Bibliography

[7] IEEE, Standard for Information Technology- Telecommunications and Information Exchange Between Systems- Local and Metropolitan Area Networks- Specific Requirements

Appendix A

Conference and paper contributions from thesis

Appendix B

Equation reference

Table B.1: Refined MILP model equation reference

<table>
<thead>
<tr>
<th>Equation</th>
<th>Sections defined</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5.62)</td>
<td>4.2.4</td>
<td>OLT cost</td>
</tr>
<tr>
<td>(5.63)</td>
<td>5.1.8</td>
<td>Splitter cost</td>
</tr>
<tr>
<td>(5.64)</td>
<td>5.1.8</td>
<td>ONU cost</td>
</tr>
<tr>
<td>(5.65)</td>
<td>5.1.2, 5.1.4</td>
<td>Fiber costs between CO and SP</td>
</tr>
<tr>
<td>(5.66)</td>
<td>5.1.2, 5.1.4</td>
<td>Fiber costs between SP and ONU</td>
</tr>
<tr>
<td>(5.67)</td>
<td>5.1.5</td>
<td>Coverage of ONUs</td>
</tr>
<tr>
<td>(5.68)</td>
<td>5.1.4</td>
<td>Total splitters used</td>
</tr>
<tr>
<td>(5.69)</td>
<td>5.1.4</td>
<td>Total COs used</td>
</tr>
<tr>
<td>(5.70)</td>
<td>5.1.4</td>
<td>Maximum number of COs</td>
</tr>
<tr>
<td>(5.71)</td>
<td>5.1.4</td>
<td>At least one CO</td>
</tr>
<tr>
<td>(5.72)</td>
<td>5.1.4</td>
<td>Used SP must connect to CO</td>
</tr>
<tr>
<td>(5.73)</td>
<td>5.1.5</td>
<td>Used ONU must connect to SP</td>
</tr>
<tr>
<td>(5.74)</td>
<td>5.1.4</td>
<td>CO is used if link to it exists</td>
</tr>
<tr>
<td>(5.75)</td>
<td>5.1.3</td>
<td>SP is used if link to it exists</td>
</tr>
<tr>
<td>(5.76)</td>
<td>5.1.2, 5.1.3</td>
<td>Edges of used paths marked used</td>
</tr>
<tr>
<td>(5.77)</td>
<td>5.1.3</td>
<td>Maximum ONUs per SP</td>
</tr>
<tr>
<td>Equation</td>
<td>Sections defined</td>
<td>Type</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>------</td>
</tr>
<tr>
<td>(5.78)</td>
<td>5.1.7</td>
<td>SP type must have enough capacity</td>
</tr>
<tr>
<td>(5.79)</td>
<td>5.1.7</td>
<td>SP of only one type</td>
</tr>
<tr>
<td>(5.80)</td>
<td>5.1.6</td>
<td>Sets minimum CO-ONU distance</td>
</tr>
<tr>
<td>(5.81)</td>
<td>5.1.6</td>
<td>Sets maximum CO-ONU distance</td>
</tr>
<tr>
<td>(5.82)</td>
<td>5.1.6</td>
<td>Activates distance constraints</td>
</tr>
<tr>
<td>(5.83)</td>
<td>5.1.6</td>
<td>Network reach</td>
</tr>
<tr>
<td>(5.84)</td>
<td>5.1.6</td>
<td>Differential distance limit</td>
</tr>
<tr>
<td>(5.85)</td>
<td>5.1.8</td>
<td>ONU EOS - total volume</td>
</tr>
<tr>
<td>(5.86)</td>
<td>5.1.8</td>
<td>ONU EOS - total cost</td>
</tr>
<tr>
<td>(5.87)</td>
<td>5.1.8</td>
<td>SP EOS - total volume</td>
</tr>
<tr>
<td>(5.88)</td>
<td>5.1.8</td>
<td>SP EOS - total cost</td>
</tr>
<tr>
<td>(5.89)</td>
<td>5.1.8</td>
<td>ONU EOS - enable correct λ</td>
</tr>
<tr>
<td>(5.90)</td>
<td>5.1.8</td>
<td>ONU EOS - enable correct λ</td>
</tr>
<tr>
<td>(5.91)</td>
<td>5.1.8</td>
<td>ONU EOS - enable correct λ</td>
</tr>
<tr>
<td>(5.92)</td>
<td>5.1.8</td>
<td>SP EOS - enable correct λ</td>
</tr>
<tr>
<td>(5.93)</td>
<td>5.1.8</td>
<td>SP EOS - enable correct λ</td>
</tr>
<tr>
<td>(5.94)</td>
<td>5.1.8</td>
<td>SP EOS - enable correct λ</td>
</tr>
<tr>
<td>(5.95)</td>
<td>5.1.8</td>
<td>ONU EOS - only one segment active</td>
</tr>
<tr>
<td>(5.96)</td>
<td>5.1.8</td>
<td>SP EOS - only one segment active</td>
</tr>
<tr>
<td>(5.97)</td>
<td>5.1.8</td>
<td>ONU EOS - convex combination</td>
</tr>
<tr>
<td>(5.98)</td>
<td>5.1.8</td>
<td>SP EOS - convex combination</td>
</tr>
</tbody>
</table>
Appendix C

Dijkstra’s Algorithm

Algorithm C.1 Dijkstra’s algorithm

1: $Graph \leftarrow$ map
2: $source \leftarrow$ source vertex

3: procedure $DIJKSTRA(Graph, source)$
4: \hspace{1em} for all vertices v in $Graph$ do
5: \hspace{1.5em} $D(v) \leftarrow \infty$ \hspace{.5em} \triangleright Distance map vector
6: \hspace{1.5em} $P(v) \leftarrow$ undefined \hspace{.5em} \triangleright Previous map vector
7: \hspace{1em} end for

8: $D(source) \leftarrow 0$
9: $N \leftarrow$ set of all vertices in $Graph$
10: \hspace{1em} while $N \neq \emptyset$ do
11: \hspace{1.5em} $s \leftarrow$ vertex $\in N$, $\text{MIN}(D) = D(s)$ \hspace{.5em} \triangleright Vertex with minimum distance
12: \hspace{1.5em} delete s from N
13: \hspace{1.5em} if $D(s) = \infty$ then
14: \hspace{2em} break \hspace{.5em} \triangleright All neighbours explored
15: \hspace{1.5em} end if
16: \hspace{1em} end while
Algorithm C.2 Dijkstra’s algorithm (continued)

16: for all neighbours \(v \) of \(s \) do
17: \(a \leftarrow D(s) + \text{DISTANCEBETWEEN}(v, s) \)
18: if \(a < D(v) \) then
19: \(D(v) \leftarrow a \)
20: \(P(v) \leftarrow s \)
21: end if
22: end for
23: end while
24: return \(D, P \)
25: end procedure

26: function \(\text{MIN}(v) \)
27: \(\text{min} = \infty \)
28: for all elements \(i \) in \(v \) do \(\triangleright \) Get minimum of vector
29: \(\text{if } i < \text{min} \text{ then} \)
30: \(\text{min} \leftarrow i \)
31: end if
32: end for
33: return \(\text{min} \)
34: end function

35: function \(\text{DISTANCEBETWEEN}(v_1, v_2) \)
36: return \(\|v_2 - v_1\| \) \(\triangleright \) Euclidean distance between vertices
37: end function
Appendix D

Branch and Bound algorithm

Algorithm D.1 General branch and bound
1: $S \leftarrow$ candidate solutions
2: calculate bounds S_{LOW} and S_{UP}
3: function BRANCHBOUND(S)
4: while $(S \neq \emptyset)$ and $(S_{\text{LOW}} \neq S_{\text{UP}})$ do
5: split S into sets S_1, S_2, \ldots \hspace{1cm} \triangleright Branch
6: for all sets S_i do
7: calculate bounds ℓ_i and u_i for S_i \hspace{1cm} \triangleright Bound
8: if $(\ell_i > S_{\text{UP}})$ or $(u_i < S_{\text{LOW}})$ then
9: discard S_i \hspace{1cm} \triangleright Prune
10: else
11: $S_{\text{UP}} \leftarrow \min(S_{\text{UP}}, u_i)$
12: $S_{\text{LOW}} \leftarrow \max(S_{\text{LOW}}, \ell_i)$
13: call BRANCHBOUND(S_i) \hspace{1cm} \triangleright Recursively
14: end if
15: end for
16: end while
17: return S_{LOW} and S_{UP}
18: end function