to my heart.

Thank you to the **CSIR** and **DST** for funding and support and for affording me the opportunities that I received while at the CSIR.
Dr. Sean Moolman, my former CAM at the CSIR and **Dr. Hulda Swai**, research group leader at the CSIR thank you for your guidance and support and for giving me the opportunity to be part of your team.

Dr. Boitumelo Semete-Makokotlela, my CSIR supervisor for my PhD, thank you for your guidance, support and understanding. You have been the voice in my head. Thank you for always pushing me to reach my potential.

Dr. Yolandy Lemmer and **Mr. Lonji Kalombo**, my colleagues and friends, thank you for your assistance and friendship. It really meant a lot.

Mr. Kobus Venter at the MRC, thank you for your assistance with the SA animal studies.

Thank you to **Prof Anne Lenaerts** for you hospitality and professional and personal guidance and support. I really enjoyed working with you and your team.

The CSU team, **Ellie, Janet, Roni, Lisa, Ryan and Paul**, thank you for your assistance with the studies performed there. A very special thank you to you for your additional personal support of a pregnant woman alone in a foreign country 😊. You guys were awesome.

Prof Awie Kotze, my co-promoter at NWU, thanks for your guidance and support over the past 5 years. I will be forever grateful for your contribution.

Finally, my promoter **Dr. Lissinda du Plessis**, words cannot express my gratitude to you for your guidance and assistance in completing this thesis. I could not have done it without you. You have been patient, kind and understanding under very difficult circumstances. I thank you for your contribution toward the success of this PhD thesis.
Abstract

Tuberculosis (TB) is an infectious, deadly disease, caused by *Mycobacterium tuberculosis* (*M.tb*). In 2010, there were 8.8 million incident cases of TB globally. South Africa currently has the third highest TB incident cases worldwide. In an attempt to address the challenges facing TB chemotherapy, among which frequent dosing and long duration of therapy resulting in poor patient compliance, a novel poly(DL-lactic-co-glycolic) acid (PLGA) nanoparticulate drug delivery system (DDS) encapsulating anti-TB drugs was developed. It is hypothesised that this nanoparticulate DDS will address the challenges mentioned by enabling decreased dosing frequency, shortening duration of therapy and minimising adverse side effects. Therefore, favourable modification of pharmacodynamic (PD) and pharmacokinetic (PK) properties of the conventional anti-TB drugs was demonstrated. Furthermore, the nanoparticles will provide a platform for drug delivery to macrophages that serve as hosts for *M.tb*.

The study design was based on determining specific physicochemical properties of the nanoparticulate DDS to elucidate the hypothesis. Spray-dried PLGA nanoparticles were prepared using the double emulsion solvent evaporation technique. *In vivo* analysis of macrophage uptake and possible immunological response in mice were evaluated. *In vitro* protein-binding assays of PLGA nanoparticles encapsulating anti-TB drugs isoniazid (INH) and rifampicin (RIF) were performed with subsequent *in vivo* tissue distribution assays to support protein-binding data generated. Finally, PK/PD analyses were conducted to evaluate the effect of nanoencapsulation on the anti-TB drugs. These involved *in vitro* assays to determine if sufficient drug was released from the nanoparticles to exhibit minimum inhibitory concentration (MIC) and minimum bactericidal concentrations (MBC). Furthermore, *in vivo* drug distribution and drug release kinetics assays of encapsulated RIF, INH, pyrazinamide (PZA) and ethambutol (ETB) in a mouse model were performed.

The results confirmed that the PLGA nanoparticles (<250 nm, low positive zeta potential) were taken up by macrophages *in vivo* with no significant immunological effect. Furthermore the nanoparticles were present in the brain, heart, kidneys, lungs, liver and spleen for up to 7 days following once-off oral dosing at 13.23± 0.11%, 16.81± 0.11%, 54.89± 0.95%, 15.61± 1.15%, 48.48± 2.28% and 5.73± 0.21%, respectively. This was further confirmed by drug analysis demonstrating the presence of INH, RIF and ETB at different time points up to 7 days.
in the lungs, kidneys, liver and spleen. However, PZA was not detected. Nanoencapsulated RIF and INH exhibited MICs and MBCs *in vitro* over 14 days and these drugs were also observed in plasma for up to 7 days post once-off oral dosing. ETB and PZA were observed up to 3 days.

From the results generated, it can be concluded that the nanoparticles were taken up by macrophages without eliciting an immune response. This provides a platform for drug delivery to specific sites. Furthermore, the nanoparticulate DDS exhibited sustained drug release *in vitro* and *in vivo* over a number of days above the MIC for the drugs analysed. Sustained drug distribution was also observed. It can therefore be concluded that the hypothesised reduction in dose frequency and duration of therapy for this DDS is a possibility.

Keywords: tuberculosis; PLGA nanoparticles; drug delivery systems; pharmacodynamics; pharmacokinetics; protein-binding; biodistribution; cytokine expression; drug release
Uittreksel

Tuberkulose (TB) is 'n aansteeklike, dodelike siekte, wat veroorsaak word deur *Mikobacterium tuberculosis* (*M.tb*). In 2010 is 8,8 miljoen gevalle van TB wêreldwyd gerapporteer en Suid-Afrika het tans die derde hoogste TB-insidensie ter wêreld. In 'n poging om die uitdagings van TB-chemoterapie, soos gereelde dosering en die lang duur van terapie – wat lei tot swak pasiënt-meewerkendheid– aan te spreek, is 'n oorspronklike poli(DL-laktaat-glycolitiese) suur (PLGA) nanopartikel aflweringsstelsel wat anti-TB-middels enkapsuleer, ontwikkel. Daar word gepostuleer dat hierdie nanopartikel aflweringsstelsel 'n platform sal skep vir die geteikende aflowering na makrofage, dat dit bio-vereenigbaar sal wees in terme van immunogenisiteit en dat dit gunstige farmakodinamiese (PD) en farmakokinetiese (PK) eienskappe van die konvensionele anti-TB middels sal verseker. Só kan dit die vele uitdagings van TB-behandeling aanspreek, deur 'n afname in doseringsfrekwensie, 'n korter duur van terapie en moontlike verlaagde toksisiteit.

Die ontwerp van hierdie studie is gebaseer op die bepaling van die fisies-chemiese eienskappe van die nanopartikel aflweringsstelsel, om die hipotetiese bevindinge toe te lig. Spuitgedroogde PLGA nanopartikels is voorberei met die dubbele emulsie oplosmiddel verdampingstegniek. *In vivo* analyse van cellulêre opname en moontlike immunologiese reaksie is in muise geëvalueer. *In vitro* proteïenbindingstudies van PLGA nanopartikels, geënkapsuleer met die anti-TB-middels isoniazied (INH) en rifampisien (RIF) is uitgevoer, met die daaropvolgende *in vivo* weefselverspreidingstudies om die proteïenbindingdata wat gegenereer is, te ondersteun. PK/PD analysies is gedoen om die studie af te rond. Hierdie analyses het bestaan uit *in vitro* studies om te bepaal of genoegsame geneesmiddel vrygestel is van die nanopartikels om minimum inhiberende konsentrasie (MIK) en minimum bakterisidiese konsentrasies (MBK) te bereik. Verder is *in vivo* geneemiddel verspreiding en geneesmiddel vrystellingskinetika-studies met nanopartikels, geënkapsuleer met RIF, INH, pyrazinamied (PZA) en ethambutol (ETB), ook in 'n muismodel uitgevoer.

Die resultate bevestig dat die PLGA nanopartikels (<250 nm, lae positiewe zeta potensiaal) opgeneem is deur makrofage *in vivo*, met geen beduidende immunologiese reaksie nie. Verder was die nanopartikels teenwoordig in die brein (13.23± 0.11%), hart (16.81± 0.11%), longe (15.61± 1.15%), niere (54.89± 0.95%), lewer (48.48± 2.28%) en milt (5.73± 0.21%) vir tot
sewe dae ná eenmalige orale dosering. Dit is verder bevestig deur geneesmiddel-analise, wat die teenwoordigheid van nano-geënkapsuleerde INH, RIF en ETB op verskillende stadia tot sewe dae in die longe, niere, lewer en milt getoon het. PZA is nie opgemerk nie. Nano-geënkapsuleerde RIF en INH het MIK en MBK in vitro oor 14 dae getoon en hierdie geneesmiddels is ook waargeneem in die plasma, vir tot sewe dae ná eenmalige orale dosering. ETB en PZA is waargeneem tot op drie dae.

Uit die resultate gegenereer kan dit afgelei word dat die opname van nanopartikels deur makrofage 'n moontlikheid is, sonder om 'n immuunrespons te ontlok. Verder het die nanopartikel afleveringstelsel genoegsame geneesmiddel in vitro en in vivo vrygestel oor 'n aantal dae bo die MIK. Volgehoue geneesmiddel verspreiding is ook waargeneem. Dit kan dus afgelei word dat die hipotetiese vermindering in die frekwensie van dosering en die duur van terapie vir hierdie afleveringstelsel wel 'n moontlikheid is.

Sleutelwoorde: tuberkulose, PLGA nanopartikels, geneesmiddel afleveringstelsels; farmakodinamika, farmakokinetika, proteïenbinding; weefselverspreiding, sitokien uitdrukking, geneesmiddel vrystelling
Table of Contents

Preface ... i
Acknowledgements .. iii
Abstract ... v
Uittreksel .. vii
List of figures .. xiv
List of tables ... xxi

Introduction and aims of the study ... 1
Aims and objectives of the study .. 4
References ... 5

CHAPTER 1- Biopharmaceutic and Pharmacokinetic considerations in current tuberculosis chemotherapy ... 7

Abbreviations.. 7

1.1 Introduction .. 9
1.2 Pathogenesis of TB ... 10
1.3 Challenges in TB chemotherapy .. 11
1.4 Pharmacokinetic and pharmacodynamic factors of anti-TB drug therapy 13
1.4.1 PK/PD correlations with regards to bactericidal activity .. 14
1.4.2 Persistent growth inhibition .. 16
1.5 First-line TB drug regimens ... 17
1.5.1 INH .. 18
1.5.2 RIF ... 21
1.5.3 ETB .. 31
1.5.4 PZA .. 33
1.5.5 Streptomycin .. 34
1.6 Second line TB drugs .. 36
1.7 New trends in antituberculosis drug research ... 36
1.7.1 Oxazolidinones .. 39
1.7.2 Diarylquinolones .. 39
1.7.3 Fluoroquinolones .. 40
3.3.1. Preparation of PLGA particles .. 93
3.3.2. Particle characterization .. 94
3.3.3. Animals used in assays .. 94
3.3.4. Analysis of the \textit{in vivo} particle uptake of nanoparticles in the peritoneum.. 95
3.3.5. Cytokine production assay: mouse inflammation and mouse TH1/TH2 assays
description .. 101
3.3.6. Statistical analyses .. 104
3.4. Results ... 104
3.4.1. Particle characterisation ... 104
3.4.2. \textit{In vivo} particle uptake ... 105
3.4.3. Cytokine production ... 129
3.5. Discussion ... 138
3.6. Conclusion .. 140

References ... 141

CHAPTER 4- \textit{In vitro} protein-binding and biodistribution of PLGA
nanoparticles ... 145

Abbreviations ... 145

4.1 Introduction .. 146
4.1.1 Protein-binding on polymeric nanoparticles ... 146
4.1.2 Biodistribution of polymeric nanoparticles ... 149
4.1.3 Objective of this study ... 150

4.2 Materials and methods ... 150
4.2.1 Nanoparticle preparation .. 151
4.2.2 Particle size, zeta potential and surface morphology 152
4.2.3 Encapsulation efficiency and drug loading ... 152
4.2.4 Binding of plasma proteins to PLGA nanoparticles 152
4.2.6 \textit{In vivo} comparison of the biodistribution of fluorescently-labelled ‘naked’
PLGA nanoparticles with PEGylated PLGA nanoparticles 155
4.2.7 Statistical analysis .. 156

4.3 Results .. 156
4.3.1 Nanoparticle preparation and characterization 156
4.3.2 Binding of plasma proteins to PLGA nanoparticles and free drugs 158
4.3.3 Biodistribution of fluorescently labelled uncoated PLGA nanoparticles 165
4.3.4 Biodistribution of fluorescently labelled poloxamer coated PLGA nanoparticles ..170
4.4 Discussion ...173
4.5 Conclusion ..178

References ..180

CHAPTER 5- Pharmacokinetic/Pharmacodynamic analysis of novel PLGA nanoparticles encapsulating four first-line anti-tuberculosis drugs........ 183

Abbreviations..183
5.1 Introduction..184
5.2 Objectives of this study ...187
5.3 Materials and Methods..187
 5.3.1 Materials ..187
 5.3.2 Preparation of PLGA particles ..188
 5.3.3 Particle characterization ...188
 5.3.4 Animals used in assays ...188
 5.3.5 Culture of Mycobacterium tuberculosis (M. tb) ..188
 5.3.6 MIC/MBC of nanoencapsulated RIF, INH and ETB ..189
 5.3.7 In vivo bioavailability studies for PLGA nanoparticles encapsulating RIF and INH 189
 5.3.8 LCMS-MS method development ...190
 5.3.9 In vivo pharmacokinetic study of nanoencapsulated RIF, INH, ETB and PZA 194
 5.3.10 Non-compartmental pharmacokinetic analysis ..196
 5.3.11 Statistical analysis ..198
5.4 Results ..198
 5.4.1 Nanoparticle characterization ..198
 5.4.2 MIC/MBC assays ..198
 5.4.3 In vivo bioavailability assays ...206
 5.4.4 LCMS-MS method development ...209
 5.4.5 In vivo PK drug release assays ...214
 5.4.6 Drug distribution assays ..226
5.5 Discussion ...230
5.6 Conclusion ...234
References ..235
Summary and future prospects ... 238
References .. 247
Appendix A: Ethics approvals ... 250
Appendix B: Publications and conference proceedings 251
Appendix C: Supporting data ... 252
List of figures

Figure 1.1 Global TB incidence rates in 2010 as reported in the WHO Global TB report. The shades of green assigned to each region illustrates the estimated new TB cases per 100 000 population. In the southern parts of Africa more than 300 per 100 000 population new TB cases have been reported (WHO, 2011:14)..10

Figure 1.2 Classification of the relationship between pharmacokinetics (drug in serum) and pharmacodynamics (drug effect) following drug administration, adapted from (Craig, 1998:2)..14

Figure 1.3 Illustration of the mycobacterial cell wall indicated the mechanism by which various anti-tuberculosis drugs exert their pharmacological effect adapted from (Brennan, 2011)..18

Figure 1.4 Chemical structure of INH also known as isonicotinylhydrazine with the chemical formula C₆H₇N₃O. ...19

Figure 1.5(a) The chemical structure of RIF and the analogues (b) rifabutin, (c) rifapentine and (d) rifametane derived from the RIF structure (Hudson et al. 2003, Li et al. 1997). The dashed boxes indicate the structural differences that occur in the RIF analogues. ...24

Figure 1.6 Probable explanations for the variable bioavailability of rifampicin. Diagram taken from (Panchagnula & Agrawal 2004:3) with permission..26

Figure 1.7 Proposed mechanisms for RIF-INH interaction (a) Schiff’s reaction; (b) Carbonyl condensation reaction and (c) Fischer’s esterification reaction (du Toit et al. 2006:129) with permission. ...28

Figure 1.8 Chemical structures of (a) ethambutol and its analogues, (b) SQ37, (c) SQ59 and (d) SQ109. Adapted from (Jia et al. 2005:794) with permission. ..32

Figure 1.9 Chemical structure of PZA, the pyrazine analogue of nicotinamide. Chemical formula C₅H₅N₃O..33

Figure 1.10 Chemical structure of streptomycin, a member of the aminoglycoside group of drugs. Chemical formula of streptomycin is C₂₁H₃₉N₇O₁₂...35

Figure 1.11 Chemical structure of linezolid. A chemical “template which is essential for antimicrobial activity has a 1, 3-oxazolidin-2-one moiety with an aryl and an S-methyl group (Brickner 1996). Chemical formula of linezolid is C₁₆H₂₀FN₃O₄...39

Figure 1.12 The chemical structure of the experimental drug Bedaquilline. The chemical formula for Bedaquilline is C₃₂H₃₁BrN₂O₂..40

Figure 1.13 Chemical structure of MXF, a fourth generation fluoroquinolone synthetic agent. Each fluoroquinolone subset has a fluorine atom attached to the central ring system. The chemical formula for MXF is C₂₃H₂₄FN₃O₄...41
Figure 1.14 Chemical structure of GAT. The chemical formula is $C_{19}H_{22}FN_3O_4$.

Figure 1.15 Chemical structure of the Nitroimidazopyran (PA-824). The chemical formula for PA-824 is $C_{14}H_{12}F_3N_3O_5$.

Figure 1.16 Chemical structures of azole drugs, (a) econazole (chemical formula $C_{18}H_{15}Cl_3N_2O$) and (b) miconazole (chemical formula $C_{18}H_{14}Cl_4N_2O$). The difference between the two structures is observed by the fourth chlorine group in the econazole structure.

Figure 2.1 Chemical structure of PLGA indicating the two monomers, lactic acid and glycolic acid. The “n” indicates the number of times units are repeated.

Figure 2.2 Shape switching of PLGA particles switched in deionized water at 37 °C. (Left: 0 min; Centre: after 2 min; Right: after 5 min). (Scale bar: 5μm.) Taken from (Yoo & Mitragotri 2012) with permission.

Figure 3.1 Schematic representation of a typical flow cytometer (Rahman, 2010:7). FSC - forward scatter channel, this channel roughly equates to the particle size and can distinguish between cellular debris from living cells; SSC - side scatter channel, this channel provides information about the granular content of the particle; PMT - photomultiplier tube, this detector is a sensitive instrument and is ideally used for scatter and fluorescence readings; FL - fluorescent channel, used to detect the light emitted.

Figure 3.2 Schematic representation of experimental design parameters used in the study evaluating in vivo uptake of fluorescently labelled PLGA nanoparticles.

Figure 3.3 Histogram with counts of the y-axis and the FL3 channel on the x-axis. Representative depicted bead populations present in mouse inflammation kits. This flow analysis depicts a mixed population of cells resulting in several peaks in the histogram. Each bead has a discrete fluorescence specific for each cytokine (Becton Dickinson, 2008:6).

Figure 3.4 Standard curve representation of the cytokine MCP-1 on the BD™ FACSArray™.

Figure 3.5 SEM image of rhodamine 6G labelled PLGA nanoparticles used in Group 4 of the uptake studies described in section 3.4.2. The samples for SEM analysis were prepared as described in section 3.3.3. Scale 200nm.

Figure 3.6 Negative control for macrophage identification. (A) FSC/SSC plot of PECS after FACS analysis of mice treated with thioglycolate broth. The x-axis indicates the side scatter and the y-axis indicates the forward scatter. (B) Two-parameter (dual-colour fluorescence FL1/FL2) dot plot that is gated on [I].

Figure 3.7 Positive control for macrophage identification. (A) FSC/SSC plot of PECS after FACS analysis of mice treated with thioglycolate broth. The x-axis indicates the side scatter and the y-axis indicates the forward scatter. (B) Two-parameter (dual-colour fluorescence FL1/FL2) dot plot that is gated on [I].
Figure 3.8 Uptake of PLGA nanoparticles by macrophages. (A) FSC/SSC plot of PECS after FACS analysis of PLGA nanoparticles demonstrating macrophage proliferation comparable to the thioglycolate control. The x-axis indicates the side scatter and the y-axis indicates the forward scatter. (B) Two-parameter (dual-colour fluorescence) dot plot is gated on [I].

Figure 3.9 Identification of T\text{helper} CD4+ cells in addition to macrophages (MOMA-2 and CD11c expression). FSC/SSC plot of PECS after FACS analysis of mice treated orally with PLGA nanoparticles. The x-axis indicates the side scatter and the y-axis indicates the forward scatter.

Figure 3.10 (A-D) Two-parameter (dual-colour fluorescence) dot plot is gated on [A], [B], [C] and [D] in Figure 3.9. A = CD4+ positive cells; B = slight MOMA-2 positive cells; C = CD4+ positive cells; D = CD4+ and MOMA-2 dual positive cells. Cell populations indicated by arrows.

Figure 3.11 (A-D) Two-parameter (dual-colour fluorescence) dot plot is gated on [A], [B], [C] and [D] in Figure 3.9. A = CD4+ positive cells and CD11c positive cells; B = slight positive cell expression; C = CD4+, and CD11c positive cells; D = CD4+ and CD11c dual positive cells. Cell populations indicated by arrows.

Figure 3.12 (A-D) Two-parameter (dual-colour fluorescence) dot plot is gated on [A], [B], [C] and [D] in Figure 3.11. A = CD8+ positive cells; B = slight dual positive cell expression; C = CD8+ and MOMA-2 positive cells; D = CD8+ and MOMA-2 dual positive cells. Cell population indicated by arrows.

Figure 3.13 (A-D) Two-parameter (dual-colour fluorescence) dot plot is gated on [A], [B], [C] and [D] in Figure 3.12. A=CD8+ positive cells; B= slight positive cell expression; C= CD8+ and MOMA-2 positive cells; D= CD8+ and MOMA-2 dual positive cells.

Figure 3.14 (A-D) Two-parameter (dual-colour fluorescence) dot plot is gated on [A], [B], [C] and [D] in Figure 3.13. A = CD8+ positive cells and CD11c positive; B = slight dual positive cell expression; C = CD8+ and CD11c positive cells; D = CD8+ and MOMA-2 dual positive cells.

Figure 3.15 Identification of T\text{helper} CD4+ cells in addition to macrophages (MOMA-2 and CD11c expression). FSC/SSC plot of PECS after FACS analysis of mice treated intraperitoneally with PLGA nanoparticles. The x-axis indicates the side scatter and the y-axis indicates the forward scatter.

Figure 3.16 (A-D) Two-parameter (dual-colour fluorescence) dot plot is gated on [A], [B], [C] and [D] in Figure 3.15. A=CD4+ positive cells; B= slight MOMA-2 positive cells; C= CD4+ and MOMA-2 positive cells; D= CD4+ and MOMA-2 dual positive cells. Cell populations indicated by arrows.

Figure 3.17 (A-D) Two-parameter (dual-colour fluorescence) dot plot is gated on [A], [B], [C] and [D] in Figure 3.15. A=CD11c positive cells; B= slight MOMA-2 positive cells; C= CD4+ and MOMA-2 positive cells; D= CD4+ and MOMA-2 dual positive cells. Cell populations indicated by arrows.

Figure 3.18 Identification of T\text{cytotoxic} CD8+ cells in addition to macrophages (MOMA-2 and CD11c expression). FSC/SSC plot of PECS after FACS analysis of mice treated intraperitoneally with PLGA nanoparticles. The x-axis indicates the side scatter and the y-axis indicates the forward scatter.
Figure 3.19 (A-D) Two-parameter (dual-colour fluorescence) dot plot is gated on [A], [B], [C] and [D] in Figure 3.18. A=CD8$^+$ positive cells; B= slight MOMA-2 positive cells; C= CD8$^+$ and MOMA-2 positive cells; D= CD8$^+$ and MOMA-2 dual positive cells. Cell populations indicated by arrows.

Figure 3.20 (A-D) Two-parameter (dual-colour fluorescence) dot plot is gated on [A], [B], [C] and [D] in Figure 3.18. A=CD8$^+$ positive cells; B= slight CD11c positive cells; C= CD8$^+$ and CD11c positive cells; D= CD8$^+$ and CD11c dual positive cells. Cell populations indicated by arrows.

Figure 3.21 Uptake of polystyrene particles by macrophages. FSC/SSC plot of PECS after FACS analysis of mice treated orally with FITC polystyrene particles. The x-axis indicates the side scatter and the y-axis indicates the forward scatter.

Figure 3.22 FSC/FL3 dot plot of PECS after FACS analysis of mice treated orally with FITC polystyrene particles. The x-axis indicates the FL3 Log and the y-axis indicates the forward scatter. FITC Polystyrene particles- cell population gated on [A], [B], [C] and D of figure 3.20.

Figure 3.23 Uptake of polystyrene particles by macrophages. FSC/SSC plot of PECS after FACS analysis of mice treated intraperitoneally with FITC polystyrene particles. The x-axis indicates the side scatter and the y-axis indicates the forward scatter.

Figure 3.24 FSC/FL3 dot plots of PECS after FACS analysis of mice treated orally with FITC polystyrene particles. The x-axis indicates the FL3 Log and the y-axis indicates the forward scatter. FITC Polystyrene particles- cell population gated on [A], [B], [C] and D of figure 3.23.

Figure 3.25 Uptake of rhodamine labelled PLGA nanoparticles by macrophages. FSC/SSC plot of PECS after FACS analysis of mice treated orally with rhodamine labelled PLGA nanoparticles. The x-axis indicates the side scatter and the y-axis indicates the forward scatter.

Figure 3.26 FSC/FL3 dot plots of PECS after FACS analysis of mice treated orally with FITC polystyrene particles. The x-axis indicates the FL3 Log and the y-axis indicates the forward scatter. FITC Polystyrene particles- cell population gated on [A], [B], [C] and D of figure 3.25.

Figure 3.27 Uptake of rhodamine labelled PLGA nanoparticles by macrophages. FSC/SSC plot of PECS after FACS analysis of mice treated intraperitoneally with rhodamine labelled PLGA nanoparticles. The x-axis indicates the side scatter and the y-axis indicates the forward scatter.

Figure 3.28 FSC/FL3 dot plots of PECS after FACS analysis of mice treated intraperitoneally administered with FITC polystyrene particles. The x-axis indicates the FL3 Log and the y-axis indicates the forward scatter. FITC Polystyrene particles- cell population gated on [A], [B], [C] and D of figure 3.25.

Figure 3.30 (A-I) Cytokine expression profiles in plasma post oral administration of nanoparticles expressed as individual cytokine concentrations of a 24-hour analysis. Allocated time points for this study were 1, 2, 6, 8 and 24 hours.
Figure 3.31 (A-I) Cytokine expression profiles in plasma post oral administration of nanoparticles expressed as individual cytokine concentrations of a 24-hour analysis. Allocated time points for this study were one, two, six, eight and 24 hours.............138

Figure 4.1 An example of the standard curve for Bradford reagent used in this study. Measured as absorbance (595nm) against concentration (mg/ml)..............................158

Figure 4.2 Example of the standard curves for (A) INH and (B) RIF analysed in the equilibrium dialysis analysis of drug protein-binding. Measured as absorbance (RIF 262nm, INH 330nm) against concentration (mg/ml)...159

Figure 4.3 SDS-PAGE gel image of PLGA-drug free formulations coated with PEG/Pluronic F127. The image depicts the band intensities of the different proteins bound to the nanoparticles. Albumin with Mw 70 kDa demonstrated the strongest band intensity...164

Figure 4.4 SDS-PAGE gel image of PLGA-drug free formulations coated with PEG/Pluronic F127. The image depicts the band intensities of the different proteins bound to the nanoparticles. Albumin with Mw 70 kDa demonstrated the strongest band intensity, but was weaker compared to the drug free analysis (Figure 4.4). The strongest band intensity was observed for the PLGA-RIF formulation at 40:60 suspensions.164

Figure 4.5 (A), (B), (C) illustrates tissue distribution values for the organs of interest at day 1, 3 and 7, respectively as a function of the percentage fluorescence intensity detected per organ in polystyrene beads and rhodamine labelled nanoparticles. Figure 4.5 (D) illustrates fluorescence levels in plasma collected from the mice sacrificed on Day 3 and 7 ..167

Figure 4.6 CLSM images of tissue collected from mice treated with saline (A), rhodamine-labelled PLGA nanoparticles (B) and spray-dried nanoparticles (C). Fluorescent nanoparticles are clearly visible in the liver, lungs, brain and kidney compared to blank tissue and rhodamine-only nanoparticles. Scale bar 20µm.169

Figure 4.7 (A), (B) and (C) illustrates tissue distribution values for the organs of interest at day 1, 3 and 7, respectively as a function of the percentage fluorescence intensity detected per organ in rhodamine labelled PLGA nanoparticles coated with 1% PEG and 1% Pluronic F127. ..173

Fig. 4.8 Schematic diagrams presenting PEG configurations on the surface of a polymeric nanoparticle. (A) – depicts a low surface coverage of PEG chains which leads to the “mushroom” configuration observed. This is where most of the chains are located closer to the particles surface; (B) - depicts a high surface coverage. Here a lack of mobility of the PEG chains leading to the “brush” configuration where most of the chains are extended away from the surface are observed. Included with permission (Owens & Peppas 2006:98). ..176

Figure 5.1 Chemical structures of drugs of interest and transition points. IS- internal standard...192
Figure 5.2: MIC profile for INH-free and nanoencapsulated compared against untreated controls. Values calculated as mean± SEM, n=6. SEM values are not displayed in the graph for legibility purposes. Please refer to Appendix C for SEM data values.

Figure 5.3 MIC profile for RIF-free and nanoencapsulated compared against untreated controls. Values calculated as mean± SEM, n=6. SEM values are not displayed in the graph for legibility purposes. Please refer to Appendix C for SEM data values.

Figure 5.4 MIC profile for ETB-free and nanoencapsulated compared against untreated controls. Values calculated as mean± SEM, n=6. SEM values are not displayed in the graph for legibility purposes. Please refer to Appendix C for SEM data values.

Figure 5.5 MIC profile for INH-free and nanoencapsulated compared against untreated controls in the MBC study. Values calculated as mean± SEM, n=6. SEM values are not displayed in the graph for legibility purposes. Please refer to Appendix C for SEM data values.

Figure 5.6 (a) MBC profile for free-INH and (b) MBC profile for nanoencapsulated INH at day 18 of MBC analysis. The decrease in colony forming units (cfu) are depicted as the 100% line (no bacterial killing), 50% line (50% killing) and 1% line (99% killing).

Figure 5.7 MIC profile for RIF-free and nanoencapsulated compared against untreated controls in the MBC study. Values calculated as mean± SEM, n=6. SEM values are not displayed in the graph for legibility purposes. Please refer to Appendix C for SEM data values.

Figure 5.8 (a) MBC profile for free-RIF and (b) MBC profile for nanoencapsulated RIF at day 18 of MBC analysis. The decrease in colony forming units (cfu) are depicted as the 100% line (no bacterial killing), 50% line (50% killing) and 1% line (99% killing).

Figure 5.9 Chromatograph of anti-tuberculosis drugs in spiked mouse plasma at 10000/7500/10000ng/ml for RIF, INH and PZA, respectively.

Figure 5.10 Chromatograph of ETB in spiked plasma at 1000ng/ml.

Figure 5.11 Chromatograph of anti-tuberculosis drugs in spiked mouse kidney homogenate at 10000/7500/10000/7500ng/ml for RIF, INH, PZA and ETB, respectively.

Figure 5.12 (a) Plasma-concentration versus time profile for free and encapsulated RIF in PK-Exp 1 plotted on a logarithmic scale for legibility of the graph. Plasma drug concentrations are depicted as mean± SEM.

Figure 5.12 (b) Plasma-concentration versus time profiles for free and encapsulated RIF in PK-Exp 2 plotted on a logarithmic scale for legibility of the graph. Plasma drug concentrations are depicted as mean± SEM.

Figure 5.13 (a) Plasma-concentration versus time profile for free and encapsulated INH in PK-Exp. 1. Plasma drug concentrations are depicted as mean± SEM.
Figure 5.13 (b) Plasma-concentration versus time profile for free and encapsulated INH in PK-Exp. 2 plotted on a logarithmic scale for legibility of the graph. Plasma drug concentrations are depicted as mean± SEM. ...219

Figure 5.14 (a) Plasma-concentration versus time profile for free and encapsulated PZA in PK-Exp 1. Plasma drug concentrations are depicted as mean± SEM.........................220

Figure 5.14 (b) Plasma-concentration versus time profile for free and encapsulated PZA in PK-Exp. 2 plotted on a logarithmic scale for legibility of the graph. Plasma drug concentrations are depicted as mean± SEM. ...220

Figure 5.15 (a) Plasma-concentration versus time profile for free and encapsulated ETB in PK-Exp. 1 plotted on a logarithmic scale for legibility of the graph. Plasma drug concentrations are depicted as mean± SEM. ...221

Figure 5.15 (a) Plasma-concentration versus time profile for free and encapsulated ETB in PK-Exp. 2 plotted on a logarithmic scale for legibility of the graph. Plasma drug concentrations are depicted as mean± SEM. ...221

Figure 5.16 Summary of drug distributions of free- and nanoencapsulated RIF, INH, PZA and ETB in mouse liver at (a) conventional dose and (b) logarithmic scale at six times the dose. Mean± SEM is shown in the graphs...227

Figure 5.17 Summary of drug distributions of free- and nanoencapsulated RIF, INH, PZA and ETB in mouse lung at (a) conventional dose and (b) logarithmic scale at six times the dose. Mean± SEM is shown in the graphs...228

Figure 5.18 Summary of drug distributions of free- and nanoencapsulated RIF, INH, PZA and ETB in mouse spleen at (a) conventional dose and (b) logarithmic scale at six times the dose. Mean± SEM is shown in the graphs...229

Figure 5.19 Summary of drug distributions of free- and nanoencapsulated RIF, INH, PZA and ETB in mouse kidneys at (a) conventional dose and (b) logarithmic scale at six times the dose. Mean± SEM is shown in the graphs...230
List of tables

Table 1.1 Recommended daily dosage of first-line drugs in the treatment of TB (Chambers 2001:804). ... 18

Table 1.2 Drug-drug interactions to be considered when INH is administered whilst patient is being treated for other illnesses 21

Table 1.3 Drug-drug interactions to be considered when INH is administered whilst patient is being treated for other illnesses 29

Table 1.4 Adult doses and subsequent mechanism of action following administration of second line agents adapted from (Chambers, 2001:808). ... 36

Table 1.5 Summary of drugs being explored for TB chemotherapy 38

Table 2.1 PK and PD parameters that can be averted through drug delivery systems. Adapted from (Allen & Cullis 2004:1820). .. 57

Table 2.3 Nanotechnology applications in drug delivery approved by the Food and Drug Administration (FDA) since 2000 (Gerencher, 2006; Ledet & Mandal 2012:9). 62

Table 2.4 Comparison of PK parameters for conventional versus nanoencapsulated antituberculosis drugs .. 78

Table 4.1 Summary of reagents used for in vitro and in vivo characterization 151

Table 4.2 Composition of gels for SDS-PAGE ... 154

Table 4.3: Summary of nanoparticle characterization showing the different formulations, size (nm), polydispersity index, encapsulation efficacy (%), drug loading (%) and zeta potential. Mean± SEM is included ... 157

Table 4.4 Protein-binding for various nanoparticle formulations with varying ratios of plasma: nanoparticle suspension ... 159

Table 4.5 Statistical analyses of the protein-binding properties for the various nanoparticle formulations. The significant differences are compared based on the formulation numbers allocated in the first row of Table 4.4 161

Table 4.6 Summary of percentage fluorescence intensities of particles detected in the organs as a function of mean fluorescence intensity detected evaluated over 7 days. 165

Table 4.8: Summary of percentage fluorescence detection of rhodamine labelled nanoparticles coated with poloxamers, PEG and Pluronic F127 at 1 % concentration detected in the organs evaluated over seven days. Values are depicted as the mean± SEM in parentheses .. 170
Table 4.9 p-values comparing the uncoated PLGA nanoparticles in Table 4.5 and the two formulations coated with 1% PEG and Pluronic F127, respectively. P-values were calculated using the Student’s T-test comparing data sets of the three formulations...171

Table 5.1 Studies conducted to show potential efficacy of nanoparticles in tuberculosis chemotherapy. EE-encapsulation efficiency; []-concentration; cfu-colony forming unit; SGF-simulated gastric fluid; SIF-simulated intestinal fluid; IM-intramuscular; SLN-solid lipid nanoparticles .. 186

Table 5.2 Summary of reagents for in vitro PD in vivo PK/PD study ..187

Table 5.3 Standard dilutions for LCMS-MS method development ..193

Table 5.4 Summary of nanoparticle characterization showing the different formulations, size (nm), polydispersity index, encapsulation efficacy (%), drug loading (%) and zeta potential ... 198

Table 5.5 Example of RIF OD_{600} readings correlated with drug concentrations used. MIC was expected at 0.041 µg/ml which at 10 times dilution equates to 0.41µg/ml.207

Table 5.6 Determination of MIC levels of both free and encapsulated INH and RIF in mouse treated serum over 7 days ..209

Table 5.7 MS/MS conditions and drug MRM transitions ...210

Table 5.8 Accuracy assay for RIF, INH, PZA and ETB in mouse plasma..............................213

Table 5.9 Summary of plasma drug levels (µg/ml) in PK-Exp. 1. Table depicts the mean± SEM of three mice over 7 day time points for free- and nanoencapsulated RIF, INH, PZA and ETB ..215

Table 5.10 Summary of plasma drug levels (µg/ml) in PK-Exp. 2. Table depicts the mean± SEM of three mice over 10 day time points for free- and nanoencapsulated RIF, INH, PZA and ETB ..216

Table 5.11 Plasma drug analysis in PK-Exp. 1 for free-and nanoencapsulated RIF, INH, PZA and ETB. PK parameters indicated in the table were calculated as described in section 5.3.10.2 ..224

Table 5.12 Plasma drug analysis in PK-Exp. 2 for free-and nanoencapsulated RIF, INH, PZA and ETB. PK parameters indicated in the table were calculated as described in section 5.3.10.2 ..225
Introduction and aims of the study

TB is an airborne and deadly infectious disease caused by the bacteria *M. tb* primarily infecting humans. Subsequent to inhalation of the bacteria, infection commences as soon as the bacteria reach the pulmonary alveoli. Here, invasion and replication occurs within the alveolar macrophages (WHO, 2011:3). Systemic absorption of the bacteria may also result in spinal and/or cerebral TB. For the past two decades, the increase in the prevalence of TB has led to much research focus in the medical and biomedical community to address this challenge. It has become the leading killer of young adults on a global scale affecting almost one third of the global population. An estimated 8.8 million incident cases (range, 8.5 - 9.2 million) were reported in 2010, which equates to 128 cases per 100 000 population. The most occurrences of these estimated cases were in Asia (59%) and Africa (26%). Lower occurrences were reported in the Eastern Mediterranean region (9%), the European region (7%) and the region of the Americas (3%) (WHO, 2011:10). Approximately 1.4 million (range, 1.2 – 1.5 million) people died of TB in 2010 (WHO, 2011:17). South Africa, one of the 22 high burden countries, currently has the third highest incidence rate globally (range 0.40 million - 0.59 million) (WHO, 2011:11). Various drug regimens exist today that have shown success in TB treatment (Janin, 2008:2480). However, poor patient compliance due to long duration of therapy and drug side effects in some cases has led to the inefficiency of these treatment regimens resulting in the drug resistant strains, multidrug resistant TB (MDR-TB) and extremely drug resistant TB (XDR-TB) (Rattan et al. 1998:195; Raviglione, 2006:1186).

The Directly Observed Treatment, Short Course (DOTS) was an initiative launched to assist with the issue of poor patient compliance and subsequent treatment failure, which is further supported by the Stop TB partnership. The Stop TB partnership strategy is based on six components, namely DOTS expansion and enhancement, address human immunodeficiency virus (HIV) – TB co-infection, contribute to health system strengthening, engage all health care providers, empower communities and people with TB and enable and promote research (Jassal & Bishai 2010:S157).

The research into ways of combating this life threatening disease has also lead to many novel drug discoveries as well as the use of other antimicrobials, antibiotics and antifungals which
are currently undergoing clinical trials (Ahmad et al. 2005:20; Ahmad et al. 2006:544; Ahmad et al. 2008:142; TB Alliance, 2012:1). The various challenges in TB chemotherapy have also provided a platform for on-going development and enhancement of drug delivery systems to reduce dose frequency and potentially increase patient compliance, specifically the applications of nanotechnology employing nanoparticulate drug delivery systems.

DDS can be classified by dividing a broad spectrum of DDS into two groups, namely macromolecular and particulate delivery systems. The latter includes micelles, liposomes and nanoparticulates (nanospheres and nanocapsules). This thesis focuses on nanoparticulate drug delivery systems. The definition of the size range of nanoparticles is a challenging task due to the ubiquitous use of the term nano- and nanotechnology. Oberdörster et al (2005:825) described a distinction between nanosized particles which includes all ambient and engineered spherical nanosized particles <100 nm and ultrafine particles (UFPs) which are ambient laboratory-generated nanosized particles that are not produced in an engineered, controlled way, but has the same size range. However, nanoparticles used in pharmaceutical applications have been described as colloidal particulate dispersions or solid particles ranging from 10 – 1000 nm (des Rieux et al. 2006:3; Mansour et al. 2009:300; Ledet and Mandal 2012:7). Nanoparticles by definition include monolithic nanoparticles (nanospheres) where the drug is adsorbed, dissolved or dispersed throughout the matrix (Gelperina et al. 2005:1487; Shegokar et al. 2011:102). Nanoparticles usually consist of biodegradable and biocompatible, natural or synthetic polymers (Shegokar et al. 2011:102). Nanoparticles as drug delivery systems offer many advantages, as proposed by Couvreur and Vauthier (2006:1417), such as drug protection from degradation, enhanced absorption by diffusion through the epithelium, modify pharmacokinetic and drug tissue distribution profile and/or improve intracellular penetration and distribution. In addition, nanoparticles pose advantages of high stability and high carrier capacity due to its large surface area, their ability to incorporate hydrophilic and hydrophobic drugs, their variable routes of administration and its ability to be designed to enable controlled drug delivery (Gelperina et al. 2005:1487).

Nanotechnology-based DDS has already been approved by the Food and Drug Administration (FDA) in the treatment of various ailments and diseases. Among these are Abraxane®, a formulation for the cancer chemotherapy drug paclitaxel, Cimzia®, a formulation of anti-TNF-α antibody to treat Crohn’s disease and Pegasys®, a formulation of
interferon-alpha-2a to treat hepatitis C, to name a few (Ledet & Mandal 2012). Nanoparticulate systems encapsulating anti-TB drugs have been previously investigated (Ahmad et al. 2008; Du Toit et al. 2008; Pandey et al. 2005; Sharma et al. 2004; Torres-Chavolla & Alocilja 2011; Verma et al. 2011). Published nanoparticle formulations for TB chemotherapy are all in development phases and none are currently FDA approved or available on the pharmaceutical market. This study aims to add to the knowledge base of the vast nanoparticulate formulations being investigated for the treatment of TB.

A nanoparticulate system was formulated using the polymer PLGA, using a novel spray-drying technique (Kalombo, 2008). Spray-drying has seen wide applications in the field of drug delivery. However, the application of this technique to produce solid nanoparticles was in fact a drying method of nanocapsules prepared by other techniques. Essentially already prepared nanoparticles were subjected to spray-drying resulting in particles with a very broad size range from nano to micron. Therefore, the need for a spray-drying technique to directly formulate spherical, smooth-surfaced nanoparticles below 250nm with a narrow particle size distribution was identified. This cost effective and fast drying process for application in anti-TB drug encapsulation with the properties mentioned earlier would provide a much needed platform in addressing the problem associated with TB chemotherapy. Since these nanoparticles have not been analysed to determine in vitro and in vivo capabilities, the aim of this PhD study was to elucidate various PK/PD variables for anti-TB drugs encapsulated in this nanoparticle formulation and in so doing contribute to further development and possible market application.
Aims and objectives of the study

The overall objective of the research was to treat the hypothesis that TB treatment can be improved by modifying the PK and PD properties of ant-TB drugs through nanotechnology drug delivery system. To attain this objective, the specific aims of the study were as follows:

1. To validate a FACS method for PLGA uptake by macrophages;
2. Elucidate the \textit{in vivo} cellular uptake of PLGA nanoparticles post oral and intraperitoneal administration with focus on macrophage uptake;
3. Assess the \textit{in vivo} immunological response post cellular uptake of these particles;
4. To study effect of polymer coating of the particles on \textit{in vitro} protein-binding and \textit{in vivo} biodistribution of the nanoparticles;
5. Develop a method for the determination of INH, RIF, PZA and ETB in plasma and tissue homogenates using liquid chromatography mass spectrometry (LCMS-MS);
6. To investigate the effect of PLGA encapsulating drugs on the \textit{in vitro/in vivo} PK/PD of INH, RIF, PZA and ETB with specific focus on:
 a. \textit{In vitro} efficacy, i.e. is sufficient drug released from the nanoparticles to reach MIC’s and facilitate growth inhibition of \textit{M.tb} and MBC’s for complete bacterial killing;
 b. Analyse \textit{in vitro} MIC using serum from mice treated with nanoencapsulated drugs to determine whether sufficient drug is bioavailable to exhibit growth inhibition of \textit{M.tb};
 c. \textit{In vivo} drug release assays over 10 days by analysing drug plasma levels following once-off oral administration in mice. These drug levels should be above the MIC determined in (b) to be a significant finding; and
 d. Harvest organs from the mice in (c) to determine drug distribution of the encapsulated drugs over 10 days by drug analysis of tissue homogenates.
References

