Inhibition of monoamine oxidase by caffeine- and phthalide analogues

Belinda Strydom
B.Pharm., M.Sc. (Pharmaceutical Chemistry)

Thesis submitted in fulfillment of the requirements for the degree

Philosophiae Doctor

in Pharmaceutical Chemistry at the School of Pharmacy of the North-West University, Potchefstroom Campus.

Supervisor: Prof. J.P. Petzer
Co-Supervisor: Prof. J.J. Bergh

Potchefstroom
2012
This thesis is submitted in article format consisting of three original research articles. Two of the stated articles were submitted to the academic journals, *European Journal of Medicinal Chemistry* and *Arzneimittelforschung*. The author guidelines for each submitted article are also included. All scientific research for the purpose of this thesis was conducted by Ms B. Strydom at the North-West University, Potchefstroom campus.

Letters of agreement from the co-authors of the research articles and the publishing agreements from the editors of the stated journals are included.
Declaration

This thesis is submitted in fulfillment of the requirements for the degree of the Philosophiae Doctor in Pharmaceutical Chemistry, at the School of Pharmacy, North-West University.

I, Belinda Strydom hereby declare that the dissertation with the title: INHIBITION OF MONOAMINE OXIDASE BY CAFFEINE- AND PHTHALIDE ANALOGUES is my own work and has not been submitted at any other university either whole or in part.

Strydom, Belinda
25 October 2012
Letter of agreement

To whom it may concern,

Dear Sir/Madam

CO-AUTHORSHIP ON RESEARCH PAPERS
The undersigned as co-authors of the research articles listed below, hereby give permission to Ms B. Strydom to submit these articles as part of the degree PhD in Pharmaceutical Chemistry at the North-West University, Potchefstroom campus.

- 8-Aryl- and alkylloxycaffeine analogues as inhibitors of monoamine oxidase, *European Journal of Medicinal Chemistry*

- Structure-activity relationships for the inhibition of monoamine oxidase by 8-(2-phenoxyethoxy)caffeine analogues, submitted as: The inhibition of monoamine oxidase by 8-(2-phenoxyethoxy)caffeine analogues, *Arzneimittelforschung/ Drug Research*

- Inhibition of monoamine oxidase by phthalide analogues

Yours sincerely,

Prof. J.P Petzer

Prof. J.J. Bergh
Acknowledgements

• Prof. J.P. Petzer, thank you for your guidance through 5 years of study. Your patience and knowledge are greatly admired and appreciated by us all. You are truly an inspiration to your students.

• Prof. J.J. Bergh, thank you for your support. I am grateful for all the times you have helped me, being it financial or academic.

• My colleagues and friends at Pharmaceutical Chemistry, thank you for the support and laughter when stress levels escalated.

• André Joubert and Johan Jordaan for recording the NMR and MS spectra at the SASOL Centre for Chemistry, North-West University.

• Thank you to the North-West University and DAAD-NRF for financial support.

• My parents, for their unwavering support and love. Also, the rest of my family, thank you for always believing in me and all the phone calls. I love you guys dearly.

• Nicolas, for making me laugh until my tummy aches. I appreciate the way you always encourage me and stuff me full of good food. I love you.

“Every one who is seriously involved in the pursuit of science becomes convinced that a spirit is manifest in the laws of the Universe—a spirit vastly superior to that of man, and one in the face of which we with our modest powers must feel humble.”

-Albert Einstein-
Abstract

Monoamine oxidase (MAO) consists of two isoforms, MAO-A and MAO-B. MAO is responsible for the oxidation of neurotransmitter and dietary amines. The MAO-B isoform, in particular, is considered to be a drug target for the treatment of neurodegenerative disorders such as Parkinson’s disease (PD). Inhibition of MAO-B may conserve dopamine in the brain, resulting in symptomatic relief of PD. Furthermore, inhibition of MAO-B may prevent the formation of neurotoxic metabolic products and thus MAO-B inhibitors may exert a neuroprotective effect. For these reasons, MAO-B inhibitors have been used as antiparkinsonian agents. The MAO-B inhibitors that are currently being used in the treatment of PD are irreversible inhibitors. In addition to the potential adverse effects associated with irreversible inhibition, the recovery of MAO activity after inactivation by an irreversible inhibitor may require several weeks. Reversible inhibitors may have less adverse effects and enzyme recovery after withdrawal is almost immediate.

In this study three series of novel reversible MAO inhibitors were synthesized and their MAO inhibitory properties were examined. For the first two series, caffeine was employed as a scaffold with alkyl oxy substitution on C8 of the caffeine moiety. Caffeine is a weak inhibitor of MAO-B, but substitution on C8 increases its inhibitory activity towards MAO-B as illustrated with the potent MAO-B inhibitor, (E)-8-(3-chlorostyryl)caffeine (CSC). In a previous study it was demonstrated with 8-benzyloxycaffeine that an alkyl oxy side chain may result in potent inhibitors of both MAO-A and –B. Based on these reports the first two series of caffeine analogues contained alkyl oxy side chains on C8 of the caffeine. The target caffeine analogues were synthesized by condensing an appropriately substituted alcohol with 8-chlorocaffeine.

For the third series, 6-benzyloxyphthalide was used as lead compound and a series of phthalide analogues were synthesized with various alkyl oxy side chains on the C6 position. In previous studies it has been shown that benzyl oxy substitution on the C5 positions of isatin and phthalimide resulted in potent MAO inhibitors. Isatin and phthalimide are structurally related to phthalide and the C5 position on isatin and phthalimide are homologues to the C6 position on phthalide. Therefore, the third series explored the MAO inhibitory properties of phthalide analogues with alkyl oxy
side chains on C6. To investigate the importance of the oxy moiety for MAO inhibitory activity, the effects of benzylamino substitution on the C6 position of the phthalide ring was also examined. The alkylxyphthalide analogues were synthesized by reacting 6-hydroxyphthalide with an appropriately substituted alkyl bromide. The benzylaminophthalide was synthesized, in turn, according to the same procedure from 6-aminophthalide and benzyl bromide.

The synthesized compounds were evaluated as inhibitors of recombinant human MAO-A and –B. Kynuramine, a MAO-A/B mixed substrate served as enzyme substrate. Kynuramine is oxidized by the MAOs to yield 6-hydroxyquinoline, a compound which fluoresces in alkaline media. Concentration measurements of 6-hydroxyquinoline can conveniently be made via fluorescence spectrophotometry since both kynuramine and the inhibitors are non-fluorescent under these assay conditions. The inhibition potencies of the test compounds were expressed as the corresponding IC\textsubscript{50} values. Representative inhibitors in each series were selected to evaluate the reversibility of inhibition of the compounds.

In the first series, the 8-aryl and alkylxycaffeine analogues were found to be reversible inhibitors of MAO-A and –B with greater selectivity towards MAO-B. A particularly potent MAO inhibitor among the first series was 8-[2-(4-bromophenoxy)ethoxy]caffeine with IC\textsubscript{50} values of 1.65 µM and 0.166 µM towards MAO-A and -B, respectively. Based on the promising inhibitory activities of the first series, in the second series, the MAO inhibitory properties of the 8-(2-phenoxyethoxy)caffeine analogues were further explored. For this purpose, 8-(2-phenoxyethoxy)caffeine analogues with different substituents on C4 of the phenyl ring were synthesized. Structure-activity relationship (SAR) studies were carried out in order to correlate selected physicochemical properties of the C4 substituents with the inhibitory activities towards MAO. It was found that substituents on C4 of the phenyl ring which are more lipophilic, electron withdrawing and has greater bulkiness may result in more potent inhibition towards MAO-A. The most potent MAO-A inhibitor of this series was 8-[2-(4-iodophenoxy)ethoxy]caffeine with an IC\textsubscript{50} value of 0.924 µM. The results also documented that MAO-B inhibition potency correlated with the electronic parameters of the substituent on C4 of the phenyl ring, with highly electron withdrawing substituents yielding potent MAO-B inhibitors. This behaviour is exemplified by 8-[2-(4-trifluoromethylphenoxy)ethoxy]caffeine, which inhibited MAO-B with an IC\textsubscript{50} value of 0.061 µM. In the third series the phthalide analogues also
proved to be potent reversible inhibitors of both MAO-A and –B. As observed with the caffeine derived compounds of series 1 and 2, these compounds were also more selective towards MAO-B. The most potent MAO-B inhibitor was 6-[4-(trifluoromethyl)benzyloxy]phthalide with an IC$_{50}$ value of 0.0014 µM while the most potent MAO-A inhibitor was 6-(3-phenylpropoxy)phthalide with an IC$_{50}$ value of 0.1 µM. The least potent inhibitor of MAO-A and –B was 6-(benzylamino)phthalide which inhibited MAO-A with an IC$_{50}$ value of 59.9 µM and displayed no inhibition towards MAO-B.

To examine the reversibility of the target compounds, two methods were employed. For the first two series, the caffeine derived inhibitors, 8-[2-(4-bromophenoxy)ethoxy]caffeine was selected as representative inhibitor. MAO-A and –B were pre-incubated with the representative inhibitor for time periods of 0, 15, 30 and 60 minutes and the residual catalytic rates were measured. The results showed that there was no significant time-dependent decrease in catalytic rate, which is an indication that the representative inhibitor is a reversible inhibitor of MAO-A and –B. For the third series, reversibility of MAO-A and –B inhibition was determined by using 6-(3-phenylpropoxy)phthalide and 6-[4-(trifluoromethyl)benzyloxy]phthalide as representative inhibitors, respectively. MAO was pre-incubated with the respective inhibitors at concentrations of 10-fold IC$_{50}$ and 100-fold IC$_{50}$. After dilution of the incubations to 0.1-fold IC$_{50}$ and 1-fold IC$_{50}$, the residual enzyme activities were measured. After the dilution to 1-fold IC$_{50}$, the activities of MAO-A and –B were recovered to 86% and 68%, respectively. This behavior is consistent with reversible inhibition. To further establish the reversibility of inhibition by the representative caffeine and phthalide inhibitors, Lineweaver-Burk plots were constructed. The results showed that the Lineweaver-Burk plots intersected on the y-axis, which is an indication that the representative inhibitors are competitive and therefore reversible inhibitors of MAO-A and –B. Reversible inhibition is in general a desirable trait since irreversible MAO inhibitors are frequently associated with unfavourable and potentially fatal side effects.

Based on the findings that the caffeine and phthalide analogues examined in this study are potent and reversible inhibitors of MAO-A and –B, these compounds represent suitable candidates for the development of novel MAO inhibitors for the treatment of PD.
Uittreksel

Die ensiem, monoamienoksidase (MAO) bestaan uit twee isovorme, naamlik, MAO-A en MAO-B. MAO is verantwoordelik vir die oksidasie van neurotransmitter en diëetverwante amiene. MAO-B word beskou as ’n belangrike geneesmiddelteiken vir die behandeling van neurodegeneratiewe siektes soos Parkinson se siekte. Inhibisie van MAO-B verhoed die metaboliese afbraak van dopamien in die brein, en veroorsaak sodoende verligting van die simptome van Parkinson se siekte. Die inhibisie van MAO-B kan moontlik ook die vorming van neurotoksiese metaboliese produkte voorkom en sodoende ’n neurobeskermende effek tot gevolg hê. MAO-B-remmers word tans gebruik vir die behandeling van Parkinson se siekte omdat dit ’n simptomatiiese sowel as ’n neurobeskermende effek het. Huidige MAO-B-remmers wat vir die behandeling van Parkinson se siekte aangewend word, bind onomkeerbaar aan die ensiem en lei dikwels tot ernstige newe-effekte. Met staking van behandeling met onomkeerbare remmers, kan dit etlike weke neem vir ensiemaktiwiteit om terug te keer na normale vlakke. In teenstelling hiermee lei omkeerbare remmers tot minder newe-effekte en, na staking van behandeling, keer ensiemaktiwiteit terug na normale vlakke sodra die remmer uit die weefsel opgeruim is.

Die huidige studie beskryf die sintese van drie reekse nuwe, omkeerbare MAO-remmers en ondersoek vervolgens die MAO-inhiberende effekte van die verbindinge. Kafeïen is in die eerste twee reekse as leidraadverbinding gebruik en die effek van alkiloeksiesubstitusie op C8 van die kafeïengroep op die MAO-inhiberende aktiwiteit is ondersoek. Kafeïen is ’n swak remmer van MAO-B, maar soos getoon met \((E)-8-(3\text{-chlorostiriel})\)kafeïen (CSC), kan C8-substitusie op kafeïen die inhibisie van MAO-B aansienlik verbeter. ’n Vorige studie het getoon dat alkiloeksiesykettings op C8, soos in die geval van 8-bensieloksiekafeïen, lei tot potente inhibeerders van beide MAO-A en -B. Die eerste twee reekse kafeïenanaloë wat in dié studie ondersoek is, is dus gesubstitueer met ’n alkiloeksiesyketting op C8 van die kafeïenring. Die verlangde kafeïenanaloë is gesintetiseer deur die kondensering van 8-chlorokafeïen met ’n gepaste gesubstitueerde alkohol.

In die derde reeks is 6-bensieloksieftalied as leidraadverbinding gebruik en ’n reeks ftaliedanaloë, met verskeie alkiloeksiesykettings op die C6-positie, is gesintetiseer.
Vorige studies het getoon dat isatien en ftaliaanlig, met bensieloksiesykettings op die C5-posisies, as potente MAO-remmers optree. Isatien en ftaliaanlig is structureel verwant en die C5 posisie op isatien en ftaliaanlig is homoloog aan die C6-posisie op ftalied. Om hierdie rede is ftaliedanaloë, met alkieloksiesykettings op C6, in die derde reeks as potensiële MAO-remmers ondersoek. Om die rol van die suurstofgedeelte in die inhibisie van MAO te bestudeer, is die ftaliedanaloog wat die bensielamino-substituut op die C6-posisie bevat, ook gesintetiseer. Die alkieloksieftaliedanaloë is gesintetiseer deur die reaksie van 6-hidroksieftalied met 'n toepaslike gesubstitueerde alkielbromied. Bensielaminoftalied is gesintetiseer deur die reaksie van 6-aminoftalied met bensielbromied.

Die gesintetiseerde verbindings is as remmers van rekombinante menslike MAO-A en -B geëvalueer. Kinuramien, wat ’n gemengde MAO-A/B substraat is, is as substraat gebruik in hierdie studie. Kinuramien word geoksideer deur MAO om 6-hidroksiekinolien te vorm. Hierdie metaboilet fluorsesseer in alkaliëse oplossing. Die konsentrasie van 6-hidroksiekinolien is deur fluoressensiespektrometrie geneem aangesien kinuramien en die remmers nie by hierdie eksperimentele kondisies fluoresseer nie. Die aktiwiteite van die remmers is as hul IC\textsubscript{50}-waardes uitgedruk. Verteenwoordigende remmers in elke reeks is vir die bepaling van die omkeerbaarheid van inhibisie gekies.

Met die eerste reeks is daar gevind dat 8-ariel- en alkieloksiekafeïenanaloë omkeerbare remmers van MAO-A en -B is, met selektiewe inhibisie van MAO-B. Daar is gevind dat 8-[2-(4-bromofenoksie)etoksie]kafeïen ’n besondere potente remmer van MAO-A en -B is, met IC\textsubscript{50}-waardes van 1.65 µM en 0.166 µM, respektiewelik. Op grond van die belowende aktiwiteite van die eerste reeks, is daar besluit om in die tweede reeks op die inhibisie-eienskappe van 8-(2-fenoksie-etoksie)kafeënanaloë te fokus. ’n Reeks 8-(2-fenoksie-etoksie)kafeïenanaloë is dus gesintetiseer met verskillende substituente op C4 van die fenielring. Struktuuraktiwiteitsverwantskap-studies is gedoen in ’n poging om die fisies-chemiese eienskappe van die C4-substituente te korrelereer met die MAO-inhiberende aktiwiteite. Hierdie studie het onthul dat substituente op C4 van die fenielring, wat ’n hoë mate van lipofiliteit besit, wat elektrononttrekkend is en wat steries groot is, beter remming van MAO-A tot gevolg het. ’n Voorbeeld hiervan is 8-[2-(4-iodofenoksie)etoksie]kafeïen wat die beste MAO-A-remmer was, met ’n IC\textsubscript{50}-waarde van 0.924 µM. Vir potente MAO-B-inhibisie is gevind dat elektrononttrekkende substituente op C4 van die fenielring optimaal is. ’n
Voorbeeld hiervan is 8-[2-(4-trifluorometielfenoksie)etoksie]kafeïen wat 'n IC$_{50}$-waarde van 0.061 µM vir die remming van MAO-B gehad het. Die derde reeks, die ftaliedanaloë, het ook potente, omkeerbare MAO inhibeerders opgelever. Daar is ook gevind dat die ftaliedanaloë selektiewe inhibeerders van MAO-B is. 6-[4-(Trifluorometiel)bensieloksie]ftalied was die mees potente MAO-B-remmer, met 'n IC$_{50}$-waarde van 0.0014 µM. Die mees potente MAO-A-remmer, daarenteen, was 6-(3-fenielpropoksie)ftalied, met 'n IC$_{50}$-waarde van 0.1 µM. 6-(Bensielamino)ftalied was die swakste MAO-inhibeerder in die derde reeks met 'n IC$_{50}$-waarde van 59.9 µM vir die inhibisie van MAO-A. Hierdie verbinding het geen remming van MAO-B getoon nie.

Die omkeerbaarheid van remming is bestudeer deur gebruik te maak van twee metodes. 8-[2-(4-Bromofenoksie)etoksie]kafeïen is as verteenwoordigende inhibeerder van die eerste twee reekse gekies. MAO-A en -B is in die teenwoordigheid van hierdie verbinding vir 0, 15, 30 en 60 minute geïnkubeer. Die residuele tempo van katalise is vervolgens gemee. geen tydsafhanklike afname in die tempo van katalise is opgemerk nie. Hierdie gedrag is 'n aanduiding dat die verteenwoordigende inhibeerder 'n omkeerbare remmer van MAO-A en -B is. In die derde reeks is die omkeerbaarheid van die remming van MAO-A en -B bepaal deur die gebruik van 6-(3-fenielpropoksie)ftalied en 6-[4-(trifluorometiel)bensieloksie]ftalied, respektiewelik, as verteenwoordigende inhibeerders. Die MAO-ensiem is met dieonderskeie inhibeerders geïnkubeer by konsentrasies van tienvoudig die IC$_{50}$-waarde en honderdvoudig die IC$_{50}$-waarde. Die residuele ensiemaktiwiteit is gemee nadatdie inkubasies verdun is om konsentrasies van die remmer, wat gelyk is aan 'n tiende van die IC$_{50}$ waarde en gelyk is aan die IC$_{50}$ waarde, onderskeidelik, te lever. Die resultate het getoon dat die aktiwiteite van MAO-A en -B met verdunning na 'n konsentrasie van die inhibeerer wat gelyk is aan die IC$_{50}$ waarde, terugkeer na 86% en 68% van die kontrole waarde respektiewelik. Die bevinding is 'n aanduiding dat die verteenwoordigende inhibeerders omkeerbare MAO-remmers is. Om verder te bevestig of die verteenwoordigende remmers in reeks 1 en 3 omkeerbaar is, is daar gebruik gemaak van Lineweaver-Burk grafieke. Vir die remming van beide MAO-A en -B is daar gevind dat die Lineweaver-Burk grafieke op die y-as sny, wat 'n aanduiding is dat die verbindingen kompeterende remmers is, en dus omkeerbare inhibisie veroorsaak. Omkeerbare remmers van MAO-A en -B is van waarde omdat onomkeerbare remmers ernstige newe-effekte tot gevolg kan hê.
Uit hierdie studie kan daar dus tot die gevolgtrekking gekom word dat kafeïen- en ftaliedanalōë potente, omkeerbare remmers van MAO-A en -B is. Hierdie verbindings kan dus as goeie kandidate vir die ontwikkeling van nuwe MAO-remmers vir die behandeling van Parkinson se siekte geaag word.
Table of Contents

Preface..i
Declaration ... ii
Letter of agreement .. iii
Acknowledgements ... iv
Abstract .. v
Uittreksel .. viii
List of Tables, Figures and Schemes ... xv
Abbreviations ... xx

Chapter 1 – Introduction
1.1 Background ... 1
1.2 Rationale ... 2
1.3 Hypothesis ... 4
1.4 Study aim ... 4
References .. 7

Chapter 2 – Literature overview
2.1 Parkinson’s disease .. 9
 2.1.1 Mechanism .. 9
 2.1.2 Treatment .. 18
2.2 Monoamine oxidase (MAO) .. 24
 2.2.1 Catalytic mechanism of MAO .. 25
 2.2.2 MAO inhibition ... 28
 2.2.3 MAO active sites and rational inhibitor design ... 31
2.3 Conclusion ... 39
References .. 40
Chapter 3 – Article 1: 8-Aryl- and alkyloxycaffeine analogues as inhibitors of monoamine oxidase, European Journal of Medicinal Chemistry

Abstract .. 50

3.1 Introduction ... 51

3.2 Results .. 56
 3.2.1 Chemistry .. 56
 3.2.2 Enzymology ... 57
 3.2.3 Reversibility studies .. 61
 3.2.4 Molecular modeling .. 63

3.3 Discussion .. 68

3.4 Experimental ... 70
 3.4.1 Chemicals and instrumentation ... 70
 3.4.2 Procedures for the synthesis of the 8-aryl and –alkyloxycaffeine analogues (5a–n) 71
 3.4.3 IC₅₀ determination for the inhibition of human MAO-A and –B 75
 3.4.4 Time-dependence of inhibition ... 76
 3.4.5 Mode of inhibition ... 77
 3.4.6 Molecular modeling studies .. 77

Acknowledgements ... 79

References ... 79

Supplementary material ... 85

Chapter 4 – Article 2: Structure-activity relationships for the inhibition of monoamine oxidase by 8-(2-phenoxyethoxy)caffeine analogues, Arzneimittelforschung/ Drug Research

Abstract .. 106

4.1 Introduction .. 107
Table of Contents

4.2 Results and discussion

4.2.1 Chemistry

4.2.2 Enzymology

4.2.3 Reversibility of inhibition

4.2.4 QSAR studies

4.2.5 Molecular modeling

4.3 Conclusion

4.4 Experimental

4.4.1 Materials and instrumentation

4.4.2 Procedures for the synthesis of the 8-(2-phenoxyethoxy)caffeine analogues (3)

4.4.3 IC\textsubscript{50} determinations

4.4.4 Recovery of enzyme activity after dilution

4.4.5 QSAR study

4.4.6 Molecular modeling studies

Acknowledgements

References

Supplementary material

Chapter 5 – Article 3: Inhibition of monoamine oxidase by phthalide analogues

Abstract

Letter

Acknowledgements

References

Supplementary material

Chapter 6 – Conclusion

Annexure A – Author instructions

Annexure B – Journal publishing agreements

xiv
List of Tables, Figures and Schemes

Figure 1: The chemical structures of caffeine and (E)-8-(3-chlorostyryl) caffeine (CSC) ... 2

Figure 2: The chemical structures of safinamide, 7-(3-chlorobenzyloxy)-4-(methylamino)methyl-coumarin and 8-benzyloxycaffeine........ 3

Figure 3: The chemical structure of 6-benzyloxyphthalide.. 3

Figure 4: The structures of the 8-alkyl- and arylxoycaffeine analogues that will be synthesized in this study... 5

Figure 5: Structure of the 8-(2-phenoxyethoxy)caffeine analogues that will be synthesized in this study... 6

Figure 6: The structures of the phthalide analogues that will be synthesized in this study.. 6

Figure 7: A schematic representation of the contribution of misfolded and aggregated proteins, specifically α-synuclein, to the etiology of PD........... 11

Figure 8: Schematic representation of the role of DA in the formation of endogenous toxins... 13

Figure 9: Schematic representation of the mechanism by which MPTP exert its neurotoxic effect on the dopaminergic neurons.......................... 15

Figure 10: The chemical structures of 6-OHDA, DA and norepinephrine..................... 16

Figure 11: Chemical structure of rotenone ... 17

Figure 12: The chemical structures of MPP⁺ and paraquat.. 18

Figure 13: The decarboxylation of L-dopa to DA by aromatic amino acid decarboxylase (AADC).. 19
Figure 14: The chemical structure of the dopamine agonist, pramipexole. 19

Figure 15: Chemical structure of the adenosine A_{2A} receptor antagonist, KW-6002... 20

Figure 16: Schematic representation of the mechanism of action of adenosine A_{2A} antagonists.. 21

Figure 17: Chemical structures of tranylcypromine, safinamide, selegiline and rasagiline ... 23

Figure 18: The FAD cycle during the oxidation of amines ... 25

Figure 19: The single electron transfer, polar nucleophilic and hydride transfer mechanisms ... 26

Figure 20: Illustration of the mechanism of the cheese reaction 29

Figure 21: Chemical structure of rasagiline covalently bound to FAD 30

Figure 22: Metabolic pathways of selegiline and rasagiline 31

Figure 23: The two proposed conformations of C-terminal anchorage of MAO-B within the mitochondrial membrane................................. 32

Figure 24: The protein structure of MAO-B and the layout of the active site cavities .. 34

Figure 25: The protein structure of MAO-A and the layout of the active site cavity .. 36

Figure 26: Overlays of the MAO-A active site on that of MAO-B......................... 38

Figure 27: The orientation of 8-benzylxoycaffeine within MAO-B superimposed on the orientation within MAO-A.. 39

Article 1

Figure 1: The structures of known MAO inhibitors reported in this study 54

Table 1: The structures of the C8 aryl- and alkylxox substituted caffeine analogues (5a–n) ... 55
Scheme 1: Synthetic pathway to the C8 oxy substituted caffeine analogues (5a–n) ... 56

Figure 2: The recombinant human MAO-A (Panel A) and MAO-B (Panel B) catalyzed oxidation of kynuramine in the presence of various concentrations of inhibitor 5m. .. 57

Table 2: The IC₅₀ values for the inhibition of human MAO-A and –B by the C8 aryl- and alkyloxy substituted caffeine analogues 5a–n. 59

Figure 3: Time-dependence of the inhibition of the oxidation of kynuramine by recombinant human MAO ... 62

Figure 4: Lineweaver–Burk plots of the oxidation of kynuramine by recombinant human MAO in the absence and presence of various concentrations of 5n ... 63

Figure 5: Predicted binding modes of 5a (Panel A) and 5i (Panel B) within the active site of MAO-B (2V5Z.pdb). ... 66

Figure 6: Binding mode of 5a within the active site of MAO-A (2Z5X.pdb). 67

Figure 7: The predicted binding orientations of 5a within the active sites of MAO-A (cyan) and MAO-B (yellow). ... 68

Article 2

Figure 1: The structures of 8-benzyloxycaffeine (1), CSC (2) and 8-(2-phenoxyethoxy)caffeine (3a). ... 109

Scheme 1: Synthetic pathway to the 8-(2-phenoxyethoxy)caffeine analogues .. 110

Figure 2: The recombinant human MAO-A and MAO-B catalyzed oxidation of kynuramine in the presence of various concentrations of inhibitor 3h .. 111

Table 1: The IC₅₀ values for the inhibition of recombinant human MAO-A and –B by the 8-(2-phenoxyethoxy)caffeine analogues 3a–j 113
Figures, Tables and Schemes

Figure 3: Reversibility of inhibition of MAO-A and –B by compounds 3h and 3e .. 114

Table 2: Correlations of the recombinant human MAO-A inhibition potencies (logIC50) of 8-(2-phenoxyethoxy)caffeine analogues 3a–h with steric, electronic and hydrophobic descriptors of the substituents at C4 of the phenoxy ring ... 115

Table 3: Correlations of the recombinant human MAO-B inhibition potencies (logIC50) of 8-(2-phenoxyethoxy)caffeine analogues 3a–h with steric, electronic and hydrophobic descriptors of the substituents at C4 of the phenoxy ring ... 116

Figure 4: Correlations of the logIC50 values for the inhibition of recombinant human MAO-A by 3a–h with the Hansch constant (π) of the substituents at C4 of the phenoxy ring .. 117

Figure 5: Correlations of the logIC50 values for the inhibition of recombinant human MAO-B by 3a–h with the Hammet electronic parameter (σp) of the substituents at C4 of the phenoxy ring ... 118

Figure 6: The highest ranked docking solution of compound 3e within an active site model of MAO-B ... 120

Figure 7: The highest ranked docking solution of compound 3e within an active site model of MAO-A ... 122

Article 3

Figure 1: The structures of phthalide (1), isatin (2), phthalimide (3), benzyloxycaffeine (4) and (E)-8-(3-chlorostyryl)caffeine (5) 159

Scheme 1: Synthetic route to the C6-substituted phthalide analogues 6a–s 161

Table 1: The IC50 values for the inhibition of recombinant human MAO-A and –B by phthalide (1) and phthalide analogues 6a–s 162

Figure 2: Reversibility of inhibition of MAO-A by 6m and MAO-B by 6e 166

Figure 3: Lineweaver-Burk plots of the oxidation of kynuramine by MAO-A
and –B in the absence and presence of various concentrations of
6m and 6e. ... 167
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-OHDA</td>
<td>6-Hydroxydopamine</td>
</tr>
<tr>
<td>AADC</td>
<td>Aromatic amino acid decarboxylase</td>
</tr>
<tr>
<td>BBB</td>
<td>Blood-brain barrier</td>
</tr>
<tr>
<td>COMT</td>
<td>Catechol-O-methyltransferase</td>
</tr>
<tr>
<td>CSC</td>
<td>(E)-8-(3-Chlorostyryl)caffeine</td>
</tr>
<tr>
<td>CYP</td>
<td>Cytochrome P450</td>
</tr>
<tr>
<td>DA</td>
<td>Dopamine</td>
</tr>
<tr>
<td>DAT</td>
<td>Dopamine transporter</td>
</tr>
<tr>
<td>Dyn</td>
<td>Dynorphin</td>
</tr>
<tr>
<td>Enk</td>
<td>Enkephalin</td>
</tr>
<tr>
<td>FAD</td>
<td>Flavin adenine dinucleotide</td>
</tr>
<tr>
<td>HRMS</td>
<td>High resolution mass spectra</td>
</tr>
<tr>
<td>L-dopa</td>
<td>Levodopa</td>
</tr>
<tr>
<td>MAO</td>
<td>Monoamine oxidase</td>
</tr>
<tr>
<td>mp</td>
<td>Melting point</td>
</tr>
<tr>
<td>MPDP⁺</td>
<td>1-Methyl-4-phenyl-2,3-dihydropyridinium</td>
</tr>
<tr>
<td>MPPP</td>
<td>1-Methyl-4-phenyl-4-propionoxypiperidine</td>
</tr>
<tr>
<td>MPTP</td>
<td>1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine</td>
</tr>
<tr>
<td>NA</td>
<td>Noradrenaline</td>
</tr>
<tr>
<td>PD</td>
<td>Parkinson’s disease</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>SAR</td>
<td>Structure activity relationship</td>
</tr>
<tr>
<td>SI</td>
<td>Selectivity Index</td>
</tr>
<tr>
<td>SNpc</td>
<td>Substantia nigra pars compacta</td>
</tr>
<tr>
<td>UCH-L1</td>
<td>Ubiquitin C-terminal hydrolase-L1</td>
</tr>
</tbody>
</table>