
Chapter 2

Higher- and Lower-order Nodal

Di�usion Methods

2.1 Introduction

Modern nodal methods, as overviewed in Chapter 1, aim at calculating the 3D multi-

group neutron �ux distribution in large homogeneous volumes, or nodes. The main

aim of this approach is to determine the power distribution in fuel elements and

primarily to use this information for the calculation of material depletion.

In this chapter, we will sketch the history of these methods in more detail, focusing

on the approaches which have stood the test of time and as such are implemented

in modern nodal codes today. Special attention is paid to the well known Analytic

Nodal Method (ANM) which, to some extent, forms the basis of the development

in this work. Since the ANM (Smith, 1979) is based on the transverse integration

technique, this description will highlight the formulation of the transverse leakage

source and as such serve as a vehicle to introduce and describe the standard quadratic

leakage approximation (SQLA) as originally incorporated into the Nodal Expansion

Method (NEM) by Finnemann et al. (1977). In the ANM, the transverse leakage

source approximation is the only approximation used. As overviewed in the opening

chapter, the improvement of this leakage approximation is the primary focus of this

work and thus the theoretical background needed for this proposed improvement,

which is to be found in the class of higher-order nodal methods, is also given here.

Higher-order nodal methods are not as well known as the ANM and NEM ap-

proaches and hence a somewhat more comprehensive description of this class of nodal

methods is provided. The higher-order formalism allows the transverse leakage term

to be expressed exactly and in principle is capable of producing (�ne-mesh) reference

solutions for su�ciently high expansion orders, albeit at a signi�cant computational
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cost. The chapter is concluded with a reformulation of the proposed work in terms of

the theoretical basis now provided and thus serves to formalize the aim of the thesis.

2.2 Progress in Nodal Methods

Most commonly, �ne-mesh �nite-di�erence methods have historically been used to

solve reactor core di�usion problems. In early review papers (Froehlich, 1972), it was

shown that su�cient accuracy is only obtained with these methods if the mesh size is

of the order of a di�usion length, which leads to substantial numbers of meshpoints. In

order to address the computational burden associated with these methods, a number

of coarse-mesh approaches were investigated, amongst which the �rst application

of Finite Element Methods (FEMs) (Kang and Hansen, 1973) to numerical reactor

calculations. The class of FEMs provide a common framework according to which

nodal, synthesis and �nite-di�erence methods can be analyzed, especially in terms of

convergence and error properties. Four steps are typically applied in the formulation

of FEM based solutions and can be summarized as:

1. Reformulation of the given boundary value problem into a so-called �weak� (or

variational) form;

2. Discretization of the domain into geometrically simple parts (or elements);

3. Replacement of the in�nite dimensional representation resulting from (1) with

�nite dimensional functions de�ned over the elements in step (2); and

4. The formulation of a linear algebraic problem for the coe�cients of the expan-

sion in step (3).

An extensive analysis of how classical nodal methods (Dorning, 1979) may be related

to FEMs within the context of these steps is presented in Grossman and Hennart

(2007) and such a work is valuable in classifying nodal methods within the wider

scope of methods in numerical analysis. Nevertheless, FEM based methods were, in

this �eld, never accepted to the same level as the class of nodal methods, which �rst

appeared during the 1960s. The reason for this is probably due to the process of

homogenization, which largely simpli�es the geometric complexity of the core models

and hence does not require the natural geometric �exibility which FEMs provide.

In this section we aim to describe the class of nodal methods, its evolution and

its current state of application. These methods have shown extreme longevity and as

such still form the basis of industrial code systems today, as discussed in Section 1.3.2.
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To begin this discussion, we introduce the primary problem under consideration and

formulate it as a within-group (multi-group formulation is also possible) form of the

3D di�usion equation, written here in arbitrary Cartesian coordinates (u, v, w) as

−5 · [Dg(u, v, w)5 φg(u, v, w)] + σg,rem(u, v, w)φg(u, v, w)−Qg(u, v, w) = 0. (2.1)

In eq. (2.1) Dg(u, v, w) denotes the di�usion coe�cient, φg(u, v, w) the �ux in

energy group g, σg,rem(u, v, w) the removal cross-section and Qg(u, v, w) the group

source comprising both the scattering and �ssion sources within the node. Note

that, throughout this text, σg,t(where t denotes the reaction type) represents the

macroscopic cross-sections of the designated types. The 3D nodal di�usion equation,

as presented in eq. (2.2), is obtained by dividing the system into (Nu ·Nv ·Nw) nodes

(with node n having node sizes (hn,u, hn,v, hn,w)) and assuming that the material

properties are constant within each node. The nodal di�usion equation, written here

for node n as subscript, is

−Dg
n52 φgn(u, v, w) + σg,rem

n φgn(u, v, w)−Qg
n(u, v, w) = 0 (2.2)

and is typically integrated over the volume Vn of node n and then divided by the

node volume. After applying the divergence theorem, we obtain the nodal balance

equation,

6∑
m=1

anmn J
g

mn + σg,rem
n Φ

g

n = Q
g

n, (2.3)

with

Φ
g

n =
1

Vn

∫
Vn

φgn(u, v, w)dVn,

J
g

mn = − Dg
n

Smn

∂

∂−→n
·
∫
Smn

φgn(u, v, w)dSmn

and the node-averaged source in energy group g de�ned as

Q
g

n =
1

Vn

∫
Vn

Qg
n(u, v, w)dVn.

In eq. (2.3) J
g

mn denotes the normal component of the side-averaged net current

on the surface between node m and node n (with the normal pointing outward from

node n), Smn represents the surface between nodes m and n and anmn the surface

to volume ratio of that surface. Φ
g

n represents the node-averaged �ux in energy
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group g. The averaged �ux on the interface between node n and node m will be

denoted by φ
g

mn. The node-averaged cross-sections and di�usion coe�cients (as well

as, potentially, discontinuity factors) are assumed known here. Typically these values

would derive from a set of single- or multi-node transport calculations and aim to

conserve equivalence between the heterogeneous transport and homogeneous di�usion

solution. Although not the topic of this thesis, a good overview of these approaches

may be found in Smith (1986). Thus, in eq. (2.3), we have formulated a set of

equations for the primary unknowns of interest in nodal methods and established a

system of simultaneous equations that couple all the nodes via the continuous side-

average net currents. The system however, is underspeci�ed and various approaches

are utilized within the class of nodal methods to �nd the relationship between the

node-averaged �uxes and the side-averaged net currents, so that eq. (2.3) may be

solved. This distinction in how the expression for side-averaged current is obtained,

is also the primary di�erentiating factor between the various classes of nodal methods.

The FLARE model, developed in 1964 and overviewed in (Gupta, 1981), probably

represents the �rst signi�cant step in nodal methods and falls into the class of nodal

simulators. In the case of these methods, the expression for current on the surface

between node m and node n were written as

Jmn = C∗mn
(
Φm − Φn

)
(2.4)

where C∗mn was determined to match experimental data or obtained by auxiliary �ne-

mesh calculations. These methods could not be described as �consistent�, since they

did not necessarily converge to the �ne-mesh �nite-di�erence solution for decreasing

mesh size. Although successfully used for some time, these methods show the need

for the so-called consistently de�ned (or modern) coarse-mesh methods, which may

be described as true coarse-mesh approximations to the neutron di�usion equation.

We may classify the various nodal approaches from here onward into two ma-

jor categories, namely those which utilize the so-called transverse integration proce-

dure and those which proceed with a direct solution of the 3D di�usion equation.

We discuss both these categories in the coming sections, but focus on the class of

transversely-integrated methods, given their extensive usage in industrial code sys-

tems.
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2.3 Transversely-integrated Nodal Methods

The most common approach employed in modern nodal methods is that of transverse

integration, which essentially decomposes the 3D partial di�erential equation into

3 ordinary, inhomogeneous di�erential equations. In this technique, the di�usion

equation is integrated over two directions, say v and w, to yield a one-dimensional

equation in the u direction given in eq. (2.5) as

−Dg
n

d2

du2
φgn(u) + σg,rem

n φgn(u) = Qg
n(u)− Lg,vwn (u). (2.5)

In eq. (2.5) φgn(u) represents the transversely-integrated one-dimensional �ux and is

given by

φgn(u) =
1

hn,v

1

hn,w

∫
hn,vhn,w

φgn(u, v, w)dvdw, (2.6)

and Lg,vwn (u) represents the transverse leakage term which appears due to the inte-

gration of the v- and w- components of the leakage term. We have

Lg,vwn (u) = Lg,vn (u) + Lg,wn (u)

= −Dg
n

[
1

hn,v

1

hn,w

∫
hn,vhn,w

(
∂2

∂v2
+

∂2

∂w2

)
φg(u, v, w)dvdw

]
(2.7)

Lg,vwn (u) =
1

hn,v

(
J
g

n,v(u,
hv
2

) + J
g

n,v(u,−
hv
2

)

)
+ (2.8)

1

hn,w

(
J
g

n,w(u,
hw
2

) + J
g

n,w(u,−hw
2

)

)
.

Here J
g

n,v(u,
hv
2

) represents the w−integrated, one-dimensional current on the right
hand side of the v−direction transverse surface. It is of interest to note that, although
these expressions for the transverse leakages are quite complicated, the average value

L
g,vw

n of the transverse leakage source can be quite simply expressed in terms of side-

averaged currents as

1

hn,u

∫
hn,u

Lg,vwn (u)du =
1

hn,v

(
J
g

n,v(
hv
2

) + J
g

n,v(−
hv
2

)

)
+

1

hn,w

(
J
g

n,w(
hw
2

) + J
g

n,w(−hw
2

)

)
.

(2.9)

Some of the earliest e�orts to formulate more rigorous expressions of coupling coef-

�cients were the so-called Nodal Synthesis Methods (NSM) (Wagner, 1974) and the

analytical procedure (Antonopoulous, 1972). These approaches assumed a separable
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�ux within the node (as a product of one-dimensional solutions) to compute buck-

lings for the sake of the transverse leakages and hence utilized the shape of the �ux as

an approximation for the shape of the transverse leakage. The NSM, speci�cally, re-

quired o�-line auxiliary one-dimensional �nite-di�erence calculations for the de�nition

of the coupling coe�cients (which were then updated during the nodal calculation),

whereas the analytic procedure made use of a truncated Taylor series expansions

for formulating the side-averaged current to node-averaged �ux relationship. These

two developments proved paramount as they provided crucial building blocks for the

nodal methods utilized today. The need to eliminate the auxiliary �nite-di�erence

calculations from the NSM method eventually led to the development of the well

known Nodal Expansion Method (NEM) (Finnemann et al., 1977) and the analytic

procedure preceded probably the most widely used nodal method today, namely the

Analytic Nodal Method (ANM) (Smith, 1979). The primary di�erence between the

polynomial and analytic approaches lies in whether information of the analytic solu-

tion of eq. (2.5) is incorporated into the numerical scheme (the ANM) or whether the

�ux is approximated as a polynomial expansion within the node (NEM). If the one-

dimensional equations in the ANM formulation contains an explicit representation

of the �ssion and scattering sources, the method is referred to as the Semi Analytic

Nodal Method (SANM), since these sources should be additionally represented in

terms of typically some �ux moment expansion.

2.3.1 Polynomial methods and the nodal expansion method

Amongst the class of polynomial methods, the Nodal Expansion Method (NEM) is

one of the most widely used. In the NEM formulation, along with the node average

�uxes, side-average partial currents are typically utilized as primary unknowns. In

obtaining the solution of eq. (2.5), the one-dimensional �ux is typically approximated

as

φgn(u) = φgn,0f0(u) +
L∑
l=1

agn,lfl(u) (2.10)

where various choices of basis functions fn(u) and conditions for solving the expansion

coe�cients agn,l would characterize the speci�c version of the methods (Lawrence,

1986). For example, if we de�ne

ϑ =

(
u

hn,u

)
, − hn,u

2
≤ u ≤ hn,u

2
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as in Finnemann et al. (1977), the chosen set of basis functions can be written as

f0(ϑ) = 1

f1(ϑ) = ϑ

f3(ϑ) = 3ϑ2 − 1

4

f4(ϑ) = ϑ(ϑ− 1

2
)(ϑ+

1

2
)

f5(ϑ)(ϑ2 − 1

20
)(ϑ− 1

2
)(ϑ+

1

2
).

(2.11)

The zeroth moment of the �ux is the node-averaged �ux obtained from the solution

of the balance equation, while the �rst and second moments are normally obtained

from enforcing �ux and (normal component of the net) current continuity on the node

interfaces. This is ensured via choosing

agn,1 = φ
g,u

n,+ − φ
g,u

n,− (2.12)

and

agn,2 = φ
g,u

n,+ + φ
g,u

n,− − 2φgn,0

where φ
g,u

n,± represents the side-averaged �uxes on the right and left hand sides in

direction u of the node n. A number of variants exist for formulating expressions

for the higher-order moments (L > 2). The most common approaches relate to the

class of weighted residual methods, where either moment weighting (using f1(u) and

f2(u)) or Galerkin weighting (using f3(u) and f4(u)) is applied, of which the former

has been shown to be more accurate (Finnemann et al., 1977).

Expressions for the outgoing partial currents are obtained by substituting (2.10)

into Fick's Law (Duderstadt and Hamilton, 1976). The expansion coe�cients may

be eliminated in favour of the node-averaged �ux (via (2.12)) to yield a set of cou-

pled equations where the outgoing partial currents are expressed in terms of incoming

partial currents, node-averaged �uxes and higher-order expansion coe�cients per di-

rection. Finally the higher-order expansion coe�cients may be eliminated via the

weighted residual approach and hence, in 3D, a set of seven unknowns and seven

equations (node-averaged �ux and six outgoing partial currents) are obtained as a

well posed problem.

The outstanding issue here is the treatment of the transverse leakage source in

eq. (2.5). We defer this discussion to a little later (Section 2.3.3) given its common

treatment across the di�erent nodal methods and its central importance to this work.
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2.3.2 Analytic methods and the (semi) analytic nodal method

This class of methods utilizes an analytical solution to the one-dimensional, transversely-

integrated equations and a number of variants exist, with the Nodal Green's Function

Method (Lawrence and Dorning, 1980) and the Analytic Nodal Method (Smith, 1979)

probably the most well known. Considering its wide spread use, the ANM will be

discussed in some detail. It was originally devised for two groups, later extended to

four groups (Parsons D. K. and Nigg D. W., 1985) and has thereafter been extended

to full multi-group (Vogel and Weiss, 1992). For the sake of consistency with the

work in coming chapters, the derivation followed here is slightly di�erent and is more

accurately described as a semi-analytic solution, since the formulation is written as

a group-by-group solution with the within-group scattering and �ssion sources ex-

panded up to some prede�ned source order, in this case with Legendre polynomials

as basis functions. Although this does not detract from the essence of the method,

the truncation of the group source represents a second approximation (above and

beyond the transverse leakage approximation) and hence the term semi -analytic.

In the case of the ANM, an auxiliary set of transversely-integrated one-dimensional

equations is utilized to determine the node-averaged �ux to side-averaged current

relationship as needed in eq. (2.3). The one-dimensional equations obtained after

transverse integration, take the form as given in eq. (2.5).

The distinguishing factor in the ANM is the rigorous analytic solution of this

equation employed to solve eq. (2.5) for each direction {u, v, w}. We return to the

form of the transverse leakage term in the next section and focus on the solution of

the one-dimensional equation with a given source. For clarity, we present the form of

the inhomogeneous source as it appears in eq. (2.5),

sgn(u) = Qg
n(u)− Lg,vwn (u)

= χgn
1

keff

G∑
h=1

νhφhn(u)σhn,fis +
G∑

h=1,h6=g

φhn(u)σhn,scat(h→ g)− Lg,vwn (u) (2.13)

where χg refers to the �ssion spectrum, νh to the average number of neutrons released

per �ssion in group h and ke� to the multiplication factor of the system. The terms

σhfis and σhscat(h → g) refer to the �ssion and scattering cross-sections, respectively.

In practical implementations of the (Semi)ANM, sn(u) is typically expressed as an

expansion around moments of the one-dimensional �ux, for example on a Legendre
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polynomial base, up to the fourth order. This implies a non-linear iteration, hence

utilizing �ux moments from the previous iteration to construct the source for the cur-

rent iteration. The moments of the one-dimensional �ux are, in the ANM, generally

determined from the one-dimensional analytic solution.

2.3.2.1 One-dimensional analytic solution

In the standard (S)ANM, eq. (2.5) is solved analytically to yield the one-dimensional

�ux pro�le. To facilitate this, eq. (2.5) is manipulated by introducing a buckling

coe�cient and transforming to dimensionless coordinates to yield

d2

dξ2
φn(ξ) + (βnmn ) 2φn(ξ) = − 1

Dg
n

(
hn,u

2

)2

sn(ξ) (2.14)

with

(βnmn ) 2 =

σg,rem
n

(
hn,u

2

)
2

−Dg
n


and

ξ =
2u

hn,u
, − hn,u

2
≤ u ≤ hn,u

2
.

Note that the currents then scale as J
g

mn(u) = 2
hn,u

J
g

mn(ξ). The rigorous analytic

solution to the inhomogeneous eq. (2.14) is given by the sum of a complementary solu-

tion (a linear combination of two linearly-independent solutions to the homogeneous

Helmholtz equation) and a particular solution. This yields

φn(ξ) = A · cosh(|βnmn | ξ) +B · sinh(|βnmn |w) + Zn(ξ) (2.15)

where A and B are constants to be determined from current and �ux continuity

conditions and Zn(ξ) represents the particular solution. Speci�cally

A =
(φn(+1)− Z(+1)) + (φn(−1)− Z(−1))

2cosh (|βnmn |)
,

B =
(φn(+1)− Z(+1))− (φn(−1)− Z(−1))

2sinh (|βnmn |)
where Zn(ξ) is determined as the analytic source integral

Zn(ξ) =
1

|βnmn |

∫ ξ

sinh(|βnmn | (ξ − u)) sn(u)du

of which the notation implies that the integration is performed over u, after which u

is replaced by ξ. In practice the particular solution is determined from a recurrence
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relationship which expresses the Legendre moments of the particular solution in terms

of the Legendre moments of the source.

2.3.2.2 Net current relationship

In principle, the analytic solution obtained in the adjacent nodes is used, along with

�ux and current continuity, to eliminate side-�uxes from the equations and hence to

express the side-averaged current in terms of the two adjacent node-averaged �uxes.

A full derivation of these expressions may be found in Smith (1979), but the basic

relations are provided here.

Using the one-dimensional analytic solution which we have obtained in eq. (2.15)

over multiple nodes, and after some algebraic manipulation, two expressions result.

The �rst for surface-averaged current and the second an expression for side-averaged

�ux, respectively as

J
g

mn = d̃mnn pmnn [Φ
g

n − Zmn]− d̃mnn Φ
g

mn (2.16)

and

Φ
g

mn = pmnn [Φ
g

n − Zmn]− J
g

mn

d̃mnn
(2.17)

with the boundary value of the so-called tensorial source calculated as

Zmn = −

(
hn,u

2

)
2

2 (|βnmn |) 2

∫ 1

−1

(1− cosh(|βnmn | ± |βnmn |u))sn(u)du. (2.18)

This source is so named due to the fact that it has a value on the left (−) and

right (+) hand sides of the node which has contributions from the directions under

consideration, as well as contributions from the transverse directions. The analytic

coe�cients are given by

tmnn =
|βnmn |

tanh(|βnmn |)
,

d̃mnn = (
2

hn,u
)Dg

nt
mn
n

and the node size correction factor as

pmnn =
2 |βnmn |

sinh(2 |βnmn |)
.
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Note that eq. (2.16) expresses the side-current in terms of the node-averaged �ux

in the same node and similarly (2.17) expresses the side-averaged �ux in terms of the

node-averaged �ux in the same node. At this point any of these may be chosen as

primary unknowns and we proceed here with node-averaged �ux as the chosen primary

unknown. In order to determine the node-averaged �ux to the side-averaged current

relationship required in eq. (2.3), a two node problem is constructed. Together with

continuity conditions for both the side-averaged �ux and side-averaged current at the

interface between adjacent nodes, expressions (2.16) and (2.17) are utilized to express

the side-averaged current as

J
g

mn = Cg
mn(Φ

g

n − Zmn)− Cg
nm(Φ

g

m − Znm) (2.19)

with

Cmn = dnmp
mn
n

Cnm = dnmp
mn
m

where the harmonic averaged surface di�usion coe�cient is given by

dnm = [(d̃mnn )−1 + (d̃mnm )−1]−1.

After inserting eq. (2.19) into eq. (2.3) we obtain a system of N equations

with node-averaged �uxes as primary unknowns. This system can be solved with

an appropriate iteration scheme. In the limit of in�nitesimally small node sizes (as

hn,u → 0), it can be shown that expression (2.19) limits to the traditional �ne-

mesh �nite-di�erence expression for the side-averaged current, which is an important

property of nodal methods.

In this work node-averaged �uxes are selected as primary unknowns and hence

eliminating side-averaged currents in equation (2.3) via relation (2.19) yields the �nal

form of the nodal balance equation

[
6∑

m=1

anmn Cmn + σg,rem
n

]
Φ
g

n −
6∑

m=1

anmn CnmΦ
g

m =
6∑

m=1

anmn [CmnZmn − CnmZnm] +

(2.20)

1

keff

χg
G∑
h=1

vhσhn,fisΦ
h

n +
G∑

h=1,h6=g

σh→gn,scatΦ
h

n.
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If, for instance, we preferred to eliminate the node-averaged �ux in favour of

the side-averaged current, we would obtain a set of coupled three-point equations (in

each direction) for interface currents. In this case we obtained a set of 7-point balance

equations for the node-averaged �ux.

Importantly, we may note that the ANM utilizes only four unknowns per node,

namely the node-averaged �ux and three directional average leakages (which are car-

ried within the tensorial sources). As described in Section 2.3.1, the NEM approach

solves for seven unknowns per node and hence, the ANM may exhibit slight perfor-

mance advantages over the NEM.

2.3.3 Transverse leakage approximations

The so-called ``transverse leakage'' terms play an important role. Physically, they rep-

resent particle exchange between neighbouring cells in the transverse direction; math-

ematically they ensure the coupling between the one-dimensional equations. These

terms appear due to the transverse integration procedure and if treated exactly, would

allow the nodal methods to essentially recover the reference node-averaged �uxes, es-

pecially in the case of the ANM which does not contain any further approximations.

Given the importance of this treatment to the accuracy of the solution, a number

of approaches has been implemented over the years; some of the most prominent

e�orts are summarized in this section. These approximations all share the common

characteristic (with the exception of the ��at leakage approximation�) that they are

external to the nodal di�usion solution, do not have clear error bounds and have been

generally and probably aptly, described in Dilbert and Lewis (1985) as ad hoc, yet

e�ective.

2.3.3.1 Buckling approximation

One of the �rst attempts to resolve the transverse leakage term was proposed in

(Shober and Henry, 1976a,b) and entailed the assumption that the transverse leakage

shape was the same as that of the one-dimensional �ux, hence

Lg,vwn (u) = Bg
nmφ

g
n(u)

where the value of Bg
nm is determined by requiring that the average transverse leakage

from the two transverse directions is conserved. This approximation would prove

accurate as long as the three-dimensional �ux in the node is spatially separable,

which is often not the case in reactor problems.
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2.3.3.2 Flat leakage approximation

Given the relatively large errors that could occur due to the �Buckling approximation�,

Shober and Henry (1976a), Shober and Henry (1976b) and Shober et al. (1977) further

proposed a ��at leakage approximation�, which probably is conceptually the simplest

solution. Here we assume that the leakage is simply equal to its average value, as

given in eq. (2.9). Although this approach improved upon the large errors for highly

non-separable problems, it signi�cantly constrained the accuracy in general problems.

As a further suggestion, a �at two step solution was proposed in Shober (1978), which

improved upon the accuracy of the �at leakage approximation.

2.3.3.3 Quadratic leakage approximation

Probably the most successful transverse leakage approximation to date was proposed

in Bennewitz et al. (1975). Its simplicity and relatively good accuracy, very quickly

attracted attention and this �Standard Quadratic Leakage Approximation� (SQLA)

became a near industry standard in nodal codes, up to the present day. The approach

suggested a three-node quadratic �t (in the direction of interest) of average transverse

leakage, with the constraint that the average leakage in each node be maintained by

the �t. The obtained shape was then only applied in the central node. Thus,

Lg,vwn (u) = qgn,0 + qgn,1u+ qgn,2u
2 (2.21)

and the coe�cients determined from

1

hn−1,u

∫
hn−1,u

Lg,vwn (u)du = L
g,vw

n−1 ,

1

hn,u

∫
hn,u

Lg,vwn (u)du = L
g,vw

n (2.22)

and

1

hn+1,u

∫
hn+1,u

Lg,vwn (u)du = L
g,vw

n+1 .

It is with this quadratic leakage approximation and its potential improvement

that this thesis is primarily concerned. Although implemented in most modern nodal

codes today, some speci�c di�culties, as outlined in Section 1.3.3, exist with this

approach, which lead in some cases to node-averaged power errors in excess of 2%.

While these errors were quite acceptable at the time of the QLA development, modern

accuracy requirements could bene�t from both a more consistent and a less error prone
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approach, but only if such an proposal did not incur an excessive calculational time

penalty.

Some of the earliest e�orts to address the issue of the transverse leakage approxi-

mation in a fully consistent way, culminated in a class of nodal methods referred to

as higher-order methods. We will investigate these methods in Section 2.5 as a basis

for a practical, yet improved solution scheme, for the issue of resolving the transverse

leakage terms in transversely-integrated nodal methods.

2.3.3.4 Method of successive smoothing

A less widely utilized approach, but one which is found as alternatives in both the

NEM (Beam et al., 1999) and AFEN (Noh and Cho, 1994) codes, is the so-called

�method of successive smoothing�. This approach applies a two-dimensional Tay-

lor series approximation of within-node quantities to approximate the shape of the

currents on the node surfaces, up to the second order, for the purpose of construct-

ing the leakage polynomial. Corner point �uxes are needed in the expansion and

are obtained during the nodal solution via a smoothing procedure as described by

Finnemann et al. (1992). According to published results in these listed papers, this

approach does improve upon the accuracy of the SQLA, but only marginally so.

2.4 Transverse Leakage Free (Direct) Nodal Meth-

ods

A number of coarse-mesh methods have been developed during the life cycle of nodal

methods, which aim at solving the intra-nodal �ux distribution directly (Sutton and

Aviles, 1996). Most of these may be classi�ed as �ux expansion methods, with the

QUABOX (Langenbuch et al., 1977a) and CUBBOX codes (Langenbuch et al., 1977b)

as some of the earliest e�orts, although in these cases they were aimed at space-time

application. In QUABOX quadratic polynomials are used and basis functions are

expressed as sums and products of Taylor polynomials, with support points chosen

as box and surface centered �uxes. Flux values at the support points are obtained

by generating matrix equations via a weighted residual approach. In the CUBBOX

code, the set of basis functions are extended to cubic and include one-dimensional

polynomials, splines and three-dimensional polynomials. The �ux support points no

longer provide su�cient conditions and typically Galerkin weighting is used in this

case.
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Although many such variants exist, most of these �direct� coarse-mesh solvers have

not been accepted in the industrial code systems to nearly the same degree as the class

of transversely-integrated nodal methods, with a small number of exceptions. Here

we can mention the more traditional FEM option implemented in the CRONOS code

system (Lautard et al., 1991) and the Analytic Function Expansion Nodal (AFEN)

method (Noh and Cho, 1993). We discuss the latter here as an illustrative example

of how such methods are constructed.

2.4.1 The analytic function expansion method

The AFEN solution method makes use of a direct, non-separable analytic function

expansion of the 3D intra-nodal �ux and hence aims to solve eq. (2.2) directly. The

intra-nodal �ux is expanded in a combination of trigonometric and hyperbolic basis

functions, each of which satis�es the di�usion equation at any point in the node. In

the original 2D development, as discussed in Noh and Cho (1993) and Noh and Cho

(1994), nine basis functions are used and coe�cients are expressed in terms of the

node-averaged �ux, four side-averaged �uxes and four corner point �uxes.

Coupling conditions for node-averaged �uxes are determined by the set of nodal

balance equations. Conditions for the side-averaged �uxes are obtained from current

continuity conditions and conditions for corner �uxes are determined by considering

neutron balance in a small box around the corner point. This original development

proved quite accurate, but at a computation cost orderly 30% - 40% more expensive

than standard transversely-integrated nodal methods (in 2D). The authors further

indicated that the method would naturally lend itself to supply more accurate infor-

mation to existing homogeneous �ux reconstruction methods.

In subsequent developments of AFEN (Cho et al., 1997; Woo and Cho, 2000) the

method was extended to support hexagonal geometry and the need for corner �uxes

as support points was identi�ed as a weakness. It was proposed to extend the set of

basis functions in the intra-nodal expansion to include products of trigonometric func-

tions and combinations of linear functions from the transverse directions (thus adding

basis functions such as y sin(kx) or yz sin(kx)). Given the additional coe�cients in

the expansion, further conditions were required to close the system of equations. Con-

tinuity of �ux and current moments at node interfaces were utilized for this purpose,

yielding excellent accuracy. In Noh and Cho (1994) and Woo and Cho (2000), the

intra-nodal �ux expansion is given in full detail, for 2D and 3D respectively; given the

algebraic complexity of the expressions they are not repeated here. The method has
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been further expanded to include cylindrical geometry (Cho, 2006) with the intention

to support the class of pebble bed high temperature gas cooled reactor designs.

This method provides a good example of how �transverse leakage free� methods

could be assembled and what bene�t they aim to provide, be it in a non-rigorous

fashion where the reasoning for the selection of required basis functions in the expan-

sion is somewhat arbitrary. Although not clearly stated in associated publications

for 3D problems, it may be deduced from the number of unknowns per node that

the computational cost of this approach is probably comparable to full higher-order

methods. In fact, in Noh and Cho (1994) it is indicated that 49 nodal unknowns

are utilized, which would place the computational e�ort required to resolve the set of

equations, to somewhere between a full second order and full third order higher-order

solution. The meaning of this will be clari�ed in the following section, but su�ce to

say that this implies a calculational e�ciency of around 10 times slower than the stan-

dard ANM with the quadratic leakage approximation in 3D (recall that the standard

ANM carries 4 unknowns per node in 3D).

In the opinion of the author of this thesis, the AFEN method represents an ad-hoc

simpli�cation to the full higher-order methods, as they are described in Section 2.5,

but in essence echoes the underlying aim of this work - how to justi�ably enhance the

accuracy of nodal methods for the purpose of improving the primary shortcomings of

the leakage approximation and the intra-nodal �ux reconstruction, at an acceptable

cost.

2.5 Higher-order Nodal Methods

A short historical overview of higher-order nodal methods was provided in Section

1.4. This class of methods aim to describe (to an arbitrary order), the intra-node

�ux solution exactly. Since these methods are also generally based on the transverse

integration principle, they provide, as a natural addition, the correct expression for

the transverse leakage terms. Work in this regard was �rst suggested by Dorning

(1979) and Dilbert and Lewis (1985), and later furthered by Ougouag and Raji¢

(1988), Altiparmakov and Toma²evi¢ (1990) and Guessous and Akhmouch (2002).

This class of nodal methods will form the basis of the development of this thesis and

hence, a more comprehensive overview is provided (in conjunction with Appendix A).

In the work by Ougouag and Raji¢ (1988) a weighted transverse integration ap-

proach, akin to weighted residual methods (particularly closer to Galerkin methods),

is followed to generate the set of equations for higher-order �ux moments. This
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approach will also form the basis of the development in this thesis and as such, is

described in detail in Section A.1. The method was later variationally derived by

Altiparmakov and Toma²evi¢ (1990) which yielded useful insight regarding the ac-

tual intra-nodal �ux expansion used in this class of higher-order nodal methods. It

was made clear that the weighted residual method is equivalent to the variational

formulation with the following intra-nodal trial function:

φgn(u, v, w) =
L∑
l=0

K∑
k=0

flk(u)Pl(
2v

hn,v
)Pk(

2w

hn,w
) +

M∑
m=0

K∑
k=0

gkm(v)Pk(
2w

hn,w
)Pm(

2u

hn,u
)+

(2.23)

M∑
m=0

L∑
l=0

hml(w)Pm(
2u

hn,u
)Pl(

2v

hn,v
)− 2

K∑
k=0

L∑
l=0

M∑
m=0

cmlkPm(
2u

hn,u
)Pl(

2v

hn,v
)Pk(

2w

hn,w
)

with flk(u), gkm(v) and hml(w) representing one-dimensional semi-moments in each

direction and clkm denoting the full �ux moments. All of the semi-moments may be

related to the full �ux moments (clkm) quite simply via

cmlk =
2m+ 1

hn,u

∫
hu

flk(u)Pm(
2u

hn,u
)du (2.24)

=
2l + 1

hn,v

∫
hv

gkm(v)Pl(
2v

hn,v
)dv

=
2k + 1

hn,w

∫
hw

hml(w)Pk(
2w

hn,w
)dw.

Here K, L and M represent the order of the method in each direction and the same

order is typically assumed in each direction (M). These higher-order methods clearly

contain signi�cantly more unknowns per node than the traditional nodal methods and

hence incur a substantial calculational cost penalty. In subsequent work by Guessous

and Akhmouch (2002) the solution was developed with partial currents as primary

unknowns and recast in a response matrix formalism.

Independent of approach utilized, it is insightful to note that in 3D:

• Selecting the expansion order in (2.23) equal to 1, roughly matches the accuracy

of the standard nodal method when employing the quadratic transverse leakage

approximation, but at about three times the calculational cost; and
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• Selecting the expansion order equal to 2 improves the error of the quadratic

leakage approximation by about one order of magnitude, but at a cost penalty

of about 10 times.

It can thus be understood why these methods have not found their way into the main

stream of nodal di�usion methods, even though they provide a very elegant solution

to the issues of both transverse leakage and homogeneous �ux reconstruction.

Some initial e�orts to amend these methods for the purpose of improving the

transverse leakage approximation were made in Toma²evi¢ (1997), wherein an e�ort

was made to perform local single node higher-order calculations and thus avoid spatial

coupling. Although e�ective in signi�cantly reducing calculational time, the governing

assumption that higher-order side-�ux moments were zero on node surfaces was too

limiting and obtained accuracy was only marginally better than the ANM using the

standard quadratic leakage approximation.

2.5.1 Description of weighted transverse integration in Carte-
sian geometry

As the weighted transverse integration approach is adopted in this work in order to

develop a practical transverse leakage approximation, the derivation, as in principle

described in Ougouag and Raji¢ (1988) is given in quite some detail. The full deriva-

tion is described in Appendix A and the important steps are repeated in this section

to illuminate the characteristics of the approach and introduce notation needed in

subsequent chapters.

The development produced here does di�er somewhat from that which is proposed

by Ougouag, since the method was originally formulated with side-averaged current

moments as primary unknowns, whereas here the solution is built around the tradi-

tional ANM structure in which node-averaged �uxes, or in this case, node-averaged

�ux moments, are the primary unknowns.

As stated before, transverse integration requires that eq. (2.2) is integrated over

the two transverse directions, in order to produce a one-dimensional equation in the

third direction. This process is repeated for all three directions. To achieve this for a

weighted transverse integration approach, it is again convenient to adopt the notation

of three arbitrary directions (u, v, w), with u representing the direction of choice and

v and w the transverse directions. To produce the set of transversely-integrated,

one-dimensional, higher-order nodal equations, eq. (2.2) is multiplied by Legendre

polynomials in both transverse directions, of order l and k, respectively. We let l
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and k range from 0 to M for all the combinations of (l, k), where M denotes the

order of the method. Note that M = 0 denotes the standard lower-order equations.

Furthermore, I will denote the maximum source expansion order used to formulate

the source terms in the one-dimensional equations. Hence, a speci�c higher-order

solution is classi�ed by both indices (M, I). Note that we drop both the group index

g and the node index n, in this section, for simplicity.

After completion of the weighted transverse integration process, the following

equation for the higher-order one-dimensional moments is obtained:

−D d

du2
φvwlk (u) + σremφ

vw
lk (u) = χg

ν

keff

G∑
h=1

φvw,hlk (u)σhfis+ (2.25)

G∑
h=1

φvw,hlk (u)σhscat(h→ g)− Lvw,wlk (u)− Lvw,vlk (u).

Here we identify φvwlk (u) as the one-dimensional (lk) moment of the three-dimensional

�ux, integrated over directions v and w. As a convention, we shall denote the direc-

tions over which a quantity has been integrated via superscripts (vw) and the order

of the Legendre Polynomials (in those directions) with which the quantity has been

folded in the integral, by the corresponding subscripts (lk). The order of integration

and indexing is determined in a cyclic manner ordered as uvw. Equation (2.25) looks

very much like the standard zero-order one-dimensional equations, with the excep-

tion of the form of the leakage source contribution from the w−direction Lvw,wlk (u)

and from the v−direction Lvw,vlk (u). These quantities may be expressed as:

Lvw,wlk (u) =
2k + 1

hw

(
Jv,wl (u,

hw
2

) + (−1)kJv,wl (u,−hw
2

)

)
+ (2.26)

D(2k + 1)k(k + 1)

h2
w

(
φv,wl (u,

hw
2

) + (−1)kφv,wl (u,−hw
2

)

)
−D

k−2∑
t=0

2k + 1

2t+ 1
λwtkφ

vw
lt (u)

and

Lvw,vlk (u) =
2l + 1

hv

(
Jw,vk (u,

hv
2

) + (−1)lJw,vk (u,−hv
2

)

)
+ (2.27)

D(2l + 1)l(l + 1)

h2
v

(
φw,vk (u,

hv
2

) + (−1)lφw,vk (u,−hv
2

)

)
−D

l−2∑
t=0

2l + 1

2t+ 1
λvltφ

vw
tk (u).
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.These expressions are quite complicated and as indicated, the full derivation of how

these terms are obtained may be found in Appendix A. Here we simply identify terms

and de�ne φw,vk (u,±hv
2

) as the u−dependent kth moments in w of the side-�ux on the

top and bottom v−surfaces; Jw,vk (u,±hv
2

) as the u−dependent kth moments in w of

the net current on the top and bottom v−surfaces. In other words, these quantities

de�ne the u-dependent shape of moments in the transverse directions and on the

transverse surfaces. Additionally

λwtk =
2t+ 1

hw

∫
hw

P ′′k (
2w

hw
)Pt(

2w

hw
)dw (2.28)

represents double Legendre integrals which may be expressed in terms of recurrence

relationships (given in Appendix A) as

λwtk =

(
2

hw

)2(
2t+ 1

2

)(
k(k + 1)− t(t+ 1)

2

)(
1 + (−1)k+t

)
.

The di�culties presented in solving eq. (2.25) is primarily in resolving the expressions

for the higher-order transverse leakage terms. These higher-order one-dimensional

equations may be solved via the same approach described in Section 2.3.2.1 and hence

can make use of signi�cant parts of existing nodal solvers to determine the side-�ux

and side-current moments, if the full �ux moments are known (analogous to zero-

order expressions (2.16) and (2.17)). The node-averaged higher-order �ux moments

are typically determined via the solution of the set of coupled higher-order balance

equations, once again analogous to their zero-order counter parts via eq. (2.20). The

set of higher-order balance equations, with triple index �ux moments as primary

unknowns, are generated by multiplying eq. (A.23) with Pi(u) and integrating it

over u. In this work, we will apply a somewhat di�erent approach to solve for the

higher-order full �ux moments, as described in Chapter 3. The approach will yield a

set of (M + 1)3 balance equations and 3(M + 1)2 one-dimensional equations in 3D.

2.6 Formulation of the Proposed Solution

This overview of the most important classes of nodal methods, as applied in modern

nodal codes, highlights the fact that the transverse leakage approximation is currently,

and has been for some time, the primary source of error in code systems which utilize

the ANM and NEM solution methods. Numerical support for this statement will be

forthcoming in future chapters. In terms of the notation in this chapter, a solution

is thus sought, which allows a more rigorous and accurate method of resolving the
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expression for the transverse leakage term as it appears in eqs. (2.7) or (2.8). We

notice from the overview of higher-order nodal methods and speci�cally expressions

(2.26) and (2.27) for the case k = l = 0, that these methods provide us with this

rigorous expansion in terms of moments of the �ux, side-current and side-�ux. The

unacceptable penalty we then face is the cost of having to calculate all moments

needed for reproducing the full intra-nodal �ux shape as in expression (2.23) to close

the system. Herein lies the primary challenge and the central question of this work:

Which set of justi�able simpli�cations may be introduced within the

class of higher-order nodal methods to improve the representation of the

zero-order transverse leakage term?

We may further compact this question in terms of the distinction introduced by

Dorning (1979) between nodal (unknowns as node-averaged quantities) and coarse-

mesh methods (unknowns as intra-nodal distribution) as:

How can one reformulate the class of higher-order �coarse-mesh� meth-

ods as true �nodal� methods?

Independent of which phrasing we select, these statements of the problem are

dealt with in the upcoming chapters with the following requirements:

• The proposed development should be packaged into a standalone software mod-

ule, pluggable into existing nodal codes as a leakage module with a simple

interface;

• Full higher-order capability should be available in the module for the purpose

of reference solution generation and homogeneous �ux reconstruction; and

• The module should be capable of supplying leakage coe�cients to a wide variety

of nodal codes, independent of whether they utilize ANM or NEM (or other)

solution schemes, and be compatible with a variety of acceleration and iteration

schemes.

2.7 Conclusion

In this chapter a detailed overview of modern nodal methods was provided, with

speci�c focus on the Analytic Nodal Method, the Nodal Expansion Method and the

Analytic Function Expansion Nodal method. The origin and typical solution methods

regarding the treatment of the so-called transverse leakage term was discussed and

as such, the primary area of investigation of this thesis was de�ned. The class of

higher-order nodal methods, from which a solution strategy is to be derived, was
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presented. Finally, the problem statement and proposed solution were de�ned in

terms of these existing schemes and the next chapters will focus on the development

of such a solution and the quanti�cation of its accuracy and performance.
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