Defining, Measuring and Evaluation of the Maintenance Management Key Performance Areas within Metalloys

By

J. M. Meyer Pr Eng, B. Eng

A dissertation submitted in partial fulfillment of the requirements for the degree

MASTERS OF BUSINESS ADMINISTRATION

At the Business School of the University of the Northwest

Supervisor: Dr. L van der Walt

November 2005
Abstract

This study focuses on the effective definition and measurement of maintenance management key performance areas, with the final aim on improvement. This study is further aimed at interdepartmental benchmarking, in order to tap on the internal resources within a decentralised maintenance management environment, for future improvement.

In order to gain a better understanding of the importance of maintenance management and its role within an organisation, it is best described as a dilemma to be managed, rather than a problem to be solved. All parties involved need to be properly informed in order to gain future top management support.

In order to effectively establish a measurement for the gap analysis, the following steps were followed:

- Identifying and defining the maturity roadmap of maintenance.
- Defining key maintenance performance areas and elements of measure.
- Benchmarking different practices associated with key performance areas.
- Development of a measurement process of defined areas of performance.

Results were collected from questionnaires in order to define the maturity of the approach towards managing a specific element / practice, the actual deployment, the result achieved and the improvement initiatives implemented (ADRI Cycle).

The best result of each element / practice will then be used in order to define the first phase of improvement for the other departments. The second phase will entail following the normal process of continuous improvement, supported by a sound change management process in order to ensure sustained improvement.
Definitions:

Plant & Equipment
The physical equipment (hardware) together with all necessary supporting computer systems, software, procedures and information, etc. necessary to assure the ongoing safe, sustainable and reliable operation producing prime products to schedule.

Equipment Throughput (or Tonnage Rate)
A measure of the amount of quality product produced by a Plant / Equipment, usually stated in tones per hour (t/h).

Business Processes
Management processes, procedures and controls which specify the way in which the organisation manages and operates its plant and equipment to achieve the required business outcomes. Typically, these will be specified in documents such as the Safety Manual, Quality Manual, Maintenance Management Manual, Work Control Procedures, and Maintenance Systems User-Guide, etc.

Process KPI’s
Measure and monitor compliance with the designated business processes used to manage the performance of the plant & equipment. These KPI’s provide information on how well the day-to-day affairs, necessary to assure that the plant and equipment performs to expectation, are managed.

Outcome KPIs
Measure and monitor the resultant performance of the plant and equipment in terms of availability, reliability, throughput, quality and cost per unit produced.

CMMS = Computerised Maintenance Management System which can be SAP/R3, Mincom-MIMS, or any other system whether computerised or manual.

MPDS = Maintenance Plan Development System used to determine the optimum maintenance strategy for managing equipment condition based on the analysis of failure modes, characteristics and consequences.
Equipment Maintenance Plans

Output from MPDS. These are stored in the CMMS as predetermined maintenance tasks for planned preventive (routine) maintenance and for planned repairs.

Work Backlog

The amount of maintenance work identified on work orders but not yet done. It includes planned preventive (routine) maintenance work which is over-due, but it excludes future planned preventive work (which is usually referred to as the forward workload). The units of measurement for backlog are weeks based on the expected availability of labour to address the backlog work.

Planning Lead Time

The amount of time between when a work order is raised (date raised) and when the work is required to be done or is done (date completed). The shorter the lead time, the more difficult it is to effectively plan the job and include it in the planned and scheduled work load.

Schedule Compliance

The number of planned work orders that were scheduled to be carried out in a particular period, but were not completed within that period.

RCM = Reliability Centered Maintenance
JIPM = Japan Institute of Plant Maintenance
OEE = Overall equipment effectiveness
OEE = Equipment Availability x Performance Efficiency x Rate of Quality Products

Quality Rate = \[
\frac{\text{Production amount} - \text{Quality Defects - Reprocessing}}{\text{Production amount}} \times 100\%
\]

Performance Rate = \[
\frac{\text{Average actual Performance rate (t/h)}}{\text{Standard Performance rate (t/h)}} \times 100\%
\]

ADC = Automatic data collection
PPT = Planned production time
MDT = Mean downtime = expectation of the down time

\[
\text{MDT} = \frac{\text{MTBF}}{\text{Number of failures during specific planned production time}}
\]

MTTR = Mean time to repair = expectation of time to restoration
MWT = Mean waiting time = expectation of time for restoration to start
MTBF = Mean time between failures = expectation of the operation time between failures

\[
\text{MTBF} = \frac{\text{Planned production time — downtime}}{\text{Number of failures during planned production time}}
\]

Availability = the ability of an item (a machine) to be in a state to perform a required function under given conditions at a given instant of time over a given time interval.

\[
\text{Availability (A)} = \frac{\text{Planned production time — downtime}}{\text{Planned production time}} \times 100\%
\]

\[
\text{Availability (A)} = \frac{\text{MTBF}}{\text{MTBF + MDT}} \times 100\%
\]

Because MDT = MTTR + MWT

\[
\text{Availability (A)} = \frac{\text{MTBF}}{\text{MTBF + MTTR + MWT}} \times 100\%
\]

Absolute availability (A_{abs}) is based on calendar time. Planned production time includes all the available hours in year.

\[
A_{abs} = \frac{\text{Calendar time - downtime}}{\text{Calendar time}} \times 100\%
\]
Calendar time — downtime

\[MTBF_{abs} = \frac{\text{Number of failures during calendar time}}{\text{Calendar time}} \times 100\% \]

Relative availability \(A_{rel} \) is based on a planned production time. The values are real and they indicate the real failure behavior state of an individual machine.

\[A_{rel} = \frac{\text{Planned production time} - \text{downtime}}{\text{Planned production time}} \times 100\% \]

\[MTBF_{rel} = \frac{\text{Number of failures during planned production time}}{\text{Planned production time} - \text{downtime}} \times 100\% \]

TPM = Total Production / Productivity Management

CI = Continuous Improvement

OEM = Original Equipment Manufacturer
Table of contents

CHAPTER 1 – INTRODUCTION... 1
 1.1 COMPANY BACKGROUND .. 1
 1.1.1 Company History & Operational Overview 1
 1.2 PROBLEM DESCRIPTION & DEFINITION 5
 1.2.1 The Maintenance Manager’s Dilemma 5
 1.2.2 The Manufacturing Production System 7
 1.2.3 The cost of maintenance ... 9
 1.3 GOALS ... 10
 1.3.1 Primary Goals .. 10
 1.3.2 Secondary Goals .. 10
 1.4 BOUNDARY OF STUDY ... 11
 1.5 RESEARCH MYTHOLOGY .. 12
 1.6 CONCLUSION .. 13

CHAPTER 2 – UNDERSTANDING EQUIPMENT FROM A MANAGEMENT PERSPECTIVE .. 14

 2.1 INTRODUCTION ... 14
 2.2 ASSESSMENT OF EQUIPMENT CAPABILITY 14
 2.2.1 Equipment capability ... 14
 2.2.2 Knowing the equipment’s capability 16
 2.2.3 Measuring equipment capability ... 16
 2.2.4 Loss factors in equipment capability 17
 2.2.5 Aligning Equipment Capability with the Business Strategy 18
 2.3 ASSESSING EQUIPMENT THROUGHPUT 19
 2.3.1 Equipment throughput ... 19
 2.3.2 Calculating overall equipment effectiveness (OEE) 20
 2.4 EQUIPMENT (THROUGHPUT) LOSSES 21
 2.4.1 The causes of equipment throughput losses 23
 2.4.2 Shutdown losses ... 23
 2.4.3 Production adjustment losses ... 24
 2.4.4 Equipment failure losses .. 25
 2.4.5 Process failure losses ... 25
CHAPTER 4 – CONCLUSION AND INTERPRETATION.......................... 59
4.1 INTRODUCTION.. 59
4.2 DECENTRALISED STRUCTURES VS. CENTRALISED MAINTENANCE MANAGEMENT
STRUCTURES... 59
4.3 DEVELOPING A MAINTENANCE STRATEGY ... 61
4.4 DEFINING MAINTENANCE AS A PROFIT BUSINESS CENTRE 64
4.5 MAINTENANCE MEASUREMENT PROCESS ... 67
4.6 RECOMMENDATIONS AND STEPS FORWARD 69

BIBLIOGRAPHY .. 73
APPENDIX A – MAINTENANCE STRATEGY FOR A HEAVY
ENGINEERING ENVIRONMENT.. 75
APPENDIX B – QUESTION SET FOR EVALUATION OF MAINTENANCE
PERFORMANCE ELEMENTS... 77
APPENDIX C – RESULTS FROM MAINTENANCE PERFORMANCE
ELEMENTS EVALUATION ... 84
APPENDIX D – THE ARDI CYCLE FOR IMPROVEMENT 106
List of Figures and Tables

Figure 1.1 – Simplified Operations Management System.

Figure 2.1 – Measuring if equipment is capable.
Figure 2.2 – Losses in Actual Production due to equipment capability.
Figure 2.3 – A Measure of Facilities Capability.
Figure 2.4 – Aligning Business Strategy with Equipment Capability.
Figure 2.5 – Calculating Overall Equipment Effectiveness.
Figure 2.6 – UP-Time as a measure of Equipment Capability.
Figure 2.7 – Illustration of the unmeasured losses.

Figure 3.1 – Assessment dimensions of questionnaire set.
Figure 3.2 – Breakdown of Plant and Equipment Capability into Outcome KPIs and their respective drivers.
Figure 3.3 – Example of question developed for measure of capability assurance elements defined.
Figure 3.4 – Maximum Approach Opportunities
Figure 3.5 – Maximum Deployment Opportunities
Figure 3.6 – Maximum Result Opportunities
Figure 3.7 – Maximum Improvement Opportunities

Figure 4.1 – Maintenance Cost and Losses in a healthy maintenance system

Table 1.1: Polarity matrix for the establishment of a sustainable operational environment.

Table 2.1: Eight major losses as listed by the JIPM.
Table 3.1: Elements regarding capability assurance to be measured from literature study.

Table 3.2: Definitions for the maturity and criteria of measurement.

Table 3.3: Comparison of Different Departmental Results (A & D)

Table 3.4: Comparison of Different Departmental Results (R & I)

Table 4.1: Illustration of the responsibilities shared between production and maintenance departments.