Standardizing Quarter Degree Grid data for plant species in the western Central Bushveld for more explicit use in spatial models

Sabine Kurzweg
21334560

Dissertation submitted in the fulfilment of the degree Magister Scientiae in Environmental Sciences at the Potchefstroom campus of the North-West University

Supervisor: Prof. S.J. Siebert
Co-supervisor: Prof. S.S. Cilliers

November 2011
ABSTRACT

South Africa is a megadiverse country, and its biodiversity is endangered by population pressure and the development needs of a developing country. In order to address the rapid decline in biological diversity, biodiversity planning has become a key focus area that aims at identifying priority areas for species and ecosystem conservation within and outside of formally protected areas. Plant conservation hotspots are identified by the quantification of indicator taxa such as plant taxa richness, rarity and endemism. But the urgent and enormous task of biodiversity assessment for conservation planning requires that we make most of what we know. Therefore, this study seeks to make a contribution by finding new ways of biodiversity pattern estimation from the extrapolation of incomplete sets of plant species distribution data at the Quarter Degree Grid level. Incomplete sampling across the grids of a study area results in false records of species absence and thus a biased biodiversity estimation. As a possible solution, plant distribution data for the western Central Bushveld Bioregion has been standardized using two profiles, namely the ‘Centroid Grid’ and ‘Integrated Grid’ profile. The former involves the strengthening of under-sampled grids by extrapolating species occurrences from three adjacent grids with the most similar vegetation units, whereas the latter integrates phyto-diversity data for the four grids intersecting at each grid reference point. Standardized data has proved to provide a means to counter the bias in plant diversity data linked to Quarter Degree Grids by a) strengthening of under-sampled grids and b) visibly smoothing out the gaps between under- and well-sampled grids, which resulted in improved biodiversity estimation for more representative spatial biodiversity modelling. Interpolation created geo-referenced polygons for more explicit use in the identification of areas of conservation concern at bioregional scale. However, well-sampled grids still dominate the outcomes of the analysis by creating spatial sampling bias. Therefore, this approach to calibrate Quarter Degree Grid resolution of spatial data is an additional attempt to achieve more representative mapping of biodiversity patterns, which is a prerequisite for strategic conservation planning for ‘living landscapes’.

Key words: biodiversity; plant species distribution; western Central Bushveld; quarter degree grid data; spatial analysis; conservation hotspots
ACKNOWLEDGEMENTS

I would like to thank all the people and institutions that contributed with their expertise, work and funding to the realisation of this research:

Albie Goetze for coordinating fieldwork and helping with species sampling.

Thoko Magodielo and Phillip Ayres for sampling of additional voucher specimens.

Madeleen Struwig and Marie La Grange for help with the herbarium work.

Marie La Grange and Ricus Lamprecht for sharing their phytosociological data.

Dr. Bobby Westfall from ARC for providing Van der Meulen phytosociological data files.

Beate Hölscher and Lize Van Staden from SANBI for species data enquiries.

My supervisors, Prof. Stefan Siebert and Prof. Sarel Cilliers for their guidance and advice.

Prof. Klaus Kellner for assistance during the Heritage Park project.

The North-West Provincial Government and Impala Platinum for financing this project.
TABLE OF CONTENTS

ABSTRACT ... i

ACKNOWLEDGEMENTS ... ii

LIST OF FIGURES .. vi

LIST OF TABLES .. xiv

CHAPTER 1: INTRODUCTION ... 1
 1.1 Background .. 1
 1.2 Hypotheses ... 5
 1.3 Study approach & design ... 5
 1.4 Aims and objectives .. 6
 1.5 Dissertation outline .. 7

CHAPTER 2: LITERATURE REVIEW ... 9
 2.1 Introduction .. 9
 2.2 What is biodiversity? .. 10
 2.3 Measurement of biodiversity and the use of biodiversity indicators .. 11
 2.3.1 Flagship and umbrella species ... 12
 2.3.2 Indicator species .. 13
 2.4 Biodiversity – threats, values & benefits .. 16
 2.4.1 Importance and value of biodiversity .. 16
 2.4.2 Major threats to biodiversity in South Africa .. 18
 2.4.2.1 Agriculture .. 19
 2.4.2.2 Urbanization .. 20
 2.4.2.3 Mining .. 21
 2.4.2.4 Alien, invader and weed plants .. 22
 2.4.3 Benefits from biodiversity conservation .. 23
 2.5 Historical overview of biodiversity conservation in South Africa ... 25
 2.6 Conservation at the level of Bioregions ... 29
 2.6.1 What is a Bioregion? .. 29
 2.6.2 The value of conservation at bioregional level ... 36
 2.7 Approaches to biodiversity conservation planning and management 39
 2.7.1 Introduction .. 39
 2.7.2 Problem of sampling bias in conservation assessment .. 40
 2.7.3 Tools for area prioritizing for biodiversity conservation ... 42
 2.7.3.1 Biodiversity hotspots ... 42
 2.7.3.2 Complementarity ... 43
 2.7.4 GIS – a powerful tool for spatial modelling of biodiversity .. 44

CHAPTER 3: STUDY AREA .. 47
 3.1 Western Central Bushveld Bioregion ... 47
 3.1.1 Geographic location ... 47
 3.1.2 Physical environment ... 48
3.1.2.1 Topography .. 48
3.1.2.2 Geology .. 51
3.1.2.3 Soils ... 60
3.1.2.4 Climate ... 63
3.1.2.5 Hydrology .. 67
3.1.3 Vegetation and flora ... 69
 3.1.3.1 Physiography of western Central Bushveld Savanna .. 70
 3.1.3.2 Vegetation of the western Central Bushveld Bioregion ... 72
3.2 Specific study areas .. 82
 3.2.1 Heritage Park ... 82
 3.2.2 Impala Bafokeng Mining Complex .. 84

CHAPTER 4: MATERIALS & METHODS ... 87
 4.1 Overview .. 87
 4.2 Defining the western Central Bushveld .. 87
 4.3 Data collection .. 88
 4.4 Data sampling .. 90
 4.4.1 Heritage Park ... 90
 4.4.2 Impala Platinum .. 91
 4.5 Integration of data .. 93
 4.6 Standardization .. 96
 4.7 Data analysis ... 101
 4.7.1 Desktop study ... 101
 4.7.2 Ordination .. 106
 4.7.2.1 Selection of the appropriate ordination method .. 106
 4.7.2.2 Performance of indirect ordination methods for the floristic analysis 108
 4.7.2.3 Principal Component Analysis .. 110
 4.7.2.3 Detrended Correspondence Analysis .. 110
 4.7.3 Spatial analysis ... 112
 4.7.3.1 Interpolation .. 112
 4.7.3.2 Correlation with environmental factors .. 113
 4.7.3.3 Hotspot analysis .. 114

CHAPTER 5: RESULTS .. 115
 5.1 Desktop study .. 115
 5.1.1 Plant taxa richness .. 115
 5.1.2 Floristic Important Taxa .. 117
 5.1.3 Largest genera and families 119
 5.2 Ordination .. 121
 5.2.1 Principal Component Analysis (PCA) 121
 5.2.1.1 Species-level analyses .. 122
 5.2.1.2 Genus-level analyses .. 125
 5.2.1.3 Family-level analyses 128
 5.2.2 Detrended Correspondence Analysis 131
 5.3 Spatial Analysis .. 132
 5.3.1 Interpolation .. 132
 5.4 Correlation of the spatial distribution of plant species richness with environmental and anthropogenic factors .. 143
 5.4.1 Mean annual minimum and maximum temperature 145
 5.4.2 Mean annual rainfall and evaporation 147
 5.4.3 Terrain morphology, geology and soil 149
LIST OF FIGURES

Figure 2.1: Classification of the major categories of values and benefits from biodiversity as presented by Young (1992) (Edwards & Abivardi, 1998). ... 24

Figure 2.2: The Flora of Southern Africa falls within the Afrotropic Realm as defined by Olsen et al. (2001), who classified the world into nine Biogeographic Realms subdivided into 14 terrestrial biomes. Source: Van Vuuren et al. (2006). ... 30

Figure 2.3: Floristic kingdoms after Takhtajan (1986). Source: rbg-web2.rbge.org.uk/nepal/biogeography.html... 31

Figure 2.4: Phytogeographic regions of southern Africa based on White (1978). Source: Goldblatt (1978). .. 32

Figure 2.5: Biomes of South Africa as defined by Mucina and Rutherford (2006). Source: www.plantzafrica.com. ... 33

Figure 3.1: Geographical location of the study area in South Africa within the Central Bushveld Bioregion, Savanna Biome... 47

Figure 3.2: Topography of the western Central Bushveld Bioregion reflecting elevation and relief. Source: AGISMap Atlas, http://www.agis.agric.za (Retrieved: 15.09.2010). 48

Figure 3.3: Terrain morphology of the western Central Bushveld. Source: AGISMap Atlas, http://www.agis.agric.za (Retrieved: 15.09.2010). ... 50

Figure 3.4: The Kaapvaal Craton and the associated geological sequences. Source: Groves (2003). ... 52

Figure 3.5: Geological map showing the rock types of the western Central Bushveld. 54

Figure 3.6: Geology of the Bushveld Igneous Complex and its rocks. Source: Barnes & Maier (2002). ... 57

Figure 3.7: Zonation of the Rustenburg Layered Suite and associated Bushveld Granites and Granophyres which together form the Bushveld Igneous Complex. Source: Naldrett et al. (2008). ... 58

Figure 3.8: Broad soil patterns of the western Central Bushveld. Source: AGISMap Atlas, http://www.agis.agric.za (Retrieved: 15.09.2010). ... 62

Figure 3.9: Mean maximum and minimum temperature for the summer season experienced by the western Central Bushveld. Source: AGISMap Atlas, http://www.agis.agric.za (Retrieved: 15.09.2010)... 62
Figure 3.10: Mean maximum and minimum temperature for the winter season experienced by the western Central Bushveld. Source: AGISMap Atlas, http://www.agis.agric.za (Retrieved: 15.09.2010) ...63

Figure 3.11: Mean annual rainfall for the western Central Bushveld. Source: AGISMap Atlas, http://www.agis.agric.za (Retrieved: 21.09.2010) ..65

Figure 3.12: Crocodile River sub-basin. Source: www.limpopopark.com (Retrieved: 17.08.2010) ..67

Figure 3.13: Marico River sub-basin. Source: www.limpopopark.com (Retrieved: 17.08.2010) ..68

Figure 3.14: Notwane River sub-basin. Source: www.limpopopark.com (Retrieved: 17.08.2010) ..68

Figure 3.15: Vegetation of the western Central Bushveld as classified by Mucina & Rutherford (2006) ..73

Figure 3.16: Geographical outline and location of proposed Heritage Park in North-West Province South Africa. Source: www.heritage-park.co.za ..83

Figure 3.17: The Impala Platinum Bafokeng Mining Complex located between Pilanesberg Game Reserve and Magaliesberg Nature Area shows four dominant vegetation types.85

Figure 4.1: Schema displaying the 50 Quarter Degree Grids of the western Central Bushveld Bioregion with their present sampling status according to the PRECIS database88

Figure 4.2: Location of the sampling sites in the central part of the extension area for the proposed Heritage Park ..91

Figure 4.3: Location of the sampling sites throughout the mining lease area of Impala Platinum ...92

Figure 4.4: Example of using the Excel ‘IF’ formula to convert the two-way matrix of combined species lists into a data matrix where plant species occurrences are recorded as presence-absence data for the 50 Quarter Degree Grids ..93

Figure 4.5: Data matrix that displays recorded western Central Bushveld plant species at infra-specific level as presence-absence data for the 50 Quarter Degree Grids94

Figure 4.6: ‘Text to Column’ tool used to remove infra-specific and species epithets for designing the species and genus data matrix..94

Figure 4.7: Species data matrix ...95

Figure 4.8: Genus data matrix ...95

Figure 4.9: Family data matrix ..96
Figure 4.10: Exemplifying how the ‘Centroid Grid’ profile combines the species data of a target grid (green) with the species data of three adjacent grids (blue) that display the most similar vegetation composition. ... 97

Figure 4.11: Exemplifying how the ‘Integrated Grid’ profile combines the species data of the four grids (blue) at each reference point within the study area. ... 97

Figure 4.12: Vegetation map used to identify the grids with the most similar vegetation classification. .. 98

Figure 4.13: Standardized species data derived from the ‘Centroid Grid’ profile 99

Figure 4.14: Standardized species data matrix derived from the ‘Centroid Grid’ profile with a calculation example for Abildgaardia ovata for the QDG 2425BD from the plant taxa information of grid reference point 51 in the ‘Species’ spreadsheet......................100

Figure 4.15: Standardized species data derived from the ‘Integrated Grid’ profile 100

Figure 4.16: Standardized species data matrix derived from the ‘Integrated Grid’ profile with a calculation example for Abildgaardia ovata for the QDG 2426AD from the plant taxa information of grid reference point 58 and 59 in the ‘Species’ spreadsheet101

Figure 4.17: Analysis of the western Central Bushveld database for Important Plant Taxa. 102

Figure 4.18: Example of data matrix for western Central Bushveld endemic species 103

Figure 4.19: Example of data matrix for western Central Bushveld endemics occurring in the Heritage Park ... 103

Figure 4.20: Example of endemics data matrix for Impala Bafokeng Mining Complex......103

Figure 4.21: Example of species database for the Heritage Park study area extracted from the original WCB data matrix. ... 104

Figure 4.22: Final Heritage Park species data matrix .. 104

Figure 4.23: Calculation of the 10 largest genera for the Heritage Park using the Excel tools ‘Text to Columns’ (1), ‘Delete Duplicates’ (2) and the ‘COUNTA’ function (3). 105

Figure 4.24: The Gaussian curve illustrates the unimodal relationship between a species (y) and an environmental variable (x) using the quadratic function log y = a – 0.5 (x – u)^2/t^2, where u = optimum, t = tolerance and c = maximum. Source: Ter Braak & Prentice (1988). ... 107

Figure 4.25: Performance of the indirect ordination methods PCA and DCA for explaining the variance of the floristic data from species to family level .. 111

Figure 5.1: Log (taxa) - log (area) relationship for Impala Platinum (IP), Heritage Park (HP) and the western Central Bushveld (WCB). .. 116
Figure 5.2: The number of floristically Important Taxa recorded for the western Central Bushveld

Figure 5.3: a) The number of floristically Important Taxa recorded for the Heritage Park compared to those occurring in the western Central Bushveld (%), b) and their percentage of the total Heritage Park flora

Figure 5.4: a) The number of floristically Important Taxa recorded for the Impala Platinum Lease Area compared to those occurring in the western Central Bushveld (%), b) and their percentage of the total Impala flora

Figure 5.5: The 10 largest genera of the western Central Bushveld flora

Figure 5.7: The 10 largest genera of the Heritage Park flora

Figure 5.9: The 10 largest genera of the Impala Platinum flora

Figure 5.6: The 10 largest families of the western Central Bushveld flora

Figure 5.8: The 10 largest families of the Heritage Park flora

Figure 5.10: The 10 largest families found in the western Central Bushveld Bioregion

Figure 5.11: PCA ordination of unstandardized species data. The cumulative variance explained by the 1st and 2nd ordination axis amounts to 30.1%.

Figure 5.12: Floristic spatial pattern for unstandardized species data portrayed by the PCA groupings

Figure 5.13: PCA ordination of standardized species data (‘Centroid Grid’ Profile). The cumulative variance explained by the 1st and 2nd ordination axis amounts to 43.3%.

Figure 5.14: Floristic spatial pattern for standardized species data (‘Centroid Grid’ Profile) portrayed by the PCA groupings

Figure 5.15: PCA ordination of standardized species data (‘Integrated Grid’ Profile). The cumulative variance explained by the 1st and 2nd ordination axis amounts to 49.5%.

Figure 5.16: Floristic spatial pattern for standardized species data (‘Integrated Grid’ Profile) portrayed by the PCA groupings

Figure 5.17: PCA ordination of unstandardized genus data. The cumulative variance explained by the 1st and 2nd ordination axis amounts to 39.7%.

Figure 5.18: Floristic spatial pattern for unstandardized genus data portrayed by the PCA groupings

Figure 5.19: PCA ordination of standardized genus data (‘Centroid Grid’ Profile). The cumulative variance explained by the 1st and 2nd ordination axis amounts to 53.0%.
Figure 5.20: Floristic spatial pattern for standardized genus data (‘Centroid Grid’ Profile) portrayed by the PCA groupings.

Figure 5.21: PCA ordination of standardized genus data (‘Integrated Grid’ Profile). The cumulative variance explained by the 1st and 2nd ordination axis amounts to 57.5%.

Figure 5.22: Floristic spatial pattern for standardized genus data (‘Integrated Grid’ Profile) portrayed by the PCA groupings.

Figure 5.23: PCA ordination of unstandardized family data. The cumulative variance explained by the 1st and 2nd ordination axis amounts to 54.5%.

Figure 5.24: Floristic spatial pattern for unstandardized family data portrayed by the PCA groupings.

Figure 5.25: PCA ordination of standardized family data (‘Centroid Grid’ Profile). The cumulative variance explained by the 1st and 2nd ordination axis amounts to 62.2%.

Figure 5.26: Floristic spatial pattern for standardized family data (‘Centroid Grid’ Profile) portrayed by the PCA groupings.

Figure 5.27: PCA ordination of standardized family data (‘Integrated Grid’ Profile). The cumulative variance explained by the 1st and 2nd ordination axis amounts to 64.4%.

Figure 5.28: Floristic spatial pattern for standardized family data (‘Integrated Grid’ Profile) portrayed by the PCA groupings.

Figure 5.29: DCA ordination of unstandardized species data. Cumulative variance = 8.8%.

Figure 5.30: DCA ordination of unstandardized genus data. Cumulative variance = 11.4%.

Figure 5.31: DCA ordination of unstandardized family data. Cumulative variance = 17.3%.

Figure 5.32: DCA ordination of standardized species data (‘Centroid Grid’ Profile). Cumulative variance = 19.7%.

Figure 5.35: DCA ordination of standardized species data (‘Integrated Grid’ Profile). Cumulative variance = 27.6%.

Figure 5.33: DCA ordination of standardized genus data (‘Centroid Grid’ Profile). Cumulative variance = 23.6%.

Figure 5.36: DCA ordination of standardized genus data (‘Integrated Grid’ Profile). Cumulative variance = 32.1%.

Figure 5.34: DCA ordination of standardized family data (‘Centroid Grid’ Profile). Cumulative variance = 30.4%.
Figure 5.37: DCA ordination of standardized genus data (‘Integrated Grid’ Profile). Cumulative variance = 40.7%.

Figure 5.38: Interpolation maps for the richness of plant species on intraspecific taxonomic level in the western Central Bushveld.

Figure 5.39: Interpolation maps for the richness of plant species in the western Central Bushveld.

Figure 5.40: Interpolation maps for the richness of plant genera in the western Central Bushveld.

Figure 5.41: Interpolation maps for the richness of plant families in the western Central Bushveld.

Figure 5.42: Interpolation maps for the richness of endemic plant species in the western Central Bushveld.

Figure 5.43: Interpolation maps for the richness of Red Data plant species in the western Central Bushveld.

Figure 5.44: Interpolation maps for the richness of Protected Tree species in the western Central Bushveld.

Figure 5.45: Interpolation maps for the richness of Useful Plant species in the western Central Bushveld.

Figure 5.46: Interpolation maps for the richness of Problem Plant species in the western Central Bushveld.

Figure 5.47: Interpolation maps for the richness of Bushencroachment Indicator species in the western Central Bushveld.

Figure 5.48: The mean number of plant species (unstandardized) occurring across the annual minimum temperature gradient.

Figure 5.49: The mean number of plant species (unstandardized) occurring across the annual maximum temperature gradient.

Figure 5.50: The mean number of plant species (unstandardized) occurring across the mean annual rainfall gradient.

Figure 5.51: The mean number of plant species (unstandardized) occurring across the evaporation gradient.

Figure 5.52: The mean number of plant species (unstandardized) occurring across the terrain morphology gradient in the western Central Bushveld.

Figure 5.53: The mean number of plant species (unstandardized) occurring across the geological gradient in the western Central Bushveld.
Figure 5.54: The mean number of plant species (unstandardized) occurring across the soil gradient in the western Central Bushveld... 152

Figure 5.55: Landuse pattern in the western Central Bushveld Bioregion. 154

Figure 5.56: Landcover of the western Central Bushveld Bioregion................................. 154
Figure 5.57: Land-use pattern and arable areas in the western Central Bushveld. 159

Figure 5.58: Land-use pattern and areas unsuitable for arable agriculture in the western Central Bushveld. ... 159

Figure 7.1: Conservation hotspots with outstanding plant species richness which is subject to a substantial present and future threat as a result of land-use change.. 190

Figure 7.2: Conservation hotspots of threatened species (Endemics, Red Data and Protected Trees) endangered through present and future land-use change.. 191

Figure 7.3: Conservation hotspots of useful plants with a great social, cultural and medical value that are threatened through present and future land-use change................................. 191
LIST OF TABLES

Table 3.2: The broad veld types identified for the western Central Bushveld in order of significance. Source: Cole (1996), Low & Rebelo (1996) and Van der Meulen (1979). 69

Table 3.3: Percentage of Platinum Group Metals contained within the Merensky and UG2 reef. Source: Impala Platinum (2010). ... 85

Table 4.1: ‘Centroid Grid’ integration rules used for the standardization of the western Central Bushveld plant taxa. ... 98

Table 4.2: Gradient length obtained from DCA ordination in units of standard deviation (SD) ... 109

Table 5.1: The plant taxa richness of the western Central Bushveld (WCB) and the two specific study areas Heritage Park and Impala Platinum in comparison to the Flora of Southern Africa (FSA) region. ... 115

Table 5.2: Zonal statistics for the correlation between annual minimum temperature and the richness of plant species (unstandardized). ... 145

Table 5.3: Zonal statistics for the correlation between annual maximum temperature and the richness of plant species (unstandardized). ... 145

Table 5.4: Zonal statistics for the correlation between annual minimum temperature and the richness of endemic plant species (unstandardized). ... 146

Table 5.5: Zonal statistics for the correlation between annual minimum temperature and the richness of Red Data plant species (unstandardized). ... 146

Table 5.6: Zonal statistics for the correlation between annual minimum temperature and the richness of Protected Tree species (unstandardized). ... 146

Table 5.7: Zonal statistics for the correlation between annual maximum temperature and the richness of endemic plant species (unstandardized). ... 146

Table 5.8: Zonal statistics for the correlation between annual maximum temperature and the richness of Red Data plant species (unstandardized). ... 146

Table 5.9: Zonal statistics for the correlation between annual maximum temperature and the richness of Protected Tree species (unstandardized). ... 146
Table 5.10: Zonal statistics for the correlation between mean annual rainfall and the richness of plant species (unstandardized).	147
Table 5.11: Zonal statistics for the correlation between evaporation and the richness of plant species (unstandardized).	147
Table 5.12: Zonal statistics for the correlation between mean annual rainfall and the richness of endemic plant species (unstandardized).	148
Table 5.13: Zonal statistics for the correlation between mean annual rainfall and the richness of Red Data plant species (unstandardized).	148
Table 5.14: Zonal statistics for the correlation between mean annual rainfall and the richness of Protected Tree species (unstandardized).	148
Table 5.15: Zonal statistics for the correlation between evaporation and the richness of endemic plant species (unstandardized).	148
Table 5.16: Zonal statistics for the correlation between evaporation and the richness of Red Data plant species (unstandardized).	148
Table 5.17: Zonal statistics for the correlation between evaporation and the richness of Protected Tree species (unstandardized).	148
Table 5.18: Zonal statistics for the relationship between terrain morphology and richness of plant species (unstandardized).	149
Table 5.19: Zonal statistics for the relationship between terrain morphology and the richness of endemic plant species (unstandardized).	149
Table 5.20: Zonal statistics for the relationship between terrain morphology and the richness of Red Data plant species (unstandardized).	149
Table 5.21: Zonal statistics for the relationship between geology and the richness of plant species (unstandardized).	150
Table 5.22: Zonal statistics for the relationship between geology and the richness of endemic plant species (unstandardized).	151
Table 5.23: Zonal statistics for the relationship between geology and the richness of Red Data plant species (unstandardized).	151
Table 5.24: Zonal statistics for the relationship between soil type and the richness of plant species (unstandardized).	152
Table 5.25: Zonal statistics for the relationship between soil type and the richness of endemic plant species (unstandardized).	153
Table 5.26: Zonal statistics for the relationship between soil type and the richness of Red Data plant species (unstandardized).	153
Table 5.27: Zonal statistics for the correlation between landuse and the richness of plant species (unstandardized).. 155

Table 5.28: Zonal statistics for the correlation between landcover and the richness of plant species (unstandardized).. 155

Table 5.29: Zonal statistics for the correlation between landuse and the richness of endemic plant species (unstandardized).. 155

Table 5.30: Zonal statistics for the correlation between landcover and the richness of endemic plant species (unstandardized).. 155

Table 5.31: Zonal statistics for the correlation between landuse and the richness of Red Data plant species (unstandardized).. 156

Table 5.32: Zonal statistics for the correlation between landcover and the richness of Red Data plant species (unstandardized).. 156

Table 5.33: Zonal statistics for the correlation between landuse and the richness of Protected Tree species (unstandardized).. 156

Table 5.34: Zonal statistics for the correlation between landcover and the richness of Protected Tree species (unstandardized).. 156

Table 5.35: Zonal statistics for the correlation between landuse and the richness of Problem Plant species (unstandardized).. 157

Table 5.36: Zonal statistics for the correlation between landcover and the richness of Problem Plant species (unstandardized).. 157

Table 5.37: Zonal statistics for the correlation between landuse and the richness of Bushencroachment Indicator species (unstandardized).. 157

Table 5.38: Zonal statistics for the correlation between landcover and the richness of Bushencroachment Indicators species (unstandardized).. 157

Table 5.39: Zonal statistics for the correlation between landuse and the richness of Useful Plant species (unstandardized).. 158

Table 5.40: Zonal statistics for the correlation between landcover and the richness of Useful Plant species (unstandardized).. 158

Table 5.41: Zonal statistics for the correlation between soil potential and richness of plant species (unstandardized).. 159

Table 6.1: The 20 largest families of the western Central Bushveld compared to the top 30 families of the Flora of southern Africa as defined by Gibbs Russell (1985). Source: Cowling & Hilton-Taylor (1994).. 166

Table 6.2: The 10 largest genera of the western Central Bushveld relative to the largest genera of the Flora of southern Africa (Goldblatt, 1978; Gibbs Russell, 1985, 1987). Source: Cowling & Hilton-Taylor (1997).. 166
Table 6.3: The 10 largest genera occurring in the western Central Bushveld (WCB)........... 166

Table 6.4: Plant genera endemic to southern Africa which are found in the western Central Bushveld flora (Goldblatt, 1978). ... 167

Table 6.5: Predicted endemics for the western Central Bushveld flora and their geographical range, with actually recorded species highlighted with an asterisk (*).................................. 168

Table 6.6: Red Data species of the western Central Bushveld flora sorted according to the IUCN threat categories (EN = endangered, VU = vulnerable, NT = near threatened, DDT = data deficient – taxonomically problematic). Source: SANBI (2009). .. 170

Table 6.7: Protected tree species of the western Central Bushveld flora (IUCN categories: LC = Least Concern, NT = Near Threatened, VU = Vulnerable). Source: DWAF (2011). 172

Table 6.8: The percentage of transformation calculated for the natural vegetation cover classes in the western Central Bushveld.. 179

Table 6.9: Floristic groupings of species data standardized with the ‘Centroid Grid’ Profile correlated with the underlying vegetational and physical environmental gradients. 183

Table 6.10: Increase of beta-diversity through standardization measured as cumulative variance in ordination space... 186

Table 7.1: The plant taxa richness of the Heritage Park compared to the phyto-diversity of the North-West Province (NW), the western Central Bushveld (WCB) and the Flora of Southern Africa (FSA) region. .. 192

Table 7.2: The number and percentage of floristically important plant taxa found in the Heritage Park compared to the western Central Bushveld... 193

Table 7.3: Declared weed and invader species in the Heritage Park quarter degree grids according to the Conservation of Agricultural Resources Act, 1983 (Act 43 of 1983) (Henderson, 2001). .. 194

Table 7.4: The plant taxa richness of the Impala Platinum in context of higher level floras in which the study area is located: the Flora of Southern Africa (FSA), the western Central Bushveld (WCB) and the North-West (NW) Province... 195

Table 7.5: The number and percentage of floristically important plant taxa found in the Impala Platinum mining area compared to the western Central Bushveld (WCB).................. 196