
Chapter 5

Numerical results and discussion

5.1 Introduction

Chapters 3 and 4 laid the theoretical foundation for an improved transverse leak-

age approximation. In Chapter 3 a simpli�cation to full higher-order methods was

derived, speci�cally tailored towards the treatment of the transverse leakage terms

as they appear in transversely-integrated nodal methods. The preferred approach is

termed CQLA or Consistent Quadratic Leakage Approximation. Further performance

enhancement was developed in Chapter 4, with three iterative schemes combining into

a �nal solution strategy termed RLCS, or Reduced Leakage Correction Scheme. Al-

though the combination of CQLA and RLCS is the primary outcome of this work, a

number of options are available within the HOTR code module and thus the following

are numerically investigated in this chapter:

• the accuracy of the proposed full higher-order solution scheme (as discussed

in Section 3.4), of arbitrary order, as compared to published results. It is the

intention to utilize this option to generate reference solutions for problems in this

work, since higher-order methods are published as capable of producing results

comparable in accuracy to extrapolated �nite-di�erence results for su�ciently

high orders;

• the e�ciency and accuracy of combining various �base� higher-order solutions

(e.g. CQLA or FHOn), with the developed iteration schemes. In particular, the

quality of the CQLA method and the associated improvement due to RLCS,

are of primary interest; and

• the accuracy and e�ciency of the homogeneous �ux reconstruction capability

(2D or 3D), as discussed in Section 4.5, with scalable accuracy determined by

the order of the method.
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These points are, in this chapter, assessed on a set of seven �xed cross-section bench-

mark problems, namely:

• the 3D version of the MOX C5 G2 problem, de�ned in Lefebvre et al. (1991)

and Lewis (2001) as a di�cult mini-core benchmark problem constructed for

the purpose of testing transport codes, nodal solvers and �ux reconstruction

methods;

• the 2D version of the well known 2-group IAEA LWR benchmark problem,

originally de�ned in Lee (1977) for the testing of nodal solvers;

• the 3D version of the IAEA LWR benchmark problem, also taken from Lee

(1977);

• the 2D 6-group KOEBERG benchmark problem, as de�ned by Muller and Weiss

(1991);

• the 2D 2-group BIBLIS benchmark problem as described in Smith (1979);

• the 2D 2-group ZION benchmark problem as described in Smith (1979); and

• a realistic 3D, 6-group SAFARI-1 research reactor benchmark problem, de�ned

in Prinsloo et al. (2008).

For all the above problems, the driver code (SANS) utilizes a fourth order source

expansion in the one-dimensional equations (with the exception of the FHO6 calcula-

tions which require a sixth order in the driver code) and convergence criteria was set

to 10−6 in a maximum relative node-averaged �ux error for all the problems. Fission

source extrapolation is used as the outer acceleration in all the problems and it should

be stated that this approach could in�uence the timing results somewhat, since not all

the strategies would converge with the same number of outer iterations. HOTR, the

higher-order module coupled to SANS, utilizes a one-dimensional source expansion

up to the method order - hence a full second order solution would only employ one-

dimensional higher-order sources up to the second order. If not otherwise speci�ed,

the iteration structure (order and number of iterations) utilized in the calculations of

this chapter is given in Table 5.1.

77



Table 5.1: Iteration structure for numerical problems.

Iteration level Maximum

iterations

Outer �ssion source �

Leakage iteration 1

HOTR outers/leakage iterations 2

Up-scatter source 5

Energy group iterations 1

Spatial �ux iterations 3

5.2 Reference Result Generation

In the numerical benchmark problems discussed in this chapter, a full sixth order

nodal di�usion calculation, performed by the HOTR module, is utilized for the gen-

eration of reference solutions. The usage of higher-order methods for the generation

of nodal reference solutions (thus on coarse, un-subdivided meshes) has been pro-

posed by Raji¢ and Ougouag (1989) and Muller and Weiss (1991) as an alternative to

�ne-mesh �nite-di�erence calculations. This view is strongly supported by Toma²evi¢

and Larsen (1993) who demonstrated clearly, on a set of well known 2D benchmark

problems, that the superior convergence properties of higher-order methods in both

eigenvalue and power distribution allow the generation of reference solutions with

these methods. In actual fact, �ne-mesh �nite-di�erence methods face signi�cant

challenges in producing true reference results for 3D problems, given the limitations

in memory, long calculational times and the need for multiple re�nement levels used

in solution extrapolations. In all these publications, a variety of 2D benchmark prob-

lems were utilized in these numerical arguments and there is no reason to expect that

the argumentation does not extend to 3D.

Thus, these prior analyses, coupled with an investigation into reference solutions

from other sources, such as Smith (1979), are used to support the claim that we can

utilize the sixth order HOTR solution option to generate reference �ux and power

distributions for the set of problems considered in this chapter. Table 5.2 provides

a comparison between the sixth order HOTR results and various published reference

results for a subset of the numerical benchmarks considered in this work. All these
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benchmarks are fully discussed in the rest of this chapter and here we are only in-

terested in the issues surrounding the generation of reference solutions. In Table

5.2, CASTOR (2D higher-order nodal di�usion) results are taken from Toma²evi¢

and Larsen (1993), LABAN (2D higher-order response matrix) results are taken from

Muller and Weiss (1991), ILLICO (2D higher-order nodal di�usion) are taken from

Raji¢ and Ougouag (1989) and ANM results are taken from Smith (1979) (4 times

sub-divided nodal mesh).

Table 5.2: A comparison of reference results from various sources for a selection of
the problems considered in this work.

Code and Benchmarks (keff (Maximum % nodal power error))

approximation ZION-1 BIBLIS IAEA2D IAEA3D

HOTR (6th order) 1.27489 (0.00) 1.02511 (0.00) 1.029585 (0.00) 1.02907 (0.00)

CASTOR (4th order) 1.27489 (0.00) 1.02511 (0.00) 1.029585 (0.01)

a
CASTOR (6th order) 1.27489 (ref) 1.02511 (ref) 1.029585 (ref) 1.02907 (ref)

ILLICO (4th order) 1.27489 (0.02) � 1.029585 (0.02) �

LABAN (4th order) 1.27489 (0.00) 1.02511 (0.00) 1.029585 (0.00) �

LABAN (6th order) 1.27489 (0.00) 1.02511 (0.02) 1.029585 (0.00) �

ANM (4 × 4 re�ned) 1.27489 (0.04) 1.02512, (0.04) 1.029585 (0.02)

Finite-di�erence � � 1.029585 1.02903 (1.99)

aConsidered as a reference based on the arguments in Toma²evi¢ and Larsen (1993).

Table 5.2 indicates that the higher-order implementation in HOTR, when coupled

to a driver nodal code, reproduce the correct full sixth order higher-order result

for all four listed problems. It can further be seen that the various higher-order

nodal solvers all agree to within 0.02% for both fourth and sixth order solutions,

independent of the solution method employed. Slightly larger di�erences (0.04%) are

observed when compared to alternative references produced via 16 node per assembly

ANM calculations, as used by Smith (1979). No well described 3D higher-order

published results are available, but unpublished results provided by the author of

the CASTOR code con�rms the HOTR results for the IAEA 3D benchmark, while

signi�cant di�erences exist as compared to the originally published reference solution

in Lee (1977). A detailed analysis of this issue is provided in Appendix B.3.
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5.3 Results and Discussion

This section aims to place the performance and accuracy of the developed approach

when resolving the transverse leakage terms, into perspective. The additional com-

putational burden of the new scheme may of course be numerically quanti�ed in a

number of ways, depending on the scope, complexity and size of the benchmark prob-

lems considered. We may, for example, be interested in the relative cost of a single

transverse leakage update, the total cost of transverse leakage updates during the

iteration process, or the total calculational time spent on solving the steady state

neutronic problem. In this work the emphasis is on the development of a practical

scheme for the purpose of realistic, full core, 3D, multi-group di�usion problems and

as such the latter measure of total calculational time is of the greatest concern. The

fraction of calculational time spent on leakage updates is however also reported in

order to indicate how sensitive a given problem is to the cost of the transverse leakage

solution.

With this in mind, the range of selected problems gradually increase in scope

and complexity, starting with the simple mini-core MOX benchmark problem and

concluding with a multi-group 3D full core SAFARI-1 reactor model containing 2520

di�erent materials. Each of the problems are discussed and summative conclusions

are drawn at the end of this chapter. Detailed results for each problem, in tabular

format, are provided in Appendix B, whereas summary accuracy and performance

indicators are highlighted and discussed here.

5.3.1 OECD/NEACRP two-group MOX C5 benchmark prob-
lem

In this section the results for the 3D version (Lewis, 2001) of the well known MOX

C5 benchmark problem are presented. Two-group homogeneous cell cross-sections

were speci�ed in Lefebvre et al. (1991). Assembly homogenized cross-sections are

obtained from pin cell data using a discrete ordinate calculation (TWODANT (O

Dell et al., 1982)) on the spatial mesh 132 × 132 and S16 quadrature set for each

assembly with re�ecting boundary conditions. Figure 5.2 depicts the radial thermal

�ux pro�le through the axial core centreline, produced by HOTR in the fourth or-

der reconstruction mode (FHO4). From this �gure the sharp �ux gradients at the

UO2/MOX interfaces are clearly visible.

The 2D version of the benchmark problem consists of a 3 × 3 core lattice with a 2

× 2 array of Uranium and Mixed-oxide fuel elements surrounded by a water re�ector
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as depicted in Figure 5.1. In 3D, the geometry is extruded to include top and bottom

water re�ectors.

��� �����

	�


	�


��� �����

���������������

Figure 5.1: 2D geometric layout of the MOX C5 benchmark problem.
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Figure 5.2: Reconstructed 2D thermal �ux pro�le of the MOX C5 benchmark prob-
lem.

The MOX C5 benchmark problem is thus a mini-core con�guration which lends

itself to the parametric analysis of various solution approaches, relating to both the

nodal and the �ux reconstruction solvers. In this section we utilize this benchmark

to quantify the e�ciency of the various iteration schemes proposed in Chapter 4.

Although the benchmark is a mini-core problem, it provides us with a useful platform

to determine how the various iteration schemes scale with the method order. Results

obtained for this problem are presented in Table 5.3 and all iteration schemes assumed

their standard parameter values as discussed in Section 4.4. Detailed results of this

problem are tabulated in Section B.1.
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Table 5.3: Results for the 3D, two-group MOX C5 benchmark problem.

Iteration keff Cost factor Ass. Pow. Err Nod. Pow. Err

Scheme # (pcm) Ave (Max) % Ave (Max) %

FHO6 0.94042 86.6 � �

SQLAhotr 0.94060 (19) 1.0 0.22 (0.62) 0.22 (0.67)

FHO6-MR 0.94042 (1) 68.5 0.02 (0.04) 0.04 (0.08)

FHO6-PLC 0.94042 (1) 43.2 0.02 (0.04) 0.02 (0.06)

FHO4 0.94040 (2) 20.4 0.01 (0.03) 0.01 (0.04)

FHO4-MR 0.94040 (2) 13.0 0.005 (0.01) 0.02 (0.08)

FHO4-PLC 0.94040 (2) 10.1 0.01 (0.02) 0.02 (0.06)

FHO2 0.94036 (7) 3.4 0.04 (0.06) 0.06 (0.10)

FHO2-MR 0.94035 (7) 2.7 0.04 (0.06) 0.06 (0.19)

FHO2-PLC 0.94035 (7) 2.4 0.04 (0.06) 0.06 (0.10)

FHO2 -QLAC 0.94035 (7) 4.1 0.04 (0.05) 0.11 (0.29)

CQLA 0.94026 (16) 2.6 0.10 (0.17) 0.15 (0.39)

CQLA-MR 0.94024 (18) 2.3 0.09 (0.16) 0.12 (0.24)

CQLA-PLC 0.94026 (16) 1.9 0.10 (0.17) 0.15 (0.39)

CQLA-MR-PLC 0.94026 (16) 1.8 0.10 (0.17) 0.14 (0.30)

CQLA-QLAC 0.94025 (17) 1.47 0.10 (0.17) 0.19 (0.39)

CQLA-RLCS 0.94025 (17) 1.41 0.08 (0.15) 0.15 (0.31)

Table 5.3 presents the accuracy and timing comparisons of various iteration strate-

gies for the 3D MOX problem, which studies the e�ciency and accuracy of the iter-

ation schemes, parametrically against the method order. For the purpose of compar-

ison, the SQLA solution, with a 19 pcm keff error, is scaled to a computation cost

factor 1.0 and thus all timing comparisons are relative to it. The Model Reduction

(MR) and Partial Leakage Convergence (PLC) iteration strategies are applied to the

four di�erent base solution strategies, namely full sixth order (FHO6), full fourth or-

der (FHO4), full second order (FHO2) and the CQLA simpli�cation. The Quadratic

Leakage Approximation Correction (QLAC) is applied only to the second schemes,

since utilizing higher-order solutions to provide correction factors to the second order

SQLA provides very little bene�ts. Figure 5.3 further illustrates the results in Table

5.3 by analyzing the performance of the various base schemes (SQLA, CQLA and
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FHOn).
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Figure 5.3: Analysis of the performance and accuracy of various solution schemes as
applied to the MOX C5 benchmark problem.

In Figure 5.3 a number of schemes are graphically compared in terms of the
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average assembly power error and the maximum nodal power error. The bar chart,

on the secondary y−axis, measures the relative computational cost factor of each

of the schemes. In order to clearly distinguish the relative e�ciencies of the lower

order schemes, Figure 5.4 highlights the data of Figure 5.3 for the SQLA, CQLA and

FHO-2 cases and includes the results of the QLAC scheme.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

SQLA CQLA FHO-2

R
el

at
iv

e 
C

o
st

 F
ac

to
r

Pe
rc

en
ta

ge
 E

rr
o

r
(%

)

Calculational Cost - base schemes Calculational Cost - MR

Calculational Cost - PLC Calculational Cost - QLAC

Assembly averaged power error - base scheme Max nodal power error - base scheme

Figure 5.4: Speci�c focus on the e�ciency of lower order schemes as applied to the
MOX C5 benchmark problem.

A number of observations are made from Table 5.3, Figure 5.3 and Figure 5.4:

• All approaches are generally accurate for this problem. The accuracy clearly

improves with the order and importantly the CQLA solution is more accurate

than SQLA by about a factor of two. The scaling of accuracy versus method

order is typical for higher-order methods and follows the trends as published

in Ougouag and Raji¢ (1988). For the case of SQLA, about 5% of the total

calculational time is spent on resolving the transverse leakage source, while for

the CQLA case this fraction increases to just over 30% for this problem;
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• Partial Leakage Convergence (PLC), Model Reduction (MR) and QLA Cor-

rection (QLAC) generally maintain the accuracy of the base scheme they are

�attached� to, be it FHOn or CQLA. This is an important feature, since the

reduction of calculational time associated with these schemes come with almost

no additional accuracy penalty;

• The PLC approach improves upon the e�ciency of its base scheme by about a

factor of two. As input, this scheme requires the relative convergence criteria at

which the leakage shape should be frozen. For all these calculations performed,

the set point was placed at 10−4. A lower value for this set point would improve

the accuracy at the cost of the performance;

• The MR approach shows a larger cost bene�t for higher-order solutions, as

expected, than for lower order solutions. In the case of FHO4-MR, 63% of all

the moments in the system were rejected. For the CQLA case, only 13% of

the moments were rejected, leading to an e�ective (although small) increase

in calculational time due to the overhead of the ANOVA implementation. For

these calculations, the set point for the inclusion of moments, measured as

a percentage contribution to the total function variance, was set to around

10−2(1%), which places a limit on the achievable accuracy. In general, the

bene�t for the higher-order solutions of this problem leads to about a 30%

reduction in calculational time. The CQLA-MR-PLC case refers to the scheme

which applies to both PLC and MR of the CQLA base scheme and shows that

some additional bene�ts may be derived from the combination of the iteration

schemes;

• The QLAC and RLCS schemes maintain the accuracy of the CQLA solution,

with a reduction of the calculational cost of 1.47 and 1.41, respectively. Al-

though this signi�es a good reduction in cost, it is expected that, for this

relatively small benchmark problem, the overhead involved in applying these

schemes, may in�uence the timing results. The application of QLAC to the

FHO2 base solution does not yield an e�cient solution. The primary reason for

this is the fact that this is the slow rate of convergence of the SQLA correc-

tion factors, given the additional cross-terms present in the FHO2 solution, as

compared to CQLA which only solves for the uni-variate leakage coe�cients;

and
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• For this problem, the most e�cient scheme, namely CQLA-RLCS, provides a

two-time improvement in accuracy at a calculational cost of 1.41 as compared

to SQLA. In the concluding section of this chapter we shall compare the perfor-

mance of various problems via a constructed Figure Of Merit (FOM), de�ned

as

FOM =
CPUtimerel

Accuracyrel

which in this case, for the CQLA-RLCS scheme, would yield 1.41/(0.67/0.31) =

0.65. This de�nition indicates better performance for lower values of the FOM

and is relative to a value of 1.0 for SQLA.

5.3.2 IAEA LWR two-group benchmark problem

This benchmark problem is widely known and used to evaluate and compare di�usion

solvers. The benchmark is a simpli�ed representation of two-zone, 177 fuel element

LWR, with an active height of 340 cm. Nine inserted control rods are represented as

homogenized fuel/absorber cross-sections, with four partially inserted rods present in

the 3D version. The 2D core layout is depicted in Figure 5.5.
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I REFLECTOR REFLECTOR REFLECTOR REFLECTOR

H FUEL TYPE 1 FUEL TYPE 1 FUEL TYPE 1 REFLECTOR REFLECTOR REFLECTOR

G FUEL TYPE 2 FUEL TYPE 2 FUEL TYPE 1 FUEL TYPE 1 FUEL TYPE 1 REFLECTOR REFLECTOR

F FUEL TYPE 2 FUEL TYPE 2 FUEL TYPE 2 FUEL TYPE 2 FUEL TYPE 1 FUEL TYPE 1 REFLECTOR REFLECTOR

E FUEL TYPE 3 FUEL TYPE 2 FUEL TYPE 2 FUEL TYPE 2 FUEL TYPE 3 FUEL TYPE 1 FUEL TYPE 1 REFLECTOR

Control Control

D FUEL TYPE 2 FUEL TYPE 2 FUEL TYPE 2 FUEL TYPE 2 FUEL TYPE 2 FUEL TYPE 2 FUEL TYPE 1 REFLECTOR REFLECTOR

C FUEL TYPE 2 FUEL TYPE 2 FUEL TYPE 2 FUEL TYPE 2 FUEL TYPE 2 FUEL TYPE 2 FUEL TYPE 1 FUEL TYPE 1 REFLECTOR

B FUEL TYPE 2 FUEL TYPE 2 FUEL TYPE 2 FUEL TYPE 2 FUEL TYPE 2 FUEL TYPE 2 FUEL TYPE 2 FUEL TYPE 1 REFLECTOR

A FUEL TYPE 3 FUEL TYPE 2 FUEL TYPE 2 FUEL TYPE 2 FUEL TYPE 3 FUEL TYPE 2 FUEL TYPE 2 FUEL TYPE 1 REFLECTOR

Control Control

1 2 3 4 5 6 7 8 9

Figure 5.5: IAEA LWR 2D core layout.

The benchmark has a symmetry line through the centre of row A and column

1. The problem also exhibits octant symmetry, but all the results presented in this

section solve the quarter symmetry problem, with the symmetry line through row A

and column 1 modelled as a re�ective boundary condition. Reference results of the

problem, in terms of both eigenvalue and power distribution, are provided from the

original benchmark publication (Lee, 1977) which utilized an extrapolated �ne-mesh

�nite-di�erence technique. Some uncertainty has been expressed by various users of

this benchmark, as mentioned in Lawrence (1986), that the extrapolated 3D result

was not fully converged and an analysis of the quality of the published benchmark is

performed in Appendix B.3. This investigation shows that indeed, speci�cally in the

outer axial fuel zones, some nodal power errors in the order of 2% are found and as

such the full sixth order higher-order solution utilized here can be regarded as more

accurate than the published reference. The issue is discussed further in Section B.3.
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5.3.2.1 2D version

Firstly we investigate the 2D version of the problem, given that it is most often cited

and used to evaluate nodal solvers. Detailed results of this problem, in tabular format,

is provided in Section B.2. Prior to analyzing the e�ciency of the various numerical

schemes, it is insightful to obtain an understanding of the nature of the problem.

Figure 5.6 depicts the thermal �ux pro�le in the system, produced by HOTR in

fourth order reconstruction mode (FHO4). The sharp �ux gradients in the re�ector

and the severe �ux depression in the control positions, are the primary reason why

this problem is considered to be di�cult.

Figure 5.6: IAEA LWR 2D reconstructed thermal �ux from HOTR.

Table 5.4 presents the results of the numerical analysis and comparison of various

solution schemes as applied to the 2D version of the IAEA LWR benchmark problem.
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Table 5.4: Results for the 2D, two-group IAEA LWR benchmark problem.

Solution keff Cost Power Error Flux error

Scheme # (pcm error, outers) factor Ave (Max) % Ave (Max) %

FHO6 1.029585 (�, 96) 125 (106.00) � �

SQLAsans 1.029615 (3.0,82) 0.85 (0.85) 0.25 (0.91) 0.78 (9.89)

SQLAhotr 1.029615 (3.0,82) 1.00 (1.00) 0.25 (0.91) 0.78 (9.89)

FHO4 1.029584 (0.1, 172) 61.5 (29.32) 0.01 (0.04) 0.01 (0.10)

FHO2 1.029574 (1.1, 118) 9.10 (6.32) 0.07 (0.35) 0.11 (0.45)

CQLA 1.029601 (1.3, 91) 3.14 (2.82) 0.04 (0.16) 0.11 (1.14)

CQLArlcs 1.029590 (0.8, 112) 2.61 (1.91) 0.04 (0.14) 0.15 (1.26)

ILLICOFHO2 1.029575 (1.1, 45) 3.32 (6.05) � (0.32) �

NEM 1.02965 � � (1.4) �

Table 5.4 provides an overview of the accuracy and performance of the various

solution schemes in HOTR, as connected to the SANS nodal solver. The �rst column

labels the solution scheme, the second the achieved keff value followed, in brackets,

by the associated error in pcm and the number of outers needed to solve the problem.

Column three rates the computational e�ciency of the scheme, as compared to the

reference performance of 1.00 assigned to the SQLA solution from HOTR (denoted

by SQLAhotr). The computational cost column contains an additional bracketed

result which gives the average cost per outer (as compared to a cost/outer of 1.0 for

SQLA). This additional measure, although somewhat unrelated to the actual running

time, provides an alternative approach to comparing calculations which converge in

a signi�cantly di�erent number of outers, as in the case of these results given the

di�ering number of �ssion source extrapolations performed. Columns four and �ve

provide the average (and maximum) power and �ux errors, respectively. The �ux

errors in column six are given for the energy group with the largest error, which in

all the cases was the fast group (group one).

The following observations are made based on Table 5.4:

• It should be noted that the results presented here are all calculated with a 3D

code and hence the 2D problem is set up with a 3D nodal model utilizing a

single axial mesh (with re�ective boundary conditions). Hence, it is expected
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that the calculational time scales with a number of unknowns is roughly shown

as (M + 1)2 as would be expected for 3D;

• A relatively small timing di�erence exists between the SQLA solution in SANS

(SQLAsans) and in HOTR (SQLAhotr) - about 15% slower via HOTR, which can

be attributed to the additional overhead in coupling to HOTR. The primary

concern in this regard is, currently the geometry and cross-section model of the

driver code is not directly utilized by HOTR for the sake of independence and

generality. In an industrial, full code integration between a driver nodal code

and HOTR, it would be expected that HOTR makes use of the driver code

topology modules and thus largely eradicate this small overhead burden. As a

result of this expectation, all the cost comparisons in this chapter are performed

relative to SQLAhotr; and

• The average and maximum nodal power errors, due to SQLA, are 0.25% and

0.91% respectively, with a maximum �ux error in the re�ector of about 10%.

Although, in this problem, these errors are not that signi�cant, this simpli�ed

2D version of the benchmark remains a good platform on which to evaluate

potential accuracy improvements. Table 5.5 shows a reference relative power

density distribution for this problem, as well as the distribution of a relative

power density error associated with the SQLA and CQLA solutions in databar

format;
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Table 5.5: Reference relative power density results for the 2D IAEA LWR benchmark,
with SQLA and CQLA percentage errors indicated in databar format in each cell.
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• We notice from Table 5.5 that the primary source of the errors in SQLA occurs

at the fuel/re�ector interfaces, at the periphery of the model. The large errors

in fast �ux in the re�ector regions, as can be seen in Appendix B Table B.3, are

the major contributing factors to these errors;

• As expected, the various higher-order schemes signi�cantly improve upon the

accuracy of SQLA. Of particular interest to this work is the accuracy of the

CQLA solution, which improves upon SQLA in all measures by a substantial

margin. The maximum power and �ux errors have decreased by factors of 6

and 9, respectively. For this problem, FHO2 and CQLA performs similarly in

accuracy, which is one of the original aims in developing CQLA. For the case

of SQLA, about 7% of the total calculational time is spent on resolving the

transverse leakage source, while for the CQLA case this fraction increases to

just over 40%, resulting in an associated increase in the overall calculational

cost of CQLA;

• The computational cost of the FHO2 solution is about 9 (6 if the alternate

measure is used) times more expensive than SQLA. CQLA reduces this cost

to a factor of 3, which is generally in-line with the expectations in Chapter 3

regarding the reduction in the number of unknowns;

• The RLCS scheme, as applied to CQLA (termed CQLArlcs) further reduces

the cost factor only slightly to 2.6 (1.9 if an alternate measure is used), which

is less than anticipated, but may be understood, given the additional outer

iterations performed. CQLArlcs retains the accuracy of CQLA, with very little

deterioration due to the selected iteration parameters, such as pqlac = 95%

(see Table 4.5), which implies that only 95% of the system requires converged

SQLA corrections. It is foreseen that CQLArlcs would show better performance

for larger 3D problems, since for this 2D problem the incurred overhead cost

is not negligible, as compared to the short total running time. The obtained

FOM for this problem is 0.4; and

• The �nal two entries in the table are sourced from published literature. The �rst

is for the ILLICO higher-order code as published in Ougouag and Raji¢ (1988)

and the second is for the NEM code as published in Finnemann et al. (1977).

The ILLICO timing is relative to its own ��at� leakage solution and closely

matches the FHO2 result from HOTR. It con�rms that the hierarchical approach

for the construction of the higher-order moments, as discussed in Section 3.4,
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is consistent with the originally published method of sweeping the full system

for the determination of the node-averaged higher-order �ux moments. The

computational cost per outer associated with these approaches is nearly the

same (around 6 in both cases), since the HOTR approach places a greater

burden on the outer iterations, as compared to ILLICO which resolves the

higher-order moments via a dedicated additional iteration level. However, the

actual calculational time as compared to SQLA di�ers signi�cantly due to the

di�erent number of outers, di�erent convergence criteria (10−5 for ILLICO) and

due to the fact that the ILLICO is a 2D code, whereas the HOTR solution still

solves a 3D problem with re�ective boundary conditions on the top and bottom

surfaces of a single axial node for this problem.

5.3.2.2 3D version

The 2D version of the problem indicates that CQLA provides an accurate solution and

a good general performance improvement as compared to full higher-order solutions.

This 2D problem, however, might still not provide a good platform for determining

the method e�ciency of the RLCS scheme as applied to realistic 3D problems, since

the short run-times cause timing results to be compromised by method overhead

costs. A more appropriate measure and a more realistic core benchmark, is found in

the full 3D version of this problem. The radial layout of the 3D version is the same

as for the 2D shown in Figure 5.5, with an additional partially inserted control rod

in position C3. Results for the various solution schemes applied to the 3D version of

the benchmark are presented in Table 5.6.

94



Table 5.6: Results for the 3D, two-group IAEA LWR benchmark problem.

Solution keff Cost factor Ass. Pow. Err Nod. Pow. Err

scheme #, (pcm,outers) # (#/outer) Ave (Max) % Ave (Max) %

FHO6 1.02907 (229) 260.00 �- �-

SQLAhotr 1.02911 (4.2, 210 ) 1.00 (1.00) 0.26 (0.92) 0.28 (1.23)

FHO2 1.02906 (0.7, 183 ) 10.12 (11.61) 0.08 (0.35) 0.08 (0.46)

FHO2-MR 1.02906 (0.7, 192 ) 7.04 (7.71) 0.08 (0.35) 0.08 (0.46)

FHO2-PLC 1.02906 (0.7, 187 ) 5.36 (6.01) 0.08 (0.35) 0.08 (0.46)

FHO2-QLAC 1.02906 (0.7, 207) 2.71 (2.74) 0.08 (0.35) 0.15 (0.69)

FHO2,rlcs 1.02906 (0.7, 162) 2.26 (2.92) 0.08 (0.35) 0.09 (0.55)

CQLA 1.02909 (1.6, 159 ) 2.82 (3.72) 0.04 (0.16) 0.05 (0.22)

CQLA-MR 1.02909 (1.6, 161 ) 2.42 (3.15) 0.04 (0.16) 0.07 (0.33)

CQLA-PLC 1.02909 (1.6, 159 ) 1.81 (2.39) 0.04 (0.16) 0.05 (0.22)

CQLA-QLAC 1.02909 (1.6, 172) 1.23 (1.50) 0.04 (0.16) 0.06 (0.30)

CQLArlcs 1.02909 (1.8, 160 ) 1.04 (1.37) 0.03 (0.16) 0.08 (0.34)

Table 5.6 follows the structure of Table 5.4. The keff in column 2 is followed

by the error in pcm in brackets and the number of outer iterations required for

the convergence of the given scheme. The cost factor column contains an additional

bracketed result which gives the average cost per outer (as compared to a cost/outer of

1.0 for SQLA). Columns four and �ve give the average (and maximum) assembly and

nodal power errors, respectively. For more detail, a full, axial layer-by-layer power

density comparison between the published result in Lee (1977), the HOTR FHO6

reference and CQLA are presented in Tables B.5 - B.21. In support of the results in

Table 5.6, Figure 5.7 provides a graphical representation of the performance of the

various schemes.
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Figure 5.7: Analysis of the performance and accuracy of various solution schemes as
applied to the IAEA 3D LWR benchmark problem.

Figure 5.7 indicates the average assembly power error and maximum nodal power

error for a selection of the schemes given in Table 5.6. The bar charts, on the secondary

y-axis indicate the relative computation cost of each of the schemes. From Table 5.6

we primarily conclude that:

• The maximum error for SQLA is larger for the 3D version of the problem, with a

maximum nodal power error of 1.23% after 210 outer iterations. The maximum

assembly power error is 0.92%;

• A relatively large variation in the total number of outer iterations exist between

the various base schemes (SQLA, CQLA, FHO2), which indicate di�erent domi-

nance ratios during convergence and a potentially smoother iteration behaviour.

The alternative error measure of e�ective cost/outer is thus introduced to avoid

these di�erences. It is noted though, that the higher-order based CQLA scheme

consistently converges in fewer outers, which may indicate a more stable itera-

tion scheme;
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• Once again, the higher-order methods achieve a signi�cant reduction in error,

both in terms of the maximum and the average error measures. The assembly

averaged power error measures closely follow those of the 2D benchmark, but

the 3D nodal power distribution shows that CQLA improves upon both the

average and the maximum errors in SQLA by a factor of 5. Unexpectedly,

CQLA outperforms (in terms of accuracy) FHO2, but the associated di�erence

in accuracy may be regarded as negligible. The FHO6 result is exceptionally

slow in converging, indicating a worsening of the dominance ratio for the sixth

order solution, primarily due to the slow convergence of the higher-order spatial

moments;

• For the case of SQLA, about 15% of the total calculational time is spent on

resolving the transverse leakage source, while for the CQLA case this fraction

increases to just over 80%. For the CQLArlcs case, this fraction is reduced to

around 35%. These di�erences are expected, given that SQLA simply performs

three local node quadratic �ts in order to express the transverse leakage terms,

while CQLA (or derivatives thereof) requires updates to higher-order �ssion

and scattering sources during each outer to solve 2 two-node problems on each

nodal surface interface;

• CQLArlcs performs signi�cantly better in the 3D case than in the 2D case.

In total the CQLArlcs iteration scheme achieves a cost factor of 1.04 when

compared to SQLA. It is however clear that the low number of outers (160 in

this case) contributed to this cost factor and thus the e�ective (cost/outer) is

probably a more realistic re�ection at a factor of 1.37. It should however be

observed that the CQLA scheme consistently converges faster than SQLA, as

could be expected considering the fact that SQLA is an ad-hoc extension to

the ANM, while CQLA utilizes information which is naturally present in the

transversely-integrated equations. In order to understand how this performance

is obtained, it is insightful to analyze the iteration behaviour of the CQLArlcs

solution. Table 5.7 describes the workings of the RLCS scheme during the

solution and shows that only 14 higher-order iterations were needed during the

160 total outers to achieve su�cient accuracy in the SQLA correction factors.

The obtained FOM for this problem is 0.28;
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Table 5.7: Iteration analysis for the 3D, two-group IAEA LWR benchmark problem
in CQLArlcs mode.

Iteration Numerical Iteration behaviour

range scheme

1-44 SQLA Standard iterations using SQLA up to preset convergence

33 SQLA Fission source extrapolation performed

45-59 CQLArlcs CQLA activated with SQLA correction factor tabulation

52 CQLArlcs Model reduction due to parameter fmr = 0.6: 12% of

moments in the system rejected (no longer updated)

59 CQLArlcs Higher-order moments frozen (parameter fplc = 0.8)

61-160 SQLA 95% of moments converged and

SQLA continues with corrections factors

95, 124, 147 SQLA 3 further �ssion source extrapolations take place

• The CQLArlcs scheme shows some degradation in accuracy when compared to

the CQLA solution, with the maximum error increased from 0.22% to 0.34%.

Nevertheless, results for the CQLArlcs case shows promise and provide an im-

provement in the assembly average and the maximum power error of almost one

order of magnitude and an improvement in the maximum nodal power error of

approximately a factor of 4, for a less than 40% increase in the calculational

cost per outer (4% increase in total time).

5.3.3 KOEBERG benchmark problem

The 6-group KOEBERG benchmark problem (Muller and Weiss, 1991) is a 2D, 6-

group di�usion benchmark and is derived from realistic cross-sections for the KOE-

BERG LWR operating in Cape Town, South Africa. The multigroup nature of the

problem (with signi�cant up-scattering), provides additional complexity. As illus-

tration of the nature of the problem, the reconstructed �ux from HOTR (in fourth

order reconstruction mode) is presented in Figure 5.8, from which the checkerboard

arrangement of fuel and control elements in this design is evident. The problem ex-

hibits octant symmetry, but for the sake of testing the methods on a realistic full-core

problem, all the calculations in this section are performed for the full core problem

(no symmetry).

98



Figure 5.8: Reconstructed group 6 �ux pro�le in the KOEBERG benchmark problem.

Summary results for the KOEBERG problem are presented in Table 5.8.

Table 5.8: Results for the 2D, six-group KOEBERG benchmark problem.

Iteration keff keff error Cost Ass. Ave (Max) Ass. Ave (Max)

scheme (pcm) factor % Power Error % Flux Error

FHO6 1.00787 � 152 � �

SQLA 1.00828 40 pcm 1.00 1.11 (2.24) 2.21 (15.2)

FHO2 1.00786 1 pcm 1.53 0.02 (0.07) 0.04 (0.21)

CQLA 1.00786 1 pcm 1.20 0.14 (0.42) 0.32 (1.64)

CQLArlcs 1.00782 5 pcm 1.09 0.14 (0.49) 0.32 (1.72)

Table 5.8 tabulates the SQLA, CQLA and FHO2 results for the KOEBERG prob-

lem. For this problem, the iteration structure, as presented in Table 5.1, is adapted in

that the maximum up-scatter iterations is set to 100 to allow smooth error-reduction

during convergence.

99



The most noteworthy result in this table is the large SQLA nodal power error,

which is over 2% for this problem. CQLA (and CQLArlcs) improves upon this result

by a factor of 4.5. The power error distribution for the SQLA calculation is presented

in Appendix B in Figure B.1.

From Figure B.1 it is clear that the 2.2% error is not an isolated occurrence, but

consistently shows up at the periphery of the model. More detail on the distribution

is available in Table 5.9, which shows a consistent spread of SQLA errors and thus

explains the large assembly averaged error.

Table 5.9: Reference relative power density results for the 2D KOEBERG benchmark
(�rst quadrant), with SQLA and CQLA percentage errors indicated in databar format
in each cell.

8.293E-01 6.397E-01 Reference

H 2.24 2.06 SQLA % error

0.33 0.32 CQLA % error

9.566E-01 1.041E+00 9.647E-01 6.478E-01

G 1.07 1.23 1.54 0.86

0.21 0.16 0.18 0.19

1.215E+00 1.060E+00 1.039E+00 9.798E-01 6.655E-01

F 0.05 0.19 0.51 1.67 1.51

0.00 0.06 0.11 0.18 0.17

1.132E+00 1.245E+00 1.058E+00 9.999E-01 7.849E-01 6.655E-01

E 0.56 0.58 0.32 0.16 1.75 1.51

0.07 0.08 0.01 0.06 0.22 0.18

1.168E+00 1.107E+00 1.226E+00 1.037E+00 9.999E-01 9.798E-01 6.478E-01

D 1.34 1.10 0.86 0.51 0.16 1.67 0.86

0.18 0.11 0.17 0.03 0.06 0.19 0.19

1.046E+00 1.135E+00 1.094E+00 1.226E+00 1.058E+00 1.039E+00 9.647E-01

C 1.51 1.69 1.22 0.86 0.32 0.51 1.54

0.29 0.26 0.21 0.17 0.01 0.11 0.18

1.090E+00 1.028E+00 1.135E+00 1.107E+00 1.245E+00 1.060E+00 1.041E+00 6.397E-01

B 1.99 1.69 1.69 1.10 0.58 0.19 1.23 2.06

0.42 0.33 0.26 0.11 0.08 0.06 0.16 0.32

1.008E+00 1.090E+00 1.046E+00 1.168E+00 1.132E+00 1.215E+00 9.566E-01 8.293E-01

A 1.91 1.99 1.51 1.34 0.56 0.05 1.07 2.24

0.35 0.42 0.29 0.18 0.07 0.00 0.21 0.33

1 2 3 4 5 6 7 8

The result of particular interest, is the CQLArlcs performance factor of 1.09, with

an average and maximum power density error of 0.14% and 0.49%, respectively, when

compared to SQLA with 1.11% and 2.23%. In actual fact, all the higher-order schemes

perform well in this problem, with the lower computational cost estimates resulting
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from the fact that the major burden in this calculation is in resolving the up-scatter

source, while the leakage update is performed at the outer level. This can even be seen

in the case of the SQLA solution, with less than 1% of the calculational time being

devoted to resolving the leakage source. In the case of CQLArlcs this value climbs to

only 5%. This is an important result, which indicates that the burden of resolving

the up-scatter source in the lower order nodal solver is not directly experienced by

HOTR, as it constructs the higher-order shapes based on the provided zero order

quantities.

Additional detail and the results of this problem, such as multi-group �ux com-

parisons between SQLA and CQLA, are given in Section B.4. This problem exhibits

a FOM of 0.23.

5.3.4 The ZION and BIBLIS benchmark problems

The ZION and BIBLIS benchmark problems, both well known and fully described

in Smith (1979), represent two similar 2D, 2-group LWR benchmarks. They di�er in

that the ZION problem contains an explicit ba�e model, while the BIBLIS problem

exhibits a smeared ba�e/water region surrounding the core.

The BIBLIS benchmark problem utilizes a checkerboard pattern, formed by fuel

and control elements. The fuel elements are about 23 cm in pitch and the system is

surrounded by water. The problem is realistic, given that it is a 2D representation

of an actual operating LWR. The ZION benchmark contains a high enriched outer

zone and a lower enriched inner zone, with, as stated, an explicit outer ba�e which

provides particular di�culties to the SQLA solution method. These di�culties are

primarily a result of the nodal aspect ratios (Smith, 1979) between the ba�e and the

neighbouring fuel elements, which approaches a ratio of about 7:1. Results of these

two problems are presented in Table 5.10.
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Table 5.10: Results for the 2D, two-group BIBLIS and ZION benchmark problems.

Solution keff Cost Power error

scheme # (pcm error) factor Ave (Max) %

BIBLIS

Ref. in Smith (1979) 1.02512

FHO6 1.02511 110.81

SQLAhotr 1.02531 (20) 1.00 0.65 (2.09)

CQLA 1.02510 (1) 2.11 0.04 (0.10)

CQLArlcs 1.02507 (3) 2.92 0.16 (0.48)

ZION

Ref. in Smith (1979) 1.27489

FHO6 1.27489 85.22

SQLAhotr diverges � �

FLAThotr 1.27505 1.00 0.74 (2.16)

CQLA 1.27489 (0) 3.54 0.02 (0.06)

Results for these considered benchmarks coincide with those of the KOEBERG

problem in that all the 2D LWR cases show nodal power errors in excess of 2% for

the SQLA case. For the ZION problem, no SQLA result could be reported, due to

a non-convergence of the solution and only a result with a �at, or constant, leakage

approximation was obtained (denoted by FLAThotr). This observation was also made

by Smith (1979), in remedy of which he applied a hybrid constant/quadratic leakage

approximation, which still yielded a maximum nodal error of 1.96%.

The CQLA solution shows a good accuracy improvement, with a 20 and 35 time

improvement in the maximum nodal power error for BIBLIS and ZION, respectively.

The CQLArlcs solution is reported only for BIBLIS, with the performance showing

some deterioration when compared to CQLA. This may again be attributed to the

additional overhead cost of CQLArlcs and the associated impact thereof on these

smaller 2-group, 2D problems. For the ZION problem, no converged correction fac-

tors to SQLA could be obtained, due to the non-convergence of SQLA. This is an

important result concerning the capabilities of CQLArlcs and highlights the fact that
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such correction factors are only feasible in cases where SQLA is of reasonable accu-

racy. If such failure in convergence is detected, the solution method should revert

back to pure CQLA, whilst still employing both the model reduction (MR) and the

leakage freezing (PLC) iteration options to accelerate the solution.

For the BIBLIS problem, the calculated FOM is 0.67, but it can unfortunately

not be evaluated for the ZION problem since SQLA does not converge.

5.3.5 SAFARI-1 benchmark problem

The 3D, 6-group SAFARI-1 benchmark problem analyzed in this section is a realistic

representation of an actual BOC operating state of the 20 MW SAFARI-1 tank-in-

pool type research reactor operated by Necsa, at the Pelindaba site, in South Africa.

The cross-sections utilized in this benchmark are extracted from the o�cial SAFARI-1

core-follow parametrized few-group cross-section library, utilizing the state conditions

of every node to reconstruct each of the 2520 di�erent cross-sections in the model. A

schematic view of the SAFARI-1 core is presented in Figure 5.9.

 

Figure 5.9: Schematic view of the SAFARI-1 benchmark core model.

The benchmark contains in-core elements such as fuel, follower type control ele-
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ments, beryllium re�ector elements and in-core irradiation devices which might con-

tain a variety of samples for the purpose of isotope production or material testing.

In this model, all irradiation positions are �lled with aluminium water boxes. In the

model, the core is surrounded with an explicitly modelled core box, which in turn

is surrounded on all sides by two 10 cm water re�ector nodes. Fuel assemblies have

radial dimensions of 7.71 cm by 8.1 cm and as such this model exhibits smaller nodes

than in the case of the LWR benchmark problems discussed before.

This model is of interest, since the use of nodal codes for research reactor modelling

would not just involve the correct prediction of �uxes in fuel assemblies, but also in

the other in-core components. However, prior to investigating these issues, Table 5.11

provides the standard accuracy and performance analyses we have performed for all

the problems thus far. Table B.28 in Appendix B expands upon these results by

providing additional detail on power density distribution errors for the SQLA and

CQLA solutions.

Table 5.11: Results for the 3D, six-group SAFARI-1 benchmark problem.

Iteration keff keff error Cost Ass. Ave(Max) Nodal Ave (Max)

scheme (pcm) factor % power error % power error

FHO6 1.021511 � 203

SQLA 1.02288 134 1.00 0.33 (0.84) 0.40 (1.42)

FHO2 1.02155 4 11.2 0.02 (0.14) 0.05 (0.18)

CQLA 1.02206 54 3.01 0.13 (0.49) 0.13 (0.59)

CQLArlcs 1.02206 54 1.71 0.13 (0.49) 0.14 (0.63)

Although the assembly pitch is relatively small, the SAFARI-1 benchmark problem

shows large keff errors for all the approaches. Nevertheless, the results in Table B.28

are generally consistent with those obtained from previous problems, with CQLArlcs

being slightly less e�cient for this problem when compared to the larger LWR cores

evaluated earlier in the chapter. This is primarily related to the relatively small

core and overly large re�ector region, causing the problem to exhibit a fairly small

dominance ratio which in turn causes convergence in only 45 outer iterations. With

the execution of the RLCS algorithm, 10 outers are needed to converge the SQLA

correction factors in this case and thus approximately 20% of outers require higher-

order solutions, when compared to the 9% of the IAEA 3D problem. This delay in
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convergence relates to the slow convergence in the large re�ector, which is not princi-

pally consistent with the way nodal methods should be applied, as the use of re�ector

equivalence parameters would be more appropriate for such a problem. Nevertheless,

CQLA (and CQLArlcs) achieves an accuracy improvement of approximately a factor

of 3 for averaged error measures and a factor of 2 for maximum error measures for

this problem, at a computational cost of 1.71. The FOM for this problem assumes a

value of 0.75.

As mentioned earlier in this section, the spatial and energy distribution of nodal

�uxes in in-core irradiation positions are relevant in research reactor analyses. Figure

5.10 shows the SQLA errors in the unperturbed axial �ux distribution for irradiation

position B8, which in the SAFARI-1 reactor is typically utilized for the production

of Mo-99 via the �ssion of speci�cally manufactured target plates.
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Figure 5.10: Axial �ux distribution in SAFARI-1 core position B8 for SQLA and
CQLA solutions, respectively.
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These axial error pro�les indicate that much larger �ux errors occur in in-core

irradiation positions when compared with fuel elements, with the maximum nodal

�ux errors in excess of 3% for SQLA. The CQLA solution improves these errors with

around 1% and hence would provide a valuable contribution to the cycle planning

and isotopic yield prediction. The SAFARI-1 reactor model is further investigated in

Chapter 6, for cases where HOTR is directly coupled to the OSCAR-4 calculational

system used to perform the day-to-day reload and core-follow calculations.

5.4 Summary Observations

Five �xed cross-section benchmark problems were investigated in this chapter. The

solution schemes of primary interest were the SQLA solution, in order to summarize

the error associated with it and the CQLArlcs solution, in order to summarize the ac-

curacy and e�ciency of the proposed scheme. The overview results for these solutions

are presented in Table 5.12.

Table 5.12: Summary results for the selected �xed cross-section benchmarks.

Benchmark SQLA errors CQLArlcs errors Calc cost

(node groups) pcm (outers) Ave (Max) power pcm (outers) Ave (Max) power # (#/outer)

MOX 2D (18) 16.7 (32) 0.19 (0.55) 17.0 (44) 0.13 (0.16) 1.24 (0.9)

IAEA 2D (138) 3.0 (82) 0.25 (0.91) 0.8 (112) 0.04 (0.14) 2.61 (1.9)

MOX 3D (162) 19.0 (152) 0.22 (0.67) 17.0 (179) 0.15 (0.31) 1.41 (1.3)

ZION (338) diverged
a
0.74 (2.16) diverged

b
0.02 (0.06) 3.54 (�)

BIBLIS (578) 20.0 (121) 0.65 (2.09) 3.0 (170) 0.16 (0.48) 2.92 (2.5)

KOEBERG (1734) 40.0 (148) 1.11 (2.24) 5.0 (151) 0.14 (0.49) 1.09 (1.1)

IAEA 3D (2622) 4.2 (210) 0.28 (1.23) 1.8 (159) 0.08 (0.34) 1.04 (1.4)

SAFARI-1 (15120) 134.0 (55) 0.40 (1.42) 54 (50) 0.14 (0.63) 1.71 (1.8)

aFLAT solution, since SQLA did not converge
bCQLA since RLCS did not converge

Table 5.12 provides an overview of the performance and accuracy of the CQLArlcs

scheme. The benchmark names, followed by the number of node-groups in brackets,

are given in column 1. The entries in the table are sorted according to the increasing

number of node-groups, which is a measure of the problem size and are calculated as
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nodesx × nodesy × nodesz × groups. Error measures for SQLA and CQLArlcs, consis-

tent with the de�nitions in earlier tables in this chapter, are provided in columns 2 - 5.

The calculational cost of the CQLArlcs scheme is given in the �nal column and refers

to the relative performance in the total calculational time. The e�ective cost per

outer iteration, which is a measure aiming to quantify the performance, independent

of the acceleration scheme employed in the driver nodal code, is given in brackets in

column 6. Note that the MOX 2D result is included for completeness.

The results in Table 5.12 indicate that the proposed scheme improves the average

and maximum nodal power errors for all the problems. For the larger, more realistic

core problems, such as the KOEBERG, IAEA 3D and SAFARI-1 benchmark prob-

lems (thus problems in excess of 1000 node-groups), the nodal power error measures

generally improve by about a factor of four (in some cases much higher and in some

slightly less), with the computational e�ciency ranging from 1.04 to 1.7. The smaller

problems show more erratic cost estimates, mainly due to the interaction of the over-

head method cost and short total running times. Results of the ZION problem, in

which SQLA and therefore also CQLArlcs does not converge, indicate that the pure

CQLA (not included in this table) solution remains an important solution option for

cases where SQLA is severely inaccurate.

The obtained Figures Of Merits (FOMs) for the problems considered, range from

0.25 to 0.75. These numbers may be interpreted if we consider that a FOM of 0.5

indicates a method which is twice as good as SQLA in terms of both calculational

cost and accuracy. In general, considering the cost/outer error measure as a better

predictive performance indicator, it can be concluded that for realistic size problems,

the CQLArlcs scheme improves the solution accuracy by about a factor of 4, at a

computation cost of between 1.1 and 1.8 times that of SQLA (which implies an

average FOM of around 0.36 in terms of cost/outer). This is in line with the initial

expectation of providing a signi�cant improvement in the calculational accuracy of

SQLA, at an acceptable cost penalty. To place this issue into context, consider that

a 4 times reduction in error may be achieved by halving the calculational mesh in

each direction when performing an SQLA solution. This would typically result in

an increase in calculational cost by approximately a factor of 8 (or 800%) in 3D as

compared to between 10% and 80% of the problems considered here.

It remains to be seen whether such �gures are achievable when coupling HOTR to

a wider spread of problems and a wider array of driver nodal codes. The upcoming

chapter will touch upon this issue, by investigating the coupling of HOTR to the

OSCAR-4 system as an alternative driver code.

108


