Molecular characterisation of a recombinant bovine
glycine N-acyltransferase

Christoffel Petrus Stephanus Badenhorst, Hons. B.Sc

Division for Biochemistry, School of Physical and Chemical Sciences, North-West University,
Potchefstroom Campus, Potchefstroom, 2520, South Africa.

Dissertation submitted in partial fulfilment of the requirements for a
Masters degree in Biochemistry.

The financial assistance of the National Research Foundation (NRF) towards this research is hereby
acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not
necessarily to be attributed to the NRF.

Supervisor: Prof. A.A van Dijk
Nothing in medicine makes sense except in the light of biology
- Charles R. Scriver

Nothing in biology makes sense except in the light of evolution
- Theodosius Dobzhansky
Abstract

Conjugation of glycine to organic acids is an important detoxification mechanism. Metabolites of aspirin and industrial solvents, benzoic acid found in plant material and many endogenous metabolites are detoxified by conjugation to glycine. The enzyme responsible for glycine conjugation, glycine N-acyltransferase (GLYAT), is investigated in this study. The enzyme is also important for the management of organic acidemias which are inherited metabolic diseases.

However, not all organic acids can be efficiently detoxified by GLYAT. Consequently, some organic acidemias, such as propionic acidemia, are difficult to treat. We hypothesise that a novel variant of GLYAT might be designed that can effectively detoxify propionic acid and several other organic acids. This novel GLYAT might eventually be used as a recombinant therapeutic enzyme for the treatment of organic acidemias. A thorough understanding of the mechanisms of substrate binding and catalysis by the enzyme is needed to design such a novel enzyme. This understanding is lacking at present. The first step to investigating the mechanics of substrate binding and catalysis is the development of a recombinant enzyme expression system. Amino acids in the protein can then be altered using site-directed mutagenesis, to study the importance of individual amino acid residues to enzyme function. No system for the expression of a biologically active recombinant human GLYAT has yet been developed. In a recent study in our laboratory, it was shown that bovine GLYAT could be expressed in a partially soluble and enzymatically active form, using expression at 15 °C and chaperone co-expression. The enzyme could not be investigated in detail because no tags for purification were fused to the protein.

In this study the bovine GLYAT was expressed with a C-terminal histidine tag for affinity purification using the same system. It was confirmed that the recombinant bovine GLYAT was enzymatically active and it could be partially purified. Two major proteins were present after purification. The identity of the co-purifying protein is unknown. The enzyme reaction kinetics of the partially purified recombinant bovine GLYAT and of GLYAT isolated from bovine liver was determined and compared. The kinetic parameters of the two enzymes were similar and correlated with the values reported in the literature.

The recombinant bovine GLYAT was used to elucidate the catalytic mechanism of the enzyme. A putative catalytic residue, E226, was identified on the basis of biochemical arguments and
bioinformatic analyses. This proposed catalytic residue was mutated by means of site-directed mutagenesis. The E226Q mutant recombinant bovine GLYAT enzyme was compared to the wild type bovine GLYAT with regard to reaction kinetics and pH dependence of the reaction. The results suggested that bovine GLYAT uses the E226 residue as a general base catalyst to remove a proton from glycine in the reaction mechanism. This is the first time a mechanism for GLYAT activity has been worked out.

Benzoyl-coenzyme A is a substrate of the GLYAT reaction. It is used as a reagent in GLYAT activity assays and kinetic investigations. Since this compound is very expensive, a method was adapted from the literature for the cost effective in-house synthesis of this compound. Three biosynthetic enzymes from *Escherichia coli* were cloned, sequenced, expressed and purified and then used for the synthesis of benzoyl-coenzyme A from benzoyl-pantetheine. The conversion from benzoyl-pantetheine to benzoyl-coenzyme A was stochiometric. After purification a yield higher than 75% was obtained. The benzoyl-pantetheine used was first synthesised from benzoic acid and pantetheine by acylation under reducing conditions. All steps could be performed in a single tube. The method does not require purification of the benzoyl-pantetheine before use in the enzymatic synthesis of benzoyl-coenzyme A, minimising loss of material.

To summarise, a recombinant bovine GLYAT with a C-terminal histidine tag was expressed and partially purified. The kinetic properties of the recombinant bovine GLYAT corresponded to the properties of GLYAT extracted from bovine liver. The recombinant bovine GLYAT was used to elucidate the catalytic mechanism of GLYAT by means of site-directed mutagenesis. This demonstrates the power of the recombinant expression system to studying the importance of specific amino acid residues. Benzoyl-coenzyme A was synthesised using a cost effective method adapted from the literature. In the future, photoaffinity labelling will be used to identify residues that constitute the substrate binding site of GLYAT and site-directed mutagenesis will then be used to investigate their function. It may then become possible to attempt to rationally design a GLYAT with altered substrate specificity.
Opsomming

Die konjugering van organiese sure met glisien is 'n belangrike detoksifiserings mekanisme. Metaboliete van aspirien en industriële oplosmiddels, benooaot wat in plant materiaal voorkom en verskeie endogene metaboliete word deur glisien-konjugering gedetoksifiseer. Die ensiem wat die reaksies kataliseer, glisien N-asieltransferase (GLIAT), word in hierdie studie ondersoek. Die ensiem is ook belangrik vir die behandeling van verskeie oorerflike siektes van die metabolisme van organiese sure.

Glisien N-asieltransferase kan egter nie alle organiese sure detoksifiseer nie. Daarom is sommige defekte van organiese suur metabolisme, soos propioonsuur-urie, moeilik om te behandel. Ons hipotesis is dat 'n variant van GLIAT ontwerp kan word wat propioonsuur en ander organiese sure effektief sal kan detoksifiseer. So 'n GLIAT mag dalk ontwikkeld word as 'n terapeutiese ensiem vir die behandeling van defekte van die metabolisme van organiese sure. Om so 'n gemodifiseerde ensiem te ontwerp, moet die mekanisme van substraatbinding en katalise deeglik verstaan word. Op die oomblik verstaan ons nie genoeg nie. Die ontwikkeling van 'n rekombinante ensiem uitdrukkingsisteem is die eerste stap na 'n beter begrip van hierdie mekanisme. So 'n sisteem kan gebruik word om spesifieke aminosuur veranderinge te maak en dus die funksie van individuele aminosure te bestudeer. Tot dusver is nog geen sisteem vir die uitdrukking van oplosbare rekombinante mens GLIAT met ensiem aktiwiteit ontwikkel nie. In 'n onlangse studie in ons laboratorium is bevind dat bees GLIAT in 'n oplosbare ensiematies aktiewe vorm geproduseer kan word as dit teen 15 °C saam met chaperone uitgedruk word. Omdat hierdie proteïen geen herkenningspunt vir suiwering bevat het nie, kon dit nie gesuiwer en in detail bestudeer word nie.

In hierdie studie is 'n rekombinante bees GLIAT met 'n C-terminale histidien herkenningspunt in die selfde sisteem uitgedruk. Dit het bevestig dat die rekombinante bees GLIAT ensiematies aktief is. Die rekombinante bees GLIAT is gedeeltelik gesuiwer. Na die suiwering was twee proteïene teenwoordig. Die identiteit van die tweede proteïen is nog onbekend. Die gedeeltelik gesuiwerde rekombinante bees GLIAT is keties gekarakteriseer en vergelyk met GLIAT wat uit beeslewer berei is. Die twee ensiemse ketiese eienskappe was soortgelyk en het goed gekorreleer met gepubliseerde waardes.

v
Die rekombinante bees GLIAT is gebruik om die katalitiese mekanisme van die ensiem uit te werk. ’n Potensiële katalitiese residu, E226, is met behulp van biochemiese argumente en bioinformatika geïdentificeer. Die voorgestelde katalitiese residu is gemuteer deur gebruik te maak van punt-spesifieke mutagenese. Die pH-afhanklikheid en ensiem-kinetika van die E226Q mutant van rekombinante bees GLIAT en die wilde tipe rekombinante GLIAT is met mekaar vergelyk. Uit die resultate blyk dit dat die E226 residu van bees GLIAT betrokke is by proton-verwydering in die katalitiese mekanisme. Dit is die eerste keer dat ’n mekanisme vir die GLIAT reaksie uitgewerk is.

Benzoiel-koënsiem A is ’n substraat van die GLIAT reaksie. Dit word gebruik as ’n reagens in GLIAT ensiemtoetse en in kinetiese eksperimente. Omdat die verbindings baie duur is, is ’n metode saamgestel uit die literatuur om dit self goedkoop te kan sintetiseer. Drie ensieme van Escherichia coli is gekloneer en hulle nukleiënsuurvolgorde bepaal. Die ensieme was uitgedruk, gesuiwer en gebruik om benzoiel-koënsiem A van benzoiel-pantetien te sintetiseer. Benzoiel-pantetien is heetemal omgeskat en benzoiel-koënsiem A. Na suiwering was die opbrengs gewoonlik meer as 75%. Die benzoiel-pantetien is vooraf eers vanaf benzoësuur en pantetien gesintetiseer deur pantetien onder reduserende toestande te asileer. Al die stappe is in ’n enkele buis gedoen. Dit was nie nodig om die benzoiel-pantetien te suiw voor gebruik in die sintese van benzoiel-koënsiem A nie. Sodoende gaan geen materiaal verlore in die sintese nie.

Om op te som, ’n rekombinante bees GLIAT met ’n C-terminale histidien herkenningspunt is uitgedruk en gedeeltelik gesuiwer. Die kinetiese eienskappe van die rekombinante ensiem het ooreengestem met die van die beeslewer ensiem. Die rekombinante uitdrukkingsisteem is gebruik om die katalitiese mekanisme van GLIAT uit te werk deur spesifieke mutante te maak en te karakteriseer. Dit demonstreer die krag van die rekombinante uitdrukkingsisteem om die belangrikheid van spesifieke aminosure van GLIAT te ondersoek. Benzoiel-koënsiem A is gesintetiseer deur ’n metode wat saamgestel is uit literatuurgegewens en gebruik maak van redelik goedkoop reagense. In die toekoms sal foto-affiniteit merking gebruik word om aminosure in die aktiewe setel van GLIAT te identifiseer. Hierdie aminosure van die rekombinante ensiem sal dan gemuteer word en die invloed daarvan bestudeer word. So sal die inligting wat nodig is om uiteindelik die ensiem se substraatspesifiteit te kan manipuleer, bekom word.
I would like to thank the NRF for financial support, without which this study would not have been possible (NRF grant number: FA2005031700015). I also thank my parents for additional financial assistance.

I am greatly indebted to Prof Albie van Dijk for the continued guidance throughout this project. Whenever I lost hope, you always found a way to convince me that the work was doable. I appreciate your help. I find your exquisite knowledge of molecular biology and your passion for science very inspiring. I appreciate the freedom you gave me in doing this project.

Prof Trevor Sewell helped me to learn the basics of structural biology, and for this I am grateful. Without your help I would probably never have continued working on this project. You helped me to understand that biological arguments are indispensable in bioinformatics, and I was inspired by your passion for biology. I thank Prof Francois van der Westhuizen for help with design of the enzyme kinetics experiments, and Mr Lardus Erasmus for his advice with the synthesis of benzoyl-pantetheine.

Peet Jansen van Rensburg helped me with the HPLC-TOF analyses, and without his assistance this project would have been beyond me. Few people are so eager to help. Thank you very much.

If it were not for my family and friends, I don’t think I would have made it through this year without going insane. Thank you for your continued support over the past year. I would have given up several times, were it not for your patient listening to my complaints. Without the loving support of my parents, none of this would have been even remotely possible.

I thank everyone in our laboratory for help with difficulties I experienced with experiments throughout the year. Your collective knowledge was usually enough to get any experiment to work. I especially appreciate the advice I received from Trudi O’Neill, Rencia van der Sluis, and Lizelle Zandberg. Without the help of Jeanine Labuschagne and Mrs Retha Potgieter, this
project would not have been completed on time. Finally, I thank the amateur philosophers at Biochemistry for keeping my mind excited.
Table of contents

Table of contents ... 1

Chapter 1: Introduction and literature review.. 6
 1.1 The impact of inborn errors of metabolism .. 6
 1.2 The scope of this study... 7
 1.3 Inborn errors of metabolism ... 9
 1.3.1 Factors that influence the severity of inborn errors of metabolism 11
 1.3.2 Treatment of inborn errors of metabolism .. 12
 1.3.3 Organic acidemias .. 14
 1.3.3.1 Isovaleric acidemia .. 14
 1.3.3.2 Propionic acidemia ... 16
 1.4 The properties of glycine N-acyltransferase ... 18
 1.4.1 Enzymatic reaction and physiology ... 18
 1.4.2 Enzyme localisation, kinetics, reaction mechanism and pH dependence 21
 1.4.3 Substrate specificity .. 23
 1.4.3.1 The acyl donor substrate .. 23
 1.4.3.2 The amino acid substrate .. 24
 1.4.4 Inhibition of GLYAT by metal ions, sulfhydryl reagents and reaction products 25
 1.4.5 The GLYAT gene and its splice variants ... 26
 1.4.6 Molecular weight and post-translational modification of the GLYAT enzymes 27
 1.4.6.1 Cleavage of the mitochondrial signal peptide ... 28
 1.4.6.2 Other post-translational modifications ... 29
 1.5 The GNAT superfamily of N-acyltransferases .. 30
 1.5.1 Structural and functional conservation in the superfamily .. 30
 1.5.2 Reaction kinetics and catalytic mechanisms in the GNAT superfamily 31
 1.5.2.2 The general base catalyst ... 35
 1.5.2.3 The general acid catalyst ... 37
 1.6 Recombinant protein expression in *Escherichia coli* ... 38
1.6.1 General principles of recombinant protein expression ... 38
1.6.2 Expression at low temperature and co-expression of chaperone proteins 40
1.6.3 Histidine tag affinity purification of proteins ... 41
1.7 Site-directed mutagenesis ... 42
1.8 Problem formulation and aims of this study ... 44

Chapter 2: Cloning and expression of bovine GLYAT in *Escherichia coli* .. 46

2.1 Introduction .. 46
2.2 Materials and methods ... 48
 2.2.1 Source of the bovine GLYAT coding sequence ... 49
 2.2.2 PCR amplification of the bovine GLYAT coding sequence .. 49
 2.2.3 Agarose gel electrophoresis .. 50
 2.2.4 Analysis of DNA concentration and purity ... 50
 2.2.5 AT cloning of PCR products ... 50
 2.2.6 Restriction endonuclease digestions ... 52
 2.2.7 Gel purification of desired DNA fragments or products ... 53
 2.2.8 Ligation reactions ... 54
 2.2.9 Preparation of electrocompetent *Escherichia coli* cells .. 54
 2.2.10 Transformation of electrocompetent *Escherichia coli* cells ... 55
 2.2.11 Screening of colonies of transformed bacteria ... 56
 2.2.12 Long term storage of transformed bacteria ... 57
 2.2.13 Midi-preparation of plasmid DNA ... 57
 2.2.14 DNA sequence determination .. 57
 2.2.15 Expression of bovine GLYAT from pColdIII and chaperone co-expression 58
 2.2.16 Cell lysis using the BugBuster protein extraction reagent .. 59
 2.2.17 His tag purification and ultra filtration ... 59
 2.2.18 Isolation and partial purification of GLYAT from bovine liver .. 59
 2.2.19 Sodium dodecyl sulfate polyacrylamide gel electrophoresis .. 60
 2.2.20 GLYAT enzyme activity assays .. 61
 2.2.21 Determination of protein concentration using bicinchoninic acid solution 62
 2.2.22 Calculation of kinetic parameters ... 63
2.3 Results and discussion

2.3.1 Cloning bovine GLYAT into modified pColdIII expression vectors

2.3.2 Bacterial expression of recombinant bovine GLYAT from pColdIII

2.3.2.1 Optimisation of conditions for induction of chaperone expression

2.3.2.2 Optimisation of the conditions for expression of recombinant bovine GLYAT

2.3.3 Nickel affinity purification of a histidine tagged bovine GLYAT

2.3.4 The effect of chaperone co-expression on the yield of active recombinant GLYAT

2.3.5 Effect of including hippurate in buffers on the purification of recombinant GLYAT

2.3.6 Stability of the purified recombinant bovine GLYAT enzyme

2.3.7 Partial purification of bovine liver GLYAT for determination of kinetic parameters

2.3.8 Kinetic characterisation and comparison of the recombinant bovine GLYAT and GLYAT isolated from bovine liver

2.4 Summary

Chapter 3: Elucidation of the catalytic mechanism of bovine GLYAT

3.1 Introduction

3.1.1 Principles for investigation of catalytic mechanisms

3.2 Molecular biology and biochemistry relevant to the GLYAT reaction mechanism

3.2.1 Reaction kinetics

3.2.2 pH dependence of the GLYAT reaction

3.2.3 Inhibition of the GLYAT reaction by divalent cations

3.2.4 Insensitivity of GLYAT to sulfhydryl reagents

3.2.5 Experimental approach for elucidation of the GLYAT catalytic mechanism

3.3 Materials, methods and resources

3.3.1 BLAST searches and ClustalX alignments

3.3.2 GenTHREADER and FUGUE predictions

3.3.3 Molecular modelling

3.3.4 Download of molecular coordinates as PDB files

3.3.5 Site-directed mutagenesis

3.3.6 TA cloning of PCR amplicons, plasmid isolation and sequencing

3.3.7 Sub-cloning into pColdIII-A expression vector

3.3.8 Protein expression and purification
Chapter 3: Prediction of a catalytic residue

3.3.9 GLYAT enzyme assays

3.4 Results and discussion

3.4.1 Prediction of a catalytic residue

3.4.1.1 Molecular modelling

3.4.1.2 Identification of a putative catalytic residue by investigation of the model

3.4.1.3 Conservation of the E226 residue of bovine GLYAT in other GLYAT sequences

3.4.1.4 The catalytic function is likely located to the C-terminal domain of GLYAT

3.4.2 Experimental investigation of the importance of the bovine GLYAT E226 residue

3.4.2.1 Generation of mutant GLYAT coding sequences using site-directed mutagenesis

3.4.2.2 Cloning the mutant GLYAT amplicons into the pTZ57R/T TA cloning vector

3.4.2.3 Cloning of the E226Q, E226H, and C-domain coding sequences into pColdIII-A

3.4.2.4 Expression, purification and enzyme assay of the C-terminal domain mutant

3.4.2.5 Expression and purification of the E226Q and E226H mutant GLYAT proteins

3.4.2.6 pH dependence of the enzyme activity of wild type and E226Q bovine GLYAT

3.4.2.7 Kinetic characterisation of the E226Q mutant

3.5 Conclusion and summary

Chapter 4: Synthesis of benzoyl-coenzyme A using recombinant biosynthetic enzymes

4.1 Introduction

4.1.1 The function and synthesis of coenzyme A and its analogues

4.1.2 Strategies for the synthesis of coenzyme A

4.1.3 Objectives and experimental approach

4.2 Materials and methods

4.2.1 Isolation of DNA from Escherichia coli

4.2.2 PCR amplification of enzyme coding sequences

4.2.3 Cloning of enzyme coding sequences into pColdI

4.2.4 Expression of the coenzyme A biosynthetic enzymes in Escherichia coli JM109

4.2.5 SDS-PAGE analysis of recombinant PanK, PPAT and DPCK expression and purification

4.2.6 Synthesis of S-benzoyl pantetheine

4.2.7 Enzymatic synthesis of benzoyl-coenzyme A

4.2.8 Partial purification of coenzyme A using solid phase extraction
4.2.9 HPLC-TOF analyses of the synthesis and purification of benzoyl-coenzyme A 133
4.3 Results and discussion ... 134
 4.3.1 Cloning of the PanK, PPAT, and DPCK coding sequences into pColdI 134
 4.3.2 Expression of the recombinant PanK, PPAT, and DPCK from pColdI 135
 4.3.3 Purification of recombinant enzymes using His•Bind resin 135
 4.3.4 Synthesis of S-benzoyl pantetheine .. 137
 4.3.5 Enzymatic synthesis and purification of benzoyl-coenzyme A 138
4.4 Summary ... 141

Chapter 5: Concluding summary and future prospects ... 143
5.1 Concluding summary .. 143
5.2 Future prospects ... 146
References ... 148