Behavioural, neurochemical, inflammatory and mitochondrial markers following social isolation rearing in rats before and after selected drug intervention

MARISA MÖLLER
21247250
(M.Sc. Pharmacology)

Thesis submitted in partial fulfilment of the requirements for the degree

Philosophae Doctor

in

PHARMACOLOGY

at the

NORTH-WEST UNIVERSITY (POTCHEFSTROOM CAMPUS)

SUPERVISOR: PROF. B.H. HARVEY
ASSISTANT SUPERVISOR: PROF. J.L. du PREEZ

POTCHEFSTROOM

2012
Fil 4:13
“Ek is tot alles instaat deur Hom wat my krag gee.”

Phil 4:13
“I can do everything through Him who gives me strength.”
Abstract

Purpose:

Schizophrenia is a progressive degenerative illness that has been causally linked to mitochondrial dysfunction, oxidative stress and a pro-inflammatory state. Social isolation rearing (SIR) in rats models the neurodevelopmental aspects of schizophrenia. The antioxidant and glutamate modulator, N-acetyl cysteine (NAC), has demonstrated therapeutic potential in schizophrenia as adjunctive treatment, although this has not been tested in the SIR model. The purpose of this study was to assess whether SIR induces changes in mitochondrial function (adenosine triphosphate (ATP)), pro- vs. anti-inflammatory cytokine balance, tryptophan metabolism, a disturbance in cortico-striatal monoamines and related metabolites, and associated alterations in behaviors akin to schizophrenia, viz. social interaction, object recognition memory and prepulse inhibition (PPI). Moreover, I evaluated whether these bio-behavioral alterations could be reversed with sub-chronic clozapine, or NAC, and whether NAC may bolster the response to clozapine treatment.

Methods:

The objectives of the study were pursued through separately conducted studies. Male Sprague-Dawley (SD) rats (10 rats/group) were used in this study (Ethics number: NWU-0035-08-S5). Rats were randomly allocated to either social rearing or SIR for 8 weeks receiving either no treatment, vehicle, NAC (150 mg/kg/day), clozapine (5 mg/kg/day) or a combination of clozapine + NAC (CLZ + NAC) during the last 11 or 14 days of social rearing or SIR. After the 8 weeks, rats were tested for social interactive behaviors, object recognition memory and prepulse inhibition (PPI). Peripheral tryptophan metabolites (determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS)) and pro- and anti-inflammatory cytokines (IL-4, IL-6, TNF-α, IFN-γ) (enzyme-linked immunosorbent assay (ELISA)) were determined. Cortico-striatal ATP (bioluminescence assay) and monoamines (high performance liquid chromatography (HPLC)) were also determined.

Results:

SIR-induced significant deficits in social interactive behaviours, object recognition memory and PPI, associated with increased peripheral kynurenine, quinolinic acid (QA), and pro-inflammatory cytokines, as well as a decrease in kynurenic acid (KYNA), neuroprotective ratio and anti-inflammatory cytokines. I also observed an increase in striatal, but reduced frontal cortical ATP, dopamine, serotonin as well as their metabolites and noradrenaline’s metabolite, with noradrenaline increased in both brain regions in SIR rats. A separate dose-response study of NAC
Abstract

(50, 150, 250 mg/kg/day) found 150 mg/kg to be the most appropriate dose for the NAC and CLZ + NAC studies. Clozapine, NAC as well as CLZ + NAC reversed all these changes, with NAC being less effective than CLZ alone. CLZ + NAC was found to be more effective than clozapine alone in reversing certain bio-behavioral alterations induced by SIR. In addition NAC alone dose dependently reversed most of the SIR induced alterations.

Conclusion:

SIR induces behavioral alterations, a pro-inflammatory state, mitochondrial dysfunction and cortico-striatal monoamine alterations, closely resembling evidence in schizophrenia. Importantly, all these bio-behavioral alterations were reversed with clozapine, NAC and CLZ + NAC treatment. However, CLZ + NAC was more effective than clozapine alone in reversing some bio-behavioral alterations, supporting the therapeutic application of NAC as adjunctive treatment in schizophrenia. In addition, NAC dose dependently reversed SIR-induced cortico-striatal serotonin, noradrenaline and metabolites, emphasizing NAC’s potential use in other anxiety and stress-related disorders.

Keywords: Social isolation, schizophrenia, N-acetyl cysteine, clozapine, social interaction, object recognition, prepulse inhibition, pro-inflammatory state, neuroprotective ratio, LC-MS/MS.
Opsomming

Doel:

Skisofrenie is ’n progressiewe degeneratiewe siekte, wat moontlik veroorsaak word deur mitochondriale disfunksie, oksidatiewe stres en ’n pro-inflammatoriese toestand. ’n Model wat die senuwee-ontwikkelingsaspekte van skisofrenie naboots, is sosiale isolasie-geinduseerde stres (SSI) by rotte. N-asetielsisteien (NAC) het terapeutiese potensiaal in die behandeling van skisofrenie, maar dis nog nooit in ’n senuwee-ontwikkelingsdieremodel van skisofrenie getoets nie. Die doel van die studie was dus om vas te stel of SSI die volgende faktore kan beinvloed, nl. mitochondriale funksie (adenosientrifosfaat (ATF)), die balans tussen pro- en anti-inflammatoriese sitokiene, triptofaan metabolisme, frontale kortiko-striatale monoamiene en verwante metaboliete; asook gedragsveranderinge eie aan skisofrenie soos sosiale interaksie, voorwerpherkenning en prepuls inhibisie. Ek het ook die effek van sub-kroniese behandeling met klosapien en NAC, sowel as die moontlikeheid dat NAC die effek van klosapien moontlik kan versterk, m.b.v al bogenoemde parameters ondersoek.

Metodes:

Verskillende studies het afsonderlik bygedra ten einde die doelwitte van die projek te bereik. Manlike Sprague-Dawley (SD) rotte is gebruik (10 rotte / groep) (Etiek nommer: NWU-0035-08-S5) en is met spening onwillekeurig verdeel in ’n groep wat vir 8 weke blootgestel is aan SSI of groeps-(sosiale) behuising. Tydens die laaste 11 of 14 dae is hulle behandeld met een van die volgende regimens, soutoplossing, NAC (150 mg/kg/dag), klosapien (5 mg/kg/dag) of ’n kombinasie van NAC + klosapien (CLZ + NAC). Na afloop van die 8 weke, is die rotte onderwerp aan die volgende gedragstoetse: sosiale interaksie, voorwerpherkenning en prepuls inhibitie (PPI). Perifere triptofaan metaboliete (deur middel van vloeistofchromatografie-tandem massa-spektrometrie (LC-MS/MS) metode), pro- en anti-inflammatoriese sitokiene (IL-4, IL-6, TNF-α, IFN-γ) (m.b.v ensiem gekoppelde immuun metode (ELISA)), sowel as kortiko-striatale adenosientrifosfaat (ATF) (bioluminessensie metode) en monoamiene (hoë-doeltreffendheid vloeistofchromatografie (HDVC) metode) is bepaal.
Resultate:

SSI het betekenisvolle veranderinge in sosiale interaksie, voorwerpherkenning en PPI veroorsaak in samehang met verhoogde kynurenien, quinoliensuur (QS), pro-inflammatoriese sitokiene en verlaagde kynuriensuur (KS), neuro-beskermende balans en anti-inflammatoriese sitokiene. ATF, dopamien, serotonin, sowel as hulle metaboliete en noradrenalien se metaboliet was onderskeidelik laag in die frontale korteks, maar verhoog in die striatum, met verhoogde noradrenalien in beide die breinareas van SSI rotte. 'n Aparte dosis-respons studie met NAC (50, 150, 250 mg/kg/dag) het aangedui dat 150 mg/kg die optimale dosis is om vir die NAC en CLZ + NAC behandeling te gebruik. Behandeling met klosapien, NAC sowel as CLZ + NAC het al die bogenoemde neurochemiese en gedragsveranderinge omgekeer, terwyl die CLZ + NAC kombinasie meer effektief was as klosapien alleen om van die genoemde veranderinge om te keer. NAC alleen was in staat om op 'n dosis-afhanklike wyse die meeste SSI-geinduseerde veranderinge om te keer.

Gevolgtrekking:

SSI induseer gedragsveranderinge, 'n pro-inflammatoriese toestand, mitochondriale disfunksie en kortiko-striatale monoamienveranderinge wat in noue ooreenstemming is met bevindings in skisofrenie. Van belang is dat al die bogenoemde bio-gedragsveranderer in omgekeer kon word met sub-chroniese klosapien-, NAC- sowel as met CLZ + NAC behandeling. CLZ + NAC in kombinasie was egter meer effektief as klosapien alleen om van die bio-gedragsveranderinge om te keer, 'n bevinding wat die terapeutiese potensiaal van NAC as addisionele middel by die behandeling van skisofrenie ondersteun. Die feit dat NAC ook SIS-geinduseerde veranderinge in kortiko-striatale serotonin, noradrenalien en metabolieter omgekeer het, beklemtoon die moontlike terapeutiese potensiaal daarvan ook in ander angs en strenverwante siektetoestande.

Sleutelwoorde: Sosiale isolasie, skisofrenie, N-asetielsisteien, klosapien, sosiale interaksie, voorwerpherkenning, prepuls inhibisie, pro-inflammatoriese toestand, neurobeskeremende balans, LC-MS/MS.
Awards obtained

- YOUNG SCIENTIST BEST POSTER AWARD IN BASIC PHARMACOLOGY at the International Conference on Pharmaceutical and Pharmacological Sciences (ICPPS), South Africa, KZN, Durban. (25 - 27 September 2011).

- WHITEHEAD SCIENTIFIC INTERNATIONAL TRAVEL AWARD for best postgraduate proposal to be presented at an international congress (April 2012).

- BEST PUBLICATION IN PHARMACOLOGY at the Pharmaceutical Society of South Africa (PSSA) congress, South Africa, Western Cape, Grahamstown, (12 - 15 September 2012)

The results obtained in this study were presented at four national congresses (podium presentations and one poster presentation) as well as two international congresses (poster presentations).

I wish to express my sincere appreciation to the following people:

- **Prof Brian H. Harvey**, my study promoter, for his outstanding guidance, advice, persistence, excellent suggestions and expert opinion throughout my study. I will always be grateful for the exceptional foundation prof laid for me in any future research.

- **Prof Jan L. Du Preez**, my study co-promoter and head of the Analytical Technology Laboratory, for his assistance in every analytical experiment I did, his specialist advice and outstanding analytical knowledge. Without prof’s guidance this study would not have been possible.

- **Mrs. Antoinette Fick and Mr. Cor Bester**, the personnel of the Animal Research Centre at North-West University, for their time, direction and support with my animal studies.

- **Jannes Wolmarans**, my husband and better half, for all his enduring love, encouragement, constant patience and assistance, thank you for being my best friend at all times, till the end of time, plus one day!

- **My exceptional Mother and Father**, for sculpting me into the person I’m today, for their continuous love, prayers, belief in me, invariable motivation and support throughout any obstacle.

- **All my fellow postgraduate students**, for your loyal friendship, laughs, encouragement and memorable, learning experiences (especially **Riaan Reay** with who I shared an office for 5 years).

- **To the National Research Foundation, DAAD**, for funding.

- **Above all, to God**, for His eternal blessings, and for giving me the strength, insight and intellect to complete this work.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Opsomming</td>
<td>iii</td>
</tr>
<tr>
<td>Awards obtained</td>
<td>v</td>
</tr>
<tr>
<td>Congress Proceedings</td>
<td>vi</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>viii</td>
</tr>
</tbody>
</table>

Chapter 1: Introduction

1. Thesis layout ... 1
2. Problem statement .. 2
3. Study hypothesis and aims .. 6
4. Study layout .. 8
 4.1 Article 1 ... 8
 4.2 Article 2 ... 9
 4.3 Article 3 ... 9
 4.4 Article 4 ... 10

Chapter 2: Literature review

1. Introduction: *Schizophrenia* ... 14
2. Symptoms and clinical description 15
 2.1 Positive symptoms .. 16
 2.2 Negative symptoms .. 17
 2.3 Cognitive symptoms .. 18
 2.4 Affective symptoms ... 18
3. Diagnosis .. 18
4. Epidemiology and aetiology .. 19
5. Pathophysiology .. 20
 5.1 Neuroanatomy ... 20
Table of Contents

Chapter 7: Final Discussion.. 153

1. Introduction... 153
2. Summary of results.. 155
3. Novel findings and conclusion... 156
4. Recommendations for future studies... 159

Addendum A: Additional Methodology and Results... 161

Addendum B: Toua et al., 2010 .. 184

Addendum C: Möller et al., 2011 ... 193

References.. 207