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Samevatting

Transversaal geintegreerde nodale diffusie metodes verteenwoordig steeds die stan-
daard in reaktor berekeninge. Die primére tekortkoming in hierdie benadering is
die gebruik van die sogenaamde kwadratiese transversale lekkasie aanname. Hierdie
aanname word algemeen gebruik in die berekening van ligte water reaktore, maar
is sonder teoretiese grondslag. Dit is nie direk afleibaar van die diffusie oplossing
nie en kan akkuraatheids- en konvergensie probleme tot gevolg hé. In hierdie werk
word 'n verbeterde, konsekwente hoér-orde lekkasie aanname geformuleer. Die kri-
tiese suksesfaktore in so 'n metode is gekoppel aan beide akkuraatheid en effektiwiteit
(berekeningskoste), en gevolglik word 'n reeks iterasiemetodes verder ontwikkel om
die voorgestelde oplossing van praktiese waarde te maak. Die mees belowende van
hierdie skemas gebruik die hoér-orde lekkasie aanname om korreksiefaktore vir die
standaard kwadratiese transversale lekkasie aanname te bereken. Numeriese resul-
tate word produseer aan die hand van ’'n reeks standaard toetsprobleme. Verder
word die toepassing van die metode ook demonstreer op 'n stel realistiese SAFARI-1
reaktor berekeninge. Die uiteindelike voorgestelde oplossing is geimplimenteer in a
losstaande FORTRAN-90 module wat naatloos aan bestaande nodale kodes gekoppel
kan word. Ter illustrasie word die module ook aan die OSCAR-4 kodesisteem gekop-
pel, wat oor dertig jaar by Necsa ontwikkel is en wat as primére berekeningskode vir

'n aantal internationale navorsingsreaktore gebruik word.



Abstract

Transverse-integrated nodal diffusion methods currently represent the stan-
dard in full core neutronic simulation. The primary shortcoming of this
approach is the utilization of the quadratic transverse leakage approxi-
mation. This approach, although proven to work well for typical LWR
problems, is not consistent with the formulation of nodal methods and
can cause accuracy and convergence problems. In this work, an improved,
consistent quadratic leakage approximation is formulated, which derives
from the class of higher-order nodal methods developed some years ago.
In this thesis a number of iteration schemes are developed around this
consistent quadratic leakage approximation which yields accurate node
average results in much improved calculational times. The most promis-
ing of these iteration schemes results from utilizing the consistent leakage
approximation as a correction method to the standard quadratic leakage
approximation. Numerical results are demonstrated on a set of benchmark
problems and further applied to realistic reactor problems for particularly
the SAFARI-1 reactor operating at Necsa, South Africa. The final opti-
mal solution strategy is packaged into a standalone module which may be
simply coupled to existing nodal diffusion codes, illustrated via coupling of
the module to the OSCAR-4 code system developed at Necsa and utilized
for the calculational support of a number of operating research reactors

around the world.
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