
Chapter 4

Development of iteration schemes and

an associated higher-order module

4.1 Introduction

The previous chapter concluded with the de�nition of a so-called general-order Con-

sistent Leakage Approximation (CLA). If the second order expansion of this approxi-

mation is used, the method is termed CQLA (Consistent Quadratic Leakage Approxi-

mation) and represents the proposed replacement for the Standard Quadratic Leakage

Approximation (SQLA) utilized in almost all transversely-integrated nodal methods

today. It was shown how the hierarchical construction of higher-order node-averaged

�ux moments could make the method scalable to calculate a Full Higher-Order (FHO)

solution if needed.

The number of unknowns per node for a CQLA is 15 in 3D; if we consider that the

ANM has four unknowns per node, it is foreseen that signi�cant further improvement

to this e�ciency level is needed. This chapter describes a number of iteration schemes

which aim at making the CQLA method practical. Prior to proposing these schemes,

it is useful to overview the basic architecture of the proposed higher-order module,

its interfaces with standard nodal codes and the algorithmic layout. Within this

context, three independent, but synergistic solution schemes are presented. Finally,

these schemes are integrated in a proposed solution strategy.

4.2 Basic Driver Code and Module Description

Within the scope of this work a 3D Cartesian geometry multigroup nodal code was de-

veloped within which various methods could be tested. The nodal code employs the

Semi-Analytic Nodal Method (SANM), which implies that transversely-integrated

59



one-dimensional equations are solved analytically, but that �ssion and scattering

sources are treated as inhomogeneous sources and expressed in terms of �ux moment

expansions up to a prede�ned source order I. The SANM equations were derived and

discussed in Section 2.3.2. This standard nodal code is referred to as SANS (Standard

Analytic Nodal Solver) and has the following characteristics:

• 3D multigroup solver with node-averaged �uxes as primary unknowns;

• �xed multigroup cross-sections are read for an arbitrary number of energy

groups;

• outer �ssion source iterations are accelerated via �ssion source extrapolation and

up-scatter iterations are accelerated via the Aitken δ2 extrapolation method (δ2

- process)(Abramowitz and Stegun, 1970);

• one-dimensional sources are expanded up to an arbitrary Legendre polynomial

order;

• node-averaged �uxes are determined via a Gauss-Seidel iteration scheme, with

a �xed SOR (Varga, 1965) parameter (set to 1.3 as the typical value); and

• multiple leakage approximations are implemented, including constant, SQLA,

CQLA (via higher-order module) and full higher-order approximations , via the

higher-order module.

The developed higher-order nodal module primarily integrates with any zero-order

nodal code at the transverse leakage update level and solves the higher-order one-

dimensional equations at every interface in the system. The module is referred to as

HOTR (Higher-Order Transverse leakage and Reconstruction) and has the following

characteristics:

• primarily exchanges information with the low order solver at the transverse

leakage level;

• requires a description of the system geometry as well as the macroscopic nodal

cross-sections;

• applies the Semi-Analytic Nodal Method to solve two-node problems at every

interface in the system, for each required higher-order equation; and

60



• solves various subsets of the higher-order equations, with the primary options

being CQLA and FHO. Flat and SQLA are also implemented in the module

which implies that the driver code no longer requires any transverse leakage

option.

4.2.1 Module interfaces and layout

The communication between any transversely-integrated nodal code and the devel-

oped higher-order module, is depicted in Figure 4.1. In the �gure, parallelograms

indicate data sources and sinks and raised rectangles refer to code components. Ar-

rows show data �ows, with dotted lined arrows referring to optional �ows.

���������		


��
����	

��������
�

�����

���
���������

������	

���������������

����

�������������

������

�
�����������

���������

 �!���

"�	���#�����

$�
��	���
����

�����������	

�%�&��

�%�&�'

�%�&�(

�%�&�"

�%�&�)

Figure 4.1: Schematic layout of the higher-order code interface with lower-order codes.

In Figure 4.1, the shaded area between the higher-order module and the standard

nodal code refers to the within-iteration communication loop. The most important

data �ows are labeled and Table 4.1 discusses each of these �ows in detail.

61



Table 4.1: Description of important data �ows between a standard nodal code and
the higher-order module.

Data �ow Iteration level Description

FLOW A Initialization System geometry as well as selected calculational

options is passed to HOTR.

FLOW B Cross-section feedback level If macroscopic cross-sections are updated in the

nodal code, an update should be provided to HOTR.

FLOW C Transverse leakage update level Node-averaged �uxes and side-averaged currents

are passed as a minimum. If side-averaged �uxes

and �ux moments are available, they are also passed.

FLOW D Transverse leakage update level Transverse leakage moments for every direction and

every group, up to the chosen order, are returned.

FLOW E Upon convergence If required, reconstructed �uxes are returned.

The HOTR module is designed to operate independently of the solution strategy

of the driver code. Thus it is, in principle, independent of the implementation of the

driver code regarding:

• whether node-averaged �ux or side-averaged currents are primary unknowns, as

long as both may be recovered from one-another in the driver code. Zero-order

side-averaged �uxes and one-dimensional �ux moments are required by HOTR,

but if these are not available, they are calculated by HOTR as needed. This in-

curs a small unwanted computational penalty, since these are actually standard

nodal code quantities, but the option is added since not all the standard nodal

codes necessarily collect these terms;

• whether a group-by-group or full multigroup solution is used, since HOTR can

optionally generate transverse leakage moments only for the group under con-

sideration, or for all energy groups, depending on the driver code requirements;

and

• which acceleration and iteration schemes are used, be it via standard �ssion

source iterative methods or more e�cient schemes such as the so-called trans-

verse leakage source iterative method (Vogel (1993)). This is possible since

HOTR receives, iteration per iteration, the full set of system-wide node-averaged

�uxes and side-averaged currents and thus the higher-order moments constructed

62



from these quantities yield a higher-order iteration scheme which conserves the

low order solution at all times.

4.3 Algorithmic Layout

The solution scheme of SANS is laid out in Algorithm 1. Note that the code is

developed with a �exible, recursive based iteration system, which means that iteration

levels and thus the order of nesting of di�erent iterative levels are con�gurable via

code input. The algorithms presented here thus show a typical order of iterative

layers, as used in the reported analysis.

63



Algorithm 1: SANS solution algorithm

Input: Nodal cross-sections and problem geometry
Result: Eigenvalue, nodal �ux and power distribution
initialization

1 while Outer �ssion source iterations not converged do

2 while Upscatter iterations not converged do

3 for g ← 1 to numgroups do
Calculate nodal scattering source in group g
Calculate nodal scattering source moments in group g

4 while Transverse leakage iterations not converged do

HOTR call 1 Calculate transverse leakage source
Calculate nodal source
Calculate nodal source moments
Calculate one-dimensional particular solution
Calculate tensorial sources

5 while Spatial �ux distribution not converged do

Perform Gauss Seidell iterations
end

Update side-averaged �uxes and side-averaged currents
Update one-dimensional �ux moments

end

end

if asymptotic up-scatter source behaviour then
perform up-scatter source acceleration

end

end

Calculate nodal �ssion source
Calculate nodal �ssion source moments
Calculate k-e�
if asymptotic �ssion source behaviour then

perform �ssion source extrapolation
end

end

Perform power normalization
HOTR call 2 Perform �ux reconstruction

Algorithm 1 describes the overview order of calculations in SANS, with the num-

bering indicating the nested iteration levels. The point at which the external trans-

verse leakage module is to be called from is labeled HOTR call 1 and the recon-

struction option is called from the point labeled HOTR call 2.

Prior to presenting the algorithmic layout of HOTR, a number of speci�c iteration

schemes are discussed in the upcoming section. These schemes aim to:

64



• retain the design requirements that HOTR remains largely independent of the

solution method of the driver code;

• retain the accuracy of the underlying higher-order solution (be it CQLA or

FHO); and

• improve the e�ciency of the solution by at least a factor of 2.

After discussion of these schemes, the chapter is concluded with the algorithmic layout

of HOTR.

4.4 Proposed Iteration Schemes

In order to achieve the target e�ciency and maintain su�cient accuracy, a number of

iteration schemes are conceived for the described module. These approaches generally

rely on hybrid low and higher-order strategies and are classi�ed as:

• Partial convergence of the higher-order leakage shape (PLC);

• Higher-order Model Reduction (MR); and

• SQLA Correction (QLAC).

In the following subsections, each of these approaches are discussed, followed by a

description of an integrated strategy, where these schemes are implemented synergis-

tically. This integrated scheme is termed the Reduced Leakage Correction Scheme,

or RLCS and represents the preferred iteration scheme proposed in this work. RLCS,

when combined with CQLA (RLCS is applicable to any higher-order solution), would

then be the default operational mode of the higher-order module, when utilizing it for

the sake of providing leakage coe�cients to any given transversely-integrated nodal

code.

4.4.1 Partial convergence of the leakage shape

In the PLC iteration scheme, standard SQLA is solved until a set convergence is

reached, at which point CQLA (or an alternative higher-order mode) is activated.

CQLA is solved until the level of convergence (denoted by ε) reaches a second set

point (e.g. a factor 10 greater than target convergence), after which the leakage

shapes are no longer updated. Higher-order equations are then no longer solved

65



and a signi�cant number of outer iterations may proceed via the standard lower-

order scheme. In this phase no leakage method is needed. This approach, although

simple and somewhat crude, has value since the higher-order moments often take a

large number of outer iterations to fully converge, although a signi�cant accuracy

improvement, as compared to the SQLA approach, is already achieved much earlier

in the iteration process. In PLC, the relevant parameters are given in Table 4.2.

Table 4.2: PLC speci�c iteration parameters.

Parameter Typical value Description

ε N/A Current iteration node-averaged �ux convergence criteria

εmax 10−6 Target maximum node-averaged �ux convergence criteria

εho 1000 Activate higher-order calculation when ε < εmax × εho

εplc 50 De-activate higher-order calculation when ε < εmax × εplc

4.4.2 Model reduction

It is clear that not all the higher-order moments would be equally important in each

node and each group in the system. A technique known as the Analysis of Variance

(or ANOVA analysis) (An and Owen, 2001; Lemieux and Owen, 2002) may be applied

to gauge the importance of the various modes in each node at various steps during

the iteration process. If a given mode is found to be unimportant (as compared to

some set criteria) in a given node and group, it may be excluded from the calculation,

and thus e�ectively produces a local node and group wise reduction of higher-order

equations.

ANOVA theory states that if a multivariate function on a rectangular domain is

represented as a tensor product of orthonormal uni-variate basis functions, then the

contribution of each of the terms to the variation of the function can be represented

by the square of its coe�cient. Hence, if we rewrite the expression for the full intra-

nodal �ux expansion by expanding the semi-moments up to the method order, we

have an expression for the intra-node �ux distribution on which the ANOVA analysis

may be directly applied, and thus we determine the relative contribution of each �ux

moment to the shape of the intra-nodal �ux.

This powerful tool allows that a threshold criteria may be placed on any given

expansion moment and that based on the set criteria a node- and group-wise model

reduction approach may easily be applied. It is proposed that an analysis of all the

contributions is performed a number of times during the iteration process and based

66



on the result, a node and group speci�c list of unimportant moments are assembled

and subsequently no longer calculated. The e�ciency of this approach is expected

to be problem dependent, and by the nature of ANOVA, will be most e�cient when

the approximation space is large � hence the e�ciency of the scheme will grow as the

dimensionality, order of expansion and number of groups grow.

To proceed, we consider the higher-order intra-nodal trial function, given by eq.

(3.2) and expand one-dimensional semi-moments of the �ux into a Legendre polyno-

mial expansion up to the method order M to yield:

φ̃(u, v, w) =
M∑
l=0

M∑
k=0

M∑
m=0

flk,mPm(
2u

hu
)Pl(

2v

hv
)Pk(

2w

hw
)+ (4.1)

M∑
m=0

M∑
k=0

M∑
l=0

gkm,lPl(
2v

hv
)Pk(

2w

hw
)Pm(

2u

hu
)+

M∑
m=0

M∑
l=0

M∑
k=0

hml,kPw(
2w

hw
)Pm(

2u

hu
)Pl(

2v

hv
)− 2

M∑
k=0

M∑
l=0

M∑
m=0

clkmPm(
2u

hu
)Pl(

2v

hv
)Pk(

2w

hw
).

Note we refer here to the approximate intra-nodal �ux φ̃(u, v, w) since the analytic

form of the semi-moments is additionally expanded in Legendre polynomials. We

group like terms and write

φ̃(u, v, w) =
M∑
l=0

M∑
k=0

M∑
m=0

βklmPm(
2u

hu
)Pl(

2v

hv
)Pk(

2w

hw
) (4.2)

with

βklm = flk,m + gkm,l + hml,k − 2clkm

in order to express the intra-nodal �ux as a set of orthogonal basis functions with

coe�cients βklm. ANOVA then provides us with the fact that that the total function

variance is given by

Var
(
φ̃(u, v, w)

)
=

M∑
l=0

M∑
k=0

M∑
m=0

1

(2k + 1) (2l + 1) (2m+ 1)
(βklm)2 (4.3)

with at least one of {k, l,m} > 0 (the constant term 0, 0, 0 is excluded from the

variance). The individual contribution for a �ux moment with indices {k, l,m} to the
total function variance is then given by

67



Cklm =

(
1

(2k + 1) (2l + 1) (2m+ 1)

)
(βklm)2

Var
(
φ̃(u, v, w)

) . (4.4)

This knowledge of Cklm for every node and every energy group in the system, denoted

by Cg
n,klm provides a powerful mechanism for rejecting terms per node and per energy

group, based on some de�ned importance criteria Ccrit. We aim to retain all the terms

for which

Cg
n,klm > Ccrit (4.5)

and thus only these �important� moments need to be calculated. Given that, accord-

ing to eq. (3.17), the value of higher-order �ux moments in neighbouring nodes are

required to determine the current moments on the shared surface, the situation could

arise where a given moment is rejected in node n, but retained in node n+ 1. In such

cases, we choose to set the value of the �unimportant� moment to zero in the nodes

in which they are rejected.

This strategy requires that the higher-order calculation, be it CQLA or a full

higher-order of orderM , is performed for a number of outer iterations, after which an

estimation of the importance is performed and rejection implemented. This process

may be repeated later on in the iteration process, but numerical analysis for typical

problems have shown that further rejections, beyond the �rst one, do not contribute

much to the calculational e�ciency. This issue is more comprehensively discussed

further in Chapter 5. Iteration parameters speci�c to the implementation of the

model reduction schemes are listed in Table 4.3.

Table 4.3: Speci�c model reduction iteration parameters.

Parameter Typical value Description

εho 1000 Activate higher-order calculation when ε < εmax × εho

εmr 100 Perform model reduction when ε < εmax × εmr

εmax 10−6 Target maximum node-averaged �ux convergence criteria

Ccrit 0.01 Disregard terms in node n and group g if Cg
n,klm < Ccrit

4.4.3 SQLA correction

SQLA works well for most problems and it is fair to expect that the aim could be to

simply correct the shape where needed, whilst still applying the three-node �t as a

solution algorithm. In this regard a scheme is developed, termed Quadratic Leakage

68



Approximation Correction (QLAC), where both SQLA and CQLA are solved simul-

taneously for a relatively small number of outer iterations, and then the correction

factors are tabulated. These correction factors are de�ned for each node and en-

ergy group (index dropped here) for direction u, node n and order m of the leakage

polynomial as

ζu,qlac
n,m =

1
hv

(
Jwu,vn,m0

(
+hv

2

)
+ Jwu,vn,m0

(
−hv

2

))
+ 1

hw

(
Juv,wn,0m

(
+hw

2

)
+ Juv,wn,0m

(
−hw

2

))
qun,m

(4.6)

where Jwu,vn,m0

(
±hv

2

)
once again refers to the higher-order current moments on the ±

surfaces in direction v of order m0 (analogous for direction w) and qun,m refers to

the standard quadratic transverse leakage approximation coe�cient of order m in

direction u in node n. Note that the qun,m coe�cients are produced from the �t

over three neighbouring nodes and can be arbitrarily small or even zero. Clearly, we

should ensure that the corrections are only applied if
∣∣qun,m∣∣ > εsmall, where εsmall =

10−6 is typical. These correction factors are found to converge much faster than the

leakage shapes themselves, and thus the solution can proceed via a standard SQLA,

augmented with higher-order correction factors which are frozen for the remainder of

the calculation. Algorithmically stated, the following procedure is applied:

1. Standard SQLA is run up to a prede�ned convergence set point εho;

2. Higher-order (typically CQLA) and SQLA is run simultaneously and conver-

gence of the ratios between the predicted CQLA and SQLA leakage coe�cients

are monitored and compared to a preset convergence criteria (εqlac). Typically

this quantity need only to converge to 10−1 or 10−2 for good accuracy. It is im-

portant to state that during the simultaneous calculation of CQLA and SQLA,

CQLA reports leakage coe�cients to the nodal calculation, while SQLA is sim-

ply used for tabulation. Correction factors can clearly only be generated for the

�rst and second moment of the leakage source, since the lower-order solution,

in this case SQLA, can only represent shapes up to the second order;

3. Continue this process until the correction ratio has converged in a su�ciently

large number of nodes and groups in the system, denoted by pqlac. This ad-

ditional criterion is needed given the fact that SQLA often su�ers from con-

vergence di�culties in isolated cases. In most cases no more than 10 - 15

higher-order iterations are needed to achieve convergence; and

69



4. Revert back to the standard SQLA, but in this case apply the correction factors

obtained to each three-node �t in order to recover the accuracy of the higher-

order solution
(
qu,corrn,m = ζu,qlac

n,m qun,m
)
. The correction factors are no longer up-

dated, but the leakage source is still allowed to vary via SQLA as the iteration

process continues.

The relevant iteration parameters for QLAC is listed in Table 4.4

Table 4.4: Speci�c SQLA correction iteration parameters.

Parameter Typical value Description

εho 1000 Activate correction factor tabulation when ε < εmax × εho

ζu,qlac
n,m N/A Node, group, direction and order dependent correction ratio

εsmall 10−6 Numerical tolerance regarding value of SQLA coe�cients

εmax 10−6 Target maximum node-averaged �ux convergence criteria

pqlac 95% Percentage of leakage moments to converge

εqlac 10−2 − 10−3 Convergence criteria for maximum relative error in ζd,mqlac

4.4.4 An integrated strategy - The reduced leakage correction
scheme

It is possible to integrate the three proposed schemes, as discussed in Sections 4.4.1

- 4.4.3, in order to optimize the e�ciency of the higher-order solution further. In

this optimal Reduced Leakage Correction Scheme (RLCS), the three schemes are

integrated in the following manner:

1. Standard SQLA is run up to a prede�ned convergence set point εho;

2. Apply the QLAC scheme, still using pqlac as the target percentage of leakage

moments in the system for which the correction factors should converge. Two

additional parameters are introduced namely fmr and fplc;

3. fmr refers to the fraction of pqlac at which model reduction is activated. Thus

when fmr×pqlac of the moments in the system have converged, model reduction

is performed and the remaining higher-order calculations proceeded with the

reduced set of unknowns;

4. fplc refers to the fraction of pqlac at which the partial leakage convergence is

activated. Thus when fplc× pqlac of the moments in the system have converged,

70



higher-order moments are frozen, and the correction factor tabulation continues

with only SQLA updates; and

5. The solution scheme reverts back to SQLA with static higher-order correction

factors when pqlac of the moments in the system have converged.

In Table 4.5 the additional parameters needed for RLCS are summarized and provide

typical values for these parameters.

Table 4.5: Reduced leakage correction scheme iteration parameters.

Parameter Typical value Description

εho 1000 Activate correction factor tabulation when ε < εmax × εho

pqlac 95% Percentage of leakage moments to converge

fmr 0.6 Fraction of pqlac at which MR is activated

fplc 0.8 Fraction of pqlac at which PLC is activated

The RLCS approach is intended to minimize the number of higher-order transverse

leakage iterations needed during nodal calculations. It is expected that this scheme

would be highly e�cient and accurate in the cases where the SQLA is smoothly

convergent, but that pqlac converged correction factors would not be achieved in a

reasonable number of iterations for problems where SQLA diverges. In such cases, the

tabulation of correction factors would terminate and only fully converged corrections

would be used. In unconverged nodes, the usage of the last available higher-order

moments proved more stable and accurate than utilizing SQLA.

Algorithm 2 describes the HOTR module, utilizing the RLCS scheme.

71



Algorithm 2: HOTR solution algorithm

Once-o� input: Geometry, boundary conditions, calc mode
Feedback level input: Nodal cross-sections
Input: k-e�, Nodal �uxes, Average side-currents, energy group option
Optional Input: Average side-�uxes, one-dimensional �ux moments
Result: Leakage coe�cients, reconstructed �uxes
if initialization then process geometry
if cross-section update then calculate nodal coupling coe�cients
if energy group option = allgroups then

gi = 1 and gf = numgroups
else

gi = gf = inputgroup
end

if reconstruction then // converge ho moments in xy only

outer_iterations = max_iter
mode = FHOn

else // single iteration for leakage update

outer_iterations = 1 or 2
if RLCS converged then // correction factors already converged

Set mode to SQLA
Perform three-node-�t + corrections

else // still require HO calculations

mode = CQLA
end

end

HO iter while mode 6= SQLA and outers ≤ outer_iterations do
1 for g ← gi to gf do
2 forall the ho_equations do

Update HO scattering source moments: eq. (2.25)
Update HO trans. leakage sources: eq. (A.30) and eq. (A.31)
Update HO nodal source moments: Sect. (A.1.3)
Update HO one-dimensional particular solution: eq. (A.26)
Update HO tensorial sources: eq. (2.18)
Update HO full �ux moments: eq. (3.20)
Update HO side-�ux and current moments: eq. (3.17)
Update HO one-dimensional �ux moments: eq. (A.29)

end

end

Update HO �ssion source moments: eq. (2.25)
if RLCS converged (pqlac) then // SQLA correction factors converged

Revert back to SQLA mode with corrections
else // Continue CQLA and tabulation

Continue converging corrections: eq. (4.6)
Perform model reduction if needed (fmr): eq. (4.4)
Perform HO freezing if needed (fplc)

end

end 72



In Algorithm (2) the basic process followed in HOTR is described and where ap-

plicable reference is made to the related equations for the stated step in the algorithm.

Algorithm (2) is followed every time the driver nodal code requires an update of the

transverse leakage moments and is thus called from Algorithm (1) at the label marked

HOTR call 1.

It can be seen that no explicit �ssion source, up-scatter or leakage iterations are

present in HOTR when it is used for updating leakage coe�cients, but rather that

the higher-order sources (speci�cally �ssion and scattering) converge gradually as the

driver nodal code converges. Either one or at most two higher-order iteration per

call are su�cient for smooth convergence behaviour. The number of higher-order

equations which are solved by HOTR in loop 3, depends on the solution mode and

varies (in second order) from:

• None when in SQLA mode or when PLC (higher-order moment freezing) is

applied;

• 15 when in CQLA mode or when tabulating RLCS correction factors. This

number is potentially reduced during iterations by the model reduction proce-

dure;

• 27 when in FHO2 mode (full higher-order with expansion order 2); and

• 3(M + 1)2 when in FHOM mode (full higher-order with expansion order M).

Outer iterations are however performed when the module is called to perform �ux

reconstruction after the driver nodal code has converged, since the higher-order mo-

ments are present in FHOM , but those which are not solved during CQLA, still need

to converge.

4.5 HOTR as Flux Reconstruction Tool

As discussed in previous chapters, homogeneous �ux reconstruction is a critical step

in the standard deterministic calculational path. The step involves the reconstruction

of �ne-mesh di�usion �uxes based on some devised scheme dependent on the quan-

tities standardly available from nodal codes. These include node-averaged �uxes,

side-averaged currents and side-averaged �uxes. Often, in order to determine ad-

ditional expansion coe�cients that are needed for reconstruction, corner �uxes are

also utilized, although these generally �rst have to be determined from an auxiliary

interpolation step.

73



In the case of higher-order nodal methods, �ux reconstruction is potentially a nat-

ural extension of the approach. This can be understood by recalling the trial function

as given in eq. (3.2) in actual fact represents a direct 3D intra-nodal �ux tabulation

function and can be used as it stands in order to reproduce the 3D reconstructed �ux.

It is of course typical to perform �ux reconstruction in 2D (since heterogeneous form

factors exist only in 2D), in which case all higher-order moments in z may simply be

neglected during the tabulation. An important acceleration in this regard is the fact

that these spatial moments in z do not need to be resolved during the �ux reconstruc-

tion calculation and thus the calculational time for the �ux reconstruction solution is

typically 30% faster than its associated full higher-order solution. Accuracy is thus

a matter of selection and full second, fourth or sixth order �ux reconstruction are

options implemented in HOTR.

Reconstructed �uxes are further typically needed as averages on de�ned sub-

meshes, in which case eq. (3.2) may simply be integrated over the desired mesh

spacing. Although not the primary focus of this work, some examples of �ux re-

construction via HOTR is presented in Chapter 5. The logic applied in HOTR for

performing �ux reconstruction is described in the list below:

1. The standard nodal calculation is performed as normal until convergence in

eigenvalue and power distribution is reached. This calculation may be performed

via utilizing HOTR for the sake of resolving the transverse leakage terms via

either the SQLA, CQLA or full higher-order options. This implies that a given

subset of the higher-order �ux moments needed for �ux reconstruction may thus

already be known at convergence of the nodal solution, depending on the option

selected;

2. Reconstruction mode is activated if requested, at which point HOTR performs a

�xed source calculation with the zero-order quantities of eigenvalue, lower-order

�ux distribution and lower-order one-dimensional �ux moments frozen to their

obtained values. HOTR is placed in full higher-order mode up to the selected

reconstruction method order (typically 2, 4 or 6). We reiterate that if e.g., the

basic nodal calculation was performed via CQLA and the reconstruction is set

to be performed to the second order, only the additional cross-term moments

required for the full higher-order solution need to be resolved and thus results

in a much faster reconstruction solution;

3. The �xed source calculation continues until the higher-order moments under

consideration have converged to within the set convergence criteria (typically

74



10−3). Note that no solution is needed in the z-direction since reconstruction is

required in 2D. 3D reconstruction is however possible if required and naturally

available within the method; and

4. Once all moments have converged, the intra-nodal trial function is utilized to

tabulate �uxes or powers over the mesh spacing prescribed by the user. Two

options are available, namely tabulated point �uxes or integrated submesh av-

erages.

4.6 Conclusion

This chapter discussed three proposed iteration schemes built around the simpli�ed

higher-order solution described in Chapter 3. These schemes are termed the partial

leakage convergence scheme, the model reduction scheme and the SQLA correction

scheme. The three schemes are combined into an integrated solution strategy designed

to achieve the required balance between accuracy and e�ciency, and are built into

a Fortran 95/2003 based higher-order code module. Both this code module (term

HOTR), and a standard ANM based nodal solver designed for the work (termed

SANS), are algorithmically described in this chapter. Nevertheless, an important

feature of HOTR is that it is designed to function with almost all the transversely-

integrated nodal codes, independent of the solution method, in order to resolve the

di�culties with the treatment of the transverse leakage term, as well as to provide a

consistent �ux reconstruction.

In the upcoming chapter (Chapter 5) the performance and accuracy of HOTR,

and thus the proposed solution and iteration schemes, are evaluated via a series of

numerical benchmarks, spanning 2D, 3D, two-group and multi-group problems.

75


