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Abstract

In recent papers (cf. (2], [3], [5], [23]) the concept of (p,q)-summing multiplier was con-
sidered in both the general and special context. It has been shown that some geometric
properties of Banach spaces and some classical theorems can be described using spaces
of (p, q)-summing multipliers. This thesis is a continuation of this line of study, whereby
multiplier spaces for some classical Banach spaces are considered. The scope of this re-
search is also broadened, by studying other classes of summing multipliers.

Generally stated, a sequence of bounded linear operators (u,) C L(X,Y) is called a
multiplier sequence from E(X) to F(Y) if (unz,) € F(Y) for all (z;) € E(X), whereby
E(X) and F(Y) are two Banach spaces of which the elements are sequences of vectors
in X and Y, respectively. Several cases where F(X) and F(Y) are different (classical)
spaces of sequences, including for instance the spaces Rad(X) of almost unconditionally
summable sequences in X, are considered. Several examples, properties and relations
among spaces of summing multipliers are discussed. Important concepts like R-bounded,
semi-R-bounded and weakly-R-bounded from recent papers are also considered in this

context.

Sequences in X, which are (p, ¢)-summing multipliers (when considered as elements of
L(X*,K)) are of considerable importance. They are called (p, ¢)-summing sequences in
X. The role of these sequences in the study of geometrical properties of Banach spaces as
well as the characterization of vector-sequence space-valued operators on Banach spaces
is extensively demonstrated in paper [2]. In this thesis we develop a general theory for
vector-valued multiplier sequences and functions and consider the application thereof in

the study of operators on Banach spaces in general and on classical spaces (for instance,
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LP-spaces) in particular.

Another paper [14] is dedicated to an open question in the theory of tensor products
of Banach spaces. From the Grothendieck Resumé [26] it follows that /®X is isomet-
rically isomorphic to the space £!(X) of absolutely summable sequences in X. However,
PRX G P(X) is possible for 1 < p < co. In paper [17] it is stated as an open problem to
find a vector sequence space characterization of the projective tensor product X . The
challenge is taken up in paper [14]. Using the vector sequence space ##(X) of strongly
p-summable sequences (introduced by Cohen in paper [16]), the authors show that PrPRX
is indeed isometrically isomorphic to

PX) = {(zn) C X : Z |22 (7,)| < 00, V weakly p-summable sequences (z}) in X"}.

n
In following the author’s approach in [14], it is only possible to prove this result once
a formal characterization of the sequences in #(X) is known. This is the theme of
[14]. In paper [23] we prove the same result by following a different approach (using the
Grothendieck theory of tensor products and nuclear operators), which does not depend
on the characterization of the elements of #(X), but which in fact has this characteri-
zation as easy consequence. By letting U be a reflexive Banach space with a normalized
unconditional basis (e;), Bu [11] introduced the spaces Ustrong(X), Uyear(X) and U(X)
and considered their geometric properties, interrelationships, Kéthe duals and topologi-
cal duals. Based on Bu’s results and following our tensor product approach in [23], we

A
provide a characterization of U ® X in terms of the vector sequence space U{X).

In short, the purpose of our research is to:

(i) Extend the results in [5] and [23] to the more general context of “general vector se-
quence spaces”. This entails a vector sequence space characterization of the projec-
tive tensor product U® X, where X is a Banach space and U is a (reflexive)Banach
space with normalized unconditional basis, as well as an extensive study of U-

summing and strongly U-summing multipliers. Our exposition extensively makes



(i)

(iii)

use of several important research articles about vector sequence spaces, mostly of
Bu’s work on vector sequence spaces (cf. [11], [12], [13] and [14]). Our approach in
the characterization of U®X, however, simplifies the techniques of Bu to obtain a

similar characterization.

Introduce and study classes of operators, which are defined by general vector se-
quence spaces, in a similar fashion as are p-summing and (p, ¢)-summing oper-
ators defined by the vector sequence spaces of weak p-summable and absolutely
p-summable sequences of vectors in normed spaces. By doing so our idea is to
embed existing theories of (p, g)-summing operators, strongly p-summing operators
and others into a general framework and to consider their applications in operator
and Banach space theory, also in the context of Banach lattices. The classes of
strongly p-summing and strongly p-nuclear operators were introduced and studied
in detail by Cohen [16] where the strongly p-nuclear operators were called p-nuclear
operators. His introduction of these two classes was motivated by observations
about absolutely p-summing operators, tensor products and the conjugates of ab-
solutely p-summing operators. One of the aims of this thesis is to broaden the work
of Cohen in two ways. In the first case we extend it from strongly p-summing and
strongly p-nuclear operators to strongly (p, ¢)-summing and strongly (p, ¢)-nuclear
operators. Secondly, we generalize the operator setting by letting U and W be
reflexive Banach spaces with normalized unconditional bases (e;) and (Jf;) respec-
tively. We then introduce the absolutely (U, W)-summing and two related classes of
operators, namely the strongly (U, W)-summing operators and the strongly (U, W)-

nuclear operators.

Study operator valued multipliers (of different kinds), consider examples thereof
on classical Banach spaces (such as the L? spaces) and apply our results (and
recent results in the literature, for instance in [2], [3], [8] and [9]) to contribute to
relevant theories and results about different types of Rademacher boundedness, the

Grothendieck Theorem (G.T. spaces) and applications to the geometry of Banach
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spaces.

(iv) Develop a theory of operator valued multiplier functions, thereby exploring the pos-
sibility to extend our work on (p, g)-summing multipliers to the setting of function
spaces. The idea here is to establish the foundation for further research after com-
pletion of the thesis. Our introduction of the (p, ¢)-multiplier functions is inspired
by several easy examples of such functions (generated by classes of operators) and
the well known fact (in literature) that a Banach space operator u : X — Y is
p-summing if and only if, given any probability space (2, %, 1) and any strongly
measurable f : Q — X, which is weakly p-integrable, then u o f is Bochner p-
integrable. In our language of multiplier functions, this says that u is p-summing
if and only if the constant function @ — L(X,Y) : t — u is a (p,p)-multiplier

function.

Key terms: Banach space, sequence space, Grotendieck’s theorem, type, cotype, strongly
(p, ¢)-summing, strongly (p,q)-nuclear operators, U-summing multipliers, strongly U-
summing multipliers, absolutely (U, W)-summing operators, strongly (U, W )-summing
operators, strongly (U, W)-nuclear operators, positive strongly (p, g)-summing operators,
positive strongly (p, ¢)-nuclear operators, strongly (p, g)-concave operators, strongly p-

integral functions, (p, ¢)-integral multipliers and (p, ¢)-integral functions.



Samevatting

In onlangse artikels (cf. 2], [3], [5], [23]) is die konsep van 'n (p,q)-sommerende ver-
menigvuldiger in beide die algemene en spesiale konteks beskou. Daar is aangetoon
dat sommige meetkundige eienskappe van Banachruimtes en sommige klassieke stellings
beskryf kan word in terme van (p, g)-sommerende vermenigvuldigers. Hierdie proefskrif
is 'n voorsetting van dié studie waar vermenigvuldigerruimtes van sekere klassieke Ba-
nachruimtes beskou word. Sodanige navorsing word uitgebrei deur die bestudering van
ander klasse van sommerende vermenigvuldigers.

In die algemeen word 'n ry van begrensde lineére operatore (u,) C L(X,Y) 'n ver-
menigvuldigerry vanaf E(X) na F(Y) genoem as (u,z,) € F(Y) vir alle (z;) € E(X),
waar F(X) en F(Y) beide Banachruimtes is waarvan die elemente rye van vektore in
onderskeidelik X en Y is. Verskeie gevalle word ondersoek waar E(X) en F(Y) ver-
skillende (klassieke) ruimtes van rye is, insluitend byvoorbeeld die ruimte Rad(X) van
“byna onvoorwaardelike sommerende rye” in X. Verskeie voorbeelde, eienskappe en ver-
wantskappe tussen ruimtes van sommerende vermenigvuldigers word bespreek. Belang-
rike konsepte soos R-begrensheid, semi-R-begrensheid en swak-R-begrensheid uit on-

langse artikels word in hierdie konteks ondersoek.

Rye in X wat (p,g)-sommerende vermenigvuldigers is (indien beskou as elemente van
L(X*,K)) speel 'n belangrike rol en word die (p, ¢)-sommerende rye in X genoem. Die rol
wat sodanige rye in die bestudering van die meetkundige eienskappe van Banachruimtes
sowel as in die karakterisering van vektorryruimtewaardige operatore op Banachruimtes
speel, is omvangryk bespreek in [2]. In hierdie proefskrif ontwikkel ons 'n algemene teorie

vir vektorwaardige vermenigvuldigerrye en funksies. Verder verkry ons toepassings hier-
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van in die algemene teorie van operatore op Banachruimtes, sowel as in die teorie van

operatore op sekere klassieke ruimtes (soos byvoorbeeld die L?-ruimtes).

'n Onlangse artikel [14] word gewy aan 'n oop vraag in die teorie van tensorprodukte van
Banachruimtes. Uit Grotendieck se Résumé [26] volg dat £ Q%X isometries isomorf is aan
die ruimte ¢*(X) van absoluut sommeerbare rye in X. Vir 1 < p < 00, is PRX & #(X)
egter moontlik. In [17] word die karakterisering van die projektiewe tensorproduk £ é\bX
(vir 1 < p < 00) in terme van 'n vektorryruimte, as oop vraag gestel. Hierdie uitdaging
word aanvaar in artikel [14]. Deur gebruik te maak van die vektorryruimte £°(X) van
sterk p-sommeerbare rye (ingevoer deur Cohen in artikel [16]) bewys die outeurs dat die

ruimte ¢P Q% X isometries isomorf is aan die ruimte
(X)) = {(z2) C X Y |z}(xa)| < 00, V(z}) € £,(X")}.
n

Die skrywers in [14] bewys hierdie resultaat deur gebruik te maak van 'n formele karak-
terisering van die rye in #{X). In artikel [23] bewys ons dieselfde resultaat deur 'n ander
benadering te volg (ons gebruik Grothendieck se stelling oor tensorprodukte en nukleére
operatore) wat onafhanklik is van die karakterisering van die elemente van ¢#(X), maar
waaruit hierdie karakterisering as 'n maklike gevolgtrekking volg. Bu [11] definieer en
beskou die meetkundige eienskappe, verwantskappe, Kothe en topologiese dualiteite van
die ruimtes Ustrong(X), Uwear(X) en U(X) deur aan te neem dat U ’n refleksiewe Ba-
nachruimte is, met 'n genormaliseerde onvoorwaardelike basis (e;). Ons gee 'n karakteris-
ering van U ® X in terme van die vektorryruimte U(X) deur gebruik te maak van die
resultate van Bu en ons tensorprodukbenadering in [23].

Kortliks kan die oogmerk van hierdie navorsing soos volg saamgevat word:

(i) Die resultate in [5] en [23] word uitgebrei na die veralgemeende konteks van “al-
gemene vektorryruimtes”. Dit bring 'n vektorryruimtekarakterisering van die pro-

A
jektiewe tensorproduk U ® X mee, waar X ’'n Banachruimte en U 'n (refleksiewe)

Banachruimte met 'n genormaliseerde onvoorwaardelike basis is. 'n Omvangryke be-
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spreking van U-sommerende en sterk U-sommerende vermenigvuldigers word gegee.
Ons uiteensetting maak gebruik van verskeie belangrike navorsingsartikels oor vek-
torryruimtes, veral van die werk van Bu (cf. [11], [12], [13] en [14]). Ons benader-
ing in die karakterisering van U&X is ’'n vereenvoudiging van die tegnieke van Bu,

hoewel ons dieselfde resultaat bewys.

Die klasse van operatore wat gedefinieer word in terme van algemene vektorryruimtes
word ingevoer en bestudeer op 'n soortgelyke wyse as die p-sommerende en die (p, g)-
sommerende operatore, wat gedefinieer is in terme van vektorryruimtes van swak
p-sommerende en absoluut p-sommerende rye van vektore in normeerde ruimtes.
Hieruit volg die idee om die bestaande teorieé van (p,g)-sommerende operatore,
sterk p-sommerende operatore en ander operatore in te sluit in die algemene raam-
werk en om ondersoek in te stel na toepassings in operatorteorie, Banachruimte-

teorie en die konteks van Banachroosters. Die klasse van sterk p-sommerende
en sterk p-nukleére operatore word ingevoer en omvangryk ondersoek deur Co-
hen [16] wat na die sterk p-nukleére operatore verwys as “p-nukleére operatore”.
Die invoering van hierdie twee klasse word gemotiveer deur waarnemings oor ab-
soluut p-sommerende operatore, tensorprodukte en die toegevoegdes van absoluut
p-sommerende operatore. Een van die doelwitte van hierdie proefskrif is om die
werk van Cohen uit te brei op twee wyses. In die eerste plek brei ons dit uit
vanaf sterk p-sommerende operatore en sterk p-nukleére operatore na sterk (p, q)-
sommerende operatore en sterk (p,g)-nukleére operatore. Tweedens veralgemeen
ons die operatorgeval deur te veronderstel dat U en W refleksiewe Banachruimtes
is met die onderskeidelike genormaliseerde onvoorwaardelike basisse (e;) en (f;).
Ons voer dan die begrip van “absoluut (U, W)-sommerende” in en definieer ver-
volgens twee verwante klasse van operatore naamlik die “sterk (U, W)-sommerende

operatore” en die “sterk (U, W)-nukleére operatore”.

Ons bestudeer (verskillende soorte) operatorwaardige vermenigvuldigers en beskou

voorbeelde daarvan op klassieke Banachruimtes (soos die LP-ruimtes) en pas ons



resultate (en onlangse resultate in die literatuur, byvoorbeeld in [2], [3], [8] en
[9]) toe, om ’n bydra te lewer tot die relevante teorie en resultate in verband met
die verskillende tipes Rademacher begrensdheid, Grothendieck se stelling (G.T.-

ruimtes) en toepassings op sekere meetkundige eienskappe van Banachruimtes.

(iv) Ons voer ’n teorie van operatorwaardige vermenigvuldigerfunksies in, en onder-
soek moontlikhede om ons werk oor (p,¢)-sommerende vermenigvuldigers uit te
brei na die raamwerk van funksieruimtes. Die idee hier is om ’'n basis te 1é vir
verdere navorsing na afhandeling van hierdie proefskrif. Die invoering van die
(p, q)-vermenigvuldigerfunksies is geinspireer deur verskeie maklike voorbeelde van
sulke funksies (voortgebring deur klasse van operatore) en die welbekende feit
(in die literatuur) dat ’n Banachruimte operator v : X — Y p-sommerend is
as en slegs as vir enige gegewe waarskynlikheidsruimte (£2,%, ) en enige sterk
meetbare funksie f : @ — X wat swak p-integreerbaar is, geld dat uw o f in
ons taal van vermenigvuldigerfunksies, Bochner p-integreerbaar is. Dus, u is p-
sommerend as en slegs as die konstante funksie @ — L(X,Y) : ¢t = u 'n (p,p)-

vermenigvuldigerfunksie is.

Kernterme: Banachruimte, ryruimte, Grotendieck se stelling, tipe, kotipe, sterk (p, q)-
sommerende vermenigvuldiger, sterk (p, g)-nukleére operatore, U-sommerende vermenig-
vuldiger, sterk U-sommerende vermenigvuldiger, absoluut (U, W)-sommerende opera-
tore, sterk (U, W)-sommerende operatore, sterk (U, W)-nukleére operatore, sterk posi-
tiewe (p, g)-sommerende operatore, sterk positiewe (p, ¢)-nukleére operatore, sterk (p, g)-
konkawe operatore, sterk p-integraal funksies, (p, ¢)-integraal vermenigvuldigers en (p, )-

integraal funksies.

Titel: 'n Teorie van vermenigvuldigerfunksies en vermenigvuldigerrye en toepassings

daarvan op Banachruimtes
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Introduction

p-Summing multipliers of Banach spaces were introduced and studied in a paper of S.
Aywa and J.H. Fourie (cf. [5]). In this paper the nuclearity of certain Banach space
valued bounded linear operators on the classical ¢P-spaces (of absolutely p-summable
scalar sequences) as well as geometrical properties (for instance, the Orlicz property) of
Banach spaces were obtained in terms of the p-absolutely summing multipliers of the
Banach space. H. Apiola (cf. [1]) and J.S. Cohen (cf. [16]) introduced ¢7(X), the space of
strongly p-summable sequences in a Banach space X, in their discussion of p-nuclear op-
erators between Banach spaces. In [14] Q. Bu and J. Diestel considered a vector sequence
space representation of the projective tensor product of ## and a Banach space X, thus

obtaining that this tensor product space is the space of strongly p-summable sequences

in X, i.e. (X).

In a paper by Arregui and Blasco (cf. [2]) an extended theory of (p, ¢)-summing mul-
tipliers and sequences was developed. The family of p-summing multipliers introduced
in [5] is a subset of the (p, p)-summing multipliers. Some surprising applications of this
theory to the geometry of Banach spaces are discussed in [2], including the reformulation

of important theorems (Grothendieck’s Theorem, for instance) in this new context.

In [28) the authors consider some new applications of semi-R-bounded and WR-bounded
sequences. They show that for each z € X and (u;) € SR(X, X), the sequence (u,z)
has a weakly Cauchy subsequence. Using this fact, they then show that if X is a weakly
sequentially complete Banach space such that L(X, X) contains a semi-R-bounded se-

quence (u;) such that each wu; is weakly compact, uxy; = wuy for all k, | € N and
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limg_ye0 ||z — uxz|] = O for every z € X, then X is isomorphic to a dual space.

In case of L{X, X) containing a WR-bounded sequence with the same properties, one also
needs the space X to satisfy the property (V*) of Pelczynski to obtain the same result.
Since L'(0,1) is not a dual space, it follows that L(L'(0,1),L"(0,1)) does not have a
semi-R-bounded or WR-bounded sequence of operators (u;) with the mentioned proper-
ties. It is also shown in [28] that if K is a compact metric space so that L(C(K), C(K))
contains an R-bounded sequence (u,) with the above-mentioned properties, the space
C(K) is isomorphic to ¢y Some applications to semigroups of operators are also consid-

ered in [28].

Furthermore, in paper [15] the authors study the interplay between unconditional Schauder
decompositions and the R-boundedness of collections of operators. They prove several
multiplier results of the Marcinkiewicz type for LP-spaces of functions with values in a Ba-
nach space X. In their paper the authors also show connections between R-boundedness
in L(X, X) and the geometric properties of the Banach space X. Fact is that a R-bounded
sequence of operators is an example of a “multiplier sequence”, which is the main theme
of this thesis. As a matter of fact, we discuss the concepts of “multiplier sequence” and
“multiplier function” in a general context and then show that different concepts that

recently played important role in applications to Banach spaces, fit into this setting.

The contents of this thesis is divided into five main chapters to be sum-

marized as follows.

Chapter 1 is a summary of basic well known facts about Banach spaces, vector sequence
spaces, operators on Banach spaces, some geometrical properties of Banach spaces, tensor
products of Banach spaces, vector integrals, vector valued LP-spaces, (p, ¢)-summing se-
quences and strongly p-summable sequences, Banach lattices and bases in Banach spaces.
The purpose of discussing these known facts, is to make this exposition as self contained

as possible.
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After introduction of the general vector sequence spaces Usrong(X ), Unear(X) and U(X),
where U is a reflexive Banach space with normalized unconditional basis and X is a
Banach space, we prove in Chapter 2 that U(X) is isometrically isomorphic to the space
Z(U*, X) of integral operators. U being reflexive and having the m.a.p., it then fol-
lows that U(X) is isometric to the space N(U*, X) of nuclear operators and thus by
Grothendieck’s theory, isometric to U é) X. We also discuss this result in two classical
cases where U = LP(0,1) and U = ¢P. The concepts U-summing multiplier and strongly
U-summing multiplier are considered in Chapter 2, where we discuss the properties and
relationships of the normed spaces of U-summing and strongly U-summing multipliers

and consider some applications to normed space.

In Chapter 3, we introduce the absolutely (U, W)-summing and two related classes of op-
erators, namely the strongly (U, W)-summing operators and the strongly (U, W)-nuclear
operators. We investigate the relationship between these classes. In addition, we de-
fine two new classes of operators, namely the strongly (p,q)-summing operators and
the strongly (p,q)-nuclear operators. The interrelationship of these operators and the
(p, ¢)-summing operators is investigated. Properties of these spaces like inclusions and

conjugate operators are also considered.

The latter part of Chapter 3 is inspired by the work of Blasco who introduced the pos-
itive (p, ¢)-summing operators where X denote a Banach lattice and Y a Banach space
(cf. [7]). This paper of Blasco paved the way for us to extend our work by defining new
classes of operators, namely the positive strongly (p, ¢)-summing operators and the posi-
tive strongly (p, g)-nuclear operators. We also describe the space of strongly (p, ¢)-concave

operators in a way that is in line with the definition in ([33], p. 46) of p-concave operators.

In Chapter 4 we summarize some (recent) results on (p,q)-summing multipliers and dis-

cuss some examples of (p, ¢)-summing multipliers on classical Banach spaces. We extend

Xv




the idea of (p, ¢)-summing multipliers to other families of multiplier sequences from E(X)
to F'(Y') by considering some well known and important Banach spaces of vector valued
sequences in place of E(X) and F(Y). The work in this chapter contains largely joint
work with Oscar Blasco and Jan Fourie (cf. [9]). I appreciate my co-authors’ consent to

use the material of our joint paper in this chapter.

In Section 4.2, we study R-bounded sequences and other variants thereof, like for instance,
semi-R-bounded and weakly-R-bounded sequences in Banach spaces. Relations of sev-
eral types of sequences of bounded linear operators (like R-bounded, weakly-R-bounded,
semi-R-bounded, uniformly bounded, unconditionally bounded and almost summing) are
studied. These relations build on well known results on type and cotype and characteri-
zations of different families of operators. We discuss these concepts within our framework
of multiplier sequences of operators, which allow us to prove new results about inclusions
of sets (vector spaces) of different kinds of R-bounded sequences of operators and their
connections with some geometrical properties of Banach spaces, including results about

type, cotype, Orlicz property and the Grothendieck Theorem.

In Chapter 5 we lay the foundation for further research work in the general context
of (p,¢)-multiplier functions. The generalization that we consider here is motivated by
the fact that the multiplier functions appear naturally in the sense that p-summing op-
erators can be characterized in terms of multiplier functions. The usual duality between
LP(u, X) and LP (u, X*) when X* has RNP can be expressed as a multiplier function,
easy examples of multiplier functions can be found (and are discussed in Chapter 5) and
the function spaces so obtained and their properties show close resemblance to the se-
quence space case. We prove some inclusion theorems for spaces of multiplier functions
and describe some relationships with LP(u, X)-spaces. Hopefully, the basic results devel-
oped in our foundation work in Chapter 5 will prove to be important in further research.
We hope to be able to apply the theory in situations where discrete representations are

not possible.
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Chapter 1

Definitions and basic facts

1.1 Some basic facts about Banach spaces, vector
sequence spaces and operators on Banach spaces

If not otherwise stated, X,Y, Z, etc. will throughout this thesis be Banach spaces. Let
L(X,Y) denote the space of bounded linear operators from X to Y and let K(X,Y) de-
note the space of all compact linear operators between X and Y. For given X, we denote
the continuous dual space by X*, the algebraic dual space by X’ and the unit ball in X

by Bx. For 1 < p < o0, let p/ denote its conjugate number, i.e. 1/p+ 1/p/ = 1.

Sequences in Banach spaces will be denoted by (z;), (v:), etc. The “n-th section”
(1,Z9y .+, Z0n, 0,0,...) of (z;) in X is denoted by (z;)(< n) and

(x:)(> n) = (z;) — (2:)(< n). A vector space A whose elements are sequences (o) of
numbers (real or complex) is called a sequence space. To each sequence space A we assign
another sequence space A*, its Kdthe-dual, which is the set of all sequences (43,) for which
the series ) .-, @, B, converges absolutely for all (a,,) € A, i.e.

A ={(Bn) €w: ) | omBy | <00, ¥ (an) €A}

n=1

A Banach sequence space A is said to be a BK -space if each coordinate projection map-
ping (a,) — «; is continuous.

Let e, = (8;5), with 6;, = 1if ¢ = n and §;,, = 0 if i # n. In a dual normed sequence
space A* the notation e}, for e, will be used.

A normed scalar sequence space A is said to have the AK -property if all its elements can

1



be approximated by their sections. That is, if each element (5;) in the sequence space
satisfies (5;) = lim, 00 (6:) (< n), where (5;)(< n) = .-, Biei. A normed vector sequence
space A(X) is said to have the GAK -property if all its elements can be approximated by
their sections. A BK-space A has the AK-property if and only if {e, : n =1,2,...} is
a Schauder basis for A, that is if and only if lim, e ||(:) (> n)||a = 0 for all (u;) € A.
If A is a normal BK -space with AK, then {e, : n =1,2,...} is an unconditional basis
for A, called the standard coordinate basis or the unit vector basis of A. In this case
a standard argument shows that A* is algebraically isomorphic to the continuous dual
space A* with respect to the obvious duality.

If not stated otherwise all scalar sequence spaces A # £*° will throughout be assumed to
be normal BK-spaces with the AK-property. In this case we may assume that ||e,||s = 1

for all n € N. For information on scalar sequence spaces we refer to [30].

Definition

(a) The projective or A—norm on X ® Y is defined by

juls = inf {Z nzinnyin} ,

where the infimum is taken over all representationsof u =357 | 7; @y in X ®Y.
A

X ®Y is the completion of (X ® Y, |.IA).

Following is the universal mapping property for projective tensor products

(cf. [26])

/\ -
XY
For any Banach spaces X,Y and Z, the space L(X Q% Y; Z) of all bounded linear

A
operators from X ®Y to Z is isometrically isomorphic to the space B(X xY’; Z) of all

bounded bilinear transformations from X x Y into Z. The natural correspondence

2



establishing this isometric isomorphism is given by

FeL(X®Y;Z) e feB(X xY;Z)

via f(z @ y) = f(z,y)-

(b) For any two Banach spaces X and Y over K € {C,R} the injective or V—norm
of Y5 17;®y; €EXQ®Y is

| S @y lv=sup D (z'z;)(y'ys)l

f_ Z*€EBys
]_l y'GBy- .7—1

A%
and the injective tensor product X ® Y is the completion of X ® Y with respect

to this norm.

Let X be a Banach space. The vector sequence space A(X) := {(z;) C X : (||z:]]) € A}

is a complete normed space with respect to the norm

I@)llacey = izl Dlla-

We put ||(cs)llax) = {|(e)|l, when A = ¢, the Banach space of p-absolutely summable

scalar sequences (with 1 < p < o) and X = K.

The vector sequence space A,(X*) = {(z) C X* : ((z,z})) € A, Vz € X} isa

)

complete normed space with respect to the norm

ea((27)) = Sup 1({, z7)la-

We put €, = €5 when A = £, (with 1 < p < 00).

Let 7 (X) denote the space of weakly p-summable sequences in X, i.e.
B(X)={(z:) CX: ((mi,5*) €I’, Vz* € X*}

is a complete normed space with respect to the norm

() = sup (3 |*(za)7)7.

lz*]I<1 n=1

3



If p= o0, let

€co((7:)) = sup sup |z"(2n)].

llz=ll<1 »

The weak Dvoretzky-Rogers Theorem (cf. {19], p. 50):
Let 1 < p < oo. Then £ (X) = ¢°(X) if and only if X is finite dimensional.

The vector sequence space

A(X) = {(z:) € Ap(X) : (z:) = €p — lim (zy,...,%4,0,...)}

n—oo

= {(z;) € Ap(X) : ea((z:) (= n)) = 0if n = oo}

is a closed subspace of A,(X). On A, (X) we consider the induced subspace norm,

inherited from A, (X). The vector sequence space

A(X?) = {(z}) € Ap(X¥): (z]) =€ — lim (27,...,2;,,0,...)}

n—0

= {(z}) € Ap(X*) s ea((z})(= n)) = 0 if n = oo}

is a closed subspace of A,(X*). On A.(X*) the induced subspace norm, inherited from

A (X™), will be considered.

It follows from Proposition 2 in paper [22] that the continuous dual space A.(X)* can be

identified with the vector space of all sequences (z}) in X* such that
Z {z;, x7)| < oo for all (z;) € Ay (X).
i=1
Moreover, the following characterisations can also be found in [21] and in paper [24]:

Theorem 1.1 Consider a Banach space X.

a) Let A be a Banach sequence space with the AK -property. Then AX(X) is isometrically
isomorphic to L(A, X). The isometry is given by (z,) — T(3,), where T(5,)((&)) = § &x;.
b) Let A be a Banach sequence space with the AK -property such that A* has AKl.lehen
AX(X) is isometrically isomorphic to K(A, X).



From the fact that I[?(X) ~ L(19,X),(1 <p < 00), -+ : =1, it follows that

1,1
P9

P(X)={(zn) C X: Ztnxn converges, ¥ (tn)n € 17}
n=1

and

oo
&((z:)) = | Tl = sup |13 Aaill,

(M)eBiw
where 9 is replaced by co if p = 1.
¢) Let A be a Banach sequence space with the AK -property. Then Aw(X*) is isometrically
isomorphic to L(X, A). The isometry is given by (z}) — T(zs), where Tizayz = ((z,27)).
d) Let A be a Banach sequence space with the AK -property. Then A.(X*) is isometrically

isomorphic to K(X,A). The isometry is defined as in (c).

Let 1 < p < oo and let A > 1. Then the Banach space X is a £, x-space if every finite
dimensional subspace E of X is contained in a finite dimensional subspace F' of X for
which there is an isomorphism v : F' — £,y with [jv[[[o7Y] < A.
Theorem 1.2 (cf. [19], p. 61)
(1) If (2,3, n) is any measure space and 1 < p < oo, then LP(u) is a L, x-space for all
A> 1

(i) If K is a compact Hausdorff space, then C(K) is a Lo r-space for all A > 1.
We recall the well known Radon-Nikodym property for vector valued measures:

Definition 1.3 (cf. [20], p. 61)
A Banach space X has the Radon-Nikodym property (RNP in short) with respect to

(2, X, u) if for each u-continuous vector measure G : ¥ — X of bounded variation there

exists g € L'(u, X) such that G(E) = [, g du, V E€ %.
Theorem 1.4 Reflexive Banach spaces have the Radon-Nikodym property.

We consider the following operator ideals:



* (F, 1l - 1l), where T € F(X,Y) if and only if T is a finite rank bounded linear
operator and || - || is the usual uniform operator norm. Recall that T' € F(X,Y) if and
only if T' has a representation of the form 7' = )" , 2} ® y; where z; € X" and y; € Y.
Also recall that the trace of S = )" , 2} ® z; € F(X, X) is the number

i=1"1
tr(S) = (&, z7),
i=1

which is independent of the representation of S.
The space X has the metric approximation property (m.a.p. in short) if for each

¢ > 0 and each compact set K C X there exists a S € F(X, X) with
(1) ISl <1 and
(2) ISk —kl| <€, VEEK.

*  (N,v), where T € N(X,Y) if and only if T is a nuclear operator, i.e. T has a

representation
[e o]
Tz = Z)\i(x,x;‘)yi
i=1

where (\;) € £', (z}) is bounded in X* and (y;) is bounded in Y. Here

n(T) := inf Z 1Al
i=1

where the infimum is extended over all such representations for which ||z}| < 1 and
lysll < 1 for all 4.
x* (Z,7), where T € Z(X,Y) if and only if T is an integral operator, i.e. if and only if

there exists p > 0 such that
tr(TS)| < pllSll, VS eF(Y,X).

The integral norm #(7) equals the smallest of all numbers p > 0 admissible in these in-
equalities. Note that (X éY)* is identifiable with Z(X,Y*). From results by Grothendieck
it follows that in case of either X or Y being reflexive, every u € Z(X,Y) is nuclear; i.e.
I(X,Y) and N(X,Y) are topological isomorphic in this case. Also, from Grothendieck’s

work on the metric approximation property (m.a.p. in short) it follows that in case of
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X* having the m.a.p., we have i(u) = v;(u) for all u € N(X,Y). Thus, if X is reflexive
and X* has m.a.p., then N(X,Y) isornetric Z(X,Y). More generally, if X* has the m.a.p,
then N(X,Y) “%"* T(X,Y) if and only if X* has the Radon-Nikodym property (cf.
[20], Theorem 6 on p. 248).

*  (Ilgs, Tas), where T € T1,5(X,Y) if and only if T' is an almost summing operator, i.e.
if and only if there exists ¢ > 0 such that

[ 1S TEr@ s e mp Ol

llz*lI=1 5=

for any finite set of vector {z, - ,zn} C X where (r;)jen are the Rademacher func-
tions on [0, 1] defined by 7,(¢) = sign(sin 27xt). The least of such constants is the almost-
summing norm of u, denoted by m,,(u).

* (cf. [35], p. 31) Let u: X — Y be an operator. Then

(i) u is of type p, 1 < p < 2, if there exists a constant ¢ > 0 such that for any finite

subset {zy,---,Z,} C X we have

[ IIZwm(t e < e (3 sl

j=1

(ii) u is of cotype q, 2 < ¢ < o0, if there exists a constant ¢ > 0 such that for any

finite subset {z1, - ,z,} C X we have
= 1
i <e [ me It
7=1

In case u = idx and idx is of type p (resp. cotype ¢), we say that X is of type p (resp.
cotype q).

Note that a Banach space X is of type 2 and cotype 2 iff it is isomorphic to a Hilbert
space (cf. [35], p. 33).

1.2 Basic facts about vector integrals

The reader is referred to [20] and [4] for the following definitions. Throughout this section

(Q,%, ) is a finite measure space and X is a Banach space.
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Definition 1.5 (a) A function f : Q — X is called simple if there ezist
T1,Zo, - ,In € X and By, Ey, -+ ,E, € ¥ such that f = > | Z;XE,, where

_ 1 ifUJEEi
X (W) = { 0 ifw¢ E;

(b) A function f : Q0 — X is called p~-measurable if there exists a sequence of simple

functions (f,) with im, ||fr» — f|| = 0 p-almost everywhere, where

Il Q= Rt I £ (@)

(c) A function f : Q — X is called weakly p-measurable if for each z* € X* the

numerical function =*f is p-measurable.

(d) (cf. [20], p. 52 and p. 53)
A function f is Dunford integrable if f is a weakly p—measurable X —valued
function on Q such that z*f € L*(p), V z* € X*. The Dunford integral of f

over E € ¥ is defined by the element x5 € X** where
ry(z*) = / ¥ f du, V z* € X™.
E
In this case we write

zy = (Dunford) — /Ef du.

The function f : Q — X s Pettis integrable if f is weakly p-measurable such
that
(Dunford) —/ fdu € X,VEE€eZX.
E

We denote the Pettis integral of f over E € ¥ by (Pettis) — fE f du. Note that the
Dunford and Pettis integrals coincide when X is reflexive and that a p-measurable

Dunford integrable function f is Pettis integrable if and only if the set function
Q- X : Ew (Dunford) — / fdu
E

is countably additive (cf. [20], p. 54).



(e) (cf. [20], p. 108)
The bounded linear operator T : LP(u) — X 1is called a vector integral opera-

tor(v.i.0.) with kernel g if g : Q@ — X is a pu-measurable function such that

*T(f) = / fz*gdp, ¥ f € LP(u) andV z* € X*.
)
Equivalently, there exists a measurable g : Q0 — X such that

T(f) = (Pettis) - /Q fgdu ¥ f € IP(n).

Ifp=1, then T : L'(n) — X 1is a vector integral operator if and only if T is Riesz
representable. According to the Riesz Representation Theorem (cf. [20], p. 63) in
case of a finite measure this is so for all T € L(L*(u), X) iff X has RNP.

For1l < p< oo and zl) + z% =1, a measurable g : 2 — X 1is the kernel of a vector
integral operator T : LP(u) — X if and only if *g € L¥ () for all z* € X*. We

see this fact as follows:

Let z*g € L¥ (), ¥V z* € X*. Define T : LP(p) — X*' by

(T)a") = /Q £ ()2 () du(t).

We prove that T(f) € X** :
For f € LP(u) fized, define S : X* — L'(pn) by Sz*(-) = z*(f(-)g(-)). Note that S
is closed. Indeed if lim, z}, = z* and lim, Sz}, = h in L'(u), then some subsequence

z;, (f9) = S(z},) tends p-almost everywhere to h. But

limz7, ((f9)(#)) = 2*((f9)(t)) everywhere.

Hence, z*(fg) = h p-almost everywhere, i.e. Sz* = h p-almost everywhere and S
is a closed linear operator. From the Closed Graph Theorem we conclude that S is

continuous. Hence:

12 (£l = 1S2*]| < ISIHI=]l-
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(f) (cf [20], p. 48) Let f,g be u-measurable.
If z*f = z*g p-almost everywhere V z* € X*, then f = g p-almost everywhere.

Thus, the kernel of a vector integral operator is almost everywhere uniquely defined:
Let g, and gy be kernels of a vector integral operator T : LP(u) — X, then g, and

go are measurable and z*gy, x*go € L (). Also,

/x*(f(t)gl(t)) du(t) = /Qw*(f(t)gz(t)) du(t), ¥V z* € X*andV f € LP(p).

Q
= Qf(t)[ﬂv*gl(t)] du(t) = /Qf(t)[ﬂ?*gz(t)] du(t), V f € LP(p), YV &" € X,
= z'¢q = z'¢gs p—ae,VzeX.

= g1 = g2 Wp—ae

Definition 1.6 A function f : £ — X is called Bochner integrable if there exists a

sequence of simple functions (f,) such that
im [ s = 7lldn=0.
n Ja
In this case fE fdu s defined for each E € ¥ by
[ sdu=1im [ fudn
E " JE
where fE fndp is defined in the obvious way.

A concise characterization of Bochner integrable functions is presented next.

Theorem 1.7 (cf. [20], p. 45) A p-measurable function f : Q — X is Bochner integrable
if and only if [, ||f]| dp < oo.

Lemma 1.8 (cf. [20], p. 172) Let f : Q — X be Bochner integrable. For each ¢ > 0
there is a sequence (z,) in X and a (not necessarily disjoint) sequence (E,) in ¥ such

that

(i) the series > 2 | TnXE, converges to f absolutely y-a.e. and

11



(i1
J £l < 3 Nanlla(Bn) < [ 17 1d+e.

eIf1 <p < o0, let LP(u, X) denote the space of equivalence classes of X-valued Bochner

integrable functions f : {2 — X such that the norm is given by

17|y = / IF1P dy)3 < oo,

i.e.
D X) = (£ 2= X | ([ 117 ) < oo},
e [P(u, X) with this norm is a Banach space (cf. [20]).
e [°°(u, X)) will stand for all (equivalence classes of) essentially bounded p-Bochner inte-

grable functions f : 2 — X, where the norm is defined by || | zeo(,x) = €88 SUPyeq ||f(w)]].
e [*°(u, X) with this norm is a Banach space (cf. [20]).

Remark 1.9 (c¢f. [20])
(1) For 1 < p < oo, the simple functions are dense in LP(u, X).
(2) The countable valued functions in L®°(u, X) are dense in L™ (u, X).
(3) For a finite measure space (2, %, 1) and 1 < p < 0o, we have
P, X)" =7 (1, X"), -+==1

)

1
v

R

iof and only of X* has Radon-Nikodym property with respect to pu. In this case the
duality is defined by the bilinear functional

(f,9) = / o) (1)) du(t)

for all f € LP(p, X) and g € L¥ (11, X*). This is for instance true if X is reflezive
(cf. [20), p. 76).

(4) LP(p, X) is reflezive if and only if LP(u) and X are reflezive.

12



eoif 1 < p < oo and (zf)(t) = f(t)(z) let L2, (u, X) denote the space of equivalence classes

of weakly p-integral functions, i.e.

I2(u, X) = {f:Q— X | f is measurable and (z*f)(-) = f(-)(z*) € L?(n), ¥ z* € X"}

= {f:Q— X | f is the kernel of a v.i.0.,, T : LP (p) = X}
and

L, (w, X7)

{f:Q — X*| fis measurable and zf € LP(u), V = € X}

= {f:Q— X*| fis the kernel of a v.i.o., T: I” (u) — X*}.

Let ||g][“e* := supyp- <1 (Joy [2°9 ()P dps(t))>.

Let g1, g2 be kernels of vector integral operators. Notice that if

Q |

( / 2 au(t) — 2 ga(8)19 du(®)t =0, ¥ 2" € X*,

then z*g) = z*go p — a.e., V z* € X*. Thus, it follows that z*g,(w) = z*go(w) for all
€ X*and Vw € Q\ E, where u(F) =0; i.e

g1(w) = ga(w), Vw € Q\ E.

Thus, if we put
lgleek = sup ( /Q 12" du())?,

llz=fl<1

then
( / 701 (t) — " galt) "du(8))} =0, V" € X"

This implies that g, = g p — a.e. Therefore, if we denote by L% (u, X) the family of all

equivalence classes of measurable g : 2 — X such that
ztg € LY ) (1<g<o0), ViteX*

(i.e. all kernels of vector integral operators T' : L9 (u) — X) then (L% (u, X), [|.||eek) is
a normed space. It is easy to verify that L?(u, X) C L% (u, X) and

9115 < llgllzeux) for all g € LY (u, X) (cf. Lemma 5.2).
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Also,

lallzesr = sup ([ ="9(0)1 dute))’

llz=i<1

- amp sup | / F()a*g(t) dut)

=111 11l <1

= sup sup |z*T,(f)]

151l g7 <1 ¥ lIS1

= sup ||Tg( )“ = ”Tg||7
Al sy ST

where ¢ is the (u-a.e. uniquely defined) kernel of
T,: LY (u) = X : f = Tyf

and (T,f)(z*) = [q f( t) du(t). Thus g — T, defines an isometric embedding of
L (1, X) into L(Lq (,u),X).

1.3 Basics about (p, ¢)-summing sequences and strongly
p-summable sequences

We start with a recapitulation from the theory of absolutely summing operators, which
was developed mainly by Pietsch in the late sixties. The reader is referred to [19] for the

following.

Definition 1.10 (a) A sequence (z,) in a Banach space is absolutely summable

if 3 oner [1Zall < 00

(b) A sequence (z,) in a Banach space is unconditionally summable if Y | T,

converges, regardless of the permutation o of N.

(¢c) An operator u € L(X,Y) is absolutely summing if for every unconditionally

convergent series )2, 7; in X it holds that ) 2, uz; is absolutely convergent in

Y.

Theorem 1.11 Omnibus theorem on unconditional summability
(cf. [19], p- 9)

For a sequence (z,,) in a Banach space X the following are equivalent:
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(i) (x,) is unconditionally summable.
(ii) (bn) — > oo, buz, defines a compact operator cg — X.

From the fact that K(cp, X) ~ ¢1(X) and the theorem above it follows that (z,) is
unconditionally summable if and only if (z,) € €:(X), but since £X(X) C £,(X) it fol-

lows that if (z,) is unconditionally summable then it is also weakly absolutely summable.

Given 1 < ¢ < p < oo, the space I1,,(X,Y) of (p,¢)-summing operators is the
vector space of those operators which map sequences in #2 (X) onto sequences in #(Y);

more precisely u € L(X,Y) is in II, ,(X, Y') if there exists a ¢ > 0 such that:

[(uzs)llervy < ¢ €((25))

for any finite family of vectors z; in X the least of such c is the (p, ¢)-summing norm
of u, denoted by m,4(u). Note that (p,p)-summing is the same as p-summing and an
operator is 1-summing if and only if it is absolutely summing (cf. [19], p. 34).

Apiola and Cohen were the first to introduce #(X), the space of strongly p-summable

sequences in X.

Definition 1.12 (¢f. [14]) Let 1 < p < 0 and ;—, —i—% = 1. 2(X) denotes the space of

strongly p-summable sequences in X, i.e.

£(X) = {(za) € X" |zn(2n)] <00, V (z3) € £4,(X")}

n=1

and
o0
l(@n)llpy = sup |27 (2n)]-
’ (#2)n€Byg (x) ;
Then (&(X), |.ll) is a Banach space (cf. [1], [16]).
From the work of Cohen (cf. [16]) we observe that:
Theorem 1.13 (i) For 1< p < oo,

&(X) S P(X) C (X)) and () < || lox) < N - Ml
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(it) Forp=1, £{X) = £1(X) and || - lacx) = [ - l)-
From the work of Bu (cf. [14], p. 526) it follows that
Lisometrically *isomegically q

PYYTTTET R (YY) and H(X)T = O0(XY).

Definition 1.14 (cf. [2]) For any Banach space X we define the space £x, ,(X) of (p,q)-
summing sequences in X, as the set of all sequences (x;) in X such that there ezists

a constant ¢ > O for which

n % n
(Z ]I]*-mjlp) <c sup (Z lz;g;j‘I)
=1 TEBx =1

for any finite collection of vectors zj,--- ,z; in X*.

q

The following theorem gives the connection between the strongly p-summable sequences

and the (1, ¢)-summing sequences.

Theorem 1.15 (c¢f. [23]) Let 1 < p < oo with % +% = 1. Then *{(X) = £, (X) and
1)l = m1,0((25))-

A
Theorem 1.16 (c¢f. [14] and [23]) Let 1 < p < oo. Then ¥(# ® X) = P(X) and
(g é X) = co{X), where U is an isometry and where (P é X (or ¢ é X) is the

completion of P ® X (or co ® X ) with respect to the projective tensor norm |.|a,

Following a similar argument as in our proof of Theorem 1.23 in [23], we prove a more

general result in Chapter 2.

1.4 Basics about Banach lattices

The following definitions can be found in [33] and [35].
Recall that a Banach lattice X is an ordered vector space equipped with a lattice structure

and a Banach space norm satisfying the following conditions:

Vi, ye€X, z| <yl =zl <llyll, where |z =z V (-z).
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We say h is a homomorphism between two Banach lattices X; and Xy if h: X; — X is

a linear operator such that

h(z Vy) = h(z) V h(y), Vz,y€ X;.

——

Let X (£7) be the space of all sequences = = (z;) of elements of X for which

° 1
Il 3 = sup 1O laalP)? || < oo
i=1

N

Let X (#?) denote the closed subspace of X (¢?), spanned by the sequences (z;), which are

eventually zero.

Note that (35, |:E,-|”)% € X is defined by

n

n
L 1 1
( |z;[P)» = sup o;x;, where — + — = 1.
; (:)EB ; p P

Definition 1.17 (¢f. [83], p. 45)

Let X be a Banach lattice, Y an arbitrary Banach space and let 1 < p < oc.

(i) A linear operator T : Y — X is called p-convex if there ezists a constant M < oo

so that ) .
IQCITwl)Pl < M (YllwilP)?,  if1<p<oo
i=1 i=1
for every choice of vectors (y;)(< n) in Y. The smallest possible value of M is
denoted by MP(T). A linear operator T from a Banach space Y to a Banach lattice
X is p-convez for some 1 < p < oo if and only if the map T : £P(Y) — X (&),

defined by T'(y1,v2, ) = (Ty1, T, - - ), is a bounded linear operator. Moreover,
171 = MP(T).

(i1) A linear operator T : X — Y is called p-concave if there ezists a constant M < oo

so that

n

Q_ITziPys < M laP)sl,  #1<p<oo

i=1

for every choice of vectors (z;)(< n) in X. The smallest possible value of M is

denoted by M,(T). A linear operatorT : X — Y is p-concave for some 1 < p < 0o if

17



\ V
and only if the map T : X (£°) — €P(Y), defined by T(21, T2, ) = (Tz1,Txa,: ),

v
is a bounded linear operator. Moreover, ||T| = My(T).

(i) We say that X is p-conver or p-concave if the identity operator idx on X 1s p-

convez, respectively, p-concave.

Remark 1.18 (1) LP(u) is both p-convez and p-concave (cf. [33], p. 45).

(2) Let f1,+ -, fn € LP(u) and 1 < p < 00, then there exist c1,c2 > 0 such that
1 n n 1 n .
01(/ 1Y "0 fillisg 482 < IQ 1) 2o < 02(/0 1D i @) fillza d0)?
(cf. [33], p. T4).

Theorem 1.19 (cf. [85], p. 99) A Banach lattice X s of cotype 2 iff 1t is 2—concave.

Moreover, X* is of cotype 2 iff X 1s 2— conver.

1.5 Basics about bases in Banach spaces

From [32] and [37] we get the following definitions.

Definition 1.20 (i) e A sequence (z,) in a Banach space X is called a Schauder

basis of X if for every x € X there is a unique sequence of scalars (a,) so

that z = 37 | anTy.

® A sequence (z,) which is a Schauder basis of its closed linear span is called a

basic sequence.

® (z;) is an unconditional basic sequence if and only if any of the following
conditions hold.
(a) (zo:)) 15 a basic sequence for every permutation o € N.

(b) The convergence of Y | anZ, tmplies the convergence of 3 oo | byz, when-

ever |b,| < |an|, for all n.

18



(ii) The sequence of functions {xi(t)}5°, defined by xi(t) = 1, and, for k =0,1,2,---,
and j=1,2,---,2%,
1 if te [%L—f Gy

Xori(t) =4 =1 of  te[GR, ]
0 otherwise

1s called the Haar system.

(iii) o Let (z,) be a basis of a Banach space X. The biorthogonal functionals (z}) form
a basis of X* if and only if, for every z* € X*, the norm of the restriction
of z* to the span of (z,) tends to 0 as n — oco. A basis (z,) which has this
property is called shrinking (cf. [32], Proposition 1.b.1.).

o Let (z,) be a shrinking basis of a Banach space X. Then X** can be identified
with the space of all sequences of scalars (an) such that supy, || Y1, a;x;|| < oo.
This correspondence is given by ** + (z**(z3}),z**(x3), - -). The norm of z**

is equivalent (and in case the basis constant is 1 even equal) to

(cf. [32], Proposition 1.b.2.).

(iv) A basis (z,) of a Banach space is called boundedly complete if, for every se-
quence of scalars (a,) such that sup, || Y i, a:z;|] < 0o, the series Y | anZ, con-

verges.

o The unit vector basis is boundedly complete in all the 7 spaces.

e By combining the definitions of shrinking and boundedly complete we get a
characterization of reflezivity in terms of bases.
(cf. [32], Theorem 1.b.5)
Let X be a Banach space with a Schauder basis (z,). Then X is reflezive if

and only if (z,) 1s both shrinking and boundedly complete.

(v) Let X be a Banach space with a Schauder basis (z,).
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e Consider the projections P, : X — X, defined by Po(d o) aitti) = Yy 0iTi,

then the number sup,, || P,|| is called the basis constant of (z,).

o If () is a basis sequence in X* then its basis constant is identical to that of
o Consider the projections Mo : X — X, defined by Mo (Y o, aiZi) = Y _ooq ©itiZi,
for every choice of signs © = (6;). The number supg | Mo|| s the uncondi-

tional constant of (z,).
o The basis constant is less or equal to the unconditional constant.

o If(z,) is an unconditional basis of X we can always define an equivalent norm

on X so that the unconditional constant becomes 1.

e For every integer n the linear functional z}, on X defined by

o0
.’II:;(Z aixi) = Qaq
=1

is a bounded linear functional. These functionals (z

*

v), which are character-

ized by the relation ) (m) = Sum, are the biorthogonal functionals asso-
ciated to the basis (zn). If (z,) is an unconditional basis sequence in X then
the biorthogonal functionals (x},) form an unconditional basis sequence in X*

whose unconditional constant is the same as that of (z,).

(vi) A basis whose basis constant is 1 is called a monotone basis, i.e. for every choice
of scalars (an) the sequence of numbers (|| >_1| a;z;||) is increasing.
A space with a monotone basis has the m.a.p.
Given any Schauder basis (x,) in X, we can pass to an equivalent norm in X for

which the given basis is monotone.

(vii) A Banach space X is said to have the approximation property (A.P. in short)
if, for every compact set K in X and every ¢ > 0, there is an operator T : X — X
of finite rank (i.e Tx =3 7 | z}(x)zi, for some (z;) C X and (z}) C X*) so that
Tz — z|| <€ for every z € K.

Every space with a Schauder basis has the A.P.
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(viii) If X* has the approzimation property then X has the approzimation property. In
particular, if X is reflezive then X has the approzimation property if and only if

X* has the approzimation property.

(iz) The principle of local reflexivity
Let X be a Banach space and let E and F be finite dimensional subspaces of X**

and X* respectively. Then for each € > 0, there is an injective operator u: E — X

with the following properties:

(a) ur =z forallz€e ENX
(6) ulllu™ < 1+

(¢) (uz**,z*) = (z**,z*) Vz* € E, Vz*€F
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Chapter 2

Vector sequence spaces

2.1 General vector sequence spaces

Let U be a reflexive Banach space with a normalized unconditional basis (e;) and let
X be a Banach space. By renorming U we may assume that the unconditional basis
constant is 1. Let (e}) be the unconditional dual basis of U* with the unconditional basis
constant 1. By normalization we can assume that ||e}|| = 1 for each ¢ € N. Moreover, (e;)

and (e}) are orthonormal, i.e. ef(e;) = §;;, where 6;; = 1 and 6,, = 0 if j # ¢.

In 11} the following vector sequence spaces are introduced:

Ustrong(X) = {Z = (z;); € XN : Z l|z:||e; converges in U},

i=1

which is a Banach space with respect to the norm

Z ||:cl||el

m“strong ;

Ueak(X) = {Z = (z;); € XN : Zx*(a:,-)ei converges in U, V z* € X*},
i=1
which is a Banach space with respect to the norm

1Zl|wear = SUP | Z:c (zi)eill or ||T|wear = sug) | Z“ (ei):lx.
1=1 Ut =1
In order to avoid ambiguities the norms ||Z||y,,,,.,(x) and ||Z]|v,...(x) are sometimes used.
o0
UX) = {T = (z:): € X" : ) Jaf(@)] < 00, V (2}) € U (X7},
i=1
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which is a Banach space with respect to the norm

o0
Eloxy = sup Y |z(@);

(z:)e BU:)eak(x‘) i=1
Uweak,o(X) = {T € Uweak(X) : 1171;11 ”T(Z n)”weak = 0}

From the work of Bu (cf. [11], p. 29, 33 and 35) we observe that:
U<X> g Ustrong(X) g Uweak(X) and

1
5“-“weak < ||-||strong < 2”-”U(X).

In case U is a real Banach space, ||.||weak < ||-||strong < ||-lluex).

U(X)* = U} oo (X*) and Uyear,0(X)* = U*(X*) isometrically. To obtain these isometries,
we identify a sequence (z}) in U, (X*) with the linear functional f € U(X)* defined by
fl(z:)) = Y02, x3(x;). Tt is easily seen (cf. [11], Proposition 1.5.2) that T = (z;); € U(X)

i=1"1

if and only if the series Y .o, z}(z;) converges for each (z}) € U, (X*) and that

IZlluexy = sup 1Y 23 ().

(zi)€ Bur . (x*) =1

In the following lemmas and corollaries, we summarise some properties about the different

vector sequence spaces.

- Lemma 2.1 Let u € L(X,Y).
If (-’rz) € Uweak(X)’ then (U"T’L) € Uweak(y); ’lU’i:th ”(uxi)”weak S ”u““(xi)”weak'

Proof  Let (2;) € Upeak(X) then Y2, 2*(z;)e; converges in U, for all z* € X* and

(i) llweak = SUP«cp,. 2,z*(z;)e]|lu. Choose u € L(X,Y). For y* € Y* we have

1Yy wedalls = I o w)@eils
< Ny o ulll(@) e

< [y @) lwea 1wl

Thus (uz;) € Uwear(Y') and ||(uz;)||wear < “u“”(xt)”weak O
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Corollary 2.2 If (z**) € Upeak(X™*) and ix : X — X** is the embedding mapping,

then (7 0ix) € Uyear(X™) and ||(z;™ 0 ix)|lwear < ||( ***)”weak'
Corollary 2.3 If (z}) € Uyear(X*), then (2}) € Upear(X***) and

||($;)||Uwea.k(xn‘) S‘ ||($:)||Uwea.k(x‘)'

Lemma 2.4 A sequence (z,) in a Banach space X is in U(X) if and only if

(ixzn) € U(X™) and ||(ix2n)llucxe) = [ (zn)llucx)-

Proof Let (z;) € U(X) and (z}**) € U}, ,.(X***). By Corollary 2.2 we have

(zf* otx) € Ul .k (X*) and [|(z7** 0 ix)|lweak < |[(27**)||weak- This implies that
o0 o0
D o lz(ixza)) =D @™ oix) ()] < oo,
i1 i=1

from which it is clear that (ixz,) € U(X**) and [[(ixzn)|lux++) < (@) lluex)-
Conversely, if (ixz,) € U(X™) and (z}) € U, (X*), then

Z |z} (z:)| = Zlixwi(mf)l < o0

and ||(ixzn)|luxey = ||(za)|luexy by Corollary 2.3. -
Lemma 2.5 For each finite set {zy,z2,...,2,} C X we have

n

Se®ni| = ll)lueat

=1 Vv
Proof

D> €@zl = sup 27(63'):16*(:33)
B ||Sl?lgl ZCE mJ)e] - H(mj)Hweak.

O

A
Lemma 2.5 will be instrumental in characterizing U ® X in terms of vector sequence
spaces, using results from the theory of tensor products. Let us start by proving the

following theorem.
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Theorem 2.6 Let X be a Banach space. Then U(X) "% T(U*, X). The isometry

is given by the mapping (z;) — u: U* — X 1 ue} = z; for all j € N.

Proof We know from Grothendieck’s work that (U* é X)* is isometrically identifiable
with Z(U*, X*), where each u € Z(U*, X*) is identified with ¢, such that

n
%(E e; ® z;) = E( e})z;. The mapping & : U(X*) — (U* ® X)', defined by

]:

@((J ))(e; ® z) = T}z, satisfies

<<I>((a:;)),z:e;~ ®xj>

n
Using that |[(z;)]|weak = ;
i=1

< ) lluix

y11(Z5) fweak-

= Z z} ()

by Lemma 2.5, it follows that
\Y

3((z3)) € (U" ® X)*, with @ ((@)]| < @) lloexe).

The bounded linear operator ® has an inverse 1 : (U* é) X)* — U(X™*), which is defined
by £ = (z7), where {(e; ® z) = zjz for all z € X. Using Lemma 2.5 for all finite

sets {z1,%2,...,%,} C X follows > |ziz;| < [[E]l[I())|lwear; 1€ (27) € U(X™) and
7=1

(@) llueesy < €Nl This shows that Z(U*, X*) 1omETiC 17(X*), where the isometry is
given by u +— (uej). Since this isometry holds for all Banach spaces X, then also for X*
if X is given, i.e.

T(U*, X**) “TETCUX™)  u e (ue).
Finally we have
vweI(U* X) < ixoueI(U*,X")
= ((ixou)(e)) € U(X™) <= (ue}) € U(X)
and i(u) = (|(ue;)||vx)- O

Since the space U* is reflexive and U = U** has the metric approximation property, it

follows that;

Corollary 2.7 U(X) ssompetric N(U*, X), where the isometry is given by (z;) — u: U* —
X:uej=z; forallje N
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Corollary 2.8 (z;) € U(X), if and only if there are ()\;) € €', {v;}3° C By and
{y;}3° C Bx such that z; = Y Aje;(v;)y; for alli € N.
=1

Proof (z;) € U(X) if and only if there exists u € N(U*, X) such that ue] = z; for all

i € N. u being nuclear, this is so if and only if
[o 0]
zo=uel = Ai(ys, ey
j=1

with (A;) € €', {7;}1° C By and {y;}?° C Bx. O
Since N(U*, X) =U ®X (for all Banach spaces X), when U satisfies the metric approx-

imation property, we conclude that:

Corollary 2.9 U{X) %" Uy ® X by the mapping (z;) — u where ue} = z; for all
j€EN.

2.1.1 U-summing multipliers and strongly U-summing multipli-
ers

Definition 2.10 A scalar sequence (a;) is called a U-summing multiplier for a Ba-
nach space X, if
(aixi) € Ustrong(X)a v (xz) € Uweak(X)-

Put My(X) = {(an) € w : (ans) € Usrong(X), ¥ () € Upear (X))}
Proposition 2.11 (/32], p. 19)
Let (z,) be an unconditional basic sequence in a Banach space, with an unconditional

constant K. Then, for every choice of scalars (an) such that Y .o a,z, converges and

every choice of bounded scalar sequences (M), we have

| Z AnlnZn|| < 2K sup |As||| Zana;nu
n=1 n n=1
(in the real case we can take K instead of 2K).

Remark 2.12 It follows in particular from Proposition 2.11 that if 520 | b,x,, converges,

where by, > 0, V n and if 0 < ay < by, for all n, then || 302 anz,|| < K| Yoo banll.
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Proof

Let )‘i = {

O_p-L_P
<
> &
N
o o
-
(4]
S

1S ngll = 1S Abaall < KIS bzl
n=1 n=1 n=1
Theorem 2.13 If v =Y 2, vie; € U, then (v;) € My(X).
Proof Let (z;) € Uyear(X). For fixed ¢ € N, there exists z* € X*, ||z*|| = 1 such that
llil| = (s, 2%) = [[{zi, z")esl|v-

Since the basis (e;) has unconditional constant K = 1, it follows from Proposition 2.11

that
lzall < 2| Z z5,27)€jllv < 2||(25) | weak.

Thus (||z;]|) is bounded. Prop051t10n 2.11 also implies that

Z ”%xz”ez < 2( SUP llz:[) Z [7iles —7>n 0,
t=m+1 i=m+1
again using that {e;} is an unconditional basis. Thus (v;z;) € Ustmng(X ). O
Lemma 2.14 (o;) € My(X) implies (a;z?) € U*(X*) for all (z}) € Ustrong(X™)-
Proof Let (z;) € Upear(X). Then
Z |<aiﬂ?:, 331)' = Z |<$:a aixi” < [|($Z)|lstrong|l(ai$i)”strong < 0.
i=1 1=1

On the vector space My(X) we define a norm

ZH%%HQ

which is well-defined because for each (o;) € My (X) this is the operator norm of the

||(ai)“MU(X) = sup
Ti )EBUweak (X}

linear operator

To : Upeak(X) = Usrong(X) it (z5) = (auizs),
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where T, is bounded (having closed graph):
Suppose (Zin); = (i) and To((zin)i) — (3:) if n — oo,

then

lloizi = willx < Il(euws) = () llstrong < [l(0z:) = (ciin)llstrong + [1(@iin) = (yi)llstrons.

Also,
oo
“(aimi) - (aixi,n)nstrong = Z<$;,ai$i - Clil'i,n), for some ”(CL'Z)Hstrong =1
—t
1’@
= > (0T}, T — Tin)
=1
< H(ala“:)’ U*(X*) (Zi - xi,n)”weak _on:) 0
and
oo
Z leitin — yilles|| — 0.
[o o]
=1 U

It follows that o;z; = y;, V 4, i.e. that To((z;)) = (vi).

My(X) is a complete normed space with respect to the above operator norm. In the

exposition that follows an alternative definition of U-summing multipliers is given.

Definition 2.15 A scalar sequence (c;) is called a U-summing multiplier for a Ba-

nach space X, if there is a constant ¢ > 0 such that regardless of the natural number m

and regardless of the choice of x1,x2, -+ , T, tn X, we have
m m
Y lleszilled| <c sup |z (zi)ellw. (2.1)
i=1 U IE‘Eme =1

First we prove that Definitions 2.10 and 2.15 are equivalent:

Proof  Let (a;) € ¢°. If there is a constant ¢ > 0 such that for all finite sets

{z1, -+ ,zm} C X we have
m m
ZHaixiHei <c sup Zx*(mi)ei
i=1 U IE*Gme i=1 U,

then clearly

< oo, V (CL'z) € Uweak(X)'
U

m
Z sz le:
i=1
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Conversely let |37 [|aszilleilly, < 00, ¥ (2:) € Uyear(X)- Since the operator
Ty : Upeak (X) - Ustrong(X) “ (.’131) — (aixi)
is bounded, we have

“Ta((xi))Hstrong < ”Ta””(xi)“weak, Y (z:) € Uyeak (X).

In particular, for all finite sets {zy, -+ ,Zm} C X it follows that
m m
Z llosz;]|eill < ¢ sup Zx*(mi)ei
i=1 U IE'Eth i=1 U

O

It is clear from the above discussion that on the vector space My (X) the norm is also
given by
l(ci)|lmy(x) :=inf {¢ > 0: the inequality (2.1) holds}.

Proposition 2.16 My (X**) = My(X).

Proof Let (o) € My(X) and € > 0.
We intend to show (o) € My(X™*).

For any finite set {z}*,z3*,...,z2*} C X**, let z} € X* with ||z}|| = 1, such that

lei’ll ~ [{zh, )| for k=1,2,---,m

Wy M

~ " meaning close enough so that [(z}, z}*)| > 0.
Let E := span{z}*,z3*, .-, 23’} C X* and F := span{z},z}, -, 25} C X*.
By the Principle of Local Reflexivity there exists an injective-bounded linear operator

u: F — X with
@) [Jullllu™l <1+

(i) [(uzi™,z})| = (27", 27)| # 0 for 27" # 0, i =1,2,-

Let z; :=uz* € X, (i=1,---,n). Since (o) € My(X), there is a ¢ > 0 with
laiyillez <c mhp ZI veill » VA{y, ., un} C X,
[EES!
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Hence we have:

n

Z loiu™z; |e;

i=1

louzy™||es

U

n
> lloszilles
i=1 U

< flul e S}IP |[Z<$*,$i>€i’|u

<

= ™!l ¢ Sup, llz =t uz ey
T =1

= Ju™"l ¢ sup nZux ziesllu

llz* <1

= lu”

NS

IA

Ju [l ¢ Sup IIZ (y*,z;")eillu, where y* € X*™
= =1

< (1+4¢)c sup HZ v,z eillu.
lly=lI<1 i=1

Since € > 0 was arbitrarily chosen, it follows that

n n
leaixf*nei < ¢ sup Z(IZ*,?J*)%’ :
i=1 U {ly*]IL1 i=1 U
so that (o) € My (X**) and
(i) llmyxy 2 [[{@)]lay (x++)-
Conversely, suppose
m
z7"|lei]l < ¢ sup Z(xf*,x*)ei
s lelist])is v

for all finite sets {z1*,z5*, -,z } C X**. Then, for all {z;,---,z,} C X C X™, it

follows that

n

Sz atde

=1

< c¢ sup
flz*[I<1

)
U

n
> e e
1=1 U
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le.
(c:) € My(X) and |[(@:)[myx) < (@)l myxe0).

Thus My(X) = My(X**) as Banach spaces. 0
Definition 2.17 A scalar sequence (o) is a strongly U-summing multiplier, if

(anzn) € U(X), YV (24) € Ustrong(X).

Put
M(s]t"’"g(X) = {(an) Ew: i |zy (anZn)| < 00, V (2}) € U0k (X*), V (z4) € Usmmg(X)} )
n=1
On the vector space My ™ (X) we define a norm
Nadlagrmcy = 50 Ne@dllopy = sup S [zh(onza)]

[I(z:)lstrong <1 Hzplwear <1 n=1
([(#n)llstrong <1

Theorem 2.18
[Ustrong(X)]* =Uj;

strong

(X*).

To obtain this, we identify a sequence (z}) € U,,.,.(X*) with a linear functional

strong

(,b S [Ustrong(X)]*v
defined by ¢((z:)) = 3212, 73 (24)-

Proof  Let (z}) € Usyon,(X*) and (z:) € Usirong(X), then

| D st < ) el

t=m+1 i=m+1
n n
= (D latlles, D lajlles)
i=m+1 j=mt1
n n
n, m
< D0 latlle: > lzslles — 0.
t=m+1 U+ lij=m+1 U

Thus 30, z}(z;) converges.

Define a linear functional ¢ on Usirong(X) by ¢((z;)) = 3 ooy zf(z;). Then ¢ is bounded

=1 "1
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and ||¢fl < [[(z})llus,..,(x)- Conversely, suppose ¢ € [Usirong(X)]" is given. Define a
i—th

sequence (z}) by z!(z) = ¢((0,0,---,0, z ,0,---)). Then z} € X*, with [|z}|| < ||&||.
For X € U it follows that [(S1, %5, 3552, des)| < S50 A
Let € > 0. Let z; € X, ||z;]| = 1 and ||zf|| < (1 + €)z}(z:). Then

Z llz3 1Al < (1+¢€) fo(xi)lkil

= (1+6(xl(xl)l/\1|+x2(x2)"\2|+ S+ 2 (@) A + 0+ 0+ )

)
= (1+¢€)(é(z1,0,.)| M| + ¢(0,2,0,..)| A2 + .. + ¢(0, .., 2, 0, . )| Ar| + 0+ ..)
= (1+€)[ (l)‘llxla‘/\ﬂx?)"' 7|/\n|$m0"")]

)

_<._ (1+6 |l¢”“(|/\ |$la|/\2|x2a )lAnl"L‘n)O,"')”Strong

= Z | Aall|zilles
i=1 U

(1+ é)||ollliM|v, by Proposition 2.11.

IA

Since this inequality holds for each € > 0, it follows that

(S laslie, S el < lgliMlo, YneN
1=1 =1

and therefore Y oo ||zf|lef € U* with |32, l|z]lle}

U= S “¢I|a 1e

1)

U.:trong(X') S ’|¢“.

Proposition 2.19 My.(X*) ““%"* MZ*"(X) as Banach spaces.

Proof Let (a;) € My-(X*) and (z;) € Ustrong(X).

Let ( ) € U*eak(X*)' Then ( a;T ) € U;trong( *) = [Ustron.g(X)]*-
Hence

> Kesmoz)) = > [z, 04)]

=1 =1

IA

I|(:) Hstrong”(aixn ”strong

< (@) lstrongll (@) a0y (27) [lweak < 00
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ie (euz;) € U(X) and also |[(a)l|pgetremsxy < () l|ary- (x+).
Conversely, let (c;) € M (X) and (z}) € Ulear(X*).
(;z}) € Ulkyrona(X*) : Define ¢ : Usrong(X) — K :

strong

¢((z:)) = Z(% ;L)

o0
= Z(aixi,mn-
i=1

This converges, because (o;z;) € U(X).

It follows that

lo((z:))| = lZ(aixi,x;‘)l
< ll(aixi)“U(X)H(x:)Hweak
S ”(ai)”ML‘j"”"g(x)“(xi)“strong”(xZ)”weak < 00.

This shows that
¢ € [UStTOﬂg(X)]* = U.:trong(X*)v
with ||¢]| < ”(ai)”Mlsjtv‘Ong(X)“(.’L‘:)”weak_ Looking at the identification in Theorem 2.18, we

see that (0;z}) € Ulypono(X ™) such that |||l = ||(iz})l|strong. It follows that

strong

(ai) c M(s]t.rong(X*) and H(a,-)HMU_(X.) S ||(ai)]|Mls}:rong(X).

Theorem 2.20 Let («;) be a bounded scalar sequence.
Then (0;) € My(X*) if and only if Tz : U = X = (8;) = Y_ioy BiciT; 4s nuclear for all
(X).

sequences (z;) € Usyong

Proof We know (o;) € My(X*)

2 (o) € MM (X)

EL (anzn) € UHX), ¥ (Tn) € Ulyona(X)

strong

< (Tszen) € UNX), V (z;) € U,

strong

(X)

2 Taz:U — X isnuclear, V (2;) € Ulyong(X).
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2.2 Applications where U is replaced by classical Ba-
nach spaces

2.2.1 The case where U = LP(0,1) for 1 < p < o0

For 1 < p < o0, let LP(0,1) denote the Banach space of equivalence classes of Lebesgue

measurable functions on [0, 1], whose p-th power is Lebesgue integrable. The norm on

LP(0,1) is defined by

1l = (/01 |F@P dt) ” , ferL”0,1).

Recall (cf. Section 1.5) that the sequence of functions {x;()}{° defined by x:(t) =1 for
0<t<1land, fork=0,1,2,---,5=1,2,---,2F
Lt te (%R, G
X2’=+j(t) =

i ve(dh A
0 otherwise

is called the Haar system. It is well known to be a monotone, unconditional (but
obviously not normalized) basis of L?(0,1), 1 < p < co. From ([37], p. 268) it follows
that the Haar basis of LP(0,1), p > 1 is a shrinking basis.

Following [13], we renorm LP(0,1) by

&9}
> biaix:
=1

17157 = sup { 0 =%1,i=1,2,---p, f= axi €LP(0,1).
14 1=1

Then

” ’ ”p < ” ) “;ew < Kp” ) ”p,

whereby K, is the unconditional constant of the basis {x;}.
If1l < p < g wehave |32 Gaixill, < 1122 Giaixillg- Thus [[f2er < || fllpev if
f=2Y21ax: € L90,1).

With this new norm, LP(0, 1) is of course also a Banach space. Furthermore, the uncon-

ditional constant of {);}$° with respect to this new norm is 1. Now let

Xi

€ =
T balipe”

i=1,2,-
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Then {e;}$° is a normalized, unconditional basis of (L?(0, 1), || - {|7**) of which the uncon-
ditional constant is 1. The basis constant being less than or equal to the unconditional

constant and L?(0,1) being reflexive, {e;}$° is monotone and boundedly complete.

Now let
r___2<z__, i=1,2,--.
lIxallpe®
Then {e}}{° is a normalized, unconditional basis of (L*'(0,1), || - [|77) of which the un-

conditional constant is 1. Moreover, {e;}$° and {e}}$° are orthonormal, i.e.

. e
e:-‘(ej)=/0 6f(t)ej(t)dt:{(1) ii 2;?

Henceforth, the norm on L7(0,1) will always be the new norm ||.||7*.

Proposition 2.21 (cf. [32], p. 18-19) Letu = .o, ei(u)e; € LP(0,1) and 1 < p < oo.
Then

() | ieo € @eilpe® < Nullze, for each subset o of N
(1) || 3o, Oie} (u)es|pe < |ull3*, for each choice of signs © = (©;).
(1) 1| 32320 Mg (weillp™ < 2/ (Aa)lloolullp™™, for each A = () € £,

We will show that the space (I*'(0,1), ] - I5°) is topologically isomorphic to the space
(L?(0,1),]| - ||ze*)*, where the isomorphism is defined by ¢ — >°72) ¢(e;)e}. In order to

prove this result, we need the following lemma:

Lemma 2.22 Let ¢ € (L7(0, 1), [|.I[F**)" then ||gl™” < || 3232, dled)ef 1157 < Kpllgl™e,

where [|(|" = ||l (Lr(0,1),]1/pew)".

Proof

[8]"* = sup |o(N)]

[IAllpew <1
o0
= sup | Aid(e;)]
IXlgew <1 ;
o

= sup Z A€, i o(ej)e

|A||"°w<1 py
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< sup || Z)‘ ez“p I Z¢ e] €; ”p

|A”new<1 =1
: e I Z)‘ eill Z¢ ej)e;ln ™
new<1 z 1

< Z ¢(ej)es |l
j=1

and

nZaa Sl = s uzem o)}l
= sup I(ZGJ¢ (ej)e J,Zohe2 for some HZaiein =1

=1
= sup |ZCJ e;) |

e;==+1

= sup [¢( ZGJCJaJ

e;j==1

IA

[|fl™* sup || Zﬁjejajll;'ew
e;==+1 -
J=1
o
= ol auesliper
Jj=1

< Kl S agesll
= Kl

O

Corollary 2.23 From Lemma 2.22 we have ||¢[|"" < || 3232, d(ei)ef [ < Kpll4]™,

q

whereby ||¢]" = |6l zro1,. |[zew)+. Hereby we obtain the topological isomorphism
(270, 1), [1-l[p¥]" = (L7 (0, 1), ||.I3*)
defined by ¢ — > o, d(e;)er. This is generally not an isometry.

Note that [Z7(0,1), ||.||rev]* wommetric (12'(0, 1), ||.]["*). Let X be a Banach space, and for
1 < p < o0, let p’ denote its conjugate number, i.e. 1/p+ 1/p' = 1. In [13] the following

vector sequence spaces are introduced:
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Dtrong(X) = {f= () € X" 3" lail] e converges in L(0, 1)},

i=1
which is a Banach space with respect to the norm

o0
> llailles
i=1

new

“-'Z'”strong = )

p

LP

weak

oo
(X) = {a‘; = (z;); € X" Zz*(:vi)ei converges in LP(0,1) for all z* € X*} :

=1
which is a Banach space with respect to the norm

o0
Z z*(x;)e;
i=1

new

”waeak = sup :z¥ € Bxx };

p

LX) = {:T: = (z;); € XN Z |z} (@) < o0, VY (z})i € ijeak(X*)} ,

which is a Banach space with respect to the norm

00
& cox) = sup {Z 25 (2| (2} € By;;m,m} .
=1

We now summarize some properties about the vector sequence spaces L?(0, 1) that follow

directly from the general case in Section 2.1.
Theorem 2.24 For % + z% =1

[Lgtrong (X)]* = Lp,

strong

(X7).

To obtain the isomorphism, we identify a sequence () € Li’;mng(X *) with a linear func-

tional ¢ € [L8,,ong(X)]*, defined by &((z:)) = Y72, 2 (2:). In this case

6l < @) Phrong < Kopll8ll-

Theorem 2.25 Let X be a Banach space and let 1 < p < oo, %+ 1% = 1. Then
LP{X) ssormetric T(LP'(0, 1), X). The isometry is given by the mapping

(z;) —u: LP(0,1) = X : ue; = I;
for all 3 € N.
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] hi ’
Corollary 2.26 Let 1 < p < oo and L + 5, = 1. Then LP(X) OMEPNE N (L' (0,1), X),

where the isomorphism is given by (z;) = w: LP(0,1) = X : ue} = z; for all j € N.

Corollary 2.27 Let1 < p < oo and % +1% = 1. Then (x;) € LP(X), if and only if there
o0

are (X;) € &, {v;}$° C Brs(oy) and {y;}{° C Bx such that z; = Y Ajef(v;)y; for all
=1

ieN

From our earlier discussion in connection with the projective tensor product, it is clear

that N(L* (0,1), X) isomarphie 1p (0,1) ® X (for all Banach spaces X), when p satisfies

new

the conditions in Corollary 2.26. We thus conclude that

Corollary 2.28 Let 1 <p < 00. Then [P(X) isomarphic rr,.(0,1) ®X.

2.2.2 The case where U =/ for 1 < p <

The unit vector basis is boundedly complete in all the ¢? spaces. There are normalized
unconditional bases in /*, 1 < p < oo, p # 2, which are not equivalent to the unit
vector basis. The unit vector basis is a monotone, normalized unconditional basis in #”.
In this case, if we put U = 7, then U* = ¢’ isometrically. Therefore, we can now list the
following isometric results directly from the corresponding results in the general setting

in Section 2.1:

Corollary 2.29 Let 1 < p < 00 and ; + % = 1. Then #(X) isormetie N (', X)), where

the isometry is given by (z;) — u: ' — X :ue; = z; for all j € N.

Corollary 2.30 Let 1 < p < oo and ; + 5 = 1. Then (z;) € £(X), if and only if there

are (A;) € €', (vij); € By for alli €N, and (y;) C Bx such that z; = 5, AjYisy; for all
j=1

1€N

From our earlier discussion in connection with the projective tensor product it is clear
, A

that N(£”,X) = » ® X (for all Banach spaces X), when p satisfies the conditions in

Corollary 2.29. We thus conclude that

Corollary 2.31 Let 1 < p < oo. Then (P(X) *T%Me v ® X.
Also 01(X) = 0 (X) = 0! & X.
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Definition 2.32 (cf. [5]) Let 1 < p < 0o. A scalar sequence (o) is called a p-summing
multiplier for o Banach space X, if > oo | loaZa|lP < 0o for all sequences (zn) € &(X).
Put
o0
mp(X) = {(0n) €w: 3 lonzallP < 00 ,¥ (2) € £,(X)}.

n=1

Proposition 2.33 m,(X**) = m,(X).

Definition 2.34 Let 1 < p < oo. A scalar sequence (an,) is a strongly p-summing

multiplier, if (anzn) € (X)), V (z,) € P(X). Put

NE

marrd(X) = {(an) €Ew: |23 (anza)] < 00, ¥ (z7) € £4,(X7), V (zn) € ZP(X)} '

[}

n

On the vector space m;"*"9(X) we define a norm

(@)l pstrona (i) = sup [[(cizi)lly = sup |Z$;(anxn)|-
[z )lep (x) <1 €g((z7))<1 n=1
[Hzaller(x)<1

There is a natural connection between m;7°"9(X) and my (X*), which is given by

Proposition 2.35 (a;) € my (X*) <= (a;) € mi"™(X) with ; + 5 = 1.
Theorem 2.36 Let (a;) be a bounded scalar sequence and 1 < p < o0, ;1,+;}7 = 1. Then

(i) € mu(X*) if and only if Taz : = X = (Bi) = Yo; Bivimi is nuclear for all

sequences (z;) € &7 (X).

Corollary 2.37 Let (o) € £*° and1 < p < o0, +;}1—, = 1. The following are equivalent:

1
P

(o) (an) € myp(X)

(b) 3. e ® apzi € NP, X*), V¥ (z1) € P (X*).
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Chapter 3

General operator spaces

Let U and W be reflexive Banach spaces with normalized unconditional bases (e;) and

(f;) respectively and let X be a Banach space.

For X a compact space, M(X) denotes the space of all K regular Borel measures on
X. Let E(X) and F(Y) be spaces of sequences with values in X and Y respectively.
Consider T' € L(X,Y). The operator T induces an operator f’ from E(X) into F(Y)
defined by T((z:)) = (Tz:).

3.1 Strongly (U, W)-summing operators and strongly
(U, W)-nuclear operators

Definition 3.1 An operator T is absolutely (U, W)-summing (or T € Iy (X,Y))

if there exists a constant ¢ > 0 such that for all finite sets {x1,--- ,z,}, the inequality

(T2 lvgrong(v) < €M@ Wypemi(x) (3.1)

is satisfied. The smallest number ¢ such that the above inequality holds, is called the

absolutely (U, W)-summing norm, myw(T) of T.

Remark 3.2 Only the zero operator can be absolutely (U, W)-summing if U C W :
Let 0# T € lyw(X,Y), w=Y 2 ofi € W and put 7, = apz where z € X, Tz # 0.
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Since

[(Tzi)llstrong = [l T)lly

1 lolITzllexll

T2 loelexll
k=1

and

(@) llweak = sup ||Z$ (zk) fillw

fEeXt

= sup Hzakiﬂ ) fellw

z*€Bx=
= Il Zakfk“W,
k=1

it follows from (8.1) that
T2l lexlexlly < e llzlll D arfullw.
k=1 k=1

Thus 12, axex € U. The mapping Y oo, aifi € W = 3.2, aye; € U defines an isomor-

phism into, i.e. W 1is isomorphic to U.

A discussion of two related classes of operators follows.

(1) An operator T : X — Y is strongly (U,W)-summing (ie. T € Dyw(X,Y)) if

there exists a ¢ > 0 such that for all finite sets {z;,z3, - ,z,} C X we have

[(Tz)(< 2)lluyy < € 1(@)(S n)lIwaerong(x) OF

equivalently, T € Dyw(X,Y) &

31 ¢ > 0 such that for any zy, - ,z, € X, y1, -+ ,y5 € Y*,

>l T < e llzillf: > ylye
i=1 i=1 w i=1

sup
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(2) T is strongly (U,W)-nuclear (or T € SNyw(X,Y)) if there exists a ¢ > 0 such

that for all finite sets {1, %2, -+ ,%n} C X we have
1Tz (< Moy < e 1@ (E ) I (33)

Equivalently, T € SNyw(X,Y) &

3 ¢ > 0 such that for any z,, -+ ,2, € X, 4}, -, yn € Y™,

n
> yier
k=1

n

sup
y€By

> i Tzi)l < ¢ sup
i=1

Z“Gme

z*(2:) fi
i=1 w U
We shall denote the strongly (U, W)-summing norm by dy,w(.) and the strongly (U, W)-
nuclear norm by snyw(.). In this case dyw(T) = inf{c > 0 : (3.2) holds } and

snyw(T) = inf{c >0 : (3.3) holds }.

Proposition 3.3 Let X and Y be normed linear spaces and assume that T : X =Y 1s

a bounded linear operator. Then

A
(i) T € Dyw(X,Y) if and only if T : Wyrong(X) = U(Y) is bounded with
A
dyw(T) = [IT|.

A
(ii) T € SNyw(X,Y) if and only if T : Wyear(X) = U(Y') is bounded with
A
snuw(T) = [IT].

Proof = We prove (i): Suppose T' € Dyw(X,Y). If (;) € Witrong(X), then for each
fixed n and for each (y;) € By:_ (v+), it follows that

D 15 (T2l < duw (D) Watrans 0| 8 0z, 000)-

i=1
Note that the above inequality holds because of our assumption about the bases on W and

U*. Letting n — oo, we obtain 352, [57(T5.)] < duyaw (D)) @)lIarens 0 69,001
Therefore, the series Y oo y7(Tz;) converges and (T'z;) € U(Y). Furthermore, because
f“((:c,)) = (Tz;), it follows that f“ is continuous with ||%H < dyw(T).

Conversely, suppose ’il\" : Witrong(X) — U(Y) is bounded and T ¢ Dy w(X,Y). Then for

every n € N, there is a finite set {Z1n, Zon, * , Zm.n} C X such that (Zin); € Bw,yon,(x)
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and ||(T%:n)illoyy = 2™ Let [|(45 ) [lwear < 1 such that Yo (T Tin, yin)| = 27 Consider

the sequences
-1 -1 -1 -2 -2 -2
(z) = (#1127 221270+ B 127, 212277, 20227 T2, )

and
* * — * — * - * 0—2 % 0—2 * -2
(yi) = (y1,2 1,9212 e s Yma12 lay122 s Y222 Tt Umga? o)

Then

”(zi) ”st'rong =

mn
nZ |Z:nll fi
=1

IN

o0

> 2"

n=1 =
o0

< Y2l
n=1

Similary, (y;) € By:__, (v+). However,

o0 o0 1 Mn
Tzl HU(Y Z Z szy:;ﬂ = Z 2_' Z Txl n)yzn - OO’
n=1 n=1 =1

A
contradicting the fact that T maps W one(X) (continuously) into U(Y'). Since

Tz oy < NI Waong

A

we have ||(T(z:)llueyy < ITII(2:) | Waerone(x)- By definition of the norm on Dyw(X,Y),
A

it follows that ”TH > dU,W (T) d

Proposition 3.4 (i) The spaces SNyw(X,Y) and Dyw(X,Y) are normed linear

spaces.

(it) If T € SNyw(X,Y) (or T € Dyw(X,Y)), then T is continuous and
ITN| < snyw(T) (or |T|| < dyw(T)).

(ZZZ) IfT € SNyyw(X, Y) (OT‘T € DU,W(X, Y)) and S € L(Y, Z), then ST € SNU,W(X, Z)
(or ST € Dyw (X, Z)) and snyw(ST) < ||S||snyw(T) (or dyw (ST) < ||S||dyw (T)).
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(iv) IfT € L(X,Y) and S € SNuw(Y, Z) (or S € Dyw(Y, Z)), then ST € SNyw(X, Z)
(07‘ ST € DUyw(X, Z)) and an,W(ST) < S’I’LU,W(S)”T“ (07‘ dU,W(ST) < dU,W(S)“TH)

(v) If Y is complete, then Dyw(X,Y) and SNuw(X,Y) are complete.

Proof (i) and (¢1) follow directly from the definitions.

(i7) We prove this property for the space Dyw(X,Y). The proof for SNyw(X,Y) is
similar. Let T € Dyw(X,Y) and S € L(Y,Z). Then, if z;,--+ ,z, is a finite set in X,
we have

1(5Tz)llvzy = sup D 1% (STwi)]

(2))€Byx . (z*) i=1

n
= sup [S*2; (T'z;)]
(s1)€By: . (z*) ; '
n

= IS sup Y

(Z:)EBU;;eak(z‘) i=1

< ISI sup Dy (Tw)l

W)€Byy W (v*) i1

= ”S||H(TIi)HU(Y)
”S”dU,W(T)”(zi)“strong.

S*2} -
WS*—H(T i)

IN

From this we conclude that ST € Dyw(X, Z) and dyw (ST) < ||S||dyw (T).

(iv) The proof is similar to part (441).

(v) We show Dy,w (X, Y') is complete. Let (T,) be a Cauchy sequence in Dy w(X,Y). By
part (ii), the sequence (T7,) is a Cauchy sequence in L(X,Y); since L(X,Y) is complete,
(T,) converges to an operator T in the norm topology on L(X,Y). We show that (T)
converges to T in Dy w (X, Y) :

Fix ¢ > 0. Since (T;) is a Cauchy sequence in Dyw(X,Y), there is a positive integer
N, such that dyw (T, — T,;) < €, whenever n, m > N. Therefore, for each finite set

Ty, , ok in X and for each (y;) € By, (v+), it follows that:

> 1 (Ta(2) = (o) < € o)ty
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whenever m, n > N. Letting m — oo, we have

k
Z |97 (Ta(zi) = T(2:))| < €ll(i) [ Watrong (),

which implies that T, — T € Dyw(X,Y) and dyw(T — T,) < ¢, ¥ n > N. Thus,
T=T-Ty+Tn € Dyw(X,Y) and dyw(T — T,,) < ¢, ¥V n > N. The proof for
SNU,W(X, Y) is similar. O

Let us consider the relationship between the classes IIyw (X,Y), SNyw(X,Y) and
Dyw(X,Y). For U = W let us denote Iy w(X,Y), SNyw(X,Y) and Dyw(X,Y) by
Oy(X,Y), SNy(X,Y) and Dy(X,Y).

Proposition 3.5 (1) SNyw(X,Y) C Dyw(X,Y) and duyw(-) < snyw(-).
(ll) SNU,W(X, Y) g HU’W(X, Y) and Wu)w(') _<_ an,W(-).

(iii) If T € llyw(X,Y) and S € Dy(Y, Z), then ST € SNyw(X, Z) and
an,W(ST) S Wuvw(T)dU(S).

Proof

A
(i) If T belongs to SNyw(X,Y), then the mapping T : Wear(X) — U(Y) is contin-
A A
uous with ||T|| = snyw(T). Since I : Werong(X) — Wiear(X) is continuous with
A
]| <1, it follows that

P AN
TT := TT : Wyprony(X) = U(Y)

1s continuous. Thus we have T € Dy w(X,Y) and

duw(T) = |TI|
< T
< |7
= snyw(T).

(i) Part (iz) follows in a similar way.
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(iii) Let 7 € Tyw(X,Y) and S € Dy(Y, Z). It follows that T : Wear(X) = Ustrong(¥)
is continuous with myw (T) = H%H and g’ : Ustrong(Y) — U(Z) is continuous with
7y (S) = |}§']| Therefore ST := g‘f/l\“ : Waear (X) — U(Z) is continuous with H./S\"’EI\’H <
ST, It follows that ST belongs to SNyw(X, Z) and

an,W(ST) S dU (S) Tuw (T) .

O

Next we give an exposition of the relationship between Dy w(X,Y) and Ilyw(X,Y).

Proposition 3.6 (i) LetT € L(X,Y). ThenT € lyw(X,Y) if and only if the adjoint
operator satisfies T* € Dy~ y-(Y*, X*). In this case Dy y+(T*) = myw (T).

(i1) Similarly, T € Dyw(X,Y) of and only if T* € Ilw.py.(Y*, X*). In this case
dU,W(T) =Tw=U* (T*)

Proof (i) Let T € Ilyw(X,Y); we need to show that T* € Dy. y-(Y*, X*). For any

finite set yy,---,y; in Y* and for (z;) € Wyear(X) we have:
1D w(Ty) = 1) Tx(y))l
i=1 i=1
> ITzlllys
=1

= O ITzillen, S lly;lles)
i=1 j=1

< WU,W(T)“(Ii)”weak”(y;)”strong~

IN

Taking the supremum over the unit ball in W, (X), we obtain

Ty lw=cx+y < mow (D) (Y5 lstron.

Therefore T € Dw- y- (Y™, X*) and dy y- (T*) < 7uyw/(T).

Conversely, assume T* € Dyw. y-(Y*, X*). Let zy,--- ,z, be a finite set in X and let
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( ) € U:trong(y*)' Then

Izyf(Tzi)l = lZT*y, ;)]
. T2 - 5 et

< dwe o (T strong || (i) || weak.

(A

If we take the supremum over the unit ball in U}, ,n,(Y™), we obtain

”(sz)Hstrong S dW RO ( *)H(-ri)”weak.

Therefore T is absolutely (U, W)-summing and myw (T) < dw- y-(T").

Part (77) has a similar proof. O

Proposition 3.7 An operator T € L(X,Y) is in SNyw(X,Y) if and only if T* €
SNWt,Ut (Y*,X*) and STLU,W(T) = Snw= y- (T*)

A
Proof Choose T € SNyw(X,Y); then the operator T : Wyea(X) — U(Y) is bounded
A
with snyw(T) = ||T||. Since Wiearo(X) is a closed subspace of Wi,eu(X), it follows that
A A
le cak0 (X) = To : Wweak,O(X) — U(Y) is bounded With ||To” S an,W(T).

Consequently, the adjoint operator
A * * *
(To) ; weak(y ) - W <X >
A A A
is bounded with |[(T,)*|| < snyw(T). We show that (T,)* = T*. Consider

(T (W) @) = (W), Tol(:)))

1
= (T, (z:)) ¥V (2:) € Waearo(X) and (y]) € Upoo(Y™).
Convergence of Y .2, y*(T'z;) follows from T € SNy w (X,Y). Thus
(T"Y;) € Waear,o(X)™ = W*(X") for all (y}) € Ui (Y*)-
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A A
This shows that (T,)* = T* and T* € SNw- y-(Y*, X*).
It follows that
A A
snw-p-(T*) = ||T*|| = [(To)*|| < snuw(T).

Conversely, let T* € SNy y-(Y*, X*). We have to show T € SNyw (X,Y).

Let z;, -,z be a finite set in X and let (y;) € By:_,(v+).- Then

S T = 32T 2] < s (P65 el ) e
i=1 i=1
Taking the supremum over all sequences (y;) € By:_ . (y+), we have
H(Tz)lluxy < snw v+ (T (@) llweak;
therefore T € SNyw(X,Y) and snyw(T) < snw-y-(T*). O

3.1.1 Applications where U and W are replaced by classical
Banach spaces

In this section let U = £ and W = ¢9 for ¢ < p. Then
Ustrong(X), Uweak(X)a U(X), Wstrong(X)a Wweak(X); Wweak,o(X) and W<X>
are the spaces £7(X), £ (X), (X)), £9(X),0(X), £4(X) and £9(X).
Let 1 < g < p £ c0. A bounded linear operator T' : X — Y is called a strongly

(p, @)-summing operator (i.e. T € D, ,(X,Y)) if there exists a constant ¢ > 0, such

that for all finite sets {z), -+ ,z,} C X we have

[Tzl < ¢ (Z umw)

or equivalently, T' € D, ,(X,Y) <= 3 ¢ > 0 such that for any choice of

q

Ty, ,Tn €X, Y, ,Yr € Y™ we have

>l Tl < e [[(@)(< n)lacoer (7)< n)).

i=1
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The infimum d, ,(7') of all numbers ¢ > 0 such that the above inequality holds, is called
the strongly (p, g)-summing norm of T'.

Let 1 < ¢ < p < 0o. A bounded linear operator T : X — Y is called a strongly (p, q)-
nuclear operator, i.e. T € SN, ,(X,Y), if there exists a constant ¢ > 0, such that for

all finite sets {z,- - ,z,} C X we have

|

[Tz )(S Wiy S sup (D 1¢a™, @i)%)

T*EBx« i—1
or equivalently, T € SN, ,(X,Y) <= 3 ¢ > 0 such that for any z,,--- ,z, € X,
Yl ,yn € Y* we have

>yt Tzl < ¢ eg((@:)(< 1) e (¥)(< n))-

=1

The infimum sn, 4(T') of all numbers ¢ > 0 such that the above inequality holds, is called

the strongly (p, ¢)-nuclear norm of T.

Note that D, 4(X,Y) = {0} = SN, ,(X,Y) for p < q.
From [26] it follows that a continuous linear operator u : X — Y is called a Littlewood-
Orlicz operator if u takes sequences in [} (X) into sequences in [2(Y). Hereby, SN, ;(X,Y)

is the space of Littlewood-Orlicz operators.

The classes of strongly p-summing and strongly p-nuclear operators were introduced by
Cohen (cf. [16]) where the strongly p-nuclear operators were called p-nuclear operators.

From this work of Cohen it follows that
Hoo(X,Y) = L(X,Y) = D1(X,Y), SNi(X,Y) =I1;(X,Y)

and

SNeo(X,Y) = Doo(X,Y).
From the general case we get the following results.
Proposition 3.8 Let X, Y and Z be normed linear spaces and 1 < g < p < 0.
(i) The spaces (SN, o(X,Y), snpq(+)) and (Dpo(X,Y), dp 4(-)) are normed linear spaces.
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(ii) If T € SNy o(X,Y) (respectively, T € Dpqo(X,Y)), then T is continuous and
T\l < sy o(T) (respectively, ||T|| < dpo(T)).

(i) If T € SN, o(X,Y) (respectively, T € Dpo(X,Y)) and S € L(Y, Z), then
ST € SN, (X, Z) (respectively, ST € Dy (X, Z))
and snp o(ST) < ||Sllsnp,o(T) (respectively, dpo(ST) < ||S||dpo(T))-
(iv) If T € L(X,Y) and S € SN, (Y, Z) (respectively, S € D,,Y,Z)), then
ST € SN, 4(X, Z) (respectively, ST € D, 4(X, Z))
and sn, o(ST) < snyo(S)||T|| (respectively, dy o(ST) < dyp o (S)IT))-
(v) If Y is complete, then D, (X,Y) and SN, ((X,Y) are complete.
Proposition 3.9 Let 1 < g <p < oo. Then
(1) SN, o(X,Y) C Dpo(X,Y) and dpg(-) < snp4()-
(2) SN, o(X,Y) CIL,(X,Y) and mpqe(-) < snipq(-).
(3) If T € I, (X, Y) and S € D, (Y, Z), then ST € SN, ,(X, Z) and
N o(ST) < dp(S)mpo(T).
In the early twenties of the Twentieth Century W. Orlicz proved that the spaces L? (for
p < 2) possess a particular property, to which his name is now attached.

Definition 3.10 We say that a space X has the Orlicz property if every uncondition-
ally summable sequence (z,) in X satisfies 3 2 ||za||* < oo. Equivalently, X has the
Orlicz property if there is a constant ¢ such that, for any finite sequence (x;) in X,

n n
1
(3 llail? ) < e sup |3 el
i=1 i=1

€=

Note that the spaces for which the identity operator is (2,1)-summing, are said to have

the Orlicz property.
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Remark 3.11 If X has the Orlicz property, then Dy(X,Y) C SNp1(X,Y). In particular,
Dy(LP (), Y) € SNpp(LP(p),Y) for 1< p< 2.

Example 3.12 The first two ezamples follow from the work of Cohen (cf. [16], p. 193).

Let 1 < p < co. The imbeddings in (a), (b) and (c) are all continuous.
(a) Ty (LP(p),Y) C Dp(LP(1),Y) and if X is a compact Hausdorff space then

HP'(C(X)’ Y) C DP(C(X)’ Y)

(b) Dp(X, LP (1)) C Thy (X, LP ().
(c) Let 1 < p < oo and let H be a Hilbert space, then
II,(H,Y) C Dy(H,Y)
(cf. [12]).

Remark 3.13 Recall that an operator T is nuclear (i.e. T € N(X,Y)) if it can be

represented in the form Tz =Y 2, z}(z)y;, where z; € X*, y; € Y and

3l < oo.

From the work of Cohen (cf. [16], p. 190) it follows that every nuclear operator is strongly
p-nuclear and if X and Y are Hilbert spaces, an operator T is nuclear if and only if T is

strongly p-nuclear.

From the general case follows:

Theorem 3.14 Let 1 < g<p<ocandletT: X —Y be a bounded linear operator.
(i) T € I, o(X,Y) if and only if T* € Dy (Y*, X*). In this case dy ,(T*) = 7, ,(T).

(1)) T € Dpo(X,Y) if and only if T* € Iy (Y™, X*). In this case my »(T*) = d, ,(T).
In particular
T e I(X,Y) <= T* € Doo(Y*, X*) or T € Doo(X,Y) &= T* € L (Y*, X*).
Ifg=1thenT € I1,1(X,Y) iff T* € Doo p (Y*, X*).
Ifp=oco then T € looy(X,Y) iff T* € Dy (Y, X*).
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The following theorem gives an integral condition which is sufficient to guarantee that

an operator is strongly (p, ¢)-summing.

Theorem 3.15 Let1 < ¢ <p < oo and T € L(X,Y). Suppose there exists a positive

Radon measure y on By« and a ¢ > 0 such that

ITalle = sup{W T2 : v €Y, Iy Ollow(oyee sy S 1

< cz|] YzelX.
Then T € D, o(X,Y) and dpo(T) < c.

Proof  Suppose ||Tz]l, < cllz||, V z € X. We show that T* € Iy » (Y™, X*).
It follows that

yra el W@l dw?,

BY"‘

i.e. taking the supremum over z € Bx we obtain
* % *x/  *\|p 2 * *
vl <e( e dob Ve ey
Y %

By the Pietsch Domination Theorem (cf. 2.12 in [19]) the operator T* is p’-summing
(ie. (p/,p')-summing). Since p’ < ¢, we have T* € Iy y(Y*, X*) (cf. 10.4 in [19]). Also
g p(T*) < 7 (T*) < c. By Theorem 3.14 we have T € D, o(X,Y) and dp, o(T) < c. [

Examples 3.16 (a) For 1 <p <2, idy € Dy 2(f7,¢) and

forany1<r < g, g2 2 with ; — 1 > 3,

idg € Dy g (67, £7).
(b) Let K be a compact Hausdorff space and 1 < p < g < oo.
Then Doy (Y*, M(K)) = Dy p(Y*, M(K)).

(c) Let Y* be an Lo r-space and let X* be an Ly y-space, with 1 < p < 2. Then
T* € Myao(Y™, X*) ie. T € Dyp(X,Y).
Proof
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(a) Refer to ([19], p. 199) where it is mentioned that a rephrasing of Orlicz’s Theorem
shows that idep € Iy (€7, ) for 1 <p <2 and ide € I1, (€7, 07) for any

1
1<r<ygq, ¢22, wzth;— >

2.

| =

Then use Theorem 3.14.
(b) This follows form ([19], Theorem 10.9), where it is proved that
g1 (C(K),Y) =T1p(C(K),Y)
for 1 < p < q < oo and from Theorem 3.14.
(¢) This follows from a result (Theorem 10.6) in ([19], p. 200) and Theorem 3.14. U

We know that every absolutely p-summing operator T is weakly compact and completely
continuous (cf. [34], p. 343 - 345). However it follows that for any p > 1 there are
(p,1)-summing operators, which are not completely continuous (cf. {19], p. 209) and S.
Kwapien and A. Pelczynski (cf. [31]) have shown that if 1 < ¢ < p, then the sum operator
Tl =2 (zk) = (41 Te)n is (p, ¢)-summing but not weakly compact. Further-
more we know that if T € D,(X,Y), then T is weakly compact and the conjugate T*
is completely continuous (cf. [16]), but from Theorem 3.14 and the above it follows that
the strongly (p, ¢)-summing operators are not necessarily weakly compact or completely

continuous.

Recall that if T € N(X,Y) then T* € N(Y*, X*) (cf. [27], p. 484 and p. 164). If ¥

is reflexive or X* satisfies the approximation property, then
T e N(Y*,X")ifand only if T € N(X,Y).

In the case of strongly (p, ¢)-nuclear operators we have such a Schauder-theorem type
result, without restrictions on X and Y. This was seen in Proposition 3.7 in the general

case, which in this setting can be phrased as follows.

Proposition 3.17 Let 1l <g<p< oo andletT: X — Y be a bounded linear operator.
Then T € SNy o(X,Y) iff T* € SNy »(Y*, X*) and sny o(T) = sng » (T*).
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Theorem 3.18 Let g1 < g2, p1 < Ppo.

1. Dpl,th(X’Y) - Dpz,th(X» Y) and dp%‘ll(.) S dm,q?(')'
2. SNy 0o (X, Y) C SNy, o, (X, Y) and snp, g, (1) < 87, .(7)-

Proof = We prove (1). The proof of (2) is similar. Choose u € Dj, ,(X,Y’); then for

Zi,,Z, in X and yy,---,yn in Y* we have
1> uzny)l <zl e (@)
i=1
| (uze)ll oy €p, (7))

Ay oo (W[ (@) w2 €95, ((47))

< dpy g (W) e (x) €y ((47))-

IN

IN

Consequently, u € D,, o, (X,Y) and d,, 4, (u) < dp, 4,(u). O

Note that if p; < py, then D,,(X,Y) C D,,(X,Y), because:

T € Dpy(X,Y) & T € M, (Y", X*) = T € I (Y*, X")
by the Inclusion Theorem (cf. [19], p. 39). Again by Theorem 3.14, we have

T € D, (X,Y).

3.2 Positive operators

Throughout this section X will denote a Banach lattice and ¥ a Banach space. Given

1 < p < oo, we use the following notation:

B} ={z€ Bx:z>0}

& (@) = sup (O _(z", [z:)?)?
z‘EB;. i=1
0,(X)+ = {(z2) € X : 5 ((zn)) < 00}
Lemma 3.19 Let X be a Banach lattice and 1,22, - ,z, > 0. Then

& ((z:)(< n)) = () (< n)).
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Proof  Clearly, € ((zi)i<n) < €p((z:)i<n), because

n

6;(("51')1'571) = §sup (ZI(I‘K’xl)I )p < sup ZI(x Z; ‘p % = ((xi)ign)‘

IE‘EB;‘ =1 EBX 1=1

Now, conversely, let * € Bx. From
(l*] — =*,2) = ((z")* + (2)” = ()" + (z") 7, 2) = 2((z") ", =) 2 0,

for all z > 0, it is clear that z* < |z*|. Since z; > 0, it follows that

n

(}jm z:)P)3 < lexlxz P = (el < sup (S o)

i=1 y*€BY. =1

Therefore €,((z;)(< n)) < ¢ ((z:)(< n)). O

Blasco (cf. [7]) introduced the positive (p, ¢)~summing operators as follows.

Definition 3.20 (c¢f. [7], p. 14) Let 1 < ¢ < p < o0.
An operator T : X — Y is said to be positive (p,q)-summing (denoted by T €
A o(X,Y) ) if there exists a constant ¢ > 0 such that for every finite set 1, Zg,- - ,Zp > 0

in X we have
O ITzll)? < c ef ((22)-
=1
For g < p = o0,

2 Il < e ()

In a similar way we define the following new class of operators.

Definition 3.21 Let 1 < ¢ < p < oco. An operator T is positive strongly (p,q)-
nuclear (i.e. T € SN} (X,Y)) if there exists a ¢ > 0 such that for all finite sets

{z1,+ ,zn} C X of positive elements, we have

I(Tz:) (< )iy < ef ((2:)(< 1)) *2 ¢ eg((2:)(< ).

Equivalently, T € SN (X,Y) <=
3 ¢ > 0 such that for any 0 < zy,--- 2z, € X, y,--- Un €Y7,

1

sup (Zlyk )7-

ZI v, Tz;)| < c sup

i=1 z*eB}. y€By

/‘\
U
X
5;2
N

e



SN, (X,Y) becomes a Banach space with norm sn; ,(T') given by the infimum of the con-
stants ¢ > 0 that verify the above inequality. As before, if p = ¢, we denote SN; (X, Y)
by SN (X,Y). Note that for p= g =1 we have SN (X, Y) = A1 (X, ).

(X,Y)QSN+ (X,Y) 1fq1§q2 and

As in Theorem 3.18 we have the inclusion SN o

P1,92

p1 < po.

Proposition 3.22 Let 1 < ¢ < p < oo and assume that T : X — Y is a bounded
linear operator. Then T € SN} (X,Y) if and only if T - 03(X); — P{Y), defined by

T((zy)) = (Tzy), is continuous.
Proof  Suppose T € SN} (X,Y) and (z,) € €,(X), then

I(Tza)lley < Tz ey + H(T2) o)
< 51y (T) [eq+ ((27)) + €+ ()]

< 2snf (T)egt((:))-

Therefore ||T(xn)||(p) < 2sn} (T)ef((zn)). Conversely, suppose T : (X)) — YY)
is bounded and suppose T ¢ SN (X,Y). Then for every n € N, there is a finite set
{Z1n: Tony*** , Tman} C X such that (zin); € By x), and [(TZin)i<ma |l > 2" Let

ey ((yi,)) < 1such that 377 [(T'z; 0, y5,)| > 2. Consider the sequence
(Zi) = (2_1:1:11; 2—1:1:'21) Tty 2_1Im11’ 2_21'12, 2_2I‘22) e )2—2xm227 c )

and
*\ -1, % -1, % -1, % -2 * -2, * —2, %
(yi) = (2 y11a2 1y21"" )2 1ym11,2 2?412’2 2y22"" ,2 2ym22a"')',

Then, z; > 0 and by Lemma 3.19

[o.¢] o0 Mp
e ((2) = sup (Y 2"(@)19)e = sup (.3 a" (@ "zn)|" )5
{215 Sy 1| S E———
o0 Ma
1
= sup (D 27N o (zm)[? )
”I*”SI n=1 1=1
201
< (Elﬁ)q
< 1.



Similarly, (y}) € B,» However, [[(Tz)|l(p = o0, (as in the proof of Proposition 3.3),

A (Y*).
contradicting the fact that 7' maps £9,(X), (continuously) into ¢*(Y). Since

IT(z)lly < 1T lleg((22)),
we have [|(7z;)]| < [1Tllef ((2:)). O

Lemma 3.23 (cf. [37], p. 241) Let X denote a Banach space. If (z,) € £*(X), then

o0

l(zn)llexy = sup Z(zn, ).

(z3)€Beg(x*) n=1

If X 18 a Banach lattice and (z,) is e positive summable sequence in X, then

(@) = | gxnu-
Theorem 3.24 Let 1 < p < co. Then ~
() SNF(E,Y) = L(£,Y).
(5) SN (L' (), ¥) = L(LI (1), V).
Proof

(a) Given T € L(¢},Y) and ¢y, ¢2, -+ , b, > 0 in £! we have

1(Tollmy < (Tl

= SoliTad
713l
= 7Y 6l

= ITa((6),

IA

where the last two steps in the proof follow by the positivity of each ¢;.

(b) The proof is similar to the one in (a). O
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Theorem 3.25 Let 1 < p, q < oo.
(a) If r < q then SN (X,Y) C SNi.(X,Y).

(b) For X, a subspace of Xy and X, = X, it follows that SN, (X2,Y) is isometrically
embedded into C SN (X1,Y).

Proof

(a) It is obvious since €f ((z:)(< n)) < ef ((z:)(< n)).

(b) The inclusion SN, (X2,Y) € SN, ,(X1,Y) is clear, since the mapping T — Ty, is
injective and T|x, € SN (X1,Y). Moreover, since each z* € B}l. extends uniquely to
z* € B;g;, 02 (X,)4 is isometrically embedded into £%(X,);. Therefore the inclusion of
SN, (X»,Y) into SN, (X1,Y) is also an isometry. O

Recall from ([33], p. 42) that for z;,z,,...2z, in a Banach lattice X and for p > 1 the
vector (D -, |zi]7’)% in X can be considered as

n
1
(Z |zi|p)p = sup Zazxu
i=1

(ai)”lp/ Sl

where ¢7 is replaced by ¢, if p = 1.

Definition 3.26 Let 1 < p,q < oco. An operator T € L(X,Y) is said to be strongly
(p,q)-concave (i.e. T € SC,4(X,Y)) if there exists a constant ¢ > 0 such that for every

ZT1,To, ** ,Zp in X we have
- 1
HTz:) (< gy < el 1l 7]l x.
i=1

Equivalently, T € SCpo(X,Y) <= 3¢ >0 such thatV {z1, -+ ,z,} C X we have

Z[(wa‘TI |<c Sup Z|yk )7 le‘zl “lx, (3.4)

By k=1
with norm sc, 4(+) = inf{c > 0 : ¢ verifies (3.4)}. Note that strongly (p,p)-concave is the

same as strongly p-concave.

Remark 3.27 Since ||(3_1, |xi|q)%l|m(u) =30, ||xi]]%q(“))% (c¢f. Remark 1.18), it fol-
lows that if u € L(LI(u),Y) then u € SC, o(L%(),Y) if and only if u € D, 4(L9(n),Y).
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Proposition 3.28 For1 < ¢<p < oo.
3.21
SNy o(X,Y) C SN;Q(X, Y) C SC,,(X,Y).

Proof The first inclusion is obvious. Let us have a look at the second inclusion.

Choose T € SN,/ (X,Y). There exists ¢ > 0 such that for any z1,---,z, € X, it follows

that
[Tz (< )l < WT2)E D)l + [Tz )l
< o sup I axfllx+ sup 1) aizy ]
(a)eBy, =1 (@)eBY, =1
< 2 sup || Y aulmlx
(O‘i)eB;l =1
< 20 (Q fmil9)alix.
i=1
Therefore T € SC, 4(X,Y) a

Note that SN, (%, ) # D, ,(¢2,£*) (cf. {16], Theorem 2.4.2.) but from Remark 3.27
it follows that SC,,(¢%,¢%) = D, ,(£2, £). Therefore

SC,5(£%,£%) # SN, (£, £).
Proposition 3.29 Let 1 < p, ¢ < oo.
(a) SNJ(X,Y) = 8Cp 1 (X,Y).
(b) SN, 1(X,Y) C SC,1(X,Y) for allp < q.
Proof

(a) By Proposition 3.28 we only need to show that SC,,(X,Y) C SN (X,Y). Let
T € SCp 1 (X,Y). There exists a ¢ > 0 such that for any finite set {z,,--- ,z,} C X

of positive elements we have

H(Tz) ()l < scpa(T) ||Zl$i|l|x
= scp1(T) ||Z-’fi||x
3.23 =

= s6p1(T) e((:)).
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(b) For T € SN,[;(X,Y), there exists a ¢ > 0 such that for all z,--- ,z, in X we have

[(Tz:)(< n)llg) < 1(T2:) (< 7)) < el lzilllx.

i=1

Theorem 3.30 Let ) be a compact topological space with 1 < p < oo. Then
SN;(C(Q),Y) = SN, (C(Q),Y) = SC,(C(Q),Y).
Proof Choose T € SC,(C(2),Y). For @1, 2, -+, ¢ belonging to C(2) we have

I@ed (<l < sepDIC o> e

= s¢,(T) sup(Z i (8)[7)

= sc,(T)sup sup w; (t)ay
H(T)sup sup IZ (0o

= s¢,(T) sup 0it;|lc@
o) b ,”Z illc@

= s6(T)ep((1))-

i=1

Proposition 3.31 Let 1 < p < o0 and % + 1% = 1. Then
SNH(EY) C (Y) C SN (#,Y)
the inclusions being norm (< 1) embeddings.

Proof ForT € SN (¢*',Y) and {e, : n € N} the canonical basis in #' (which satisfies
(en) € &,(¢7")), we let z,, := T(e,) for all n € N. Then (z,) € #(Y) and

1(@n) ) = (T (en))llpy < sy (T)ep((en)) = smy (T).
This proves that SN, (¢',Y) C ¢(Y), the norm (< 1) embedding being T — ((Te,)).
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Let (z,) € £°(Y), and consider the operator T : ## — Y defined by
T((an)) = Y OnTn-
neN

Choose 0 < &;,&, -+ ,&m € &7, where & = (& n)n With &, > 0foralli =1,2,...,m and

all n € N. Then since £}{Y) = ¢'(Y), we can do the following calculation:

(TN M)l = ZIIT(&-)H

S Gulleal

i=1 neN

= > (& llz51)5)

(AN

= l(@n)llerv) Z(&, (1) oy 1310);)

< H(l‘n)“(z)) sup Zl(fﬂ /\)

Mller <174

= Il(a:n)lkmel((&)(ﬁ m)).
It follows that T € SN;* (¢7,Y) and sni (T) < [|(z0) |l n- 0
Remark 3.32 (i) Suppose Z is a Banach lattice, S € L(Z, X) 1is positive and
T € SC,,(X,Y).

For a finite set 21, 2o, . . ., 2, of positive vectors in Z, we know that the corresponding

set Sz1,S52y,...,S52, s a finite set of positive vectors in X. Thus,

ITS ()Mo < sepa TN 15219 lx

i=1

IN

Scp,q(T)IISHII(Z 1)1 .

This shows that T'S € SCy4(Z,Y) and scy4(TS) < scp o(T)| S]]

(ii) The reader is referred to [35], see (p. 56 — 5§7) where it is explained that:
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(a) If 1 < p < oo and {f;}1, is a finite set in a C(K) space, then
sup{ Zlu JP)P e CE)", lull = 1} = sup{( an )Y k€ K},

(b) If X is a Banach lattice and {z;}7L, is a finite set in X, then the completion
of the normed ideal I(zo) generated by the element zo = (i |z:]9)Y9 and with
norm =

[2]]oo = inf{A > 0 |2] < Ileil}
is order isometric to a C(K) space. Let J denote the formal identity mapping
from I(zo) into X, i.e. we may consider J : C(K) — X as a (positive) norm

(< 1) embedding. Clearly, x; € I(zo) for alli € {1,---,m}.
Proposition 3.33 Let1 < p,g<ooc and 0 < c < oo. For T € L(X,Y), we have:
(a) T € SN} (X,Y) with sn} (T) < c, if and only if, for every positive operator

S € L{cy, X), TS € SN} (co,Y) and snf (TS) < c||S].

(b) T € SCpo(X,Y) with scy o(T) < ¢, if and only if, for every positive bounded linear
operator S from a C(Q) space into X, the composition T'S belongs to SN, ,(C(Q),Y)
and sn,o(TS) < c |S]|.

Proof

(a) Let T € SN} (X,Y) with sn},(T) < ¢ Let S € L(co, X) be positive. Now let

21,22, ,Zn = 0 in ¢cg. Then

17S((2:)(< 7))y

[(T(S2))icnllpy and Sz; > 0in X

< snty(T)et ((Sz)(< )

= snf (T) suB}ar > l(z*, Sa)
z*€Bh. =1

= snty(T) sup Z|(5*$*7zi>|
$‘EB )

= S| su ", 7))
ol quBp_ZK,S*H

< snf (D)]IS]] sup Zl(y z;)|

yEB,1 i=1
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because S* > 0. Thus, ||((TS)(2))icalley < sy (T)IIS|l€f ((2:)(< n)). This shows
that T'S € SN, (co,Y) and sny,(T'S) < sn, (T)||S||.

Conversely, let {z1, 29, -+ ,2,} C X, z; > 0. Consider

S :co — X, such that S((&,)) Zgzx,

Then S is bounded, with [|S|| = € ((z;)(< n)). Also, since z; > 0, we have for all
(&) € o, & >0, V 1, that S((&)) = i, &xi > 0; ie. S is a positive bounded
linear operator. By assumption, T'S € SN, (co,Y) and sn;,(TS) < ¢ ||S||. Thus
[(Tz) (S n)llyy = [[(TSe)(< )l
< clISllef (e} (£ n))
= c||S|| sup D I(ess A
AGBH i=1
= cea((z)(<n)

= ce; {(z;)(< n)) since z; > 0.

(b) Let T € SCp4(X,Y) and S € L(C (), X) be positive. For every finiteset {f1, -+, fa}
in C(Q2) we have

ITSHF)E ey = ITUSHNE 7))
cu(DSfilqﬁnx

cHSHsup X:If1 )9 e (cf. Remark 3.32(3i))

IA

IN

-n

= c||S|| sup Zlule)q-

HEBc(ay+ i=1

Hence T'S € SN, 4(C(£2),Y) and sn,4(TS) < c||S]|.
Conversely, assume that for every C(£2) space and every positive S € L(C(), X)
we have TS € SN, (C(Q),Y) and sny, o(T'S) < ¢ ||S||- Let {z1,22,...,2,} C X
and consider the C(K) space and norm < 1 embedding J : C(K) — X, which are
mentioned in Remark 3.32. Let f; € C(K) such that

Jfi=z, fori=1,2,...,n.
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We have

1(Tz)icnlly = (T fi)icnllpy

< snyo(TJ) sup{Zlu (F)NY: pe CK) llull = 1}
= gt (T J) sup{( Zlf NOYT: ke K} (cf. Remark 3.32)
= sn;,q<TJ)|i<Z £ ez
-
= LTI Zl:v )9l (cf. Remark 3.32)
- snt (TJ)inf{A >0 (Z |2;]9)/7 < /\H(Z EARDRA le 1)1/}
i iz1
= g (T le )l x.
This shows that T € SC, ((X,Y) and scp o(T) < c||J|| < c. O
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Chapter 4

Operator valued multipliers

4.1 Strongly (p,q)-summing and strongly (p,q)-nuclear
multipliers

Definition 4.1 (cf [2], p. 8) A sequence of operators (u,) C L(X,Y) is a called mul-
tiplier sequence from E(X) to F(Y') if there exists a constant ¢ > 0 such that

l(ujz5) i1l pevy < € 1(@5) el By,

for all finite families x1,--- , z, in X. The infimum of all the numbers ¢ > 0, which satisfy
this condition, is denoted by ||(u;)||(z(x),F(vy)- The set of all multiplier sequences from

E(X) to F(Y) is denoted by (E(X), F(Y)).

Definition 4.2 (cf. [2]) Let X andY be Banach spaces and let1 < p,q < 0o. A sequence
(uj)jen of operators in L(X,Y) is called a (p,q)-summing multiplier for the pair
(X,Y), in short (u;) € £, (X,Y), if there exists a constant ¢ > 0 such that, for any

finite collection of vectors x1,x9, -+ ,z, € X, it holds that
1 1
n p n q
D luzllP ) <c osup | ) |ztzle) .
j=1 zeBxs \j=1

We use £, (X,Y) to denote the vector space of all (p,¢)-summing multipliers from X
into Y and 7, 4((u;)) is the least constant ¢ for which (u;) verifies the inequality in the
definition. If ¢ = p we simply say that the sequence (u;) is a p-summing multiplier.

g (X, Y) = (£3(X),£7(Y)). A constant sequence (u;), u; = u € L(X,Y)
for all j € N, belongs to 4, (X,Y) if and only if u € II,,(X,Y). Also the case

Note that ¢
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(u;) = (\ju) € (84,(X),£4(Y)) for all ();) € £, where %—% ;% = 1, corresponds to
u € T 4(X,Y). These facts motivate the use of the notation ¢, (X,Y) instead of

(04,(X),£7(Y)) and £, (X,Y) for the case g = p.

Blasco and Arregui (cf. [3]) constructed the following examples by taking tensor products

of some classical spaces.

Example 4.3 (cf. [8], Ezamples 8.1) Let X andY be Banach spaces, and 1 < p, g < oo.
(1) br, (X, K)®L(Y) C by, (X,Y) for L =14 1

(2) £QI,4(X,Y) C &y, (X,Y) for % =1+l

In particular PRX C Ly, (X) = (X)),

It is proved in [14] and [28] that indeed PRX = (P(X) isometrically.

(8) £(Y)®X* C 4y, (X,Y) forp<gand}=1+1

Tp.q

We consider some examples.

Example 4.4 Let K be a compact set and p a probability measure on the Borel sets of
K. Letl<p<g<oo,1l/r=1/p—1/q and (¢;) a sequence of continuous functions on
K. Consider u; : C(K) — LP(u) given by u;(y) = ¢;1p. Then (u;) € £y, (C(K), LP(u))
if and only if

Zlaﬁj e LP(u).

Example 4.5 Let (Q, %, 1) and (¥, X, 1) be finite measure spaces.

Let 1 < p < g < oo, ;1, = %+%. For each n € N and (f;) C LP(u, X) with X = L'(y),

consider the operator un, : L®(u') — LP(u) defined by
un(9)(-) = o $(Ww) fr() (W) du' ().

Put fo(, W) = fn(HW"). If

‘![v—-
-

O 1Al)T € L7 (u, LM (1 whereZml @)() = 1w, )1)7),
k=1 k=1

then (un) € £y, (L), LP(p)).
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Proof Given n € Nand ¢1, ¢, -+, ¢ € L®(y'), then

n

Z”Uk@k)”;]:p(u) = Z/|uk(¢k)}” du

k=1
= [0 [ o)t P o)
A /ﬂ 9ue!) oo, ) (el dp()
= [ [ O Dl I d(e)
< [ (] 16 1 Drcally 1) de)
= [ I6PUlo, P} a()P dute

V p=1
< [ (ka(ww Zm ()P d(w)
Z SO Fmguy | /Q,<Z e, ) (@) du(w).

Hence, since ¢;((¢n)) = |3 51 ]q&qu)%HLm(u:), it follows that

IA

Tpa((uk)) < H(Z | fie (w, w,)lr)%“LP(#,Ll(u')),

O

1
P

Consider T, € L(co, #7) given by Tp((Ag)) = (Zk L An(k, 5) k)5 If

Example 4.6 Let1 < p < g < 00, —+ and (Ay) be a sequence of infinite matrices.

oo oo

ST S Ak, DIP)FY < 00, then (Tn) € La (co, 7).

k=1 n=1 j=1

Proof  Note that T, = Y 7, €} ® Ynk, Where Y, € €7 is given by y,, = (An(k,7));-
For 2, = (Ank)x it follows that

Z | T (za) P

NN Tz )15

= (Z Tz || )P for some positive (o) € 7, ||(o)||py = 1.

n=1
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o0

= Zan” Z(ekamn Ynkll)?
< ZZI eks Zn) ||| yn i llctn)?

k=1 n=1

o] o) ) .
< |{ek> zn)|7)4 ( ley #7ad)T P

k=1 n=1

8

i 1
< (@ “gq (c0 Z Z llyn,kllen)? N7

= L . 1 1 1

< o)l e 2 emall)F O o)) since 5= 24
k=1 n=1 n=1
[e ] [ o] .

= |[(zn “gq (co) Z Z lynil™) 1P
k=1 n=1

Therefore
o0 1 o0 o0 L
O ITa@)IP)?> < e(@)) D O lunsll)"
n=1 k=1 n=1
o0 o0 [o o]

6q (xn Z{Z Z|An k .7 |p %

k=1 n=1 j=I

O

Next, the case E(X) = P(X) (or E(X) = ¢4 (X)) and F(Y) = £4(Y’) will be considered.

Definition 4.7 Let 1 < p,q < 0o. A sequence (u;)jen of operators in L(X,Y) is called a
strongly (p,q)-summing multiplier (i.e. (u;) € (¢9(X),#(Y)), if there ezists a ¢ > 0
such that, for any finite set {x,, -+ ,z,} C X it holds that

(uiz) (€ M)l < e |@) (€ n)lleaexy,  dee

equivalently, (u;) € (£4(X), £(Y)) < 3 ¢ > 0 such that
forallzy,--- |z, € X, yf, -+ ,ys € Y*, we have

>l izl < e (_Z nxinq> s (Z xy;<y>|p') R (4.1

Let ||(u;){l(e2(x),er(xy) be the least constant ¢ for which (u;) verifies the inequality in the
definition. Note that a constant sequence (u;), u; = u € L(X,Y) for all j € N, belongs
to (£9(X),2(Y)) if and only if u € Dy (X, Y).
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Proposition 4.8 Let X and Y be Banach spaces, 1 < p,q < oo and let (u;)jen be a
sequence of operators in L(X,Y). Then

(u;) € (BU(X), £(Y)) & (uf) € bn, , (Y, X7).
In this case ||(ui)|(ea(x), evy) = T p((uF))-

Proof Let (u}) € &y, ,(Y*, X*). If 2y, -+, T, is a finite set in X and if (y]) € e (Y,

we have

n

Z](ui%yf)’ = ZK%UZ(ZJI))(
Z w; (W) 2:]]

Zuu @97 anzn :
= n(u Y (< 1) (X.m(zl)(s ) les )

< g ((ud))ew (WD (@) lles ).

IA

IN

Taking the supremum over the unit ball in £ (Y*), we obtain

szl < T (W) (@) leax)-

Therefore (u;) € (¢4(X), &(¥)) and ||(ws) s, vy < T (1),
Conversely, assume (u;) € (£9(X),¢7(Y)). Let yi,--- ,y; be a finite set in Y* and let
(z;) € £9(X). It follows that

Zuu via)l = 31wl
Iwszs)llgrew ((69))

< ) lleexy, ereyn (i) llesxyep ((97))-

(A

If we take the supremum over the unit ball in £(X), we obtain

(@58 e oy < M)l e rmen (87))-

Therefore (u}) € £y, (Y™, X*) and 7g»((4])) < [|(ui)lleacx), epvy)- a
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Example 4.9 Let p be a probability measure on Q. Let1 <p<g<oo,l/r=1/p—1/q
and (¢;) a sequence of functions in L% (p). Consider u; : LI(u) — L'(n) given by
Uj('l,[)) = ¢]1Z) Then

O 18,10 € LY (n) = (uy) € (¢U(L()), (LM (1))).
J
Proof  Let ¢1,vs,...,%, € LY(u). Then, taking into account that

2L ) 2 PeLM ) LD [y, my,

we have

l(ws¥i)llercprquy = ll(Zléy%l”)””llu(m

n n

< Q18I 1wl s

< N 1A w1951 Iz

N

= H(Z ,¢jlr)1/T”Lq’(u)(Z ”%’”%e(u))l/q-
U

Remarks 4.10 (1) Suppose, as in Ezample 4.9 that (¢;) is a sequence of functions in

L7 () such that (332, |6;1") € LY (u). Here L = T~ and1<p<g<oo

Consider v; : L®(u) — LY (1) defined by v;(x) = ¢;x. It follows from

(G0,0) = /Q X(®)¢;01() du(2)

- / X(®)[6;(10(2)] duu(t)
= <X’ ¢.76>
= {x,u;(0)), where u;: L9(p) = L'(p) : 6 — 0¢;

for all x € L>®(u), 8 € L(uw), that v; = uj, Vj. It follows from Ezample 4.9 and
Proposition 4.8 that (v;) € £x, ,(L*°(), LY (w)).
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(2) Let 1 < p,q < oo. If X is a Banach lattice and Y a Banach space, recall from
Chapter 8 that we call an operator u € L(X,Y’) strongly (p, q)— concave (and write
u € SCpo(X,Y)) if there exists a c > 0 such that for all xy,- -+ , z, in X we have

n

[z (< gy < e IO Tzl lx.

1=1
Now, consider the case X = L(u). Thenw € L(L(u),Y) is strongly (p, q)-concave
if there exists a ¢ > 0 such that for all finite sets {x1,x2, ", Xn} 0 LI(u), we

have

(o)) (E Ml < cHlez ) llzage
- / DX HID47 du(t)?
= o ([ 3ol duw)d

= <Z Ixill ey

i=1
Thus it follows that u € L(L%(u),Y) is strongly (p,q)—concave iff the constant
sequence (u,u,---) belongs to (£9(LI(w)), LP(Y)).
Also, scpq(u) = {|(u,u, - - M(ea(raqy), er(yy). From Proposition 4.8 it follows that

(', ) € by, (VY L7 (0) = (EL(Y"), 27 (L7 ().

This corresponds to u* € Iy (Y™, L% (u)).
Thus, it follows that w: L4(p) — Y is strongly (p, q)—concave iff u* : Y* — LY ()

is (¢', p')-summing and sc,q(u) = 7y x(u*).

The following examples follow from Proposition 4.8 and by [8], (Example 2.2, 2.3) for

Sn = T, the conjugate operator of Tj,.

Example 4.11 Let (Q,%, u) and (', %', ') be finite measure spaces and 1 < p < o0.
Let (fn) C LP(u, L*(i')) and consider the operator Sy : LP (p) — LY(p') defined by

Sa(9)() = / 9(w) falw, ) du(w),
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where, as before, we let fo(w,.) := fo(w)(.). If
SUp | fu] € L7 (1, L' () (where, sup|fu|(w)() = sup|fn(w,-)]),
then (Sa) € (&' (L¥ (), & (L* (1)))-

Example 4.12 Let 1 < p < oo and (A4,) be a sequence of matrices. Consider the

bounded operator Sy : ¢ — ¢! given by
Sa((&) = O Anlk, 5)8)x
j=1

Then (Sn) € (€2(€7), 6(€1)) if -2, sup, (X2, 14a(k, 5)P)7 < oo.

Definition 4.13 Let 1 < p,q < co. A sequence (u;);en of operators in L(X,Y) is called
a strongly (p,q)-nuclear multiplier (i.e. (u;) € (£4,(X),P(Y))) if there ezists a
constant ¢ > 0 such that, for any finite set {z, -+ ,2,} C X, it holds that

[I(wiz:) (< n)lly < € egl(2:)(< ). (4.2)

Equivalently, (u;) € (L4(X),P(Y)) < 3 ¢ > 0 such that, for all finite collections of

vectors T1, - ,Tn € X, Y5, -+ ,yn €Y,
n E n 517
DIy wa) < e sup (le z»l) sup (Z ly}:(y)l”) :
i=1 Y \k=1

Let sny, 4((uy)) be the least constant ¢ for which (u;) verifies the inequality in the definition.

To avoid ambiguities the norm ||(u;){l e, (x).er(vy) 8 Sometimes used.

Proposition 4.14 Let 1 < p,q < oo.

(1) Then ((€4,(X),#7(Y)),sn,4((.))) is a Banach space.

() ((€1(X), #YV)), 1)l esx), eqvy)) s a Banach space.

Proof (i) Take a Cauchy sequence (u(™) in (¢4 (X), P(Y)) where u(®} = (ugn)) j- Then
it is also a Cauchy sequence in the Banach space £*°(L(X,Y)) and so convergent. Let

u™ 25 (u;) € £°(L(X,Y)), ie

sup [[ul™ — uj] = 0.
J
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On the other hand
ul™) e T, € L(E(X), £(Y)) = (z5) = (uVs);,
with

1Ty =Tl =  sup  [|(@Ma; — ™)

ezt 0
n n, m
= SNyl (Ug ) (m)) ) - 0.

Hence, T, =+ T € L(¢%(X),£(Y)) in the operator norm.
o0

For {z1, - ,z,} C X and {4}, -, y}:} C Y* it follows that
;l@jxmy})l = ,}g{;Zl ua;, )|
]:

_ 1
< limsup snp4(( (k sup Z|$$| )u SUP(ZK?//“ >|p)'

k—o0 13 EBx« — yEBy j=1

1

= lim |7 sup‘@tx z]%) % Zlyk, o

1

= (Tl sup le x| Sup ZI Y 97

Ex*_

Hence, (u;) € (¢4(X),#(Y)) and sn,q4((uy)) < ||T|. AIso,

T((z;)) = lmTu((z,))
= hm(u() )5
= (u;zj)j, pointwise.
Hence [|T((z;))llg) = 1l (452:);ll oy < $7.a((us))eq((z;)). Thus it follows that
s15q((u5)) = Tl and snpq( (u5) = () ) = IT = Tull 2> 0.

(i1) The proof is similar to the proof of part (i). O

Proposition 4.15 Let X and Y be Banach spaces, 1 < p,q < oo and let (u;)jen be a

sequence of operators in L(X,Y). Then
(u3) € (E,(X), (Y)) & (u5) € (B(Y"), (X))
and ”(ui)”(f&(){),ﬁ(}’)) = “(u:)H(eﬁ]’(y*)’lq’(Xu»'
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Proof  Choose (u}) € (B (Y*), 69 (X*)); let 1,22, -+, Tn € X. Then

> Kz )| = lez, 1), where (27) € &2(v")
i 12 22)(< m)lgyeol(@) (< )
< D g e ey (2 (S M) eg((23) (< ).

VAN

Thus ||(uz:) (< 0|l < ||(UZ)H(ﬁﬂ(Y_),eq,(x,))eq((:c,-)(g n)) and therefore

”(ui)”(l‘fu(}(),@()’)) < ”(u;)”(gﬁ,’(y-)'eq’()(*)),
Conversely, let (u;) € (£2(X),#(Y)). Let 4, - -,y be a finite set in ¥Y* and let

(z;) € Byg,(x)- Then

ilmu;y, = 5 )] < Ilaynmoren (@) (@)
i=1 i=1
Taking the supremum over all sequences (z;) € By (x), we have
(|l (uivi) (< n)”(q’) < ”(Ui)“(Z?U(X),ZP(Y))fp'((y;));
therefore, (u) € (&(¥"), (X)) and 16}l gy woeey < 1) lagenoey. O

Example 4.16 Let K be a compact set and p a probability measure on the Borel sets of
K. Let1<p<g<oo,l/r=1/p—1/q and (¢;) a sequence of continuous functions on
K. Consider u; : C(K) — L'(p), given by u;(y) = ¢;9.

Then (u;) € (65,(C(K)), (L} w)) if

(165107 € L7 (1),
J
Proof Asin Example 4.9, if ¢1, 9, ..., ¥, € C(K), we have

(i) llerprquyy < H(ZM’J‘V)W(Z 319 23y

< Z 16517 M| 2 sup Z | (2)|9) 1/
= Zl¢ Mg sup ZI <, v > )M,
Il xey=1 521
again using Remark 3.32(ii). O
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4.2 R-bounded sequences

In this section we consider notions that have been shown to be relevant in some recent
problems.

The sequence (z,) C X is almost unconditionally summable if Y,°  r,(t)z, con-
verges for almost all ¢ € [0, 1] in the Lebesque sense.

Rad(X) can be identified with the space of the almost unconditionally summable
sequences (z;), corresponding to functions given by ¢t — Z;’il r;(t)z;, where the series

converges for almost every ¢ with respect to the Lebesque measure.

The following definition can be found in [19)].

Definition 4.17 Let 1 < p < .
Then Rad,(X) is the closure in L?([0,1], X) of the set of functions of the form

n

er:rj, Zj S X,

J=1
where (r;);en are the Rademacher functions on [0,1] defined by r;(t) = sign(sin 2/rt)

i.e.

a ={(z N:su 1 nr‘ z||P dt)? < oo
Rty (X) = {(z) € X" sup( [ 3 rs 0P ) < oo

and for each (z,) € Rad,(X), define

1 n
1
(@), =sup( [ 1S rs (0[P do)?.
We recall the main result about the Rademacher functions.

Theorem 4.18 Khintchine’s inequality (cf. [92], p. 66)
Let ro(t) = sign(sin 2"nt), n =0,1,2... be the Rademacher functions on [0,1]. For every

1 < p < oo there exist positive constants A, and B, with

A, <Z|an|2> < (/0 1S G dt)p

1

B, (i |an|2) 5

n=1

VAN
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for every choice of scalars {an}7L,.

Remark 4.19 (i) A, =By =1, A,=1ifp>2and B,=1if1 <p <2 (cf [32] p.
66).

(ii) From Khintchine’s inequality it follows that a Rademacher sequence is equivalent,

in the LP norm, 0 < p < 0o, to the unit vector basis of 2.

Many results concerning p-summing operators as well as several applications of these

operators are based on the following inequality due to Grothendieck.

Theorem 4.20 (c¢f. [82], p. 68)

Let (04;)7i—; be a matriz of scalars such that |37, cijtjsj| < 1 for every choice of
scalars {t;}, and {s;}7, satisfying |t;| < 1,|s;| < 1.

Then, for any choice of vectors {x;}}=, and {y;}7_, in a Hilbert space,

Z Z (T, Y;)

=1 j=1

< Kq m:fix ||a:,l| mJaX ”ZH“)

where K¢ is Grothendieck’s universal constant (in case the scalars are real,

Ko < (522).
The best possible value of Kg seems to be unknown.

Definition 4.21 (Kahane’s Inequality (cf. [19], p. 211))
If0 < p,g < oo, then there is a constant K, , > 0 so that, for any Banach space X and

every finite subset {xy, -+ ,z,} C X, we have

(/0 I z rk(t)xk“th) q < Kpy (/1 1 irk(t)xk”p dt) ’ .
k=1 0 k=1

Kahane’s Inequality ensures that the norms on Rad,(X) are equivalent for all 0 < p < oo.

Thus, put Rad,(X) = Rad(X), V 0 < p < 0o and the norm

1
n 1 n 2
(zi) R, = |l erlelm([o,u,X) = (/ I Z?‘k(lf)ﬂ%ll2 dt) :
j=1 0 k=1
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We agree to (mostly) use the norm ||.||r, on Rad(X). It is easy to realize that Rade(X)
corresponds to the space of compact operators K (cp, X ) or also the space of uncondition-
ally convergent series, since for any finite family (z;);<», we have

||(a:j)||Roo ~e((z;)) = [|T: ¢ = xj“K(co,X)'

Definition 4.22 (c¢f. [85], p. 71) A Banach space X is a G.T. space if it satisfies Gro-
tendieck’s theorem, i.e.

L(X, %) =T, (X, £%).

Therefore X is a G.T. space iff for allu: X — £2 and for all n, there ezists a constant

A such that 71 (u) < Ajul.

The next Proposition characterizes the duals or preduals of G.T. spaces.

Proposition 4.23 (c¢f. [85], p. 71) A Banach space X is a G.T. space iff its bidual X**
is also a G.T. space, and this is equivalent to L(X*, L') = TT,(X*, L!).

Note that X* is a G.T. space iff L(X, L') = (X, L*) (¢f. [35], p. 71).

Remark 4.24 (cf. [35], p. 73) All the known examples of G.T. spaces are of cotype 2.

The next result clarifies the meaning of the notion of a G.T. space of cotype 2.

Theorem 4.25 (cf. [35], p. 75) Let X be a Banach space. The following assertions are

equivalent.
(1) X* is a G.T. space of cotype 2.

(it) There is a constant ¢’ such that, for all n € N and all subsets {z1,--- ,z,} C X
and {z},--- 2} C X*, we have

o0

|Z($§‘,$i>f <c “Zﬁ(-)xfﬂv([o.ll,x-) e2((z:))-
i=1 .

=1
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Theorem 4.26 (cf. [35], Corollary 6.7) A Banach space X is a G.T. space of cotype 2

iff there is a constant ¢ such that for all 7 in X* and all z; in X, we have

o0} o
> @zl < e Y Ozl x) e((3))-
i=1 =1

Proposition 4.27 (cf. [19], p. 220)
If a Banach space X has type p, then its dual X* has cotype p'.

Remark 4.28 (cf. [19], p. 219 and p. 234)

If 1 <p <2, then ¢ has type p and cotype 2.

If 2 < q < 0, then €7 has type 2 and cotype q.

Rad(X) = 2(X) when X is isomorphic to a Hilbert space.

Theorem 4.29 (cf. [2], Theorem 8) Let X be a Banach space. Then
£y, ,(X) C Rad(X) C £r, (X).

Theorem 4.30 (cf. [2], Theorem 9) Rad(X) = £, ,(X) if and only if X is a G.T. space
of cotype 2.

Remark 4.31 (i) It follows from [23] (p. 637) that £P(X) = £, ,(X). Therefore
2(X) C Rad(X) C £2(X)
and if X is a G.T. space of cotype 2, then Rad(X) = ¢2(X).

(i) We recall from Chapter 2 that £P(X) = (P ® X, such that for each (z;) € £P(X) we

have

[|(z:)(< n)ll(p) = ,Zfii ® zi|a, V n.

Definition 4.32 (c¢f. [15] and [25]) Let X and Y be Banach spaces. A sequence of
operators (u;) C L(X,Y) is said to be Rademacher bounded, i.e. R-bounded, if

there exists a constant C > 0 such that

/!|Zu] )rs(0)2d8)} < /”Zm,r, |2t}

for all finite collections z,,x,, ..., T, € X.
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The space of R-bounded sequences of operators from X into Y is denoted by R(X,Y)
and ||(u;)||r denotes the infimum of the constants satisfying the previous inequality for
all finite subsets of X. It is easy to see that (Rad(X,Y),||(u;)|lr) is a Banach space,
which coincides with the multiplier space (Rad(X), Rad(Y)).

Definition 4.33 (cf. [29]) Let X and Y be Banach spaces. A sequence of operators
(u;) € L(X,Y) is called Weakly Rademacher bounded, shortly W R-bounded if
there exists a constant C > 0 such that for all finite collections z,, -+ ,z, € X and

Yl e, Yn € Y™ we have

>l <O [ ||me ol a0 uzy,n @IP d.
k=1

The space of W R-bounded sequences in L(X,Y) is denoted by WR(X,Y) and ||(u.)|lwr
is the infimum of the constants in the previous inequality, taken over all finite subsets of
X and Y”*. Then ||(u,)|lwg is a norm on WR(X,Y), which is exactly the norm of the
bilinear map Rad(X) x Rad(Y*) — ¢, defined by ((zx), (v})) = ({wxzk, ;).

Definition 4.34 (cf. [8]) Let X and Y be Banach spaces. A sequence of operators

(u;) C L(X,Y) is said to be almost summing if there exists C > 0 such that for any

finite set of vectors {z1,--- ,z,} C X we have
1 n
(13 w0l a < o sup (31" )} (43)
=1 z* j=1

(or, equivalently, (u;) C L(X,Y) is almost summing if there exists a constant C' > 0

such that for any finite set of vectors {z1, -+ ,z,} C X we have
1
[ 1w < o | Z "2 ).
*||=1

J—-l
We write £,, (X,Y) for the space of almost summing sequences, which is endowed with

the norm

[l(wi)llas == inf{C > 0 | such that (4.3) holds}.

Notice that 4r,,(X,Y) = (£2(X), Rad(Y)). If the constant sequence (u,u,u,...) is in
£r,(X,Y), then the operator u is called almost summing (cf. [19], p. 234). The space of
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almost summing operators is denoted by II,;(X,Y") and the norm on this space is given
by

Tas(w) = [[(w u,u.. . )lles = [la]],
where in this case 4 : £2,(X) — Rad(Y) is given by 4((z;)) = (uz;).
Definition 4.35 (cf. [29]) Let X and Y be Banach spaces. A sequence of operators
(uj) € L(X,Y) is called unconditionally bounded or U-bounded if there ezists a

constant C > 0 such that for all finite collections z1,-- ,2n € X and 45, -+ ,y% € Y* we

have

n n n
* < *
k%:l [{urzi, yi)| < C max || gﬁwk[l max || kzz;ekyk”'

We write UR(X,Y’) for the space of U-bounded sequences in L(X,Y). The space
UR(X,Y) is endowed with the norm [|(u,)|lyg, which is given by the infimum (taken

over all finite subsets of X and Y*) of the constants in the previous inequality.
Proposition 4.36 Let X and Y be Banach spaces. The following inclusions hold
b (X,Y) C R(X,Y) CWR(X,Y) CUR(X,Y) CL2(L(X,Y)).

Proof  The inclusion ¢,,(X,Y) C R(X,Y) is a trivial consequence of the embedding
Rad(X) C £2(X). Suppose (u;) € R(X,Y). Orthogonality of the Rademacher variables,

duality and the contraction principle, allow us to write

|{ukzs, yi)|
(ukZr, yi)] = Y (urzx, xyp) where ¢, = ——7k/]
Z '° Z A O
- / (O relt)ueee, Y- ru(ters) d
k<n k<n

i n
( / I Z unzire (1)) % / DICVACION
< 11w lel / I3 a0l / I3 (0P

This proves the inclusion R(X,Y) C WR(X,Y). The inclusion WR(X,Y) C UR(X,Y)

A

is clear from the definitions.
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If (u,) € UR(X,Y), then it is clear from the definition of unconditional boundedness

that there exists C > 0 such that for ¢ € X, y* € Y*, we have

[(urz, y™)| < Cllellly™l
for all £ € N. Thus the inclusion UR(X,Y) C £*°(L(X,Y)) also follows. a

Remark 4.37 If u € L(X,Y), then (u,u,...) € R(X,Y) and ||(u,u,...)|lr = llu]l-
However, (u,u,...) € £, (X,Y) if and only if u € II5(X,Y). This shows that
. (X,Y) C R(X,Y) is strict.

Tas

Recall (cf. Remark 1.18) that for 1 < p < oo, the p-convexity and p-concavity of L”(u)

imply the following equivalence of norms:

1) raaczray = 1 1657 llzogo

for any collection ¢y, @, ..., ¢, in LP(u).
If X = C(K) for any compact set K or if X = £°°, then

&((8)) = 1D 19517)?lix
i=1

for all finite subsets ¢, ¢, ..., ¢ of X.
Therefore we have the following versions of Definitions 3.1, 3.2, 3.3 and 3.4 in some special

cases.

Proposition 4.38 (i) Let X = C(K) and Y = LI(v) for 1 < ¢ < co. Then
(u;) € £r,,(X,Y) if and only if there exists C > 0 such that

II(Z Jus (81 *llzsw) < CUQ_ 1831 o)

j=1
for any finite collection ¢y, @a, ..., ¢ in C(K).
(i) Let X = LP(u) and Y = LY (v} for 1 < p,q < 00. Then (u;) € R(X,Y) if and only
if there exists C > 0 such that

n

1O~ Tus( @) P llzaey < CHQ 18512l o

Jj=1 j=1
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for any finite collection ¢y, @, ..., ¢n n LP(1).
(i4i) Let X =P and Y = ¢y for 1 < p < oo. Then (u;) € WR(X,Y) if and only if there
erists C > 0 such that

Z [{u;(¢5), ps)] < ClI(Z 1652)%]15 II(Z sl I

for all finite collections ¢1, da, ..., dn n P and 1, Qa, ..., Pn 0 LL.
(iv) Let X = £ and Y = £*. Then (u;) € UR(X,Y) if and only if there exists C > 0
such that

ZI(uj(¢j),90j>l < C”(Zlﬁﬁj 1/2”00 ” kaj 1/2||oo

j=1
for all finite collections ¢1, ¢o, ..., On and Q1,Pa, ..., Op N E°°.

Proposition 4.39 Let 2 < r < oco. Ifu; = Mu for u € Hge(X,Y) and (X;) € £ then
(u5) € (€4,(X), Rad(Y)) for 1/g=1/2— 1/r.
In particular, if u € I5(X,Y) and (N;) € £, then (u;) = (A\ju) € £, (X,Y).

Proof From u € I(X,Y), we have
R b 1/2
IS wer@ra™ = ([ 13 vt ol
j=1 j
Tas(1) sup (Zlmw o)

llz=|=1

s (WO sup (Zlm )"

IA

IN

O

Remark 4.40 We would like to point out that UpIl,,(X,Y) C I(X,Y) (c¢f. [19],
12.5). Nevertheless this is not the case for sequences of operators. Indeed, it suffices
to take u, = z* Q@ y, for fizred z* € X* and (yn) € £°(Y). In this case, (uy) belongs to
by (X,Y), but not to £, (X,Y) (consider for example Y = ¢y and y, = e, the canonical

basis).
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Proposition 4.41 Let Y be a Banach space of
type p = p(Y) > 1 and cotype ¢ = q(Y) < oo.

Then £, ,(X,Y) C Ly, (X)Y) C L, ,(X,Y).
In particular if Y is a Hilbert space, then £y, ,(X,Y) = £, (X,Y).

Proof It follows from the fact f7(Y) C Rad(Y) C £9(Y) in this case. a

Let us mention that it was pointed out in [29] that if X has nontrivial type then
WR(X,X) = R(X,X). Actually the assumption only needs to be taken in the second
space.

Recall that the notion of nontrivial type is equivalent to K-convexity (cf. [19], p. 260).
X is said to be K-convex if f — ( _[01 f(t)r.(t)dt), defines a bounded linear operator from
L?([0,1]) onto Rady(X) for some (equivalently for all) 1 < p < oo.

For K-convex spaces one has Rad(X*) = Rad(X)* (cf. [38], or [10] for more general

systems), the duality being defined (as usual) by the bilinear functional
oo
(), (&) =D _zims.
i=1

Let us point out that this shows that there are no infinite dimensional K-convex G.T.
spaces of cotype 2. Indeed, assume X is K-convex and a G.T. space of cotype 2. On the
one hand Rad(X) = £2(X) and on the other hand Rad(X)* = Rad(X*), with equivalent
norms. Therefore Rad(X*) = (¢2(X))* = £2(X*). Hence the identity on X* is almost
summing and then X* is finite dimensional.

It is well known that, in general, one can only expect Rad(X*) to be continuously em-
bedded in Rad(X)*, but that the embedding needs not even be isomorphic. Take, for

instance, X = £!. Then since ¢! satisfies Grothendieck’s Theorem,
Rad(£") = £2(¢") = Q¢
that is to say (z,)s C £ (with 1, = (2,(k))x) belongs to Rad(¢!) if and only if

> (D lza(R))? < oo.

keN neN

I - E



As a matter of fact, it follows from earlier discussions that
Rad(8') = £2{6Y) = £2&0 = £ &0 = () = £ (7).

Therefore, in case of X = £}, Rad(X)* can be identified with L(£2,{®) or with £®(£?),

and

(= )HRadX) —sup Z\g; (k)] )1/2

neN

However,
122 Raace) = / supnzx o (8)]dt.
These two norms are not equivalent on Rad(X* )

Proposition 4.42 IfY is a K-convez space then WR(X,Y) = R(X,Y).

Proof Let (u,) € WR(X,Y) and let z; € X for i = 1,...,n. Using that Rad(Y)* =
Rad(Y*), we have

(f nZuJ O A < () W)l

= sup{| ) (uj(z;),u)]: |l Y urrilleaquye) < 1}
j=1 j=1
0O

It is clear from the proof of Proposition 4.42 that WR(X,Y) = R(X,Y) for all Banach
spaces Y such that Rad(Y)* = Rad(Y™). For later use, we point out that

Lemma 4.43 Let 1 < p,q < oo. For a sequence (u;) in L(X,Y) we have (u;) €
b, (X,Y) if and only if F : £,(X) x 7 (Y*) = € defined by F((2,),(y;)) = ({unZn,y5))

is a bounded bilinear operator. In this case ||F|| = m,4((u;)).

Proof Let (u4) € (X,Y). We have

”pq

”F((xl ”1 Z' unxnayn

IA

() lee ) | (W7 e (-
< Tpg((w))eg((@NN W) lew (v,
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Therefore F' is bounded, with ||F|| < 7, 4((us))-
Conversely, suppose F' is bounded. Then

Y Kungn, y) |l = 1F (@), @) < IFeg((@) @) e vy,

n=1

This shows that (u,) € £y, (X,Y) and 7, 4((us)) < [|F]. a

Theorem 4.44 Let 1 <p <2

(i) If Y has type p, then €., ,(X,Y) C £, (X,Y).

(i) If Y* has cotype p', then €, ,(X,Y)C WR(X,Y).
(#i) If Y* has cotype p', then £, (X,Y) C UR(X,Y).
(iv) If Y* has the Orlicz property, then £, (X,Y) C UR(X,Y).

72,1

Proof (i) This follows from #(Y) C Rad(Y).
(ii) Assume Y* has cotype p'. Then Rad(Y™*) C ¢'(Y*) continuously, i.e. there exists
C > 0 such that [|(y7) |l v+y < Cll(y)||r,- Also,

Rad(X) € £,(X), with e((2:)) < ll(z:)llr, (cf- [19), p. 234).
Suppose (u;) € £5,,(X,Y). Then

F(X) x (V") = £ ((zn), (42)) = (n@n,u))

is bounded with ||F|| = 7, 2((w;)). Thus for all finite sets of elements zy, s, -+ ,Z, in X

and y/,---,y; in Y*, we have

i

(), N

Tp2((wi))e2 (@) (Y ewr ey
Tp2((u))Cl(z) R 11 (95 || s
K| (@i)l| ra |l (%) || R, where K = mp 5((u;))C.

Z K{urTe, v
k=1

INIA

Il

Thus we have (u;) € WR(X,Y). We may of course put C = C,(Y*), the cotype p’
constant of Y* (cf. [19]).
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(iii) Let (uy) € 4r,,(X,Y). For 1, ,2, € X and y{, -y, € Y* we have by
Lemma 4.43 that

> Nuizi y)| < mpa((w))ea (@) N E)ller (vey < € mpal(ua))er((zi))en((87))-

i=1
(iv) The same argument applies as in the proof of (iii). Now using that by the Orlicz

property of Y* we have £ (Y*) C £2(Y™*). a

Similar arguments yield the following:

Theorem 4.45 Let 1 < p < 2.

(i) If Y has cotype p', then £, (X,Y) C &, (X,Y).
(it) If Y has cotype p', then R(X,Y) C E,rp,’l(X, Y).
(iti) If Y* has type p, then WR(X,Y) C ¢, (X,Y).

Remark 4.46 Let 1 < p <2 < g < oo and denote by Co(X,Y) and T,(X,Y) the spaces

of operators of cotype q and type p, that is
Co(X)Y)={u: X =Y :(yj); € (Rad(X),0%(Y)),u; = u,j € N}

and

(X, Y)={u: X =Y :(y); € (#¥(X), Rad(Y)),u; = u,j € N}.
Let X and Y be Banach spaces.
(1) If (u;) € Rad(X,Y) and u € Cy(Y, Z), then (u;) € £y, , (X, Z).
(2) If (u;) € Rad(X,Y) and u € T,(Z, X), then (uju) € (&(2), 2(Y)).
(3) If (u;) € Rad(X,Y), v € Cy(Y,U) and u € ,5(Z, X), then (vuju) € e, ,(2,0).

Theorem 4.47 Let 1 < p < 2 and let X be a Banach space such that X has cotype p',

let Y be a G.T. space of cotype 2 and let u; : X — 'Y be bounded linear operators for all
j €N. Then

(ui) € b, ,(Y*, X*) = (u;) € R(X,Y).
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Proof  Recall from Proposition 4.8 that (u;) € (¢ (X),¢*(Y’)). Since we can identify
Rad(Y) with £2(Y) (see Theorem 4.30), it follows that there exists a C' > 0 such that

/0 1S w0 e < (sl

i=1
< Cliua)llier ooy @i ller (x)

1 n
K [ 13 asr@)lde, where, K = Ol a0 Cr ()

IA

O

Corollary 4.48 Let 1 < r < co and u; : L"(u) — L'(v) be bounded linear operators. If
(u}) € Ln,, (L2(v), L™ (1)) for p = min{r’,2}, then there ezists C > 0 such that

n

IO tus (@)1 2y < CUQ 16321l

7=1 j=1

for any collection ¢y, bz, ..., dn in L7 (1).
Another related notion is the following:

Definition 4.49 (c¢f. [28]) Let X and Y be Banach spaces. A sequence of operators
(u;) € L(X,Y) is said to be semi-R-bounded (i.e. (u,) € SR(X,Y)) if there ezists

C > 0 such that for every z € X and a,,--- ,a, € C we have
1 n n
(/0 1Y wi(@)ri@)as|?dt) > < € (Y las*)2 el (4.4)
i=1 j=1

[[(u)||lsr := Inf{C > 0 | such that ({.4) holds} is the norm on SR(X,Y).

It was observed (cf. [28], Proposition 2.1) that SR(X,X) = ¢*°(L(X, X)) if and only
if X is of type 2. Note that R-boundedness of sequences in L(X,Y) implies semi-R-
boundedness of the same. It is known that if X is separable and is either a Hilbert space
(i.e. X = (%) or a G.T. space of cotype 2, then SR(X, X) = R(X, X) (cf. [28], Theorem
2.2 for proof). Moreover, the result in [28] actually characterizes the separable Banach
spaces X for which SR(X, X) = R(X, X). The proof of (a more general version of) the
result in [28] can be greatly simplified in the context of multiplier sequences and basically

follows via the following characterization of SR(X,Y).
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Theorem 4.50 The space (SR(X,Y),||.llsr) is isometrically isomorphic to the space
((X), Rad(Y)).

Proof  Suppose (u,) € SR(X,Y) and {z,, -+ ,z,} C X. From Chapter 2 we know
that '

Ze,@xi

xz “

in ?®X.
It is clear that if (\;) € £2 and z € X, we have that (\ju;z) € Rad(Y) and

1(Ausz) Ry < Nl(wi)llsrll (M) l2]l]]-
Hence
(0,0, ,0,wis, 0, ) = (Sisuses); € Rad(¥)
and
11(0i5u5: )5l Ra < M () lsrll (8i5);l2ll:ll = || (wi) | srllz: el

Therefore, it follows that (uiz;) = Y, (d;;u;z;); € Rad(Y) and
(wszi)llre < (Y Neddlzllzsl) (us)llsr
i=1

Since Z?:l e; ® x; is just one of the representations of this element of #2&X and by the

definition of the projective norm, it follows that

n

26i®$i

i=1

Ia)llsz = I(z:)ll @l (ws) L5k,

A

This holds for all finite sets {z,, - ,z,} C X, showing that (u;) € (#(X),Rad(Y)) and

1uill2), re) < M) llsr

Conversely, suppose (u;) € (£2(X),Rad(Y)) and let ay,- -+ ,a, € C and z € X. Then we

“(Uixi)”Rz <

have

([ I ramal? @} < elenles)l

= {l(uill2),r:)  sup Zlaz

e2((z} ))<1
1 1
< ||(Ui)l|(<2>,R2)(Z ls)? sup le )2
i=1 ezt ;5
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n

= [ larn (Y el 2 |l]l.

=1

Since this is true for all ay,--- ,a, € C and r € X, it follows that (u;) € SR(X,Y) and

Il (wi)llsr < I1(za)ll(2),R2). 0

It follows from the continuous inclusion ¢2(X) C Rad(X) and Theorem 4.50, that
R(X,Y) C SR(X,Y) for all Banach spaces X and Y. The reader is referred to [28]
(p. 380) for an example of a sequence of operators which is semi-R-bounded, but not
R-bounded; indeed, the authors in [28] show that if (ef) is the standard basis of £¢
(where, 2 < ¢ < 00) and w = (§;) € £7 is fixed, then the uniformly bounded sequence of
operators (S;) := (e; ® w) in L(£9,£7) is not WR~bounded. Because of ¢ having type 2,

the inequality (4.4) can be obtained as follows:

(/0 IlZSj(l“)rj(?f)ajll2 dt): < c||(Si(=)as)(< n)llae

< (O (ailISllen®)

7=1
< e sup ISl lasl) Rz,
7j=1

where ||S;|| < ||w]| for all j. Thus (Skx) € SR(¢9, £9).

The following proposition sheds more light on the question of when the equality

SR(X,Y) = R(X,Y) holds.
Proposition 4.51

(i) If X is a Grothendieck space of cotype 2, then SR(X,Y) = R(X,Y) for all Banach

spaces Y.

(i) If for some Banach spaceY (thus also for Y = X ) the equality SR(X,Y) = R(X,Y)
holds, then X has cotype 2.

(i11) If X is a Hilbert space and Y is a Banach space of type 2, then
SR(X,Y) = R(X,Y).
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Proof (i) This follows from Theorem 4.50 and the characterization of Grothendieck
spaces of cotype 2 by 2(X) = £?°® X = Rad(X).

(ii)) We show that SR(X,Y) = R(X,Y) implies that Rad(X) is a linear subspace of
2(X). Let (z;) € Rad(X) and let z; € X*, with ||z}]] = 1 and z}(z;) = ||z:]|- Put
u; = I ® y, where y € Y is fixed, with ||y|| = 1. Then

() € SR(X,Y) = (£4X), Rad(Y)),

because of

1 n
JAD I / HZn (el dt
1=1
= / |ZT’ i (z)|? dt
Rema:_lc 4.19 Z |.'I}:(Z:L‘)|2

< Z (AT (] %

for all (z;) € £2(X) C £2(X). Hence, (v;) € (Rad(X), Rad(Y)). However, for all n € N,

we also have

gllxill2 = / Zn llz:l[1? dt
/ lZn *(z:)]? dt
= [ 1o a
/0 ||;n(t)ui(a:i)||2 dt.

Therefore, it follows that

S Jlzal? gsup/ ||Zn Jus ()2 dt < o0,
i=1 "
showing that Rad(X) < ¢*>(X) is a norm < 1 embedding.

(iii) We refer to Remark 4.52 below, where a more general case is discussed. O
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In the following few remarks, we analyse the relationship of ¢*°(L(X,Y’)) to the other

families of multiplier sequences.

Remark 4.52 (see for instance [8]) Let X be a Banach space of cotype q , Y be a Banach

space of type p for some 1 <p<g<ooandletl/r=1/p—1/q. Then

(L(X,Y)) CR(X,Y) C£°(L(X,Y)).
In particular, if X has cotype 2 and Y has type 2, then R(X,Y) = ¢°(L(X,Y)).
Remark 4.53 If X and Y* have the Orlicz property then £°(L(X,Y)) = UR(X,Y).

Proof By Proposition 4.36 we only need to show that ¢*°(L(X,Y)) C UR(X,Y).
Notice that the continuous inclusions £} (X) C ¢*(X) and £, (Y*) C ¢2(Y*) correspond to

the Orlicz properties of X and Y* respectively. Then, for (u,) € £*(L(X,Y)), we have

> Hurar, i)

IA

D el
(sup el O el 23 Nll*) 2

n n
< > 2 et
< Cloup unl) g |3 enanl o Y- il

IA

where in the last step of the proof the existence of C' > 0 such that the inequality holds,

is a direct consequence of the inclusions mentioned in the second line of this proof. O

Remark 4.54 Let Y be a Banach space of type p for some 1 < p < 2 andletr > 1
satisfy 1/r =1/p — 1/2. Then

F(L(X,Y)) C SR(X,Y) C £*(L(X,Y)).
In particular if Y has type 2, then SR(X,Y) = ¢>°(L(X,Y)).

Proof = We prove the inclusion £'(L(X,Y)) C SR(X,Y). Let (u;) € ¢(L(X,Y)).
There exists C' > 0 such that
(f HZuJ D@l < O el
7=1
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IN

Cllzll(z e 1Pl )/

Clalill @)l las1H)M2.

j=1

IN

The other inclusion is immediate. O

Remark 4.55 Neither SR(X,Y) Cc WR(X,Y) nor WR(X,Y) C SR(X,Y) is generally
true. For instance, if Y has type 2, then SR(X,Y) = ¢*°(L(X,Y)) and

WR(X,Y) = R(X,Y). So, WR(X,Y) C SR(X,Y) for all X in this case. On the other
hand, if we consider a G.T. space X having cotype 2, then SR(X,Y) = R(X,Y) (see
Proposition 4.51) for all Y. So, in this case, SR(X,Y) C WR(X,Y) for all Y.

Remark 4.56 In [28] the authors consider some new applications of semi-R-bounded
and WR-bounded sequences. They show that for each z € X and (u;) € SR(X, X), the
sequence (unz) has a weakly Cauchy subsequence. Using this fact, they then show that if
X is a weakly sequentially complete Banach space such that L(X, X) contains a semi-R-
bounded sequence (u;) such that each u; is weakly compact, upu; = wug for allk, l € N
and limg 0 || — ugz|| = 0 for every z € X, then X is isomorphic to a dual space.

In case of L(X, X) containing a WR-bounded sequence with the same properties, one also
needs the space X to satisfy the property (V*) of Pelczynski to obtain the same result.
Since L'(0,1) is not a dual space, it follows that L(L*(0,1), L*(0,1)) does not have a semi-
R-bounded or WR-bounded sequence of operators (u;) with the mentioned properties. It is
also shown in [28] that if K is a compact metric space so that L(C(K), C(K)) contains an
R-bounded sequence (u,) with the above mentioned properties, then C(K) is isomorphic

to co. Some applications to semigroups of operators are also considered in [28].

4.3 Connection of R-boundedness and Schauder de-
compositions

The authors of the paper [15] highlighted the importance of the concept R-boundedness

(randomized boundedness) of collections of operators in multiplier results of Marcinkiewicz
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type for LP-spaces of functions with values in a Banach space, by showing the interplay
between unconditional decompositions and R-boundedness of collections of operators.
Also, in the same paper, the authors show connections between R-boundedness and ge-
ometric properties of the underlying Banach space.

Some important operators in analysis may be represented in the form
Th(z) = Y MDsz,
k

where A = ()\;) is a sequence in C and D = {D,}>2, is a given Schauder decomposition
of the Banach space X. Characterization of sequences A for which T is bounded on X
(i.e. T € L(X, X)) is an interesting problem.

Recall that a collection D = {D,}2; of bounded linear projections in a complex Banach

space X is called a Schauder decomposition of X, if
(i) DD, = 0 whenever k # ¢,
(i) 2= 0o Dez forallz € X.

If the series Z?—i—o Dyz is unconditionally convergent for all z € X, then D is called an
unconditional decomposition. If D = {D,}°; is an unconditional decomposition of X,

then the smallest constant Cp such that

N N
IS exDizllx < Coll S Dialix
k=0 k=0

holdsforalle, = +1,k =0,1,...,N,all N € N, and all z € X, is called the unconditional
constant of the decomposition.

Let (Q2, F, P) be some probability space. Using the formulation of unconditional summa-
bility given in Lemma 1.4 of [19], it can be shown that if D = {D,}%, is an unconditional

Schauder decomposition of the Banach space X, then for all 1 < p < co we have that

N N N
Co'll Y Dizlix <11 exDizllzsxy < Coll S Dexlix
k=0 k=0 k=0

holds for all ¢, = £1, K =0,1,...,N,all N € N, and all z € X. If, on the other hand,
for some 1 < p < oo there is a constant C such that the above inequalities hold, with C

in place of Cp, then the decomposition D is unconditional.
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By {e:}$2, we shall denote a sequence of independent symmetric {-1,1}-valued random
variables on some probability space (Q,F, P). In the previous section we considered R-
bounded sequences of operators. We can actually define R-bounded families of operators

(with respect to the given probability space) as in the following definition.

Definition 4.57 A collection of operators I' C L(X,X) is called R-bounded if there

erists M > 0 such that

N

N
I Z ex Tzl L2(0,x) < M| Z ex Tkl L2, x)
k=0 k=0

for all {Tx}}o C T, all {zx}4_y C X and alle N € N. The smallest constant M such

that the inequality holds, is called the R-bound of T

Note that by Kahane’s inequality we can replace the L?(2, X) in Definition 4.57 by

L*P(Q,X), 1 < p < o0, adjusting the constant M appropriately.

Although the collections {T}}& , in the above Definition 4.57 need not be mutually
distinct, it is proved in [15] that we may replace the phrase “for all {T;}}_, C I’ in the
definition by “for all {Tx}&_, C T for which T} # T; if i # 57.

The results (and their proofs) in the following short discussion in which we aim to in-
troduce the reader to yet another area of application of E-boundedness, can be found in
paper [15], which is a beautiful display of the natural occurrence of R-bounded collections
of operators. We have no claim to fame, but only mention the results here to illustrate

how a special type of “multiplier boundedness” comes into play in the study of Schauder

decompositions.

Given a strictly increasing sequence {gx}%2, in N and a Schauder decomposition D =

{Dp}22, of X, put

9k

Ay= > Dy (k=0,1,...),

{=qr_1+1
where ¢_; = —1. Then A = {A;}2, is also a Schauder decomposition, called a blocking

of D.
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The following two theorems show the relevance of R-boundedness in the context of un-

conditional decompositions.

Theorem 4.58 ([15], Theorem 3.4) Let {A¢}2, be an unconditional Schauder decom-

position of the Banach space X. Suppose I' C L(X, X) is R-bounded (with R-bound M ).

If {TW )}, C T such that ATy = ThlAg for all k, then the series Sz := Y TplAgx s
k=0

convergent in X for all x € X and defines a bounded linear operator S : X — X with

|S|| < K (where K only depends on M and the unconditional constant of {Ax},)

Theorem 4.59 ([15/, Theorem 3.5) Let D = {Dy}32, be a Schauder decomposition of
the Banach space X. Let {qx}2, be a strictly increasing sequence in N and let A =
{A}32, be the corresponding blocking of D. Let K > 0 and let Ak be the set of all

complez sequences A = { A}, such that

o | M| < K forall k €N,

gr—1
e S e —M| <K forallkeN.

€=gp_1+1

Then the following are equivalent:

(i) {T\ : A € Ak} C L(X,X) with |[T)]| £ CK for all X € Ag and some constant
C > 0.

(i) The blocking A is unconditional and there is a constant M > 0 such that

N N
I Z €k P, Tkl 12(0,x) < M| kaxk”L?(Q,X)

for all N € N, all {z3}32, C X with 2y € R(Ag) and all {m}2, such that
gr-1+1<my < g for ke N

Here P,, and Ty are as before.

Given a probability space (2, Z, 1) and an increasing sequence Ay C A; C A, ... of sub-
o-algebras of 2, we denote by E(-|.4;) and EX (-|.4;) the conditional expectation operators

with respect to A; in LP(u) and LP(u, X) respectively (1 < p < co), where X is a Banach

space.
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Definition 4.60 A Banach space X is called a UM D-space if there ezists a constant
Co(X) (the UM D-constant of X ) such that
llooBX (£ Ao) + > e {B* (F14) = BX (f14;-1) Hlz2qux) < ColX) N Fllzogx)

=1
for all choices of a; = =1, for all f € L*(p, X), for alln =1,2,... and for all (Q, T, )

and {A;}32, as above.

The condition in (ii) of Theorem 4.59 is in general strictly weaker than the R-boundedness
of the collection {P,}5°_,. However, the following theorem gives a condition which

guarantees the R-boundedness of the same.

Theorem 4.61 ([15], Theorem 3.9) Let X be a UMD space and let A = {A;}22, be an
unconditional Schauder decomposition with unconditional constant Cn. Let

Po=3 % oAk Then

I Z e Przi]| 2 x) < Co(X)CAll Z €Tkl 22(u,x)

k=0 k=0
for all zg,z1,...,z, € X and all n € N. Thus, {P,}.en 18 R-bounded.

From the work in [15] we have the following nice example of an unconditional Schauder
decomposition A = {Ag}2, for which the collection

S = {ZAk : F C N, F is finite}
kEF

is not R-bounded (even if X is a UM D-space).

Example 4.62 Let H be a separable Hilbert space and let X = C,, 1 < p < 00, be the
Schatten p-class of compact operators on H. Take a fized orthonormal basis {e,}52, in
H. For m,n € N we define Ep,, € Cp by Epy(2) = (z,en)ey, for allz € H. Forme N
we define the (row) projections Ry, : C, = Cp and (column) projections Cp, : C, — C,
by Ry(A) = EmmA and Cp(A) = AEnpm, A € C,, respectively. Then {Rn,}%_, and
{Cn}3_, are both unconditional decompositions of C, and Cy Ry, = Ry, Cy, for allm,n €
N. The authors in [15] (Ezample 3.10) show that the collection

R = {ZRk:FcN,F ﬁnz’te}

keF

I ————————



s not R-bounded tf p # 2.

In case of p =1, t.e. X =0y, the collection P = {P, : n € N}, with P, =Y ;" R, is
not R-bounded. This shows that the result of Theorem 4.61 does not hold in general, if
X is not a UM D-space.



Chapter 5

(p,q)-multiplier functions

Throughout this chapter (€2,3, 1) is a finite measure space and X is a Banach space.

Definition 5.1 We call a function h : Q@ — X a strongly p-integral function if for
each weak p'-integral function g : Q — X*, the function Q — K :: t — (h(t), 9(¢)) is a 1-

integrable scalar function.

Let LP{u, X) be the vector space of (equivalence classes of) strongly p-integral functions

h:Q — X such that t — (h(t), 9(t)) is in L'(p) for all g € L2 (u, X*) and

IRllzruxy = sup f ((2), g(8)] du(t) < oo.

lgliee* <1

For the moment we assume that ||A||s(u x) is & norm. We will prove this fact later on.

Lemma 5.2 (a) Let 1 < p < oo then LP(u, X) C L2(u, X), V X. The embedding is

continuous with norm < 1.

(b) Let 1 < p < oo. Then LP(u, X) C L?(u, X) where the embedding is continuous with
norm < 1. In particular L*{u, X) = L'(u, X) with ey = e, x).

Proof

(a) If f € LP(u, X), then for each z* € X* we have z* f is y-measurable and
l(&* o A = lz*(FEN < M= IlF B,  Vie
Thus [(z* o f)()|P < [z [Pl f ($)]]”, so that
([ 10 NOP due)® < Il [ 1P adut))s < oo
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Therefore f € L2,(p, X) and || f[|¥¢%* < [|f||zr(u,x). (This is true for 1 < p < 00).

(b) Let h € L'(u, X). For each g € LP(p, X*) there is £ € &, u(£) = 0, such that
{g(t) | t ¢ E} is weak® bounded (thus, norm bounded) in X*, i.e. g € L®(p, X*).
Thus we have

[ h(2), )1 it < (esssup La(®) | (1RO dute)

This shows that h € L*{u, X) and ||h||z1¢x) < [|Allz2(4x). The inclusion
LP(u, X) C LP(p, X) with [[Aflze(ux) < 1l 2o

for 1 < p < oo, will follow from a more general result, Theorem 5.15, later on in

this chapter.

O
Theorem 5.3 Let (Q, %, p) be a finite measure space. Then LP{u,X) is a Banach space.

Proof Let (h,) be a Cauchy sequence in LP{u, X). For € > 0, there exists N € N such
that

sup / () = ha(t), 9(8))] dis(t) < &, ¥ mm > N,

In particular, for each g € B,y (wx) Ve have

fg (han(t) = h(8), 9(2))] dpa(8) < & ¥ mym > N

i.e. ((hn(:),g(:)))n is a mean Cauchy sequence (Cauchy sequence in L'(x)). Therefore,
there exists fy € L'(y) such that {(h,(-),g(")) i) fg in L*-norm. By Lemma 5.2, (h,) is
also a Cauchy sequence in LP(u, X), i.e. there exists h € LP(u, X) such that h,(-) :"g h(-)
in LP-norm (i.e. also in mean). By 2.5.1, 2.5.3 in [4] (see p. 93) there is a subsequence

(hn,) so that ||A,, () — A()|] % 0 ae. Since for each ¢ € ©, g(t) € X*, it follows that

(i (1), 9(0)) = (h(2), 9(8)) ace.

Thus we see that
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(1) ({hn,(-),g(:))) is a mean Cauchy sequence.
(i) ({hn,(-),g(-))) converges to (h(-),g(")) a.e.
(i) ((An,(-),g(-))) is integrable, since hn, (-) € LP(u, X) and g € LP,(u, X*).

Therefore we may conclude that (h(-),g(+)) is integrable and {(h,,(-), g(-)) oﬁg (h(-), ("))
in mean (cf. [6], p. 104). Since g was arbitrary chosen, we see that h € L”{(u, X). Also,

1m0, 961 —hm/I (0,90 du(®) = [ 11, (0] autt)

It follows that f,(-) = (h(-),¢(")) a.e.,

/Q|<h(t)—hm(t),g(t))ldu(t) /lh(t) g(8)) = (hm(2), 9(£))] dp(t)

_ /m, £) = (Am(2), 9O dus(?)
= Im / [(ha(t), 9(8)) — (Bm(8), 9(8))] dia(t)
Q

< € YVm>Nandallge BL”'(uX‘).

hy, = h € LP(u,X) in norm.

Remark 5.4 We refer to [20] (Example 10 on p. 228) or [18] for the fact that

J:L'(u)® X — L'(u, X) such that J(ZXA,- ® ;) = Zar:,-x,;i

i=1

is a norm < 1 bounded linear operator, which maps the dense subspace of L'(u) <§> X
consisting of elements of the form 3. | x4, ® z;, where Ay,- -, An are disjoint sets in &
and o1, -+, T € X, onto the dense subspace of simple functions in L'(u, X). Moreover,

A
the untque extension of J to L'(u) ® X is an isometry onto L'(u, X).

By the Universal Mapping Property it follows that

Theorem 5.5

by an wnjective embedding of norm < 1.
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Proof B

DWex
Let f € LP(u) and £ € X and define a bilinear mapping 8 : LP(u) x X — LP{(u, X) a
follows:
B(f,z) = hy with by, (t) = f(t)x. First we show that hj, € LP(u, X). Choose
g € L% (1, X*) and consider F: Q — K:: t = (hs.(t),g(t)); then

F(t) = (f(t)z, 9(t)) = f(¢)(z, g(t)),

showing that F € L!'(u). B is bounded, since

1B, 2) = sup / (s (2), 9(8))] dut)
lglie=<1 /9
= )
Hgll?‘lgq/l l M()

—  sup / F()z, g(0))] du(t)

llglieer<1/a

< sup | / FOP du(e) 3 / (@) du(t))?

llglleek <1

< N fllzglizl, ie. 18] < 1.

Therefore, by the Universal Mapping Property it follows that there exists a bounded
linear operator ¢ : LP(u) ®X — LP(u, X) such that ¢(f ® z) = hy, with ||8l| = ||8]]-
Note that ¢ corresponds with J in Remark 5.4, but now we only work with the subspaces
LP(u) ® X of LYp) ® X and LP{u, X) of L*(u, X). Thus, LP(p) ® X is a norm < 1
injective embedding into LP{u, X). O

Ifg:Q—= Xand h:Q — L(X,Y) are py-measurable functions, then Fj, , : 2 — ¥ such
that Fp o(t) = h(t)(g(t)) is also y-measurable:

Let ||h(t) ~ ha(t)]] == 0, u-a.e., where each h, is a simple function,

ha =Y TinXe,., Tin€LX,Y).
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Then

Frg(t) = R(2)(g(2)
= lim A (8)(9(t)) n—ae

n—o0
= T']"_I_*TEOET; XEJn( )'
Since g is u-measurable, there exists a sequence
m:2—= X gm = in,mXE,-,m

such that g, —+ g, p —a.e. where E;, € S and E;,(nNE;,n =0, Vi#j Now

kn kn Im
Z T]'," (g(t))XEj,n (t) = n!ul—r)réo Z Z Tj,ﬂ(mi,m)XEj,nﬂEi,m (t)
j=1 j=1 i=1

Clearly Z o T, n(Tim)XE;nnE;m ¢+ 2 — Y is a simple function for each m € N.
Thus (Z 1 Tin(9(t)) Xz, . (t))a is a sequence of u-measurable functions, which converges

to the limit function Fj, pointwise y-a.e. This shows that F} 4 is p-measurable.

Definition 5.6

(1) A measurable function h : Q@ — L(X,Y) is called a (p, g)—integral multiplier for
the pair (X,Y) if for each g € LI (u, X), we have:

The function Frg : Q@ = Y t t = h(t)(g(t)) is in LP(u,Y) and the linear operator
B L3(u, X) = LP(1,Y), given by h(g) = Fh g, 1s bounded.

In this case, we let

)=l = owp_ ([ Fhafo)Panto)’ <

(2) More generally, if E(2, X) and F(£,Y) are normed spaces of i - measurable functions
from 2 into X and from Q) into Y respectively, containing the constant functions, then a
(E(Q,X), F(Q,Y))— integral multiplier for the pair (X,Y) is a measurable function
h:Q — L(X,Y) such that for each g € E(Q, X), the function

Frg: Q=Y 1t = h(t)(g(t))
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is in F(Q,Y) and the corresponding h : E(Q, X) — F(Q,Y) is bounded. In this case we
let

\hllzr = Al= sup  ||Fugllr@y).
llglleq,x)<1

We agree to denote the vector space of equivalence classes of (p,¢)-integral multipliers

by Lr, (X,Y); ie. for hi,hy € Ly, (X,Y), we have h; = hy if and only if hy(2) = ha(t)

Tpq

pu-almost everywhere. In the general case, the vector space of equivalence classes of

(E(Q,X),F(Q,Y)) - integral multipliers, will be denoted by (F(Q, X), F(Q,Y)).

Let L>®(p, X) C E(, X) and F(Q,Y) C L} (p,Y) and h € (E(Q, X), F(Q,Y)) be given.
Since h: Q — L(X,Y) is measurable, it follows for each € > 0 that there exists a simple

k
function Q@ — L(X,Y) : t — Y Sixa,(t), with A; € £ and A, N A; = 0 if i # 7,
i1

k
such that ||A(t) — 3 Sixa,(t)|| < ¢, almost everywhere. Let hy : & — R be given by
i=1
By(6) = ()]l We hae

iR — Z | Sillxa, (t)] < ||A(t) — ZSiXA‘.(t)H < ¢, almost everywhere.

i=1 i=1
It is thus clear that Ay is a measurable real valued function. The fact that
h:Q — L(X,Y) is measurable, also implies by the Pettis Measurability Theorem (cf.
[20], Theorem 2, p. 42) that there exists A € ¥ such that u(A) = 0 and h(Q\A) is a
(norm) separable subset of L(X,Y). Let (7,,) C L(X,Y) be a dense countable subset
(sequence) of h(2\A). Let € > 0 be given. The sets A4, = hﬁ' (N1 Tull = €/3, 1Tl + €/3))
are measurable, therefore the sets B, = A, N (2\A) are measurable too. For each
t € Q\A, there is n € N such that [|h(t) — To.|| < €¢/3, i.e. t € B,. Thus we see that
O\A = UpB,. Then let z, € X with ||z,|| = 1, such that ||T,,|| < |Tn(zn)|| + €/3. The
function g : € — X such that g(t) = >_z,xs,(t) is measurable. Since the range of g
is bounded, it follows that ¢ € L°°(u,)n(), ie. g € BE(Q,X). It is now clear that the
function t — A(t)(g(t)) is in L}(,Y). Also, if ¢ € B, then

IR = 1) (gD < IA®) = Tull + [ Tu(zn)ll + €/3 — {1R() (2n)]]
< €/3+2||T, - h(t)]| <e.
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This shows that ||A(t)]] < ||h(t)(g(t))||+ € almost everywhere. We have thus verified that
if L(y, X) € E(Q, X) and F(Q,Y) C L (g, Y), then

(E(Q,X),F(Q,Y)) Cc L', L(X,Y)).

In particular, we conclude that L, (X,Y) C L'(y, L(X,Y)).

Tp.q

Also, if 1 < p < 00, it follows that
(L7 (1, X*), L (1)) © L (, X™).

Now, suppose X** has RNP (and thus, X has RNP) and p > 1.
If h € (I7(u, X*),L'(n)), then the function ¢ ~ h(t)[g(t)] belongs to L!(u) for all
g € L” (u, X*), where h € L'(u, X**). Therefore

he{f el (mX™) | f()g()] € L (w), Yg € I (1, X*)} = (LF (1, X*))* = LP(n, X**)

because X** has Radon-Nikodym property. Also, if h € LP(u, X**) is given and g €
LP (i, X*), then h € ¥ (u, X*)*and t = h(t)[g(t)]isin L' (p);1.e. h € (L7 (1, X*), L} ().
Thus we see that

(L7 (1, X*), L () = LP(p, X*°)

if X** has RNP.

In particular, if X is any reflexive Banach space it follows that
(L7 (b, X*), L} (1) = P (1, X) = (LF (1, X7))".

For h € (E(Q, X), F(£,Y)) such that ||hl|z,7 =0, it follows that h=0,ie.

Fry(t) =0, —ae. forall g € E(Q,X).

Again using the Pettis Measurability Theorem, there exists A € ¥ such that pu(A) =0
and h(2\A4) is a (norm) separable subset of L(X,Y). Let (T,) C L(X,Y) be a dense
sequence in h(2\A). We consider the following possibilities:

1. T, =0 for all n € N. Then clearly, h{t) =0 for all t € Q\ A, i.e. h =0 p- a.e.

104



2. There is a subsequence (or, possibly a finite set) (7,,) such that 7,,, # 0 for all k
and T, = 0 for all n # n;. In this case, for the fixed A € £ and sequence (T}, ), we

may have:
(i) T,, — 0if K — co. Then let z,, € X, such that
|Zn, | = 1 and | Ty zn, || = || Tn, |-

Put gx(t) = zn, for all ¢ € @ and for all k. By assumption, gx € E(Q, X)
for all k. Therefore, for each k there exists Ay € Q, such that u(Ax) = 0 and
h(t)(zn,) = 0,Vt € Q\A;. Let B = (UgAx) U A; ie. B is a p-null set. For
t ¢ B, we have h(t) € h(Q\A) and h(t)(z,,) = 0 for all k. Clearly, h(t) # T,
for all k. Thus, if h(t) € {T,, : k € N}, then h(t) = 0. If h(t) ¢ {Tn,, : k € N},
then there exists a subsequence Ty, of (Tr,), such that Tpn; # Ty, for all j and
all k and Trn; — h(t) if j — oo. Now T3, = O for all j. Thus we have h(t) = 0.
Since t € Q\B was arbitrary, we conclude that h(¢) = 0 p - a.e. in the case

when T,,, — 0 if k¥ — co.

(ii) Tn, # 0if K — oco. Then there exists ¢ > 0 such that |7}, || > € for all &.
We follow a similar argument (as in (i}), now choosing z,, € X such that

o, |l =1 and || 15,2, || > €/2. We choose g and Ax € 3 such that
h(t)(z,,) =0, Vi € Q\ A,

as before and again let B = (UgAx) U A. Then ¢t ¢ B implies that
h{t) € h(Q\A) and h(t)(z,,) = 0 for all k. In this case we have

Hh(t) - Tnk” 2 ||h(t)($nk) - Tnkl‘nk“ = ”Tnk"l"n}:,l > €/2

for all k. This shows that h(t) ¢ {T,, : k € N}, from which it follows as in (i)
that A(t) is the limit of a null sequence. Thus we see that A(t) = 0,Vt € Q\B.

Again we have h(t) = 0 u- a.e.
Our conclusion is that ||Al|¢z,F) = 0 implies that A = 0. Thus,
(B, X), F(,Y), lAlls,m)
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is a normed space.

Both L (11, X) and LP(u,Y) contain the constant functions from Q to X and from 2 to

Y respectively, so that we see from the previous general result that (L, (X,Y),7,,())
is a normed space.

Definition 5.7 For any Banach space X the space L, ,(X) of (p, g)-integral functions
in X, is defined by

L, (X) = Ln, (X*,K) N L (i, X)

={ he L', X) | supgpgeuscs (o I(h(0), gD dia(t))? < co }.

We put 7y 4(h) == Sup”g”:)peakSl(fQ [(h(t), g(t))}? du(t))% and observe from the general case

that 7, 4() s @ norm on L., (X).

In this case the fact that m,4(.) is a norm on L., (X) also follows by a straightforward

argument: Suppose hy, hy € L,, (X) and mp,4(hy — he) = 0. For 0 # z* € X*, we put

:E*
) = ——— forallt € Q.
90 = Tl

i.e.

S =

: /
— ¥ ohy —x*ohy) ()P dul(t
It follows that z* o hy = z* o hy u — a.e. This is true for all choices of z* € X*. As we

mentioned before (refer to Corollary 7, p. 48 of [20]) this implies that hy = hy p — a.e.

= 0.

Following are some elementary examples of integral multipliers and integral functions.

Example 5.8 Let 1 < p <gq.

(1) Choose x € X. Define h : 2 = X by h(t) =z, Vt € Q. Let g € LI (u, X*), then
the function Fj, ¢(-) = h(:)[9(:)] € LI(n) C LP(u) and therefore h € L,, (X).

(2) Consider T =37 zf® f;, fi € L®(u,Y) and z} € X*, i =1, - ,n. Define

h:Q — LX,)Y) by h(t) = zn:xf ® fi(t).

i=1
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(3)

Let Fy o(t) = h(t)[g(t)] with g € L% (u, X). We show that Frg € LY(u,Y):

(1Pl aue)i = ([ 13 (at, 000 £l ante’

< esssup(max I f:(t) (/ Z[ z7, ()7 dp( ))q<oo.

Hence Frg € L9(u,Y) C LP(u,Y), therefore h € L, (X,Y).
Let1<p<gq, fel®p,X)andze X, ||z|| =1. Define

hie: Q= L(X* X) by hyat) =2 ® f(2).
For Fy, o(t) = hy(t)[g(t)], where g € L4 (u, X*), we have

( /Q 1 Fho 0I5 du(t)> = ( /ﬂ Ha(®), DPIFOIP du))?
“f“mem(L Kg(t), 2)|7 du(t))s

< ”f”Lw(u,X)HgH;“m'“ < 00.

IN

Thus, hyg € Lvrp,q(X*:X) and 7Tp,q(hfﬂ) < ”f”L""(u,X)'

1

Remark 5.9 If f € L®(p) and z € X, ||z{l = 1, we let h: Q — X be defined by
h(t) = f(t)z. Then h is measurable and for each g € LI (p, X*) and 1 < p < q we

have:

Al

IA

(/QKh(t),g(t))V’ du(t))» (/Q F@OP Kz, gD du(?))

“f“Lw(m(/Q [, g())F du(t))7

”f”Loo(;L)Hg“;"m'C < 00.

A

IA

Thus, with each f € L>(u) we associate h € Ly, (X) such that m q(h) < {|f|lLe(n).

Clearly, each f € L®(u) gives rise to many h € L, (X) by just choosing different

r € X fired. This, and the previous ezamples, indicate that if p < g, then L, (X)

18 big.
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(4) Let 3 = s+ 5 feL (1, X); g€ Ly(u,X*) and z € X, ||z|| = 1. Define
hre Q0= L(X*, X) by hy,(t) = 2 ® F(t), with
Fag(t) = hyo(8)[g(t)] = (9(t), 2) £ (2).

Then

1

(/ 1Fng ()1 du(t))s < / (g(t), )17 du(t)) 5 [ IFOIF du®)? < oo

ie. he L. (X* X)

(5) Let T € N(X,L>®(u,Y)), then
T = Z/\ix;‘ ® fi with ||lzi| < 1, fillcwquyy < 1 and (X)) € 2.
i=1
Define hr : Q@ — L(X,Y) by hr(t) = D2, Mz} ®f:(t). Notice that hp(t) € N(X,Y)
for each t € Q. Consider

Fry(t) = hr(t)g ]~ZA<xz,g )) £i(t) for all g € L%, (u, X).

We have

( / 1Fry I du(t))s = / n\;x g @) AP due)h

IN

( <Z A e, @I dute)’

/sz gO))* du(0)?
([ Il 9O} du(o)

i=1

Pl | Vet gnle duop
< Yo Idlallye

< ©o0.

IN

e

IN

Hence, it follows that with each T € N(X, L*(u,Y')) we assosiate hy € Ly, (X,Y)
for all g > p.

I (-



(6) In [19] (p. 56) it is said that T : X — Y is p-summing iff given any probability
space (2,5, u) and any strongly measurable function g : Q — X such that

geL?(u,X), thenToge LP(u,Y).

Now, for T € II(X,Y) given, let hy : Q — L(X,Y) be the constant function
hr(t) =T for allt € Q. For any g € L?(u, X) it follows that
t = hr(t)[g(t)] = T'(g(t)) = (T o g)(t)

is a function in LP(u,Y). Therefore, hy € L, (X,Y). Thus, with each

Tp,p

T e II,(X,Y) we associate hr € L, _(X,Y).

Tp,p

(7) Suppose h: Q@ — L(X,Y) has the form:

Zx )y xEe(t), Vi e

For g € LI (u, X) we have
Fiy(t) = Zx (9())yixe: (t)-

For each f € LP(u), 1§p<ooand%+-;—=1,

If @) Fre(ll = [IF(E Zw )vi xE: (8]

< 2 @2 @)l xz: ()
/Q 17(0) Fug()]) dut) < Z / £ )yl e (8) du)
< (max flul) Z/If z;g(t)| du(t) <

since ¥ o g € LI(u) for each .
Thus, Frg € L9(u,Y). This shows that h € L, (X,Y).

Lemma 5.10 Let 5 = ¢+ 1; k € L'(p) and z € X. If (kz)(t) = k(t)z Vt € Q, then
kx € Ly, (X) and mpq(kz) < ||k

rwllell-

e



Proof Given g € LI (u, X*), it follows that

k2, Pllerwy = / |(k(t)z, ()P d,u(t))%

l
/lk " dut) <[1g 2| du(t))}

< MKl llllliglly e

IN

Hence 7, 4(kz) < |||z liz]- O

Theorem 5.11 Ifp < g then (Ly, (X), LP(n, Y)) is continuously imbedded into
L(X, L, Y)).

Proof Choose h € (Ly, ,(X), LP(1,Y)) and define Uy, : X — L9(p,Y) by
Un(z) = g, with g.(t) = h(t)[z].

+
Let 1 = (% - é) . By Hahn-Banach it follows that for a given x € X there exists f €
L»(p) with || f]l 5, = 1 such that ( [o(I@)[]IP)? du(®)s = [, [F@IR® =P du(t).
(1)

Put k = |f|?; then
[ ordu = [ if@)Fdut)

Unlusgery = (] @l du(e)?
= 10 (hollI? duef
= [ Ol dus
= 1 K IREP duo)?
([ ORORIP due?

and

< |k H(Lﬂ,,,qoo, L (uY)) Tpqlkz]

S 1AllLay, ), Loy)) Ellzruy 2| (by Lemma 5.10)
= All(Lrpex), Lo@yy NIzl

< 0.
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Hereby [|Upzllzauy)y < [[Rll(L,, (%), Loy l|2]l, which implies Uy is bounded and
UM < Mhllzr g (), L2G¥y).

Proposition 5.12 (i) Let 1 <p<qand put 1 =1 — % Then,

(L9(p, X), LP(u, Y)) = L' (s, L(X, Y)).
In particular, L®(u, L(X, Y)) C (L9(u, X), L* (1, Y)).
(1) L>(u, L(X,Y)) C (LP(p, X), LP(11,Y)) for all 1 < p < oo,
(iii) Let 1 < q <p. Then (L¥(p, X), L7 (4, Y)) C L= (s, L(X, Y)).
Proof

(i) Forameasurable h: Q2 — L(X,Y) and ameasurableg: Q2 — X welet F,: 2 > Y
be the function Fj4(t) = h(t)[g(t)] as before. If h € (L9(u,X), LP(u,Y)), then
h € LY u, L(X,Y)) as was showed just after Definition 5.6.

Suppose r = 1: (i.e. p=1 and q = 00)
Ifhe L', L(X,Y)) and g € L9(p, X) = L=(u, X), then
([ 1Pl du®) = [ HOae] duto
< (essstgg Il [ WA dutt)
= cllolimgurn = [ IHON du(o)

Therefore L'(p, L(X,Y)) = (L*®(u, X), L} (1, Y)).

Suppose p < q and let + =

( /ﬂ 1Bl dps)

~ ¢ 7 # 1. Thus

- / IA(®) ()P du)?
/ﬂ 1B Pllg@)IP du)

( /Q IR dw( / o)l du)?.

1
p
1
P

A

IA



Thus if h € L7 (4, L(X, Y)), then ¢ := ([, [[h()||" du(t))* gives us
(/ 1 Engll” d)> < ¢ |lgllzagu,x) for all g € L*(u, X).
Q
Hence,
L™, L(X,Y)) © (L, X), LP (1, Y'))
and the embedding has norm < 1.
Conversely, let h € (L?(p, X), LP(p,Y)). Since

L%(1, X) € L7(s, X) and LP(u,Y) € L' (1, Y)

it follows from our previous observation that h € L(u, L(X,Y)). We show that
he L (u L(X,Y)) :

Suppose f € L™ (u). Put fi(t) = f(t)%l and fy(t) = f(t)%l’. From Tq—'+;7', =11t
follows that f(t) = fi(t)f2(t). Also, f; € L(u) and fo € L” (u). For € > 0 fixed,
let ||z;]| = 1 such that ||k(2)|| < ||h(t)(z:)|| + € for all ¢ € Q. Then ¢t — f,(t)z; is in

L9(u, X). Thus, t — h(t)(f1(t)z,) is in LP(,Y). Since f, € LP'(u), it follows that
t = R (N1 {O)z) I f2(8)] is in L (k). Also,

[RAILF@] < [RE @)L @]+ €l £ ()]
= [[A@®) (AL @20 + el f{R)], Vie.

This implies that t — ||h(¢)|||f(¢)] is in L' (u) and

/uh WA )] duatt) /uh L@zl 20 du) /If(t\du

This shows that h € L"(u, L(X,Y)). Since ¢ > 0 was arbitrary, we also see that
(Jo IR du(t))7 < mpq(h), because if [|fl] v,y < 1, then [y |1 ()e]l* du(t) < 1

(ii) h € L®(u, L(X,Y)) and g € LP(u, X) imply

S =

(/Q IROIg @I du(®)) SllhllLoo(u,L(x,Y»(/Q lg@IP du®))>.

(iii) Let 1 < ¢ < pand let h € (L9(u, X), LP(1,Y)). We need to show that ¢ — ||h(2)]|
is in L*(p). Take any f € L'(u). We may write f as f = f; - fo, where f; =
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fé € LIY(u) and fo = fEI' € L9(u). For € > 0 given, let ||z;|| = 1 such that
|h(t)]l < ||h(t)zs}| + €. The function t — fi(t)z¢ is in L9(x, X). Therefore, the
function t + h(t)[f1(t)z] is in LP(u,Y). However, fy € L9 (1) C [P (), i.e. the
function t — ||h(£)[f1(t)z:]||[f2()] is in L*(p). Also,

IR @1 < Ih@)zlF @ + el (O] = IR A @zl F2(0)] + €l £ ()]

for all ¢t € Q. It is therefore clear that ¢t v ||h(¢)|]|f(¢)| is in L*(u) and

/nh IO du) /nh A Ozl o)) dul?) /lf )| dut) < oo.

Since this holds for all f € L*(u), it follows that h € L*®(u, L(X,Y)).

In Proposition 5.12 we saw that
1
L (1, L(X, ¥)) = (Z7(4, X), L7(,Y)) when — = (

Also, L, (X,Y) = (L (1, X), LP(u, Y)). Now, L (p, X) = L®(p, X
L, o(X,Y)=LP(u,L(X,Y)) and

Lro(X,Y) = (L (1, X), L%(1,Y)) € L= (p, L(X, Y)),

where the last inclusion follows from:
h€ (LL(p, X), L=(1,Y)) = Fry(t) = h(t)(g(t)) € L=(u,Y) for all g € L (p, X), and

sup esssup [|A(¢)(g(t))[| < oo.

ligllwear <1 teQ
Now, for each z € X with ||z|| < 1 the mapping g(t) =z, Vt € Q, is in L (p, X). Hence

1) (gDl = l|A(¢) (=) and

ess igg |h(t)]] = esssup sup ||h(t)(z)]|

teQ [|zfj<1

< esssup  Sup 1R () (g(t))]
teQ |lgllyeak <u(Q)

< o0
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5.1 Inclusions among the spaces L., (X)

Theorem 5.13 Let 1 <r,s<00,1<py<pyandl < q < ¢.
Then

(Z) L7rr,q1 (X7 Y) g Lﬂ'r,qz (X’ Y)’
(1) Ln,, (X,Y)C Ly, (X,Y);

with continvous inclusions of norm < 1.

In particular, for 1 < p,q < 00; Ly, (X) C Lx,(X) and Ly, (X) C Ly, (X).
Proof

(i) Let he L, (X,Y); ie. for g € LZ(u, X) C LT (p, X) we have

Tr.q1

(/Qllh(t)(g(t))ll’ du(t))” < g (R) sup (/ 5" g($)|" dpu(t))

llz*I<1

< mog(h) sup ( /nxg O du(t)®

lz*|I<1

Consider the embedding I : L, (X,Y) — L, (X,Y). It follows from the above

inequality that 7,4, (h) < 7.4 (h), ie. ||T]| < 1.

Tr.qy Tr,q9

(ii) Let h € Lq,, ,(X,Y). Then, for g € L (1, X) we have 2*g € L*(u) for all z* € X~

and

/ 1A ()P du()F < ( / 1A (9()7* du(t)

1
< Tpys(h) sup /Iﬂcg ) du(t))>.
||x jI<1

Hence, h € Ln, ,(X,Y). Asin (i) the inclusion I : Ly, (X,Y) — Lr, ,(X,Y) has

1rP2,5 1|'P )8

norm < 1.

O

The following theorem gives the connection between the strongly p-integral functions and
the (1,p')-integral functions in X. From this connection it follows that (LP{u, X), [|hllLr¢u.x))

is a normed space.
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Theorem 5.14 Let 1 < p < o0 with £+ = 1. Then D{n,X) = Ly, ,(X) and
1 Rll e (u,xy = T (h).

Proof By definition we have

L, X) = L. (XK 0Ly X)

™
1,9’

= Ln_(X).

For h € LP(u, X) it follows that

/Q (A2, 9] dalt) < gl [Allzrgury-
T () < hlleu xy -
Let 7y (h) < 1. Then

hllruxy =  sup /QKh(t),g(t))Idu(t) < sup gl <1

laflzees <1 lollzeo <1
Allzouxy < 1 (R).

O

Theorem 5.15 Let X be a Banach space, 1 < p < q and % = . Then we have the

1_1
P q
following norm <1 inclusions:

. W @
L<#’X> C L"rp,q(X) g L(/‘L7X)

Proof

(1) We prove the inclusion L™ (u, X) C L., (X):
Let h € L™(pp, X) = L, ,(X) and let g € L{,(p, X*) be given. For all f € L7 (w),
consider the functions t — f(t)g(t). We show that they belong to LT (1, X*). To do

so, let £ € X and consider

! 1 ’ 1 1
([ 1 OO du)? < ([ 17@F du@)? ([ e o@)lr i < oo,
because & = z% + qi From our assumption it follows that ¢ — h(t)[f(t)g(t)] is in
L'(u). Since this is true for all f € L? (u), it follows that the function ¢ — h(t)[g(t)]

is in LP(u). This holds for all g € Lg (1, X*), so that h € L, ,(X) is our conclusion.
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(2) The inclusion L, (X) C L (u, X) follows from

Tp.q

Lo, (X) = L. (X*,K)nLu, X)

Tp.q Tp.q

= (Lg(m X7), LP(u)) N L (1, X)
C (L, X7), LP (1)) O L (u, X)
= L"(u, L(X*,K)) N L} (4, X)
— L, X™) 0 L (p, X)

= L"(u X).

g

Remark 5.16 It follows that LP(u, X) = Lrl,p/(X) C LP(u, X), from which the converse

inequality in Lemma 5.2 follows.

116




Notation

X,Y

Banach spaces.

The closed unit ball in X.

The space of bounded bilinear maps between X and Y.

The space of all null sequences.

The space of operators of cotype p.

The space of all finite rank bounded linear operators.

The space of all integral operators between X and Y.

Denotes R or C if no difference is relevant.

The space of all compact linear operators between X and Y.

The space of all bounded linear operators between X and Y.

The space of equivalence classes of X-valued Bochner integrable functions.
The space L?(u, K).

The space of equivalence classes of Lebesgue integrable functions on [0, 1].
The space of equivalence classes of Lebesgue measurable X-valued functions.
The space of all bounded sequences.

The space of p-absolutely summable scalar sequences.



>(L(X,Y))

br, (X,)Y)

The n-dimensional Euclidean (real or complex) space.

{(un) C L(X,Y) : supy, |lun| < oo}

The space of weakly p-summable sequences in X.

The space of unconditionally summable sequences in X.

The space of strongly p-summable sequences in X.

The space of absolutely p-summable sequences in X.

The space of (p, ¢)-summing multipliers.

The space of (p, g)-summing sequences in X.

The space of all p-summing multipliers in X.

The space of all strongly p-summing multipliers in X.

The space of all K regular Borel measures on X.

The space of all p-nuclear operators between X and Y.
Almost unconditionally summable sequences in X.

The space of all sequences with values in X.

The space of operators of type p.

Reflexive Banach space with a normalized unconditional basis.
The space of all almost summing operators between X and Y.
The space of all (p, ¢)-summing operators between X and Y.
The set of all (E(X), F(Y))-multiplier sequences.

A vector sequence space whose elements are sequences (a,) of numbers.

A vector sequence space whose elements are sequences (z,) C X.
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XN

The Kothe dual of the sequence space A.

The algebraic dual space of X.

The continuous dual space of X.

The vector space of all (complex and real) scalar sequences.

The set of all functions from N into X; i.e. all sequences in X.
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