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Abstract

Design and management decisions require an accurate prediction of the performance

of the network. Network performance estimation techniques require accurate network

traffic models. In this thesis we are concerned with the modelling of network traffic

for the wireless mesh network (WMN) environment. Queueing theory has been used

in the past to model the WMN environment and we found in this study that queueing

theory was used in two main methods to model WMNs. The first method is to consider

each node in the network in terms of the number of hops it is away from the gateway.

Each node is then considered as a queueing station and the parameters for the station

is derived from the number of hops each node is away from the gateway. These topolo-

gies can be very limiting in terms of the number of physical topologies they can model

due to the fact that their parameters are only dependent on the number of hop-counts

each node is away from the gateway. The second method is to consider a fixed topol-

ogy with no gateways. This method simplifies analysis but once again is very limiting.

In this dissertation we propose a queueing based network traffic model that uses a con-

nection matrix to define the topology of the network. We then derive the parameters

for our model from the connection matrix. The connection matrix allows us to model

a wider variety of topologies without modifying our model. We verify our model by

comparing results from our model to results from a discrete event simulator and we

validate our model by comparing results from our model to results from models pre-

viously proposed by other authors. By comparing results from our model to results of

other models we show that our model is indeed capable of modelling a wider variety

of topologies.

Keywords: Network traffic model, Queueing Theory, Wireless Mesh Networks (WMN).
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Chapter 1 Relevant Background

Chapter 1

Introduction

Network performance estimation is very important for network planning. Techniques that are

used to estimate the performance of the network include analytical techniques, simulation and

also experimentation [2]. These techniques rely heavily on network traffic models. It is thus

very important that the traffic models are reliable and accurate. In this thesis we make use of

queueing theory to create a network traffic model for the Wireless Mesh Network (WMN) envi-

ronment. The model extends on the work done by Feng et al. [1] and Bisnik and Abouzeid [3].

In this chapter we present brief background information to the problem followed by a discussion

of related work. We then give the problem statement as well as the objective of this study. Fi-

nally we discuss the methodology of this dissertation followed by a chapter breakdown.

1.1 Relevant Background

1.1.1 Wireless Mesh Networks

Nodes in a WMN dynamically organize and configure themselves to establish a net-

work [4]. There are two types of nodes in a WMN namely mesh routers and mesh clients.

1



Chapter 1 Relevant Background

Mesh routers are mostly stationary and form the backbone of the wireless network.

Mesh clients connect to the mesh routers in order to gain access to the network. Mesh

clients can also act as mesh routers but their hardware and software requirements are

much less than that of an actual mesh router. Mesh routers usually support multi-

ple wireless interfaces and thus their hardware and software requirements are greater.

Mesh routers that are connected to the internet are called gateways. Most network

traffic in a WMN is usually directed to gateways because most clients usually connect

in order to gain access to the internet. This is especially true in the case where WMNs

are used as a last mile technology for internet service providers [5]. Multi-hop commu-

nication is used in a WMN to achieve the same network coverage with a much lower

transmission power. Figure 1.1 depicts the architecture of a WMN.

Note: In this dissertation we refer to a pure mesh router as a mesh router, and we refer to a mesh

router that acts as a gateway as a gateway.

Figure 1.1: WMN Architecture
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Chapter 1 Relevant Background

1.1.2 Queueing Theory

Queueing theory is the mathematical study of waiting lines. A queueing system can

be described as customers arriving for service, waiting for service if the customer can

not be serviced immediately, and then leaving the system after being serviced. In most

cases, six basic characteristics of queueing processes provide an adequate description

of a queueing system: (1) arrival pattern of customers, (2) service pattern of servers, (3)

queue discipline, (4) system capacity, (5) number of service channels, and (6) number

of service stages [6]. Arrival and service patterns are usually defined by stochastic

processes where the stochastic process usually defines the inter arrival and service

times. The queue discipline refers to the manner in which customers are selected from

a queue to be serviced. The most commonly used discipline in queueing situations

is the First Come First Served (FCFS) discipline. The system capacity refers to the

amount of waiting room available for customers, in other words the maximum length

of the queue. The number of service channels refers to the number of service stations

that can serve customers simultaneously. A queueing system may also have multiple

stages of service. Stochastic processes, such as the Poisson process, are used to describe

the queueing system mathematically.

Kendall’s Notation

To describe queueing systems in this thesis we will use Kendall’s notation [6]. Kendall’s

notation has the form A/B/X/Y/Z, where A indicates the arrival process, B the inter-

service time distribution, X the number of parallel servers, Y the queue length and Z

the queue discipline. Often the notation is abbreviated by leaving out the Y and Z pa-

rameters. When the Y and Z parameters are omitted the queue length is assumed to

be infinite and the service discipline is assumed to be FCFS. Table 1.1 shows all of the

queueing systems used in this thesis.

3
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Table 1.1: Kendall

M/M/c Markovian inter-arrival and inter-service times with c
parallel servers.

M/M/c/k Markovian inter-arrival and inter-service times with c
parallel servers and queue length k.

G/G/1 General distribution for inter-arrival and inter-service
times with one server.

M/D/1 Markovian inter-arrival times and deterministic inter-
service times with one server.

Queueing Networks

There are two main types of queueing networks, namely open and closed queueing net-

works. An open queueing network is one where customers are allowed to enter from

outside the system. A closed queueing network does not allow for arrivals from out-

side the system and the number of customers in the system is always constant.

One of the first persons to make a major breakthrough in queueing networks was James

R. Jackson. He studied the waiting lines of open queueing networks [7] and proved

that under certain conditions the local and global balance equations are satisfied. One

of the important conditions for Jackson queueing networks is that the arrivals for each

node occur according to a Poisson process and the inter-service times be exponentially

distributed. In a Jackson queueing network the effective arrival rate for each node is

first calculated using the balance equations and after that each node can be studied as

an independent M/M/c queue.

Gordon and Newell [8] extended the work of Jackson by considering closed queueing

networks. The work done by Jackson and Gordon and Newell were then extended

even further by Baskett, Chandy, Muntz and Palacios in [9]. BCMP (named after the

authors) networks include queueing networks with more than one customer class, dif-

ferent queueing strategies, and generally distributed service times. BCMP networks

can be open, closed or mixed.

The results of the queueing networks discussed give us a means to calculate the steady

4



Chapter 1 Related Work

state probabilities of a network from which the network can be statistically analysed.

1.2 Related Work

The literature reviews by Adas [10] and Frost and Melamed [2] discuss various net-

work traffic models that are applicable to a wide variety of networks. Most of the

models discussed in the literature reviews are mathematically relatively simple and

are aimed at modelling a single arrival or service pattern of network traffic at a node.

A key point that the literature reviews highlight is that these relatively simple mathe-

matical models usually form part of an analytical model or is used to drive a discrete

event simulator.

Queueing theory has been used in the past to model the wireless network environment.

For example Ali and Gu [11] have used Jackson queueing networks to model a wireless

sensor network with Time Division Multiple Access (TDMA) media access protocol

with slot reuse. Ashtiani et al. [12] have also used Jackson queueing networks to create

a mobility model for wireless multimedia networks.

Feng et al. [1] have created a queueing based network traffic model for wireless mesh

networks where they assume that gateways are the destination of all network traffic

and that the routing paths to the gateways are known. The reason they assume that

gateways are the destination of all network traffic is because WMNs are commonly

used as a last mile technology for internet service providers [5]. This means that most

mesh clients will connect to the network in order to gain access to the internet, i.e. the

gateways. Feng et al. model each node in terms of the number of hop-counts each

node is away from a gateway. The queuing based model regards gateways and the

most outward nodes as infinite queuing systems and regards the inner mesh nodes as

finite queuing systems.

In [3] Bisnik and Abouzeid characterizes the average delay and capacity of a random

access MAC based WMN. They model residential area WMNs as G/G/1 queueing

5
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systems. To avoid complexity in their model they assume that mesh routers are placed

in uniformly apart block areas, and that mesh clients who wish to gain access to the

network are distributed uniformly between the mesh routers. Network traffic arriv-

ing at a node either travel to one of the nodes adjacent to it with equal probability or

the traffic leaves the system with a given probability. Their model takes into account

the density of the network, the random packet arrival process as well as the collision

avoidance mechanism of random access MAC. Their model does not account for the

presence of gateways in the network.

In this study we aim to extend the work done by Feng et al. [1] and Bisnik and Abouzeid

[3]. Feng et al. have created a model that accounts for the gateways in the system but

their model’s ability to model the physical topology of the network is very limited.

Their model is only dependent on the number of nodes in a given hop-count from the

gateway and is not dependent on the actual location of the nodes. Bisnik and Abouzeid

have created a model that accurately models the physical properties of the MAC layer

of a WMN within their assumptions, but their model does not take into account the

effect of gateways and their model also has a fixed topology. In this study we aim to

create a queueing based traffic model that takes into account the effect of gateways

and is able to model a wide variety of topologies while still being able to model the

physical properties of the MAC layer.

1.3 Problem statement

A need has been identified for an analytical model, that is capable of modelling the

individual scenarios proposed by Feng et al. and Bisnik and Abouzeid.

6



Chapter 1 Methodology

1.4 Methodology

In this section we briefly describe the methodology that will be followed to achieve

the objectives stated in the previous section. The methodology used is based on the

model development process proposed by Sargent [13]. Figure 1.2 depicts the model

development process and the role of validation and verification in the model devel-

opment process. The problem entity refers to the problem or system that needs to be

modelled which in this case is the WMN environment. The conceptual model is a math-

ematical or logical representation of the problem entity and the computerized model is

an implementation of the conceptual model on a computer. The conceptual model is

developed through an analysis and modelling phase and the computerized model is de-

veloped through a computer programming and implementation phase. The last phase is

the experimentation phase where conclusions can be drawn on the problem entity by

conducting experiments on the computerized model.

Validation and verification are performed throughout each phase of the model devel-

opment process. In the analysis and modelling phase conceptual model validation is per-

formed to ensure that the theories and assumptions underlying the conceptual model

are correct and that the model representation of the problem entity can fulfil the pur-

pose of the model. Computerized model verification is performed in the computer pro-

gramming and implementation phase to ensure that the conceptual model was imple-

mented correctly. Operational validation is performed in the experimentation phase to

ensure that the output of the model is reasonably accurate for the intended purpose of

the model. Data validity is performed to ensure that the data used to build the concep-

tual model, and the data used to test the computerized model are correct and accurate.

The model development process is iterated until a satisfactory model is achieved and

validation and verification processes are performed during each iteration.

7



Chapter 1 Chapter Breakdown

Figure 1.2: Validation and Verification in the modelling process

1.5 Chapter Breakdown

In chapter two we discuss the literature used for this study in detail which is followed

by chapter three the conceptual model. In chapter four we implement and verify a

computerized model from the conceptual model. We implement our model in Scilab

which is a freeware alternative to Matlab and we verify our model by comparing re-

sults from the mathematical model to the results from a discrete event simulator. In

chapter five we validate our model by comparing results from our model to results

obtained from the models on which we aim to extend our model. This will ensure that

our model is indeed capable of modelling the scenarios proposed by the authors of the

papers on which we aim to extend our model. Finally in chapter six we conclude this

thesis by giving a summary of this study and drawing final conclusions.

8
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Chapter 2

Literature Study

Before we can construct a more general mathematical model for wireless mesh networks we have

to take a look at what has previously been done. In this chapter we take a look at what network

traffic modelling entails. Next we discuss some of the key elements of the WMN environment

that need to be modelled. After that we discuss general network traffic modelling techniques

and how they have been used in the past to model network traffic. From this we will see that

queueing theory is a good solution to modelling the WMN environment. This is followed by

a discussion of the basics of queueing theory so that we are able to understand the principles

surrounding it. Finally we discuss a few network traffic models that use queueing theory to

model the wireless mesh network and we also discuss how we plan to extend on these models.

2.1 Introduction to Network Traffic Modelling

In chapter one we discussed that there are three main ways to estimate the performance

of a network namely analytical techniques, simulation and experimentation. Experi-

ments that can give accurate performance estimation can be costly, especially for large

scale networks. Experiments also need to be performed multiple times for extended

9
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periods of time to acquire enough data to accurately calculate the performance statis-

tics of the network. Due to the high costs associated with experimentation it makes

sense to rather want to use analytical techniques or simulation if they give rise to re-

sults that are accurate enough.

When it comes to computer simulation one of the performance prediction tools used

widely in science and engineering is Monte Carlo simulation programs [2]. The name

Monte Carlo arises from the fact that this method uses random numbers similar to

those coming out of roulette games [14]. The Monte Carlo method is basically a com-

puter program that uses random number generators to simulate a system under study.

Running such a simulation is analogous to conducting an experiment involving ran-

domness and thus the outputs of the simulation should be treated as random obser-

vations. Frost states in [2] that developing a simulation program for communication

networks requires the following:

• Modelling random user demands for network resources.

• Characterizing network resources needed for processing those demands.

• Estimating system performance based on output data generated by the simula-

tion.

The modelling of user demands and the processing of those demands in communica-

tion networks are easily encapsulated by events. A method that is ideal for simulating

these event driven systems is called Discrete-Event Simulation (DES) [15]. DES models

keep time via simulation clocks and the events are ordered in an event list according

to the time they need to be executed. The event list is then used to determine the next

event that needs to be executed and the simulation clock is then forwarded to the time

of the next event. The execution of the event may change the state of the system and

may also add or remove events from the event list. Figure 2.1 depicts the flow of a

discrete-event simulation.

Analytical techniques consist of mathematical models that usually make many as-
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Figure 2.1: The flow of a discrete-event simulation

sumptions in order to keep the problem analytically tractable. This is because com-

plex mathematical problems require a lot of computational resources in order to solve

the problem and in many cases a mathematical problem that is too complex cannot be

solved. The trade off between analytical models and Monte Carlo models is that al-

though analytical models make many assumptions, they solve relatively fast and give

exact answers. Monte Carlo simulations may be allowed to be more complex but it is

important to remember that a complex system could still take a long time to simulate,

even on more advanced modern computers. The trade off between the two methods

becomes more important when it comes to rare event estimation. Statistical models

can predict the chance of a rare event but again these type of analytical models usually

make many assumptions in order to keep the model analytical tractable. Monte Carlo

simulation programs need to be run for a very long time in order to predict the chance

of a rare event with a given confidence interval [2].
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Whether an analytical model or a simulation program is used, the quality of the model

is very important and is determined by four main criteria namely: goodness-of-fit,

number of parameters, parameter estimation, and analytical tractability. Goodness

of fit refers to how suitable the model is to the scenario that needs to be modelled.

Goodness-of-fit is also directly related to the performance measures that need to be

predicted, i.e. the model should be able to predict the required performance measures.

All models take input in the form of parameters to set up the model. Models that

have a high number of parameters can be difficult to work with especially if those

parameters are difficult to estimate. It is also important that the parameters can be

accurately estimated as inaccurately estimated parameters will give rise to inaccurate

performance predictions. Analytical tractability means that the model is mathemati-

cally easy to work with, i.e. it is easy to solve. Models that are not analytical tractable

are hard to solve and often require a lot more resources to solve. It is difficult to put

a quantitative value in terms of these criteria on a model. These criteria are highly

application related. This means that the quality of the model is also highly application

related.

2.2 The problem entity: The WMN Environment

In order to create a network traffic model for the WMN environment we first have to

take a look at how the WMN environment functions and how the WMN environment

is different from other networks.

2.2.1 Architecture of the WMN Environment

The architecture of WMNs can be classified into three main groups, namely infrastruc-

ture based WMN, client based WMN, and a hybrid WMN [4]. In an infrastructure based

WMN the mesh routers form the backbone of the mesh network and mesh routers

usually have multiple network interfaces to which clients can connect using wired or
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wireless technologies. Gateways are connected to the wired network and provide inter-

net access to mesh clients. Figure 1.1 depicts an infrastructure based WMN. In a client

based WMN the clients act as the routers to create a peer-to-peer network between

mesh clients. A client based WMN does not require a mesh router, however hardware

and software requirements for end-user devices increase due to the fact that the clients

need to perform extra tasks such as routing. A hybrid architecture is a combination

between an infrastructure based WMN and a client based WMN. Mesh routers create a

backbone for the network and gateways provide access to the internet, but clients can

also mesh with other mesh clients directly which increases network coverage.

2.2.2 Network Capacity

In [16] Gupta and Kumar derive the upper and lower bounds for ad hoc wireless net-

works. They point out in their paper that in order to increase network capacity nodes

should only communicate with nearby nodes, i.e. relaying nodes should be used to

forward network traffic and nodes should use a shorter transmission range. In [17] a

scheme is proposed that increases network capacity by exploiting node mobility. The

research results in [16,17] have inspired many other works [18–20] that study the trade-

off between delay and throughput in an ad hoc wireless network. However most of

these works focus on the asymptotic case and very few research works are dedicated to

focussing on the statistical modelling of location dependant throughput and delay in a

WMN [21]. The models described surrounding our problem statement in chapter one

focus on the statistical modelling of WMNs and are not concerned with the asymptotic

case.

2.2.3 OSI Layers of the WMN environment

In this section we briefly discuss the different layers in the OSI stack with regards to

the modelling of a WMN. It is important to understand how each of the layers for

a WMN function differently from a normal wireless network in order to accurately
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capture those characteristics in the network traffic model.

Physical Layer

At the physical layer it is important to remember that in wireless, communication

nodes share the same transmission media. This means that nodes can interfere with

the communication of other nodes. Nodes that are within each others’ transmission

area and that are on the same channel cannot transmit at the same time. There are two

problems that can occur in a wireless communication environment, i.e. the exposed

node problem and the hidden node problem. The exposed node problem occurs when

node A wants to transmit to node B but can’t because node C is busy transmitting next

to it. The hidden node problem occurs when node A is able to transmit to node B and

node C is able to transmit to node B, but node A and C are unable to see each other.

Node A and C might start to transmit to node B at the same time. Figure 2.2 and 2.3

depict the two problems.

Figure 2.2: Exposed Node Problem

Data Link and Network Layer

Different Media Access Control (MAC) mechanisms and routing protocols significantly

impact the capacity of a wireless network [4]. In order to create a model that is applica-
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Figure 2.3: Hidden Node Problem

ble to a wider range of scenarios it is best to abstract the MAC mechanisms and routing

protocols from the main model. If the model is implemented correctly then a wide va-

riety of MAC and routing protocols can be used without affecting the mechanics of the

main model. In this thesis we do not focus on the creation or improvement of MAC or

routing protocols, but it is important that our model will be able to use different MAC

and routing protocols which means that abstraction of these protocols in our model is

very important.

Other Layers

The higher layers are more difficult to model in an analytical model when one is

concerned with modelling the whole network. At the application layer there exists

many models that model the source of specific applications such as voice, email and

video [2, 10]. These types of models are typically used to drive a discrete event sim-

ulation. These models can also be used as part of an analytical model but complex

source models can become difficult to impossible to work with in larger models that

concern themselves with modelling the whole network. In this thesis we do not focus

on specific source models and only use general source models for our network traffic

model.
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2.3 Commonly Used Traffic Models

In this section we first give a brief introduction to stochastic processes and then we

discuss commonly used traffic models that can either be used as part of an analyti-

cal model or used to drive a discrete-event simulation. We state some of the advan-

tages and disadvantages of each and we discuss how the models could be applicable

to WMN.

2.3.1 Stochastic Processes

A stochastic process is a random process whose outcome is governed by probabilistic

laws. From a mathematical point of view a stochastic process can be described as a

family of random variables, {X(t), t ∈ T}, defined over the parameter space T. X(t)

denotes the state of the stochastic process at time t. A stochastic process can be clas-

sified as a discrete-parameter or a continuous-parameter process. If T is a discrete

sequence, then the stochastic process {X(t), t ∈ T} is said to be a discrete-parameter

process defined on T. If T is a continuous interval or a combination of continuous in-

tervals, then the stochastic process {X(t), t ∈ T} is said to be a continuous-parameter

process defined on T. [6]

Stochastic processes are ideal for modelling the arrival and service of network traffic

at a specific node in the network. In [22], [23], [10] and [2] many examples of network

traffic sources that are modelled with stochastic processes are given. The arrival, de-

parture, or service of network traffic at a node can be accurately modelled by stochastic

processes if sufficient real world network traffic data is available to accurately estimate

the parameters of the stochastic process.
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2.3.2 Renewal Traffic Models

Renewal models are mathematically relatively simple. Because of this they are very

popular [2]. In a renewal traffic process, the inter arrival time process, which is a

non-negative random sequence {An}, the An are independent, identically distributed

(IID), but their distribution is allowed to be general. One drawback of renewal models

is that the superposition of independent renewal processes does not necessarily yield

a renewal process [2]. Another drawback of renewal models is that they do not accu-

rately capture the autocorrelation of {An}. The autocorrelation function serves as a

statistical proxy for temporal dependence and traffic models with a positive autocor-

relation have the ability to capture the effect of traffic bursts, that is {An} tends to give

rise to relatively short inter arrival times followed by relatively long inter arrival times.

Poisson Process and the Exponential Process

One of the most commonly used stochastic processes is the Poisson process. A Poi-

son process can be characterized as a renewal process whose inter arrival times are

exponentially distributed with rate λ [2]. This means that a process which assumes

an exponential distribution for the inter-arrival times is equivalent to a process which

assumes an Poisson distribution for the arrival rate.

Let Ω be a sample space and P a probability measure on it. In this section an arrival

process refers to the stochastic process N = {Nt; t ≥ 0} defined on Ω such that for any

ω ∈ Ω, the mapping t −→ Nt(ω) is non-decreasing, increases by jumps only, is right

continuous, and has N0(ω) = 0.

Definition: An arrival process N = {N(t); t ≥ 0} is called a Poisson process provided

that the following axioms hold [24]:

(a) for all ω, each jump of t −→ Nt(ω) is of unit magnitude;

(b) for any t, s ≥ 0, Nt+s − Nt is independent of {Nu; u ≤ t};

(c) for any t, s ≥ 0, the distribution of Nt+s − Nt is independent of t.
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The probability of n arrivals in a time interval of length t is given by

pn(t) =
(λt)n

n!
e−λt, n = 0, 1, 2, ... (2.1)

which is the well known formula for the Poisson probability distribution.

An important advantage of Poisson processes is that the superposition of independent

Poisson processes results in a Poisson process with rate equal to the sum of the inde-

pendent rates. Poisson processes are also memoryless which means that the current

output does not depend on past input. Another great advantage of Poisson processes

is Palm’s Theorem [25] which roughly states that a large number of not necessarily

Poisson renewal processes combined will have Poisson properties. This is why it is

common practice to assume a Poisson process in traffic applications that physically

comprise a large number of independent traffic streams, each of which may have a

general distribution.

Bernoulli Process

Bernoulli processes can be seen as the discrete-time counter part of Poisson processes

[2]. A Bernoulli process defines the arrival probability at any discrete-time instance as

p. Let Ω be a sample space and P a probability measure on Ω. Let {Xn; n = 1, 2, ...} be

a sequence of random variables defined on Ω and taking only the two values 0 and 1.

Definition: The stochastic process {Xn; n = 1, 2, ...} is called a Bernoulli process with

success probability p provided that [24]:

(a)X1, X2, ... are independent, and

(b)P{Xn = 1} = p, P{Xn = 0} = q = 1− p for all n.

The probability of n arrivals at discrete interval k is binomial and is given as:

Pr{Nk = n} =
(

k
n

)
pn(1− p)k−n, n = 0, 1, 2, ..., n. (2.2)

The time between intervals is geometric with parameter p and is given as:

Pr{X = k} = (1− p)k−1p, k = 1, 2, 3, ... (2.3)
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Phase-type Renewal Processes

The phase-type renewal process is very popular due to the fact that they are rela-

tively tractable and can approximate any inter-arrival distribution arbitrary closely [2].

Phase-type processes are also very popular in single node queueing systems where

they are used to model the inter-arrival and/or service distributions [26]. Phase-type

processes model inter-arrival times as the time to absorption in a continuous time

Markov chain C = {Ct; t ≥ 0} with state space {0, 1, 2, ..., m}. State zero is the ab-

sorbing state and absorption is guaranteed. To determine the inter-arrival time, An,

the process is started with some initial distribution π and An is then calculated as the

time until absorption occurs. The process is then restarted.

2.3.3 Markov Processes and Markov chains

Markov and Markov-renewal traffic models introduce dependence into the random

sequence An by allowing each state of the Markov traffic model to control the param-

eters of the traffic model [2]. This means that Markov traffic models could possibly

capture the effect of traffic bursts.

A Markov process is a stochastic process whose future state of the process is inde-

pendent of the past. The definition of a Markov process is given as follows according

to [24]:

Definition: The stochastic process Y = {Yt; t ≥ 0} is said to be a Markov process with

state space E provided that for any t, s ≥ 0 and j ∈ E,

Pr{Yt+s = j|Yu; u ≤ t} = Pr{Yt+s = j|Yt}
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Classification of Markov Processes

A Markov process is classified according to its parameter set (discrete or continuous)

and its state space (discrete or continuous) [6]. A Markov process with a discrete pa-

rameter set and a discrete state space is generally referred to as a Markov chain. In this

literature study we will refer to a Markov process with a discrete parameter set and a

discrete state space as a Markov chain, and we will refer to a Markov process with a

continuous parameter set and a discrete state space as a continuous-parameter Markov

chain. We will refer to a Markov process with a discrete parameter set and a continu-

ous state space as a discrete-parameter Markov process, and we will refer to a Markov

process with a continuous parameter set and a continuous state space as a continuous-

parameter Markov process. Table 2.1 shows a summary of the classification of Markov

Processes.

Table 2.1: Classification of Markov processes

State Space Type of parameter
Discrete Continuous

Discrete (Discrete-Parameter) Continuous-Parameter
Markov Chain Markov Chain

Continuous Discrete-Parameter Continuous-Parameter
Markov Process Markov Process

Markov Modulated Traffic Models

Markov modulated traffic models consist of Markov models of which the state of the

Markov model controls the parameters of a stochastic process [10]. One example of

this is the Markov Modulated Poisson Process (MMPP) [27]. An MMPP consists of a

continuous-time Markov chain of which the state of the Markov chain, sk, controls the

rate, λk, of a Poisson process. A MMPP is referred to as a double stochastic process.

20



Chapter 2 Commonly Used Traffic Models

2.3.4 Fluid Traffic Models

Fluid models do not concern themselves with the arrival of individual traffic units but

instead model the traffic as a continuous stream with the flow rate as a parameter of the

model [10]. The greatest advantage of fluid models is that flow changes occur much

less frequently than the arrival of individual packets which means that when a fluid

model is implemented in a computer simulation the model uses a lot less computing

and memory resources.

2.3.5 Queueing Based Models

Queueing theory is well suited for modelling the WMN environment. The arrival pro-

cess can be used to model the arrival of network traffic. The service process can be

used to model the time a node takes to process a packet as well as the time a node

needs to send a packet. The probability of the channel being available for a node to

transmit can also be incorporated into the service process. The routing protocol of the

network can be incorporated into the routing probability matrix of the queueing net-

work. Queueing theory has been used in the past in similar ways to model a WMN

such as the model in [1, 3, 21, 28]. There are two fundamental ways in which queueing

theory is used to model a WMN. The first is to consider each node in terms of the

hop-count it is away from the gateway. Each node in the network is then analysed as

a queueing system and the parameters for the queueing system is dependent on the

number of nodes in each hop-count. This approach was followed by [1, 21, 28]. The

second method is to consider a WMN with uniformly distributed nodes and no gate-

ways such as in [3]. The network becomes easier to analyse since it looks the same

from all perspectives but it is also very limiting in terms of model flexibility.

A method which we have not yet encountered in the literature with regards to queue-

ing based network traffic models is the use of a connection matrix. A connection matrix

can be used to define the topology of the network and the parameters of the model can

then be dependent on the connection matrix. In this study we aim to use a connec-
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tion matrix to define the topology of the network and then create a queueing based

network traffic model which derives its parameters from the connection matrix. In the

next section we take a more in-depth look at the basics of queueing theory and queue-

ing networks after which we discuss some queueing based network traffic models on

which we aim to extend to create our own network traffic model.

2.4 Background on Queueing Theory

In this section we discuss the basics of queueing theory. We start by discussing gen-

eral results for a G/G/c queueing system. This is followed by discussing results for

the M/M/1, M/M/c, and M/M/c/K queueing systems. We then discuss results for

queueing networks. The results given in this section are very important tools which

we will use to build our network traffic model.

2.4.1 General Results for G/G/c queueing systems

We consider a G/G/c queueing system to which customers arrive according to a gen-

eral arrival process with rate λ and customers are serviced according to a general ser-

vice process with rate µ. The queueing system has c number of servers and has an

infinite buffer size. The traffic congestion, also referred to as traffic intensity, ρ, is given

as:

ρ ≡ λ/cµ (2.4)

For the system to have steady state results, ρ must be less than one [6]. The probability

distribution of the total number of customers in the system, N(t), at time t, consists of

the customers waiting in queue, Nq(t), and the customers being serviced, Ns(t). The

mean number of customers in the system is given by:

L = E[N] =
∞

∑
n=0

npn (2.5)
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where pn(t) = Pr{N(t) = n}, and pn = Pr{N = n} in the steady state. The expected

number of customers in queue is given by:

Lq = E[Nq] =
∞

∑
n=c+1

(n− c)pn (2.6)

2.4.2 Little’s Formulas

In the early 1960’s John D.C. Little developed a relationship in queueing theory be-

tween the steady-state mean system sizes and the steady-state average customer wait-

ing times. Refer to [29] for the full proof of the formulas.

Let Tq be the time a customer spends in queue prior to entering service, S the time a

customer spends in service, and T = Tq + S the total time a customer spends in the

system. Little’s formulae are given as follows:

L = λW (2.7)

and

Lq = λWq (2.8)

where W = E[T] is the mean waiting time for a customer in the system, and Wq = E[Tq]

is the mean waiting time for a customer in queue [6]. If we take the mean of the total

time a customer spends in the system we get E[T] = E[Tq] + E[S], which can also be

written as W = Wq + 1/µ. If we subtract equation 2.8 from equation 2.7 we get:

L− Lq = λ(W −Wq) = λ(1/µ) = λ/µ (2.9)

But we already know that L− Lq = E[N]− E[Nq] = E[N − Nq] = E[Ns], where E[Ns]

is the expected number of customers in service in the steady state. Thus the expected

number of customers in service denoted by τ, is equal to λ/µ.

In the single server situation (c = 1), if we subtract equation 2.6 from equation 2.5 and

use algebra to simplify we get:

L− Lq =
∞

∑
n=0

npn −
∞

∑
n=2

(n− 1)pn =
∞

∑
n=1

pn = 1− p0 (2.10)
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For a single server system τ = ρ, and since L − Lq = λ/µ = τ, we can see that the

probability that a G/G/1 system is empty is p0 = 1− ρ.

Table 2.2: Summary of symbols
L Mean number of customers in the system
Lq Mean number of customers in queue
S Service time
T Total time a customer spends in the system
Tq Time a customer waits in queue prior to entering service
W Mean waiting time in the system
Wq Mean waiting time in queue
λ Mean customer arrival rate
µ Mean customer service rate
τ Mean number of customers in service

Table 2.3: Summary of general results for G/G/c queues
ρ = λ/cµ Traffic congestion / Traffic intensity
L = λW Little’s formula
Lq = λWq Little’s formula
W = Wq + 1/µ Expected-value argument
pb = λ/cµ = ρ Busy probability for an arbitrary server
τ = λ/µ Expected number of customers in service
L = Lq + τ Combined result of Little’s formulas
p0 = 1− ρ G/G/1 empty-system probability
L = Lq + (1− p0) Combined result for G/G/1

2.4.3 Simple Markov Queueing Models

Figure 2.4 depicts a specific type of continuous-time Markov chain called a birth-death

process. The states of the Markov chain denote the population of the system. With an

arrival (birth) the system moves from state n to state n+ 1 and with a departure (death)

the system moves from state n to state n− 1. Queues that can be modelled with birth-

death processes include M/M/1, M/M/c, M/M/c/K, M/M/∞, and variations of

these queues with state-dependant arrival and service rates [6]. The following sub-

sections briefly discusses different types of queues that are modelled according to a

birth-death process.
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Figure 2.4: State transition diagram for a birth-death process

Single-Server Queues - M/M/1

In this section we discuss single-server queues as given in [6]. Consider a single-server

M/M/1 queue where the arrivals are Poisson with rate λ, and the service-times are

exponentially distributed with mean 1/µ. Let pn denote the probability that the system

is in state n (has n customers in the system). For a M/M/1 queue, pn is given by:

pn = (1− ρ)ρn (ρ = λ/µ < 1) (2.11)

It can be shown that the mean number of customers in the system is then given by

L =
ρ

1− ρ
=

λ

µ− λ
, (2.12)

and the mean number of customers in queue is given by:

Lq =
ρ2

1− ρ
=

λ2

µ(µ− λ)
(2.13)

Applying Little’s formulas to equations 2.12 and 2.13 then gives:

W =
L
λ
=

ρ

λ(1− ρ)
=

1
µ− λ

(2.14)

Wq =
Lq

λ
=

ρ

µ(1− ρ)
=

ρ

µ− λ
(2.15)

Multi-Server Queues - M/M/c

Next we will discuss multi-server queues as given in [6]. Consider a multi-server

M/M/c queue where the arrivals are Poisson with rate λ, and the service-times of
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each server is independently and identically distributed according to an exponential

distribution with mean 1/µ. For this section we let τ = λ/µ and ρ = τ/c = λ/cµ. The

probability that the system is in state n is given by

pn =

 λn

n!µn p0 (0 ≤ n < c),
λn

cn−cc!µn p0 (c ≤ n)
(2.16)

where

p0 =

(
τc

c!(1− ρ)
+

c−1

∑
n=0

τn

n!

)−1

(τ/c = ρ < 1). (2.17)

The mean number of customers and waiting times are then given by:

Lq =

(
τcρ

c!(1− ρ)2

)
p0 (2.18)

Wq =
Lq

λ
=

(
τc

c!(cµ)(1− ρ)2

)
p0 (2.19)

W =
1
µ
+

(
τc

c!(cµ)(1− ρ)2

)
p0 (2.20)

L = τ +

(
τcρ

c!(1− ρ)2

)
p0 (2.21)

Queues with truncation - M/M/c/K

Finally we discuss queues with truncation as given in [6]. For queues with truncation

the same assumptions are made as those for M/M/c queues, except now λn must be

equal to 0 whenever n ≥ K. The probability that the system is in state n is then given

by

pn =

 λn

n!µn p0 (0 ≤ n < c),
λn

cn−cc!µn p0 (c ≤ n ≤ K)
(2.22)

where

p0 =


[

τc

c!

(
1−ρK−c+1

1−ρ

)
+

c−1
∑

n=0

τn

n!

]−1

(ρ 6= 1),[
τc

c! (K− c + 1) +
c−1
∑

n=0

τn

n!

]−1

(ρ = 1).
(2.23)
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The mean number of customers in queue are given by:

Lq =
p0τcρ

c!(1− ρ)2 [1− ρK−c+1 − (1− ρ)(K− c + 1)ρK−c] (2.24)

Remember that L = Lq + τ. The result needs to be adjusted since a fraction pK of the

arrivals do not join the system because they are dropped if they arrive when the queue

is full. The arrival rate needs to be adjusted and we denote the adjusted arrival rate

as λe f f . The effective arrival rate is given as λe f f = λ(1− pK), which means that the

mean number of customers in the system is then given as:

L = Lq +
λe f f

µ
= Lq +

λ(1− pK)

µ
= Lq + τ(1− pK). (2.25)

The waiting times are then given as:

W =
L

λe f f
=

L
λ(1− pK)

(2.26)

Wq = W − 1
µ
=

Lq

λe f f
(2.27)

2.4.4 Queueing Networks

In this section we consider queueing networks. We only take a look at a special type

of queueing networks, namely networks that have product-form. The advantage of

queueing networks with product-from is that their solutions can be obtained without

generating their underlining state-space [30]. This makes solving large networks of

queues relatively easy.

Jackson Queueing Networks

Jackson queueing networks were first created by James R. Jackson in [7]. Jackson net-

works consist of an open network of waiting lines where each waiting line can be

considered as an independent M/M/c queue. The assumptions for these types of net-

works are as follow:
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- There are i = 1, 2, ..., N nodes in the system and each node has ci identical servers.

- There is only one customer class in the system and the overall number of cus-

tomers in the network is unlimited.

- Customers arriving from outside the system will arrive at node i with a Poisson

process with rate γi.

- Service times at node i are independent and identically distributed according to

an exponential distribution with rate µi (a node’s service rate may be allowed to

be dependent on its queue length).

- The probability that a serviced customer at node i will go next to node j (routing

probability) is given by τij, where i = 1, 2, ..., k and j = 0, 1, 2, ..., k. The routing

probability is independent of the state of the system, and τi0 indicates the proba-

bility that a customer will leave the system at node i.

A routing probability matrix, R, is created by placing each routing probability τij in

the i’th row and the j’th column of the matrix. The effective arrival rate λi is then

calculated using the following formula:

λ = γ · (I− R)−1, (2.28)

where I is the identity matrix. Each node i can then be analysed as if it was an in-

dependent M/M/c queue with arrivals following a Poisson process with rate λi and

service times following an exponential distribution with rate µi. Jackson’s Theorem

states that if the overall ergodicity (λi ≤ µici) holds for the network then the steady

state probabilities are given as:

π(k1, k2, ..., kn) = π1(k1)π2(k2)...πN(kN), (2.29)

where πi(ki) is the probability that there are ki customers at node i.
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Gordon/Newell Networks

Gordon and Newell [8] extended the work on queueing networks by considering closed

queueing networks, i.e. networks where no arrivals can occur from outside. The num-

ber of customers in a closed network, K, is always constant and is given by:

K =
N

∑
i=1

ki. (2.30)

The number of states in a Gordon/Newell network is given by the binomial coefficient:(
N + K− 1

N − 1

)
, (2.31)

which gives the number of ways to distribute K customers between N nodes. The

Gordon/Newell Theorem gives the probability of the network state as follows:

π(k1, k2, ..., Kn) =
1

G(K)

N

∏
i=1

Fi(ki), (2.32)

where G(K) is a normalization constant and is given by:

G(K) = ∑
∑N

i−1 ki=K

N

∏
i=1

Fi(ki). (2.33)

The Fi(ki) function corresponds to the state probabilities of the i’th node and is given

by:

Fi(ki) =

(
ei

µi

)ki 1
βi(ki)

, (2.34)

where ei is the visit ratio of node i and βi(ki) is given by:

βi(ki) =


ki! ki ≤ ci

ci!c
ki−mi
i ki > ci

1 ci = 1

(2.35)

BCMP Queueing Networks

Baskett, Chandy, Muntz and Palacios extended the work done by Jackson, Gordon and

Newell in [9]. Their queueing networks are referred to as BCMP networks and include
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queueing networks with more than one customer class, different queueing strategies,

and generally distributed service times. BCMP networks can be open, closed or mixed.

The assumptions for a BCMP network are as follow:

- The queueing discipline can be FCFS, Processor Sharing (PS), Last Come First

Served with Pre-emptive Resume (LCFS-PR) or Infinite Server (IS).

- The service times of a node with FCFS service discipline must be exponentially

distributed and customer class independent. For a node with a PS, LCFS-PR or

IS service discipline the service times can be any distribution with a relational

Laplace transform. The mean service times of the last three mentioned service

disciplines may differ for different customer classes.

- The service rate of node i may be allowed to be dependant on the number of cus-

tomers at node i if the service discipline of node i is FCFS. If the service discipline

of node i is PS, LCFS-PR or IS, then the service rate for customer class m may also

be allowed to be dependant on the number of customers of class m at node i

- The arrival process for a BCMP network is defined for two different scenarios for

open networks:

Scenario 1: The network contains one source with a Poisson arrival process

a with rate λ, where λ may be allowed to be dependant on the number of

customers in the network. If the network contains N nodes and M number

of customer classes, then the arriving customers are distributed across the

network with probability r0,im where:

N

∑
i=1

M

∑
m=1

r0,im = 1 (2.36)

Scenario 2: The network contains M sources, each corresponding to a cus-

tomer class, with arrivals happening at each source according to an inde-

pendent Poisson process with rate λm. The arrival rate λm from the m’th

source may be allowed to be load dependent. The arriving customers are
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then distributed across the network with probability r0,im where:

N

∑
i=1

r0,im = 1, m = 1, 2, ..., M (2.37)

The assumptions for BCMP networks lead to four node types given in table 2.4. The

notation −/M/c is used because the arrival process to a node in a BCMP network is

in general not Poisson distributed. For an open queueing network with independent

arrival and service rates the steady state probabilities are then given by:

π(k1, k2, ..., kn) = π1(k1)π2(k2)...πN(kN), (2.38)

with:

πi(ki) =

 (1− ρi)ρ
ki
i , Type− 1, 2, 4(ci = 1),

e−ρi
ρ

ki
i

ki!
, Type− 3.

(2.39)

The equations for the steady state probabilities for the other types of BCMP networks

are more complex and are not discussed here, but can be found in [9].

Table 2.4: Types of nodes in a BCMP network
Type-1: −/M/c - FCFS Type-2: −/G/1 - PS
Type-3: −/G/ inf - IS Type-4: −/G/1 - LCFS-PR

2.5 Queueing Based Models for Wireless Mesh Networks

The previous sections in this chapter gave us a good idea about what network traffic

modelling entails. In this section we discuss network traffic models that make use

of queueing theory to model a WMN. The models discussed in this section are very

important to this study as these are the models that we plan to expand upon.

2.5.1 Feng et al.

The model proposed by Feng et al. [1] models a WMN in terms of hop count a given

node is away from a gateway. They refer to a node that is s number of hops away
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from a gateway as an s-hop node. They then model each s-hop layer of nodes as one

queueing system.

Network Model

Feng et al. considers a WMN of N mesh routers and C gateways. They assume that

the gateways are uniformly distributed across the network and that all nodes use the

same channel to communicate with each other. They also assume that the routing paths

between mesh routers and gateways are known and they define their model according

to the number of hops a mesh router is away from a gateway. A mesh router is referred

to as an s-hop mesh node where s, s ≥ 0, is the number of hops it is away from a router.

When s = 0 the mesh node is a gateway. Let N(s) denote the number of s-hop nodes

and r(s) denote the ratio between N(s) and N. We then have:

S

∑
s=1

r(s) = 1 (2.40)

and

N(s) =

 C, s = 0

N · r(s), 1 ≤ s ≤ S
(2.41)

Where S is the hop count of the maximum routing path. The function r(s) is used to

describe the topology of the network, i.e. how many nodes are s-hops away from the

gateway. Feng et al. assumes that r(s) is known. One s-hop node may have more than

one (s − 1)-hop nodes to which it can relay network traffic due to the nature of the

wireless medium. For simplicity Feng et al. assumes that s-hop nodes do not forward

loads for other nodes of the same hop count. Let N(s, S) be the number of mesh nodes

between the s-hop nodes and the S-hop nodes. N(s, S) is then given by:

N(s, S) =
S

∑
r=s

N(r) (2.42)

Feng et al. only analyses traffic flows between mesh clients and the gateways since

most mesh clients connect to the network in order to gain access to the internet which
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is accessed via the gateways. To simplify their calculations they only analyse traffic

in one direction, namely from the mesh clients to the gateways. Figure 2.5 depicts the

described network under the given assumptions. The first number in each hop count

depicts its hop count. It is assumed that gateways do not communicate with mesh

clients directly, i.e. they do not generate network traffic. It is assumed that the amount

of traffic generated by mesh clients in the area of each mesh router are equal. Let λ be

the ideal number of packets loaded to every mesh router from its mesh clients and let

λ(s) be the total number of packets that arrive at s-hop nodes. λ(s) is then given by:

λ(s) =


λ(1) s = 0

λ · N(s) + λ(s + 1) 1 < s < S

λ · N(s) s = S

(2.43)

Figure 2.5: Example of WMN with up-streams for Feng et al. [1] Model

Mathematical Model

Feng et al. models the WMN as a series of queueing systems where each mesh router

is considered a service station. Let µ denote the mean packet processing rate of ev-

ery mesh router and let λ denote the mean packet generation rate for network traffic
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generated by mesh clients at every mesh router. It is assumed that λ and µ follow an

independent and identically distributed Poisson process.

Define the utilization factor, ρs, as of the s-hop queueing system as the ratio between

the packet arrival rate and the packet processing rate of the s-hop queueing system. ρs

is then given as:

ρs =
N(s,S)
N(s) δ 0 ≤ s ≤ S, (2.44)

where δ is the relationship between λ and µ. Both δ and ρs should be less than one for

the system to be in balance, i.e. for the system to be able to reach a steady state.

S-hop nodes only receive packets from mesh clients that are within their transmission

range and from nowhere else. The traffic loads on S-hop nodes are thus independent

from each other and because of this Feng et al. models the S-hop nodes as a queueing

system with a single server. The traffic loads on the S-hop nodes are the lowest in the

system and thus it can be assumed that the packet arrival rate at each S-hop node is

much less than the packet processing rate of that node and thus the buffer length of

the S-hop nodes can be modelled as infinite. The S-hop nodes are thus modelled as a

M/M/1/∞ queueing system.

The traffic loads of s-hop nodes (0 ≤ s < S) may choose one of several (s − 1)-hop

nodes as the next destination. Feng et al. models the s-hop nodes (0 < s < S) as

queueing systems with multiple servers. Feng et al. further debates that because the

bandwidth links of the wireless nodes are very limited that the buffer length can be

modelled as finite.

Let k denote the buffer capacity of every mesh router in the system. The buffer capacity

of s-hop nodes, K(s), is then given by k · N(s). The s-hop nodes (0 < s < S) are then

modelled as a M/M/N(s)/K(s) queueing system.

The gateways (s = 0) are modelled as M/M/C/∞ queueing systems. The gateways

have C parallel servers since there are C gateways and the buffer length is infinite since

the bandwidth of the wired links is much more than the bandwidth of the wireless

links, which implies that the packet processing rate of the gateways is much higher
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than the packet arrival rate.

Let M(s) be the traffic model of the s-hop nodes in the WMN. M(s) is then given as:

M(s) =


M/M/C/∞ (s = 0)

M/M/N(s)/K(s) (0 < s < S)

M/M/1/∞ (s = S)

(2.45)

Performance Parameters

Feng et al. uses basic queueing theory to derive expressions for the probability, pk, that

k packets arrive at a queueing system for each queueing system in their model. They

then continue to calculate the throughput of the network. We present the following

analysis as derived in [1]. To calculate the throughput of the network they first calcu-

late the output of each s-hop layer. Denote pK(s) as the packet loss probability of the

s-hop nodes. The M/M/N(s)/K(s) queue has a possibility for packet loss because

it has a finite buffer. Packets arriving when the buffer is full will be dropped. The

probability of an arriving packet being dropped, pK(s), is thus given as:

pK(s) =
N(s,S)K(s)δK(s)

N(s)! p0 (0 < s < S). (2.46)

Let λe
s denote the efficient output of the s-hop layer. λe

s is then given as:

λe
s = (N(s)λ + λe

s+1)(1− pK(s)) (0 < s < S). (2.47)

Gateways have no packet loss according to the proposed model and because gateways

have no traffic that is directly generated by mesh clients their output is that of the 1-hop

nodes. Thus λe
0 = λe

1. Since the S-hop nodes also have no packet loss their effective

output is equal to that of the traffic generated by the mesh clients within their range.

Thus λe
S = λN(s). To sum up, the efficient output of each s-hop layer is then given as:

λe
s =


(N(1)λ + λe

2)(1− pK(1)) (s = 0)

(N(s)λ + λe
s+1)(1− pK(s)) (0 < s < S)

λN(s) (s = S)

(2.48)
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Define θ as the maximum achievable throughput of the network. Due to the assump-

tions of the network flows in the network the throughput of the network is given as

the output of the gateways. Thus the throughput of the network is given as:

θ = λe
0 = λe

1 = (N(1)λ + λe
2)(1− pK(1)) (2.49)

From the equation it is clear that one will have to go through an iterative process from

λe
S in order to calculate λe

0 = λe
1.

Using the principles of queueing theory discussed in section 2.4 the expected waiting

time, Ws, for packets in the system and the expected number of customers, Ls, in the

system can also be calculated.

In their paper Feng et al. mention that their model does not take into account wireless

interference. To amend this problem they modified the service rate of each node. They

calculate the service rate of each node as follows:

µi =
B− I(i)

P
, (2.50)

where B is the bandwidth in Mbps, P is the packet size in bytes and I(i) is the function

used to take into account wireless interference. Feng et al. defines I(i) as the band-

width that cannot be used due to all of the interfering signals. Feng et al. does not

however give an indication in their paper on how they obtain I(i).

Analysis

From the above presentation of the work done by Feng et al. in [1], we can draw the

following conclusions. Modelling the network in terms of the number of hops that

nodes are away from the gateway gives a good idea of the effect that gateways have in

the network. However modelling each s-hop layer as a single queueing system means

that the model has very little input in terms of the topology of the network. The model

only accounts for a symmetrical network where the only input into the model is the

number of nodes in each s-hop layer. This makes the identification of bottlenecks in

the network very difficult.
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2.5.2 Wu et al.

Wu et al. [28] used a much simpler aproach to modelling a WMN. Instead of modelling

each node in the mesh network as a queueing system, they only model the gateways

as queueing systems.

Network Model

Wu et al. considers a WMN with N mesh routers and M gateways. Wu et al. assumes

that gateways are always connected to the wired network and thus the bandwidth of

the wired links are much larger than the bandwidth of the wireless links. Because of

this Wu et al. assumes that the service rate of gateways are constant and that they have

an infinite buffer size. They then model the gateways as M/D/1 queueing systems.

The arrival rate of the gateways is assumed to be Poisson and is calculated as a function

of the number of mesh routers and gateways there are in the network. They derive

expressions for a linear mesh topology and a grid mesh topology.

Performance Parameters

Wu et al. uses the general queueing results of a M/D/1 queueing system to calculate

the average delay and average queue length of the gateway.

Analysis

From the above presentation of the work done by Wu et al. [28], we can draw the

following conclusions. The model proposed by Wu et al. is a very simplistic model

that can only model the load on the gateways. The number of topologies that the

model can accommodate is also very limited and the model does not account for any

wireless interference or routing protocols.
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2.5.3 Bisnik and Abouzeid

Bisnik and Abouzeid [3] characterises the average delay and throughput in a random

access MAC based WMN. They model residential area WMNs as open G/G/1 queue-

ing systems. They also presented their model in [31] where they give more in-depth

simulation results. Unfortunately their model does not account for the effect of gate-

ways in the network.

Network Model

Bisnik and Abouzeid considers a network of n mesh clients distributed uniformly over

an area that consists of non-overlapping zones of area a(n). Each zone contains one

mesh router and two mesh routers are said to be neighbours if their zones share a

common point. The set of neighbours of router i is denoted by N(i) and the number of

neighbours that node i has equals K. Bisnik and Abouzeid assumes that client-router

and router-router communication takes place on different channels. Each mesh client

may be a source or a destination for network traffic. Bisnik and Abouzeid assumes that

packets of size L bits are generated by each mesh client according to an independent

and identically distributed Poisson process with rate λ. Generated packets are directly

transmitted to the mesh router of the zone it is in. The mesh routers then relay the

packets until the packets reach the zone containing the destination mesh client. The

probability that a packet received by a mesh router is destined to one of the mesh

clients in its zone is given as p(n). If a packet is not destined for the zone of the mesh

router then the packet is forwarded to one of the neighbours of the mesh routers with

equal probability.

Mathematical Model

Bisnik and Abouzeid model each mesh router in the network as a G/G/1 queueing

system. They use routing probabilities to characterize the flow of packets in the net-
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work. The routing probability, pij(n), that a packet is forwarded from node i to one of

its neighbouring nodes j is given as:

pij(n) =


1−p(n)

K j ∈ N(i)

0 otherwise
(2.51)

Bisnik and Abouzeid uses a random access MAC model that is able to account for wire-

less interference from other wireless nodes. A wireless transmission from one mesh

router to another will only be successful if none of the neighbour nodes are trans-

mitting at the same time. By allowing the service time of the queueing system to be

dependent on the number of interfering neighbours Bisnik and Abouzeid are able to

account for the effect of wireless interference.

Performance Parameters

Bisnik and Abouzeid use the diffusion approximation technique [30] to obtain closed

from expressions for the end-to-end delay and per node throughput. Bisnik and Abouzeid

only derive expressions for queueing systems with exponential inter-arrival times and

service times.

Analysis

The model of Bisnik and Abouzeid proposes a good way to account for wireless inter-

ference. By allowing the service rate of each node to be dependent on the number of

interfering nodes all the nodes will have equal probability to transmit. Unfortunately

the model does not account for the effect of gateways in the network and is also limited

to one fixed topology.
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2.6 Conclusion

In this chapter we first presented an introduction to network traffic modelling in gen-

eral. We then discussed the problem entity of our modelling problem namely the

WMN environment. This was followed by a discussion of commonly used traffic mod-

els. We discussed some of the advantages and disadvantages of these models. At the

end of this we found that queueing theory seems to give an adequate solution to mod-

elling the WMN environment. We then gave a brief background on how queueing

theory and queueing networks work which was followed by a discussion of queueing

based network traffic models of WMNs. We discussed the shortcomings as well as the

strong points of the models.

We now aim to extend on these models by creating a model that uses a connection

matrix to define the topology of the network. The parameters of the model can then be

calculated from the connection matrix.
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Chapter 3

Conceptual Model

In the previous chapter we discussed various queueing based network traffic models for WMNs.

We saw that there are two main methods of modelling a WMN using queueing theory. One is

to model the nodes in terms of the number of hops they are away from the gateways. The second

is to use a routing probability matrix to define the network. We will now attempt to extend on

these models. We do this through the use of a connection matrix. Through the use of a connec-

tion matrix we aim to model the network in terms of the number of hops the nodes are away

from the gateways without losing any information on the topology of the network.

3.1 Network Model

We consider a WMN with N mesh routers of which G are gateways. Mesh clients

connect to the mesh routers to gain access to the network and we assume that router-

router and router-client communication takes place on different channels. We define

each mesh router in terms of the number of hops, s, a mesh client connecting to it

would be away from the closest gateway with s = 1, 2, ..., S. When s is equal to 1 the

mesh router is considered a gateway. We define hs as the number of mesh routers that

41



Chapter 3 Mathematical Model

are s hops away from a gateway which gives h1 = G and:

S

∑
s=1

hs = N (3.1)

We label each node as si, which means that it is the i’th node that is s hops away from

the closest gateway with 0 ≤ i ≤ hs.

To describe the topology of the network we define the connection matrix, D, with

elements as follows:

dsi,uj =

 1, if node si is able to transmit to node uj,

0, otherwise.
(3.2)

To clarify, since nodes do not transmit to themselves the value of dsi,si is set to zero. The

elements of the connection matrix are ordered first according to s and then according

to i. Equation 3.3 gives an example of how the elements in the matrix are ordered. For

the example hs = 2 for all s and S = 3.

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d11,11 d11,12 d11,21 d11,22 d11,31 d11,32

d12,11 d12,12 d12,21 d12,22 d12,31 d12,32

d21,11 d21,12 d21,21 d21,22 d21,31 d21,32

d22,11 d22,12 d22,21 d22,22 d22,31 d22,32

d31,11 d31,12 d31,21 d31,22 d31,31 d31,32

d32,11 d32,12 d32,21 d32,22 d32,31 d32,32

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.3)

We assume that mesh clients generate traffic to each mesh router si according to a

Poisson process with rate γsi . We also assume that the size of packets that are generated

to be exponentially distributed with an average packet size of P bytes.

3.2 Mathematical Model

Because the inter-arrival and inter-service times are exponentially distributed, we model

the WMN as a Jackson queueing network. Each mesh router in the network is mod-

elled as a M/M/1 queueing system. We define the routing probability matrix, R, of
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which its elements, rsi,uj , give the probability that packets will go to node uj when leav-

ing node si. The sum of the rows of the probability matrix will always be less or equal

to one. When the sum is less than one the remaining probability is the probability that

a packet will leave the system. The probability that a packet will leave the system, rsi,0,

at node si is thus given as:

rsi,0 = 1−
S

∑
u=1

hu

∑
j=1

rsi,uj . (3.4)

We will discuss the routing protocol we use for our model later on. We construct the

vector γ which contains the elements γsi . Once again the elements are ordered first

according to s and then according to i. Using the results of Jackson queueing networks

given in section 2.4 we calculate the effective arrival rate for each node as:

λ = γ · (I− R)−1, (3.5)

where the element λsi of the vector λ gives the effective arrival rate for node si.

The service rate of the queueing model represents the time it takes the node to transmit

a packet. Because the size of packets is exponentially distributed the service times will

also be exponentially distributed. If the maximum bandwidth in bps is given by B, and

the average packet size in bytes is given by P, then the service rate, µsi , for node si in

packets per second is calculated as:

µsi =
B

8P
· p(si), (3.6)

where p(si) is defined as the channel access probability. We use the channel access

probability to model the MAC mechanisms of the WMN.

It is important to note at this stage that our model only has queues with infinite buffers.

This is because there do not exist queueing networks with product form for queues

with truncation. Queueing networks with truncation are referred to as blocking queue-

ing networks [30]. The only way to obtain exact results for general queueing networks

with blocking is by generating and numerically solving the underlining continuous

time Markov chain. This is possible for medium sized networks. For small networks

closed form results may be derived but either way it is time consuming. Other tech-
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niques that are used to analyse queueing networks with blocking are approximate tech-

niques. In section 5.2 we use a similar method used by Feng et al. [1] to approximate

the results of queues with finite buffers.

Routing protocol and MAC mechanism

The calculation of the routing probability matrix, R, and the channel access probability,

p(si), gives us a means to abstract the modelling of the routing protocol and the MAC

mechanisms. We present here a basic routing protocol and MAC mechanism for our

model but in chapter 5 when we validate our model we show that by just changing the

way we calculate p(si) and R we are able to model all of the queueing based models

for WMNs presented in chapter 2 in a similar way. The routing protocol we use for our

basic model is a basic spanning tree routing protocol. We assume that the destination

of all network traffic is to the gateways in the network. In this scenario there are two

types of traffic that mesh clients can generate, namely upload traffic and download

traffic. For our spanning tree protocol the packets will always follow the shortest path

to the destination. Due to the nature of this protocol the paths for upload traffic and

download traffic will be the same, only in opposite directions. The results of the analy-

sis of the queueing network is not dependent on the direction of the traffic and because

of this we only have to analyse the traffic in one direction. We analyse the upload traf-

fic and note that the arrival rate, γsi , for node si now consists of two elements namely

the upload traffic, γu
si

, and the download traffic, γd
si

.

The routing protocol works as follows: Because it is a basic spanning-tree protocol we

assume that each node that is s hops away from a gateway will transmit a packet to

a node that is s − 1 hops away from a gateway. Each node is only able to transmit

to other nodes that are within its transmission range, i.e. connected in the connection

matrix. We assume that if there is more than one possible node to which it can transmit

then the packet is forwarded to one of the possible nodes with equal probability. When

the packets arrive at a gateway, i.e. s = 1, the packets leave the system. The routing
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probabilities are then calculated as follows:

rsi,(s−1)j
=


[

hs−1

∑
k=1

dsi,(s−1)k

]−1

, 1 < s ≤ S, dsi,(s−1)j
= 1

0, elsewhere.

(3.7)

The MAC mechanism our model uses works as follows: We assume that no two mesh

routers that are in range of each other can transmit at the same time due to them shar-

ing the same channel. We assume that nodes within each other’s range have equal

opportunity to transmit. We then calculate the channel access probability as:

p(si) =

[
1 +

S

∑
u=1

hu

∑
j=1

dsi,uj

]−1

. (3.8)

The simplified MAC and routing protocol used by our model are adequate to describe

the operation of the network and allow the traffic model to be constructed and anal-

ysed. We remind the reader that the focus of this study is not to create or improve

MAC and/or routing protocols, it is to create a model that is not limited to one topol-

ogy and/or scenario. Since the calculation of the channel access probabilities and the

routing probabilities are abstracted from the main model it gives us a means to imple-

ment other MAC and routing protocols without affecting the main model.

3.3 Performance Parameters

Now that we have the effective arrival rate and the service rate of each node we can

calculate the performance measures of the network. We use the results from section 2.4

and analyse each node as an independent M/M/1 queue. The utilization, ρsi of node

si is given by:

ρsi =
λsi

µsi

(3.9)

The utilization gives the probability that a node is busy. For every node si the utiliza-

tion needs to be less than one, i.e. ρsi < 1, for the network to be stable. The mean
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number of customers, Lsi , at node si is given by:

Lsi =
ρsi

1− ρsi

=
λsi

µsi − λsi

, (3.10)

and the mean number of customers in queue, Lqsi , at node si is given by:

Lqsi =
ρ2

si

1− ρsi

=
λ2

si

µsi(µsi − λsi)
. (3.11)

We can obtain the average waiting time of a packet at a node, Wsi , as well as the average

waiting time of a packet in queue, Wqsi , by applying Little’s formulae:

Wsi =
Lsi

λsi

=
1

µsi − λsi

, (3.12)

Wqsi =
Lqsi

λsi

=
ρsi

µsi − λsi

. (3.13)

The overall throughput of the network is defined as the rate at which packets success-

fully leave the network. For our model which does not allow dropped packets, the

throughput of the network is equal to the arrival rate of the network. The throughput

of the network, λ, is thus calculated as:

λ =
S

∑
s=1

hs

∑
i=1

λsi , (3.14)

and the average number of packets in the network, L, is given by:

L =
S

∑
s=1

hs

∑
i=1

Lsi . (3.15)

We can then calculate the response time of the network, W, as follows:

W =
L
λ

. (3.16)

The steady-state probability, πsi(k), that there are k packets at node si is given by:

πsi(k) = (1− ρ)ρk, (3.17)

and the steady-state probability of the network is given by:

π(k11 , k12 , ..., kShS
) =

S

∑
s=1

hs

∑
i=1

πsi(ksi). (3.18)

46



Chapter 3 Summary

3.4 Summary

In this chapter we presented our network traffic model that uses the connection ma-

trix to define the topology of the network. We model a WMN as a Jackson queueing

network and we abstracted the implementation of the MAC and routing protocols.

Finally we derived the performance parameters of our model using the results from

section 2.4. In the next chapter we discuss the implemented model.
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Chapter 4

The Computerized Model

In this chapter we discuss the implemented model. The model was implemented in Scilab which

is a free ware alternative to Matlab. Scilab does not have all of the advanced features that Matlab

offers but it does have all of the necessary mathematical capabilities to implement our concep-

tual model.

4.1 Implementing the Conceptual Model

To implement our conceptual model we only need software that is capable to solve the

mathematical equations presented in chapter 3. To do this we use the software package

Scilab [32]. Scilab is a free open source numerical computation software package that is

aimed at engineering and scientific applications. Scilab is ideal for our model because

it is free and it has all of the mathematical capabilities needed by our model.

Our model was implemented as follows: We use a main scripting file which Scilab exe-

cutes. The main scripting file then calls other scripting files to do the various steps that

need to be executed. First a scripting file is called which declares all of the parameter
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inputs used by our model. This scripting file is basically used to set up our model.

Then a scripting file is called which calculates the routing probabilities followed by a

scripting file which calculates the channel access probabilities. A scripting file is then

called to calculate the arrival rates and service rates for each node and lastly a script-

ing file is called which calculates the performance parameters for each node. Figure

4.1 depicts a flow diagram of our model implemented in Scilab. The scripting files can

be located on the attached CD.

Figure 4.1: Flow diagram of model implemented in Scilab

4.2 Verifying the Computerized model

In this section we aim to verify our implemented mathematical model by comparing

the results from our computerized model to that of a discrete event simulator. The
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discrete event simulator we use is called Java Modelling Tools (JMT) and was cre-

ated by Bertoli, Casale and Serazze [33]. JMT contains a discrete event simulation

program to model queueing networks and is ideal for verifying our model. JMT uses

Random Number Generation (RNG) algorithms to generate customers according to a

given distribution and then collects statistics as the customers travel through the simu-

lated queueing network. Since JMT is a queueing network modeller and not a wireless

network modeller we set the value of the channel access probability, p(si), equal to one

for the verification of the model. We do this because JMT does not take into account

wireless interference.

We test our model using the two main topologies we discussed in the introduction.

The first topology routes traffic to adjacent nodes with equal probability and does not

take into account the effect of gateways in the network. The second topology uses the

routing strategy proposed by us for our basic model in chapter 3. Figure 4.2 and 4.3

depicts the two topologies used in the test respectfully.

Figure 4.2: Topology A
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Figure 4.3: Topology B

4.2.1 Mathematical Model Set up

For both topologies the bandwidth, B, was set to 11 Mbps and the average packet

size, P, was set to 1200 bytes. This leads to the service rate, µsi , for all nodes in both

topologies being given as:

µsi =
B

8P
· p(si) =

11 · 1024 · 1024
1200 · 8 · 1 = 1201.49. (4.1)

The arrival rates for both topologies were randomly chosen with consideration that ρsi

should be less than one for the system to be stable. The arrival rates are given in table

4.1.
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Table 4.1: Summary of parameters

Parameter Topology A Topology B

λ11 160 150
λ12 150 160
λ13 160 -
λ14 140 -
λ21 160 140
λ22 160 170
λ23 170 120
λ24 150 -
λ31 150 160
λ32 160 150
λ33 170 140
λ34 140 150
λ41 150 130
λ42 170 120
λ43 160 150
λ44 150 -
µsi 1201.49 1201.49
h1 4 2
h2 4 3
h3 4 4
h4 4 3
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Topology A

For topology A the connection matrix, D, is given as:

D =

0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0

0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0

0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0

0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0

0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

(4.2)

Topology A uses a routing strategy where each node transmits its traffic to one of its

adjacent nodes with equal probability. The probability that a packet leaves the system,

rsi,0, at node si was randomly selected as 0.2. It was important that rsi,0 was not zero

to ensure that packets do leave the system at some point. The routing probabilities are

then given as:

rsi,uj =


(1− rsi,0) ·

[
S
∑

u=1

hu
∑

j=1
dsi,uj

]−1

, dsi,uj = 1

0, elsewhere.

(4.3)

Topology A is a good example of how we were able to easily implement another rout-

ing strategy without affecting our main model.
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Topology B

For topology B the connection matrix, D, is given as:

D =

0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

1 0 0 0 0 1 1 0 0 0 0 0

1 1 0 0 0 0 1 1 0 0 0 0

0 1 0 0 0 0 0 1 1 0 0 0

0 0 1 0 0 0 0 0 0 1 0 0

0 0 1 1 0 0 0 0 0 1 1 0

0 0 0 1 1 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0

(4.4)

Topology B uses the routing strategy proposed in chapter 3 and for that strategy the

routing probabilities are given as:

rsi,(s−1)j
=


[

hs−1

∑
k=1

dsi,(s−1)k

]−1

, 1 < s ≤ S, dsi,(s−1)j
= 1

0, elsewhere.

(4.5)

JMT Set up

Two separate simulations were created using JMT, one for topology A and one for

topology B. In both simulations the service times of each node was set to be exponen-

tially distributed with mean 1/1201.5. Arrivals at each node was set to occur according

to a Poisson process with the rates for each node given in table 4.1. Each node was set

to have one server with an infinite buffer size. The routing probabilities for each node

was set according to those given by equations 4.3 and 4.5. JMT was set to obtain results

with a confidence interval of 0.99 and a maximum relative error of 0.03.
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4.2.2 Simulation Results

Topology A

The results for topology A are given in figures 4.4, 4.5 and 4.6. Figure 4.4 depicts the

mean number of customers for each node. Figure 4.5 depicts the mean response time

for each node and figure 4.6 depicts the utilization of each node. As can be seen from

the figures the simulated results from JMT match very closely to the analytical results

from our model.

Figure 4.4: Topology A - Mean Number of Customers
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Figure 4.5: Topology A - Mean Response Time

Figure 4.6: Topology A - Utilization
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Topology B

The results for topology B are given in figures 4.7, 4.8 and 4.9. Once again these fig-

ures depict the mean number of customers, mean response time and utilization for

each node respectively. As can be seen from the figures the simulated results and the

analytical results are close to each other.

Figure 4.7: Topology B - Mean Number of Customers
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Figure 4.8: Topology B - Mean Response Time

Figure 4.9: Topology B - Utilization
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Conclusion

We were able to predict performance measures for each node in the network that

matched closely to the simulation results. We can conclude from this that the math-

ematics in our model is accurate when the network holds to the assumptions made

and that our mathematical model is verified.
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Chapter 5

Validating the Computerized Model

In chapter 3 we presented our conceptual model and in chapter 4 we implemented a comput-

erized model from the conceptual model and verified it. In this chapter we will validate our

model, i.e. does our model solve the problem given in the problem statement in chapter 1. The

problem statement stated that a need was identified for an analytical model, that extends on the

models proposed by Feng et al. and Bisnik and Abouzeid, that is capable of modelling both the

scenarios proposed by the fore mentioned models and more. To prove that our model is indeed

capable of modelling these different scenarios we will model each of the queueing based network

traffic models for WMNs discussed in chapter 2. We will show that our model is indeed capable

of modelling the different scenarios presented by the aforementioned models.

5.1 Wu et al.

We start with the simplest model of the four, namely that of Wu et al. [28]. We will

compare results from our model to the results Wu et al. obtained from their model.

For ease of explanation we will refer to our model as QBM (Queueing Based Model) in

this chapter.
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5.1.1 Model Setup: Wu et al.

Wu et al. derived expressions for two topologies, namely a linear topology and a grid

topology. The linear topology is depicted in figure 5.1. Wu et al. only models the

gateways in the network. For the linear topology Wu et al. assumes the arrival rate to

the gateway to be equal to Nλ, where N is the number of mesh routers in the network

and λ is the arrival rate for each mesh router. For the grid topology Wu et al. assumes

that the traffic of all nodes are distributed equally among the gateways. Wu et al. as-

sumes that the arrival rate to the gateways for the grid topology to be equal to Nλ/M,

where M is the number of gateways in the network. The grid network is thus analysed

as a series of linear networks. Because of this we only compare results of the linear

topology.

Figure 5.1: Wu et al.: Linear Topology

For the results we are comparing with Wu et al. allowed the service rate to be equal

to 1/0.01 and the number of mesh routers in the network to be equal to 10. They then

varied λ.
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5.1.2 Model Setup: QBM

The routing strategy we used for this scenario is the basic spanning tree protocol we

proposed in chapter 3. The D matrix is given as:

D =

0 1 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 1 0

(5.1)

The arrival rate for all nodes, except the gateway, was set to be the same and equal to

λ. The arrival rate for the gateway was set to zero.

Due to the routing protocol, there are no traffic flows from the gateway to the other

nodes which means the arrival rate of the other nodes are not dependent on the arrival

rate of the gateways. This means we are allowed to choose any service process for the

gateway without affecting the other nodes. We set the service rate of the gateway to

be constant, the same as Wu et al.’s model, with rate µsi = 1/0.01. We will compare

the average waiting time of a packet in queue. The average waiting time of a packet in

queue for a M/D/1 system is given as [6]:

Wqsi =
2− ρsi

2µsi(1− ρsi)
(5.2)
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5.1.3 Results

The results are depicted in figure 5.2. The results show how the response time of the

gateway increases as the arrival rate of the mesh routers increase. Both of the models

go to infinity as they approach an arrival rate of ten. This is because the system is not

stable when λ > µ. As can be seen from the figure, the results from our model matches

We et al.’s model exactly. The reason is that in both our model and Wu et al.’s model the

gateway is represented as a M/D/1 queue with the same parameters. The advantage

of our model is that we are able to calculate the performance parameters of the other

nodes in the network as well. Another advantage of our model is that we only have

to redefine the connection matrix to model other topologies. Wu et al. need to derive

the performance parameters each time they change the topology. We conclude that our

model is valid for this scenario.

Figure 5.2: Wu et al.: Average waiting time in queue
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5.2 Feng et al.

The main advantage of Feng et al.’s model is that it takes into account queues with

finite buffers. Queues with truncation are not applicable to queueing networks with

product form because the input of a truncated queue is actually not Poisson Distributed

[6]. However, we can still use our model and then analyse each node as a M/M/1/k

queueing system to approximate the packet loss probability. Feng et al. analysed their

model in a similar way.

Feng et al. compared results from their model to results from simulations run in NS2.

In this section we will be comparing results from our model to the NS2 results as well

as the results from Feng et al.’s model.

5.2.1 Simulation Set up: NS2

The simulation settings Feng et al. used for the simulation were as follows: All nodes

in the network are distributed in a 1500m × 1500m grid space. The buffer length of

each mesh node was set to 50. The transmission range of every mesh node was set to

140m and the interference range was set to 280m. The flow of all network traffic was

set to be from the mesh nodes to the gateways. Packet size was set to 1500 bytes and

the network adopts 802.11b as its MAC layer protocol.

5.2.2 Model Set up: Feng et al.

Feng et al. used the topologies depicted in figures 5.3 and 5.4 which they denote as L1

and L2. Feng et al. chose the bandwidth of every flow as 0.412 Mbps and the packet

size as 1500 bytes. Each topology contains one gateway and the maximum hop count

was set to six for both topologies (figures 5.3 and 5.4 only depict up to 3 hop counts).

This means that L1 contains 18 nodes (excluding the gateway) and L2 contains 127

nodes. The queue length of each node was set to 50.
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Figure 5.3: Feng et al.: Topology: L1

Figure 5.4: Feng et al.: Topology: L2

5.2.3 Model Set up: QBM

We will be using our model with the routing protocol and channel access probabil-

ity scheme proposed in chapter 3. To account for the effect of finite buffers, we will

approximate the packet loss rate by analysing the nodes in our model as M/M/1/k

queueing systems. We will then subtract the approximated packet loss rate from the
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arrival rate at each node to account for the dropped packets. The probability that the

buffer will be full for a M/M/1/k queueing system is given by:

pK(si)
=

(1− ρsi)ρ
K
si

1− ρK+1
si

(5.3)

The effective arrival rate, λ
(e f f )
si , for node si is then given as:

λ
(e f f )
si = λsi(1− pK(si)

) (5.4)

The arrival rate, λsi , for node si needs to be calculated from the effective rates that flow

into node si. The arrival rate is thus given as:

λsi = γsi +
h(s+1)

∑
j=1

λ
(e f f )
(s+1)j

· r(s+1)j,si
1 ≤ s < S

λsi = γsi s = S

(5.5)

We analyse each node as a M/M/1/k queueing system and we calculate Lsi , Lqsi , Wsi

and Wqsi according to the formulas given in section 2.4. The rest of the parameters

for our model are set as follows: The bandwidth, B, is set to 11 Mbps and the average

packet size, P, is set to 1500 bytes. The arrival rate, γsi , for each node is set to 36 packets

per second which relates to 0.412 Mbps.

5.2.4 Results

Figure 5.5 depicts the network throughput for each topology. Traffic flows only from

mesh routers to gateways and the gateways are set to have a much higher processing

rate than the other nodes. Because of this the throughput of the network is given by

the effective output of the 1-hop nodes. As can be seen from the figure our model’s

results closely match the simulation results and the results from Feng et al.’s model for

both topologies.

Figure 5.6 depicts the effective output of each hop. For topology L1 our results closely

match the results of Feng et al. However, for topology L2 our results differ from Feng

et al’s at hop two and three. For topology L2 the arrival rate for the nodes closer to
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the gateway is much larger than the process rate of the nodes. The amount of packets

dropped for topology L2 is highly dependent on the process rate. Feng et al. uses

the function I(i) in their model to account for wireless interference where we use the

channel access probability p(si). However Feng et al. never gives any indication in

their paper on how they obtain I(i), whether it was calculated or assumed to be known

from simulations. If more was known about I(i) we could have calculated p(si) in a

similar way. Our focus in the study is the topology of the network and not the MAC

model. Since we were able to model the scenarios proposed by Feng et al. in [1], we

can conclude that our model is valid for this scenario.

Figure 5.5: Feng et al.: Network Throughput
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Figure 5.6: Feng et al.: Effective output of each hop

5.3 Bisnik and Abouzeid

Lastly we compare results from Bisnik and Abouzeid to our model. Bisnik and Abouzeid

[3, 31] created a very complicated MAC model for their network traffic model. Their

MAC model uses a random back-off timer before a node starts transmitting. If another

node is detected transmitting, the back-off timer is paused until the other node has

finished transmitting. Bisnik and Abouzeid implemented the back-off timer in their

model by allowing the mean service time to consist of: (i) the mean random back-off

period, (ii) the mean time other nodes are busy transmitting, and (iii) the mean time it

takes to transmit a packet. The mean random back-off period is dependent on among

others the packet size, the bandwidth and the number of nodes in the network. In this

section we compare our model to the results Bisnik and Abouzeid presented in [31]
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5.3.1 Model Set up: Bisnik and Abouzeid

Bisnik and Abouzeid set the packet size for this simulation to 1 kbits and the band-

width to 106 bps. The probability that a packet leaves the system at a node is set to√
log n/n, where n is the number of nodes in the network which is set to 400. The

topology used by Bisnik and Abouzeid is depicted in figure 5.7.

Figure 5.7: Bisnik and Abouzeid: Topology

5.3.2 Model Set up: QBM

For our model we use our basic channel access probability scheme proposed in chapter

3. The routing scheme we use is the one we proposed in section 4.2.1 for topology A.

The routing probabilities are given by equation 4.3. We set B = 106 bps, P = 1000/8 =

125 bytes and rsi =
√

log n/n, where n is set to 400. The average end-to-end delay is

given as:

Wend =
Wavg

rsi

, (5.6)

where Wavg is the average delay of all the nodes.
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5.3.3 Results

The results are depicted in figure 5.8. As can be seen from the figure our results closely

match the results of Bisnik and Abouzeid. The reason Bisnik and Abouzeid’s average

end-to-end delay increases faster as λ increases is due to the random back-off timer

they implemented. The back-off timer is executed before each packet is transmitted,

which means the more packets there are in the system the more back-off timers are

executed and the higher the average end-to-end delay. Once again, our focus in this

study is the topology of the network and not the MAC model.

Figure 5.8: Bisnik and Abouzeid: Average end-to-end delay in the network

5.4 Conclusion

In this chapter we used our model to model various scenarios presented by other mod-

els. Our model was capable of modelling the scenarios presented by the models of Feng

et al. [1], Wu et al. [28] and Bisnik and Abouzeid [31] within known and adjustable pa-
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rameters. We can conclude from this that our model is valid. All of the presented mod-

els derived performance parameters based on assumptions surrounding the topology.

Our model derived the performance parameters from the connection matrix and there

were no limits on how the connection matrix was set up. This allowed us to model all

of the presented scenarios with ease.
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Chapter 6

Conclusion

In this chapter we give a summary of this thesis and we draw final conclusions.

6.1 Summary of thesis

In chapter 1 we presented a brief background on our problem which stated that a

need has been identified for an analytical model, that is capable of modelling both

the scenarios presented by Feng et al. and Bisnik and Abouzeid. This led to the objective

of this study which is to use queueing theory to create a single analytical model that is

capable of modelling the scenarios presented by the models from both Feng et al. and

Bisnik and Abouzeid.

A literature study is given in chapter 2 where we first introduced network traffic mod-

elling. This was followed by a discussion of the WMN environment. We then discussed

commonly used traffic models and found that queueing theory is a good solution to

modelling the WMN environment. This was followed by a background on queue-

ing theory. Finally we discussed various queueing based network traffic models from
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which we concluded that an optimal way to define the topology of the network, that

has not been used before as far as we know, is to use a connection matrix. The perfor-

mance parameters of our model can then be dependent on the connection matrix.

After the literature study we presented our conceptual model in chapter 3 which was

created during the analysis and modelling phase of our study. In chapter 4 we imple-

mented a computerized version of our model in Scilab which is a freeware alternative

to Matlab. This was done during the computer programming and implementation phase

of our study. We verified the implementation of our model by comparing results from

our model to results from a discrete event simulator. From the results we concluded

that the mathematics in our model is accurate under the assumptions that were made.

Finally in chapter 5 we validated our model by comparing results from our model to

results from the queueing based models we discussed in chapter 2. Our combined

model allowed us to model the individual scenarios presented by Wu et al. [28], Feng

et al. [1] and Bisnik and Abouzeid [31]. We conclude from this that the objective of this

study was obtained.

6.2 Conclusion

In this section we draw final concluding remarks and recommendations.

6.2.1 Connection Matrix

A novel contribution of this thesis is the use of the connection matrix. To our knowl-

edge a connection matrix has not been previously used coupled with queueing theory

to model a WMN. By deriving the parameters of our model from the connection matrix

instead of deriving them based on assumptions of the topology we are able to model a

wider variety of topologies. We defined the connection matrix in such a way that we

are also able to locate the gateways in the network which means that our model is able

73



Chapter 6 Conclusion

to account for the effect of gateways in the network.

6.2.2 Abstraction of the Routing Protocols

By abstracting the calculation of the routing protocols from the main model we are

able to use different routing schemes with our model without affecting the main model.

Different routing schemes are implemented in our model by just calculating the routing

probabilities differently. In this thesis we used two routing schemes with our model

namely the basic spanning-tree protocol proposed in chapter 3 and the random routing

protocol proposed in section 4.2.1. The basic spanning tree routing protocol directs

network traffic to the gateways. The random routing protocol directs traffic with equal

probability to one of the neighbour nodes with each node having a probability of being

a destination of a packet. We conclude from this that our model is able to use different

routing schemes without affecting the calculations of the main model.

6.2.3 Abstraction of the MAC Protocols

We defined the channel access probability in the calculation of the service rate of each

node for our model in order to abstract the implementation of the MAC protocols from

the main model. The channel access probability allows us to implement a variety of

MAC models without affecting the calculations of the main model. In this thesis we

only used a simplistic MAC model. The MAC model simply stated that all nodes

within each other’s range have equal probability to transmit. For the most part this

model was sufficient but when we compared results from our model to results from

Bisnik and Abouzeid’s model [3] we observed slight differences. This was due to the

fact that Bisnik and Abouzeid implemented a much more complex MAC model. By

redefining our channel access probability we would however be able to implement a

similar MAC model but the creation and/or improvement of MAC models was not the

focus of this study.
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6.2.4 Focus of this study

In this study we focussed on the creation of an analytical network traffic model for

WMNs. We did not focus on the creation and/or improvement of MAC and routing

protocols. The abstraction of the implementation of the MAC and routing schemes

in our model has allowed us to be able to implement a variety of MAC and routing

schemes without affecting the calculations of the main model. We can conclude from

this that we have accomplished the objective of this study. Our model has created a

good platform to analytically analyse and compare different MAC and routing proto-

cols and our future recommendation is to use our model for this purpose.

6.3 Future Work

6.3.1 Assumptions of the gateways

Wu et al. [28] and Feng et al. [1] made the assumption that traffic is destined for the

gateways. Wu et al. further assumed that because the bandwidth of the wired links

is much greater than the bandwidth of the wireless links, the inter-service times of the

gateways can be constant. Feng et al. made a similar assumption only they assumed

that the buffer of the gateway will be infinite. These assumptions are valid when the

traffic only flows to the gateways. However when traffic flows from the gateways to

the nodes these assumptions are not valid any more since the gateways will now have

to transmit their load over the wireless medium. The assumption of the destination

of all traffic being the gateway was based upon the fact that WMNs are commonly

used as a last mile technology for internet service providers. When it comes to using

the internet, the amount of download traffic is usually much greater then the amount

of upload traffic. This leads to the open question if it is really viable to model the

gateways with increased service rates and/or buffer sizes? Future work can include

using our model to study a suitable way to analytically model the gateways within a
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WMN.

6.3.2 Multiple Traffic Classes

Our model is based upon a Jackson queueing network which is capable of using mul-

tiple traffic classes as long as each traffic class uses the same service rate. If different

traffic classes are used within our model then each traffic class can use its own routing

scheme. Each traffic class is analysed separately and the results are then the sum of the

separate results of each traffic class. This means that our model can be used to model

for instance a network where most of the traffic is destined to the gateways but also has

traffic that is destined for other nodes in the network. Future work that can be done

is to analyse various networks and associated traffic classes using our queueing based

model.
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