Amorphism and polymorphism
of azithromycin

ROELF WILLEM ODENDAAL
(M.Sc, B. PHARM.)

Thesis submitted in fulfilment of the requirements for the degree

Philosophiae Doctor (PHARMACEUTICS)

at the

POTCHEFSTROOM CAMPUS OF THE NORTH-WEST UNIVERSITY

Supervisor: Prof. W. Liebenberg
Co-supervisor: Dr. M.E. Aucamp
2 KOR. 12:9

“My genade is vir jou genoeg. My krag kom juis tot volle werking wanneer jy swak is.”
Dedicated to my Heavenly Father

AND

my parents, W.T. and Antoinette Odendaal

AND

my late grandparents,

Roelf & Petronella Odendaal

Hans & Lea van Dyk
I would like to express my deepest and greatest appreciation to my Heavenly Father. This honour came to me by the grace of God. His mercy, love and presence were, and will always be, the foundation of my work, life, and all the success I achieve.

My parents, W.T. and Antoinette Odendaal. No words can describe the moral and emotional support that you gave me. I know that things got tough at times and that I wasn’t the easiest to cope with, but you were the ones who continued to motivate me and you made me realise the true value of moral support.

My sister and brother-in-law, Antonelle and J-P Combrink. Your support is much appreciated.

My uncle and aunt, Carl and Annelie Wilms. Thank you for always taking an interest in my work and project; and for all the encouragement and prayers.

My supervisor, Prof. W. Liebenberg. All the advice, support and encouragement were of great value to me.

My co-supervisor, Dr. M.E. Aucamp. Thank you for your assistance and time in making this project a success.

A special thanks to Prof. Jeanetta du Plessis. I am very grateful for your endless support and your “open-door” policy throughout the three years of this study. You always believed in me and always had the right words to encourage me.

To Prof. J.C. Wessels. Thank you for all the endless support and your willingness to always be there as a colleague and friend.

To DM Kisch Inc., Rudi van der Walt and Johann Coetzee. Thank you for your effort and assistance during the PCT application process and every step of the way since then. It is much appreciated.

To Belinda Venter. Thank you for your help in analysing samples on the XRPD for this study.
To Dr. L. Tiedt. Thank you for your insightful eye in taking great SEM photos during this study.

To Dr. Jan Steenekamp. Thank you for the guidance during the formulation process and helping me to formulate tablets.

To Prof. J.H. Hamman. Thank you for your guidance and assistance during the permeability study.

To my Ermelo Hospital Pharmacy family. All your prayers can never be described in real value. Thank you so much for your support and motivation.

To all my family and other friends. Thank you for the support and inspiration that you gave me. You made a big difference in helping me achieve this tremendous honour.

To the NRF. Thank you for the financial and research support throughout the three years.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE OF CONTENTS</td>
<td>i</td>
</tr>
<tr>
<td>LIST OF TABLES AND FIGURES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF EQUATIONS</td>
<td>xxiv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xxvi</td>
</tr>
<tr>
<td>UITTREKSEL</td>
<td>xxvii</td>
</tr>
<tr>
<td>STUDY OBJECTIVES</td>
<td>xxx</td>
</tr>
</tbody>
</table>

CHAPTER 1: SOLID STATE OF PHARMACEUTICAL COMPOUNDS

1.1 Introduction...1
1.2 Polymorphism...1
 1.2.1 Defining polymorphism ..1
 1.2.2 Importance of polymorphism...2
1.3 Solid state..3
 1.3.1 Classification of solid forms ...4
1.4 Crystalline solid..5
 1.4.1 Polymorphs..6
 1.4.2 Solvates..7
 1.4.2.1 Method for preparing solvates ...7
 1.4.3 Hydrates...8
 1.4.3.1 Classification of hydrates based on their crystal structure ...8
 1.4.3.2 Conditions for hydrate formation10
 1.4.3.3 Method for preparing hydrates ..10
CHAPTER 2: SOLID STATE CHARACTERISATION

2.1 Introduction ...31
2.2 Materials ...31
2.3 Methods for solid state characterisation32
 2.3.1 Infrared spectroscopy (IR) ..32
 2.3.1.1 Fourier transform infrared spectroscopy (FTIR)33
 2.3.1.2 Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) ...33
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.2</td>
<td>X-ray powder diffraction (XRPD)</td>
<td>34</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Thermal methods</td>
<td>36</td>
</tr>
<tr>
<td>2.3.3.1</td>
<td>Differential scanning calorimetry (DSC)</td>
<td>37</td>
</tr>
<tr>
<td>2.3.3.2</td>
<td>Thermogravimetric analysis (TGA)</td>
<td>38</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Microscopy</td>
<td>38</td>
</tr>
<tr>
<td>2.3.4.1</td>
<td>Hot stage microscopy (HSM)</td>
<td>39</td>
</tr>
<tr>
<td>2.3.4.2</td>
<td>Scanning electron microscopy (SEM)</td>
<td>40</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Microcalorimetry</td>
<td>41</td>
</tr>
<tr>
<td>2.3.6</td>
<td>Moisture sorption analysis</td>
<td>42</td>
</tr>
<tr>
<td>2.3.7</td>
<td>Karl Fischer titration (KFT)</td>
<td>43</td>
</tr>
<tr>
<td>2.3.7.1</td>
<td>Volumetric KFT</td>
<td>43</td>
</tr>
<tr>
<td>2.3.7.2</td>
<td>Coulometric KFT</td>
<td>44</td>
</tr>
<tr>
<td>2.4</td>
<td>High-performance liquid chromatography (HPLC)</td>
<td>44</td>
</tr>
<tr>
<td>2.4.1</td>
<td>HPLC method development for the identification and quantification of azithromycin</td>
<td>45</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Experimental</td>
<td>46</td>
</tr>
<tr>
<td>2.4.2.1</td>
<td>Materials</td>
<td>46</td>
</tr>
<tr>
<td>2.4.2.2</td>
<td>Instrumentation and software</td>
<td>46</td>
</tr>
<tr>
<td>2.4.2.3</td>
<td>Chromatographic conditions</td>
<td>46</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Preparation of solutions</td>
<td>47</td>
</tr>
<tr>
<td>2.4.3.1</td>
<td>Calibration standard solutions</td>
<td>47</td>
</tr>
<tr>
<td>2.4.3.2</td>
<td>Preparation of test solutions</td>
<td>47</td>
</tr>
<tr>
<td>2.4.3.3</td>
<td>Preparation of test solutions in solubility media</td>
<td>48</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Method validation</td>
<td>48</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Results and discussion</td>
<td>49</td>
</tr>
<tr>
<td>2.4.5.1</td>
<td>Method optimisation</td>
<td>49</td>
</tr>
<tr>
<td>2.4.6</td>
<td>Method validation</td>
<td>50</td>
</tr>
</tbody>
</table>
3.3.5.1 Appearance ... 70
3.3.5.2 Solubility .. 70
3.3.5.3 Water content ... 70
3.3.5.4 Theoretical weight loss with drying 71
3.3.5.5 Melting point .. 71
3.3.5.6 Stability in acidic environment ... 71
3.3.5.7 Iso-electric point of azithromycin 72
3.3.6 Pharmacokinetic properties .. 72
3.3.6.1 Absorption and metabolism ... 72
3.3.6.2 Distribution ... 73
3.3.6.3 Elimination .. 74
3.3.7 Drug interactions .. 74
3.3.8 Adverse effects .. 74
3.3.9 Toxicity .. 75
3.3.10 Safety ... 75
3.3.11 Cost of treatment .. 75
3.3.12 Bacterial resistance to azithromycin and other macrolides 75
3.4 Conclusion ... 77
3.5 References ... 78

CHAPTER 4: POLYMORPHISM OF AZITHROMYCIN

4.1 Introduction ... 81
4.2 Recrystallisation method .. 82
4.3 Results .. 82
4.4 Discussion .. 83
4.5 Anhydrous azithromycin prepared from azithromycin dihydrate 83
4.5.1 Anhydrous azithromycin prepared via dry heat 83
CHAPTER 5: AZITHROMYCIN GLASS

5.1 Introduction ... 97
5.2 Method for the preparation of azithromycin glass (AZM-G) 98
5.3 Solid state characterisation of azithromycin glass (AZM-G) 98
5.3.1 Fourier transform infrared spectroscopy (FTIR) .. 98
5.3.2 X-ray powder diffraction (XRPD) .. 100
5.3.3 Differential scanning calorimetry (DSC) .. 102
5.3.4 Thermogravimetric analysis (TGA) ... 104
5.3.5 Karl Fischer titration (KFT) .. 106
5.3.6 Microscopy .. 106
5.4 Solubility of AZM-G .. 111
5.4.1 Stability and solubility of azithromycin glass in 0.1 M HCl 111
5.4.1.1 Results of acid stability .. 111
5.4.1.2 Solubility in pH 1.2 ... 113
5.4.2 Solubility in acetate buffer (pH 4.5) ... 114
5.4.3 Solubility in phosphate buffer (pH 6.8) .. 115
5.4.4 Solubility in water .. 116
5.5 Stability of AZM-G ... 118
5.5.1 Results ... 118
5.5.2 Stability study ... 122
5.5.2.1 DSC analyses of AZM-G from weeks 0 – 4 .. 123
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5.2.2 TGA results for AZM-G during stability study</td>
<td>127</td>
</tr>
<tr>
<td>5.5.2.3 KFT results</td>
<td>129</td>
</tr>
<tr>
<td>5.5.2.4 XRPD results</td>
<td>130</td>
</tr>
<tr>
<td>5.5.2.5 Fourier transform infrared spectroscopy (FTIR)</td>
<td>132</td>
</tr>
<tr>
<td>5.5.2.6 Microscopy</td>
<td>134</td>
</tr>
<tr>
<td>5.5.3 Stability of AZM-G in water</td>
<td>136</td>
</tr>
<tr>
<td>5.5.4 Stability of AZM-G coupled with an increased water fraction</td>
<td>138</td>
</tr>
<tr>
<td>5.6 Conclusion</td>
<td>142</td>
</tr>
<tr>
<td>5.7 References</td>
<td>143</td>
</tr>
</tbody>
</table>

CHAPTER 6: PRODUCT DEVELOPMENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>146</td>
</tr>
<tr>
<td>6.2 Solid dosage form design</td>
<td>146</td>
</tr>
<tr>
<td>6.2.1 Particle size, shape and density</td>
<td>148</td>
</tr>
<tr>
<td>6.2.2 Characterisation of powder flow properties</td>
<td>148</td>
</tr>
<tr>
<td>6.2.2.1 Angle of repose</td>
<td>149</td>
</tr>
<tr>
<td>6.2.2.2 Compressibility</td>
<td>149</td>
</tr>
<tr>
<td>6.2.2.3 Flow through a hopper</td>
<td>151</td>
</tr>
<tr>
<td>6.2.3 Methods for improving the flow of AZM-G powder</td>
<td>151</td>
</tr>
<tr>
<td>6.2.3.1 Particle size</td>
<td>151</td>
</tr>
<tr>
<td>6.2.3.2 Excipients</td>
<td>153</td>
</tr>
<tr>
<td>6.2.4 Granulation methods</td>
<td>155</td>
</tr>
<tr>
<td>6.2.4.1 Dry granulation</td>
<td>155</td>
</tr>
<tr>
<td>6.2.4.2 Wet granulation</td>
<td>156</td>
</tr>
<tr>
<td>6.3 Direct compression of AZM-G powder</td>
<td>156</td>
</tr>
<tr>
<td>6.4 Wet granulation of AZM-G powder</td>
<td>157</td>
</tr>
<tr>
<td>6.4.1 Bulk production of AZM-G tablets (Formulation 5)</td>
<td>158</td>
</tr>
</tbody>
</table>
6.2. Bulk production of AZM-DH tablets ... 162
6.5 Dissolution study of AZM-DH and AZM-G in different media 164
6.5.1 Results .. 164
6.5.1.1 Dissolution profiles in pH 4.5 acetate buffer 164
6.5.1.2 Dissolution profiles in pH 6.8 phosphate buffer 165
6.5.1.3 Dissolution profiles in water .. 166
6.5.1.4 Dissolution profiles in pH 1.2 HCl .. 167
6.5.2 Discussion .. 167
6.6 Stability of AZM-DH and AZM-G tablets .. 168
6.6.1 Materials and methods .. 168
6.6.2 Results .. 169
6.6.2.1 Fourier transform infrared spectroscopy (FTIR) 169
6.6.2.2 Dissolution ... 171
6.6.3 Discussion .. 172
6.7 Conclusion ... 173
6.8 References .. 175

CHAPTER 7: PERMEABILITY

7.1 Introduction ... 177
7.2 Membrane permeability ... 178
7.2.1 Transcellular and paracellular passive diffusion 179
7.2.2 Endocytosis .. 180
7.2.3 Active transport .. 180
7.3 Effect of membrane permeability on bioavailability 181
7.4 Materials and methods .. 181
7.4.1 Preparation of azithromycin solutions ... 182
7.4.2 Preparation of tissue for in vitro transport 183
CHAPTER 8: CONCLUSION ... 199

ANNEXURE A .. 202

ANNEXURE B .. 206

ANNEXURE C .. 208
CHAPTER 1: SOLID STATE

Figure 1.1 Diagrammatic representation of the classification of solid state forms, according to Cui (2007:5) ... 5

CHAPTER 2: SOLID STATE CHARACTERISATION

Table 2.1 XRPD settings for the measurement of azithromycin samples ... 36

Table 2.2 Equations for regression obtained during method validation to compare linearity at 205 nm and 210 nm ... 50

Table 2.3 Accuracy as a result of azithromycin recovered from the 100 % calibration solution .. 51

Table 2.4 Summary of intermediate validation results at 205 nm and 210 nm, as obtained by the second analyst .. 52

Table 2.5 DL and QL values achieved by the HPLC method at 205 nm and 210 nm 53

Figure 2.1 HPLC chromatograms of AZM-DH reference material dissolved in mobile phase ... 47

Figure 2.2 HPLC chromatogram of AZM-DH dissolved in mobile phase (1 mg/mL) at 205 nm. Mobile phase: phosphate buffer adjusted with phosphoric acid (pH 3.0)/acetonitrile (600/400), Flow rate 1.0 mL/min, Injection volume 15 µL. UV detection 205 nm .. 49

Figure 2.3 HPLC Chromatogram of AZM-DH dissolved in mobile phase (1 mg/mL), at 205 nm. Mobile phase: phosphate buffer adjusted with 1.0 M sodium hydroxide (pH 8.4)/acetonitrile (500/500), Flow rate 1.0 mL/min, Injection volume 15 µL. UV detection 205 nm .. 50
Figure 2.4: HPLC chromatogram of AZM-DH tablet (5 mg/mL) dissolved in mobile phase at 205 nm and 210 nm. Mobile phase: phosphate buffer (adjusted with 1.0 M sodium hydroxide to pH 6.0)/acetonitrile (700/300), Flow rate 1.0 mL/min, Injection volume 15 µL. UV detection 205 nm and 210 nm52

Figure 2.5: HPLC chromatogram of AZM-DH dissolved in water (0.1 mg/mL) at 205 nm. Mobile phase: phosphate buffer (adjusted with 1.0 M sodium hydroxide to pH 6.0)/acetonitrile (700/300), Flow rate 1.0 mL/min, Injection volume 15 µL. UV detection 205 nm ...54

Figure 2.6: HPLC chromatogram of AZM-DH dissolved in pH 4.5 acetate buffer (1.0 mg/mL) at 205 nm. Mobile phase: phosphate buffer (adjusted with 1.0 M sodium hydroxide to pH 6.0)/acetonitrile (700/300), Flow rate 1.0 mL/min, Injection volume 15 µL. UV detection 205 nm ...54

Figure 2.7: HPLC chromatogram of AZM-DH dissolved in pH 6.8 phosphate buffer (0.5 mg/mL) at 205 nm. Mobile phase: phosphate buffer (adjusted with 1.0 M sodium hydroxide to pH 6.0)/acetonitrile (700/300), Flow rate 1.0 mL/min, Injection volume 15 µL. UV detection 205 nm ...55

Figure 2.8: HPLC chromatogram of AZM-DH dissolved in 0.1 M HCl (pH 1.2) (1.0 mg/mL) at 205 nm. Mobile phase: phosphate buffer (adjusted with 1.0 M sodium hydroxide to pH 6.0)/acetonitrile (700/300), Flow rate 1.0 mL/min, Injection volume 15 µL. UV detection 205 nm ...55

CHAPTER 3: AZITHROMYCIN: A MACROLIDE ANTIMICROBIAL

Figure 3.1 Chemical structure of azithromycin base (anhydrous form) ...67

Figure 3.2 Chemical structure of erythromycin ...68

Figure 3.3 Chemical structure of azithromycin dihydrate ...68

CHAPTER 4: POLYMORPHISM OF AZITHROMYCIN

Figure 4.1 Overlay of DSC traces of AZM-DH (red) and AZM (green), dried in an oven for 60 minutes at 100°C, and of anhydrous AZM (magenta), dried in a DSC prior to analysis ..84
Figure 4.2 TGA thermogram indicating a 2.79 % weight loss for AZM, dried in an oven for 60 minutes at 100°C prior to analysis..85

Figure 4.3 FTIR spectra of AZM-DH (red), and AZM (green), dried in an oven for 60 minutes at 100°C prior to analysis..86

Figure 4.4 XRPD patterns of AZM (blue) and AZM-DH (red), dried in an oven for 60 minutes at 100°C prior to analysis..86

Figure 4.5 TGA thermogram indicating a 0.89 % weight loss for anhydrous AZM, dried in the furnace of a TGA prior to analysis..88

Figure 4.6 DSC trace of anhydrous AZM, prepared with isopropanol..............................89

Figure 4.7 Enhanced DSC trace ranging between 49°C and 53°C of anhydrous AZM, prepared with isopropanol...89

Figure 4.8 TGA thermogram indicating a weight loss of 14.39 % for anhydrous AZM, prepared with isopropanol...90

Figure 4.9 FTIR spectra of anhydrous AZM, prepared with isopropanol (red) and of AZM-DH (black)...91

Figure 4.10 XRPD pattern of anhydrous AZM, illustrating the halo pattern typical of amorphous solids...92

Figure 4.11 HSM images (taken at increasing temperatures) of anhydrous AZM, prepared with isopropanol. (a) The anhydrous AZM morphologically presents as an amorphous glass at room temperature, (b) The transition from solid to liquid occurs at 52°C, (c) Crystals start to form from the liquid at 62°C as indicated by the red squares, (d) Crystals resulting from the continuous growth at increasing temperatures up to 101°C, the point at which the crystals start to melt93

CHAPTER 5: AZITHROMYCIN GLASS

Table 5.1 Peak differences in FTIR patterns to distinguish between AZM-DH and AZM-G ...100
Table 5.2 Summary of the percentage water content of AZM-DH and AZM-G as determined with KFT and TGA ... 106

Table 5.3 Solubility data of AZM in 0.1 M HCl ... 113

Table 5.4 Solubility data of AZM in acetate buffer (pH 4.5) 115

Table 5.5 Solubility data of AZM in phosphate buffer (pH 6.8) 116

Table 5.6 Solubility data of AZM in water ... 117

Table 5.7 Summary of the screening test outcomes of AZM-G during the four weeks stability study at 40°C and 75 % RH ... 123

Table 5.8 T_g values of AZM-G according to various formulae 124

Table 5.9 HSM images of AZM-G (unmilled) over the course of the stability study 135

Table 5.10 T_g values of AZM-G with increased water fraction 139

Figure 5.1 FTIR spectrum of AZM-DH .. 99

Figure 5.2 FTIR spectrum of AZM-G ... 99

Figure 5.3 XRPD pattern of AZM-DH ... 101

Figure 5.4 XRPD pattern of AZM-G ... 102

Figure 5.5 DSC trace of AZM-DH showing dehydration at 76.35°C and 86.45°C and the subsequent melting endotherm at 119.04°C ... 103

Figure 5.6 DSC trace of AZM-G with T_g (enhanced trace) at 106.65°C 104

Figure 5.7 TGA thermogram of AZM-DH indicating a weight loss of 4.40 % 105

Figure 5.8 TGA thermogram of AZM-G indicating a weight loss of 0.61 % 105
Figure 5.9 HSM image of AZM-DH (Temperature of 25°C, Magnification at 10x, Sample covered with silicon oil) ... 107

Figure 5.10 SEM images (a & b) of AZM-DH on a scale of 500 µm (a) and 200 µm (b) 107

Figure 5.11 (a) HSM and (b-d) SEM images of unmilled AZM-G viewed on a scale of 500 µm (b-c) and 200 µm (d) respectively ... 108

Figure 5.12 SEM image of milled AZM-G on a scale of 50 µm .. 109

Figure 5.13 Series of HSM images (a-f) of AZM-G illustrating the morphological changes during a glass transition from a solid glass into a liquid state. (a) HSM image taken at 80°C illustrating that AZM-G is a glassy solid, (b) HSM image at 90°C illustrating that AZM-G still exists as a glassy solid, (c) HSM image taken at 95°C illustrating that the glassy solid is starting to show signs of reduced viscosity as the molecules become more mobile, (d) HSM image of AZM-G at 99°C illustrating a further decrease in viscosity of the supercooled liquid (glass), (e) HSM image taken at 104°C with the glass transition from the solid into the liquid being visible, (f) HSM image at 106°C, illustrating the complete transition from the glassy solid into the liquid phase... 110

Figure 5.14 Percentage degradation of AZM-DH and AZM-G in 0.1 M HCl (pH 1.2).......... 112

Figure 5.15 Histogram to compare the solubility values (mg/mL) obtained for AZM-DH, AZM-G and milled AZM-G in 0.1 M HCl (pH 1.2) ... 114

Figure 5.16 Histogram to compare the solubility values (mg/mL) obtained for AZM-DH, AZM-G and milled AZM-G in acetate buffer (pH 4.5) ... 115

Figure 5.17 Histogram to compare the solubility values (mg/mL) obtained for AZM-DH, AZM-G and milled AZM-G in phosphate buffer (pH 6.8) 116

Figure 5.18 Histogram to compare the solubility values (mg/mL) obtained for AZM-DH, AZM-G and milled AZM-G in distilled water ... 117

Figure 5.19 Comparative histogram of the solubility of AZM-DH (blue), unmilled AZM-G (maroon), and milled AZM-G (green) in different aqueous media having varying pH values ... 118
Figure 5.20 Water vapour adsorption (solid line) and desorption (dotted line) isotherms of AZM-DH (x-axis representing the % RH, y-axis representing the % weight) ... 120

Figure 5.21 Water vapour adsorption (solid line) and desorption (dotted line) isotherms of unmilled AZM-G... 121

Figure 5.22 Water vapour adsorption (solid line) and desorption (dotted line) isotherms of milled AZM-G... 121

Figure 5.23 XRPD pattern of AZM-G after exposure to 100 % RH for a period of 3 days .. 122

Figure 5.24 Overlay of DSC traces of AZM-DH generated during the stability (Initial (blue), Week 2 (green), Week 4 (red)) ... 124

Figure 5.25 Overlay of DSC traces of AZM-G generated during the stability study (Initial (green), Week 1 (red), Week 2 (blue), Week 3 (magenta), Week 4 (black)) .. 126

Figure 5.26 Overlay of TGA thermograms of AZM-DH generated during the stability study (Initial (blue), Week 2 (red), Week 4 (green)) .. 128

Figure 5.27 Overlay of TGA thermograms of AZM-G generated during the stability study (Initial (green), Week 1 (red), Week 2 (blue), Week 3 (magenta), Week 4 (black)), .. 129

Figure 5.28 XRPD pattern for AZM-DH serving as reference during the stability study...... 131

Figure 5.29 Overlay of XRPD patterns of AZM-G (unmilled) generated during the stability study (Initial (red), Week 1 (blue), Week 2 (green), Week 3 (grey), Week 4 (brown)) .. 131

Figure 5.30 FTIR spectrum of AZM-DH that was used as the reference during the stability study.. 133

Figure 5.31 Overlay of FTIR spectra of AZM-G generated during the stability study (Initial (maroon), Week 1 (grey), Week 2 (blue), Week 3 (red), Week 4 (green)) 133
Figure 5.32 (a) HSM image of AZM-DH and (b) SEM image of AZM-DH at Week 0 134

Figure 5.33 HSM images of AZM-DH at (a) Week 2 and (b) Week 4 134

Figure 5.34 Overlay of the FTIR spectra of AZM-DH (blue), unmilled AZM-G (red) and milled AZM-G (green) after 20 days in water ... 137

Figure 5.35 DSC trace of AZM-G indicating an endothermic event at 109.13°C after 20 days in water ... 138

Figure 5.36 Overlay of DSC traces of AZM-G with increased water fraction, ranging from 1 - 50 %. (1 % (brown); 3 % (yellow); 5 % (light blue); 7 % (black); 15 % (magenta); 30 % (green); 40 % (red); 50 % (blue)) ... 140

Figure 5.37 Overlay of the experimental T_g (yellow) and the T_g according to the linear- (orange), Gordon-Taylor- (blue) and the Fox equations (red) 141

Figure 5.38 FTIR spectra of AZM-DH (black), AZM-G with 0 % water (blue), and AZM-G with an added 50 % water fraction (grey) ... 141

CHAPTER 6: PRODUCT DEVELOPMENT

Table 6.1 Trial formulation of a 700 mg tablet containing 500 mg of AZM-G 157

Table 6.2 Summary of excipients included in tablet formulations prepared by using wet granulation to improve powder flow properties of formulations 158

Table 6.3 Final formulation of AZM-DH tablets .. 163

Figure 6.1 Particle size distribution of AZM-DH .. 152

Figure 6.2 Particle size distribution of AZM-DH granules .. 152

Figure 6.3 Particle size distribution of AZM-G .. 153

Figure 6.4 Particle size distribution of AZM-G granules .. 153
Figure 6.5 Images of the wet granulation process during which dry contents are mixed in a planetary mixer (left) to produce a wet mass of granules (right) ... 159

Figure 6.6 Images of the dried mass of granules (left) and the mesh with which the dry mass granules were sieved (right) ... 159

Figure 6.7 Images of the resulting dry granules after being sieved (the left) and the rotating mixer (Turbula) shaking the glass jar containing the granulated powder and excipients (right) .. 160

Figure 6.8 Images of the CADMACH® single punch tablet press (left) and the manufactured tablets (950 mg) containing 500 mg of AZM-G (right) ... 161

Figure 6.9 SEM micrographs of AZM-G powder (left, scale of 100 µm) and dry granules before tableting (right, scale of 50 µm).. 162

Figure 6.10 SEM micrograph of a dry granule at a higher magnification (scale: 20 µm)..... 162

Figure 6.11 SEM micrographs of AZM-DH (left, scale: 200 µm) and dry granules before tableting (right, scale: 50 µm).. 164

Figure 6.12 Dissolution profiles (percentage AZM dissolved as a function of time) of AZM-DH and AZM-G tablets in pH 4.5 acetate buffer ... 165

Figure 6.13 Dissolution profiles (percentage AZM dissolved as a function of time) of AZM-DH and AZM-G tablets in pH 6.8 phosphate buffer ... 166

Figure 6.14 Dissolution profiles (percentage AZM dissolved as a function of time) of AZM-DH and AZM-G tablets in water .. 167

Figure 6.15 Overlay of FTIR spectra for AZM-DH tablets during the stability study. AZM-DH Initial (green), Month 1 (blue), Month 2 (grey), Month 3 (red) 170

Figure 6.16 Overlay of FTIR spectra for AZM-G tablets during the stability study. AZM-G Initial (blue), Month 1 (grey), Month 2 (red), Month 3 (green) 171

Figure 6.17 Dissolution profiles of AZM-DH tablets in pH 6.8 phosphate buffer 172

Figure 6.18 Dissolution profiles of AZM-DH tablets in pH 6.8 phosphate buffer 172
CHAPTER 7: PERMEABILITY

Table 7.1 Concentrations of AZM-DH and AZM-G in different transport media.............. 182

Table 7.2 Results of statistical analyses for AZM-DH and AZM-G in different media at different pH values.. 194

Table 7.3 Correlation between the improved solubility of AZM-G and the permeability of AZM at variable pH values.. 195

Figure 7.1 Graphic illustration of the different mechanisms of intestinal absorption. (A) Paracellular diffusion; (B) Paracellular diffusion enhanced by a modulator of tight junctions; (C) Transcellular passive diffusion; (C* Intracellular metabolism); (D) Carrier-mediated active transcellular transport; (E) Transcellular diffusion coupled with an efflux mechanism; (F) Transcellular endocytosis (Taken from Hunter & Hirst, 1997:131) .. 179

Figure 7.2 Isolated section of pig intestinal tissue after being washed with cold Krebs Ringer bicarbonate buffer ... 184

Figure 7.3 Isolated intestinal mucosa sheet after removal of the serosal layer, prior to cutting it into smaller pieces... 185

Figure 7.4 Diffusion apparatus with the six sets of Ussing chambers......................... 185

Figure 7.5 Diffusion apparatus and HPLC vials used during this study 186

Figure 7.6 Overlay of the concentrations of AZM-DH and AZM-G being transported across the intestinal mucosa, as a function of time (pH 7.2 buffer)......................... 189

Figure 7.7 Overlay of the concentrations of AZM-DH and AZM-G being transported across the intestinal mucosa, as a function of time (pH 6.8 buffer)......................... 191

Figure 7.8 Overlay of the concentrations of AZM-DH and AZM-G being transported across the intestinal mucosa, as a function of time (pH 4.5 buffer)......................... 192

Figure 7.9 P_app values of AZM-DH and AZM-G in different media at different pH values.. 194
LIST OF ABBREVIATIONS

> - greater than
\(\geq\) - greater than or equal to
\(\leq\) - less than or equal to
< - less than
\(\degree\) - degrees
\(\degree\)C - degrees Celsius
\(\Omega\) - ohm

\% - percentage
\% WL - percentage weight loss
\(\theta\) - Theta
\(\mu\)g - microgram
\(\mu\)L - micro litre
\(\mu\)m - micro metre

A - surface area
API - active pharmaceutical ingredient
ATP - adenosine triphosphate
AVG - average
AZM - azithromycin
AZM-DH - azithromycin dihydrate
AZM-G - azithromycin glass
BET - Brunauer-Emmett-Teller theory
BP - British Pharmacopeia
C - carbon

\(C_0\) - initial concentration
cm - centimetre
conc. - concentration

DCM - dichloromethane
DL - limit of detection
DRIFTS - diffuse reflectance infrared Fourier transform spectroscopy
DSC - differential scanning calorimetry
e.g. - *exempli gratia* (for example)
EP - European Pharmacopeia
FTIR - Fourier transform infra-red spectroscopy
g - gram
h - hour
H - hydrogen
H₂O - water
HCl - hydrochloric acid
HPLC - high performance liquid chromatography
HSM - hot stage microscopy
ICH - International Conference on Harmonisation
i.e. - *id est* (that is)
IR - infrared spectroscopy
IUPAC - International Union of Pure and Applied Chemistry
J - Joule
K - Kelvin
KBr - potassium bromide
KCl - potassium chloride
kg - kilogram
KFT - Karl Fischer titration
L - litre
M - molar
m - metre
MAC - *Mycobacterium avium* complex
MDCK - Madin-Darby canine kidney
mg - milligram
MIC - minimum inhibitory concentration
min - minutes
mL - millilitre
mΩ - milli-ohm
MM - molecular mass
mm - millimetre
N - nitrogen
N - newton
NaOH - sodium hydroxide
nm - nanometre
O - oxygen
PAMPA - Parallel artificial membrane permeability assay
P$_{app}$ - apparent permeability coefficient
P-gp - P-glycoprotein
ppm - parts per million
QL - limit of quantification
r2 - correlation coefficient
RH - relative humidity
RNA - ribonucleic acid
rpm - revolutions per minute
RSD - relative standard deviation
s - second
SA - South Africa
SEM - scanning electron microscopy
STDEV (SD) - standard deviation
TAM - Thermal Activity Monitor
TEER - Trans-epithelial electrical resistance
T_g - glass transition temperature
TGA - thermogravimetric analysis
T_m - melting temperature (point)
UFLC - Ultra fast liquid chromatography
USA - United States of America
USP - United States Pharmacopeia
UV - ultraviolet
vs - versus

w/w - weight per weight

XRPD - X-ray powder diffraction
CHAPTER 5: AZITHROMYCIN GLASS

\[R_L = \frac{1}{1 + b_L C_0} \] \hspace{1cm} (5.1)

\[T_{g_{mix}} = w_1 T_{g1} + w_2 T_{g2} \] \hspace{1cm} (5.2)

\[T_{g_{mix}} = \frac{(w_1 T_{g1} + k w_2 T_{g2})}{(w_1 + k w_2)} \] \hspace{1cm} (5.3)

Where \(k = \frac{(p_1 T_{g1})}{(p_2 T_{g2})} \)

\[\frac{1}{T_{g_{mix}}} = \frac{w_1}{T_{g1}} + \frac{w_2}{T_{g2}} \] \hspace{1cm} (5.4)

CHAPTER 6: PRODUCT DEVELOPMENT

\[P_B = w/v \] \hspace{1cm} (6.1)

\[P_T = w/v \] \hspace{1cm} (6.2)

% compressibility = \(\frac{(P_T - P_B)}{P_T} \times 100 \) \hspace{1cm} (6.3)

Hausner ratio = \(P_T / P_B \) \hspace{1cm} (6.4)
CHAPTER 7: PERMEABILITY

\[P_{\text{app}} = \frac{\text{d}C}{\text{d}t} \times \left(\frac{1}{A \times C_0 \times 60} \right) \] \hspace{1cm} (7.1)

\[\%_{\text{AZM-G}} = \left(\frac{\text{AZM-G} P_{\text{app}}}{\text{AZM-DH} P_{\text{app}}} \right) \times 100 \%_{\text{AZM-DH}} \] \hspace{1cm} (7.2)

\[\% \text{ improvement} = \%_{\text{AZM-G}} - 100 \] \hspace{1cm} (7.3)
Azithromycin, an azalide and member of the macrolide group, is a broad spectrum antimicrobial, representing one of the bestselling antimicrobials worldwide. It is derived from erythromycin and exhibits improved acidic stability as a result of its structural modifications. The stable solid form of azithromycin is its dihydrate, although it also naturally occurs in its metastable forms, i.e. the monohydrate and anhydrate. Because azithromycin is poorly soluble in water, its absorption from the gastro-intestinal tract is negatively influenced, which ultimately affects its bioavailability following oral administration (37 %).

Polymorphic (monohydrates and dihydrates) and anhydrous forms of azithromycin were screened and investigated. One anhydrous form also proved to be amorphous, which shifted the focus of this study from polymorphism to amorphism. An amorphous glassy azithromycin was subsequently prepared and fully characterised to present its solid state profile.

The stability of this amorphous glassy form was established at a high temperature and relative humidity over a period of four weeks. Exposure to increased relative humidity (up to 95 %) and increased water content (up to 50 %) also served as stability indicating tests. Its solubility in various aqueous media was determined. A solid dosage form (tablet), containing the azithromycin glass, was prepared, whereafter these tablets were subjected to dissolution studies in different aqueous media. The stability of azithromycin glass in tablet form was determined over a period of three months. The permeability of azithromycin glass across excised pig intestinal tissue was further established at various pH values.

This amorphous glassy form of azithromycin (AZM-G) proved to be very stable at high temperature and relative humidity, whilst also remaining stable after prolonged exposure to 95 % of relative humidity, as it only adsorbed moisture onto its surface. Water content (up to 50 %) had no plasticising effect on azithromycin glass. It demonstrated a significantly higher water solubility (339 % improvement) in comparison with the commercially available azithromycin dihydrate and was it also 39 % more soluble in phosphate buffer (pH 6.8) than its dihydrate counterpart.
The prepared azithromycin glass tablets showed a promising dissolution profile in water, due to the improved water solubility of this glass form. The transport of azithromycin glass at higher pH values (6.8 and 7.2) across the membrane proved to be significantly higher than that of azithromycin dihydrate, thus also illustrating its pH dependence for its transport across pig intestinal tissue.

The improved water solubility of the azithromycin glass, together with its faster dissolution rate, its superior stability and its increased permeability, may ultimately result in a higher azithromycin bioavailability following oral administration.

These research outcomes hence give rise to the need for investigating the effect of administering lower dosages of azithromycin and to determine whether the same antimicrobial efficacy would possibly be achieved, due to maintaining the same tissue concentration levels at these lower dosages.

Key words: Macrolide; Azithromycin; Amorphous; Solubility; Stability; Dissolution; Permeability.
UITTREKSELT

Asitromisien, ‘n asalied wat deel van die makroliedgroep vorm, is ‘n breë sprektuur antimikrobie geneesmiddel, wat wêreldwyd as een van die topverkopers van antimikrobiese geneesmiddels beskou word. Asitromisien is ‘n derivaat van eritromisien en toon verbeterde stabiliteit in suur omgewings, as gevolg van sy structurele modificasies. Die dihidraat word as die stabiele soliede vorm van asitromisien beskou, alhoewel dit ook natuurlik in sy monohidraat- en anhidraat vorms voorkom. Omdat asitromisien swak oplosbaar is in water, word sy absorpsie vanuit die gastroïntestinale kanaal negatief beïnvloed, wat uiteindelik weer sy biobeskikbaarheid na orale toediening effekteer (37 %).

Polimorfiese (monohidrate en dihidrate) en anhidriese vorme van asitromisien is oorsigtelik tydens hierdie studie ondersoek. Een anhidraat het ook amorfie eienskappe getoon, wat daartoe aanleiding gegee het dat die fokus van hierdie studie vanaf polimorfisme na amorfisme verskuif het. ‘n Amorfe glas van asitromisien is vervolgens berei en volledig in terme van vaste vorm eienskappe gekarakteriseer.

Die stabilitate van die bereide amorfe asitromisien was by toestande van hoë temperatuur en relatiewe humiditeit oor ‘n tydperk van vier weke bepaal. Blootstelling aan verhoogde relatiewe humiditeit (tot en met 95 %) en verhoogde waterinhoud het voorts as stabiliteitsaanduidende toetse gedien. Die oplosbaarheid van die glas is ook in verskeie waterige mediums bepaal. Amorfe asitromisien is vervolgens in ‘n tabletvorm geformuleer, waarna dissolusie studies op die tablette in verskeie waterige mediums uitgevoer is. Die stabilitate van amorfe asitromisien in tabletvorm is oor ‘n tydperk van drie maande bepaal. Die deurlaatbaarheid van amorfe asitromisien oor uitgesnyde intestinale varkweefsel by verskillende pH-waardes is verder ook bepaal.

Hierdie amorfe, glasagtige vorm van asitromisien het bewys gelewer dat dit baie stabiel was, ten spyte van blootstelling aan beide hoë temperatuur en relatiewe humiditeit. Verlengte blootstelling aan 95 % relatiewe humiditeit het ook geen effek op die stabiliteit van die glas getoon nie, aangesien dit die vog slegs op die oppervlak adsorbeer het. Toenemende waterinhoud (tot en met 50 %) het geen plastiserende effek op amorfe asitromisien gehad nie. Die glas het ongeveer 339 % beter wateroplosbaarheid in
teenstelling met die dihidraat van asitromisien aangetoon. Dit was voorts ook 39 % meer oplosbaar in fosfaatbuffer (pH 6.8).

Die dissolusie profiel van die bereide asitromisien (amorfe vorm) tablette in water was baie belowend, weens die verhoogde oplosbaarheid van hierdie vorm. Hoër asitromisien konsentrasies is vinniger verkry in vergelyking met die tablette wat asitromisien dihidraat-bevat het. Die deurlaatbaarheid van amorfe asitromisien oor die intestinale membraan by hoë pH-waardes (6.8 en 7.2) was beduidend beter as die van die dihidraat. Die pH-afhanklikheid van die deurlaatbaarheid van die asitromisien glas oor die intestinale weefsel is hierdeur beklemtoon.

Die verbeterde wateroplosbaarheid van amorfe asitromisien, tesame met die vinniger dissolusie-tempo, die stabilitéit en verhoogde deurlaatbaarheid mag uiteindelik tot verhoogde biobeskikbaarheid na orale toediening lei.

Hierdie navorsingsuitkomstes het dus die behoefte laat ontstaan om die impak van die toediening van laer dosisse te ondersoek, ten einde te bepaal of dieselfde antimikrobiese effektiwiteit moontlik bereik kan word, weens die handhawing van identiese weefselkonsentrasies ten spyte van hierdie laer dosisse.

Sleutelwoorde: Makrolied; Asitromisien; Amorf; Oplosbaarheid; Stabiliteit; Dissolusie; Deurlaatbaarheid.
HPLC method development

- Developing a robust HPLC method for identification and quantification of azithromycin

Polymorphism of azithromycin

- Screening of different solid state forms produced through recrystallisation
- Preparation of anhydrous azithromycin
- Characterisation of anhydrous azithromycin

Amorphism of azithromycin

- Preparation of amorphous azithromycin glass
- Characterisation of azithromycin glass
- Solubility and stability of azithromycin glass

Product development

- Formulating azithromycin glass in a tablet
- Dissolution profiles of prepared tablets in various aqueous media
- Stability of azithromycin glass in tablet formulation

Permeability of azithromycin glass at various pH values