References

Appendix I: Materials used in this study

<table>
<thead>
<tr>
<th>Item</th>
<th>Product no</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylamide</td>
<td>1.00209.100</td>
<td>Merck</td>
</tr>
<tr>
<td>Agar</td>
<td>BX.10.500</td>
<td>Merck</td>
</tr>
<tr>
<td>Agarose</td>
<td>H111206</td>
<td>Hispanagar</td>
</tr>
<tr>
<td>Ammonium persulfate</td>
<td>A3678</td>
<td>Sigma</td>
</tr>
<tr>
<td>Ammonium sulfate</td>
<td>A2939</td>
<td>Sigma</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>A9393</td>
<td>Sigma</td>
</tr>
<tr>
<td>ATP</td>
<td>10127523009</td>
<td>Roche</td>
</tr>
<tr>
<td>Genomic DNA purification kit</td>
<td>K0519</td>
<td>Fermentas</td>
</tr>
<tr>
<td>Benzoic acid</td>
<td>242381</td>
<td>Sigma</td>
</tr>
<tr>
<td>Benzonase</td>
<td>70746-3</td>
<td>Merck</td>
</tr>
<tr>
<td>Benzoyl coenzyme A</td>
<td>B1638</td>
<td>Sigma</td>
</tr>
<tr>
<td>Bicinchoninic acid solution</td>
<td>B9643</td>
<td>Sigma</td>
</tr>
<tr>
<td>Bio-Rad Genepulser</td>
<td>165-2089</td>
<td>Bio Rad</td>
</tr>
<tr>
<td>electroporation cuvettes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bovine serum albumin</td>
<td>775 827</td>
<td>Roche</td>
</tr>
<tr>
<td>BugBuster</td>
<td>70584-4</td>
<td>Novagen</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>442513</td>
<td>Supelco</td>
</tr>
<tr>
<td>Coomassie brilliant blue</td>
<td>B8647</td>
<td>Sigma</td>
</tr>
<tr>
<td>Copper sulfate solution</td>
<td>C2284</td>
<td>Sigma</td>
</tr>
<tr>
<td>Dicyclohexylcarbodiimide</td>
<td>D8,000-2</td>
<td>Sigma</td>
</tr>
<tr>
<td>Disposable cuvettes</td>
<td>165-2089</td>
<td>Ratiolab</td>
</tr>
<tr>
<td>DTNB</td>
<td>D8130</td>
<td>Sigma</td>
</tr>
<tr>
<td>DTT</td>
<td>43815</td>
<td>Sigma</td>
</tr>
<tr>
<td>EDTA</td>
<td>3658</td>
<td>Fluka</td>
</tr>
<tr>
<td>Ethanol 100%</td>
<td>100,983.25</td>
<td>Merck</td>
</tr>
<tr>
<td>Ethanol 97% (Drum)</td>
<td>C32102189</td>
<td>Rochelle Chemicals</td>
</tr>
<tr>
<td>Ethidium bromide</td>
<td>160539</td>
<td>Sigma</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>1.09623.2500</td>
<td>Merck</td>
</tr>
<tr>
<td>ExTaq</td>
<td>RR001</td>
<td>Takara</td>
</tr>
<tr>
<td>Fermentas gene ruler #SM1173</td>
<td>SM1173</td>
<td>Fermentas</td>
</tr>
<tr>
<td>Fermentas instaclone PCR cloning kit</td>
<td>K1214</td>
<td>Fermentas</td>
</tr>
<tr>
<td>Fermentas pageruler #SM1811</td>
<td>SM0811</td>
<td>Fermentas</td>
</tr>
<tr>
<td>Item</td>
<td>Code</td>
<td>Supplier</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Glacial acetic acid</td>
<td>BB100017P</td>
<td>BDH</td>
</tr>
<tr>
<td>Glucose powder</td>
<td>AP008337.500</td>
<td>Merck</td>
</tr>
<tr>
<td>Glycerol</td>
<td>49780</td>
<td>Fluka</td>
</tr>
<tr>
<td>Glycine</td>
<td>1.04169.100</td>
<td>Merck</td>
</tr>
<tr>
<td>Hepes</td>
<td>H3537</td>
<td>Sigma</td>
</tr>
<tr>
<td>HindIII</td>
<td>ER0501</td>
<td>Fermentas</td>
</tr>
<tr>
<td>Hippuric acid</td>
<td>H6375</td>
<td>Sigma</td>
</tr>
<tr>
<td>His-Bind resin from Novagen</td>
<td>69670</td>
<td>Novagen</td>
</tr>
<tr>
<td>HPLC water</td>
<td>1.15333.250</td>
<td>Merck</td>
</tr>
<tr>
<td>Hydrochloric acid</td>
<td>SAAR3063040LP</td>
<td>Merck</td>
</tr>
<tr>
<td>Imidazole hydrochloride</td>
<td>13386</td>
<td>Sigma</td>
</tr>
<tr>
<td>IPTG</td>
<td>V395A</td>
<td>Promega</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>1.09634.2500</td>
<td>Merck</td>
</tr>
<tr>
<td>Isovaleryl coenzyme A</td>
<td>I9381</td>
<td>Sigma</td>
</tr>
<tr>
<td>Kpnl</td>
<td>ER0521</td>
<td>Fermentas</td>
</tr>
<tr>
<td>Lysozyme</td>
<td>71110-4</td>
<td>Novagen</td>
</tr>
<tr>
<td>Macherey Nagel Nucleospin II</td>
<td>740 609.50</td>
<td>Macherey Nagel</td>
</tr>
<tr>
<td>PCR cleanup and gel extraction kit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macherey Nagel Protino Ni-TED 2000 kit</td>
<td>745 120.25</td>
<td>Macherey Nagel</td>
</tr>
<tr>
<td>Magnesium chloride</td>
<td>8.14733.0500</td>
<td>Merck</td>
</tr>
<tr>
<td>Magnesium sulfate</td>
<td>M2643</td>
<td>Merck</td>
</tr>
<tr>
<td>Methanol</td>
<td>1.06009.2500</td>
<td>Merck</td>
</tr>
<tr>
<td>N,N’ Bisacrylamide</td>
<td>130672</td>
<td>Sigma</td>
</tr>
<tr>
<td>Ndel</td>
<td>ER0582</td>
<td>Fermentas</td>
</tr>
<tr>
<td>N-hydroxysuccinimide</td>
<td>130672</td>
<td>Sigma</td>
</tr>
<tr>
<td>Nickel sulfate</td>
<td>72285</td>
<td>Fluka</td>
</tr>
<tr>
<td>Octanoyl coenzyme A</td>
<td>74879</td>
<td>Sigma</td>
</tr>
<tr>
<td>Pantethine</td>
<td>P2125</td>
<td>Sigma</td>
</tr>
<tr>
<td>Polyethylene glycol-4000</td>
<td>8.07490.1000</td>
<td>Merck</td>
</tr>
<tr>
<td>Potassium chloride</td>
<td>AB004936</td>
<td>Merck</td>
</tr>
<tr>
<td>Promega PureYield plasmid midiprep kit</td>
<td>C#A1220</td>
<td>Promega</td>
</tr>
<tr>
<td>Propionyl coenzyme A</td>
<td>p5397</td>
<td>Sigma</td>
</tr>
<tr>
<td>Protein Loading buffer, 4 x Dual Colour</td>
<td>R1011</td>
<td>Fermentas</td>
</tr>
<tr>
<td>RNase A (solution or powder)</td>
<td>R 6,513</td>
<td>Sigma</td>
</tr>
<tr>
<td>Chemical</td>
<td>Catalog Number</td>
<td>Supplier</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>SDS</td>
<td>L4390</td>
<td>Sigma</td>
</tr>
<tr>
<td>Sodium acetate</td>
<td>71183</td>
<td>Fluka</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>13565</td>
<td>Riedel de Haen</td>
</tr>
<tr>
<td>Sodium hydrogen carbonate</td>
<td>1.06329.0500</td>
<td>Merck</td>
</tr>
<tr>
<td>Sodium hydroxide</td>
<td>1.06498.0500</td>
<td>Merck</td>
</tr>
<tr>
<td>T4 DNA ligase</td>
<td>EL 0011</td>
<td>Fermentas</td>
</tr>
<tr>
<td>TEMED</td>
<td>1.10732-026</td>
<td>Merck</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>268054</td>
<td>Sigma</td>
</tr>
<tr>
<td>Tetrahydrofuran</td>
<td>T5267</td>
<td>Sigma</td>
</tr>
<tr>
<td>Tris base</td>
<td>11814273001</td>
<td>Roche</td>
</tr>
<tr>
<td>Tryptose</td>
<td>1.10676</td>
<td>Merck</td>
</tr>
<tr>
<td>XGal</td>
<td>3941</td>
<td>Promega</td>
</tr>
<tr>
<td>XGal</td>
<td>R616A</td>
<td>Fermentas</td>
</tr>
<tr>
<td>Yeast extract</td>
<td>C68</td>
<td>Biolab</td>
</tr>
<tr>
<td>β-Methylcrotonyl coenzyme A</td>
<td>M3013</td>
<td>Sigma</td>
</tr>
<tr>
<td>Benzoyl coenzyme A</td>
<td>B1638</td>
<td>Sigma</td>
</tr>
</tbody>
</table>

18 Ω water was prepared on site for use in general applications.
Appendix II: List of Figures

Figure 1.1 The relationship between DNA and metabolism.
Figure 1.2 The four main contributing factors to pathogenesis in metabolic disorders.
Figure 1.3 The leucine catabolic pathway, showing a defect of isovaleryl-coenzyme A dehydrogenase, the cause of isovaleric acidemia.
Figure 1.4 The major catabolic pathway for the metabolism of propionic acid.
Figure 1.5 The major processes in acyl-coenzyme A metabolism.
Figure 1.6 The pH dependence of the bovine GLYAT catalysed reaction.
Figure 1.7 Substrate specificity of the glycine N-acyltransferase reaction.
Figure 1.8 The human GLYAT gene, splice variants and protein isoforms.
Figure 1.9 Edman sequencing of the N-terminus of the bovine GLYAT enzyme.
Figure 1.10 Acetylation of a lysine residue near the N-terminus of human GLYAT.
Figure 1.11 Superposition of the crystal structures of 15 GNAT enzymes.
Figure 1.12 Topology of the core GNAT fold.
Figure 1.13 Conservation of the conformation of bound acyl-coenzyme A between different members of the GNAT superfamily.
Figure 1.14 The ping-pong mechanism of acyl transfer by hamster NAT2.
Figure 1.15 The ternary complex, direct acyl transfer mechanism.
Figure 1.16 The dependence of the reaction rate of wild type and mutant yGCN5 acetyl-transferases.
Figure 1.17 The pH dependence of the reaction rate of wild type and mutants of serotonin N-acetyltransferase.
Figure 1.18 The catalytic mechanism of spermine/spermidine N-acetyltransferase.
Figure 1.19 The difference between Protino Ni-TED and Protino Ni-IDA resins.

Figure 2.1 Calculation of the amount of vector and insert DNA to use for ligation.
Figure 2.2 Agarose electrophoretic analysis of the PCR amplification of bovine GLYAT.
Figure 2.3 Agarose gel electrophoretic analysis of the pColdIII vectors and bovine GLYAT amplicon after digestion with Ndel and Xhol restriction enzymes.
Figure 2.4 Example of colony screening by means of restriction enzyme digestion using Ndel and Xhol restriction enzymes.
Figure 2.5 SDS-PAGE analysis of induction of chaperone expression at different tetracycline concentrations.
Figure 2.6 SDS-PAGE analysis of the expression of recombinant bovine GLYAT from the pColdIII vector.
Figure 2.7 SDS-PAGE analysis of the effect of IPTG concentration on the expression of recombinant bovine GLYAT.
Figure 2.8 Enzyme assays of recombinant bovine GLYAT expressed using different IPTG concentrations for induction.
Figure 2.9 SDS-PAGE analysis of the effect of induction time on recombinant bovine GLYAT expression.
Figure 2.10 Enzyme assays of recombinant bovine GLYAT expression induced for different lengths of time.
Figure 2.11 SDS-PAGE analysis of the expression and purification of recombinant bovine GLYAT, without addition of imidazole to column wash buffers.
Figure 2.12 SDS-PAGE analysis of the effect of chaperone co-expression, protease inhibitors and erine-glycine linkers on the yield of purified recombinant bovine GLYAT.
Figure 2.13 The open reading frame for translation of recombinant bovine GLYAT from the recombinant pColdIII-A-bGLYAT vector.
Figure 2.14 Enzyme assays of recombinant bovine GLYAT expressed with and without chaperone co-expression, and recombinant bovine GLYAT purified in the presence of protease inhibitors.
Figure 2.15 SDS-PAGE analysis of the effect of hippurate on the stability of recombinant bovine GLYAT during purification.
Figure 2.16 Enzyme assays of recombinant bovine GLYAT purified in the presence and absence of hippurate, and of the enzyme stored under different conditions.
Figure 2.17 Bovine GLYAT isolated from bovine liver mitochondria.
Figure 2.18 a) Lineweaver-Burk plots for determination of the kinetic parameters for the bovine liver GLYAT and recombinant bovine GLYAT enzymes, using benzoyl-coenzyme A and glycine as substrates.
Figure 2.18 b) Lineweaver-Burk plots to determine the Km values of benzoyl-coenzyme A for the bovine liver GLYAT and recombinant GLYAT enzymes.
Figure 2.18 c) Lineweaver-Burk plots to determine the Km values of isovaleryl-coenzyme A for the bovine liver GLYAT and recombinant GLYAT enzymes.
Figure 2.18 d) Lineweaver-Burk plots to determine the Km values of 3-methylcrotonyl-coenzyme A for the bovine liver GLYAT and recombinant GLYAT enzymes.
Figure 2.18 e) Lineweaver-Burk plots to determine the Km values of propionyl-coenzyme A for the bovine liver GLYAT and recombinant GLYAT enzymes.
Figure 2.18 f) Lineweaver-Burk plots to determine the Km values of octanoyl-coenzyme A for the bovine liver GLYAT and recombinant GLYAT enzymes.
Figure 3.1 Megaprimer site-directed mutagenesis.
Figure 3.2 Alignment of the GenTHREADER results to human GLYAT.
Figure 3.3 Analysis 1 of the GenTHREADER alignments.
Figure 3.4 Analysis 2 of the GenTHREADER alignments.
Figure 3.5 Analysis 3 of the GenTHREADER alignments.
Figure 3.6 Structural alignment of the catalytic residues of three GNAT enzymes identifies a putative catalytic glutamate residue on the bovine GLYAT model.
Figure 3.7 GNAT sequences showing alignment of multiple catalytic residues.
Figure 3.8 Multiple alignment of GLYAT sequences.
Figure 3.9 Three potentially catalytic residues that are well conserved between GLYAT sequences are shown on the bovine GLYAT model.
Figure 3.10 Predicted secondary structure of bovine GLYAT.
Figure 3.11 Amplicons of the mPCR-1 amplification.
Figure 3.12 Amplicons of the mPCR-2 amplification.
Figure 3.13 Sequencing chromatograms for the E226H and E226Q mutants.
Figure 3.14 Temperature gradient for amplification of the bovine GLYAT C-domain coding sequence.
Figure 3.15 Expression and purification of the recombinant C-domain of bovine GLYAT.
Figure 3.16 Expression and purification of the wild type and mutant recombinant bovine GLYAT enzymes.
Figure 3.17 Standard assay of the wild type and mutant recombinant enzymes.
Figure 3.18 pH dependence of the activity of the wild type and E226Q enzymes.
Figure 3.19 Lineweaver-Burk plots for the E226Q protein.
Figure 3.20 Mechanisms employed by acyltransferase enzymes.
Figure 3.21 Proposed catalytic mechanism of the bovine GLYAT enzyme.

Figure 4.1 The structure of the coenzyme A molecule.
Figure 4.2 The biosynthesis of coenzyme A from pantetheine.
Figure 4.3 Agarose gel electrophoresis of PanK, PPAT and DPCK PCR amplicons.
Figure 4.4 SDS-PAGE analysis of purified PanK, PPAT and DPCK.
Figure 4.5 The chemical structure of S-benzoyl-pantetheine.
Figure 4.6 HPLC-TOF analysis of the purification of benzoyl-coenzyme A.
Appendix III: List of Tables

Table 1.1: Glycine conjugates detected in the urines of patients with various inborn errors of organic acid metabolism.
Table 1.2: K_M values for acyl-coenzyme A substrates and glycine for the human and bovine GLYAT enzymes.
Table 1.3: K_M values for benzoyl-coenzyme A and various amino acids for the human and bovine GLYAT enzymes.

Table 2.1: Modified pColdIII expression vectors with C-terminal histidine tags and serine-glycine linkers.
Table 2.2: Oligonucleotide primers used in this study.
Table 2.3: Restriction enzymes and buffers used.
Table 2.4: Kinetic parameters for the bovine liver GLYAT enzyme and the recombinant bovine GLYAT enzyme using benzoyl-coenzyme A and glycine.
Table 2.5: K_M values for benzoyl-coenzyme A and various amino acids for the human and bovine GLYAT enzymes.

Table 3.1: Oligonucleotide primers used for site-directed mutagenesis.
Table 3.2: Results of the GenTHREADER search for human GLYAT.
Table 3.3: Kinetic parameters for the wild type and E226Q mutant recombinant bovine GLYAT enzymes using benzoyl-coenzyme A and glycine as substrates.

Table 4.1: Oligonucleotide primers for amplification of PanK, PPAT, and DPCK