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Abstract 

In recent papers (cf. [2], [3], [ 5 ] ,  [23]) the concept of (p, q)-summing multiplier was con- 

sidered in both the general and special context. It has been shown that some geometric 

properties of Banach spaces and some classical theorems can be described using spaces 

of (p, q)-summing multipliers. This thesis is a continuation of this line of study, whereby 

multiplier spaces for some classical Banach spaces are considered. The scope of this re- 

search is also broadened, by studying other classes of summing multipliers. 

Generally stated, a sequence of bounded linear operators (u,) c L(X, Y) is called a 

multiplier sequence from E ( X )  to F (Y)  if (u,x,) E F(Y)  for all (xi) E E ( X ) ,  whereby 

E ( X )  and F(Y)  are two Banach spaces of which the elements are sequences of vectors 

in X and Y, respectively. Several cases where E ( X )  and F(Y)  are different (classical) 

spaces of sequences, including for instance the spaces Rad(X) of almost unconditionally 

summable sequences in X ,  are considered. Several examples, properties and relations 

among spaces of summing multipliers are discussed. Important concepts like R-bounded, 

semi-R-bounded and weakly-R-bounded from recent papers are also considered in this 

context. 

Sequences in X ,  which are (p, q)-summing multipliers (when considered as elements of 

L(X*, K)) are of considerable importance. They are called (p, q)-summing sequences in 

X .  The role of these sequences in the study of geometrical properties of Banach spaces as 

well as the characterization of vector-sequence space-valued operators on Banach spaces 

is extensively demonstrated in paper [2]. In this thesis we develop a general theory for 

vector-valued multiplier sequences and functions and consider the application thereof in 

the study of operators on Banach spaces in general and on classical spaces (for instance, 



P-spaces) in particular. 

Another paper [14] is dedicated to an open question in the theory of tensor products 

of Banach spaces. From the Grothendieck Resumk [26] it follows that 116X is isomet- 

rically isomorphic to the space l l (X)  of absolutely summable sequences in X .  However, 

P 6 X  $ P(X) is possible for 1 < p < co. In paper [17] it is stated as an open problem to 

find a vector sequence space characterization of the projective tensor product P 6 X .  The 

challenge is taken up in paper [14]. Using the vector sequence space P ( X )  of strongly 

p-summable sequences (introduced by Cohen in paper [16]), the authors show that P 6 X  

is indeed isometrically isomorphic to 

P(X) := {(xn) c X : lx,(z.) 1 < co, V weakly psummable sequences (x,) in X*). 
n 

In following the author's approach in [14], it is only possible to prove this result once 

a formal characterization of the sequences in P ( X )  is known. This is the theme of 

[14]. In paper [23] we prove the same result by following a different approach (using the 

Grothendieck theory of tensor products and nuclear operators), which does not depend 

on the characterization of the elements of P ( X ) ,  but which in fact has this characteri- 

zation as easy consequence. By letting U be a reflexive Banach space with a normalized 

unconditional basis (ei), Bu [l 11 introduced the spaces Us,,,, (X) , UWeak (X) and U(X) 

and considered their geometric properties, interrelationships, Kothe duals and topologi- 

cal duals. Based on Bu's results and following our tensor product approach in [23], we 
A 

provide a characterization of U @ X in terms of the vector sequence space U(X). 

In short, the purpose of our research is to: 

(i) Extend the results in [5] and [23] to the more general context of "general vector se- 

quence spaces". This entails a vector sequence space characterization of the projec- 

tive tensor product U&X, where X is a Banach space and U is a (reflexive)Banach 

space with normalized unconditional basis, as well as an extensive study of U- 

summing and strongly U-summing multipliers. Our exposition extensively makes 



use of several important research articles about vector sequence spaces, mostly of 

Bu's work on vector sequence spaces (cf. [I 11, [12], [13] and [14]). Our approach in 

the characterization of U b X ,  however, simplifies the techniques of Bu to obtain a 

similar characterization. 

(ii) Introduce and study classes of operators, which are defined by general vector se- 

quence spaces, in a similar fashion as are psumming and (p, q)-summing oper- 

ators defined by the vector sequence spaces of weak psummable and absolutely 

p-summable sequences of vectors in normed spaces. By doing so our idea is to 

embed existing theories of (p, q)-summing operators, strongly p-summing operators 

and others into a general framework and to consider their applications in operator 

and Banach space theory, also in the context of Banach lattices. The classes of 

strongly p-summing and strongly p-nuclear operators were introduced and studied 

in detail by Cohen [16] where the strongly p-nuclear operators were called pnuclear 

operators. His introduction of these two classes was motivated by observations 

about absolutely p-summing operators, tensor products and the conjugates of ab- 

solutely p-summing operators. One of the aims of this thesis is to broaden the work 

of Cohen in two ways. In the first case we extend it from strongly p-summing and 

strongly p-nuclear operators to strongly (p, q)-summing and strongly (p, q)-nuclear 

operators. Secondly, we generalize the operator setting by letting U and W be 

reflexive Banach spaces with normalized unconditional bases (ei) and (fi) respec- 

tively. We then introduce the absolutely (U, W)-summing and two related classes of 

operators, namely the strongly (U, W)-summing operators and the strongly (U, W)- 

nuclear operators. 

(iii) Study operator valued multipliers (of different kinds), consider examples thereof 

on classical Banach spaces (such as the spaces) and apply our results (and 

recent results in the literature, for instance in [2], [3], [8] and 191) to contribute to 

relevant theories and results about different types of Rademacher boundedness, the 

Grothendieck Theorem (G.T. spaces) and applications to  the geometry of Banach 



spaces. 

(iv) Develop a theory of operator valued multiplier functions, thereby exploring the pos- 

sibility to extend our work on (p, 9)-summing multipliers to the setting of function 

spaces. The idea here is to establish the foundation for further research after com- 

pletion of the thesis. Our introduction of the (p, 9)-multiplier functions is inspired 

by several easy examples of such functions (generated by classes of operators) and 

the well known fact (in literature) that a Banach space operator u : X -+ Y is 

p-summing if and only if, given any probability space (R, C, p) and any strongly 

measurable f : R -+ X ,  which is weakly p-integrable, then u o f is Bochner p 

integrable. In our language of multiplier functions, this says that u is p-summing 

if and only if the constant function R -+ L(X, Y) : t I+ u is a (p,p)-multiplier 

function. 

Key terms: Banach space, sequence space, Grotendieck's theorem, type, cotype, strongly 

(p, 9)-summing, strongly (p, 9)-nuclear operators, U-summing multipliers, strongly U- 

summing multipliers, absolutely (U, W)-summing operators, strongly (U, W)-summing 

operators, strongly (U, W)-nuclear operators, positive strongly (p, 9)-summing operators, 

positive strongly (p, 9)-nuclear operators, strongly (p, 9)-concave operators, strongly p- 

integral functions, (p, 9)-integral multipliers and (p, 9)-integral functions. 



Samevatting 

In onlangse artikels (cf. [2], [3], [5], [23]) is die konsep van 'n (p, 9)-sommerende ver- 

menigvuldiger in beide die algemene en spesiale konteks beskou. Daar is aangetoon 

dat sommige meetkundige eienskappe van Banachruimtes en sommige klassieke stellings 

beskryf kan word in terme van (p, 9)-sommerende vermenigvuldigers. Hierdie proefskrif 

is 'n voorsetting van di6 studie waar vermenigvuldigerruimtes van sekere klassieke Ba- 

nachruimtes beskou word. Sodanige navorsing word uitgebrei deur die bestudering van 

ander klasse van sommerende vermenigvuldigers. 

In die algemeen word 'n ry van begrensde lineere operatore (u,) c L(X, Y) 'n ver- 

menigvuldigerry vanaf E ( X )  na F(Y)  genoem as (u,x,) E F(Y)  vir alle (xi) E E (X) ,  

waar E ( X )  en F(Y) beide Banachruimtes is waarvan die elemente rye van vektore in 

onderskeidelik X en Y is. Verskeie gevalle word ondersoek waar E ( X )  en F(Y)  ver- 

skillende (klassieke) ruimtes van rye is, insluitend byvoorbeeld die ruimte Rad(X) van 

"byna onvoorwaardelike sommerende rye" in X. Verskeie voorbeelde, eienskappe en ver- 

wantskappe tussen ruimtes van sommerende vermenigvuldigers word bespreek. Belang- 

rike konsepte soos R-begrensheid, semi-R-begrensheid en swak-R-begrensheid uit on- 

langse artikels word in hierdie konteks ondersoek. 

Rye in X wat (p, 9)-sommerende vermenigvuldigers is (indien beskou as elemente van 

L(X*, IK)) speel 'n belangrike rol en word die (p, 9)-sommerende rye in X genoem. Die rol 

wat sodanige rye in die bestudering van die meetkundige eienskappe van Banachruimtes 

sowel as in die karakterisering van vektorryruimtewaardige operatore op Banachruimtes 

speel, is omvangryk bespreek in [2]. In hierdie proefskrif ontwikkel ons 'n algemene teorie 

vir vektorwaardige vermenigvuldigerrye en funksies. Verder verkry ons toepassings hier- 

vii 



van in die algemene teorie van operatore op Banachruimtes, sowel as in die teorie van 

operatore op sekere klassieke ruimtes (soos byvoorbeeld die U-ruimtes). 

'n Onlangse artikel [14] word gewy aan 'n oop vraag in die teorie van tensorprodukte van 
A 

Banachruimtes. Uit Grotendieck se R6sum6 [26] volg dat l1 8 X  isometries isomorf is aan 

die ruimte e l (X)  van absoluut sommeerbare rye in X.  Vir 1 < p < co, is 4 6 ~  5 lp(X) 
A 

egter moontlik. In [17] word die karakterisering van die projektiewe tensorproduk lp 8 X 

(vir 1 < p < co) in terme van 'n vektorryruimte, as oop vraag gestel. Hierdie uitdaging 

word aanvaar in artikel [14]. Deur gebruik te maak van die vektorryruimte P ( X )  van 

sterk p-sommeerbare rye (ingevoer deur Cohen in artikel [16]) bewys die outeurs dat die 
A 

ruimte lp 8 X isometries isomorf is aan die ruimte 

Die skrywers in [14] bewys hierdie resultaat deur gebruik te maak van 'n formele karak- 

terisering van die rye in P'(X). In artikel [23] bewys ons dieselfde resultaat deur 'n ander 

benadering te volg (ons gebruik Grothendieck se stelling oor tensorprodukte en nukleere 

operatore) wat onafhanklik is van die karakterisering van die elemente van lp(X),  maar 

waaruit hierdie karakterisering as 'n maklike gevolgtrekking volg. Bu [ll] definieer en 

beskou die meetkundige eienskappe, verwantskappe, Kothe en topologiese dualiteite van 

die ruimtes Us,,n,(X), UWeak(X) en U(X) deur aan te neem dat U 'n refleksiewe Ba- 

nachruimte is, met 'n genormaliseerde onvoorwaardelike basis (ei). Ons gee 'n karakteris- 
A 

ering van U 8 X in terme van die vektorryruimte U(X) deur gebruik te maak van die 

resultate van Bu en ons tensorprodukbenadering in [23]. 

Kortliks kan die oogmerk van hierdie navorsing soos volg saamgevat word: 

(i) Die resultate in [5] en [23] word uitgebrei na die veralgemeende konteks van "al- 

gemene vektorryruimtes". Dit bring 'n vektorryruimtekarakterisering van die pro- 
A 

jektiewe tensorproduk U 8 X mee, waar X 'n Banachruimte en U 'n (refleksiewe) 

Banachruimte met 'n genormaliseerde onvoorwaardelike basis is. 'n Omvangryke be- 



spreking van U-sommerende en sterk U-sommerende vermenigvuldigers word gegee. 

Ons uiteensetting maak gebruik van verskeie belangrike navorsingsartikels oor vek- 

torryruimtes, veral van die werk van Bu (cf. [ll], [12], [13] en [14]). Ons benader- 

ing in die karakterisering van U b X  is 'n vereenvoudiging van die tegnieke van Bu, 

hoewel ons dieselfde resultaat bewys. 

(ii) Die klasse van operatore wat gedefinieer word in terme van algemene vektorryruimtes 

word ingevoer en bestudeer op 'n soortgelyke wyse as die p-sommerende en die (p, q)- 

sommerende operatore, wat gedefinieer is in terme van vektorryruimtes van swak 

p-sommerende en absoluut p-sommerende rye van vektore in normeerde ruimtes. 

Hieruit volg die idee om die bestaande teoriee van (p, q)-sommerende operatore, 

sterk p-sommerende operatore en ander operatore in te  sluit in die algemene raam- 

werk en om ondersoek in te  stel na toepassings in operatorteorie, Banachruimte- 

teorie en die konteks van Banachroosters. Die klasse van sterk psommerende 

en sterk p-nukleere operatore word ingevoer en omvangryk ondersoek deur Co- 

hen [16] wat na die sterk pnukleere operatore verwys as "pnukleere operatore". 

Die invoering van hierdie twee klasse word gemotiveer deur waarnemings oor ab- 

soluut psommerende operatore, tensorprodukte en die toegevoegdes van absoluut 

psommerende operatore. Een van die doelwitte van hierdie proefskrif is om die 

werk van Cohen uit te brei op twee wyses. In die eerste plek brei ons dit uit 

vanaf sterk p-sommerende operatore en sterk pnukleere operatore na sterk (p, q)- 

sommerende operatore en sterk (p, q)-nukleere operatore. Tweedens veralgemeen 

ons die operatorgeval deur te veronderstel dat U en W refleksiewe Banachruimtes 

is met die onderskeidelike genormaliseerde onvoorwaardelike basisse (ei) en ( fi). 

Ons voer dan die begrip van "absoluut (U, W)-sommerende" in en definieer ver- 

volgens twee verwante klasse van operatore naamlik die "sterk (U, W)-sommerende 

operatore" en die "sterk (U, W)-nukleere operatore". 

(iii) Ons bestudeer (verskillende soorte) operatorwaardige vermenigvuldigers en beskou 

voorbeelde daarvan op klassieke Banachruimtes (soos die LP-ruimtes) en pas ons 



resultate (en onlangse resultate in die literatuur, byvoorbeeld in [2], [3], [8] en 

[9]) toe, om 'n bydra te lewer tot die relevante teorie en resultate in verband met 

die verskillende tipes Rademacher begrensdheid, Grothendieck se stelling (G.T.- 

ruimtes) en toepassings op sekere meetkundige eienskappe van Banachruimtes. 

(iv) Ons voer 'n teorie van operatorwaardige vermenigvuldigerfunksies in, en onder- 

soek moontlikhede om ons werk oor (P, 9)-sommerende vermenigvuldigers uit te 

brei na die raamwerk van funksieruimtes. Die idee hier is om 'n basis te 1e vir 

verdere navorsing na afhandeling van hierdie proefskrif. Die invoering van die 

(p, 9)-vermenigvuldigerfunksies is gei'nspireer deur verskeie maklike voorbeelde van 

sulke funksies (voortgebring deur klasse van operatore) en die welbekende feit 

(in die literatuur) dat 'n Banachruimte operator u : X -+ Y p-sommerend is 

as en slegs as vir enige gegewe waarskynlikheidsruimte (0, C, p )  en enige sterk 

meetbare funksie f : R + X wat swak p-integreerbaar is, geld dat u o f in 

ons taal van vermenigvuldigerfunksies, Bochner pintegreerbaar is. Dus, u is p 

sommerend as en slegs as die konstante funksie R + L ( X ,  Y) : t I+ u 'n (p,p)- 

vermenigvuldigerfunksie is. 

Kernterme: Banachruimte, ryruimte, Grotendieck se stelling, tipe, kotipe, sterk (p, 9)- 

sommerende vermenigvuldiger, sterk (p, 9)-nuklesre operatore, U-sommerende vermenig- 

vuldiger, sterk U-sommerende vermenigvuldiger, absoluut (U, W)-sommerende opera- 

tore, sterk (U, W)-sommerende operatore, sterk (U, W)-nuklesre operatore, sterk posi- 

tiewe (p, 9)-sommerende operatore, sterk positiewe (p, 9)-nukleere operatore, sterk (p, 9)- 

konkawe operatore, sterk p-integraal funksies, (p, 9)-integraal vermenigvuldigers en (p, 9)- 

integraal funksies. 

Titel: 'n Teorie van vermenigvuldigerfunksies en vermenigvuldigerrye en toepassings 

daarvan op Banachruimtes 
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Introduction 

p-Summing multipliers of Banach spaces were introduced and studied in a paper of S. 

Aywa and J.H. Fourie (cf. [5]). In this paper the nuclearity of certain Banach space 

valued bounded linear operators on the classical P-spaces (of absolutely p-summable 

scalar sequences) as well as geometrical properties (for instance, the Orlicz property) of 

Banach spaces were obtained in terms of the p-absolutely summing multipliers of the 

Banach space. H. Apiola (cf. [I]) and J.S. Cohen (cf. [16]) introduced P ( X ) ,  the space of 

strongly p-summable sequences in a Banach space X, in their discussion of p-nuclear op- 

erators between Banach spaces. In [14] Q. Bu and J.  Diestel considered a vector sequence 

space representation of the projective tensor product of P and a Banach space X ,  thus 

obtaining that this tensor product space is the space of strongly p-summable sequences 

in X, i.e. P ( X ) .  

In a paper by Arregui and Blasco (cf. [2]) an extended theory of (p, q)-summing mul- 

tipliers and sequences was developed. The family of psumming multipliers introduced 

in [5] is a subset of the (p,p)-summing multipliers. Some surprising applications of this 

theory to the geometry of Banach spaces are discussed in [2], including the reformulation 

of important theorems (Grothendieck's Theorem, for instance) in this new context. 

In [28] the authors consider some new applications of semi-R-bounded and WR-bounded 

sequences. They show that  for each x E X and (ui) E SR(X, X), the sequence (u,x) 

has a weakly Cauchy subsequence. Using this fact, they then show that  if X is a weakly 

sequentially complete Banach space such that L(X, X) contains a semi-R-bounded se- 

quence (ui) such that  each ui is weakly compact, uku1 = uluk for all k ,  I E N and 

. . . 
Xl l l  



limk,, Jlx - ukx)I = 0 for every x E X ,  then X is isomorphic to a dual space. 

In case of L(X,  X )  containing a WR-bounded sequence with the same properties, one also 

needs the space X to satisfy the property (V*) of Pelczynski to obtain the same result. 

Since L1(O, 1) is not a dual space, it follows that L(L1(O, I ) ,  L1(O, 1)) does not have a 

semi-R-bounded or WR-bounded sequence of operators (ui) with the mentioned proper- 

ties. I t  is also shown in [28] that if K is a compact metric space so that L(C(K),  C ( K ) )  

contains an R-bounded sequence (u,) with the above-mentioned properties, the space 

C(K)  is isomorphic to co, Some applications to  semigroups of operators are also consid- 

ered in [28]. 

Furthermore, in paper [15] the authors study the interplay between unconditional Schauder 

decompositions and the R-boundedness of collections of operators. They prove several 

multiplier results of the Marcinkiewicz type for IF-spaces of functions with values in a Ba- 

nach space X. In their paper the authors also show connections between R-boundedness 

in L(X, X )  and the geometric properties of the Banach space X. Fact is that a R-bounded 

sequence of operators is an example of a "multiplier sequence", which is the main theme 

of this thesis. As a matter of fact, we discuss the concepts of "multiplier sequence" and 

"multiplier function" in a general context and then show that different concepts that 

recently played important role in applications to Banach spaces, fit into this setting. 

The contents of this thesis is divided into five main chapters to be sum- 

marized as follows. 

Chapter 1 is a summary of basic well known facts about Banach spaces, vector sequence 

spaces, operators on Banach spaces, some geometrical properties of Banach spaces, tensor 

products of Banach spaces, vector integrals, vector valued LP-spaces, (p, 9)-summing se- 

quences and strongly p-summable sequences, Banach lattices and bases in Banach spaces. 

The purpose of discussing these known facts, is to make this exposition as self contained 

as possible. 

xiv 



After introduction of the general vector sequence spaces U,,,,,(X), UWeak(X) and U(X),  

where U is a reflexive Banach space with normalized unconditional basis and X is a 

Banach space, we prove in Chapter 2 that U(X) is isometrically isomorphic to  the space 

Z(U*, X) of integral operators. U being reflexive and having the m.a.p., it then fol- 

lows that U(X) is isometric to  the space N(U*, X )  of nuclear operators and thus by 
A 

Grothendieck's theory, isometric t o  U @I X .  We also discuss this result in two classical 

cases where U = P ( 0 , l )  and U = P'. The concepts U-summing multiplier and strongly 

U-summing multiplier are considered in Chapter 2, where we discuss the properties and 

relationships of the normed spaces of U-summing and strongly U-summing multipliers 

and consider some applications to normed space. 

In Chapter 3, we introduce the absolutely (U, W)-summing and two related classes of op- 

erators, namely the strongly (U, W)-summing operators and the strongly (U, W)-nuclear 

operators. We investigate the relationship between these classes. In addition, we de- 

fine two new classes of operators, namely the strongly (p,q)-summing operators and 

the strongly (p,q)-nuclear operators. The interrelationship of these operators and the 

(p, q)-summing operators is investigated. Properties of these spaces like inclusions and 

conjugate operators are also considered. 

The latter part of Chapter 3 is inspired by the work of Blasco who introduced the pos- 

itive (p, q)-summing operators where X denote a Banach lattice and Y a Banach space 

(cf. 171). This paper of Blasco paved the way for us to extend our work by defining new 

classes of operators, namely the positive strongly (p, q)-summing operators and the posi- 

tive strongly (p, q)-nuclear operators. We also describe the space of strongly (p, q)-concave 

operators in a way that is in line with the definition in (1331, p. 46) of p-concave operators. 

In Chapter 4 we summarize some (recent) results on (p, q)-summing multipliers and dis- 

cuss some examples of (p, q)-summing multipliers on classical Banach spaces. We extend 



the idea of (p, q)-summing multipliers to other families of multiplier sequences from E ( X )  

to F ( Y )  by considering some well known and important Banach spaces of vector valued 

sequences in place of E ( X )  and F(Y) .  The work in this chapter contains largely joint 

work with Oscar Blasco and Jan Fourie (cf. [9]). I appreciate my co-authors' consent to 

use the material of our joint paper in this chapter. 

In Section 4.2, we study R-bounded sequences and other variants thereof, like for instance, 

semi-R-bounded and weakly-R-bounded sequences in Banach spaces. Relations of sev- 

eral types of sequences of bounded linear operators (like R-bounded, weakly-R-bounded, 

semi-R-bounded, uniformly bounded, unconditionally bounded and almost summing) are 

studied. These relations build on well known results on type and cotype and characteri- 

zations of different families of operators. We discuss these concepts within our framework 

of multiplier sequences of operators, which allow us to prove new results about inclusions 

of sets (vector spaces) of different kinds of R-bounded sequences of operators and their 

connections with some geometrical properties of Banach spaces, including results about 

type, cotype, Orlicz property and the Grothendieck Theorem. 

In Chapter 5 we lay the foundation for further research work in the general context 

of (p, q)-multiplier functions. The generalization that we consider here is motivated by 

the fact that the multiplier functions appear naturally in the sense that psumming op- 

erators can be characterized in terms of multiplier functions. The usual duality between 

LP(p, X) and LP' (p, X*)  when X *  has R N P  can be expressed as a multiplier function, 

easy examples of multiplier functions can be found (and are discussed in Chapter 5) and 

the function spaces so obtained and their properties show close resemblance to the se- 

quence space case. We prove some inclusion theorems for spaces of multiplier functions 

and describe some relationships with U(p, X)-spaces. Hopefully, the basic results devel- 

oped in our foundation work in Chapter 5 will prove to be important in further research. 

We hope to be able t o  apply the theory in situations where discrete representations are 

not possible. 

xvi 





Chapter 1 

Definitions and basic facts 

1.1 Some basic facts about Banach spaces, vector 
sequence spaces and operators on Banach spaces 

If not otherwise stated, X ,  Y, 2, etc. will throughout this thesis be Banach spaces. Let 

L ( X ,  Y )  denote the space of bounded linear operators from X to Y and let K ( X ,  Y )  de- 

note the space of all compact linear operators between X and Y. For given X ,  we denote 

the continuous dual space by X * ,  the algebraic dual space by X' and the unit ball in X 

by B x .  For 1 < p < m, let pl denote its conjugate number, i.e. l/p + l /pl= 1.  

Sequences in Banach spaces will be denoted by ( x i ) ,  (y i ) ,  etc. The "n-th section" 

( x l ,  x 2 , .  . . , X n ,  0,O,. . . ) of ( x i )  in X is denoted by (x i ) (<  n)  and 

(x i ) (>  n) = (x i )  - ( x i ) ( <  n ) .  A vector space A whose elements are sequences (a,) of 

numbers (real or complex) is called a sequence space. To each sequence space A we assign 

another sequence space A X ,  its Kothe-dual, which is the set of all sequences (P,) for which 

the series C:=, anPn converges absolutely for all (a,) E A, i.e. 
00 

A X  = {(A)  E w C 1 anPn 1 < m, v (an) E A).  
n= 1 

A Banach sequence space A is said to  be a BK-space if each coordinate projection map- 

ping (a,) t+ a; is continuous. 

Let en = (6i,n)il with 6i,, = 1 if i = n and diln = 0 if i + n. In a dual normed sequence 

space A* the notation e i  for en will be used. 

A normed scalar sequence space A is said to  have the AK-property if all its elements can 



be approximated by their sections. That is, if each element (Pi) in the sequence space 

satisfies (Pi) = limn,,(,(Pi) (< n), where (Pi)(< n) = Cy=, Piei. A normed vector sequence 

space A(X) is said to have the GAK-property if all its elements can be approximated by 

their sections. A BK-space A has the AK-property if and only if {en : n = 1 , 2 , .  . . ) is 

a Schauder basis for A, that is if and only if limn,, ( 1  (pi) (2 n) I I A  = 0 for all (pi) E A. 

If A is a normal BK-space with AK,  then {en : n = 1 , 2 , .  . . ) is an unconditional basis 

for A, called the standard coordinate basis or the unit vector basis of A. In this case 

a standard argument shows that AX is algebraically isomorphic to the continuous dual 

space A* with respect to the obvious duality. 

If not stated otherwise all scalar sequence spaces A # Cm will throughout be assumed to 

be normal BK-spaces with the AK-property. In this case we may assume that Ilenl(A = 1 

for all n E N. For information on scalar sequence spaces we refer to [30]. 

Definition 

(a) The projective or A-norm on X @ Y is defined by 

where the infimum is taken over all representations of u = Cy=, xi @ gi in X @ Y. 
A 

X @ Y is the completion of ( X  @ Y, I .  1,). 

Following is the universal mapping property for projective tensor products 

(cf. 1261) 

A 
For any Banach spaces X ,  Y and Z,  the space L(X @ Y; 2) of all bounded linear 

A 
operators from X @Y to Z is isometrically isomorphic to the space B(X x Y; Z) of all 

bounded bilinear transformations from X x Y into Z. The natural correspondence 



establishing this isometric isomorphism is given by 

(b) For any two Banach spaces X and Y over K E {(C, R) the injective or V-norm 

of Cn J = I  x . 8  3  y j  E X 8 Y is 

n n 

v 
and the injective tensor product X 8 Y is the completion of X 8 Y with respect 

to this norm. 

Let X be a Banach space. The vector sequence space A(X) := {(xi) C X : (IIxill) E A) 

is a complete normed space with respect to the norm 

We put 1 1  (ai) = //(ai) 11, when A = l p ,  the Banach space of p-absolutely summable 

scalar sequences (with 1 5 p < CO) and X = K. 

The vector sequence space A,(X*) := {(xi) C X *  : ((x, xi)) E A, V x E X )  is a 

complete normed space with respect to the norm 

We put ep = EA when A = lp, (with 1 5 p < CO). 

Let lL(X) denote the space of weakly p-summable sequences in X, i.e. 

l g (X)  := {(xi) C X : ((xi, x*)) E lP, V X* E X * )  

is a complete normed space with respect to the norm 



If p = m, let 

€,((xi)) := SUP SUP Jx* (2,) 1. 
Ilx*1111 

The weak Dvoretzky-Rogers Theorem (cf. [19], p. 50): 

Let 1 5 p < cm. Then lL(X) = P(X) if and only if X is finite dimensional. 

The vector sequence space 

Ac(X) = {(xi) E A,(X) : (xi) = EA - lim (XI ,  . . . , x,, 0, .  . . )} 
n+m 

= {(xi) E Aw(X) : E ~ ( ( X ~ ) ( >  n)) + O if n + 03) 

is a closed subspace of A,(X). On A,(X) we consider the induced subspace norm, 

inherited from A,(X). The vector sequence space 

Ac(X*) = {(xf) E Aw(X*) : (xf) = EA - lim (x;, . . . , x:, 0,.  . . )) 
n+m 

= {(xf ) E A, (X*) : E~((x ; ) (>  n)) + 0 if n + cm} 

is a closed subspace of A,(X*). On Ac(X*) the induced subspace norm, inherited from 

A, (X*), will be considered. 

It  follows from Proposition 2 in paper [22] that the continuous dual space Ac(X)* can be 

identified with the vector space of all sequences (xf ) in X* such that 

00 

1 (xi, x;) 1 < cm for all (xi) E A, (X). 
i= 1 

Moreover, the following characterisations can also be found in [21] and in paper [24]: 

Theorem 1.1 Consider a Banach space X. 

a) Let A be a Banach sequence space with the AK-property. Then Az(X) is isometrically 
00 

isomorphic to L(A, X). The isometry is given by (x,) I+ T(,,), where T(,,)((&)) = C tixi. 
i= 1 

b) Let A be a Banach sequence space with the AK-property such that A X  has A K .  Then 

A,X(X) is isometrically isomorphic to K(A, X). 



From the fact that 1 g ( X )  E L ( P ,  X ) ,  (1  < p < m), + : = 1, it follows that 

00 

l L ( X )  = {(x,)  c X : x t n x n  converges, V (t,), E l q }  
n= 1 

and 
03 

where 1Q is replaced by co if p = 1. 

c) Let A be a Banach sequence space with the AK-property. Then A,(X*) is isometrically 

isomorphic to L ( X ,  A ) .  The isometry is given b y  (x:) H T(,;), where T(,;)x = ( ( x ,  x:)). 

d) Let A be a Banach sequence space with the AK-property. Then A, (X*)  is isometrically 

isomorphic to K ( X ,  A ) .  The isometry is defined as in  (c). 

Let 1 5 p 5 m and let X > 1. Then the Banach space X is a CPjx-space if every finite 

dimensional subspace E of X is contained in a finite dimensional subspace F of X for 

which there is an isomorphism v : F i -&,) with 1 1 ~ 1 1 1 1 ~ - I  1 1  < A. 

Theorem 1.2 (cf. [19], p. 61) 

(i) If (0, C ,  p) is any measure space and 1 5 p 5 m, then LJ'(p) is a Cp,x-space for all 

X > 1. 

(ii) If K is a compact Hausdorff space, then C ( K )  is a C,,x-space for all X > 1. 

We recall the well known Radon-Nikodym property for vector valued measures: 

Definition 1.3 (cf. [ZO], p. 61) 

A Banach space X has the Radon-Nikodym property (RNP in short) with respect to 

(0, C ,  p) i f  for each p-continuous vector measure G : C i X of bounded variation there 

exists g E L1 ( p ,  X )  such that G ( E )  = JE g dp,  V E E C .  

Theorem 1.4 Refiexive Banach spaces have the Radon-Nikodym property. 

We consider the following operator ideals: 



* (3, I /  I \ ) ,  where T E 3 ( X , Y )  if and only if T is a finite rank bounded linear 

operator and ( 1  1 1  is the usual uniform operator norm. Recall that T E 3 ( X ,  Y) if and 

only if T has a representation of the form T = Cy=L=, xf 8 yi where xf E X *  and yi E Y. 

Also recall that the trace of S = Cy=, xf 8 xi E 3 ( X ,  X )  is the number 

which is independent of the representation of S .  

The space X has the metric approximation property (m.a.p. in short) if for each 

E > 0 and each compact set K C X there exists a S E 3 ( X ,  X )  with 

* (N, vl), where T E N ( X ,  Y) if and only if T is a nuclear operator, i.e. T has a 

representation 
03 

where (Xi) E el, (xy) is bounded in X *  and (yi) is bounded in Y. Here 

where the infimum is extended over all such representations for which llxrll < 1 and 

* (Z, i), where T E Z ( X ,  Y) if and only if T is an integral operator, i.e. if and only if 

there exists p > 0 such that 

The integral norm i(T) equals the smallest of all numbers p > 0 admissible in these in- 
v 

equalities. Note that (X@Y)* is identifiable with Z(X,  Y*). From results by Grothendieck 

it follows that  in case of either X or Y being reflexive, every u E Z(X,  Y) is nuclear; i.e. 

Z(X, Y) and N ( X ,  Y) are topological isomorphic in this case. Also, from Grothendieck's 

work on the metric approximation property (m.a.p. in short) it follows that in case of 



X* having the m.a.p., we have i(u)  = y ( u )  for all u E N ( X ,  Y). Thus, if X is reflexive 
isometric 

and X* has m.a.p., then N ( X ,  Y) - Z(X, Y). More generally, if X* has the m.a.p, 
isom_etric 

then N ( X ,  Y) - Z(X, Y) if and only if X* has the Radon-Nikod$m property (cf. 

[20], Theorem 6 on p. 248). 

* (Has, .rras), where T E HaS(X, Y) if and only if T is an almost summing operator, i.e. 

if and only if there exists c 2 0 such that 

for any finite set of vector {x l , .  . - , xn) C X where (rj)jEn are the R a d e m a c h e r  func- 

t ions  on [ O , 1 ]  defined by rj(t) = sign(sin 2j.rrt). The least of such constants is the almost- 

summing norm of u, denoted by .rras(u). 

* (cf. [35], p. 31) Let u : X -+ Y be an operator. Then 

(i) u is of t y p e  p, 1 < p < 2, if there exists a constant c > 0 such that  for any finite 

subset {xl , . . . , x,) c X we have 

(ii) u is of c o t y p e  q, 2 < q < a, if there exists a constant c > 0 such that  for any 

finite subset { x l , .  , x,) c X we have 

(C 11~~jI l ' ) '  < c 1 1  C xjrj(t)l/ dt. 
j=1 j=1 

In case u = idx and idx is of type p (resp. cotype q), we say that X is of type p (resp. 

cotype 9). 

Note that a Banach space X is of type 2 and cotype 2 iff it is isomorphic to  a Hilbert 

space (cf. [35], p. 33). 

1.2 Basic facts about vector integrals 

The reader is referred to  [20] and [4] for the following definitions. Throughout this section 

(0, C, p )  is a finite measure space and X is a Banach space. 





(cf. [20/, P. 108) 

The bounded linear operator T : P ( p )  R X is called a vector integral opera- 

tor(v.i. 0.) with kernel g if g : R R X is a p-measurable function such that 

x * T ( f )  = fx*g dp, V f E LP(p) and V x* E X*.  

Equivalently, there exists a measurable g : R -+ X such that 

If p = 1 ,  then T : L1(p)  -+ X is a vector integral operator if and only if T is Riesz 

representable. According to the Riesz Representation Theorem (cf. [20], p. 63) in 

case of a finite measure this is so for all T E L(L1 ( p ) ,  X )  i f  X has RNP. 

For 1 5 p < CQ and a + $ = 1 ,  a measurable g : R R X is the kernel of a vector 

integral operator T : P ( p )  R X if and only if x*g E P 1 ( p )  for all x* E X*.  We 

see this fact as follows: 

Let x*g E P 1 ( p ) ,  V x* E X*.  Define T : P ( p )  R X*' b y  

We prove that T ( f )  E X** : 

For f E P ( p )  fixed, define S : X* R L1 ( p )  b y  Sx*(.) = x*( f ( . )g( . )) .  Note that S 

is closed. Indeed if limn x i  = x* and limn S x i  = h in L1 ( p ) ,  then some subsequence 

x, ( f  g )  = S ( x i j )  tends p-almost everywhere to h. But 

lim x i  (( f g )  ( t ) )  = x* (( f g)( t ) )  everywhere. 
n 

Hence, x * ( f g )  = h p-almost everywhere, i.e. Sx* = h p-almost everywhere and S 

is a closed linear operator. From the Closed Graph Theorem we conclude that S is 

continuous. Hence: 

I l ~ * ( f 9 ) l l ~ ' ( P )  = IISx*ll 5 IISIIIIx*II. 





( f )  (cf. [20], p. 4 8 )  Let f ,  g be p-measurable. 

If x* f = x*g p-almost everywhere V x* E X * ,  then f = g p-almost everywhere. 

Thus,  the kernel of a vector integral operator is almost everywhere uniquely defined: 

Let gl and g2 be kernels of a vector integral operator T : P ( p )  + X ,  then gl and 

g2 are measurable and x*g l ,  x*gz E L P ' ( ~ ) .  Also, 

3 x*gl = x*g2 p - a.e., V x* E X * .  

Definition 1.6 A function f : R + X is called Bochner integrable if there exists a 

sequence of simple functions ( f , )  such that 

I n  this case JE f d p  is  defined for each E E C by 

where JE fndp is  defined in the obvious way. 

A concise characterization of Bochner integrable functions is presented next. 

Theorem 1.7 (cf. [20], p. 4 5 )  A p-measurable function f : R + X is Bochner integrable 

if and only if Ja 11 f 1 1  d p  < m. 

Lemma 1.8 (cf. [20], p. 172) Let f : R + X be Bochner integrable. For each 6 > 0 

there is a sequence (x,)  in X and a (not necessarily disjoint) sequence (En)  in C such 

that 

( i)  the series C:=, X,XE, converges to f absolutely p-a.e. and 



If 1 5 p < ca, let U ( p ,  X )  denote the space of equivalence classes of X-valued Bochner 

integrable functions f : R -+ X such that the norm is given by 

I l f  I I L P ~ . ~ ,  = (1, l l f  l l P  44: < 0 1  

U ( p ,  X )  with this norm is a Banach space (cf. [20]). 

Lw(p, X )  will stand for all (equivalence classes of) essentially bounded p-Bochner inte- 

grable functions f : R -+ X ,  where the norm is defined by 1 1  f IILm(p,X) = ess sup,,, 1 1  f (w) 1 1 .  
Lw(p, X )  with this norm is a Banach space (cf. 1201). 

Remark 1.9 (cf. [20]) 

(1) For 1 5 p < ca, the simple functions are dense in  U ( p ,  X )  

(2) The countable valued functions in  Lw(p, X )  are dense in  Lm(p,  X )  

(3) For a finite measure space (R, C, p) and 1 < p < ca, we have 

if and only i f  X *  has Radon-Nikodym property with respect to p. In this case the 

duality is defined by the bilinear functional 

r 

for all f E U ( p ,  X )  and g E U 1 ( p ,  X*) .  This is for instance true if X is reflexive 

(cf. [20], P-  76). 

(4) U(p, X )  is reflexive i f  and only i f  U(p) and X are reflexive. 



If 1 5 p < oo and ( x  f )  ( t )  = f ( t )  ( x )  let LP, ( p ,  X )  denote the space of equivalence classes 

of weakly  p-integral functions,  i.e. 

( p  X )  = { f : R -+ X 1 f is measurable and (x* f )  ( a )  = f ( . ) ( x* )  E LP(p), V x* E X * )  

= { f  : R -+ X I f is the kernel of a v.i.o., T : L P ' ( ~ )  -+ X )  

and 

LL(p,  X * )  = { f  : t X*  / f is measurable and x f E LP(p), V x E X )  

= { f  : R -+ X* ( f is the kernel of a v.i.o., T : L P ' ( ~ )  -+ X * ) .  

Let l1911;eak := s u ~ ~ ~ ~ * ~ ~ ~ i ( J n  lx*9(t)IP d ~ ( t ) ) ' .  

Let gl,g2 be kernels of vector integral operators. Notice that if 

(1 I x*gl(t)  - x*g2(t) l q  dp( t ) ) :  = 0, V x* E X * ,  

then x*gl = x*g2 p - a.e., V x* E X* .  Thus, it follows that x*gl(w) = x*g2(w) for all 

x* E X *  and V w E R \ E l  where p ( E )  = 0; i.e 

Thus, if we put 

then 

(S , I  x*gl(t) - ~ * ~ 2 ( t ) l ~ d p ( t ) ) :  = 0 ,  V x* E X*.  

This implies that gl = 92 p - a.e. Therefore, if we denote by LL(p,  X )  the family of all 

equivalence classes of measurable g : R -+ X such that 

x*g E LQ(p )  ( 1  < q 5 oo), V x* E X *  

(i.e. all kernels of vector integral operators T : LQ' ( p )  t X )  then (LL ( p ,  X), 11. I1Yeak) is 

a normed space. It  is easy to verify that LQ(p,  X )  LL(p,  X )  and 



Also, 

where g is the (p-a.e. uniquely defined) kernel of 

and (Tg f )  (x*) = f ( t )  ( x * ~ )  ( t )  dp(t). Thus g -+ Tg defines an isometric embedding of 

LL (p, X) into L(L'J1 (p) ,  X )  . 

1.3 Basics about (p, q)-summing sequences and strongly 
p-summable sequences 

We start with a recapitulation from the theory of absolutely summing operators, which 

was developed mainly by Pietsch in the late sixties. The reader is referred to [19] for the 

following. 

Definition 1.10 (a) A sequence (x,) in a Banach space is absolutely summable 

if C:=l 11xnll < 00- 

(b) A sequence (x,) in a Banach space is unconditionally summable if C:==, x,(,) 

converges, regardless of the permutation a of N. 

(c) An operator u E L(X,  Y) is absolutely summing if for every unconditionally 

convergent series CFl xj  in X it holds that Cgl uxj is absolutely convergent in 

Y. 

Theorem 1.1 1 Omnibus theorem on unconditional summability 

(cf. [191, P .  9) 

For a sequence (x,) in a Banach space X the following are equivalent: 



( i )  (2,) i s  unconditionally summable. 

(ii) (b,) C:==, b,x, defines a compact operator co -+ X. 

From the fact that  K(co,  X )  -- ek(X) and the theorem above it follows that  (xn) is 

unconditionally summable if and only if (x,) E ek(X), but since ek(X) c eh(X) it fol- 

lows that if (x,) is unconditionally summable then it  is also weakly absolutely summable. 

Given 1 5 q 5 p < m ,  the space II,,,(X, Y) of (p, q)-summing opera to r s  is the 

vector space of those operators which map sequences in !$(X) onto sequences in P ( Y ) ;  

more precisely u E L(X, Y) is in II,,,(X, Y) if there exists a c > 0 such that: 

for any finite family of vectors xj in X; the least of such c is the (p, q)-summing norm 

of u ,  denoted by .rr,,,(u). Note that (p,p)-summing is the same as p-summing and an 

operator is l-summing if and only if it is absolutely summing (cf. [19], p. 34). 

Apiola and Cohen were the first to introduce P ( X ) ,  the space of strongly p-summable 

sequences in X .  

Definition 1.12 (cf .  [Id]) Let 1 5 p 5 m and a + = 1. P ( X )  denotes the space of 

s t rongly  p-summable  sequences in XI i.e. 

and 

T h e n  (ep(X)l Il.ll(p)) i s  a 

From the work of Cohen 

Banach space (c f .  [I], [I 61). 

(cf. [16]) we observe that: 



From the work of Bu (cf. [14] ,  p. 526) it follows that 

ep ( y )  ~isometrzcally ,isometrically = % (Y*) and e:(x) eql(x*) 

Definition 1.14 (cf. [Z]) For any Banach space X we define the space $,,,(X) of ( p ,  q)- 

summing sequences in X ,  as the set of all sequences ( x j )  in X such that there exists 

a constant c > 0 for which 

for any finite collection of vectors x f ,  . . - , x i  in X * .  

The following theorem gives the connection between the strongly p-summable sequences 

and the ( 1 ,  q)-summing sequences. 

Theorem 1.15 (cf. [23]) Let 1 <_ p <_ oo with $ + : = 1. T h e n  P ( X )  = &,,, ( X )  and 

l l ( ~ A l l ( P )  = 7 M x j ) ) .  

A 
Theorem 1.16 (cf. [Id] and [23]) Let 1 < p < oo. T h e n  9(P @I X )  = P ( X )  and 

A A A 
Q(co @I X )  = c o ( X ) ,  where Q is  an  isometry and where f? @I X (or c0 @I X )  is  the 

completion of P X (or co 8 X )  with respect to  the projective tensor norm I.),,, 

Following a similar argument as in our proof of Theorem 1.23 in [23],  we prove a more 

general result in Chapter 2. 

1.4 Basics about Banach lattices 

The following definitions can be found in [33] and [35].  

Recall that a Banach lattice X is an ordered vector space equipped with a lattice structure 

and a Banach space norm satisfying the following conditions: 



We say h is a homomorphism between two Banach lattices X1 and X2 if h : Xl -+ X2 is 

a linear operator such that 

- 
Let X(@) be the space of all sequences x = (xi) of elements of X for which 

- 
Let X(P)  denote the closed subspace of X(PP), spanned by the sequences (xi), which are 

eventually zero. 

Note that (C:=, 1xilp): E X is defined by 

1 1  
( x l z i ~ p ) k  = sup C a i x i ,  where - + - = l .  

i= I (ai)EBcpl i=l P P' 

Definition 1.17 (cf. [33], p. 45) 

Let X be a Banach lattice, Y a n  arbitrary Banach space and let 1 p < m. 

(i )  A linear operator T : Y + X i s  called p-convex 

so that 
n. 

if there exists a constant M < m 

i f l < _ p < m  

for every choice of vectors (yi)(<_ n) in Y. The smallest possible value of M i s  

denoted by Mp(T). A linear operator T from a Banach space Y t o  a Banach lattice 

X is p-convex for some 1 < p < m if and only if the m a p  T : P(Y) + X(P),  

defined by T (y1, y2, . . ) = (Tyl , Ty2, ) , is  a bounded linear operator. Moreover, 

1 1 ~ 1 1  = MP(T). 

( i i)  A linear operator T : X + Y i s  called p-concave if there exists a constant M < oo 

so that 
n 

for every choice of vectors (xi)(<_ n) in X. The smallest possible value of M is  

denoted by  Mp(T). A linear operator T : X + Y i s  p-concave for some 1 <_ p < co if 



v v 
and only if the m a p  T : X ( P )  i PP(Y), defined by T ( x l ,  22,. . )  = ( T x l , T x z , .  - a ) ,  

v 
is a bounded linear operator. Moreover, IlTll = M p ( T ) .  

(iii) W e  say that X  is  p-convex or p-concave if the identity operator idx  on X is p- 

convex, respectively, p-concave. 

Remark 1.18 (1) P ( p )  is  both p-convex and p-concave (cf. [33], p. 45). 

(2) Let f l ,  . . , f n  E LJ'(p) and 1 5 p < oo, then there exist c l ,  c2 > 0 such that 

Theorem 1.19 (cf. [35], p. 99) A Banach lattice X is  of cotype 2 iff it is  2-concave. 

Moreover, X *  is of cotype 2 iff X  is  2-convex. 

1.5 Basics about bases in Banach spaces 

From [32] and [37] we get the following definitions. 

Definition 1.20 ( i )  A sequence (x,) in a Banach space X is called a Schauder 

basis of X if for every x  E X there is  a unique sequence of scalars (a,) so 

that x  = C;==, a,x,. 

A sequence (2,) which is  a Schauder basis of its closed linear span is  called a 

basic sequence. 

( x i )  i s  a n  unconditional basic sequence if and only if any of the following 

conditions hold. 

(a) ( ~ ~ ( i ) )  i s  a  basic sequence for every permutation a E N. 

(b) The  convergence of Crr1 a,x, implies the convergence of CrZl b,x, when- 

ever Ib,J 5 la,l, for all n .  



( i i)  The  sequence of functions {xi(t)};D, defined by x,(t) I 1, and, for k = 0 , 1 , 2 , .  . . , 
and j = 1,2 ,  . . .  , 2 k ,  

is  called the Haar system. 

(iii) Let (I,) be a basis of a Banach space X .  The biorthogonal functionals ( x i )  form 

a basis of X *  i f  and only i f ,  for every x* E X * ,  the norm of the restriction 

of x* to the span of (x,) tends to 0 as n -+ oo. A basis (x,) which has this 

property is  called shrinking (cf. [32], Proposition 1. b. 1 .). 

0 Let (x,) be a shrinking basis of a Banach space X .  Then  X** can be identified 

with the space of all sequences of scalars (a,) such that sup, 1 1  xy.l aixill < a. 

This correspondence is  given by x** t, (x**(x;) ,x**(x;) ,  - .  a ) .  The norm of x** 

is  equivalent (and i n  case the basis constant is  1 even equal) to 

(cf. [32], Proposition 1. b.2.). 

(iv) A basis (x,) of a Banach space is  called boundedly complete if, for every se- 

quence of scalars (a,) such that sup, 1 1  xy=, aixill < oo, the series x:=l a,x, con- 

verges. 

0 The  unit  vector basis is  boundedly complete i n  all the P' spaces. 

0 B y  combining the definitions of shrinking and boundedly complete we get a 

characterization of reflexivity in terms of bases. 

(cf. [32], Theorem l.b.5) 

Let X be a Banach space with a Schauder basis (x,). Then  X is  reflexive if 

and only if (x,) is  both shrinking and boundedly complete. 

(v)  Let X be a Banach space with a Schauder basis (x,). 



n 
Consider the projections P, : X -i X ,  defined by Pn(x,"=l aixt.i) = aiXi, 

then the number sup, llP,ll is  called the basis constant of (x,). 

I f  ( x i )  is  a basis sequence in X *  then its basis constant is  identical to that of 

( x n  > - 
Consider the projections M ,  : X -i X ,  defined by aix i )  = x,"=, @iaixi, 

for every choice of signs @ = ( B i )  The  number sup,  1 1  Moll is the uncondi- 

tional constant of (x,). 

The  basis constant is  less or equal to the unconditional constant. 

If (x,) i s  a n  unconditional basis of X we can always define an  equivalent norm 

o n  X so that the unconditional constant becomes 1. 

For every integer n the linear functional xt o n  X defined by 

is  a bounded linear functional. These functionals (x : ) ,  which are character- 

ized by the relation s;(~,) = &,, are the biorthogonal functionals asso- 

ciated to  the basis (x,). If (x,) is  an  unconditional basis sequence in X then 

the biorthogonal functionals ( x i )  form a n  unconditional basis sequence in X *  

whose unconditional constant is  the same as that of (x,). 

(vi) A basis whose basis constant is  1 is  called a monotone basis, i.e. for every choice 

of scalars (a,) the sequence of numbers ( 1 1  x r = l  a ix i l ( )  is  increasing. 

A space with a monotone basis has the m.a.p. 

Given any Schauder basis (x,) in X ,  we can pass to an  equivalent norm in X for 

which the given basis is  monotone. 

(vii) A Banach space X is  said to have the approximation property (A .P .  in short) 

if) for every compact set K in X and every E > 0 ,  there is  a n  operator T : X -i X 

of finite rank (i.e T x  = C r = ,  x , ~ ( x ) x ~ ,  for some ( x i )  c X and ( x f )  C X * )  so that 

llTx - xll 5 t for every x E K. 

Every space with a Schauder basis has the A.P.  



(viii) If X*  has the approximation property then X has the approximation property. In  

particular, if X is  reflexive then X has the approximation property if and only if 

X* has the approximation property, 

( ix)  The principle of local reflexivity 

Let X be a Banach space and let E and F be finite dimensional subspaces of X** 

and X* respectively. Then for each e > 0, there is  an injective operator u : E + X 

with the following properties: 

(a)  ux = x for all x E E n X 

(b) 1 1 ~ 1 1 1 1 ~ - 1 1 1  5 1 + 6 

( c )  (ux**, x*) = (x**, x*) V x** E E, V x* E F. 



Chapter 2 

Vector sequence spaces 

2.1 General vector sequence spaces 

Let U be a reflexive Banach space with a normalized unconditional basis (ei) and let 

X be a Banach space. By renorming U we may assume that the unconditional basis 

constant is 1. Let ( e f )  be the unconditional dual basis of U* with the unconditional basis 

constant 1. By normalization we can assume that Ilef 1 1  = 1 for each i E N. Moreover, (ei) 

and ( e f )  are orthonormal, i.e. e f ( e j )  = S jT i ,  where Si,i = 1 and Sjli = 0 if j # i. 

In [ll] the following vector sequence spaces are introduced: 

00 

listrmg ( X )  = { Z  = (xi) i  E X" : 1 llxi 1 1  ei converges in U ) ,  
i=l 

which is a Banach space with respect to  the norm 

00 

UWeak(X)  = { Z  = (x i ) i  E X" : l x * ( x i ) e i  converges in U, V x* E X * ) ,  
i=l 

which is a Banach space with respect to  the norm 

In order to avoid ambiguities the norms l ~ ~ ~ l ~ ~ ~ ~ ~ ~ ~ ( x )  and I l ~ l l ~ , , ~ ( ~ )  are sometimes used. 



which is a Banach space with respect to the norm 

00 

From the work of Bu (cf. [Ill, p. 29, 33 and 35) we observe that: 

In case U is a real Banach space, Il.llweak I Il.llstrong I Il-llu(x). 

U(X)* = UGeak(X*) and Uweak,o(X)* = U*(X*) isometrically. To obtain these isometries, 

we identify a sequence (xf) in U:eak(X*) with the linear functional f E U(X)* defined by 

f ((xi)) = Crl  xf(xi) .  It  is easily seen (cf. [ll], Proposition 1.5.2) that  T = E U(X) 

if and only if the series Czl xf(xi)  converges for each (xf)  E UGeak(X*) and that 

In the following lemmas and corollaries, we summarise some properties about the different 

vector sequence spaces. 

Proof Let (xi) E Uweak(X) then CFl x*(xi)ei converges in U, for all x* E X *  and 

1 1  (xi) llweak = E B ~ .  1 1  Crl  x*(xi)eillu. Choose u E L(X,  Y). For y* E Y* we have 



Corollary 2.2 If (x i**)  E Uweak(X***) and i x  : X + X** is the embedding mapping, 

then (sf** o i x )  E Uweak(X*) and 1 1  (sf** 0 ix)llweak 5 1 1  (~f**)\Iweak. 

Corollary 2.3 If ( x f )  E Uweak(X*) ,  then ( x l )  E Uweak(X***) and 

Lemma 2.4 A sequence (x,) in a Banach space X is in U ( X )  if and only if 

( i xxn)  E U ( X * * )  and l l ( i x x n ) I I ~ ( ~ * * )  = I I ( x ~ ) I I u ( x ) .  

Proof Let ( x i )  E U ( X )  and (sf**) E Uieak(X***) .  By Corollary 2.2 we have 

(sf** o i x )  E U:eak(X*) and 1 1  (xf" 0 ix)llweak 5 1 1  (xf**)llweak. This implies that 

from which i t  is clear that  ( i xxn)  E U ( X * * )  and \ l ( ixxn)) )u(x- )  5 I I ( X ~ ) ~ ~ ~ ( ~ ~ .  
Conversely, if ( i x x n )  E U ( X * * )  and ( x f )  E U i e a k ( X * ) ,  then 

Lemma 2.5 For each finite set { x l ,  x2, . . . , x n )  C X we have 

Proof 

A 
Lemma 2.5 will be instrumental in characterizing U @ X in terms of vector sequence 

spaces, using results from the theory of tensor products. Let us start by proving the 

following theorem. 



isometric 
Theorem 2.6 Let X be a Banach space. Then U(X) = Z(U*, X ) .  The isometry 

is given by the mapping (xi) H u : U* -+ X : uej = x j  for all j E N.  

v 
Proof We know from Grothendieck's work that (U* @I X)*  is isometrically identifiable 

with Z(U*, X * ) ,  where each u E Z(U*, X*) is identified with 4, such that 
n n $,(x e; 8 xj)  = x (ue;)xj. The mapping @ : U(X*) -+ (U* 8 X)',  defined by 

i=l i=l 

@((xt))(e; 8 x) = xjx,  satisfies 

v 
The bounded linear operator has an inverse + : (U* @ X)* -+ U(X*), which is defined 

by ( H (x;), where ((e; 8 x)  = x;x for all x E X .  Using Lemma 2.5 for all finite 

by Lemma 2.5, it follows that  
v 

Using that 1 1  (xj) l l w e u k  = 

n 

sets {xl ,xz , .  . . , x n )  c X follows x Jxjxjl 5 II(IIII(xj)llweak; i.e. (x;) E U(X*) and 
j=1 

isometric 
Il(x;)llUcx*, 5 Il(l1. This shows that Z(U*, X*) = U(X*), where the isometry is 

n x e; 8 x j  
j=1 

given by u H (ue;). Since this isometry holds for all Banach spaces X, then also for X* 

if X is given, i.e. 

Z(U* , x**) ism7tric - U(X**) : u H (ue4) 

Finally we have 

Since the space U* is reflexive and U = U** has the metric approximation property, i t  

follows that: 

isom-etric Corollary 2.7 U(X)  - N(U*, X ) ,  where the isometry is given by (xi) H u : U* -+ 

X : ue; = x j  for all j E N. 



Corollary 2.8 ( x i )  E U ( X ) ,  if and only if  there are ( A j )  E 11, { y j ) y  c Bv and 
W 

{yj)? C Bx such that xi = C Ajef ( y j ) y j  for all i E N.  
j=1 

Proof ( x i )  E U ( X )  if and only if there exists u E N(U*,  X )  such that uef = xi for all 

i E N. u being nuclear, this is so if and only if 

with ( A j )  E 11, {yj);" c BU and {yj)? c Bx.  0 

A 
Since N(U*,  X )  = U 63 X (for all Banach spaces X ) ,  when U satisfies the metric approx- 

imation property, we conclude that: 

isometric A Corollary 2.9 U ( X )  - U @ X by the mapping ( x j )  e u where uej = xj for all 

j E N. 

2.1.1 U-summing multipliers and strongly U-summing mult ipli- 
ers 

Definition 2.10 A scalar sequence ( a i )  is called a U-summing multiplier for a Ba- 

nach space X ,  .if 

( ~ i x i )  E Ustrong(X) 1 V (x i )  E Uweak ( X ) .  

Proposition 2.11 ([32], p. 19) 

Let (x,) be an unconditional basic sequence in a Banach space, with an unconditional 

constant K .  Then, for every choice of scalars (a,) such that C;==, a,x, converges and 

every choice of bounded scalar sequences (A,), we have 

(in the real case we can take K instead of 2K). 

Remark 2.12 It follows in particular from Proposition 2.11 that if C,"=, b,x, converges, 

where bn > 0,  V n and if 0 < a, 5 bnl for all n ,  then ( 1  C r= l  anxnll 5 Kll C z l  bnxnll 



Proof 

Theorem 2.13 If y  = C,"=, yiei E U, then (y i )  E M u ( X ) .  

Proof Let ( x i )  E U w e a k ( X ) .  For fixed i  E N, there exists x* E X * ,  llx* 1 1  = 1 such that 

Since the basis (ei) has unconditional constant K = 1, it follows from Proposition 2.11 

that 

Thus (Ilxill) is bounded. Proposition 2.11 also implies that 

again using that {e;)  is an unconditional basis. Thus (yixi)  E Ustrong(X). 

Lemma 2.14 (a,) E M u ( X )  implies (a ix f )  E U * ( X * )  for all ( x f )  E U$rong(X*). 

Proof Let ( x i )  E U w e a k ( X ) .  Then 

On the vector space M U ( X )  we define a norm 

which is well-defined because for each (ai)  E M u ( X )  this is the operator norm of the 

linear operator 

T a  : Uweak(X) Ustrong(X) 1: ( x i )  * (%xi) ,  



where T, is bounded (having closed graph): 

suppose (xi,n)i -+ (xi) and T,((xi,,)i) -+ ( y i )  if n -+ oo, 

then 

Also, 
00 

- 1 1  i - i n )  s o n  - x ( x : ,  aiw - aizi,,), for some ll(z;) \ l S t r o n g  = 1 
i= 1 
00 

and 
00 

I ,  - y e  

It follows that aixi = yi,  V i ,  i.e. that T,((zi)) = ( y i ) .  

MU(X) is a complete normed space with respect to the above operator norm. In the 

exposition that follows an alternative definition of U-summing multipliers is given. 

Definition 2.15 A scalar sequence (ai) is called a U-summing multiplier for a Ba- 

nach space X ,  zf there is a constant c > 0 such that regardless of the natural number rn 

and regardless of the choice of z l ,  zz, . , zm in X ,  we have 

First we prove that Definitions 2.10 and 2.15 are equivalent: 

Proof Let (ai)  E P. If there is a constant c > 0 such that for all finite sets 

{ z l , . . .  , z m )  c X we have 



Conversely let IICzl Ilaixillei)lu < a, 'd (xi) E Uweak(X). Since the operator 

is bounded, we have 

In particular, for all finite sets {xl,  . . , xm) c X it follows that 

It is clear from the above discussion that on the vector space M U ( X )  the norm is also 

given by 

1 1  (ai) l l M r / ( X )  := inf {c > 0 : the inequality (2.1) holds). 

Proposition 2.16 Mu(X**) = Mu(X).  

Proof Let (ai) E M u ( X )  and 6 > 0. 

We intend to show (ai) E MU(X**). 

For any finite set {xy*, x:*, ..., x r )  c X**, let x*, E X *  with 11x*,11 = 1, such that 

) \x i*)(  x )(xl,xi*)I for k = 1 , 2 , . .  . , n 

" x " meaning close enough so that 1 (x;, x;*) I > 0. 

Let E := span{x;*, x;*, - .  . , x r )  c X** and F := span{x;, x;, . - , xz) C X*. 

By the Principle of Local Reflexivity there exists an injective-bounded linear operator 

u : E + X with 

(ii) I(uxf*,xt)( = 1(xf*,x;)I # 0 for xi** # 0, i = 1 , 2 , - - .  , n .  

Let xi := uxt* E X ,  (i = 1, - . . , n). Since (ai) E MU(X) ,  there is a c > 0 with 



Hence we have: 

5 Ilu-'l/llull c sup 1 1  C(Y*, ~f*)e i l lu ,  where y* E X*** 
I I Y I  i=l 

Since E > 0 was arbitrarily chosen, it follows that 

so that (ai) E Mu(X**) and 

Conversely, suppose 

for all finite sets {xy*, x;*, . - . , x z }  c X**. Then, for all {xl, - . - , xn} c X c X**, it 

follows that 



Thus MU(X) = Mu(X**) as Banach spaces. 0 

Definition 2.17 A scalar sequence (a,) is a strongly U-summing multiplier, if 

Put 

On the vector space we define a norm 

Theorem 2.18 

[Ustrong (XI]* = ULmg (X*). 

To obtain this, we identify a sequence (xf) E U,*,,,,,(X*) with a linear functional 

defined b y  $((xi)) = Crl xf(xi). 

Proof Let (sf) E U,*trong(X*) and (xi) E Ustrong(X), then 

Thus Czl xf (xi) converges. 

Define a linear functional $ on UStTong(X) by $((xi)) = CEl xf (xi). Then $ is bounded 



and l l $ l l  1 1  (~f)~lo~,~, , , , (x=).  Conversely, suppose $ E [Ustrong(X)]* is given. Define a 

sequence (XI) by xf(x) = $((0,0, . . .  , 0 , ~ ? , 0 , . - - ) ) .  Then xi E X*, with //xfII < Il$//. 

Let E > 0. Let xi E X, \lxill = I and IJxf(l < (1 + E ) x ~ ( x ~ ) .  Then 

I (1 + E ) I I $ I ~ J [ X I ( ~ ,  by Proposition 2.11. 

= (1 + c)ll$l\ 

Since this inequality holds for each 6 > 0, it follows that 

C IXiIIlxilIei I I I ,  

isomztric Proposition 2.19 Mu* (X*) - M;~"~~(X) as Banach  spaces. 

Proof Let (ai) E MU* (X*) and (xi) E Ustrong(X). 

Hence 



Conversely, let (ai)  E M ; ~ ' O ~ ~ ( X )  and ( x ; )  E U;,ak(X*). 

( a i x f )  E U&.,ng(X*) : Define $ : U,t,,,(X) -t K : 

This converges, because (a ix i )  E U ( X ) .  

This shows that 

4 E [ u s t r o n g ( x ) ] *  = us*trong(x*) 7 

with I I $ I I  5 1 1  (ai)  IIM;tvongcx) 1 1  (5;) /Iwear. Looking at the identification in Theorem 2.18, we 

see that ( a i x f )  E U&ong(X*) such that l l $ l l  = 1 1  ( a i x f )  \ l s t r o n g ,  It follows that 

Theorem 2.20 Let (ai) be a bounded scalar sequence. 

Then (ai)  E M u ( X * )  if and only if TGJ : U -+ X :: (P,) -+ Cz ,  Biaixi is  nuclear for all 

sequences ( x i )  E U,*t,ong ( X )  . 

Proof We know (ai)  E M U ( X * )  

& Tz,S : U -+ X is nuclear, V ( x i )  E U;,,,,(X). 



2.2 Applications where U is replaced by classical Ba- 
nach spaces 

2.2.1 The case where U = LP(0,l) for 1 < p < m 

For 1 < p < oa, let LP(0,l) denote the Banach space of equivalence classes of Lebesgue 

measurable functions on [ O , l ] ,  whose p-th power is Lebesgue integrable. The norm on 

P ( O l l )  is defined by 

Recall (cf. Section 1.5) that the sequence of functions {xi(t));" defined by xl( t)  = 1 for 

0 5  t 5 1 and, for k = 0 , 1 , 2 , . . .  , j  = 1 , 2 , . . .  12kl  

is called the Haar system. It is well known to be a monotone, unconditional (but 

obviously not normalized) basis of P ( 0 ,  I ) ,  1 < p < m. From ([37], p. 268) it follows 

that the Haar basis of P ( 0 ,  I ) ,  p > 1 is a shrinking basis. 

Following [13], we renorm P ( 0 , l )  by 

Then 

1 1  IlP I 0 . lIpneW 5 KPll . llP1 

whereby Kp is the unconditional constant of the basis {xi);". 
If 1 < p 5 q ,  we have 1 )  Czl 6iaixillp I I 1  Cg l6 ia i~ i I Iq -  Thus IIf 117" 5 I I f  IIYW if 
f = aiXi E Lq(O, 1). 

With this new norm, LP(0,l) is of course also a Banach space. Furthermore, the uncon- 

ditional constant of {xi)? with respect to this new norm is 1. Now let 



Then {ei)? is a normalized, unconditional basis of (LP(O,l), ( 1  . /I;"") of which the uncon- 

ditional constant is 1. The basis constant being less than or equal to  the unconditional 

constant and LP(0,l) being reflexive, {ei)f" is monotone and boundedly complete. 

Now let 

Then {e:)? is a normalized, unconditional basis of (LP1(O, 1))  ) I  - of which the un- 

conditional constant is 1. Moreover, {ei)? and {e:)f" are orthonormal, i.e. 

1 if i = j  
e: (t)ej (t) d t  = 

0 if i # j. 

Henceforth, the norm on P ( O ,  1) will always be the new norm IJ.l(,""". 

Proposition 2.21 (cf.  [32], p. 18-19) Let u = CZ1 et(u)ei E LP(0,l) and 1 < p < 00. 

T h e n  

(ii) 1 1  CEl Oie,*(u)eill,"ew 5 llul(,new, for each choice of signs O = (Oi). 

(iii)  1 )  CF1 Xie,*(u)ei llFew 5 211 (Xi) 11, ()uljpeWl for  each X = (Xi) E C". 

We will show that  the space ( ~ ' ( 0 ,  1),  1 1  - is topologically isomorphic to the space 

(LP(0, I) ,  1 1  . I f e w ) * ,  where the isomorphism is defined by $ I-+ Czl $(ei)e:. In order to 

prove this result, we need the following lemma: 

Proof 



and 

= sup I (C cj$(ej)e;, C aiei) 1 ,  for some I I  C aiei(/p = 1 
€,=*I j=l i=l i= l 

Corollary 2.23 From Lemma 2.22 we have /($()""" 5 1 1  C,"=, $(ei)e,*II::" 5 Kpll$llnew, 

whereby (1$1)""" = II$I((LP(o,l),ll.ll;ew~*. Hereby we obtain the topological isomorphism 

defined by $ I+ CEO=, $(ei)ef. This is  generally not  an  isometry. 

Note that [ P ( 0 ,  I), 1 1  . llrw]* isO'Etric ( P I  (0, I ) ,  1 1 .  l l n e w ) .  Let X be a Banach space, and for 

1 < p < co, let p' denote its conjugate number, i.e. l / p  + l/p' = 1. In [13] the following 

vector sequence spaces are introduced: 



00 

= (xi) i  E xN : x [lxill ei converges in LP(O, 1)  , 
i= 1 1 

which is a Banach space with respect to the norm 

w 

3 = (x i ) i  E xN : x x*(xi)ei converges in LJ'(0,l) for all x* E X*  , 
i=l 1 

which is a Banach space with respect to the norm 

new 

; 
P 

IlsIIstrong = 

w 

C llxill ei 
i= 1 

which is a Banach space with respect to the norm 

11211weak = Sup x*(xi)ei 
k l  

We now summarize some properties about the vector sequence spaces LJ'(0,l) that follow 

new 

: X *  E Bx* 

directly from the general case in Section 2.1 

P 

Theorem 2.24 For + $ = 1 

To obtain the isomorphism, we identify a sequence ( s f )  E L$,,,(X*) with a linear func- 

tional 4 E [LttTOng ( X ) ] * ,  defined b y  q5((xi)) = x& xf ( x i ) .  In this case 

1 1 -  Theorem 2.25 Let X be a Banach space and let 1 < p < oo, + - 1. Then 
LP ( X )  isometric = Z(P' (0 ,  I ) ,  X ) .  The isometry is given b y  the mapping 

for all j E N. 



isomorphic 
Corollary 2.26 Let 1 < p < m and + 5 = 1. Then P ( X )  = N(P'(o, 1), X),  

where the isomorphism is given by (xi) u u : ~ ' ( 0 ,  1) i X : ue; = x j  for all j E N .  

Corollary 2.27 Let 1 < p < m and $ + 5 = 1. Then (xi) E LD(X), if and only if there 
00 

are (Aj) E el, {rj}y c BLp(O,l) and {yj}y C Bx such that xi = C Aje: (r j)yj  for all 
j=1 

i E N .  

From our earlier discussion in connection with the projective tensor product, it is clear 
isomorphic A 

that N(LD1 (0, I),  X )  = LP,,, (0 , l )  @I X (for all Banach spaces X ) ,  when p satisfies 

the conditions in Corollary 2.26. We thus conclude that 

isomorphic 
Corollary 2.28 Let 1 < p < m .  Then P ( X )  = &,(0,1) 6I X. 

2.2.2 The case where U = P for 1 < p < oo 

The unit vector basis is boundedly complete in all the P' spaces. There are normalized 

unconditional bases in P, 1 < p < m ,  p # 2, which are not equivalent to the unit 

vector basis. The unit vector basis is a monotone, normalized unconditional basis in P .  

In this case, if we put U = P, then U* = P' isometrically. Therefore, we can now list the 

following isometric results directly from the corresponding results in the general setting 

in Section 2.1: 

isom_etric Corollary 2.29 Let 1 < p < m and + $ = 1. Then P ( X )  - N(P' ,x) ,  where 

the isometry is given by (xi) u u : F' i X : uej = xj  for all j E N .  

Corollary 2.30 Let 1 < p < m and $ + $ = 1. Then (xi) E P ( X ) ,  if and only if there 

From our earlier discussion in connection with the projective tensor product it is clear 
A 

that N(@, X )  = lP @I X (for all Banach spaces X) ,  when p satisfies the conditions in 

Corollary 2.29. We thus conclude that 

Corollary 2.31 Let 1 < p < m. Then P ( X )  ' som~ric  F & X .  
A 

A ~ S O  e l ( x )  = el ( x )  = el B x .  



Definition 2.32 (cf. [5]) Let 1 5 p 5 m .  A scalar sequence (ai) is  called a p-summing 

multiplier for a Banach space X,  i f  C:=, )lanxnllP < m for all sequences (x,) E tL(X). 

Proposition 2.33 mp(X**) = mp(X). 

Definition 2.34 Let 1 <_ p 5 m. A scalar sequence (an) is a strongly p-summing 

multiplier, if (a,x,) E F(X) ,  V (x,) E fP(X). Put  

On the vector space mitrong(X) we define a norm 

I I  (ail I I r n p r o n g ( ~ )  = SUP i i )  SUP ICx:(ffnxn)I. 
Il(~i)ll~p(x)51 ep((G))51 n=l  

I I ( ~ * ) I I L P ( x ) ~ ~  

There is a natural connection between m;trOng(X) and mp,(X*), which is given by 

Proposition 2.35 (ai) E mpt(X*) Q (ai) E mstrong(X) P with + $ = 1. 

Theorem 2.36 Let (ai) be a bounded scalar sequence and 1 < p < m ,  f + $ = 1. Then 

(ai) E mp(X*) if and only i f  TE,-, : P + X :: (Pi) + Czl Piaixi is nuclear for all 

sequences (xi) E p t (X) .  

Corollary 2.37 Let (a,) E P' and 1 < p < m ,  + = 1. The  following are equivalent: 

(b) En ez @ E N ( P ,  X*), V (x:) E (x*). 



Chapter 3 

General operator spaces 

Let U and W be reflexive Banach spaces with normalized unconditional bases (ei) and 

( f i )  respectively and let X be a Banach space. 

For X a compact space, M ( X )  denotes the space of all R regular Bore1 measures on 

X .  Let E ( X )  and F ( Y )  be spaces of sequences with values in X and Y respectively. 
A 

Consider T E L ( X ,  Y ) .  The operator T induces an operator T from E ( X )  into F ( Y )  
A 

defined by T ( ( x ; ) )  = (Tx ; ) .  

3.1 Strongly (U, W)-summing operators and strongly 
(U, W)-nuclear operators 

Definition 3.1 An operator T is absolutely (U, W) - summing  (or T E I Iu ,w(X,Y))  

if there exists a constant c > 0 such that for all finite sets { a l ,  . . , x,), the inequality 

is satisfied. The smallest number c such that the above inequality holds, is called the 

absolutely (U, W )  -summing norm, nu,w(T) of T .  

Remark  3.2 Only the zero operator can be absolutely (U, W)-summing if U g W : 

Let 0 # T E nu ,w(X ,  Y ) ,  w = x" Z= 1 a; f ;  E W and put xk = akx where x E X ,  T x  # 0. 



Since 

and 

it follows from (3.1) that 

Thus x,"=, Gkek E U. The mapping x,"=, ai f i  E W ++ x,"=, aiei E U defines an isomor- 

phism into, i.e. W is isomorphic to U. 

A discussion of two related classes of operators follows. 

(1) An operator T : X -;r Y is strongly (U,W)-summing (i.e. T E Du,w(X, Y ) )  if 

there exists a c > 0 such that for all finite sets { x l ,  x2, . - . , xn)  C X we have 

equivalently, T E DU,w ( X ,  Y) e 

3 c > 0 such that  for any X I , .  . . , xn E X ,  y; ,  . . . , y i  E Y*, 



(2) T is strongly (U,W)-nuclear (or T E SNuYw(X, Y)) if there exists a c > 0 such 

that for all finite sets {xl, x2, . . , x,) c X we have 

Equivalently, T E SNUyw(X, Y) @ 

3 c > 0 such that for any x l , . . .  , x n  E X, y; , . . .  , yi  E Y*, 

We shall denote the strongly (U, W)-summing norm by du,w (.) and the strongly (U, W)- 

nuclear norm by snu,W(.). In this case du,W(T) = inf{c > 0 : (3.2) holds ) and 

(T) = inf{c > 0 : (3.3) holds ). 

Proposition 3.3 L e t  X a n d  Y be n o r m e d  l inear  spaces a n d  a s s u m e  t h a t  T : X + Y i s  

a bounded l inear  operator .  T h e n  

A 

( i )  T E Du,w(X, Y) i f  a n d  o n l y  i f  T : WStrong(X) + U(Y) i s  bounded w i t h  

A 
( i i )  T E SNU,w(X, Y) if a n d  o n l y  if T : WWeak(X) + U(Y) i s  bounded wi th  

A 

snu,w(T) = IITII. 

Proof We prove (i): Suppose T E Du,w(X, Y). If (xi) E Wstrong(X), then for each 

fixed n and for each (y,') E BU;eak(~*), it follows that 

Note that the above inequality holds because of our assumption about the bases on W and 

U*. Letting n + m, we obtain Czl lyf (Txi)l 5 d ~ , ~ ( T ) l I ( ~ i ) l l ~ ~ t , o n ~ ( ~ ) l l ( ~ f ) l l ~ ~ ~ ~ ~ ( ~ * ) ~  

Therefore, the series Czl yf (Txi) converges and (Txi) E U ( Y ) .  Furthermore, because 
A A A 
T((xi)) = (Txi), it follows that T is continuous with I(T(I 5 dUyw(T). 

A 

Conversely, suppose T : WStron,(X) + U(Y) is bounded and T 6 Du,W (X, Y). Then for 

every n E N, there is a finite set {xln, ~2~~ a , x,,,) c X such that (xin)i E BWStron9(~) 



Then 

A 

contradicting the fact that T maps WsWon, ( X )  (continuously) into U ( Y )  . Since 

Proposition 3.4 (i) The spaces SNu,w(X,  Y )  and D U , ~ ( X ,  Y )  are normed linear 

spaces. 

(ii) If T E SNu,w ( X ,  Y )  (or T E DU,W ( X ,  Y ) ) ,  then T is continuous and 

IlTll I snu,w(T) (or IlTII I du,w(T)).  



(v) If Y is complete, t hen  Du,w(X, Y )  and SNu,w(X,  Y )  are complete. 

Proof (i) and ( i i )  follow directly from the definitions. 

(i i i)  We prove this property for the space D U j w ( X ,  Y ) .  The proof for SNUTw(X ,  Y )  is 

similar. Let T E Du,w(X, Y )  and S E L(Y,  2 ) .  Then, if x l , .  , xn is a finite set in X ,  

we have 

From this we conclude that ST E Dulw(X,  2) and dU,w ( S T )  5 IISlldU,w(T). 

( iv)  The proof is similar to part (iii).  

( v )  We show Du,w(X, Y )  is complete. Let (Tn) be a Cauchy sequence in D U , ~ ( X ,  Y ) .  By 

part ( i i ) ,  the sequence (Tn) is a Cauchy sequence in L ( X ,  Y ) ;  since L ( X ,  Y )  is complete, 

(T,) converges to  an operator T in the norm topology on L ( X ,  Y ) .  We show that (T,) 

converges to T in DU,w(X,  Y )  : 

Fix E > 0. Since (Tn)  is a Cauchy sequence in D U , ~ ( X , Y ) ,  there is a positive integer 

N ,  such that du,W(Tn - Tm) < E ,  whenever n ,  rn 2 N .  Therefore, for each finite set 

X I ,  . - , xk in X and for each ( y t )  E BU;eak ( Y * ) ,  it follows that: 



whenever m, n > N.  Letting m + oo, we have 

which implies tha t  Tn - T E D U , ~ ( X ,  Y )  and du,W(T - Tn) 5 6 ,  V n 2 N.  Thus, 

T = T - TN + TN E Du,w ( X ,  Y )  and du,w (T  - Tn)  5 6 ,  V n > N. The proof for 

SNU,w ( X ,  Y )  is similar. 0 

Let us consider the relationship between the classes I I u , ~ ( X ,  Y ) ,  S N U I w ( X ,  Y )  and 

Du,w(X, Y ) .  For U = W let us denote IIu,w(X, Y ) ,  SN , , (X ,  Y )  and Du,w(X, Y )  by 

n7(x, Y ) ,  SNu(X1 Y )  and D u ( X ,  Y ) .  

Proposition 3.5 (i) SNU,w(X,  Y )  2 Du,w(X, Y )  and dU,w(.) L snv,w(.). 

(iii) If T E ( X ,  Y )  and S E Du(Y, Z), then ST E SNU,w ( X ,  2) and 

snu,w ( S T )  I ru,w (T )du (S ) .  

Proof 

A 
(i) If T belongs to  SNu,W(X, Y ) ,  then the mapping T : W W e a k ( X )  + U ( Y )  is contin- 

A A 
uous with IlTll = ~ n u , ~ ( T ) .  Since I : Wstrong(X) + W W e a k ( X )  is continuous with 

A 
11111 < 1, it follows tha t  

is continuous. Thus we have T E DU,w(X, Y )  and 

(ii) Part (ii) follows in a similar way. 



A  

(iii) Let T E IIu,w(X, Y )  and S E Du(Y,  2 ) .  It follows that T : W W e a k ( X )  -+ Ustrong(Y) 
A  A  

is continuous with .rrUlw ( T )  = / (TI(  and S : UStTong ( Y )  -+ U ( Z )  is continuous with 
A  A A  A  A  

.rru ( S )  = l/Sll. Therefore S T  := S T  : Wweak ( X )  -+ U (2) is continuous with I /  S T  1 1  5 
A  A  

(ISI(IITIJ. It follows that S T  belongs to SNU,w ( X ,  Z )  and 

Next we give an exposition of the relationship between Du,w ( X ,  Y )  and ( X ,  Y ) .  

Proposition 3.6 (i)  Let T E L ( X ,  Y ) .  Then T E IIu,w(X, Y )  if and only if the adjoint 

operator satisfies T *  E D w f I U .  (Y* ,  X * ) .  In this case D w * , p  ( T * )  = ( T ) .  

(ii) Similarly, T E Du,w(X,  Y )  if  and only i f  T *  E IIw.,U.(Y*,X*). In this case 

Proof (i) Let T E II , , (X,  Y ) ;  we need to show that T *  E Dw*,u*(Y*,  X * ) .  For any 

finite set y;, . . . , yi in Y* and for (x i )  E W W e a k ( X )  we have: 

Taking the supremum over the unit ball in W w e a k ( X ) ,  we obtain 

Therefore T *  E Dw*,u* (Y*, X * )  and dw*,u* ( T * )  5 .rru,w(T). 

Conversely, assume T *  E D W * , ~ * ( Y * ,  X * ) .  Let X I , .  . , xn be a finite set in X and let 



If we take the supremum over the unit ball in U:tTong(Y*), we obtain 

Therefore T is absolutely (U, W)-summing and rU,w(T)  5 d w * , ~ .  (T* ) .  

Part (ii) has a similar proof. 0 

Proposition 3.7 An operator T E L ( X ,  Y )  is in SNU,W ( X ,  Y )  i f  and only i f  T*  E 

S N w * , p  (Y*, X * )  and snu,W ( T )  = snw*,p (T*) .  

A 

Proof Choose T E SNu,w(X,  Y ) ;  then the operator T : WWeak(X)  -+ U ( Y )  is bounded 
A 

with snUlw(T)  = IITII. Since Wweak,O(X)  is a closed subspace of WweGk(X) ,  it follows that 

Consequently, the adjoint operator 

A 
(To)* : U;,,,(Y*) -+ W *  ( X * )  

A A A 
is bounded with (((To)* ( 1  5 snu,w ( T ) .  We show that (To)* = T * .  Consider 

Convergence of Crl y,' (Tx i )  follows from T E SNu,w ( X ,  Y ) .  Thus 

(T*yz*) E Wweak,O(X)* = W * ( X * )  for all (3:) E U;,,,(Y*). 



A A 

This shows that (To)* = T* and T* E SNw*,u*(Y*, X*) .  

Conversely, let T* E SNw*,u* (Y*, X*). We have to show T E SNu,w(X, Y). 

Let x l ,  . . , xn be a finite set in X and let (yt) E BU;eak(Y*). Then 

Taking the supremum over all sequences (y:) E Bu;eak(p), we have 

therefore T E SNu,w(X, Y) and snU,w(T) I snw*,v* (T*). 0 

3.1.1 Applications where U and W are replaced by classical 
Banach spaces 

In this section let U = CP and W = CQ for q < p. Then 

Ust~ong (X)  1 Uweak (X) 1 U(X) 7 Wstrong(X), Wweak (X) ,  Wweak,o(X) and W(X) 

Let 1 5 q 5 p 5 cm. A bounded linear operator T : X + Y is called a strongly 

(p, 9)-summing operator (i.e. T E DP,,(X, Y)) if there exists a constant c > 0, such 

that for all finite sets {xl, - - , xn) c X we have 

or equivalently, T E DP,Q(X, Y) u 3 c > 0 such that for any choice of 

x l , . - .  , xn  E X ,  y; , . . .  ,y: E Y* we have 



The infimum dp,,(T) of all numbers c > 0 such that the above inequality holds, is called 

the s t rongly  (p, 9)-summing n o r m  of T .  

Let 1 < q 5 p 5 ca. A bounded linear operator T : X -+ Y is called a s t rongly  (p, 9)- 

nuclear  o p e r a t o r ,  i.e. T E SNp,,(X, Y), if there exists a constant c > 0, such that for 

all finite sets {xl,  . . , xn) c X we have 
n 

or equivalently, T E SNp,,(X, Y) u 3 c > 0 such that  for any X I ,  . , xn E X, 

Y;,- , y; E Y* we have 

The infimum snp,,(T) of all numbers c > 0 such that the above inequality holds, is called 

the strongly (p, 9)-nuclear norm of T .  

Note that Dp,,(X, Y) = (0) = SNp,,(X, Y) for p < 9. 

From [26] it follows that  a continuous linear operator u : X -+ Y is called a Littlewood- 

Orlicz o p e r a t o r  if u takes sequences in 1; (X) into sequences in 1' (Y). Hereby, SN2,1 (X, Y) 

is the space of Littlewood-Orlicz operators. 

The classes of strongly p-summing and strongly p-nuclear operators were introduced by 

Cohen (cf. [16]) where the strongly p-nuclear operators were called pnuclear operators. 

From this work of Cohen it follows that 

and 

SN,(X,Y) = D,(X,Y). 

From the general case we get the following results. 

P ropos i t ion  3.8 Let X, Y and Z be normed linear spaces and 1 < q < p 5 ca. 



(ii) If T E SNP,,(X, Y )  (respectively, T E DP,,(X, Y ) ) ,  then T is continuous and 

llTll I snp,,(T) (respectively, IITII I dp,,(T)) 

(222) If T E SNP,,(X,  Y )  (respectively, T E DPjq(X,  Y ) )  and S E L(Y ,  Z ) ,  then 

S T  E SNP,,(X, Z )  (respectively, S T  E Dp,,(X, 2 ) )  

S T  E SNP,,(X, Z )  (respectively, S T  E Dp,,(X, 2 ) )  

Proposition 3.9 Let 1 5 q 5 p 5 oa. Then 

In the early twenties of the Twentieth Century W. Orlicz proved that the spaces V (for 

p < 2) possess a particular property, to which his name is now attached. 

Definition 3.10 We say that a space X has the Orlicz property if every uncondition- 

ally summable sequence (z,,) in X satisfies C:==, llz,lj2 < oa. Equivalently, X has the 

Orlicz property if there is a constant c such that, for any finite sequence ( x i )  in X ,  

Note that the spaces for which the identity operator is (2,l)-summing, are said to have 

the Orlicz property. 



Remark 3.11 If X has the Orlicz property, then D 2 ( X ,  Y )  c SN2 ,1 (X ,  Y ) .  In particular, 

D 2 ( U ( p ) ,  Y )  c SN2,l ( U ( p ) ,  Y )  for 1 5 p 5 2. 

Example 3.12 The first two examples follow from the work of Cohen (cf. [16], p. 193). 

Let 1 < p 5 oo. The imbeddings in ( a ) ,  ( b )  and ( c )  are all continuous. 

(a) npl ( U ( p ) ,  Y )  D p ( U ( p ) ,  Y )  and zf X is a compact Hausdorfl space then 

(c) Let 1 < p < oo and let H be a Hilbert space, then 

Remark 3.13 Recall that an operator T is nuclear (i.e. T E N ( X ,  Y ) )  if it can be 

represented in  the form T x  = Cgl x f (x )y i ,  where xi* E X * ,  yi E Y and 

From the work of Cohen (cf. [I 61, p. 190) it follows that every nuclear operator is strongly 

p-nuclear and if X and Y are Hilbert spaces, an operator T is nuclear if and only i f  T is 

strongly p-nuclear. 

From the general case follows: 

Theorem 3.14 Let 1 _< q 5 p 5 co and let T : X -+ Y be a bounded linear operator 

(i) T E n p , , ( X ,  Y )  zf and only if T *  E D,I,,/ (Y*,  X * ) .  In this case d ,~ ,~ t  ( T * )  = 7rP,,(T). 

(iz) T E Dp,,(X, Y )  if and only if T *  E n,l,pl(Y*, X * ) .  In this case ~ , r , ~ r ( T * )  = dp,q(T) .  

In particular 

T E l l l ( X , Y )  e T *  E D w ( Y * ,  X * )  or T E D w ( X , Y )  ++ T *  E n , ( Y * , X * ) .  

If q = 1 then T E I IPI1 (X ,  Y )  i f l  T *  E (Y*,  X * ) .  

I f p  = oo then T E n, , , (X,Y)  i f l T *  E D,l , l (Y* ,X*) .  



The following theorem gives an integral condition which is sufficient to guarantee that 

an operator is strongly (p, 9)-summing. 

Theorem 3.15 Let 1 < q < p < oo and T E L(X,  Y). Suppose there exists a positive 

Radon measure p on By.. and a c > 0 such that 

Then T E D,,,(X, Y) and d,,,(T) 5 c. 

Proof Suppose IITxIIp < c 11x11, t/ x E X. We show that T* E n,t,,t(Y*, X*) .  

It follows that 

I Y * ( ~ x ) ~  < c II~II(/ Byrr ~ Y * * ( Y * ) I ~ '  d ~ ) k  
i.e. taking the supremum over x E Bx we obtain 

IIT*y*ll 5 c (1 / y * * ( y * ) l p t  dp)$, V y* E Y*. 
By  rr  

By the Pietsch Domination Theorem (cf. 2.12 in [19]) the operator T* is p'-summing 

(i.e. (p',pl)-summing). Since p' 5 q', we have T* E n,t,,t(Y*, X*)  (cf. 10.4 in [19]). Also 

~,t,,t(T*) 5 T,J(T*) < C .  By Theorem 3.14 we have T E D,,,(X, Y) and d,,,(T) 5 c. 

Examples 3.16 (a) For 1 5 p  < 2, idep, E D,,~(P',P'~) and 

for any 1 5 r < q, q 2 2 with 5 - I > 1, 
9 - 2  

(b) Let K be a compact Hausdorff space and 1 5 p < q < oo. 

Then Doo,,t(Y*, M(K)) = D,t,,t(Y*, M(K)) .  

(c) Let Y* be an L,,x-space and let X *  be an Lpt,xt-space, with 1 < p < 2. Then 

T* E l l , ~ , ~ ( Y * ,  X*)  i.e. T E D2,,(X, Y). 

Proof 



(a) Refer to ([19], p. 199) where it is mentioned that a rephrasing of Orlicz's Theorem 

shows that i d e P  E I12 ,~(P ,  P) for 1 5 p 5 2 and idep E II,,,(lP, P )  for any 

Then use Theorem 3.14. 

(b) This follows form ([lg], Theorem 10.9)' where it is proved that 

for 1 5 p < q < XI and from Theorem 3.14. 

(c) This follows from a result (Theorem 10.6) in  ([19], p. 200) and Theorem 3.14. 0 

We know that every absolutely p-summing operator T is weakly compact and completely 

continuous (cf. [34], p. 343 - 345). However it follows that for any p > 1 there are 

(p, 1)-summing operators, which are not completely continuous (cf. [19], p. 209) and S. 

Kwapien and A. Pelczynski (cf. [31]) have shown that if 1 5 q < p, then the sum operator 

E : el -+ em : (xk) -+ (EFzl 1 ~ ~ ) ~  is (p, q)-summing but not weakly compact. Further- 

more we know that if T E Dp(X, Y), then T is weakly compact and the conjugate T* 

is completely continuous (cf. [16]), but from Theorem 3.14 and the above it follows that 

the strongly (p, 9)-summing operators are not necessarily weakly compact or completely 

continuous. 

Recall that if T E N ( X ,  Y) then T* E N(Y*, X*) (cf. [27], p. 484 and p. 164). If Y 

is reflexive or X *  satisfies the approximation property, then 

T* E N(Y*, X*) if and only if T E N(X,  Y). 

In the case of strongly (p, 9)-nuclear operators we have such a Schauder-theorem type 

result, without restrictions on X and Y. This was seen in Proposition 3.7 in the general 

case, which in this setting can be phrased as follows. 

Proposition 3.17 Let 1 < q 5 p < cc and let T : X + Y be a bounded linear operator. 

Then T E SNP,,(X, Y) iff T* E S N , I , ~ ~ ( Y * ,  X*) and snP,,(T) = ~n , l ,~ l (T*) .  
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Theorem 3.18 Let ql 5 42, pl 5 p2. 

Proof We prove ( 1 ) .  The proof of (2) is similar. Choose u E Dpl ,,, ( X ,  Y ) ;  then for 

x l , - . .  , x n  in X and y; , . . .  , y: in Y* we have 

T E D ~ , ( X ,  Y )  g4 T* E npi(y*, x*) + T* E npi (Y*,  x*) 

by the Inclusion Theorem (cf. [19], p. 39). Again by Theorem 3.14, we have 

3.2 Positive operators 

Throughout this section X will denote a Banach lattice and Y a Banach space. Given 

1 5 p < m, we use the following notation: 

6: ( ( x i ) )  = SUP (C (x* {xi  1 ) ' )  ' 
X*EB:.  i=l 

t L ( X ) +  = {(x,) c X : €:((xn)) < m ) .  

Lemma 3.19 Let X be a Banach lattice and X I ,  x2, . . , xn >_ 0. Then  



Now, conversely, let x* E Bx., From 

( I x * ~  - x*, x )  = ( (x*)+ + (x*)-  - (x*)+ + (x*) - ,  x )  = 2((x*)- ,  x )  > 0,  

for all x  2 0, it is clear that x* 5 Jx*( .  Since xi 2 0,  it follows that 

Therefore €,((xi) ( I  n) )  5 6: ( ( x i )  (< n ) ) .  0 

Blasco (cf. [7 ] )  introduced the positive (p, q)-summing operators as follows. 

Definition 3.20 (cf. [7], p. 14) Let 1 5 q < p < oo. 

A n  operator T  : X -+ Y is said to be positive (p,q)-summing (denoted by T  E 

AP,,(X, Y ) )  if there exists a constant c > 0  such that for every finite set x l ,  x2, . . . , xn > 0 

i n  X  we have 

In a similar way we define the following new class of operators. 

Definition 3.21 Let 1 < q < p < co. A n  operator T  is positive strongly (p,q)- 

nuclear (2.e. T E SN,?,(X,Y)) i f  there exists a c > 0  such that for all finite sets 

{ X I , .  . , xn )  C X of positive elements, we have 

Equivalently, T  E SNLq(X ,  Y )  

3 c >  0 such that for a n y 0  5 X I , . . .  , xn  E X ,  y; , . . .  ,yz E Y* ,  

n 

C l ( ~ ; , T x i ) l  5 c sup 
i= 1 X * E B $ .  k=l 



SNLq(X, Y) becomes a Banach space with norm snLq(T) given by the infimum of the con- 

stants c > 0 that verify the above inequality. As before, if p = q, we denote SN2p(X, Y) 

by SN;(X, Y). Note that for p = q = 1 we have SN:(X, Y) = A1,l(X, Y). 

As in Theorem 3.18 we have the inclusion SNz,q2(X, Y) C SN&,qI (X, Y) if ql I q2 and 

Proposition 3.22 Let 1 < q 5 p < cm and assume that T : X + Y is a bounded 

linear operator. Then T E SNLq(X, Y) if and only if T̂  : !$(X)+ + P ( Y ) ,  defined b y  

?((x,)) = (Tx,), is continuous. 

Proof Suppose T E SNLq(X, Y) and (x,) E C$(X)+ then 

Therefore llT^(x,) 1 1  ( p )  5 2snLq(T)r: ((x,)). Conversely, suppose f? : C (X)+ + P ( Y )  

is bounded and suppose T @ SNLq(X, Y). Then for every n E N, there is a finite set 

{xln, X 2 n l .  . 1 xm,n) C X such that (xin)i E Bt~(x)+ and 1 1  (Txin)i<mn 2 2". Let 

epl ((yi*,,)) I 1 such that Czl ( ( T x ~ ,  Y Z , ~ ) I  2 2,. Consider the sequence 

and 

(Y:) = (2-1~;l,2-1~;l,  . . I 2-'~;,1, 2-2y;, 2-2y;,, . .  , 2-2y;22,. ..). 

Then, zi >_ 0 and by Lemma 3.19 



Similarly, (yf) E Bet(,.), However, I ( ( T z ~ ) ~ ~ ( ~ )  = ca, (as in the proof of Proposition 3.3), 

contradicting the fact tha t  T̂  maps t$(X)+ (continuously) into PP(Y). Since 

Lemma 3.23 (cf. [37] , p. 241) Let X denote a Banach space. If (x,) E l l ( X ) ,  then 

If X is  a Banach lattice and (xn) is  a positive summable sequence in X, then 

Theorem 3.24 Let 1 < p < oo. Then  

(a)  SNLl(t l ,  Y) = L ( t l ,  Y) 

Proof 

(a) Given T E L(l l ,  Y) and 42, - . a , 5bn 2 0 in l1 we have 

where the last two steps in the proof follow by the positivity of each &. 

(b) The proof is similar to  the one in (a). 0 



Theorem 3.25 Let 1 5 p, q 5 oo. 

(a)  0 r 5 q then SNLq(X, Y) C SN+ p,r (X, Y). 

(b) For XI a subspace of X2 and = X2 it  follows that SNzq(X2, Y) is  isometrically 

embedded into C SNzq(Xl, Y). 

Proof 

(a) It is obvious since E$ ((xi) ( 5  n) )  I ef ((xi) (5 n)). 

(b) The inclusion SNLq(X2, Y) C SN2q(X1, Y) is clear, since the mapping T H T J x ,  is 

injective and T 1 E SNLq(Xl, Y). Moreover, since each x* E B;. extends uniquely to 

x* E B$, lL(Xl)+ is isometrically embedded into l$(X2)+. Therefore the inclusion of 

SN&(X2, Y) into SNp';q(X1, Y) is also an isometry. 0 

Recall from ([33], p. 42) that for xl, x2,. . . xn in a Banach lattice X and for p > 1 the 

vector (C:=, lxijP): in X can be considered as 

n n 

where P' is replaced by co if p = 1 

Definition 3.26 Let 1 5 p, q < oo. A n  operator T E L(X, Y) is  said to be strongly 

(p,q)-concave (i.e. T E SCP,,(X, Y)) if there exists a constant c > 0 such that for every 

~ 1 ~ x 2 , .  ,xn in X we have 

Equivalently, T E SCP,,(X, Y) u 3 c > 0 such that V {xl, . , xn) C X we have 

with norm S C ~ , ~ ( . )  = inf{c > 0 : c verifies (3.4)). Note that strongly (p,p)-concave is  the 

same as strongly p-concave. 

Remark 3.27 Since 11 (C:=, ~xil'); llLrcp, = (C:=l ~ l X i ] l ~ ~ ( , , ) ~  (cf. Remark 1.18), it  fol- 

lows that i f  u E L(Lq(p), Y) then u E SCp,q(Lq(p), Y) i f  and only i f  u E D,,,(Lq(p), Y). 



Proposition 3.28 For 1 5 q 5 p 5 m. 

Proof The first inclusion is obvious. Let us have a look a t  the second inclusion. 

Choose T E SN&(X ,  Y ) .  There exists c > 0 such that for any XI, - - , xn E X ,  it follows 

that 

Therefore T E SCP,,(X, Y )  0 

Note that SNp,p( t2 ,  em) f Dp,p(12, em) (cf. [16], Theorem 2.4.2.) but from Remark 3.27 

it follows that SCp,p (12, em) = DP,, (12, em). Therefore 

Proposition 3.29 Let 1 5 p, q < oo. 

Proof 

(a) By Proposition 3.28 we only need to show that SCP,,(X, Y )  C SN&(X,  Y ) .  Let 

T E SCp,l(X, Y ) .  There exists a c > 0 such that for any finite set { x l ,  . . . , xn )  c X 

of positive elements we have 



(b) For T E S N L l ( X ,  Y ) ,  there exists a c > 0 such that for all X I ,  . , x, in X we have 

Theorem 3.30 Let R be a compact topological space with 1 5 p < oo. Then 

Proof Choose T E SCp(C(R),  Y ) .  For ql, q 2 ,  . . , qn belonging to  C ( R )  we have 

Proposition 3.31 Let 1 < p 5 oo and + = 1. Then 

the inclusions being norm (5 1) embeddings. 

Proof For T E SN,+(P', Y )  and {en : n E N) the canonical basis in .Pi (which satisfies 

(en) E & ( P i ) ) ,  we let xn := T(en)  for all n E N. Then (x,) E P ( Y )  and 

This proves that  S N , ~  ( P i ,  Y )  C A ( Y ) ,  the norm (< 1 )  embedding being T H ( (Ten)) .  
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Let (x,) E lP(Y), and consider the operator T : l P '  i Y defined by 

Choose 0 I (1, J 2 ,  . - , Jm E lpr, where Ji = (ti,,), with ti,, > 0 for all i = 1 , 2 ,  . . . , rn and 

all n E N. Then since l l ( Y )  = l l ( Y ) ,  we can do the following calculation: 

It follows tha t  T E SN;(P',  Y )  and sn:(T) < I /  (x,) I ] ( , )  

Remark 3.32 (i) Suppose Z is a Banach lattice, S E L ( Z ,  X )  is positive and 

For a finite set z l ,  2 2 , .  . . , zn of positive vectors in Z ,  we know that the corresponding 

set S z l ,  S z2 ,  . . . , S z ,  is a finite set of positive vectors in  X .  Thus, 

This shows that T S  E SCp,q(Z, Y )  and scP,,(TS) < scP,,(T)IJSII 

(ii) The reader is referred to [33], see (p. 56 - 57) where it is explained that: 



(a) If 1 5 p < oo and {fi)?=l is a finite set i n  a C ( K )  space, then 
n n 

(b) If X is a Banach lattice and { x ~ ) ~ . ~  is a finite set i n  X ,  then the completion 
m 

of the normed ideal I ( x o )  generated by the element xo = (x lxilq)'/q and with 
i=l 

norm 

is order isometric to a C ( K )  space. Let J denote the formal identity mapping 

from I ( x o )  into X ,  i.e. we may consider J : C ( K )  + X as a (positive) norm 

(5 1)  embedding. Clearly, xi E I ( z o )  for all i E ( 1 ,  - . - , m). 

Proposition 3.33 Let 1 5 p, q < oo and 0 < c < cm. For T E L ( X ,  Y ) ,  we have. 

(a) T E S N ~ , ( X , Y )  with S ~ ; , ~ ( T )  5 c, if and only i f ,  for every positive operator 

S E L(co,  X ) ,  T S  E SN,?,(c0, Y )  and sn:,(TS) < c l/SII. 

(b)  T E SCP,,(X, Y )  with sc,,,(T) 5 c, if and only if, for every positive bounded linear 

operator S from a C ( R )  space into X ,  the composition T S  belongs to SN,,,(C(R), Y )  

Proof 

(a )  Let T E SN,?,(X, Y )  with s n i , ( T )  5 c. Let S E L(co, X )  be positive. Now let 



that TS E SN$(co,Y) and snLl(TS) < snLl(T)llSIl. 

Conversely, let {xl, 2 2 ,  . . - , x,) c X, xi > 0. Consider 
n 

S : co -+ X ,  such that S((En)) = C t ixi.  
i= 1 

Then S is bounded, with llSll = cl((xi)(< n)).  Also, since xi 2 0, we have for all 

( t i )  E co, Ji 2 0, t/ i ,  that S((Ji)) = Cy=, Jixi 2 0; i.e. S is a positive bounded 

linear operator. By assumption, TS E SN&(co, Y) and sn;,(TS) < c IISII. Thus 

= c €1 ((xi) (< n) )  

= cc;'((x;)(~ n)) since xi > 0. 

(b) Let T E SCP,,(X, Y) and S E L(C(R), X )  be positive. For every finite set { fl ,  - . . , fn )  

in C(R) we have 

Conversely, assume that for every C(R) space and every positive S E L(C(R), X )  

we have TS E SNP,,(C(R), Y) and snp,,(TS) I c I(S1I. Let {xl, 2 2 , .  . . ,xn) c X 

and consider the C(K) space and norm 5 1 embedding J : C(K) -+ X ,  which are 

mentioned in Remark 3.32. Let fi E C(K)  such that 



We have 

I I  (Txi)i~nII(p) = II(TJfi)i<nII(p) 
n 

5 snL,(TJ) s u p l ( C  IP(fi)l')'l' : P E C ( K ) * ,  IIPII = 1) 
i=l 
n 

- - snLq(T J )  s u p { ( x  1 f i ( k )  ( q ) l l q  : k E K )  ( C  f .  Remark 3.32) 

This shows that T E SCP,,(X,Y) and scP,'(T) 5 cJJJII 5 c. 



Chapter 4 

Operator valued multipliers 

4.1 Strongly (p ,q) -summing and strongly (p &nuclear 
multipliers 

Definition 4.1 (cf. [Z], p. 3) A sequence of operators (u,) C L(X, Y) is a called mul- 

tiplier sequence from E(X) to F(Y) if there exists a constant c > 0 such that 

for all finite families z l ,  . - - , z, in  X. The infimum of all the numbers c > 0, which satisfy 

this condition, is denoted by 1 1  (uj) I I ( E ( X ) , F ( Y ) l .  The set of all multiplier sequences from 

E(X) to F(Y) is denoted by (E(X), F(Y)). 

Definition 4.2 (cf. [Z]) Let X and Y be Banach spaces and let 1 5 p, q 5 co. A sequence 

(uj)jEn of operators in  L(X, Y) is called a (p,q)-summing multiplier for the pair 

(X, Y), in  short (uj) E $,,, (X, Y), i f  there exists a constant c > 0 such that, for any 

finite collection of vectors zl,  z2, . - . , x ,  E X, it holds that 

((i: u j z j  11.) \ c sup ((i: z*zi19) ' 
j=1 x*EBx* j=l 

We use C,,,, (X, Y) to denote the vector space of all (p, 9)-summing multipliers from X 

into Y and .rrp,,((uj)) is the least constant c for which (uj) verifies the inequality in the 

definition. If q = p we simply say that the sequence (uj) is a psumming multiplier. 

Note that C,,,, (X, Y) = (CL(X), CP(Y)). A constant sequence (uj), uj = u E L(X, Y) 

for all j E N, belongs to C,,,,(X, Y) if and only if u E II,,,(X, Y). Also the case 



( u j )  = (X ju )  E ( l & ( X ) ,  l l ( Y ) )  for all ( A j )  E d, where : + $ = 1,  corresponds to 

u  E np, , (X,  Y ) .  These facts motivate the use of the notation lTp , , (X ,  Y )  instead of 

(l: (X) , l p (Y) )  and t,, ( X ,  Y )  for the case q = p. 

Blasco and Arregui (cf. [3]) constructed the following examples by taking tensor products 

of some classical spaces. 

Example 4.3 (cf .  [3], Examples 3.1) Let X  and Y be Banach spaces, and 1 5 p, q 5 oo. 

1 (1)  &,, ( X ,  W)61s  ( Y )  c l,,,, ( X ,  Y )  for $ = f + ,. 
1 1  

(2)  l s 6 n r , , ( X ,  Y )  c l,,,,(X, Y )  for = ; + i. 
I n  particular l p 6 X  c l,,,pf ( X )  = b ( X ) .  

I t  is  proved in [14] and [23] that indeed l p 6 X  = b ( X )  isometrically. 

(3) P ( Y ) 6 X *  c l,,,, ( X ,  Y )  for p < q and = : + !. 
We consider some examples. 

Example 4.4 Let K  be a compact set and p  a probability measure on  the Bore1 sets of 

K .  Let 1 < p < q < oo, l / r  = l / p  - l / q  and (4 j )  a sequence of continuous functions on  

K .  Consider uj  : C ( K )  -+ LJ'(p) given by u j ( $ )  = $j$. T h e n  ( u j )  E lTp , , (C(K) ,  LP(p)) 

Example 4.5 Let ( R ,  C, p) and (R ' ,  C', p') be finite measure spaces. 

Let 1 j p j q < oo, : = f + a. For each n E N and ( f j )  c LJ'(p, X )  with X  = L 1 ( f l ) ,  

consider the operator un : Lw (p')  -+ LP(p) defined by 

(1 l f k l r ) ?  E L P ( p , ~ l ( p ' ) )  (where (x 1 fklr):(w)( .)  = (1 1 f k ( w ,  . ) l r ) : ) ,  



Proof Given n E N and &, 42, - , 4, E L""(,ul), then 

Hence, since e, ((4,)) = I /  (EL=, 19) : ~ l ~ ; - ( , ~ )  , it follows that 

Example 4.6 

Consider Tn E 

Let 1 5 p 5 q < m, = + a and (A,) be a sequence of infinite matrices. 

Proof Note that Tn = x,"==, e; 8 Y n , k l  where yn,k E lp  is given by yn,k = (An(k, j ) ) j .  

For xn = (An , k ) k  it follows that 

n=l 
00 

= (x IITnxn l l a n ) P  for some positive (ai) E P', 1 1  (ai) IIpl = 1. 
n= 1 



Therefore 

Next, the case E(X) = P(X) (or E(X) = lQ,(X)) and F(Y) = P(Y) will be considered. 

Definition 4.7 Let 1 < p,  q < oo. A sequence (uj)jEN of operators in L(X, Y) i s  called a 

strongly (p,q)-summing multiplier (i.e. (uj) E (P(X), P(Y)), if there exists a c > 0 

such that, for any finite set {xl, . . . , xn} c X it holds that 

equivalently, (uj) E (P(X), P(Y)) % 3 c > 0 such that 

for all xl , . . .  ,xn E X, y ; , . . .  , yTf, E Y*, we have 

Let 1 1  (uj) ( l ( e q ( X ) , e p ( Y ) )  be the least constant c for which (uj) verifies the inequality in the 

definition. Note that  a constant sequence (uj), uj = u E L(X, Y) for all j E N, belongs 

to (P(X), F(Y))  if and only if u E Dp,q(X, Y). 



Proposition 4.8 Let X and Y  be Banach spaces, 1 <_ p,  q 5 cc and let (uj ) jEn be a 

sequence of operators in L ( X ,  Y ) .  T h e n  

Proof Let (u;) E eTq. . ( Y * ,  X * ) .  If x,, . - .  , xn is a finite set in X  and if (y:)  t ~ C ( Y * ) ,  
,P 

we have 

Taking the supremum over the unit ball in lC(Y*), we obtain 

Conversely, assume ( u j )  E ( P ( X ) , P ( Y ) ) .  Let y; ,  , y: be a finite set in Y* and let 

( x i )  E P ( X ) .  It ~OIIOWS that 

If we take the supremum over the unit ball in P ( X ) ,  we obtain 



Example 4.9 Let p  be a probability measure o n  R. Let 1 5 p < q < m, l l r  = l l p  - l / q  

and ( $ j )  a sequence of functions i n  Ld(p).  Consider uj : Lq(p) -+ L1(p) given by 

u j ( $ )  = $j$. T h e n  

Proof Let $ 1 ,  $2, ..., $n E Lq(p). Then, taking into account that 

we have 

Remarks 4.10 (1) Suppose, as i n  Example 4.9 that ( $ j )  is a sequence of functions i n  

a n d l S p < q < c o .  ~ q ' ( p )  such that (xFl 14j1')' E Lqr (p ) .  Here t = - , 
Consider vj : Lm(p) -+ Ld ( p )  defined by v j ( x )  = $jx. It follows from 

= ( x ,  u j (8 ) ) ,  where uj : Lq(p)  -t L1(p)  : 8 -+ 8$j 

for all x E Lm(p),  8  E LQ(p),  that vj = u j ,  Vj .  It follows from Example 4 .9  and 

Proposition 4.8 that  (v j )  E (Lm ( p )  , Lq' ( p ) )  . 



(2) Let 1 5 p, q < m. If X is a Banach lattice and Y a Banach space, recall from 

Chapter 3 that we call an  operator u E L ( X ,  Y )  strongly ( p ,  q)-concave (and write 

u E SCP,,(X, Y ) )  if there exists a c > 0 such that for all X I , .  . - , xn in X we have 

Now, consider the case X = Lq(p) .  Then u E L ( L q ( p ) ,  Y )  is strongly ( p ,  q)-concave 

i f  there exists a c > 0 such that for all finite sets { x l ,  ~ 2 ,  - .  + , x n }  i n  Lq(p) ,  we 

have 

Thus it follows that u E L ( L Q ( p ) , Y )  is strongly (p,q)-concave iff the constant 

sequence ( u ,  u ,  . . . ) belongs to ( t Q ( L Q ( p ) ) ,  P ( Y ) ) .  

Also, S C ~ , ~ ( U )  = ( ( ( 2 1 ,  u, . . ) ( 1  (es(Lq(P)), ep(y)), From Proposition 4.8 it follows that 

This corresponds to u* E II ,I ,~I (Y*, ~ q '  ( p ) ) .  

Thus, it follows that u : Lq(p)  + Y is strongly ( p ,  q)-concave iff u* : Y* + L ~ ' ( P )  

is (q', p') -summing and scplq (u) = rq1 ,pt (u*) . 

The following examples follow from Proposition 4.8 and by [8] ,  (Example 2.2, 2.3) for 

Sn = T,*, the conjugate operator of Tn. 

Example 4.11 Let ( R ,  C ,  p )  and ( R ' ,  C' ,  p') be finite measure spaces and 1 5 p < w. 

Let ( f n )  c U ( p ,  L 1 ( $ ) )  and consider the operator Sn : L d ( p )  + L1 (p ' )  defined by 



where, as before, we let fn(w,  .) := fn (w)( . ) .  If 

Example 4.12 Let 1 5 p < m and (A,) be a sequence of matrices. Consider the 

bounded operator S, : tp' + t1 given by 

Then ( S n )  E (l*(bl), lm(l l ))  if  EL1  sup,(^^, I A , ( ~ ,  j ) l p ) i  < m. 

Definition 4.13 Let 1 5 p, q 5 m. A sequence ( u j ) j c n  of operators in  L ( X ,  Y )  is called 

a strongly (p,q)-nuclear multiplier (i.e. ( ~ j )  E ( l ; ( X ) , P ( Y ) ) )  if there exists a 

constant c > 0 such that, for any finite set { x l ,  . - . , x,} c X ,  it holds that 

Equivalently, ( u j )  E ( l ; ( X ) ,  P ( Y ) )  H 3 c > 0 such that, for all finite collections of 

vectors X I , .  . . , xn E X ,  y;, - .  . , y; E Y* ,  

Let snP, , ((uj))  be the least constant c for which ( u j )  verifies the inequality in  the definition. 

To avoid ambiguities the norm ( 1  ( ~ j )  (I(e$(X),eP(Y)) is sometimes used. 

Proposition 4.14 Let 1 5 p,  q < co. 

Proof (i) Take a Cauchy sequence (dn))  in (& ( X ) ,  lP(Y)) where u(") = (u:))~. Then 

it  is also a Cauchy sequence in the Banach space eoo(L(X,  Y ) )  and so convergent. Let 

ucn) --% ( u j )  E t W ( L ( X ,  Y ) ) ,  i.e. 
w 

sup / / U P )  - ujll 1 0. 
3 00 



On the other hand 

with 

Hence, T, 4 T E L(tL(X),  tp(Y)) in the operator norm. 
CO 

For {xl, , xn) c X and {y;, . . . , yi) c Y* it  follows that 

(k) C I ( ~ ~ ~ ~ ,  y;)l = lim 1(uj xj1 Y;)I 
k+w j=l j=l 

5 lirn sup snp,q((u(k))) SUP (C \x*xjlq)i SUP (C 1 (pi, 3) lp')S 
k+oo x * € B x .  j=l YEBY j=l 

= IlTll sup (Clx*x j lq ) ) :  s ~ p ( ~ ~ ( ~ ; , ~ ) l ~ ' ) ~ .  
x'EBx* j=l YEBY j=l 

Hence, (uj) E ( i?L(X) ,  P ( Y ) )  and snPlq((uj)) 5 IITII. Also, 

T((xj))  = lim Tn ((xj)) 
n 

(n) = lim(uj xjlj  
n 

= (ujxj) jl  pointwise. 

(ii) The proof is similar to the proof of part (i). 0 

Proposition 4.15 Let X and Y be Banach spaces, 1 5 p, q 5 oo and let (uj)jEN be a 

sequence of operators in L(X,  Y). Then 



Proof Choose (u;) E (e (Y*) ,  F1 ( X * ) ) ;  let X I ,  x2, . - , xn E X .  Then 

x I ( u i x i , z : ) I  = ~ 1 ( x i r u ; ~ : ) I 1  where (2:) E & ( Y * )  

(x i )  E B e ~ ( x ) .  Then 

Taking the supremum over all sequences (x i )  E Bg(x),  we have 

Example 4.16 Let K  be a compact set and p  a probability measure o n  the Bore1 sets of 

K .  Let 1 I p < q < CQ, l / r  = l / p  - l / q  and (q5j )  a sequence of continuous functions o n  

K .  Consider uj : C ( K )  -+ L1(p) ,  given by u j ($)  = q5j$. 

Proof As in Example 4.9, if $ 1 ,  $2 ,  ..., $, E C ( K ) ,  we have 

again using Remark 3.32(ii). 



4.2 R-bounded sequences 

In this section we consider notions that have been shown to be relevant in some recent 

problems. 

The sequence ( x n )  c X is almost unconditionally summable if CT=, rn(t)xn con- 

verges for almost all t E [ O , 1 ]  in the Lebesque sense. 

Rad(X) can be identified with the space of the almost unconditionally summable 

sequences ( x j ) ,  corresponding to functions given by t I+ C,:, r j ( t ) x j ,  where the series 

converges for almost every t with respect to the Lebesque measure. 

The following definition can be found in [19] 

Definition 4.17 Let 1 5 p 5 m. 

Then Radp(X)  is the closure in L P ( [ O ,  11, X )  of the set of functions of the form 

where (rj) j ,n are the Rademacher functions on [0, 11 defined b y  r j ( t )  = sign(sin 2j7rt) 

and for each ( x n )  E Radp(X) ,  define 

We recall the main result about the Rademacher functions. 

Theorem 4.18 Khintchine's inequality (cf. [32], p. 66) 

Let rn( t )  = sign(sin 2%t), n = 0 ,1 ,2 .  . . be the Rademacher functions on [O,l]. For every 

1 5 p < m there exist positive constants Ap and Bp with 



for every choice of scalars {an);=,. 

Remark 4.19 (2) A2 = B2 = 1,  A, = 1 i f p ?  2 and B, = 1 i f  1 I p  < 2 (cf.  [32], p. 

66). 

( i i )  From Khintchine's inequality it follows that a Rademacher sequence is  equivalent, 

i n  the LP norm,  0 < p < oo, to  the unit  vector basis of C2 .  

Many results concerning p-summing operators as well as several applications of these 

operators are based on the following inequality due to Grothendieck. 

Theorem 4.20 (cf. [32], p. 68) 

Let ( s , j ) e j = l  be a matrix of scalars such that / CEj=, a i j t j s j l  < 1 for every choice of 

scalars { t i ) L l  and {sj)j",, satisfying Jtil < 1,  Isj[  < 1. 

Then,  for any choice of vectors {xi):==l and {yi)3"=, i n  a Hilbert space, 

where KG is Grothendieck's universal constant ( in  case the scalars are real, 

KG 5 ('' -2 eq )). 

The best possible value of KG seems to  be unknown. 

Definition 4.21 (Kahane's Inequality (cf .  [19], p. 21 1 ) )  

If 0 < p, q < oo, then there is a constant K,,, > 0 so that, for any  Banach space X and 

every finite subset {xl, . . . , x,) c X ,  we have 

Kahane's Inequality ensures that the norms on Rad,(X) are equivalent for all 0 < p < oo. 

Thus, put Radp(X) = Rad(X) ,  Q 0 < p < oo and the norm 



We agree to (mostly) use the norm 1 1 . 1 1 R 2  on R a d ( X ) .  It is easy to  realize that Rad,(X) 

corresponds to the space of compact operators K(co ,  X) or also the space of uncondition- 

ally convergent series, since for any finite family (xj)j<,, we have 

Definition 4.22 (cf. [35], p. 71) A Banach space X is a G. T.  space if it satisfies Gro- 

tendieck's theorem, i.e. 

L ( X ,  e2) = n1 (x,  e2).  

Therefore X  is a G.T. space iff for all u  : X  + l: and for all n, there exists a constant 

X such that n l ( u )  < XIIuII. 

The next Proposition characterizes the duals or preduals of G.T. spaces. 

Proposition 4.23 (cf. [35], p. 71) A Banach space X  is a G. T.  space iff its bidual X** 

is also a G. T.  space, and this is equivalent to L ( X 8 ,  L 1 )  = n 2 ( X * ,  L 1 ) .  

Note that X *  is a G. T.  space iff L ( X ,  L 1 )  = n 2 ( X ,  L 1 )  (cf. [35], p. 71). 

Remark 4.24 (cf. [35], p. 73) All the known examples of  G. T.  spaces are of cotype 2. 

The next result clarifies the meaning of the notion of a G.T. space of cotype 2. 

Theorem 4.25 (cf. [35], p. 75) Let X  be a Banach space. The following assertions are 

equivalent. 

(i) X *  is a G. T.  space of cotype 2. 

(ii) There is a constant c' such that, for all n E W and all subsets { x l ,  . . . , x n )  C X  

and { x ; ,  . . - , x i )  c X * ,  we have 



Theorem 4.26 (cf .  [35], Corollary 6.7) A Banach space X i s  a G. T. space of cotype 2 

i f l  there i s  a constant c such  that  for all xf in X *  and all x i  in X ,  we  have 

Proposition 4.27 (c f .  [19], p. 220) 

If a Banach  space X h a s  type p, t h e n  i t s  dual X *  has  cotype p'. 

Remark 4.28 (cf. [19], p. 219 and p. 234) 

If 1 5 p 5 2 ,  t h e n  C p  h a s  type p and cotype 2. 

If 2 5 q < CQ, t h e n  CQ has  type 2 and  cotype q. 

R a d ( X )  E C 2 ( X )  w h e n  X i s  isomorphic t o  a Hilbert space. 

Theorem 4.29 (cf.  [2], Theorem 8) Let X be a Banach  space. T h e n  

Theorem 4.30 (c f .  [2], Theorem 9) R a d ( X )  = &, , , (X )  i f  and only if X i s  a G. T. space 

of cotype 2. 

Remark 4.31 ( i )  I t  follows f rom [23] (p. 637) tha t  CP(X)  = ( X ) .  Therefore 

and  i f  X i s  a G. T. space of cotype 2 ,  t hen  R a d ( X )  = C 2 ( X )  

A 
( i i )  W e  recall f r o m  Chapter  2 that  P ( X )  C p  @I X ,  such that  for  each (xi)  E C p ( X )  we  

have 

Definition 4.32 (cf .  [I51 and [25]) Let X and Y be Banach  spaces. A sequence of 

operators ( u j )  c L ( X ,  Y )  is  said t o  be Rademacher bounded, i.e. R-bounded, if 

there exists a constant  C > 0 such  that 

for all finite collections X I ,  x2,  ..., x ,  E X .  



The space of R-bounded sequences of operators from X into Y is denoted by R(X, Y) 

and J ( ( u ~ ) / ~ ~  denotes the infimum of the constants satisfying the previous inequality for 

all finite subsets of X .  It is easy to see that (Rad(X, Y),  Il(uj)JIR) is a Banach space, 

which coincides with the multiplier space (Rad(X) , Rad(Y)) . 

Definition 4.33 (cf. [29]) Let X and Y be Banach spaces. A sequence of operators 

(uj) c L(X, Y) is called Weakly Rademacher  bounded,  shor t ly  WR-bounded i f  

there exists a constant C > 0 such that for all finite collections X I ,  . . .  , xn E X and 

y; , . . .  , y i  E Y* we have 

The space of W R-bounded sequences in L(X, Y) is denoted by WR(X,  Y) and 1 1  (u,) \ I w R  
is the infimum of the constants in the previous inequality, taken over all finite subsets of 

X and Y*. Then I J ( U , ) I I ~ ~  is a norm on WR(X,Y) ,  which is exactly the norm of the 

bilinear map Rad(X) x Rad(Y*) -+ C1, defined by ((xk), (3;)) -+ ((ukxk, y;)). 

Definition 4.34 (cf. [8]) Let X and Y be Banach spaces. A sequence of operators 

(uj) c L(X, Y) is said to be almost  summing  i f  there exists C > 0 such that for any 

finite set of vectors {xl , .  . - , x,) C X we have 

(or, equivalently, (uj) c L(X, Y) is almost summing if there exists a constant C' > 0 

such that for any finite set of vectors {xl, , xn) c X we have 

We write C,,,(X, Y) for the space of almost summing sequences, which is endowed with 

the norm 

1 1 ( ~ ~ ) l / ~ ~  := inf{C > 0 I such that (4.3) holds). 

Notice that C,,, (X,  Y) = (CL (X) ,  Rad(Y)). If the constant sequence (u, u, u, . . . ) is in 

C,,,(X, Y), then the operator u is called almost summing (cf. [19], p. 234). The space of 



almost summing operators is denoted by n,,(X, Y) and the norm on this space is given 

by 

where in this case ii : l i ( X )  + Rad(Y) is given by ii((xj)) = (uxj). 

Definition 4.35 (cf. [29]) Let X and Y be Banach spaces. A sequence of operators 

(uj) c L(X, Y) i s  called unconditionally bounded o r  U-bounded if there exists a 

constant C > 0 such that  for all finite collections X I , .  - , x, E X and y;, , y: E Y* we 

have 
n 

We write UR(X, Y) for the space of U-bounded sequences in L(X, Y).  The space 

UR(X, Y) is endowed with the norm I J ( u ~ ) J I ~ ~ ,  which is given by the infimum (taken 

over all finite subsets of X and Y*) of the constants in the previous inequality. 

Proposit ion 4.36 Let X and Y be Banach spaces. T h e  following inclusions hold 

Proof  The inclusion l,,= (X, Y) C R(X, Y) is a trivial consequence of the embedding 

Rad(X) G (X). Suppose (ui) E R(X, Y). Orthogonality of the Rademacher variables, 

duality and the contraction principle, allow us to write 

This proves the inclusion R(X, Y) C WR(X, Y). The inclusion WR(X, Y) C UR(X, Y) 

is clear from the definitions. 



If (21,) E U R ( X ,  Y ) ,  then it is clear from the definition of unconditional boundedness 

that there exists C  > 0 such that for x E X ,  y* E Y* ,  we have 

for all k E N. Thus the inclusion U R ( X ,  Y )  2 P ( L ( X ,  Y ) )  also follows. 17 

Remark 4.37 If u  E L ( X ,  Y ) ,  then ( u ,  u ,  . . . ) E R ( X ,  Y )  and 11(u, u ,  . . . ) ) I R  = ( 1 ~ 1 ) .  
However, ( u ,  u ,  . . . ) E l a a s ( X ,  Y )  if and only if u  E ll,,(X, Y ) .  This shows that 

enas ( X ,  Y )  c R ( X ,  Y )  is strict. 

Recall (cf. Remark 1.18) that for 1  5 p  < m, the p-convexity and pconcavity of P ( p )  

imply the following equivalence of norms: 

for any collection $ 2 ,  ..., $n in LP(p).  

If X = C ( K )  for any compact set K  or if X  = P, then 

for all finite subsets #Q, ..., $, of X .  

Therefore we have the following versions of Definitions 3.1, 3.2,3.3 and 3.4 in some special 

cases. 

Proposition 4.38 (i) Let X  = C ( K )  and Y = LQ(v)  for 1  5 q < oo. Then 

( ~ j )  E f T a , ( X ,  Y )  if and only if there exists C  > 0 such that 

n 
2 112 2 112 

j ) I I I ) IICCK) 
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for any finite collection 

(ii) Let X  = U ( p )  and Y 

, $2,  $n in C ( K ) .  

= LQ(u)  for 1  5 p, q < oo. Then ( u j )  E R ( X ,  Y )  if and only 

if there exists C  > 0 such that 



for any finite collection &, q52, ..., q5n i n  LP(p) .  

(iii) Let X = F and Y = co for 1 5 p < cm. Then (uj) E WR(X, Y) if and only if there 

exists C > 0 such that 

for all finite collections & ,  4 2 ,  ..., 4n i n  f? and cpl, ( ~ 2 ,  ..., Pn i n  el. 

(iv) Let X = C* and Y = C1. Then (uj) E UR(X, Y) if and only if there exists C > 0 

such that 
n 

for all finite collections & ,  4 2 ,  ..., &, and 91, ( ~ 2 ,  ..., Pn in C*. 

Proposition 4.39 Let 2 5 r 5 oo. If  uj = Xju for u E IIas(X, Y) and (Aj )  E CT then 

(uj) E (CL(X), Rad(Y)) for l / q  = 112 - l / r .  

In particular, i f  u E IIas(X, Y) and (Aj) E C*, then (uj) = ( X ~ U )  E C,,,(X, Y) 

Proof From u E TIas (X,  Y),  we have 

Remark 4.40 We  would like to point out that U,II,,~(X, Y) C IIas(X, Y) (cf. [19], 

12.5). Nevertheless this is not the case for sequences of operators. Indeed, it sufices 

to take un = x* €3 yn for fixed x* E X *  and (yn) E CM (Y) . In this case, (21,) belongs to 

e,,,, (X, Y), but not to CTa8 (X, Y) (consider for example Y = co and yn = en, the canonical 

basis). 



Proposition 4.41 Let Y be a Banach space of 

type p = p(Y) 2. 1 and cotype q = q(Y) 5 00. 

Then G p , 2  (XI Y) C &ra, (X, Y) C &,2 (X,  Y). 

In particular if Y is a Hilbert space, then 1 ,,,, (X, Y) = era, (X, Y). 

Proof It follows from the fact lP(Y) c Rad(Y) c P(Y)  in this case. 0 

Let us mention that it was pointed out in [29] that if X has nontrivial type then 

W R ( X , X )  = R ( X , X ) .  Actually the assumption only needs to be taken in the second 

space. 

Recall that the notion of nontrivial type is equivalent to K-convexity (cf. [19], p. 260). 

X is said to be K-convex i f f  -t (St f (t)r,(t)dt), defines a bounded linear operator from 

LP([O, 11) onto Radp(X) for some (equivalently for all) 1 < p < oo. 

For K-convex spaces one has Rad(X*) = Rad(X)* (cf. [38], or [lo] for more general 

systems), the duality being defined (as usual) by the bilinear functional 

Let us point out that this shows that there are no infinite dimensional K-convex G.T. 

spaces of cotype 2. Indeed, assume X is K-convex and a G.T. space of cotype 2. On the 

one hand Rad(X) = t2 (X)  and on the other hand Rad(X)* = Rad(X *), with equivalent 

norms. Therefore Rad(X*) = (12(X))* = I i (X*) .  Hence the identity on X* is almost 

summing and then X* is finite dimensional. 

It is well known that, in general, one can only expect Rad(X*) to be continuously em- 

bedded in Rad(X)*,  but that the embedding needs not even be isomorphic. Take, for 

instance, X = el. Then since C1 satisfies Grothendieck's Theorem, 

that is to say (x,), C C1 (with x, = ( ~ ~ ( k ) ) ~ )  belongs to Rad(-tl) if and only if 



As a matter of fact, i t  follows from earlier discussions that 

Rad ( e l )  = e2 ( e l )  = e2&e1 = e16e2 = el (e2)  = e1 (e2) .  

Therefore, in case of X = e l ,  Rad(X)*  can be identified with L(12,  P )  or with lQ3(12): 

and 

However, 

These two norms are not equivalent on Rad(X*) .  

Proposition 4.42 If Y i s  a K-convex  space then W R ( X ,  Y )  = R ( X ,  Y ) .  

Proof Let ( u n )  E W R ( X , Y )  and let xi E X for i = 1, ..., n. Using that Rad(Y)*  = 

Rad(Y*) ,  we have 

It is clear from the proof of Proposition 4.42 that W R ( X ,  Y )  = R ( X ,  Y )  for all Banach 

spaces Y such that Rad(Y)*  = Rad(Y*) .  For later use, we point out that  

Lemma 4.43 Let 1  < p,q  <_ oa. For a sequence ( u j )  in L ( X , Y )  we have ( u j )  E 

( X ,  Y )  if and only if F  : l i ( X )  x P ' ( Y * )  + defined by F( (x , ) ,  (y:)) = ( (unxn ,  y i ) )  

i s  a bounded bilinear operator. I n  this case llFll = T ~ , ~ ( ( u ~ ) ) .  

Proof Let (u j )  E enP,,(X, Y ) .  We have 



Therefore F is bounded, with IlFll < rp,g((ui)). 

Conversely, suppose F is bounded. Then 

This shows that (uj) E l,,, (X, Y) and T ~ , ~ ( ( U ~ ) )  5 1 1  F 1 1 .  

Theorem 4.44 Let 1 < p < 2. 

(2) If Y has type P,  then G,,, (X, Y) C en,, (X, Y). 

(ii) If Y* has cotype p', then lnp,,(X, Y) c WR(X, Y). 

(iii) If Y* has cotype p', then e,,, (X, Y) c UR(X, Y). 

(zv) If Y* has the Orlicz property, then l,,,, (X, Y) c UR(X, Y). 

Proof (i) This follows from P ( Y )  c Rad(Y). 

(ii) Assume Y* has cotype p'. Then Rad(Y*) c P'(Y*) continuously, i.e. there exists 

C > 0 such that I l ( ~ f ) l l e p / ( y * )  < C I I ( Y ~ ) ~ ( R ~ .  Also, 

Suppose ( ~ j )  E lnP,, (X,  Y). Then 

is bounded with I(FI( = T ~ , ~ ( ( u ~ ) ) .  Thus for all finite sets of elements XI, x2,. . , xn in X 

Thus we have (ui) E WR(X, Y). We may of course put C = CPt(Y*), the cotype p' 

constant of Y* (cf. [19]). 



(iii) Let (u,) E I,p,, (X,  Y). For xl ,  . . . , xn E X and y;, - . y i  E Y* we have by 

Lemma 4.43 that 

(iv) The same argument applies as in the proof of (iii). Now using that by the Orlicz 

property of Y* we have 1; (Y*) c e2(Y*). 0 

Similar arguments yield the following: 

Theorem 4.45 Let  1 5 p 5 2.  

( i )  I f  Y has cotype p', t h e n  &,,(X, Y) c e, P , ,2  (X, Y). 

( i i )  If  Y has  cotype p', t h e n  R(X, Y) c e,p,,, (X, Y). 

(iii)  I f  Y* has  type p, t h e n  WR(X, Y) c e, , (X, Y). 
P 9 1  

Remark 4.46 Let  1 5 p 5 2 5 q 5 oo and denote by Cq(X, Y) and Tp(X, Y) the  spaces 

o f  operators o f  cotype q and  type p,  tha t  i s  

and 

Tp(X, Y) = {U : X + Y : (uj)j E (ep(X), Rad(Y)), uj = U, j E N) 

Let  X and Y be B a n a c h  spaces. 

(1)  I f  (uj) E Rad(X, Y) and u E Cq(Y, Z) ,  t h e n  (uuj) E (X, Z)  

Theorem 4.47 Let  1 5 p 5 2 and let X be a Banach  space such that  X has  cotype p', 

let  Y be a G.T. space of  cotype 2 and let uj  : X + Y be bounded linear operators for all 

j E N .  T h e n  

( ~ 3 )  E exp,, (Y* , X*) * (uj) E R(X, Y). 



Proof  Recall from Proposition 4.8 that (uj) E ( lpf  (x), l2 (Y)). Since we can identify 

Rad(Y) with C2(Y) (see Theorem 4.30), it follows that there exists a C > 0 such that 

Corollary 4.48 Let 1 5 r 5 co and u j  : Lr(p) --+ L1(u) be bounded linear operators. If 

(u;) E l,,, (Lm (u), L" (p))  for p = min{rl, 21, then there exists C > 0 such that 

for any collection & ,  $2, ..., $n in Lr(p). 

Another related notion is the following: 

Definition 4.49 (cf. [28]) Let X and Y be Banach spaces. A sequence of operators 

(uj) E L(X, Y) is said to be semi-R-bounded (i.e. (un) E S R ( X ,  Y)) if there exists 

C > 0 such that for every x E X and a l ,  . . - , an E (C we have 

] J (u i ) l IS~  := inf{C > 0 I such that (4.4) holds) is the norm on S R ( X ,  Y). 

It was observed (cf. [28], Proposition 2.1) that S R ( X , X )  = Cm(L(X,X)) if and only 

if X is of type 2. Note that R-boundedness of sequences in L(X, Y)  implies semi-R- 

boundedness of the same. It is known that if X is separable and is either a Hilbert space 

(i.e. X = 12) or a G.T. space of cotype 2, then SR(X,  X )  = R(X,  X )  (cf. [28], Theorem 

2.2 for proof). Moreover, the result in [28] actually characterizes the separable Banach 

spaces X for which S R ( X ,  X )  = R(X,  X ) .  The proof of (a more general version of) the 

result in 1281 can be greatly simplified in the context of multiplier sequences and basically 

follows via the following characterization of SR(X,  Y). 



Theorem 4.50 The space (SR(X, Y), II.llsR) is i~ometrically isomorphic to the space 

Proof Suppose (u,) E SR(X,  Y) and {x,, . , xn) c X.  From Chapter 2 we know 

that 

in t 2 6 X .  

It is clear that if (X i )  E l2 and x E X ,  we have that (Xjujx) E Rad(Y) and 

Hence 

( O , O , .  . . , 0 ,  ~ i x i ,  0, ' '  ' )  = (b i j~ jx i ) j  E Rad(Y) 

Since C:=, ei @ xi is just one of the representations of this element of P ~ x  and by the 

definition of the projective norm, it follows that 

This holds for all finite sets {xl, . . , x,) C X ,  showing that (ui) E (12(X), Rad(Y)) and 

~ I ( U ~ ) I I ( ( ~ ) , R Z )  5 / I ( U ~ ) I I S R .  
Conversely, suppose (ui) E (12 (X) ,  Rad(Y)) and let al, . . , an E @ and x E X. Then we 

have 



i= 1 

Since this is true for all al, . . . , an E @ and x E X ,  it follows that  (ui) E SR(X,  Y) and 

It follows from the continuous inclusion 12(X) c Rad(X)  and Theorem 4.50, that 

R(X, Y) 2 SR(X,  Y) for all Banach spaces X and Y. The reader is referred to [28] 

(p. 380) for an example of a sequence of operators which is semi-R-bounded, but not 

R-bounded; indeed, the authors in [28] show that if ( e i )  is the standard basis of lql 

(where, 2 < q < oo) and w = (Ci) E P is fixed, then the uniformly bounded sequence of 

operators (Sk) := (e;  @ w) in L(P ,  l q )  is not WR-bounded. Because off? having type 2, 

the inequality (4.4) can be obtained as follows: 

where llSjll 5 llwll for all j .  Thus (Sk) E S R ( P , l q ) .  

The following proposition sheds more light on the question of when the equality 

SR(X,  Y) = R(X,  Y) holds. 

Proposition 4.51 

( i)  I f  X i s  a Grothendieck space of cotype 2, then SR(X,  Y) = R(X, Y) for all Banach 

spaces Y. 

(ii) I f  for  some Banach space Y (thus also for Y = X )  the equality SR(X,  Y) = R(X, Y) 

holds, then  X has cotype 2. 

(iii) I f  X i s  a Hilbert space and Y i s  a Banach space of type 2, then 

SR(X,  Y) = R(X,  Y).  



Proof (i) This follows from Theorem 4.50 and the characterization of Grothendieck 

spaces of cotype 2 by C2(X) = C26X = Rad(X). 

(ii) We show that SR(X,  Y) = R(X, Y) implies that Rad(X) is a linear subspace of 

C2(X). Let (xi) E Rad(X) and let xf E X * ,  with J (xf  J J  = 1 and xf (xi) = (Ixi(l. Put 

ui = xf 8 y, where y E Y is fixed, with JJylJ = 1. Then 

because of 

for all (zi) E C2(X) C C2(x). Hence, (ui) E (Rad(X), Rad(Y)). However, for all n E N, 

we also have 

Therefore, it follows that 

showing that Rad(X) r E2(X) is a norm < 1 embedding. 

(iii) We refer to Remark 4.52 below, where a more general case is discussed. 0 



In the following few remarks, we analyse the relationship of Cw(L(X,  Y ) )  to the other 

families of multiplier sequences. 

Remark 4.52 (see for instance [8]) Let X  be a Banach  space of cotype q , Y be a Banach 

space of  type p fo r  s o m e  1 5 p 5 q 5 oo and let l l r  = l l p  - l / q .  T h e n  

I n  particular, if X  has  cotype 2 and  Y has  type 2 ,  t h e n  R ( X ,  Y )  = Cw ( L ( X ,  Y ) ) .  

Remark 4.53 I f  X  and Y* have the  Orlicz property t h e n  Cw(L(X,  Y ) )  = U R ( X ,  Y ) .  

Proof By Proposition 4.36 we only need to  show that Cw(L(X,  Y ) )  C_ U R ( X , Y ) .  

Notice that the continuous inclusions Ch(X) C e 2 ( X )  and Ch (Y*)  C_ C2 (Y*) correspond to 

the Orlicz properties of X and Y* respectively. Then, for (un)  E Cw(L(X,  Y ) ) ,  we have 

where in the last step of the proof the existence of C > 0 such that the inequality holds, 

is a direct consequence of the inclusions mentioned in the second line of this proof. 0 

Remark 4.54 Let  Y be a Banach space of type p for s o m e  1 5 p 2 2 and let r > 1 

sat is fy  l l r  = l l p  - 112. T h e n  

Cr(L(X,  Y ) )  c S R ( X ,  Y )  c Cw(L(X,  Y ) ) .  

I n  particular if Y has  type 2 ,  t h e n  S R ( X ,  Y )  = CW(L(X,  Y ) ) .  

Proof We prove the inclusion Cr ( L ( X ,  Y ) )  c S R ( X ,  Y ) .  Let ( u j )  E Cr ( L ( X ,  Y ) ) .  

There exists C > 0 such that 



The other inclusion is immediate. 

Remark 4.55 Neither S R ( X ,  Y) c WR(X, Y) nor WR(X, Y) C S R ( X ,  Y) is generally 

true. For instance, i f  Y has type 2 ,  then SR(X,  Y) = P ( L ( X ,  Y)) and 

WR(X, Y) = R(X,  Y). So, WR(X,  Y) C SR(X,  Y) for all X in this case. O n  the other 

hand, if we consider a G. T. space X having cotype 2 ,  then SR(X,  Y) = R(X,  Y) (see 

Proposition 4.51)  for all Y. So, in this case, SR(X,  Y) c W R(X, Y) for all Y. 

Remark 4.56 I n  [28] the authors consider some new applications of semi-R-bounded 

and WR-bounded sequences. They show that for each x E X and (ui) E SR(X,  X ) ,  the 

sequence (unx) has a weakly Cauchy subsequence. Using this fact, they then show that i f  

X is a weakly sequentially complete Banach space such that L(X, X )  contains a semi-R- 

bounded sequence (ui) such that each ui is weakly compact, ukul = uluk for all k ,  1 E W 

and limk,, 11x - ukxII = 0 for every x E X ,  then X is isomorphic to a dual space. 

I n  case of L(X, X )  containing a WR-bounded sequence with the same properties, one also 

needs the space X to satisfy the property (V*)  of Pelczynski to obtain the same result. 

Since L1(O, 1) is not a dual space, it  follows that L(L1(O, I ) ,  L1(O, 1)) does not have a semi- 

R-bounded or WR-bounded sequence of operators (ui) with the mentioned properties. It is 

also shown in [28] that if K i s  a compact metric space so that L(C(K) ,  C ( K ) )  contains an 

R-bounded sequence (u,) with the above mentioned properties, then C ( K )  is isomorphic 

to co. Some applications to semigroups of operators are also considered in [28]. 

4.3 Connection of R-boundedness and Schauder de- 
compositions 

The authors of the paper [15] highlighted the importance of the concept R-boundedness 

(randomized boundedness) of collections of operators in multiplier results of Marcinkiewicz 



type for IF-spaces of functions with values in a Banach space, by showing the interplay 

between unconditional decompositions and R-boundedness of collections of operators. 

Also, in the same paper, the authors show connections between R-boundedness and ge- 

ometric properties of the underlying Banach space. 

Some important operators in 

where X = ( A k )  is a sequence 

analysis may be represented in the form 

in C and D = {D,),"==, is a given Schauder decomposition 

of the Banach space X. Characterization of sequences X for which TA is bounded on X 

(i.e. T E L(X, X ) )  is an interesting problem. 

Recall that a collection D = {D,),"==, of bounded linear projections in a complex Banach 

space X is called a Schauder  decomposition of X ,  if 

(i) DkDe = 0 whenever k # .!, 

(ii) x = Cr=o Dkx for all x E X .  

If the series CEO Dkx is unconditionally convergent for all x E X, then D is called an 

uncondit ional  decomposition. If D = {D,),M==, is an unconditional decomposition of X,  

then the smallest constant CD such that 

holds for all c k  = f 1, k = 0 ,1 , .  . . , N,  a11 N E N, and all x E X ,  is called the unconditional 

constant of the decomposition. 

Let (SZ, F, P) be some probability space. Using the formulation of unconditional summa- 

bility given in Lemma 1.4 of [19], it can be shown that if D = {D,):=, is an unconditional 

Schauder decomposition of the Banach space X, then for all 1 5 p < GO we have that 

holds for all c k  = f 1, k = 0 ,1 , .  . . , N ,  a11 N E N, and all x E X .  If, on the other hand, 

for some 1 5 p < oo there is a constant C such that the above inequalities hold, with C 

in place of CD, then the decomposition D is unconditional. 



By { rk}r=o  we shall denote a sequence of independent symmetric {-I, 1)-valued random 

variables on some probability space ( R , 3 ,  P). In the previous section we considered R- 

bounded sequences of operators. We can actually define R-bounded families of operators 

(with respect to  the given probability space) as in the following definition. 

Definition 4.57 A collection of operators C c L(X, X )  i s  called R-bounded if there 

exists M > 0 such that  

for all { ~ k ) k N , ,  C r ,  all { x ~ } : = ~  C X and alle N E N. T h e  smallest constant M such 

that the inequality holds, is  called the R-bound of C.  

Note that by Kahane's inequality we can replace the L2(R,X)  in Definition 4.57 by 

P ( R ,  X ) ,  1 5 p < oo, adjusting the constant M appropriately. 

Although the collections {Tk)fIO in the above Definition 4.57 need not be mutually 

distinct, it is proved in [15] that we may replace the phrase "for all { T k ) L  C C" in the 

definition by "for all {Tk)kN,, C C for which Ti # Tj if i # j " .  

The results (and their proofs) in the following short discussion in which we aim to  in- 

troduce the reader to yet another area of application of R-boundedness, can be found in 

paper [15], which is a beautiful display of the natural occurrence of R-bounded collections 

of operators. We have no claim to fame, but only mention the results here to  illustrate 

how a special type of "multiplier boundedness" comes into play in the study of Schauder 

decompositions. 

Given a strictly increasing sequence  lo?^ in N and a Schauder decomposition D = 

where q-1 = -1. Then A = {Ak),"=, is also a Schauder decomposition, called a blocking 



The following two theorems show the relevance of R-boundedness in the context of un- 

conditional decompositions. 

Theorem 4.58 ([15], Theorem 3.4) Let { A k ) F o  be an unconditional Schauder decom- 

position of  the Banach space X .  Suppose C c L(X ,  X )  is R-bounded (with R-bound M ) .  
00 

If { T k ) g o  c C such that AkTk = TkAk for all k, then the series S x  := TkAkx  is 
k=O 

convergent in X for all x E X and defines a bounded linear operator S : X + X with 

I(SI( 5 K (where K only depends on M and the unconditional constant of { A k ) E o ) .  

Theorem 4.59 ([15], Theorem 3.5) Let D = {Dk);PZO be a Schauder decomposition of 

the Banach space X .  Let {Q~) ;P=~ be a strictly increasing sequence in N and let A = 

{ A k ) E o  be the corresponding blocking of D. Let K > 0 and let AK be the set of all 

complex sequences X = {Xk)EO such that 

J X k l  5 K for all k E N,  

q k - 1  

C - X e J  5 K for all k E N.  
e=qk-l+l 

Then the following are equivalent: 

(i) {Tx : X E AK} C L ( X ,  X )  with llTxll 5 CK for all X E AK and some constant 

C > 0. 

(ii) The blocking A is unconditional and there is a constant M > 0 such that 

for all N E N ,  all { x k ) z o  C X with xk E R ( A k )  and all {mk),",o such that 

Here Pm and Tx are as before. 

Given a probability space (S t ,  C, p) and an increasing sequence A. c A1 c A 2 .  . . of sub- 

a-algebras of St,  we denote by IE(-\Aj) and ( . /Aj) the conditional expectation operators 

with respect to Aj in P ( p )  and Lp(p, X )  respectively ( I  < p < cm), where X is a Banach 

space. 



Definition 4.60 A Banach space X is called a UMD-space if there exists a constant 

C 2 ( X )  (the UMD-constant of X )  such that 
n 

IlaoEX(f IAo) + 1 a A E X  ( f  l ~ j )  - W f  IJ(j-l)}llL2(r.X) 5 cz(x)llf Il~2cr.x) 
j=1 

for all choices of cu j  = r t l ,  for all f E L2(,u, X ) ,  for all n = 1 , 2 , .  . . and for all (a, C, p) 

and { A j } Z o  as above. 

The  condition in ( i i )  o f  Theorem 4.59 is in general strictly weaker than the R-boundedness 

o f  the collection {Pm}Z=,. However, the following theorem gives a condition which 

guarantees the R-boundedness o f  the same. 

Theorem 4.61 ([15], Theorem 3.9) Let X be a U M D  space and let A = {Ak}Eo be an 

unconditional Schauder decomposition with unconditional constant CA.  Let 

Pn = C;=, Ak. Then 

for all xo ,  x l ,  . . . , xn E X and all n E N.  Thus, {Pn},,w is R-bounded. 

From the work in [15] we have the following nice example o f  an unconditional Schauder 

decomposition A = { a k } E o  for which the collection 

S := {x Ak : F c N ,  F is finite} 
kEF 

is not R-bounded (even i f  X is a UMD-space). 

Example 4.62 Let H be a separable Hilbert space and let X = C,, 1 5 p < oo, be the 

Schatten p-class of compact operators on H .  Take a fixed orthonormal basis {en},M,o in 

H .  For m, n E N we define Emn E C p  by Emn(x)  = ( x ,  en)em for all x E H .  For m E N 

we define the (row) projections R, : C, -+ C, and (column) projections Cm : C, -+ C, 

by % ( A )  = EmmA and Cm(A) = AEmm, A E C,, respectively. Then { h } z= ,  and 

{ C m } ~ = ,  are both unconditional decompositions of Cp and Cn& = L C n  for all m, n E 

N .  The authors in  [15] (Example 3.10) show that the collection 



is not R-bounded if p # 2. 

In case of p = 1, i.e. X = C1, the collection P = {P, : n E N), with P, = Cr=O R k ,  is 

not R-bounded. This shows that the result of Theorem 4.61 does not hold in  general, zf 

X is not a UMD-space. 



Chapter 5 

(p,q)-mult iplier functions 

Throughout this chapter (R, C, p) is a finite measure space and X is a Banach space. 

Definition 5.1 W e  call a function h : R -+ X a strongly p-integral function if for  

each weak pf-integral function g : R + X*,  the function R + R :: t I-+ ( h ( t ) ,  g ( t ) )  is a 1- 

integrable scalar function. 

Let P ( p ,  X) be the vector space of (equivalence classes of) strongly p-integral functions 

h : R -+ X such that  t ++ (h(t), g ( t ) )  is in L1(p) for all g E ~ ' ( p ,  X * )  and 

For the moment we assume that IlhllLP(P,x) is a norm. We will prove this fact later on. 

Lemma 5.2 ( a )  Let  1 5 p < cu, t hen  P ( p , X )  C x ( p , X ) ,  V X .  T h e  embedding is  

continuous with n o r m  5 1. 

(b)  Let 1 < p < m. T h e n  P ( p ,  X) U(p, X) where the  embedding i s  continuous with 

n o r m  5 I .  In particular L1 (p ,  X) = L1 (p, X) with 1 1  f IILl(P,X) = I (  f 1 1  L I ( ~ , X ) .  

Proof 

(a) If f f P ( p ,  X ) ,  then for each x* E X *  we have x* f is p-measurable and 



(b) Let h E L1(p, X ) .  For each g E L r ( p ,  X*) there is E E C, p(E)  = 0, such that 

{g(t) I t $ E) is weak* bounded (thus, norm bounded) in X * ,  i.e. g E Lm(p,X*).  

Thus we have 

This shows that h E L1(p, X )  and IlhllLl(P,x, 5 IlhllLlcplx). The inclusion 

for 1 5 p < a, will follow from a more general result, Theorem 5.15, later on in 

this chapter. 

Theorem 5.3 Let (R, C, p)  be a finite measure space. Then Lp(p, X )  is a Banach space. 

Proof Let (h,) be a Cauchy sequence in LJ'(p, X). For E > 0, there exists N E N such 

that 

In particular, for each g E B,,I( x*) 
w P, 

we have 

i.e. ((h,(-), g(.)))n is a mean Cauchy sequence (Cauchy sequence in L1(p)). Therefore, 

there exists f, E L1(p) such that (h,(.),g(.)) fg in L1-norm. By Lemma 5.2, (h,) is 
Cm 

also a Cauchy sequence in P ( p ,  X ) ,  i.e. there exists h E P ( p ,  X )  such that h,(.) 1 h(.) 
w 

in LP-norm (i.e. also in mean). By 2.5.1, 2.5.3 in [4] (see p. 93) there is a subsequence 

(h,,) so that [lhn,(.) - h(.)ll 4 0 a.e. Since for each t E R, g(t) E X*, it follows that 
CX) 

Thus we see that 



(i) ((hnk (-), g(.))) is a mean Cauchy sequence. 

(iii) ((hnk (.) , g (.)) ) is integrable, since hnk ( a )  E LP (p, X )  and g E &' (p,  x*) . 

Therefore we may conclude that (h(.), g(.)) is integrable and (hnk (-), g(.)) 3 (h(-), g(.)) 
00 

in mean (cf. [ 6 ] ,  p. 104). Since g was arbitrary chosen, we see that h E LP(p, X).  Also, 

It follows that f,(.) = (h(.),g(.)) a.e., i.e. 

< e, V m 2 N and all g E BLt(p,X.). 

. . hn += h E LP(p, X )  in norm. 

Remark 5.4 W e  refer to  (201 (Example 10 o n  p. 228) or  (181 for the fact that 

J : L1 (p) 8 X + L1(p1 X )  such that J(C XA, 8 xi) = zixli 
i=l i= l 

A 
i s  a n o r m  5 I bounded linear operator, which maps the dense subspace of L1(p) 8 X 

consisting of elements of the form 'j& x A i  8 xi, where Al,  . . - , An are disjoint sets i n  C 

and xl,  . . , xn E X, onto the dense subspace of simple functions i n  L1(p, X). Moreover, 
A 

the unique extension of J to L1(pj @ X is a n  isometry onto L1(p, X ) .  

By the Universal Mapping Property it follows that 

by a n  injective embedding of n o r m  5 1. 



Proof 

Let f E P ( p )  and x E X and define a bilinear mapping P : P ( p )  x X -+ P ( p ,  X )  as 

follows: 

P(f ,  x) = hjYx with hf,x(t) = f (t)x. First we show that hf,, E P ( p ,  X) .  Choose 

g E (p, X*)  and consider F : R -+ K :: t -+ (hj,z(t), g(t)); then 

showing that F E L1(p). B is bounded, since 

Therefore, by the Universal Mapping Property it  follows that there exists a bounded 
A 

linear operator 4 : P ( p )  63 X -+ LP(p,X) such that $(f 8 x) = hj,, with ) I $ ) )  = IIPII. 

Note that $ corresponds with J in Remark 5.4, but now we only work with the subspaces 

P ( p )  & X of L1(p) 63 X and LP(p,X) of L1(p,X). Thus, P (p )  & X is a norm 5 1 

injective embedding into Lp (p, X )  . 0 

If g : fl + X and h : R -+ L(X, Y) are p-measurable functions, then Fh,g : R -+ Y such 

that Fh,g(t) = h(t)(g(t)) is also p-measurable: 

Let IJh(t) - hn(t)lJ -% 0, p-a.e., where each h, is a simple function, 
00 



Then 

= lim hn( t ) (g( t ) )  p - a.e 
n+w 

Since g is p-measurable, there exists a sequence 

i=l 

such that gm + g ,  p -  a.e. where Ei,, E C and Ei,,n Ej,, = 0, b' i  # j. Now 

Clearly C& ~ 1 2  Tj ,n(~ i ,m)~Ej ,nnE, ,m : R + Y is a simple function for each rn E N. 

Thus (c::, Tj,,(s(t))xE,,,  ( t ) ) ,  is a sequence of  p-measurable functions, which converges 

to the limit function Fh,g pointwise p-a.e. This shows that Fh,g is p-measurable. 

Definition 5.6 

( I )  A measurable function h : R + L ( X ,  Y )  is called a ( p ,  q)-integral multiplier for 

the pair ( X ,  Y )  if for each g E L t  ( p ,  X ) ,  we have: 

The function Fh,g : R -+ Y :: t t+ h( t ) (g ( t ) )  is in P ( p ,  Y )  and the linear operator 

& : L$(p,  X )  + U ( p ,  Y ) ,  given b y  h ( g )  = Fh,g, is bounded. 

In this case, we let 

(2) More generally, if E ( R ,  X )  and F ( R ,  Y )  are normed spaces of p - measurable functions 

from R into X and from R into Y respectively, containing the constant functions, then a 

( E ( R ,  X ) ,  F ( R ,  Y))- integral multiplier for the pair ( X ,  Y )  is a measurable function 

h : R + L ( X ,  Y )  such that for each g E E(R ,  X ) ,  the function 



is in F (R, Y) and the corresponding h : E(Q,  X )  + F (0, Y) is bounded. In this case we 

let 

We agree to denote the vector space of equivalence classes of (p, q)-integral multipliers 

by L,~,,(x, Y);  i.e. for hi ,  h2 E LTp,,(X, Y), we have hl = h2 if and only if hl(t) = h2(t) 

palmost everywhere. In the general case, the vector space of equivalence classes of 

(E(f2, X), F(0, Y)) - integral multipliers, will be denoted by (E(R, X ) ,  F(Q,  Y)). 

Let LM(A X)  C E ( 0 ,  X)  and F(Q,  Y) C L 1 ( ~ ,  Y) and h E (E(Q, X) ,  F(R,  Y)) be given. 

Since h : R t L(X, Y )  is measurable, it  follows for each e > 0 that there exists a simple 
k 

function R t L(X, Y)  : t * C SixAi (t),  with Ai E C and Ai fl Aj = 8 if i f j ,  
i=l 

k 
such that Ilh(t) - C SixAi(t)ll < e, almost everywhere. Let hll.ll : Q -+ R be given by 

i=l 

hll.ll(t) = Jlh(t)lJ. We have 

It is thus clear that hll.ll  is a measurable real valued function. The fact that 

h : R t L(X, Y) is measurable, also implies by the Pettis Measurability Theorem (cf. 

[20], Theorem 2, p. 42) that there exists A E C such that ,u(A) = 0 and h(R\A) is a 

(norm) separable subset of L(X, Y). Let (T,) C L(X, Y) be a dense countable subset 

(sequence) of h(R\A). Let e > 0 be given. The sets A, = h ~ f i  ((IITnll - €13, IITnll + €13)) 

are measurable, therefore the sets B, = A, n (O\A) are measurable too. For each 

t E R\A, there is n E N such that Jlh(t) - Tnl/ < €13, i.e. t E B,. Thus we see that 

Q\A = u,B,. Then let x, E X with 1 1 ~ ~ 1 1  = 1, such that llTnll < IITn(xn) 1 1  + €13. The 

function g : C2 -+ X such that g(t) = CxnxB,( t )  is measurable. Since the range of g 
n 

is bounded, it follows that  g E L m ( p , X ) ,  i.e. g E E(C2,X). It is now clear that the 

function t w h(t)(g(t)) is in L1(p, Y). Also, if t E B,, then 



This shows that 1 1  h(t)ll < Ilh(t)(g(t)) 1 1  + c almost everywhere. We have thus verified that 

if L" (p, X )  5 E ( R ,  X )  and F(R,  Y) C_ L1 (p, Y), then 

In particular, we conclude that L?Tp,q(X, Y) C L1(p, L(X, Y)). 

Also, if 1 5 p < m, it follows that 

Now, suppose X** has RNP (and thus, X has RNP) and p > 1. 

If h E ( P i ( p ,  x*), ~ ' ( p ) ) ,  then the function t I-+ h(t)[g(t)] belongs to L1 (p) for all 

g E ~ ' ( p ,  X*), where h E L1(p, X**). Therefore 

because X*' has Radon-Nikodym property. Also, if h E P ( p , X * * )  is given and g E 

L P ' ( ~ ,  x*), then h E P ' ( p ,  x*)* and t H h(t)[g(t)] is in L1 (p); i.e. h, E ( ~ ' ( p ,  x*), ~ ' ( p ) ) .  

Thus we see that 

(P, X*), L1(p)) = LP(p, X**) 

if X** has RNP. 

In particular, if X is any reflexive Banach space it follows that 

For h E (E(S1, X ) ,  F ( R ,  Y)) such that IJhll(E,F) = 0, it follows that h = 0, i.e. 

Fh,g(t) = 0, p - a.e. for all g E E(S1, X) .  

Again using the Pettis Measurability Theorem, there exists A E C such that p(A) = 0 

and h(R\A) is a (norm) separable subset of L(X, Y). Let (T,) c L(X, Y) be a dense 

sequence in h(Q\A). We consider the following possibilities: 

1. T, = 0 for all n E W. Then clearly, h(t) = 0 for all t E R\A, i.e. h = 0 y a.e. 



2. There is a subsequence (or, possibly a finite set) (Tnk) such that Tnk # 0 for all Ic 

and Tn = 0 for all n # nk. In this case, for the fixed A E C and sequence (T,,), we 

may have: 

(i) Tnk -+ 0 if Ic t m. Then let xnk E X ,  such that 

Put  gk(t) = xnk for all t E R and for all k. By assumption, gk E E(R, X )  

for all k. Therefore, for each Ic there exists Ak E R, such that p(Ak) = 0 and 

h(t)(xnk) = 0,Qt E R\Ak. Let B = (ukAk) U A; i.e. B is a p-null set. For 

t 4 B, we have h(t) E h(R\A) and h(t)(xnk) = 0 for all Ic .  Clearly, h(t) # Tnk 

for all Ic .  Thus, if h(t) E {Tnk : Ic E N), then h(t) = 0. If h(t) f {Tnk : k E N), 

then there exists a subsequence T,,. of (T,), such that Tmj # Tnk for all j and 

all Ic and Tmj -+ h(t) if j t oo. Now Tmj = 0 for all j .  Thus we have h(t) = 0. 

Since t E R \B  was arbitrary, we conclude that h(t) = 0 p - a.e. in the case 

when Tnk t 0 if k -+ m. 

(ii) Tnk f+ 0 if k -+ m. Then there exists 6 > 0 such that /ITnk\( 2 E for all I c .  

We follow a similar argument (as in (i)), now choosing xnk E X such that 

llxnk 11 = 1 and IITnkxn, 1 1  2 ~ / 2 .  We choose gk and Ak E C such that 

as before and again let B = (ukAk) U A. Then t 6 B implies that 

h(t) E h(R\A) and h(t) (xnk) = 0 for all Ic .  In this case we have 

for all Ic .  This shows that h(t) 4 {Tnk : k E N), from which it follows as in (i) 

that h(t) is the limit of a null sequence. Thus we see that h(t) = 0, Qt E R\B. 

Again we have h(t) = 0 p- a.e. 

Our conclusion is that Ilhll(E,Fl = 0 implies that h = 0. Thus, 



is a normed space. 

Both L $ ( p ,  X )  and Lp(p,  Y )  contain the constant functions from S2 to X  and from S2 to 

Y respectively, so that we see from the previous general result that (LTPYq ( X ,  Y) , np,,(.)) 

is a normed space. 

Def in i t i on  5.7 For any Banach space X  the space LTp,q ( X )  of (p ,  q)-integral func t ions  

1 X ,  is defined by 

T p , q  ( X )  := ( X *  ') L 1 ( ~ >  X ,  

'e put iiP,,(h) := sup /~~ l l~eak<~  - (h I (h( t ) ,  g ( t ) )  j P  d p ( t ) ) :  and observe from the general case 

,at -/r,,,(.) is a norm on LTP,q ( X ) .  

L this case the fact that  .rr,,,(.) is a norm on L,,,,(X) also follows by a straightforward 

gument: Suppose h l ,  h2 E L,p ,q(X)  and -lr,,,(hl - h 2 )  = 0. For 0 # x* E X * ,  we put 

L 

9 0 )  = for all t E 52. 
P ( ~ ) l l ~ * I l  

"* ) I P  dp ( t ) ) :  = 0 ,  hen g E L $ ( p ,  X * )  and llgll;eak < 1. Thus, (Sn l (h l ( t )  - h2(t) ,  

3. 

(/ l(x* 0 hl  - z* o h2) ( t )  IP d p ( t ) ) :  = 0. 
P ( Q ) I I X * I I  n 

follows that x* o hl = x* o h2 p  - a.e. This is true for all choices of x* E X * .  As we 

entioned before (refer to Corollary 7, p. 48 of [20]) this implies that hl = h2 p - a.e. 

dlowing are some elementary examples of integral multipliers and integral functions. 

( ~ x a r n ~ l e  5.8 Let 1  5 p < q. 

(1) Choose x  E X .  Define h : SZ t X by h(t)  = x, V t E S2. Let g E L $ ( p , X * ) ,  then 

the function Fh,g(-) = h ( - ) [ g ( - ) ]  E L Q ( p )  c U ( p )  and therefore h E L T p , p ( X ) .  

( (2) Consider T = x:=, 2: @ fi, f i  E Lm(p ,  Y )  and X ;  E X * ,  i = 1, . . - , n. Define 



Let Fh,g(t) = h ( t ) [ g ( t ) ]  with g E L $ ( p , X ) .  W e  show that Fh,g E L Q ( p , Y )  : 

(3) Let 1 5 p _< q ,  f E L m ( p ,  X )  and x E X ,  llxll = 1. Define 

hj,x Q 4 L ( X * ,  X )  b y  hj,.(t) = x 8 f ( t ) .  

Remark 5.9 If f E L m ( p )  and x E X ,  llxll = 1, we let h : R + X be defined b y  

h ( t )  = f ( t ) x .  Then h is measurable and for each g E L$(p ,  X * )  and 1 5 p 5 q we 

have: 

Thus, with each f E L m ( p )  we associate h E L,,,q ( X )  such that rrr,,,(h) I ( 1  f ((L-qp). 

Clearly, each f E L m ( p )  gives rise to many h E L A p , q ( X )  b y  just choosing diflerent 

x E X fixed. This, and the previous examples, indicate that if p 5 q ,  then L,,,,(X) 

is big. 



(4) Let f = f + !; f E L r ( p , X ) ;  g E L t ( p , X * )  and x E X ,  ljxll = 1. Define 

h f l X  : i-2 -+ L ( X * , X )  b y  h f , z ( t )  = x 63 f ( t ) ,  with 

Then 

Define hT : S2 t L ( X ,  Y )  b y  h ~ ( t )  = Czl Xisf@ f i ( t ) .  Notice that hT( t )  E N ( X ,  Y )  

for each t E S2. Consider 

We have 

Hence, it follows that with each T E N ( X ,  L" ( p ,  Y ) )  we assosiate hT E L,p,q (X, Y )  

for all q > p.  



(6) I n  [I91 (p. 56) it is said that T : X + Y is  p-summing i f l  given any probability 

space (R, C, p) and any strongly measurable function g : R + X such that 

Now, for T E Il,(X, Y) given, let hT : R -+ L(X, Y) be the constant function 

h T ( t )  = T for all t E R. For any g E LP,(p, X )  i t  follows that 

is  a function i n  P ( p ,  Y). Therefore, hT E L,,,, (X, Y). Thus,  with each 

T E nP(X, Y) we associate hT E L,,,,(X, Y). 

(7) Suppose h : R -+ L(X, Y) has the form: 

h = ~ ~ = , ( x t  63 yi)xEi with Ei E C, Ei n Ej = 8, V i # j .  Then 

For g E L$(p, X )  we have 

Foreach f E L P ( ~ ) ,  l j p < m a n d ; + f = l ,  

since xt o g E L4(p) for each sf. 

Thus,  Fh,g E Lq(p, Y). This shows that h E LTqlq(X1 Y). 



Proof Given g E L $ ( p ,  X * ) ,  it follows that 

Theorem 5.11 If p 5 q then ( L T P x q ( X ) ,  LP(p, Y ) )  is continuou~ly imbedded into 

L ( X ,  L q h  Y ) ) .  

Proof Choose h E (L,,,, ( X ) ,  U ( p ,  Y ) )  and define Uh : X -+ Lq(p, Y )  by 

Uh(x)  = g, with g,(t)  = h ( t ) [ x ] .  

+ 
Let ! = (i - $) . By Hahn-Banach it follows that for a given x E X there exists f E 

and 



In particular, Lw ( p ,  L ( X ,  Y ) )  ( L Q ( p ,  X )  , D ( p ,  Y ) )  . 

Proof 

(i) For a measurable h : 52 + L ( X ,  Y )  and a measurable g  : 52 -+ X  we let Fh,g : 52 + Y 

be the function Fh,g(t) = h ( t ) [ g ( t ) ]  as before. If h  E ( L Q ( p ,  X ) ,  P ( p ,  Y ) ) ,  then 

h E L 1 ( p ,  L ( X ,  Y ) )  as was showed just after Definition 5.6. 

Suppose r = 1: (i.e. p = 1 and q = oo) 

If h E L 1 ( p ,  L ( X ,  Y ) )  and g  E L Q ( p , X )  = Lw(p ,  X ) ,  then 

Therefore L1 ( p ,  L ( X ,  Y ) )  = ( L w  ( p ,  X ) ,  L1  ( p ,  Y ) )  

Suppose p < q and let ! = $ - f ;  r  # 1. Thus 



Thus if h E LT(p, L(X, Y)) ,  then c := (Sn [lh(t)llT dp(t))b gives us 

and the embedding has norm <_ 1. 

Conversely, let h E (Lq(p, X ) ,  U(p, Y)). Since 

it follows from our previous observation that h E L1(p, L(X, Y)). We show that 

h E LT(p, L(X,  Y)) : 
7 )  

Suppose f E L ~ '  (p). Put  f l(t) = f (t) and f 2  (t) = f (t) 7. From + : = 1 it 
Q P  

follows that f (t) = f i( t)  f2(t).  Also, fl E Lq(p) and fi E P 1 ( p ) .  For E > 0 fixed, 

let IIxtll = 1 such that J(h(t)(l  < Ilh(t)(xt)ll + E for all t E a. Then t I+ f l( t)xt  is in 

Lq(p, X) .  Thus, t H h(t)( f l  (t)xt) is in P ( p ,  Y). Since f2 E LP' (p), it follows that 

t .-, IIh(t)(f1(t)xt)llJf2(t)I is in L1(p). Also, 

This implies that  t I+ 11 h(t) 11 1 f (t) 1 is in ~ ' ( p )  and 

(ii) h E Lw (p, L(X, Y)) and g E Lp(p, X )  imply 

(iii) Let 1 _< q < p and let h E (L9(p, X), U(p, Y)). We need to show that t e I(h(t)ll 

is in Lw(p). Take any f E L1(p). We may write f as f = f l  . f2 ,  where fi = 



f: E Lq(p) and f 2  = f E Lql(p). For c > 0 given, let /lxtl/ = 1 such that 

Ilh(t)ll < Ilh(t)xtll + E .  The function t  ++ f l( t)xt  is in L Q ( p , X ) .  Therefore, the 

function t  ++ h ( t ) [ f l  ( t )xt]  is in P ( p ,  Y ) .  However, f2 E ~ q ' ( p )  c ~ ' ( p ) ,  i.e. the 

function t  ++ 1 1  h ( t ) [ f l  (t)xt]ll 1 f2(t)  ( is in L1 ( p ) .  Also, 

for all t E R. It  is therefore clear that  t ++ JJh(t)lll f (t)l is in L1(p)  and 

Since this holds for all f E L1(p) ,  it follows tha t  h E Lw(p,  L ( X ,  Y ) ) .  

In Proposition 5.12 we saw that  

1 1 1  
L ' h ,  L ( X ,  Y ) )  = (Lq(p ,  X ) ,  LP(p, Y ) )  when - = (- - -)+. 

r P q  

where the last inclusion follows from: 

h E (J%(P,X) ,L"(P,Y))  * Fh,g(t) = h( t ) (g( t ) )  E L w ( p , Y )  for all g E LL(p ,X) ,  and 



5.1 Inclusions among the spaces L,JX)  

Theorem 5.13 Let 1 5 r , s  < m, 1 5  pl 5 p2 and 1 I ql I q2. 

Then 

with continuous inclusions of norm 5 1. 

In particular, for 1 < p, q < m; L,,,,(X) c L,,(X) and L,, ( X )  C L,l,q ( X ) .  

Proof 

(i) Let h E L,,,ql ( X ,  Y) ; i.e. for g E Lg ( p ,  X )  c LC ( p ,  X )  we have 

Consider the embedding I : LTrSq1 ( X ,  Y )  + L,,,q2 ( X ,  Y ) .  It follows from the above 

inequality that 7r ,,,, (h)  <_ n,,,,(h), i.e. IJIIJ 5 1. 

(ii) Let h E LTp2,8 ( X ,  Y ) .  Then, for g E Le(p ,  X )  we have x*g E LS ( p )  for all x* E X *  

and 

5 $2,S(h) SUP ( J' Ix*s(t) I S  d p ( t ) ) $ -  
11~*11<1 

Hence, h E L,pI,s ( X ,  Y ) .  As in (i) the inclusion I : LAp2,, (X, Y )  -+ L,pl,s ( X ,  Y) has 

norm 5 1. 

The following theorem gives the connection between the strongly p-integral functions and 

the (1,  p')-integral functions in X. From this connection it follows that (LP(p, X ) ,  ) I  h lJLP(p,X)) 

is a normed space. 



Theorem 5.14 Let 1 < p < with + $ = 1. Then U " ( p , X )  = L,l,pl(X) and 

llhllL~(P,~) = Tl,Pl(h). 

Proof By definition we have 

Let T ~ , ~ I ( ~ )  5 1. Then 

Theorem 5.15 Let X be a Banach space, 1 < p < q and ! = - a .  Then we have the 

following norm 5 1 inclusions: 

Proof 

( 1 )  We prove the inclusion Lr ( p ,  X )  C L,p,q ( X )  : 

Let h t Lr(p ,  X )  = L,l,r, ( X )  and let g E LL(p, X * )  be given. For all f E ~ ' ( p ) ,  

consider the functions t ++ f ( t )g( t ) .  We show that they belong to ~ i ( p ,  X * ) .  To do 

so, let x E X and consider 

because f = 5 + From our assumption it follows that t t, h( t ) [ f  ( t )g ( t ) ]  is in 

L1(p) .  Since this is true for all f E P' ( p ) ,  it follows that the function t t, h(t)[g( t )]  

is in P ( p ) .  This holds for all g E LL(p, X * ) ,  so that h t L,,,,(X) is our conclusion. 



(2) The inclusion L,,,, (X) 2 LT (p, X) follows from 

Remark 5.16 It follows that P ( p ,  X) = LXl ,p ,  (X) C P ( p ,  X), from which the converse 

inequality in Lemma 5.2 follows. 



Not at ion 

Banach spaces. 

The closed unit ball in X. 

The space of bounded bilinear maps between X and Y. 

The space of all null sequences. 

The space of operators of cotype p. 

The space of all finite rank bounded linear operators. 

The space of all integral operators between X and Y. 

Denotes JR or @ if no difference is relevant. 

The space of all compact linear operators between X and Y. 

The space of all bounded linear operators between X and Y. 

The space of equivalence classes of X-valued Bochner integrable functions. 

The space LP (p, K) . 

The space of equivalence classes of Lebesgue integrable functions on [O, 11. 

The space of equivalence classes of Lebesgue measurable X-valued functions. 

The space of all bounded sequences. 

The space of pabsolutely summable scalar sequences. 



!: The n-dimensional Euclidean (real or complex) space. 

e"(L(X1 Y)) ((21,) C L(X1 Y) : SUP, I l ~ n l I  < 00) 

f?E(X) The space of weakly p-summable sequences in X.  

Ci(X) The space of unconditionally summable sequences in X.  

P ( X )  The space of strongly p-summable sequences in X .  

P ( X )  The space of absolutely p-summable sequences in X.  

&p,q (X,  Y) The space of (p, 9)-summing multipliers. 

lTpvq (X)  The space of (p, 9)-summing sequences in X. 

m,(X) The space of all p-summing multipliers in X.  

mitTong(X) The space of all strongly psumming multipliers in X.  

M ( X )  The space of all R regular Bore1 measures on X.  

Np(X, Y) The space of all p-nuclear operators between X and Y. 

Rad(X) Almost unconditionally summable sequences in X.  

E ( X )  The space of all sequences with values in X.  

Tp(X, Y) The space of operators of type p. 

U Reflexive Banach space with a normalized unconditional basis. 

II,,(X, Y) The space of all almost summing operators between X and Y. 

llp,,(X, Y) The space of all (p, 9)-summing operators between X and Y. 

( E ( X ) ,  F (Y)) The set of all (E(X) ,  F(Y))-multiplier sequences. 

A A vector sequence space whose elements are sequences (a,) of numbers. 

h ( X )  A vector sequence space whose elements are sequences (x,) c X. 
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A X  The Kijthe dual of the sequence space A. 

X' The algebraic dual space of X. 

X* The continuous dual space of X. 

w The vector space of all (complex and real) scalar sequences. 

XN The set of all functions from N into X; i.e. all sequences in X. 
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