
Chapter 3

The development of a consistent

transverse leakage approximation

3.1 Introduction

Thus far nodal methods, their history and their main line developments have been

overviewed and the problem at hand described. Chapter 2 is concluded with a deriva-

tion of the class of so-called higher-order nodal di�usion methods with a brief overview

of their strengths and weaknesses. It is echoed in this work, as suggested by the

original authors, that this class of higher-order nodal methods represents the natu-

ral extension of standard nodal methods to higher-orders and thus should provide a

strong theoretical base from which an appropriate simpli�cation, for the purpose of

improving the transverse leakage approximation, could be derived. This chapter is

thus focused on the development of such a simpli�cation and represents an important

part of the contribution put forward in this work.

The higher-order methods have been demonstrated to signi�cantly improve upon

the accuracy of the quadratic transverse leakage approximation, but thus far with

a large and unacceptable associated computational cost. Typically, standard nodal

methods provide performance improvement factors of between 100 and 1000 in 3D rel-

ative to �nite-di�erence methods. The current status of higher-order nodal methods

decreases this advantage by between 10 and 20 times and hence makes the coarse-

mesh methods less attractive. The performance advantage of nodal methods is not

without penalty and issues such as homogenization, coarse-mesh burnup, intra-nodal

cross-section shape approximations and �ux reconstruction are considered manage-

able drawbacks. Nevertheless, this balance between bene�t and disadvantage limits

the willingness of industrial code developers to signi�cantly compromise the e�ciency

of the current state of the art nodal methods.
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In this work, a method is suggested which would aims to maintain the accuracy

bene�ts of the higher-order approaches, but limit the computational cost penalty to

approximately 50% as compared to the standard ANM, utilizing the quadratic leakage

approximation. It should be stated that the class of higher-order nodal di�usion

methods provides not only signi�cant accuracy improvements, but inherently provides

information regarding the detailed intra-nodal �ux shape, which is needed for features

such as homogeneous �ux reconstruction. This work therefore also aims to make

these additional bene�ts of this powerful class of solution methods practical for use

in production codes.

3.2 Overview of the Approach

The method we propose in this work and the associated development we suggest

as novel is divided into two parts, described in Chapters 3 and 4. In this current

chapter the proposed simpli�cation to the standard higher-order nodal method is

developed, which aims to reduce the number of unknowns as compared to full higher-

order methods. The basic premise for this reduction, is the decision that one is only

interested in improving the representation of the transverse leakage expression as it

appears in the standard one-dimensional equations (or zero-order nodal methods)

and not, as is typical in higher-order methods, in the full intra-nodal �ux shape. We

will however explore a like-minded simpli�cation for the sake of homogeneous �ux

reconstruction in Chapter 4.

Nevertheless, the current chapter aims at de�ning what we term a �consistent�

leakage approximation and establishes the base accuracy of the proposed approach.

The reduction in the number of unknowns does not, however, yet provide su�cient

calculational e�ciency and Chapter 4 focuses on the development of a number of iter-

ation and solution schemes to accelerate and make the proposed approach practical.

3.3 A Consistent Leakage Approximation

3.3.1 Adaptation of standard (zero-order) nodal method

The underlying idea of the contribution in this work, as touched upon in the previous

section, is the e�ort to represent the transverse leakage expression without solving

the full set of higher-order nodal equations. The �rst step in this process, is to in-

vestigate the form of the transverse leakage term, as it appears in the zero-order

41



one-dimensional nodal equations. Here we reconnect with the notation in the previ-

ous chapter and restate, for clarity, eq. (2.7), which is the exact expression of the

transverse leakage term in terms of �ux as

Lg,vwn (u) = Lg,vn (u) + Lg,wn (u) (3.1)

= −Dg
n

[
1

hn,v

1

hn,w

∫
hn,vhn,w

∂2

∂v2
φg(u, v, w)dvdw

]

−Dg
n

[
1

hn,v

1

hn,w

∫
hn,vhn,w

∂2

∂w2
φg(u, v, w)dvdw

]
where we have separated the contribution from the v and w directions to u. The

value of this expression is largely academic since typically, in standard nodal methods,

no information is available regarding the intra-nodal �ux shape φg(u, v, w). On the

other hand, higher-order methods, through the establishment of the appropriate intra-

nodal trial function in Altiparmakov and Toma²evi¢ (1990), give us this information

(originally given in eq. (2.23) as discussed in Section 2.5), with all directions expanded

to order M as

φ(u, v, w) =
M∑
l=0

M∑
k=0

flk(u)Pl(
2v

hv
)Pk(

2w

hw
) +

M∑
m=0

M∑
k=0

gkm(v)Pk(
2w

hw
)Pm(

2u

hu
)+ (3.2)

M∑
m=0

M∑
l=0

hml(w)Pm(
2u

hu
)Pl(

2v

hv
)− 2

M∑
m=0

M∑
l=0

M∑
k=0

cmlkPm(
2u

hu
)Pl(

2v

hv
)Pk(

2w

hw
).

All the terms have the same meaning as discussed for eq. (2.23). Note again, as

in Section 2.5, we have dropped the node index n and the group index g, with the

order of integration and directions determined in a cyclic manner ordered as uvw,

carrying indices mlk. Thus, quantities in direction v, would have indices ordered as

km. To clarify this further, consider Figure 3.1 which illustrates the cyclic nature of

the directions.

42



U (index m)

V (index l)W (index k)

Figure 3.1: A graphical depiction of the indexing and directional cycling notation
employed in the higher-order derivations.

In this text we would typically consider direction u as the primary direction under

consideration and perform transverse integration �rstly over direction w and then

direction v in order to produce the one-dimensional u-equations. We insert expansion

(3.2) into eq. (3.1) to obtain the exact (up to the order of the expansion) expression

for the transverse leakage terms. We treat each term in the trial function separately

and illustrate here the four resulting terms speci�cally for the contribution from the

v- direction. We utilize the orthogonality of Legendre polynomials and obtain:

Term 1:− 2D

h2
v

M∑
l=0

fl0(u)
(
P
′

l (1)− P ′l (−1)
)
,

Term 2:
1

hv

M∑
m=0

(
Jv0m

(
hv
2

)
+ Jv0m

(
−hv

2

))
Pm

(
2u

hu

)
,

Term 3:− 2D

h2
v

M∑
l=0

M∑
m=0

(∫
hn,w

hml(w)P0

(
2w

hw

)
dw

)
Pm

(
2u

hu

)(
P
′

l (1)− P ′l (−1)
)
,

Term 4: +
4D

h2
v

M∑
l=0

M∑
m=0

cml0Pm

(
2u

hu

)(
P
′

l (1)− P ′l (−1)
)

(3.3)
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where J0m,v

(
±hv

2

)
denotes the net side-current moment of order m on the (±) surface

in the v−direction, or more precisely

Jv0m

(
±hv

2

)
= ∓D ∂

∂v
g0m(v) |v=±hv

2
. (3.4)

We notice that
∫
hn,w

hml(w)P0

(
2w
hw

)
dw and cml0 both represent full �ux moments of

the same order and may be combined to yield:

Lv(u) = −2D

h2
v

M∑
l=0

fl0(u)
(
P
′

l (1)− P ′l (−1)
)

+

1

hv

M∑
m=0

(
Jv0m

(
hv
2

)
+ Jv0m

(
−hv

2

))
Pm

(
2u

hu

)
(3.5)

+
2D

h2
v

M∑
l=0

M∑
m=0

cml0Pm

(
2u

hu

)(
P
′

l (1)− P ′l (−1)
)

again given here only for contribution from v to u (contribution from w to u has

similar form). Now we exchange the index of the second sum in the third term from

m to i, group �rst and third term together and exchange the index of the �rst sum

from l to m, to obtain

Lv(u) =
1

hv

M∑
m=0

(
Jv0m

(
hv
2

)
+ Jv0m

(
−hv

2

))
Pm

(
2u

hu

)
− (3.6)

2D

h2
v

M∑
m=0

[(
P
′

m(1)− P ′m(−1)
)(

fm0(u)−
M∑
i=0

cim0Pi

(
2u

hu

))]
.

In eq. (3.6) M denotes the maximum order of the intra-nodal expansion, which

is not necessarily equal to the order of the leakage expansion Ml, as in point 2 above.

We thus chooseMl independently as the leakage expansion order and analyze the full

expression of transverse leakage (3.6) for various values of Ml :

• If Ml = 0, we obtain the standard zero-order �at leakage approximation, in

terms of the side-averaged net currents in the v−direction:

Lv(u) =
1

hv

(
Jv00

(
+
hv
2

)
+ Jv00

(
−hv

2

))
. (3.7)

The average (�at) leakages in three adjacent nodes are typically utilized in the stan-

dard zero-order nodal methods to approximate the leakage polynomial via a quadratic

�t.
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• If Ml → ∞ and using the de�nition of fm0(u) =
∞∑
i=0

cim0Pi

(
2u

hu

)
, the second

term falls away and we obtain:

Lv(u) =
1

hv

Ml∑
m=0

(
Jv0m

(
+
hv
2

)
+ Jv0m

(
−hv

2

))
Pm

(
2u

hu

)
. (3.8)

• For any practical application, we may di�erentiate between 0 < Ml ≤ M <∞
in which case we rewrite

Lv(u) =
1

hv

Ml∑
m=0

(
Jv0m

(
hv
2

)
+ Jv0m

(
−hv

2

))
Pm

(
2u

hu

)
(3.9)

and 0 < M < Ml < ∞, which yields, after exchanging indices m and i in the

second term,

Lv(u) =
1

hv

Ml∑
m=0

(
Jvm0

(
hv
2

)
+ Jvm0

(
−hv

2

))
Pm

(
2u

hu

)
− (3.10)

2D

h2
v

Ml∑
m=M+1

[
M∑
i=0

(
P
′

i (1)− P ′i (−1)
)
cmi0Pm

(
2u

hu

)]
.

It can be seen that if we limit the leakage to a polynomial expansion order Ml,

the second term in eq. (3.6), written after expansion as eq. (3.10), contributes only if

M > 1 (properties of Legendre polynomial derivatives) and only for cases where we

choose Ml > M (index i starts at M + 1). In the latter case, some terms above the

order of the leakage approximation may be included in the expansion. The inclusion

of these terms is a matter of interpretation, since the choice ofMl implies that we are

not interested in polynomials of a higher-order than Ml in the expansion and thus

we proceed by selecting Ml = M, in which case the second term disappears and we

remain with eq. (3.9). For example, if we limit Lv(u) to a second order expansion

with Ml = M = 2, we obtain expression (3.11) and have formulated what may be

termed the consistent quadratic leakage approximation (CQLA), written here with

contributions from both v and w as

Lwv(u) =
1

hv

2∑
m=0

(
Jv0m

(
+
hv
2

)
+ Jv0m

(
−hv

2

))
Pm

(
2u

hu

)
+ (3.11)

1

hw

2∑
m=0

(
Jwm0

(
+
hw
2

)
+ Jwm0

(
−hw

2

))
Pm

(
2u

hu

)
.
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This expression for Lwv(u) describes the shape of the transverse leakage in direc-

tion u from direction v and w out of the node in terms of side-current moments. The

generalized form of expression (3.6) was alternatively obtained in Section 2.5.1 via

weighted transverse integration and eq. (3.6) could be recovered from eq. (2.27) by

1. substituting k = l = 0; and

2. projecting the u-dependent leakage source onto a set of Legendre polynomials

up to order Ml.

We note that in this consistent, higher-order leakage approximation, the transverse

leakage terms may be expressed as a function of one-dimensional current moments

(Jv0m and Jwm0). Our task therefore is reduced to �nding a method of generating

these higher-order moments and to use them in the construction of the zero-order

transverse leakage shape. Prior to considering how to obtain these current moment

expressions, it is insightful to evaluate graphically how this consistent transverse

leakage approximation di�ers from that which is obtained from the standard quadratic

leakage approximation (SQLA).

To illustrate this di�erence more clearly, consider Figures 3.2 and 3.3, which depict

the information utilized in constructing the SQLA vs the proposed CQLA.
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Figure 3.2: A graphical depiction of the information utilized in constructing the
standard quadratic transverse leakage approximation.

We are interested to �nd the shape of the transverse leakage from the v- to the

u-direction. In Figure 3.2 the SQLA approach is depicted and it can be seen that

the average leakages on the v-surfaces are taken from three adjacent nodes in the

u-direction. The three average leakages are then �tted with a quadratic polynomial

over the three adjacent nodes to produce an u-dependent transverse leakage shape.

This in itself is somewhat inconsistent, since only information from neighbours in the

u-direction is used to estimate the leakage from the v-direction.
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Figure 3.3: A graphical depiction of the information utilized in constructing the
consistent quadratic transverse leakage approximation.

In Figure 3.3, the CQLA approach to the leakage shape is depicted. Here we

see that the shape of the currents on the surfaces between the neighbours in the v-

direction is used to determine the transverse leakage from the v-neighbours. It indeed

seems more appropriate to use information from the neighbours in the v-direction to

estimate the leakage shape from that direction. According to eq. (3.11) the leakage

term is expressed in terms of the one-dimensional current moments on the top and

bottom surfaces. The u-dependent information in the v-neighbours originates from

the global solution.

Although these arguments are somewhat heuristic, they provide some intuitive

reasoning behind why higher-order nodal methods are often classi�ed as consistent

and why utilizing the higher-order nodal formalism may prove to be the correct ap-

proach when approximating the transverse leakage terms speci�cally, as they appear

in standard transversely-integrated nodal methods.
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3.3.2 Higher-order calculation of current moments

We have identi�ed, in eq. (3.11), that moments of the net current on the transverse

surfaces are required in order to express the transverse leakage term, as it appears

in the zero-order one-dimensional equations. We resort to techniques from standard

higher-order methods once more and apply the weighted transverse integration proce-

dure to generate a set of one-dimensional equations which may be solved to generate

the current moments needed.

After this process, as discussed in Section 2.5.1, we obtain one-dimensional higher-

order equations as given in eq. (2.25) and repeat it here for clarity

−D d2

du2
φvwlk (u) + σremφvwlk (u) = χg

ν

keff

G∑
h=1

φvw,hlk (u)σhfis+ (3.12)

G∑
h=1

φvw,hlk (u)σhscat(h→ g)− Lvw,wlk (u)− Lvw,vlk (u)

with Lvw,wlk (u) and Lvw,vlk (u) representing the higher-order transverse leakage contri-

butions from w and v, respectively. Their explicit form is provided in eqs. (2.26) and

(2.27). If we connect with the notation utilized in the 3D trial function given in eq.

(3.2), we can equate the moments in the trial function with the transversely-integrated

�ux moments in the following way:

flk(u) = φvwlk (u),

gkm(v) = φwukm(v),

hml(w) = φwvml(w) and

cmlk = φuvwmlk .

As a reminder of this notation, the subscripts and superscripts denote the orders and

directions over which a quantity has been integrated, respectively.

If the source terms in eq. (3.12) are resolved, it can be solved analytically as per

the standard ANM procedure, only here for higher-order �ux moments as unknowns.

Fission and scattering sources are treated as known by utilizing the higher-order �ux

moments from the previous iteration and we are left to investigate the higher-order

transverse leakage sources. However, before proceeding to investigate these sources,
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we �rst aim at determining which (l, k) pairs are needed and thus how many one-

dimensional equations have to be assembled.

If we revisit eq. (3.11), in an e�ort to determine which current moments are

needed for the case of a second order expansion (rewritten here in full higher-order

notation) as

Lwv00 (u) =
1

hv

2∑
m=0

(
Jwu,v0m

(
+
hv
2

)
+ Jwu,v0m

(
−hv

2

))
Pm

(
2u

hu

)
+ (3.13)

1

hw

2∑
m=0

(
Juv,wm0

(
+
hw
2

)
+ Juv,wm0

(
−hw

2

))
Pm

(
2u

hu

)
in direction u with contributions from both v and w, we see that we are only interested

in current moment pairs of orders (0, 0), (0, 1), (0, 2), (1, 0) and (2, 0). Thus only these

�ve equations per direction need to be generated via weighted transverse integration

and solved analytically.

This implies that limiting the leakage expansion to order 2 and only solving the

higher-order equations needed for the representation of the transverse leakage term

reduce the number of one-dimensional higher-order equations from 27 in full second

order solutions to 15 in 3D (if we include the zero-order 1D equations in this count).

This is an important simpli�cation as compared to full higher-order approaches.

3.3.3 Treatment of higher-order leakage terms

After we perform the weighted transverse integration and obtain one-dimensional

equations, we proceed to solve these equations analytically, as is typically done in the

ANM zero-order methods. From the analytic solution, we obtain the needed side-

current moments by solving two-node problems in each direction (as is also typically

done in zero-order methods). The major di�erence in these higher-order equations (as

compared to the zero-order equations), is the structure of the higher-order transverse

leakage terms. These terms are still quite complicated and contain various current,

side-�ux and full �ux moments, which are not standardly available in nodal codes

and require us to add additional one-dimensional equations (see eqs. (2.26) and

(2.27)). Here, however, we make an important observation. The average value of the

leakage terms in the higher-order equations for direction u and contribution from w,

for arbitrary k, is

L
vw,w

lk =
2k + 1

hw

(
Juv,w0l (

hw
2

) + (−1)kJuv,w0l (−hw
2

)

)
+ (3.14)
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D(2k + 1)k(k + 1)

h2
w

(
φuv,w0l (

hw
2

) + (−1)kφuv,w0l (−hw
2

)

)
−D

k−2∑
t=0

2k + 1

2t+ 1
λwtkφ

uv,w
0l,t (u).

where Juv,w0l (±hw
2

) refers to the side-current moment and φuv,w0l (±hw
2

) to the side-�ux

moment on the ± w−sides and φuv,w0l,t to the (0, l, t) full �ux moment, calculated

from the one-dimensional equation in direction w. Thus explicitly, written up to the

second order (since these are the terms we need to consider for a second order leakage

expansion), we have:

L
vw,w

l0 =
1

hw

(
Juv,w0l (

hw
2

) + Juv,w0l (−hw
2

)

)
L
vw,w

l1 =
3

hw

(
Juv,w0l (

hw
2

)− Juv,w0l (−hw
2

)

)
+

6D

h2
w

(
φuv,w0l (

hw
2

)− φuv,w0l (−hw
2

)

)
L
vw,w

l2 =
5

hw

(
Juv,w0l (

hw
2

) + Juv,w0l (−hw
2

)

)
+

+
30D

h2
w

(
φuv,w0l (

hw
2

) + φuv,w0l (−hw
2

)

)
− 60D

h2
w

φuv,w0l,0

(3.15)

Using only the average value of the higher order leakage terms (or in other words

a ��at� leakage approximation) in the higher order equations, the expressions above

may be constructed from quantities which are already available within the solution. To

clarify this, it is instructive to list which data is typically available from zero-order

nodal methods and thus clarify which data, needed in the proposed development,

would require additional calculations. Table 3.1 describes the set of nodal quantities

typically calculated as routine within transversely-integrated nodal methods. Note

that, once again, the node index n and the group index g are dropped in the table

and quantities are given in higher-order notation.

Table 3.1: Notational description of nodal quantities available in standard nodal
codes, with I referring to the maximum source order (typically 4).

Quantity Description

Φ000 Node-averaged �ux

Jvw,u00

(
±hu

2

)
, Jwu,v00

(
±hv

2

)
, Juv,w00

(
±hw

2

)
Side-averaged current

φvw,u00

(
±hu

2

)
, φwu,v00

(
±hv

2

)
, φuv,w00

(
±hw

2

)
Side-averaged �ux

φvw,u00,m, φ
wu,v
00,l , φ

uv,w
00,k Flux moments k, l or m ({k, l,m} ∈ {0...I})
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In Table 3.1 Φ000 refers to the node-averaged �ux, J
vw,u
00

(
±hu

2

)
to the side-averaged

current on the ± surface in the u direction and φvw,u00,m refers to the mth order Legendre

moment of the one-dimensional �ux in the u direction. With this table in hand,

consider eq. (3.14) again and note:

• when l = 0 all quantities are from the standard zero-order nodal solution -

namely surface-averaged net currents (Juv,w00 ), surface-averaged �uxes (φuv,w00 )

and node-averaged �ux (Φ000); and

• when l > 0, then k = 0 since we need only (0,0), (0,1),(0,2),(1,0),(2,0) pairs and

eq. (3.14) reduces to

L
vw,w

l0 =
1

hw

(
Juv,w0l (

hw
2

) + Jvu,w0l (−hw
2

)

)
. (3.16)

However, these surface-current moments will be available since the equation

pairs were already identi�ed as necessary to be solved for expressing the zero-

order transverse leakage term in expression (3.11).

This implies that a "�at leakage" approximation in the higher-order equations allows

us to resolve the higher-order leakage terms without the need for solving any further

equations. This is an important assumption which di�erentiates this method from the

typical higher-order approach. In justi�cation of such an assumption, it is important

to note that we are in actual fact discarding only cross-term �ux moments from

the intra-nodal expansion, or terms which have more than one index di�erent from

zero. It is reasonable to assume that our intra-nodal �ux distributions are smooth

functions and as such we postulate that a reduced lower-order subset of the full

expansion may yield a representation su�ciently accurate to express the shape of the

nodal side-currents, as are needed in the resolution of the one-dimensional transverse

leakage terms. Various alternative approaches for reduction of the expansion could

be adopted, such as ANOVA analysis which allows the rejection of bases functions

based on their contribution to the total function variance (An and Owen, 2001) or

sparse grid based integration (Griebel and Grestner, 1998) which assumes a limited

summative order for the multi-dimensional expansion. Although not directly applied

here, these formulations support the arguments that a lower-order subset of the full

expansion may retain much of the intra-nodal shape information and speci�cally that

the discarded cross-terms may be regarded as smaller higher-order contributions.

At this point we make a �nal important observation. In order to solve the higher-

order one-dimensional equations and thus to obtain the surface-current moments
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which we require in the zero-order transverse leakage expression, we construct a

two-node problem utilizing current and �ux moment continuity conditions at shared

interface surfaces and solve for the interface current moments. This approach is anal-

ogous to the standard zero-order ANM and requires the average value of the �ux

moment under consideration (see description in Section 2.3.2.2). We reproduce the

side-current expression here, based on eq. (2.19), but rewritten for the higher-order

case. Note that the neighbouring node numbers s and p are reintroduced to indicate

from which node a quantity is taken and yields

Jvw,us,kl

(
+

2u

hs,u

)
= Cu

s

(
+

2u

hs,u

)(
Φ
uvw

s,0lk − Z
vw,u
s,kl

(
+

2u

hs,u

))
− (3.17)

Cu
p

(
− 2u

hp,u

)(
Φ
uvw

p,0lk − Z
vw,u
p,kl

(
− 2u

hp,u

))
.

In eq. (3.17), Cu
s

(
+ 2u
hs,u

)
refers to the nodal coupling coe�cient on the outer surface

in the u direction of node s and Zvw,u
s,kl

(
+ 2u
hs,u

)
to the value of the tensorial source on

the outer u−boundary of node s. From this equation it can be seen that the average

value of the higher-order �ux moments, Φ
vwu

s,0lk and Φ
vwu

p,0lk, from neighbouring nodes

s and p are needed in order to solve the higher-order interface current moment at

the surface which these nodes share. In full higher-order methods, the average value

of the �ux moments are obtained from a full spatial sweep of the system for each

moment. If we, once again, inspect the set of equation pairs needed to represent

only the zero-order transverse leakage term, we identify that, for the u direction, we

require node-averaged �ux moments with indices (000,001,002,010,020). Moreover, if

we consider all three directions, we require node-averaged �ux moments with indices

(000,001,002,010,020,100,200). Since only one index is di�erent from 0, these �ux

moments are actually the moments of the one-dimensional �ux, written in full higher-

order notation, for moments in the u direction, as

φvw,u00,m =
2m+ 1

hu

∫
hu

φvw00 (u)Pm(
2u

hu
)du. (3.18)

All of these one-dimensional �ux moments are typically calculated by nodal codes

by projecting the one-dimensional solutions onto a set of Legendre polynomials and

hence are already available (see Table 3.1). It is thus not needed to sweep the system

to obtain these �ux moments and the subsequent current moments from the solution

of the constructed two-node problems.
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To clarify this, consider once more the node averaged higher moments needed in

eq. (3.17) and investigate the distinction between φvw,ulk,0 and Φ
uvw

s,0lk. The former refers

to the one-dimensional �ux moment in the direction u, of order 0, as projected from

the solution of the higher-order one-dimensional equation weighted with the Legendre

polynomial of order l in direction v and order k in direction w. The latter, with the

same indices, refers to the node-averaged higher-order �ux moment of order 0lk.

In actual fact there are three di�erent higher-order one-dimensional moments with

indices 0lk, one in each direction and Φ
uvw

s,0lk is actually computed as the average of

these three. It should of course be so that, since the order of integration is arbitrary,

all four these moments (average and three one-dimensional counterparts) are equal,

but this is only true at convergence of the solution and thus the averaging process is

needed in order to stabilize the iteration sequence. Thus, in this case, node-averaged

�ux moment Φ
uvw

s,0lk is calculated from

Φ
uvw

s,0lk =

(
φvw,ulk,0 + φwu,vk0,l + φuv,w0l,k

)
3

(3.19)

as an alternative to generating the set of higher-order balance equations and solving

the resulting linear system for each moment.

This observation of using the one-dimensional �ux moments obtained from any

typical nodal code instead of sweeping the system for their average values, is the

�nal di�erentiating factor between the described method and the full higher-order

methods and supports the claim that this formulation could prove to be the basis for

a local, or hierarchically constructed, higher-order transverse leakage approximation.

This step further allows the decoupling of the higher- and lower-order components of

the solution, as discussed in more detail in Chapter 4.

In summary, the proposed method, for a second order expansion, adapts the typ-

ical higher-order nodal di�usion method in the following ways:

• generate only the higher-order equations, or (l, k) pairs per direction, needed

for the representation of the standard one-dimensional transverse leakage ex-

pression - thus retain only (l, k) pairs with one index di�erent from zero. The

resulting expression requires only one-dimensional current moments on each

surface;

• limit the order of the transverse leakage expansion in the zero-order equations

to 2;
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• apply a "�at" leakage approximation in the higher-order one-dimensional equa-

tions, which �decouples� the remaining unknowns in full higher-order methods

and closes the system. This approximation e�ectively neglects cross-terms from

the solution of the higher-order equations and constitutes the major approxi-

mation in the proposed method;

• instead of sweeping the system, obtain the node-averaged values for the higher-

order �ux moments from the zero-order nodal solution. This is possible since

only a subset of surface-current moments (as compared to full higher-order) are

needed to express the zero-order transverse leakage term and speci�cally only

higher-order moments with a single non-zero index;

• solve a two-node problem on each surface to obtain the surface-current moments

from the analytic solution of the one-dimensional higher-order equations. This

implies 15 two-node problems to be solved per node in 3D; and

• The proposed CQLA method, in 3D, would require the calculation of 7 node-

averaged �ux moments, as compared to 27 for a full second order, higher-order

solution. The expected gain then, in terms of computational cost, taking into

account the additional burden of solving the two-node problems, is around a

factor of 3. Numerical analysis in Chapter 5 aims to quantify this estimate on

practical problems.

This description concludes the de�nition of the consistent transverse leakage approx-

imation (CLA) and in particular the de�nition of the consistent quadratic transverse

leakage approximation (CQLA). The proposed method is not limited to the second

order and may be extended to an arbitrary order if the required higher-order one-

dimensional equations are added to the solution set. However, further performance

improvements to the CQLA approach are needed to make this approach practical and

these are introduced and discussed in Chapter 4. Numerical examples to quantify the

performance and accuracy of the CQLA approach are analyzed in Chapter 5.

3.4 Extension of the Method to a Full Higher-order

Solution

As discussed in Section 3.3, the solution method proposed for the subset of higher-

order equations di�ers from previously published work, primarily in the calculation of
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higher-order node-averaged �ux moments. In past higher-order solution schemes (Al-

tiparmakov and Toma²evi¢, 1990; Ougouag and Raji¢, 1988; Guessous and Akhmouch,

2002) higher-order �ux (or in some cases side-current) moments are obtained itera-

tively via spatial sweeps over the system for each moment.

In this work the aim is to solve the higher-order equations, so far possible, lo-

cally, using the zero-order nodal solution as a driver. Such a scheme would facilitate

the development of a standalone higher-order module and in doing so simplify the

connection to existing nodal codes. The discussion in Section 3.3.3 achieves this re-

quirement, since the needed higher-order node-averaged �ux moments are constructed

from one-dimensional �ux moments available in zero-order nodal codes.

Due to the �at leakage approximation in the higher-order equations, the set of

equations was restricted, but if the full expressions for higher-order transverse leakage

are kept (as in eqs. (2.26 and 2.27)) all 27 moments (in the case of 3D second order)

are required. The question arises whether such a hierarchical construction could be

utilized to perform a full higher-order solution and thus avoid spatial sweeps for all

the higher-order �ux moments.

To illustrate this hierarchical principle, Table 3.2 extends Table 3.1 in that all the

additional quantities, available from the CQLA method, are listed. For brevity, only

the quantities obtained from the one-dimensional u−equation are shown.

Table 3.2: Nodal quantities available in the CQLA solution.

Symbol Description

Φ
uvw
m00,Φ

uvw
0m0,Φ

uvw
00m Higher-order node-averaged �ux moments

Jvw,u0m

(
±hu

2

)
, Jvw,um0

(
±hu

2

)
Side-averaged current moments

φvw,u0m

(
±hu

2

)
, φvw,um0

(
±hu

2

)
Side-averaged �ux moments

φvw,um0,i , φ
vw,u
0m,i One-dimensional �ux moments of order i

The critical observation from Table 3.2 is the availability of φvw,um0,i and φ
vw,u
0m,i , which

represent the one-dimensional moments of the analytic solution of eq. (3.12). Details

regarding the calculation of these higher-order moments are available in Appendix A

Section A.1.3. We thus note that solving the one-dimensional higher-order equations

for (l, k) pairs with a single index di�erent from zero, allows the generation of one-

dimensional �ux moments with two indices di�erent from zero (as moments of the

analytic solution). This is analogous to the principle utilized in Section 3.3.3 where

higher-order �ux moments with a single index di�erent from zero are obtained from
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the solution of the standard one-dimensional nodal equations. This process may

continue in a hierarchical fashion to produce the full set of higher-order �ux moments.

For instance, the availability of moment φvw,um0,i for the CQLA method, allows the

construction of (l, k) pair (i,m) in direction w. Utilizing the value of φvw,um0,i in neigh-

bouring nodes, a two-node problem may be solved for the interface current moment

Juv,wim

(
±hu

2

)
and side-�ux moment φuv,wim

(
±hu

2

)
, after which the analytic solution for

φuvim(w) could be expressed in terms of Legendre moments up to the chosen source

order (say index j) and hence generate �ux moments φuv,wim,j .

As in Section 3.3.3, it is important to note the distinction between φuv,wim,j and Φ
uvw

imj .

The former refers to the one-dimensional �ux moment in direction w, of order j, as

projected from the solution of the higher-order one-dimensional equation weighted

with a Legendre polynomial of order m in direction v and order i in direction u. The

latter, with the same indices, refers to the node-averaged higher-order �ux moment

of order imj. In actual fact there are three di�erent higher-order one-dimensional

moments with indices imj, one in each direction and Φ
uvw

imj is actually computed as the

average of these three. Thus, in general, node-averaged �ux moments are calculated

from

Φ
uvw

mlk =

(
φvw,ukl,m + φwu,vlm,k + φuv,wmk,l

)
3

(3.20)

as an alternative to generating the set of higher-order balance equations and solving

the resulting linear system for each moment.

We thus hierarchically proceed to construct (l, k) pairs and then solve the asso-

ciated one-dimensional equations to eventually construct the full set of higher-order

moments as needed in expansion (3.2). The approach produces all quantities needed

to express the higher-order transverse leakage terms fully (without the ��at leakage�

approximation of Section 3.3.3), as required in eqs. (2.26 and 2.27) and constitutes a

full higher-order solution. Naturally, this solution retains the 27 unknowns per node

(in 3D second-order) and is not the primary intention of this work, but the associ-

ated capability to selectively extend the accuracy of the higher-order module to a full

higher-order when needed, for applications such as homogeneous �ux reconstruction

or reference solution generation, is attractive.

3.5 Conclusion

In this chapter the derivation for a consistent (as opposed to ad-hoc) transverse

leakage approximation is presented. Although the development is largely described
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up to the second order, the method is of a general-order and may be expanded to

higher orders if needed, although additional higher-order equations would have to be

solved.

The development makes use of elements of full higher-order methods, by utilizing

the higher-order intra-nodal trial function to express the transverse leakage term, as it

appears in the standard nodal methods. Further, the process of weighted transverse

integration is utilized to determine the side-averaged current moments needed in

the �nal form of the transverse leakage term. The minimum subset of higher-order

equations needed are determined and the system is closed by applying a ��at� leakage

approximation in the higher-order equations.

The need for explicit spatial sweeps to determine higher-order node-averaged �ux

moments is also eradicated due to the proposed local hierarchical approach, although

some coupling of the higher order quantities exist through the feedback from the

driver code. This hierarchical approach is seen as a crucial step in decoupling the

higher and lower-order solutions and thus facilitates the development of a standalone

higher-order code module which can be easily coupled to existing nodal codes.

The proposed development reduces the number of higher-order unknowns from

27 to 15 in 3D (for a second order expansion) and thus it is estimated that the

calculational cost of this so-called CQLA method would be between 3 and 5 times

greater than standard nodal methods applying the SQLA (full second order requires

10 times more calculational time than the SQLA). Thus, the calculational cost is

still signi�cantly greater than the target set for this work of around 50% increase

calculational time. Chapter 4 investigates a number of iteration and solution schemes

in order to facilitate the additional reduction needed and describes the higher-order

code module developed during this work.
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