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Abstract 

The objective with this thesis is to investigate the potential of model-based diagnosis, 

especially when combined with neural networks as modelling tool. The diagnosis system 

has been applied to a model of the Pebble Bed Micro Model. The neural network was 

mainly used as tool to simulate the normal behaviour of the plant. 

The discrepancy between the two models (actual model and neural network) which 

becomes larger when a fault is present is used to form residuals. The generation of 

residuals needs to be followed by residual evaluation, in order to arrive at detection and 

isolation decisions. 

This thesis considers the design of fault detection and diagnosis for linear and nonlinear 

systems. It consists of different sections. Firstly, an overview of the ideas and theory 

behind the model-based approach of fault detection and diagnosis is given. Initially, a 

fourth-order linear system is simulated and a number of faults are simulated, detected and 

diagnosed. The knowledge gained with the first system is then refined and applied to a 

nonlinear water level control system which is used as a benchmark. The calculations and 

application results are presented in detail to illustrate the principles. 

The principles are then applied to simulation as well as experimental results on the 

Pebble Bed Micro Model. Flownex simulation software was used to generate the data. 

where experimental data was not practical or safe to obtain. 

Typical faults that were diagnosed are plant and instrumentation faults. Since the full- 

scale Pebble Bed Modular Reactor plant is not yet in operation. the principles applied in 

this thesis can be used to design and implement fault detection and diagnosis on a real 

system. 
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CHAPTER 1 : INTRODUCTlON 

1. INTRODUCTION 

This chapter focuses on the background and motivation for the research. Then the 

problem statement with the proposed solution is discussed. The research problem is 

subsequently broken into sub-problems which are separately addressed. A brief 

description of the methodology applied to this research is presented. Finally an overview 

of the  dissertation's chapters is given. 
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1.1 Background 

A major challenge to product manufacturers today is how to economically manufacture 

high quality goods. The same applies to electricity generation. One important way to 

consistently achieve high-quality products is to utilise in-process machine monitoring and 

control. Equipment reliability and maintenance drastically affect the three key elements 

of competitiveness, namely quality, cost, and production lead time. With proactive 

maintenance, a company can shorten lead times by reducing the machine downtime in the 

case of discrete products or batch processes. Likewise, in the case of continuous 

production such as chemical processes or power plant, higher profitability is directly 

linked to plant availability. 

Occurrence of faults or equipment failure is a major cause of sub-optimal plant operation. 

There is a growing realisation that maintenance of the equipment and the control loops in 

the face of faults is the key to achieving long-term economic success. An overall advisory 

system that has the ability to quickly detect abnormal plant operation and initiate 

remedial measures to bring the plant back to normal operating region is undoubtedly very 

useful in the context of overall plant optimisation and safety. 

Early detection and diagnosis of process faults while the plant is still operating in a safe 

and controllable region can help avoid abnormal event progression to breakdown and so 

reduce productivity loss. If incipient faults are allowed to progress to full-fledged faults, 

damage may be incurred or life may be endangered. With software systems for detection 

and diagnosis of faults, it is possible to identify many minor faults before they 

significantly impact the performance of the system. 

As early as the 19607s, it was realised that faults of critical systems, such as nuclear 

power plants: space exploration, and weapons systems can have grave consequences. 

Even a minor malfunction may cause the failure of the whole system resulting in loss of 

time: money and even life. Such considerations led to research into automated and (even 

on-line) Fault Detection, Diagnosis and Evaluation (FDDE) supervisory systems. The 

objectives of these critical system supervisors were to identify even relatively minor 
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malfunctions as early as possible so that they could be attended to before damage 

occurred or lives were endangered (Jia, 2002). 

When equipment is referred to as faulty it is implied that some abnormality exists in the 

operating conditions. A more general definition of a fault is that there is a substantial 

degradation in system performance. This may be due to gradual or abrupt changes in the 

parameters of some system or process parameter or malfunction of equipment causing 

uncertainties in measured values. 

To detect malfunction of a process a monitoring system is required. Such a monitoring 

system should, amongst other, have the following functions: Fault detection, fault 

diagnosis, fault location and fault correction. 

Thus, human operators and automatic controllers need to be advised by intelligent 

supervision, control, and decision-support systems. These intelligent systems must have 

the ability to detect faults. They are proposed to serve as tools that may help improve the 

decision-making process of human operators or automatic controllers alike. Their basic 

task must be to prevent the (human or automated) decision makers from committing 

errors or from misjudging the current situation, by providing them with additional 

quantitative and qualitative information that can be used in the decision-making process, 

for detecting and discriminating faults at an as early time as possible, and for dealing with 

developing emergencies in an informed fashion (Jia, 2002). 

1.2 Problem statement 

Although good design practice tries to minimise the occurrence of faults and failures: 

recognition that such events do occur, enables system designers to develop strategies by 

which their effect is minimised. 

In order to do fault detection and diagnostics on a plant, some means of detecting 

deviation from the usual normal operation of the plant is required. The model describing 



CHAPTER 1 : INTRODUCTION 

normal behaviour can be seated in the experience of a plant operator, but this is severely 

limited by the attention span of a human in the presence of a large number of signals 

monitored in a modem plant. In many cases; certain plant signals, for instance pressure 

and temperature, have physical constraints that may not be exceeded to prevent 

destruction of the plant. In such cases, normal behaviour is considered operation in the 

safe region. By considering safety limits only, less damaging degradation is not detected. 

Subtle degradation could cause less economical operation. It could also point to incipient 

failure. Both these cases, if instantaneously detected and identified, can (hopefully) be 

rectified during planned maintenance. In order to detect subtle degradation it is necessary 

to have a model of normal operation so that relatively small deviations of plant behaviour 

from the norm may be detected. This model is more involved than the fixed limits for 

gross deviation to trigger alarms. 

The model for normal behaviour from which small deviations of actual behaviour may be 

detected, can be done in a number of ways as will be outlined in chapter 2. For the 

purposes of this thesis a plant consists of combined electrical and mechanical systems 

that need to be modelled in some way to find a baseline for fault-free operation against 

which the physical plant will be compared to detect faulty behaviour. These methods are 

broadly categorised as process model-based and process history based. 

In this thesis, process history will be used to train neural networks which will act as 

reference models in fault detection. In a plant which consists of a single section, selecting 

a neural net is rather straightforward. In a plant with many sections having multiple 

inputs and outputs, the question of model topology becomes important. Should one 

design a single multi-input multi-output neural net, or will it be better to partition the 

problem so that a number of single-input single-output neural nets can be used. This 

thesis will address some of the principles and issues to be considered in such choices. 

The aim of this work is to investigate principles that can be used to design a system for 

fault detection and diagnosis for the proposed Pebble Bed Modular Reactor P B M R .  Such 

a system will promote plant availability and help to increase safety. The aim of diagnosis 
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is the identification and isolation of faults. The implementation takes place in the 

following way: Detection of faults and malfunction using the deviation between 

measured values and calculated values from a model. The deviation or residual is 

analysed to find the probable location of the  plant fault. The proposed diagnosis system is 

subdivided into two components, a part for fault detection and a part for fault isolation. 

In this research four methods will be used to model the behaviour of the plant. Those 

methods are covered later in this report. 

1.3 Proposed solution 

In this report we will investigate model-based fault detection and diagnosis. A real 

system will be modelled with neural networks which have been trained from process 

history data. The difference between the real system and its model is used to generate 

residuals. Such residuals are the key elements to evaluate the occurrence of faults. 

The neural networks will be used to simulate the normal behaviour of the plant after 

having been trained on the fault-free behaviour of the plant. The difference between the 

actual plant and neural network plant model will generate residuals. Once a fault has 

been introduced the response of the real system will differ to the one of the neural 

network, resulting in residuals which indicate probable faults. By means of statistical 

approaches the faulty residuals will be evaluated to form a vector matrix that will classify 

each occurred fault uniquely. Such classification will be used to identify and diagnose 

faults on the system. 

A simple cascade of four first order transfer functions will be considered first. Once an 

understanding of the diagnosis system has been gained, it will be implemented on the 

benchmark model. The benchmark model will be used to show that the system will work 

on a real system. Finally the insight gained on the benchmark model will be applied to 

simulations of the PBMR which will be constructed in a few years as well as on a pilot 

plant. 
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1.4 Objectives 

Two research objectives have been identified for this thesis. These objectives consist of 

finding the optimum method for fault detection together with increasing the accuracy of 

fault identification, and evaluating the efficiency of the diagnoses. The objectives are 

described below. 

i .  Determine the optimal method 

The primary objective of this study is to identify those neural network configurations and 

preprocessing methods that yield the best results for a multiple-input multiple-output 

plant which is constructed in separable sections. 

The effectiveness of the approach is based on the choice of neural network parameters, 

including the number of neurons in each layer, the learning rate. and the momentum. If 

there are too few neurons in the hidden layer, the network will not be trainable. If there 

are too many hidden neurons, the network won't be able to generalise and will perform 

well on data included in the training set; but not on other data. 

The learning rate controls how quickly the network weights are adjusted. lf the weights 

are adjusted too slowly, the network may train too slowly to be practical. If the weights 

are adjusted too quickly, the network may not converge to an acceptable error level. The 

choice of the neural network architecture will be based on which architecture will fit the 

data accurately. 

Firstly a survey on different networks will be conducted. Based on this survey a choice 

will be made. The chosen network will be described in the next chapters of this report. 
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ii. Evaluate the accuracy of the diagnoses 

The accuracy of the chosen method is evaluated with a number of experiments, 

progressing from relatively simple to more complex. The experiments will start with a 

linear plant, then a plant model followed by simulation models of the PBMM as well as 

data from physical experiments. 

1.5 Research Methodology 

This research focuses on neural networks to model the normal or fault-free operation of 

the plant. Plant history is obtained in a number of ways: 

Modelling of a linear system using Simulink 

Modelling of a benchmark plant using Simulink 

Physical modelling using Flownex 

Data from physical experiments 

In order to compare various diagnostic approaches, it is useful to identify a set of 

desirable characteristics that a diagnostic system should possess. Then the different 

approaches may be evaluated against such a common set of requirements or standards. 

Though these characteristics will not usually be met by any single diagnostic method, 

they are useful to benchmark various methods in terms of the a priori information that 

needs to be provided, reliability of solution, generality and efficiency in computation etc. 

In this context. one needs to understand the important concepts, completeness and 

resolution. before proceeding to the characteristics of a good diagnostic classifier. 

Whenever an abnormality occurs in a process, a general diagnostic classifier would come 

up with a set of hypotheses or faults that explains the abnormality. 

Simulink and Flownex are tools which will be used to simulate the behaviour of plant. 

Neural networks will be used as a model to simulate the normal behaviour of the plant. 
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1.6 Overview of research 

The dissertation will be divided up into the chapters described below and follow the 

sequence as presented: 

Chapter 2: Fault detection and diagnosis methods 

This chapter covers a theoretical background on fault detection and diagnosis. It briefly 

gives an overview on what has been done by other researchers. A short overview on 

model-based diagnosis is presented. 

Chapter 3: Model-based fault detection and diagnosis 

Some results from the literature investigation on model-based diagnosis are covered. 

Furthermore, guidelines on how to generate residuals using models are given in this 

chapter. The use of neural networks as models to simulate plant behaviour is given. The 

chapter is concluded with some results of model-based fault detection and diagnosis. 

Chapter 4: Fault detection and diagnosis on a drum level control system 

A description of a PID water regulator. used as a benchmark plant. is given. Subsequently 

fault detection and diagnosis on the model is done using Simulink as an actual process 

and a neural network as a reference model of fault-free operation. Since control may 

mask the effect of faulty behaviour (within limits). a system with control is investigated. 

Chapter 5: Flownex model of the PBMM 

A description of the Pebble Bed Modular Reactor and Micro Model will be given. The 

subsystems that are of interest for modelling are highlighted. The transient behaviour of 

these systems is derived using Flownex software. 
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Chapter 6: Conclusion 

A summary of the research results is given. The contributions of the study as well as 

some areas for improvement are discussed. Some suggestions for future research are 

given. 
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2. FAULT DIAGNOSIS METHODS 

This chapter introduces the theory and methods used in this thesis. The background and 

motivation of fault detection and diagnosis are presented. Some of the terminology used 

in the area of fault detection and diagnosis is described in order to simplify both the 

understanding and the reading. An overview of related work in the field of fault 

identification and diagnosis is given. The challenges that are faced when designing a fault 

identification and diagnosis system are discussed. 
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2.1 Overview 

A fault model is a formal representation of the knowledge of possible faults and how they 

influence the process. More specific, the term fault means that component behaviour has 

deviated from its normal behaviour. It does not mean that the component has stopped 

working altogether. The situation where a component has stopped working is, in the 

diagnosis community, called a failure (Frick, 2001). So, one goal is to detect faults before 

they cause failure. 

Faults may be modelled as deviations of normally constant parameters from their nominal 

values. These deviations can be modelled as multiplicative or additive, or a combination 

thereof. In the case of multiplicative faults. the value of a system parameter changes 

without an offset. In the case of an additive fault. an offset is introduced without 

changing the slope of the relation. Typical faults that are modelled in this way are gain- 

errors and bias errors in sensors. Process faults modelled as a deviation of physical 

parameters. 

Other more elaborate faults may be modelled by time-varying or non-linear relations. In 

this thesis relatively simple fault models are considered. An advantage of using simple 

fault models is the simplicity and relatively few assumptions made in modelling. A 

disadvantage with such fault models is that fault isolability may be lost compared to more 

detailed fault models. 

Another important factor is the choice of residuals as well as functions used for residual 

generation since residuals are fundamental components in a diagnosis system. A residual 

is a. often time-varying, signal that is used as a fault detector. Normally, the residual is 

designed to be zero (or small in a realistic case where the process is subject to noise and 

the model is uncertain) in the fault-free case and deviate significantly from zero when a 

fault occurs. Note, however, that other approaches exist. In case of a likelihood function 

based residual generator where the residual indicates how likely it is that the observed 

data is generated by a fault-free process, the residual is large in the fault-free case and 
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small in a faulty case. For the remainder of this text it is assumed, without loss of 

generality, that a residual is zero in the fault-free case. 

2.2 Fault models 

In a diagnosis system not only has the system to be modelled, but also the faults need to 

be modelled in order to be detected. A system fault model is a representation of possible 

faults and how they affect the system. If a novel or unmodelled fault occurs, the diagnosis 

system will not be able to give a correct diagnosis. It may not be possible to model all 

faults. Which ones to model require good system knowledge. There are several ways to 

model a fault, but the most common fault models will now be considered (Olsson, 2002). 

2.2.1 Multiplicative changes in parameters 

A fault can also be modelled as a deviation of a normally constant parameter, typically: 

yo,,(/) = I ,  ,,,,, ( l )~ ( . f ( l ) )  .......................................................................... 2.1 

where 

y,,,,(l) = observed value 

y,,,,(r) = correct value 

f (I) = fault signal. one in the fault free case. 

Sensor faults are often modelled this way if they are of the type "gain errors". This fault 

model is also useful when the signal in the fault free case has a low and constant 

variance, i.e. the deviations from the mean value of the signal are small. When a fault is 

present the variance is still constant but higher, i.e. the deviations are bigger. There are 

also some faults that consist of a deviation of a physical parameter; these faults are also 

suited for this kind of fault model (Olsson, 2002). 
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2.2.2 Additive changes in parameters 

A fault can be modelled as an additive signal, typically: 

y ( t ) = y  ( t )+f( t )  ........................................................................... 2.2 obs cow 

where 

yo&) =observed value 

y,,,,(t) = correct value 

f (t) = fault signal 

This equation describes sensor faults of the  type "offsets". 

2.2.3 Combined additive and  multiplicative changes in parameters 

A combination of the previous cases may also be postulated. 

2.3 Classification of diagnosis algorithms 

In a dynamic system, any kind of malfunction that leads to an unacceptable anomaly in 

the overall system performance is defined as a fault. The first concern in the design of a 

fault detection algorithm is detection performance i e . ,  the ability to detect and identify 

faults correctly with minimal delay and a minimum of false alarms. 

In theory there are various types of techniques, which broadly fall into three categories 

(Clark, Patton and Frank: 1989), namely, (i) statistical approach, (ii) model-based 

approach and (iii) model-free approach. It is worth to mention that, irrespective of their 

implementation, all the techniques perform similar tasks that mainly involve three stages 

such as, detection, isolation and identification. 

The most commonly used fault diagnosis approach is based on building a model of the 

real system to provide estimates of certain measured signals. Then, in the most usual 

case, the estimates of the measured signals are compared with the actual signals, that is, 
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the difference between the actual signal and its estimate is used to form the residual. The 

residual is later employed for fault identification and diagnosis. 

However, numerous methods may be suitable for a given plant. In this study model-based 

diagnosis algorithm will be considered. Figure 2.3.1 below shows a diagnosis family tree 

where other methods are classified. 

Diagnostics Methods 

Quantitative Model-Based Qualitative Model-Based Process History Based 

Quantitative 

Expert ~ y s t e m s A  

EKF Casual models Abstraction hierarchy / \ 
Statistical Neural networks 

Structural Functional 

Digraphs 
Fault trees 

A 
PC A Statistical classifier 

Qualitative Physics 

Figure2.3.1: Diagnosis family tree (Surya and Kavuri, 2002) 

2.4 Model-based diagnosis 

Why is there a need for a mathematical model to achieve diagnosis? It is easy to imagine 

a scheme where important entities of the dynamic process are measured and tested 

against predefined limits. The model-based approach instead performs consistency 

checks of the  process against a model of the process (Isermann, 2004). 

Methods that rely on a quantitative mathematical relation between the input and output 

are called model-based techniques. Model-based fault detection depends on the 

availability of a mathematical model of the plant. 
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This approach might be used on its own or as a complement to other methods. In model- 

based diagnosis a software model of the system is built and the system is compared with 

the model, see Figure 2.4.1. If the model is correct the system's output should be equal, 

or close to, the output from the model, given the same input. These values can then be 

compared and faults can be detected and in some cases also isolated and identified. 

There are several important advantages with the model-based approach:- 

* Outputs are compared to their expected values on the basis of process state, 

therefore the thresholds can be set much tighter and the probability to identify 

faults in an early stage is increased dramatically. 

A single fault in the process often propagates to several outputs and therefore 

causes more than one limit check to fire. This makes it hard to isolate faults 

without a mathematical model. 

With a mathematical model of the process the Fault Identijcation and Diagnosis 

(FID) scheme can be made insensitive to unmeasured disturbances. 

There is of course a price to pay for these advantages in increased complexity in the 

diagnosis scheme and a need for a mathematical model. Different approaches for fault 

detection using mathematical models have been developed in the last 20 years (Willsky, 

1976). The task consists of the detection of faults in the processes. actuators and sensors 

by using the dependencies between different measurable signals. 

In general model-based algorithms are very different from one another in terms of how 

they generate residuals. In many cases the algorithms derive fault information from an 

optimal estimation of state variables (Isermann, 2004). Some other model-based 

methodologies rely on the construction of parity-space. Figure 2.4.1 illustrates the general 

structure ofthe model-based technique in the context of information processing. 

The dependencies are expressed by mathematical process models. Based on measured 

input signals U and output signals Y, the detection methods generate residuals r. 

parameter estimates 0 or state estimates .i which are called features. By comparison 
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with the normal features, changes of features are detected, leading to analytical 

symptoms. 

Faults 

2.5 Modelling of faults by means of residual generation 

u 
I. 

These methods generally consist of two basic steps: Residual generation and a decision 

process to identify the cause. When faults occur, model and process differ and a residual 

r 110 occurs, where broadly residuals represent the differences between various outputs 

and the expected values of these outputs. 

Actuators Process 
Y 

Sensors 

4 I .  

I t 
generator 

r,O,x features 

Normal behaviour 
detection 

Analytical symptoms 

Fault diagnosis 

Figure 2.4.1: General scheme of process model-based fault detection and diagnosis 
(Isermann, 2004) 

Process Model 
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The task of fault diagnosis is to, from the observations and a-priori knowledge, generate a 

diagnosis statement, i.e. to decide whether there is a fault or not and also to identify the 

fault. Thus the basic problems in the area of fault diagnosis is how the procedure for 

generating the diagnosis statement should look like, what parameters or behaviour that 

are relevant to study, and how to derive and represent the knowledge of what is expected 

or normal. This thesis focuses on principles of diagnosis that can be applied to the 

proposed PBMR plant. Typical faults to be considered are for example 'offset' and 'gain' 

faults in sensors, and physical faults in the plant. The observations are mainly signals 

obtained from the sensors, but can also be observations made by a human, such as level 

of noise and vibrations. The knowledge of what is expected or normal is derived from 

selected inputs together with models of the system. 

To construct a model-based diagnosis system, a model of the system is needed as well as 

fault models which describe the effects of different faults. A fault model is the formal 

representation of the knowledge of possible faults and how they influence the process. In 

general, better models imply better diagnosis performance, e.g. smaller faults can be 

detected and more different types of faults can be isolated. In this section a general 

framework for fault modelling using residuals will be described. In this framework, 

practically all existing fault modelling techniques fit in naturally. 

One of the ways in which faults can be detected is by using a plant and trained neural 

network to generate residuals as shown in Figure 2.5.1 below. A neural network (ANN ) 

is created and trained to model the plant's fault-free behaviour. The residuals between 

plant and trained neural net are used to identify the presence or absence of a fault or 

faults. The residuals are then used to diagnose the faults. 

Residual properties are firstly evaluated under normal conditions (with no faults). The 

reason is to determine threshold values that will be used to detect faults in the system. A 

fault is then introduced and again the properties of residuals are evaluated. There are a 

number of ways in which the generated residuals can be processed to diagnose faults. 

Some of these methods will be outlined in this report. 
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Inputs 
Actual Outputs 

Residuals 

Figure 2.5.1: Model to generate residuals (Olsson, 2002) 

2.6 Residual evaluation 

With this approach, faults are modelled by signals f (I). Central is the residual r(t)  

which is a scalar or vector signal of which the elements are zero or small in the fault-free 

case when f (1) = 0,  and is nonzero when a fault occurs, i.e. f(t)#O. 

Diagnosis can be considered as detecting and isolating faults in processes. The diagnosis 

system is then separated into two parts: residual generation and residual evaluation. This 

view of how to design diagnosis systems is well established on research conducted by 

(Karlsson, 2001). Thus (Karlsson. 2001) defines the model-based FID as a two-stage 

process: (I) residual generation, (2) decision making (including residual evaluation). This 

two-stage process is accepted as a standard procedure for model-based FID nowadays. 

Residual evaluation can be done using decision logic or a neural net, amongst others. 

These two methods will now be further discussed. 

Residual evaluation by decision logic is an established procedure. The method is often 

called structured residuals and is primarily an isolation method (Karlsson, 2001). A 

diagnosis system using structured logic can be illustrated as in Figure 2.6.1. In this 

method, the first step of the residual evaluation is essentially to check if each residual is 

responding to the fault or not, often achieved via simple thresholding. By using residuals 
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that are sensitive to different subsets of faults, isolation can be achieved. What residuals 

that are sensitive to what faults is often illustrated with a residual structure. An example 

of a residual structure is shown in Figure 2.6.1 below. 

'2 

r3 
0 

Figure 2.6.1: Decision logic (Karlsson, 

The 1 ' s  indicate which residuals that are sensitive to each fault. For this residual 

structure, assume for example that residuals r, andr, are responding, and r, is not. Then 

the conclusion is that fault f, has occurred. A large pan of all fault-diagnosis research 

has been to find methods to design residual generators. Of  this large part, most results are 

concerned with linear systems. A characteristic of this approach to fault diagnosis is that 

faults are modelled as signals. This is very general and might therefore seem to be a good 

solution. 

However, the generality of this fault model is actually its drawback (Frisk, 2001). Many 

faults can be modelled by less general models, and we will see in this thesis that to 

facilitate isolation, this is necessary in many situations. Another limitation is that the 

residual structure, with its 0's and I's, places quite strong requirements on the residual 

generators. A 1 more or less means that the corresponding residual must respond to the 

fault. It can be understood that for small faults in real systems, with noise and model 

uncertainties present, this requirement is often violated. A third limitation, related to the 

previous limitation, is that the decision procedure, of how the diagnosis statement is 

formed from the real-valued residuals, does not have a solid theoretical motivation. For 

example, in the context of deciding the diagnosis statement. what are the meanings of the 

0's and the 1's. and what does it mean that a residual is above the threshold? It would be 

desirable to use a decision procedure for which we can find an intuitive formalism based 

on existing well-established theory, preferably mathematics if possible. 



CHAPTER 2: FAULT DIAGNOSIS METHODS 

One way of evaluating a fault by means of a generated residual is shown in Figure 2.6.2 

below. In this case the plant represents a transfer function where a fault can be 

introduced. The neural network AhW, will simulate the behaviour of the plant under 

normal conditions. The residuals generated as a result of deviations between the two 

outputs will indicate the presence or absence of faults. One way of diagnosing the faults 

is to use a second neural network (ANN, ) to evaluate the residuals. However, in this 

report, faults are diagnosed by evaluating the properties of the residuals. Details on how 

to evaluate the properties of residuals will be covered in the next section. 

Faults 

Inputs 

Figure 2.6.2: Model to diagnose faults (Olsson, 2002) 

i Plant 

2.7 Threshold definition 

Actual Outputs 

In order to detect fault quantitatively, the thresholds have to be defined for the residuals. 

It  is very important that the definition of thresholds for the residuals is independent of 

disturbances. The disturbances come from unknown input noise signals, modelling errors, 

etc . 

Because of the presence of noise disturbances and other unknown signals acting upon the 

monitored variable, the residuals are usually stochastic variables with mean value and 

standard deviation for fault free processes. 

If the distribution and variance of the noise is known, it is easy to determine the 

threshold. This method employs a fixed threshold and is therefore easy to implement. 
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Analytic symptoms are obtained as changes of residual signals with reference to the 

normal values. To separate normal from faulty behaviour, usually a fixed threshold has to 

be selected. By this means, a compromise has to be made between the detection of small 

faults and false alarms. The start of the fault can be easily detected by the positive peak 

(maximum) and the end of the fault can be detected by the negative peak (minimum). 

This means that when a fault occurs. one or more components of the residual vector will 

change in magnitude and make it possible to recognise that some change has taken place. 

The problem with a fixed threshold is that some part of the signal is ignored. Fixed 

thresholds are only concerned with the maximum and minimum peak of the signal. 

However, the basic idea of adaptive thresholds is that since disturbances and other 

uncontrolled effects vary with time. the thresholds should also vary with time instead of 

being fixed at a constant value. The adaptive threshold adapts to the disturbances and 

therefore follows the test quantity as long as there are no faults. 

One way of setting the thresholds is to perform a large number of simulations. No two 

simulations will give exactly the same result since noise is present. The threshold is then 

set according to a worst case scenario. This will give a system that is unlikely to fire false 

alarms but unfortunately there is a risk for missed detection instead. The thresholds might 

be set so high that an alarm is not even generated when a fault is present (Olsson. 2002). 

This report will demonstrate the ideas used to limit missed detections and false alarms. 

The impact of fixed and adaptive thresholds will be investigated in this report. 

2.8 Neural networks 

2.8.1 Introduction 

The operation of any industrial plant is based on the readings of a set of sensors. The 

ability to identify the state of operation. or the events that are occurring, from the time 

evolution of these readings is essential for the satisfactory execution of the appropriate 

control actions. 
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In supervisory control, detection and diagnosis of faults, adaptive control, process quality 

control, and recovery from operational deviations, determining the correct mapping from 

process trends to operational conditions is the pivotal task. Reasoning in time, however, 

is very demanding, because time introduces a new dimension with significant levels of 

additional freedom and complexity. The real-time history of scores of variables can be 

displayed and monitored in most computerised process monitoring and control systems. 

However, whereas a simple visual inspection of displayed trends is sufficient to allow the 

operator to confirm the process status during normal, steady-state operations, when the 

process is in significant transience or crises have occurred, the displayed trends of 

interacting variables and a l m s  can easily overwhelm an operator. When process 

variables change at different rates, or are affected by varying lags, it is very difficult for a 

human operator to carry out routine tasks, such as distinguishing normal from abnormal 

conditions, identify the causes of process trends, evaluate current process trends and 

anticipate future states, etc. 

In order to carry out fault diagnostics, some representation (or reference) of correct or 

normal behavior has to be developed. This reference is the most important part of a fault 

diagnosis system. The consequences of a poorly defined reference are a failure to detect 

faults or the generation of false alarms. A model-based approach to diagnostics involves 

using a mathematical description of the system as a reference of correct behaviour. A 

diagnostics scheme can use various types of models, such as first-principles models, 

neural networks, fuzzy rules, characteristic curves, etc. This report advocates the use of 

neural network models, which is briefly described in this section. 
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2.8.2 Introductory theory of neural networks 

An Artificial Neural Network (ANN) is a network of many very simple processors 

("units"), each possibly having a small amount of local memory. The units are connected 

by unidirectional communication channels ("connections"), which cany numeric (as 

opposed to symbolic) data. The units operate only on their local data and on the inputs 

they receive via the connections. 

The design motivation is what distinguishes neural networks from other mathematical 

techniques. A neural network is a processing device, either an algorithm, or actual 

hardware, whose design was motivated by the design and functioning of human brains 

and components thereof (Haykin, 1994). 

There are many different types of neural networks, each of which has different strengths 

particular to their applications. The abilities of different networks can be related to their 

structure, dynamics and leaming methods. 

ANNs are particularly suited to deal with the problem of system identification in dynamic 

processes for several reasons (for a general reference on neural networks see (Hassoun. 

1995)). First of all, ANNs can approximate any well-behaved function with an arbitrary 

accuracy, which is an essential advantage on methods based on regression when the 

problem at hand presents essential nonlinearities (Hunt, 1992; Willis, 1991). One should 

stress that, in some applications, ANNs do not outperform other system identification 

methods. The biggest advantage of ANNs manifests itself when dealing with hard 

problems, e.g. in the case of significantly overlapping patterns, high background noise, 

and dynamically changing environments. The ANN'S characteristics of adaptive leaming 

generalisation ability, fault tolerance, robustness to noisy data and parallel processing 

makes it a very interesting candidate for approaching the identification of dynamic 

events. 

The success of neural networks' abnormality detection depends strongly on the ability to 

create a model for normality. On first sight, this may seem an impossible task as for 
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several reasons the classification will never be accurate. Such is true but only in a 

numerical sense. Because of the non-linear curvature in the error space and the 

incomplete, irreproducible and noisy character of the learning data, a specific sample will 

almost never be 100% correctly reproduced (Spaanenburg). 

2.8.3 Analysing the problem 

Where processes to be modelled are complex enough to be described mathematically, 

neural networks are considered to outperform the conventional, deterministic models 

most of the time. However, one should be aware of the applicability of neural networks to 

a specific problem and the basic conditions for getting the best performance out of it. In 

many cases neural networks for research are used 'blindly' by choosing all the possible 

input variables and without considering much of the possibilities to maximise the 

performance. 

In general, neural networks are suitable for problems where the underlying process is not 

known in detail and the solution can be learned form the input-output data set. 

Nevertheless, the following points have to be stressed: 

It has to be made sure that the problem is difficult to be solved by conventional 

methods and that neural networks can be used as a good alternative. 

If there are logical non-chaotic relationships or structural properties that similar 

initial configurations indicate mapping to the similar solutions, one can expect a 

generalisation by neural network. It simply means the same input should always 

result in the same output. 

If the data set to train the network is impossible to be represented or coded 

numerically, the problem cannot be solved by a neural network approach 

Non-linearity and the change of variables in time are possible to be dealt with by 

neural networks. 
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Training the network has to be started by defining the topology of the neural network. 

The best topology is found by adjusting the parameters by trial and error, therefore it is 

bener to start with a small network which learns fast and is easy to change the 

parameters. Initial weights are also defined by trial and error. When the appropriate 

network topology is defined, it is possible to speed up or slow down the process by 

changing the learning rate and fine-tuning. 

This is one of the most important stages of any neural network application because the 

accuracy of the solution for most of the networks depends on the quality and quantity of 

the training data set. Although neural networks can accept a wide range of inputs, they 

work with data of certain format encoded numerically. 

2.8.4 Training of neural networks 

Artificial neural networks are designed to operate in a similar manner to their biological 

counterparts. Biological neural networks in the brain have neurons that receive input 

stimuli, which are amplified or attenuated by other neurons based on past learning 

experience, and the outputs are passed to other neurons through synapses. The final 

output is based on a combination ofthe output of other neurons. 

Artificial neural networks use a similar method by training the network using known 

inputs and expected outputs. The network continuously adjusts a series of weights 

associated with each neuron as the network is trained. 

A neural network is required to go through training before it is actually being applied. 

Training involves feeding the network with data so that it would be able to learn the 

knowledge among inputs through its learning rule. There are three types of training 

algorithms - initialisation algorithms, supervised learning and unsupervised learning. 

Initialisation algorithms are not really training algorithms at all, but methods to initialise 

weights prior to training proper. They do not require any training data. 
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In supervised learning, the network is shown a series of input and expected output 

examples. The expected output is compared with the actual output from the network. The 

network will adjust its weights to accommodate each training example. The purpose of 

adjusting the weight here is to minimise the difference between the two outputs. The 

learning rule is used to adjust the weights and biases of the network in order to move the 

network outputs closer to the targets. The perceptron multilayer learning rule falls in this 

supervised learning category. 

Figure 2.8.4.1: Supervised learning (Howard, 1996) 

lnput training facts 

For unsupervised learning, the network is only presented with the inputs but not the 

output. The network in response to the input patterns updates the weights. That implies 

that there are no training data like supervised learning. 

Neural network 

lnput 

c Network Outputs 

Training Neural network 
Facts Network Outputs 

T 
Weights chanees 

I 
Network error 

I Targets values 

Weights changes- 

Figure 2.8.4.2: Unsupervised learning (Howard, 1996) 
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2.8.5 Multi layer perceptrons 

There are many network models. or architectures, of neural networks. The type of neural 

network normally used for fault identification and diagnosis is the multilayer feed- 

forward neural network. The term "multilayer" signifies that the neurons are arranged in 

multiple layers. A "feed-forward" neural network indicates that information always flows 

through the network in a forward direction. from inputs to outputs; that is, there is no 

feedback to previous layers. This type of neural network can be trained using sets of 

known inputs and expected outputs. This method of training is known as supervised 

learning. 

Multi Layer Perceptrons (MLP) can be trained with the back-propagation algorithm that 

has proven to be very successful in many diverse applications. The back-propagation 

algorithm is based on an error-correction learning rule. The algorithm searches for the 

minimum in the multidimensional error-surface by following the steepest descent. 

Learning of the MLP consists in adjusting all weights such that the error measure 

between the desired output signals d , ,  and the actual output signals y ,p  averaged over 

all learning examples p will be minimal (possibly zero). The standard back-propagation 

learning algorithm uses the steepest-descent gradient approach to minimize the mean- 

square error function as shown in equation 2.3 - 2.4 below. 

1 2 

The total error function is E = C  E ,  = - ~ x ( d ,  ................................. 2.4 
P 2 P ,  

Where dJp  and yJp are desired and actual output signal of the j'houtput neuron for the 

pattern, respectively. MLP neural networks are very flexible mathematical functions 

of their inputs, making it very easy to overfit the data. To avoid overfit, it is therefore 

necessary to somehow constrain the modelling process. 
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Typically, a MLP begins training with a poor fit to the data (due to its random weight 

initialisation). As training progresses the neural networks fit to the data improves. At 

some point, however, the neural network begins to overfit the data, meaning that its 

performance on the training data continues to improve, but only because it is beginning to 

memorise the peculiarities of the training cases, not because it is learning more about the 

underlying process. Remember? the object is to have the neural network generalise 

usefully to new cases, not memorise the training cases. 

It is obvious that the model performance will be overly optimistic if any of the  test data is 

included in the training set. It is less obvious that if you are tempted to look at the results 

on the testing set, and then return to the training to improve the performance, you are 

actually cooking the model. This problem can be solved by setting aside a group of data 

to be used as a validarion set. This validorion set is used as a final test of the model 

performance. 

To improve the performance of a neural network the following steps needs to be done: 

1. Elimination of weights which don't contribute to accuracy 

2. Limiting the number of nodes 

3. Start with few hidden nodes and increase the number by testing at each epoch 

4. Preventing overtraining (to stop when the mean squared error stops improving) 

2.9 Summary 

In this chapter a survey on fault detection and diagnosis methods have been done. It was 

found that model-based diagnosis using neural networks is adequate for the problem. A 

theory on how to apply model-based diagnosis was covered. 

Furthermore, this chapter has illustrated the use of residuals in fault detection and 

diagnosis. Most of the theory applied in this chapter followed from (Olsson, 2002). A 

theoretical survey of neural networks has been covered in this section. The next section 

focuses on the application of model-based diagnosis on four cascaded first-order transfer 

functions. 
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3. MODEL BASED 

IDENTIFICATON AND 

FAULT 

DIAGNOSIS 

The goal of this chapter is to identify and diagnose faults by means of model-based 

diagnosis. A neural network is used as a model to mimic the normal behaviour of the 

plant. The intention of using neural networks is to generate residuals which will be 

evaluated to diagnose faults. This chapter illustrates the concepts of model-based 

diagnosis. 
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3.1. Overview 

Afier a residual signal is derived, the evaluation of the residual to distinguish a particular 

fault from other possibilities follows. Faults can be classified by evaluating properties of 

the residuals together with a matrix that contains the decision logic. By using test 

quantities that decouple different sets of faults and performing hypothesis tests on these, 

the fault can be detected and hopefully also isolated. Each test quantity has a 

corresponding hypothesis test. When a fault is decoupled in a test quantity this means that 

the hypothesis test will not be sensitive to that particular fault. 

Fault isolation can be performed using several different principles. The approach used 

here is a structure of hypothesis tests. This makes it possible to diagnose a large variety 

of different types of faults within the same framework and the same diagnosis system. A 

number of hypothesis test are performed individually, each one coming up with a 

statement. The statement from each test is a list of possible fault modes. 

3.2 Model construction 

For the purpose of fault diagnosis, a simple and accurate model is desirable. In this work, 

the simple transfer function plant system is modelled by evaluating the residuals' 

properties; that is, mean value and standard deviation of the residuals. The model shown 

in a previous section (figure 2.5.1) will now be developed as four cascaded first order 

systems. 

The objective is to identify and diagnose faults on the entire system. To determine to 

what extent this can be achieved. a few plant models will be tested to determine whether 

is possible to identify and diagnose faults on the entire system. In addition, investigations 

will be done, amongst others, to determine whether faults propagate among the 

subsystems. The potential of fault detection in the case of multi-input multi-output 

systems will further be investigated in this section. 
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A model is first developed for the case when no fault is present. The model for the 

transfer function plant system is shown in Figure 3.2.1 below. Simple first order transfer 

a' were considered. The variables a, and b, are the key function sections of form - 
b,s + 1 

elements to evaluate the occurrence of faults. Faults can be classified as gain, offset, and 

change in time constant. These types of faults are typical instrument faults that can 

happen on sensors and may also be used to model some plant faults. Figure 3.2.1 depicts 

a plant model as well as a fault detection system, using neural networks as a tool to 

simulate the fault-free behaviour of the plant. Once a fault is induced in any of the plants. 

a discrepancy between the two systems (neural network and actual plant) will emerge. 

Those discrepancies are called residuals. and are the key to diagnose the system. 

Input sensor Sensor1 Sensor2 Sensor3 Sensor4 

In uts 

f Plant l Plant3 Plant4 

+ 

- 
Figure 3.2.1: Plant model of four cascaded first order sections 

The part I to A is modelled by neural network nnl.  The two parts in series from I to B are 

modelled by neural network nn2; the three parts in series from I to C are modelled by 

neural network nn3; the four parts in series from I to D are modelled by neural network 

nn4. This model simulates the time response of a system of four cascaded first order 

transfer functions in which the following faults can occur: 

Change in gain of sensors at A, B, C and D. 
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0 Change in offset of sensors at A, B, C and D. 

0 Change in plant offset disturbance at input, A, B and C. 

Change in plant time constant. 

Change in plant gain. 

0 Change in offset and gain of input sensor to all neural network. 

A fault diagnosis system consists of a classification system that can distinguish between 

different faults based on observed symptoms of the process under investigation. Since the 

fault symptom relationships are not always known beforehand, a system is required 

which can be trained on experimental or simulated data. A neural network based process 

model simulator is advantageous. It allows for easy incorporation of a-priori rules and 

enables the user to understand the inference of the system. 

Four neural networks (nn) are created and trained to model the fault-free behaviour. The 

residuals between plant and trained neural nets are used to identify the presence or 

absence of a fault or faults. The residuals are then used to diagnose the faults. 

3.3 Creating a neural network for generating residuals 

A three layered feed-forward neural network was used to model the plant behaviour. The 

neural network mimics the plant behaviour under normal conditions. Should any 

discrepancy emerge between the output of the neural network. and the output of the  plant, 

residuals will be generated. The residual is designed as the difference between the real 

process output and neural network output. 

There is no exact available formula to decide what architecture of ANN and which 

training algorithm will solve a given problem. The best solution is obtained by trial and 

error. Different nets were tried and the following works satisfactorily. 

A three layered feed-forward network utilising resilient back-propagation, which 

institutes supervised learning, was created, using Matlab@. The input layer is composed 
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of tansig transfer function with 6 neurons; see neural network toolbox design and 

simulation (Howard, 1996). The hidden layer is composed of three neurons with purelin 

transfer function (Howard, 1996), and the output layer is composed of one neuron with 

purelin transfer function. This is a standard set-up for multi-layer perceptrons which 

worked for this design. The hidden layer determines the network's complexity, and 

hence determines the number of training epochs needed to achieve the desired result or 

output. 

Data presented to the neural network were normalised to remove problems with scaling 

and signal units (such as say temperature and voltage) and filtered to remove spikes and 

noise since the performance of the neural network depends on the training data presented 

to it. Poor input and output data may cause a neural network to fail to converge to the 

desired level of accuracy. 

Network learning pertains to training an untrained network. Input patterns are exposed to 

the network and the network output is compared to the target values to calculate the error. 

which is corrected in the next pass by adjusting the synaptic weights. 

The training accuracy was set to within 0.001 of the target data. The target data is used to 

measure the Meon Squared Error (MSE) of the output, which is obtained from the 

difference between the network outputs and the target outputs. The weights and biases 

calculated during this phase are saved for use in the simulation of the network. The 

network stops training if an error goal has been reached, or when maximum number of 

epochs has been reached. 

One of the most important factors to construct a neural network depends on what the 

network will learn. A neural network must be trained on some input data. The two major 

problems in implementing the training are: defining the set of input data to be used (the 

learning environment) and deciding on an algorithm. However, there are many different 

types of neural network algorithms in use. Some are optimised for fast training, others for 

fast recall of stored memories, others for computing the best possible answer regardless 
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of training or recall time. But the best model for a given application function depends on 

the data and the function required. Network training means adjusting neural network 

weights. During training the network analyses the data provided to it and changes weights 

between network units to reflect dependencies found in your data. 

The neural network was trained using 40% of the data set presented. The network was 

simulated using the entire data set. Remember. the object is to have the neural network 

generalise usefully to new cases, not memorise the training cases. 

After completing several simulations for predicting the plant response with the back- 

propagation learning algorithm, it is concluded that the average error for simulations 

using lots of data is smaller than that using less amount of data. That is, the more data for 

training the neural network, the better prediction it gives. If the training error is low, 

predicted response are close to the real response. 

The results of how the neural network performed will be shown in this chapter. The 

intention was to be able to use neural networks to generate residuals. The feed-forward 

network utilising resilient back-propagation algorithm proved adequate for the problem. 

3.4 implementation of a diagnosis system 

Once residuals have been determined, the next step is to evaluate the symptoms of such 

residuals. In order to diagnose faults, the behaviour of each fault candidate must be 

determined. 

Measurements Residuals 

Figure 3.4.1: Process of constructing a diagnosis system (Rakar) 

Process Symptoms \ symptoms + Reasoning + 

generator evaluation Faults 
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In the evaluation stage one has to detect if a residual is significantly different from zero. 

The evaluation must be robust in order to avoid false alarms, but also sensitive enough to 

detect even smaller faults which cause only small residual changes. Many approaches 

make use of thresholds to separate deviations caused by faults from deviations caused by 

other reasons. such as noise and modelling errors. 

The design of the threshold represents a compromise between robust evaluation (high 

threshold) and sensitive detection (low threshold). The decision logic with proper 

reasoning tries to isolate faulty components on basis of the generated matrix patterns of 

residuals. As a result, the mapping from a set of residuals into a distribution of beliefs for 

each fault candidate is done. 

The primary goal of a diagnostic system is to detect anomalous system behaviour and 

then to isolate the cause for such a behaviour. There is no universal method, which would 

be able to cope with all kinds of system faults. Therefore it is important to set clear 

diagnostic statements beforehand. 

Inserting a single fault in the plant and recording its effects provides a signature of the 

faulty process. Having a signature for the fault-free plant and for the plant with a known 

fault the decision logic allows characterising the process for the potential presence of 

such faults. Unknown faults that cannot be handled should be analysed off-line and added 

to the structured logic for later usage. 

The system can only diagnose faults which are clearly classified in the decision logic 

matrix. It means that the behaviour of faults under different circumstances must first be 

identified. Therefore a matrix that illustrates different combinations of faults is needed to 

diagnose the faults. 

Table 3.4.1 shows a maximum and a minimum threshold. These values were found by 

studying the no fault behaviour of the plant. The reason for using minimum and 
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maximum thresholds is that, some faults occur on the negative margin, especially the 

offset error. At some stage when using one threshold; there was missed detection. 

As can be seen in Table 3.4.1, the maximum threshold for the residuals is 0.16474, and 

the minimum threshold is -0.049184. In order to isolate each occurred fault uniquely, 

decision logic is needed. Firstly. residuals are generated as explained previously. The 

properties of each occurred residual is evaluated using a standard deviation and mean 

value. The maximum and minimum thresholds for residuals were used to separate the 

occurrence of faults from normal operation. Faults were introduced into the plant as 

constant values for fixed times. chosen between 0.1 and 00.1, which cause changes in 

residuals' amplitudes. These residuals are constantly monitored by fixed threshold values 

for any deviation. 

If a negative or positive peak of the faulty signal exceeds its corresponded normal 

residual threshold, a binary value 1 will be assigned to represent the occurrence of a fault. 

If a faulty signal does not exceed its corresponding normal threshold, a binary value 0 

will be assigned for that particular residual, to symbolise fault-free operation. Decision 

logic will be formed to represent the occurrence of faults. This decision logic will further 

be used to identify and isolate the faults that occurred. Thus the basic problems in the 

area of fault diagnosis is how the procedure for generating the diagnosis statement should 

look like, what parameters or behaviour that are relevant to study, and how to derive and 

represent the knowledge of what is expected or normal. 

Residuals which are generally noisy can be used in raw form or in processed form. 

Firstly. properties of residuals were evaluated using a statistical approach; that is mean 

value, median value. standard deviation, variance, and residual squared were calculated. 

It was found that the mean and the median value respond in the same way. After a couple 

of experiments, it was concluded that the contribution of the standard deviation, and the 

mean value can be used to classify faults. 
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The threshold was set to distinguish between no faults and faulty conditions. Table 3.4.3 

shows decision logic in matrix format, as determined experimentally. First a threshold 

under normal condition was determined. That threshold was then used to detect faults. 11 

was further assumed that only one fault occurred at a time. Multiple faults can also be 

diagnosed, for the purposes ofthis section only a single fault was considered. 

One can see that the decision logic is represented by a unique matrix, except decision 

logic for plant 4. The problem was that there were two types of residuals from plant 4 to 

isolate 4 different types of faults. Faults from preceding sections may propagate forward 

to plant 4, but faults cannot propagate backwards from plant 4 since the system is an open 

loop. 

The faults in the other 3 plants were easily isolated, the decision logic representing the 

faults are unique. One can see that faults propagate from one plant to another, especially 

the plant faults. The propagation of faults does not have an impact on the isolation of 

occurred faults. If a fault is inserted in plant 1 it will affect the residuals of the other 

residuals or  properties of I I 

plants. 

residuals I I I 

Faults Logic based on Faults maximum threshold I Faults minimum threshold / 

I I 
r, mean ( r, ) 

I I 

I I J 
Table 3.4.1: Maximum and minimum threshold values 

0.0 15677 1 -0.0268 

r3 mean ( r , )  

I I 
r4 mean ( r, ) 

0.02 19 -0.0463 

0.04248 -0.0492 
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Fault type 

No faults 

Offset 

Change in gain 

Offset disturbance 

Change in gain 

Change in time constant 

Offset 

Change in gain 

I Offset 

Change in gain 

Offset disturbance 

Change in gain 

Change in time constant 

Offset disturbance 

Offset 

Change in gain 

Offset disturbance 

k h a n g e  in gain 

Change in time constant 
I 

Table 3.4.2: Faults and the 

Plant1 Sensor 

411 4 plants 

Sensor 1 

Plant 1 

Plant 1 

Plant 1 

Input sensor (to all nn's) 

Input sensor (to all nn's) 

Sensor 2 

Sensor 2 

Plant 2 

Plant 2 

Plant 2 

Sensor 3 

Sensor 3 

Plant 3 

Plant 3 

Plant 3 

Sensor 4 

Sensor 4 

Plant 4 

otations 
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Decision structures: 

I I I I I 
rable 3.4.3: Decision structure plant1 

1 
Table : 1.4: Decision structure plant2 

Table 3.4.5: Decision structure plant3 
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Table 3.4.6: Decision structure plant4 

The above tables, shows that it is possible to isolate different faults by using decision 

logic. The results serve as proof that different plant faults can be detected and isolated. 

As explained, the system consists of four cascaded plant sections, in which faults can 

occur from plant I to plant 4. The faulty signal from plant 1 can cause a deviation of the 

normal signal on the other plants. However the impact of such deviation does not affect 

the identification and isolation of faults accurately. as all residuals contribute to the 

classification of faults. 

3.5 Simulation results 

There are number of factors that affect the ability of the diagnosis system to detect and 

isolate faults. The most important one is the model itself, because in order to use a model 

for model-based diagnosis the model has to be accurate at least under the circumstances 

that the diagnosis system is supposed to work. It follows that an inaccurate model may 

cause the difference between non-faulty residuals, and faulty residuals to be either too 

small or large to detect. 

It is also important that the thresholds are well adapted to the model faults so that there 

are few false alarms and so that even small faults can be detected. The residuals and 

decision structure also have to be correct; otherwise there is a risk of isolating the wrong 

components. 
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Figure 3.5.1 shows the response of the plant compared to a neural network. These results

are for the plant model shown in Figure 3.2.1. The output data were normalised. The blue

graph is the actual response and the red graph is the neural network response.

One can see that the neural network correctly mimic the plant response. This shows that

the model-based algorithm is implemented correctly, with the neural network mapping

the plant response.

In model-based diagnosis model building is essential. The results from the diagnosis

system are directly dependent on how accurate the model is. Since the values from the

model will be compared with the values from the physical system they must behave in

the same way if not unacceptably large thresholds need to be used. There are several

ways of building a software model and one common way will be presented here. For a

full description of different model designs, see (Glad and Ljung, 1991).
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If  the system's physical behaviour is easy to understand and the system is not too big or 

complex it might be a good idea to build a unique model. In this kind of model building 

every physical relationship is modelled as equations in some software language, for 

example Sirnulink@ in Matlab@. Naturally this demands good system knowledge and 

good understanding of how each element within the system works. It has the advantage 

that the model does not waste any parameters on estimating redundant information, 

which might be the case with a parametric model. 

A unique model also makes it easier to estimate whether the results from the model are 

accurate or not. Since every physical component is considered it is also easier to 

understand how a fault influences the system and the fault is also easier to model. 

Failing to get a good representative system model may result in difficulties to diagnose 

faults. The residual formed depends on the accuracy of the system and its model. 

Since this master thesis uses a "model of a model" to build the diagnosis system the focus 

has not been on optimising neither the model nor the thresholds. The main objective was 

to explore the principles of model-based diagnosis, not to build an optimal diagnosis 

system for the model. 

However one key element of diagnosing faults is to set a threshold. Figure 3.5.2 shows 

how the threshold can be used to separate the occurrence of faults. Once the signal 

exceeds the threshold (red line), it is assumed that there is a fault in the system. 

One can see the consequences of using one threshold. Some of the faults can occur on the 

negative margin. This can result in missed detection of the fault; therefore it is advisable 

to use both a maximum and minimum threshold. Figure 3.5.3 below depicts a missed 

detection of a fault. As can be seen the faulty signal has shifted into the negative margin 

of the  y-axis. This resulted in missed detection of the fault. 
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Figure 3.5.4 below depicts the impactof both maximum and minimumthreshold. As one

can see, the occurred fault is on the negative margin, and was accurately detected by the

minimum threshold. Due to the induced offset fault on plant 1, the residual properties

(mean) shifted to negative margin. The simulatedrun was performed as follows:First the

plant operates in fault free-state, after 27seconds a fault is inserted in plant 1, after 38

seconds the plant return to normal operation.

It is important to distinguish between the change in signal due to noise or other

disturbances, and the one caused by the induced faults. However the impact of noise in

this simulation was insignificant, as the neural network correctly fits into the plant

response. The goal of the residual was to extract symptoms to identify and isolate faults

and was successfullyaccomplished.Diagnosingfaults on a real system might differ since

a real system will need data on-line which may be affected by other factors such as noise

and error of operators. One needs to differentiate between a fault signal and a noise

signal. For this experiment it was assumed that the data produced is independedof noise

and other disturbances,expect the intentionallyinserted faults.
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3.6 A cascaded plant modelled with single-input single output neural networks 

The same experiment was repeated with single neural networks input for each section. 

The intention, amongst others, was to investigate the potential of using different inputs, 

instead of using one input to all neural networks. In addition, to get an alternative way to 

incorporate the model for fault detection and diagnosis purposes. 

Table 3.6.1 to 3.6.4 below shows decision logic used to isolate the detected faults. Note 

that the meaning of symbols was defined in Table 3.4.2. The location of the faults is the 

same as the one shown in Figure 3.2.1. 

The experiment proved that training the network using single sections trained faster than 

training higher order sections using a single-input. It needs to be emphasized that the time 

taken to train the network does not have an impact on fault detection and diagnosis. 

Figure 3.6.1 below depicts a single input single output cascaded network. Input I is used 

as an input to both plant 1 and neural network nnl. The output of plant 1 A is used as an 

input to neural network nn2 and plant 2. The output from plant 2 B is used as an input to 

neural network nn3 and plant 3.  The output from plant 3 C is used as an input to neural 

network nn4 and plant 4. 

The propagation of faults from the other plants still continues. This is because the faulty 

output from the previous plant is propagated to the next plant as shown in Figure 3.6.1. 

Figure 3.6.2 shows the detection of gain fault from plant]. Note that the fault was 

inserted in plant I and propagated to other plants as shown in Table 3.6.1 ( f,). 
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gqqF 
rable 3.6.2: Decision logic plant2 

f 2 0  

f,, 0 0 

.f22 

Table 3.6.4: Decision log 

The design of a cascaded system gives an alternative way of modelling by using neural 

networks. This experiment has proved that in a complex multi-input multi-output plant 

and neural net model can be used for fault detection and diagnosis. 
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3.7 Summary 

The methodology for building a system model with a neural network was described, and 

then criteria for evaluating model effectiveness were given. The neural network was 

mainly used to simulate the fault-free behaviour of the plant. in order to generate 

residuals. 

The theory presented in chapter '2 was implemented in this section. This chapter was 

concluded with results to support the theory. The results for fault identification and 

diagnosis on four cascaded first order plant sections were described. 
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4. FAULT DETECTION AND 

DIAGNOSTICS ON A DRUM LEVEL 

CONTROL SYSTEM 

To test the concepts on an industrial problem, a literature survey was done. A system for 

the drum level control of a boiler was selected (Kaliberda, 1999), see figure 4.2.1. In this 

plant the feedwater flow rate is controlled to match the steam flow rate. Since there can 

never be a perfect balance between these two flow rates, the level is measured and 

controlled around the set point by trimming the feedwater flowrate. 

Traditional control methods were utilised to develop a control law to stabilise the water 

level in the drum. One important consideration is to keep the level of water in the drum at 

a desired set point because there is a risk that the water could completely evaporate or 

overflow into the steam system. The most dominant parameters that affect the water level 

are the flow rate of feedwater as well as the steam flow from the boiler. To simulate the 

control of the water level, a simple Proportional, integral and Differential (PID) control 

has been adopted. The response of the plant was simulated using a Sirnulink@ model 

(Kaliberda, 1999). 

A feed-forward neural network was trained to mimic the response of the plant. The 

ability of a neural network to model a non-linear dynamic system is investigated in this 

chapter. These results serve as a verification of the ability of a neural network to model 

the actual process. This chapter is concluded by investigating fault detection and 

diagnosis methods for the drum level control system. 
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4.1 Goal 

The goal of this chapter is to investigate, amongst others, the ability of neural network to 

model non-linear dynamic systems. The results to be obtained in this chapter will help to 

test whether is possible for the neural network to mimic the response of a controlled 

dynamic system accurately. 

It is important to control the level of water in the boiler drum, because a fault in the 

control of the water level could cause serious malfunction with legal implications. A full 

description of the implementation of the controller will be covered. 

Furthermore, the purpose of this section is to use Sirnulink@ to model the dynamic 

behaviour of water level in the drum. Modelled data will be used to train neural networks 

for the dynamic behaviour of the process. The mathematical model that describes the 

behaviour of the water level was developed by Oleg Kaliberda (Kaliberda, 1999). Once 

the neural network has proved that it can model the dynamic behaviour of the system, 

fault identification and diagnosis will be carried out on the system. 

4.2 Background 

The water level regulator system is a classic control problem that is used in thermal 

power plant around the world. It is a suitable process to test prototype controllers due to 

its high non-linearity. transport time and potential instability. The system consists of 

measured physical variables to control the level of water in the drum. 

In this chapter, the dynamical equations of the system will be used, the model will be 

developed in SimulinkB and basic controllers will be developed. The aim of the 

SimulinkQ model is that the developed model will have the same characteristics as the 

actual process. It will be possible to test each of the prototype controllers in the 

SimulinkQ environment. obtain the fault-free response, introduce faults, and to obtain the 

response with faults. As before, neural networks will be trained on data when no faults 

are present. The residuals will be used for fault detection and diagnosis. 
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Figure 4.2.1 below depicts a schematic model for the feed water PID control system to be 

implemented in SimulinkfE to generate data for fault detection and diagnosis. The critical 

path of this process is to be able to control the level of water, given outflow of steam 

from the boiler and inflow of water to the drum. The numerical object characteristics are 

taken from the data for a 200 M W  Thermal Power Plant. Derivation is out of the scope of 

this project, for references consider (Kaliberda. 1999). 

Figure 4.2.1: Feed water PID regulator (Kaliberda, 1999) 

Feed water enters the drum through a valve. The heat energy converts the water in the 

drum into steam. The steam drives the turbine and the generator coupled to the turbine 

produces electricity. One important consideration is to keep the level of water in the drum 

at a desircd set point because there is a risk that the water could completely evaporate. 

The water level in the drum should be maintained within a desired range in order to avoid 

a possible efflux of water droplets from the drum and the development of abnormal 

thermal stress in the drum wall. The most dominant paramcter that affects the water level 

is the flow rate of feed water. To simulate the control of water level, a simple PID control 

has been adopted. The standard three-element PID control works well under steady-state 

conditions. Since we are concerned with fault detection and diagnosis, the intricacies how 

the PID controller works in real thermal power plant is out of the scope of this project. 

An important feature of this feed water PID regulator is the method of calculating the 



CHAPTER 4: FDD ON A DRUM LEVEL CONTROL SYSTEM

process variable derivative. Level derivative d~t is calculated not by numerical

differentiationbut as a differenceof the measuredwaterflow and steamflow:

d~t = KOb(Fwaler- FSleam) ... ......... ... ...... ... ... 4.1

Since there is no delay in these measurements, it raises the accuracy of the regulator in

transient mode.

Object transfer function (Kaliberda, 1999)

W(s)~Kob G)( TS~I)(e-.r.., ) 4.2

Regulatortransfer function (Kaliberda, 1999)

Wng(s)= K p[1+;' + Tfd~:: I)] 4.3

The controlleroutput from the PID is representedby (Kaliberda, 1999)

CO(t) ~ K p [e(l) + ;, ({e(l) dl) Kd 'd,1)] 4.4

The above equations are representedas a closed loop by the followingfigure

E IPm. 1 Kd*s
(1

-+ 1 )
' fIo-

l lII.t@g~)=lWg +Ti * s TFD *s +Error

Figure 4.2.2: Closed loop model for feed water PID regulator (Kaliberda, 1999)

This closed loop model was further developed in Simulink@to model the dynamic

behaviourof the water level insidethe drum. The disturbancefor the model is the change
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in steam flowrate. The level of water depends on the steam flowrate from the boiler and 

the water flowrate to the drum. Thus, the measured variables are steam flowrate from the 

boiler. the water flowrate to the drum, and water level in the drum. The controller should 

be able to control the level of water inside the drum to the desired level, given a 

disturbance. The dynamic equation that describes thc process behaviour is shown in the 

Sirnulink63 model. 

1 Object transfer function 

Name 

Kob 

T I Derivative filter time 

Description 

Object gain 

Pure time dela) 

I 

The regulator transfer function 

- - 

The regulator proportional gain 

Table 4.2.1: Symbol definitions 

T, 

TFLI 

K d  

The integral time 

Derivative filter time 

The derivative gain 
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4.3 Methodology 

4.3.1 Simulink Model 

A set of equations (linear & non-linear) describing the PID regulator, and plant have been 

implemented. The next stage is constructing a Simulink model of the water level 

controller. The diagram below is the feed water PID regulator model. This model is 

constructed using integrators, gain blocks, etc. For details on deriving the model and 

implementation it in Simulink@ refers to (Kaliberda, 1999). 

The equations shown in equation 1-3 will now be further developed in Sirnulink@ model. 

Note that only the mathematically equation describing the control of the water level was 

given by Kaliberda, therefore details description of every part of the Sirnulink@ model 

will not be covered as information supplied by the source was insufficient. 

The water level control system consists of PID controller, actuator, valve, and drum as 

shown in Figure 4.3.1.1. Figure 4.3.1.2 and Figure 4.3.1.3 show a Sirnulink@ model for 

PID controller. 

The purpose of the PID controller is to control the level of water to the desired system 

response. The controller uses three terms. The proportional term. Kreg, will push the 

system in the right direction. The derivative term, KD will respond quickly to changes. 

The integral term, Ti will respond to long-term errors. These terms are used to tune the 

controller to the desired level of water. 

Furthermore, the PID controller consists of modulator with a relay histeresis as shown in 

Figure 4.3.1.4 and Figure 4.3.1.5 below. The purpose of the modulator is to maintain the 

level of water at desired set point by modulating the varying level of water. 
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Equation 4.5 is represented by Figure 4.3.1.2 in SimulinkB. 
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The above equation is represented by Figure 4.3.1.3 in Sirnulink@. 
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Figure 4.3.1.3: Simulink model ofthe PID Controller in detail 
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Figure 4.3.1.4: Simulink model ofthe Modulator 



CHAPTER 4: FDD ON A DRUM LEVEL CONTROL SYSTEM 

Figure 4.3.1.5: Simulink model of the relay histeresis 

Figure 4.3.1.6 shows a Sirnulink@ model for actuator. The purpose of the actuator is to 

drive the plant at desired level of water inside the drum. 

2 I 
Ini Position 

Figure 4.3.1.6: Simulink model of the actuator [ l7 ]  

Figure 4.3.1.7 shows a Sirnulink@ model for the valve. The purpose of the valve is 

control the flow of water into the drum. 

- - 
Gain1 Saturation 

Figure 4.3.1.7: Simulink model of the  valve 

The Sirnulink@ model for the drum is shown in figure 4.3.1.8. Its purpose is to give the 

level of water in the drum as the difference between flow of water and steam. 
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Equation 4.7 is represented by a Sirnulink@ model in Figure 4.3.1.8 below. 

Level 

FZteam 

Figure 4.3.1.8: Simulink model of the water level (object) 

Simulated response for a 20% disturbance of the steam flow to water level setpoint was 

generated to observe the time to reach its first peak, the overshoot, and the period of 

oscillation. The intention was to tune the PID values to fall into the setpoint requirements. 

It was found that the process reaches settling time at approximately 650s. 

The system output that is used to train the neural network is the output from the drum, 

which is the level of the water on the drum. 

4.3.2 Simulation results 

4.3.2.1 Introduction 

Using residuals for fault diagnosis relies on the accuracy of the predictive model. A 

residual is a signal generated from computation based on measured variables and 

reference model. It is ideally zero in the fault-free case and different from zero in the 

faulty case. In practice the generated residuals are not identically zero. due to various 

errors (measurement noise, modelling uncertainties). 
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Therefore the model generated by the neural network should be as close as possible to the 

actual model. The question is, will a neural network be able to generalise to the required 

accuracy of the system response, given ripple and step on the system? The description of 

how to build an accurate neural network model is next covered. 

4.3.2.2 Building a neural network model 

The selection of an appropriate number of hidden layers and the number of units in a 

layer is problemdependent and typically requires considerable engineering judgment. 

For instance, by adding more hidden units and layers to a network, the agreement 

between the actual and target outputs ma) be improved but at the cost of increased 

training time and memory requirements. In addition, if too many hidden units are used 

over-fitting of the training data may occur and the generalisation to new input patterns 

may be poor. This is similar to the effect seen when curve fitting with too many free 

parameters. 

The network was built by starting with a few number of neurons, and see how the 

network performed. In most cases a network that performs well with few training data 

points, turns out to perform the best with large amounts of data. At first the network 

seems to learn the behaviour of the process, only to find out it memorised the behaviour 

of the system, and failed to generalise to new sets of data. This process is normally called 

over-fitting, were the error on the training set is driven to a very small value, but when 

new data is presented to the network the error is large. 

One of the reasons might be the data was taken directly from the Sirnulink@ model and 

was not normalised. Figure 4.3.2.2.1 below shows actual response compared to the neural 

network response. One can see that the neural network seems to learn the dynamic 

behaviour of the system, except that there are some small ripples. However that is not the 

case for the network failed completely to map the behaviour of system. The number of 

epochs was increased to give the neural network enough time to learn the data presented 

on it. The network failed again to give good results of the underlying data. 
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One method for improving network generalisation is to use a network that is just large 

enough to provide an adequate fit. The larger a network you use. the more complex the 

functions the network can create. If we use a small enough network, it will not have 

enough power to overfit the data. 

Unfortunately, it is difficult to know beforehand how large a network should be for a 

specific application. There are two other methods for improving generalisation that are 

implemented in the Neural Network Toolbox: regularisation and early stopping. Early 

stopping is to avoid over-learning (not the same as over-fitting but related) (Howard, 

1996). 

The data were normalised, and then the network started to generalise well. Normalisation 

of data helps the network not to overfit data. Normalising the data (subtracting the mean 

and dividing by the standard deviation) is important to ensure that the distance measure 

accords equal weight to each variable, without normalisation, the variable with the largest 

scale will dominate the measure. 

The data was normalised using the neural network toolbox function PREMNMX, which 

preprocesses the network training set by normalising the inputs and targets so that 

they fall in the interval (- 1 , I ] .  

Many researchers in the field of fault identification and diagnosis use the back- 

propagation training algorithm. which simplifies the effort of investigating different 

neural network topologies. It was found that the feed-forward network utilising trainbfg 

as training method is adequate for the problem. 

The 'newff function allows a user to specify the number of layers, the number of 

neurons in the hidden layers and the activation functions used. The hidden layer contains 

tan-sigmoid activation functions and the output layer contains a linear function. This is 

the standard set-up o f  activation functions in multi layer perceptron. 
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The number of neurons was 15-8-1 in the input, hidden and output layer respectively. The 

time delay on the hidden and output layer was fixed at 60 delays. In this case the number 

of delays has no effect on the performance ofthe network to fit the data correctly. 

HOW would one know if a neural network grneralise wcll? There are number of ways to 

determine the performance of the neural network depending on the problem in hand. One 

can calculate the mean squared error of the  neural network to test the quality of the neural 

network. The MSE gives a good indication of the accuracy of the model. The MSE 

between the model and the process should be low. This will result in small residuals close 

to zero. 

In this case it means that it will be possible to identify a small change in the residual. 

Figure 4.3.2.2.3 below shows the residuals between the actual output and neural network 

output. The residual is close to zero, which shows that the error between the aclual output 

and the neural network output is very low. 

The discrepancy between the two models has major impact on fault detection. Due 

statistically variations when training neural network, the neural network will not fit the 

data 100% accurately. 
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Figure 4.3.2.2.1: Memorisation of neural network

Figure 4.3.2.2.2 shows a response of a neural network compared to the Simulink@

response. One can see that the neural network correctly maps the Simulink@ model. This

shows that small faults can be easily detected. Figure 4.3.2.2.3 show the discrepancy

between the actual response and the neural network. If you can look at the output of the

actual model and neural network, you can see that both outputs look the same. However

the discrepancy between the two models is not zero.

The generation of residuals needs to be followed by residual evaluation, in order to arrive

at detection and isolation decisions. Because of the presence of noise and model errors,

the residuals are never zero, even if there is no fault. Therefore the detection decision

requires testing the residuals against thresholds, obtained empirical1y or by theoretical

considerations.
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1.5
Actual Response compared to Neural network
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Figure 4.3.2.2.2: Actual response compared to neural network

Figure 4.3.2.2.3: Residuals of the actual response and neural network
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4.4 Fault diagnosis 

4.4.1 Introduction 

In the previous chapter a model-based FID on a system of four cascaded transfer 

functions was shown. This section uses the same procedure to diagnose faults on the 

drum level control system described in this section. Typical faults to be considered are 

instrumental faults and faults in the actuator and valve. Typical faults that often occur on 

sensors are gain and offset faults. Therefore gain and offset faults will be considered 

again in this section. 

The water level in the drum with boiling water and steam mixture is a process variable 

with safety relevance. Redundantly designed hydrostatic measuring systems are often 

used for continuous monitoring and diagnosis of the water level. Indication errors or 

malfunction of the hydrostatic water level measurement, caused by faults, could endanger 

the operating state, the process flow and the safety of the whole plant. 

Due to transient processes, malfunctions in measurement or stochastic noise deviations 

occur between redundant measuring systems. The task of the fault diagnosis is to assign 

occurring deviations to the causes in order to minimise the potential ofendangerment. 

In order to ensure reliable operations of an industrial process and safety of the plant, it is 

necessary to use correct measurements from actual system inputs and outputs. This 

requires the use of Fault Detection and Diagnosis (FDD) techniques for the recognition 

of the failures regarding the sensors of the system under investigation (Isermann and 

Balle, 1997). 

Recently, different methods based on analytical redundancy have been developed to 

detect and diagnose faults in nonlinear. time-invariant: dynamic systems and a wide 

variety of model-based approaches has been proposed (Nyherg, 1999). 
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There are different model-based approaches to the FDD problem. namely parameter 

identification, parity equations, methods in frequency or in state-space domain, such as 

diagnosis observers, and residuals (Nyberg, 1999). tiowever each method has its own 

drawback. Investigation of different diagnosis methods is considered to be out of scope of 

this project. 

All model-based methods use a model of the monitored system to produce the so-called 

symptom generator (residuals). If the system is not complex and can be described 

accurately by the mathematical model, FDD is directly performed by using a simple 

geometrical analysis of residuals. In real industrial systems however, the modelling 

uncertainty is unavoidable. The design of an effective and reliable FDD scheme should 

take into account the modelling uncertainty with respect to the sensitivity of the faults. 

Several papers addressed this problem. For example, model-based residual evaluation 

was proposed by (Olsson. 2002) and (Glad and Ljung, 1991). 

However a theory conducted by myberg, 1999) found that there are some drawbacks 

with model-based fault diagnosis methods. Some of the drawbacks will be highlighted in 

this section. 

The model-based methods assume that an accurate mathematical model is available. The 

model-based methods use residuals as features, where the residuals are the outcomes of 

consistency checks between the sensed measurements of a real system (Sirnulink03 

model) and the outputs of a mathematical model (neural network). The premise is that the 

residuals are large in the presence of malfunctions (faults), and small in the presence of 

normal disturbances: noise and modelling errors. Statistical techniques are used to define 

thresholds to detect the presence of faults. 

The same principle used in the previous chapter will be applied in this chapter. The only 

difference is, in chapter 3 robustness of fault isolation was not strongly considered. 

Induced faults where isolated using all generated residuals. This isolate faults weakly. 

Refer to table 3.4.3 to 3.4.6. Extra 1's in columns can result in isolating faults wrongly. 
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However this type of isolating faults depends on the problem in hand. In the previous 

section output from plant 1 was an input to plant 2, and output from plant 2 was an input 

to plant 3 etc. This caused faults to propagate amongst the plants. That is why all 

residuals were considered to isolate occurred faults. The meaning of the 1's and 0's was 

explained in the previous section. 

4.4.2 Fault description 

Controlling the level of water in the drum requires measured variables which can be used 

as input to the drum software object. In this case steam flow from and water flow to the 

drum was considered as inputs. The water flow to the drum is controlled by the valve. 

Any change in the valve gain results in a change in water level. Therefore the first fault to 

be considered is change in gain of the valve. This fault was simulated by changing the 

valve's gain by 5% ofthe actual value. 

The second fault is change in valve offset. This fault was simulated by adding a constant 

value to the actual system. These types of faults are additive faults that occur because of 

actuator failure. 

The actuator also affects the controlling of water level in the drum. Therefore the impact 

of the actuator will be considered as a third fault that affects the level of water. This type 

of fault was considered to be of gain type. The objective of this section is to show a few 

ways to detect common sensor faults and thus. enhance sensor reliability by using 

instrument signals to better advantage. Figure A l  in the appendix shows the location of 

faults on the Sirnulink@ model. 

4.4.3 Faults modelled as arbitrary fault signals 

As explained, the types of fault to be considered are sensor faults which can be modelled 

as arbitrary fault signals. Lots of theory has been formulated in the past on how to model 

faults as arbitrary signals. 



CHAPTER 4: FDD ON A DRUM LEVEL CONTROL SYSTEM 

Faults which are modelled as arbitrary signals consist of additive faults, which are added 

into the actual signal. The additive faults will cause a change in residual signal 

There are a number of ways to separate the faulty signal from the non-faulty signal. 

Fixed or adaptive thresholds may be used to determine the occurrence of faults. The 

difference between the fixed threshold and adaptive threshold is that since disturbances 

and other uncontrolled effects vary with time, the thresholds should also vary with time 

instead of being fixed values. However, the choice of threshold depends on the problem 

in hand. If you want to detect faults direct from the faulty signal. adaptive threshold is the 

best choice as any change in the actual signal can be easily detected. If some statistical 

manipulation is required it is better to use a fixed threshold. But there is a price to pay for 

using fixed threshold as the number of missed detections increases. 

However, the robustness of the threshold is related to its residuals. The sensitivity of 

these models lies with the designing of residuals. The residuals should be designed to be 

sensitive enough to both missed detection and false alarm. If a residual is above 

threshold, I is assigned to represent the occurrence of faults. If a residual is below 

threshold, 0 is assigned to represent no fault. Residuals that cause false alarms normally 

result in operators ignoring such alarms. 

Ideally, the residuals should only be affected by the faults. However, the presence of 

disturbances: noise and modelling errors causes the residuals to become nonzero and thus 

interferes with the detection of faults. Thus it should be robust in the face of these 

unknown inputs. Much of the effort in designing residual generators goes into achieving 

robust residual performance. 

One of the approaches is based on generating residuals which are insensitive to 

uncertainty, while at the same time sensitive to faults. It was considered that utilising 

statistical methods is a better solution to limit the oscillating of residuals as shown in 

Figure 4.3.2.2.3. Therefore the mean. standard deviation. variance, and median of the 

residuals signal were determined. Figure 4.4.3.1 shows the residuals. One can see that 

introduced faults can be easily detected in these signals. These residual properties still 
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depict the original behaviour of the residuals shown in Figure 4.3.2.2.3, but does not

oscillate too much.
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Figure 4.4.3.1: Residualspropertiesof Figure4.3.2.2.3

4.4.4 Fault isolation

The interpretation of the]'s is the most importantpart of isolating faults. One more or

less result in isolatingoccurred faults wrongly. This impliesthat it may often happen that

some test quantities, that accordingto the residual structure should reach the thresholds,

are below the threshold. The effect is serious since it can happen that the wrong fault is

isolated.

68
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To compensate for this, it is often required that the residual structure should be strongly 

isolating. This means that when a test quantity is not above the threshold, even though it 

should, there should be no other column that matches the thresholded test quantities. 

If the residuals are designed to strongly isolate faults, the impact of missed detection on 

fixed threshold can be reduced as shown in Table 4.4.4.1. This table shows that 

residualsr,and r, are only sensitive to fault f, . If f ,  is induced r,, and r, will respond to 

the fault. This means that fault f, will cause a residual change in residual r, and r, only. 

Considering Figure 4.4.4.1 below, one can see the impact of faults on the residuals. The 

fault signal shifts the residual to the positive y-axis direction. The red graph represents 

the non faulty signal. blue graph represents the faulty signal and green line represents the 

fixed threshold. This shows that the fault was correctly detected by the fixed threshold. 

One can see that the induced fault affects the entire system (signal) as opposed to induced 

faults in chapter 3. Unlike in chapter 3, the system in chapter 4 is a closed loop system, 

which causes fault to propagate in the system. It is practical that if a valve fails because 

of blockage or leakage, water will rise or fall inside the drum. Therefore the simulated 

fault depicts a situation where the actuator fails because of blockage in the valve. This 

fault was simulated by increasing the valve gain by 5% of the original value. 

We must bear in mind; however, that this is a case study, so its results should b 

interpreted with care. There is no guarantee that the performance ratio o f  teste 

diagnostic systems will be the same for other systems. 
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Figure 4.4.4.1: Detecting fault using fixed threshold

Table 4.4.4.1: Strongly isolability of faults

To keep the false alarm rate at a low level, the thresholds making the residuals to fire are

set high (Gertler, 1991). It is therefore more likely that a residual that should fire don't,

i.e. a 1 is replaced by a 0, rather than the other way around, i.e. a 0 is replaced by a 1. To

avoid mis-isolation, the coding set should be constructed such that no two columns can
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get identical when ones in a column are replaced by zeros. A coding set that fulfills this 

requirement is called a strongly isolating set. As mentioned before this method results in 

missed detection of faults. 

The problem with a fixed threshold is that some part of the signal is ignored. Fixed 

thresholds are only concerned with the maximum and minimum peaks of the signal. 

However, the basic idea of adaptive thresholds is that since disturbances and other 

uncontrolled effects vary with time, the thresholds should vary with time instead of being 

fixed at constant values. The adaptive threshold adapts to the disturbances and therefore 

follows the test quantity as long as there are no faults. When the fault occurs, the residual 

crosses the threshold and the fault is detected. The next chapter will investigate 

robustness of adaptive thresholds as a means of detecting and isolating faults. 

All three faults were correctly detected and isolated. The question is can this model work 

in a complex system like PBMM plant? The answer to this question is found in the next 

chapter. 

4.5 Summary 

The methodology for building a system model with Sirnulink@, and neural network was 

described, and then criteria for evaluating model effectiveness were given. The neural 

network was used to simulate the fault-free behaviour of the plant, in order to generate 

residuals. 

Some methods on how to diagnose faults on a dynamic system were covered. Each 

diagnosis method has its own strength and weakness; however, one must bear in mind the 

consequences of isolating faults wrongly. Many researchers have different approaches to 

fault diagnosis. However, the bottom line is with the strongly isolability and detectability 

of such methods. Model-based fault diagnosis was adequate for the problem. Due to 

model uncertainties, the results might differ with a real plant system. 
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5. FLOWNEX MODEL OF THE PBMM 

The goal of this chapter is to identify and diagnose faults by means of model-based fault 

detection and diagnosis. Simulated and experimental data will be used to identify and 

diagnose faults on the Pebble Bed Micro Model or PBMM plant. A neural network is 

used as a model to mimic the normal behaviour of the plant. This chapter integrates the 

methods investigated in the previous sections, to identify and diagnose faults on the 

overall PBMM system. Typical faults to be considered are instrumental and plant faults. 
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5.1 Background 

Estimation of future electricity demand is an uncertain affair and Eskom's predictions of 

when demand will exceed supply have been revised over recent years. The PBMR is 

being currently developed in South Africa as a world wide international association 

between Eskom, the national utility, and other industrial partners to meet future 

electricity demands. 

The PBMR, being purpose-designed for electricity generation, is inherently different 

from the Pressurised Water Reactor (PWR); the most common type in the world today of 

which the Koeberg nuclear power plant is an example. The PBMR uses helium (a gas) to 

cool the reactor core and drive the turbines. The fuel is based on a ceramic coating of 

very small enriched uranium dioxide fuel particles (silicon carbide coated particles of less 

than I mm diameter) embedded in a graphite matrix. The fuel is proof against damage up 

to I 600 degrees C and will not melt below 3,500 degrees C. 

The net result is a design which, if the unit is kept below a certain size, cannot exceed 

the temperature where fuel damage and radioactive release could occur, even with no 

external cooling. The plant is therefore considered inherently or "walk away" safe. This 

limits the size of the plant but avoids the need for highly reliable, diverse and redundant 

safety systems that are used to ensure adequate safety on current reactor designs 

(Yoshiaki, 2001). 

Lots of researches have been conducted about the safety and operation of the PBMR 

plant by various organisations. To gain a better understanding of a Brayton power 

conversion cycle using three separate shafts, a prototype model called the Pebble Bed 

Micro Model (PBMM) was build. Note that another contiguration will probably be built 

as a demonstration plant. 

The project recently achieved a major engineering milestone with the successful starting 

up of a test rig of the proposed PBMR power conversion system. The test rig represents 
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the first closed-cycle,multi-shaft gas turbine in the world. The model was designed and

built by the Faculty of Engineering at North West University, Potchefstroom Campus

near Johannesburg,with technical input from the PBMRproject team (Ferreira,2003).

Figure 5.1.1 PBMMplant (Ferreira,2003)

5.2 PBMR Power conversion cycle
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Figure 5.2.1: ProposedPebble Bed ModularReactor Schematiclayout (Gee, 2002)
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The schematic layout shown in Figure 5.2.1 depicts a Brayton power conversion cycle 

using three separate shafts and using helium as working fluid. 

Helium enters the reactor at 500 degrees Celsius (at pointl), and at a pressure of about 

8.4 MPa. It leaves the reactor at about 900 degrees Celsius and drives the high pressure 

turbine. The high pressure turbine drives the high pressure compressor. After the high 

pressure turbine, the helium flows through the low pressure turbine that drives the low 

pressure compressor. While still hot, the helium leaves the low pressure turbine and 

drives the power turbine to produce the electricity through the generator. 

The helium leaves the power turbine and is cooled in the recuperator. Return helium is 

then compressed back to a pressure of 8.5 MPa while it returns through the pre-cooler, 

low pressure compressor. inter-cooler and high pressure compressor. The coolers 

increase the efficiency of the compressors since they increase the density of the helium. 

The helium has also been cooled back down to 500 degrees Celsius and the cycle repeats 

itself as it travels back to the reactor (Gee. 2002). 

The PBMR plant is still under development. In order to gain a bctter understanding of 

how the power conversion of the PBMR operates. a functional model called the PBMM 

was designed. The PBMM will have the same control topology as the PBMR. 

Since the objectives of the PBMM is not to address issues related to the use of helium as 

the working fluid or to test the performance of individual components such as 

compressor, turbines, or heat exchangers, it was decided to use nitrogen instead of helium 

as working fluid (Greyvenstein and Rousseau, 2003). 

The PBMM further differs from the PBMR in terms of the nuclear reactor as opposed to 

the electrical resistance heater used by PBMM. There are other differences between the 

PBMM and the PBMR. for more information refer to (Cireyvenstein and Rousseau, 

2003). 
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5.3 PBMM 

The PBMM was build and tested by the Faculty of engineering at the North West 

University, Potchefstroom Campus. The working of the model was also simulated using 

Flownex software. The PBMM uses cheap off-the-shelf single stage centrifugal 

compressors and turbines rather than axial flow machines. The performance 

characteristics of centrifugal machines closely resemble that of axial flow machines and it 

will, therefore, suffice for purpose of this project (Greyvenstein and Rousseau, 2003). 

Figure 5.3.1 below depicts a schematic layout of the PBMM recuperative Brayton cycle. 

Note that in the PBMM plant, the generator shown in Figure 5.2.1 is emulated by the load 

compressor connected to a power dissipation loop consisting of a flow control valve and 

a heat exchanger. The nitrogen gas is injected at point 1, just after the pre-cooler. The 

operation of the Brayton cycle in the PBMM plant is the same as the PBMR. 

Recuperaor 

Figure 5.3.1: Schematic layout of the PBMM recuperative Brayton cycle (Greyvenstein 

and Rousseau, 2003) 

The working of Flownex software was validated and verified using experimental data as 

well as other software's. In the past comparisons between experimental and simulated 

results of the PBMM were done. Thc Flownex model of the PBMM agreed with the 

experimental data. 
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Since the Flownex model have the same overall performance characteristics and control 

topology as  that of the PBMM it was decided to use Flownex for simulation. Simulation 

software such as Flownex allows user to design a complex plant like the PBMM in a 

relatively short period of time at low cost. 

Figure 5.3.2 below depicts a schematic layout of PBMM plant with the location of the 

test faults. The system will be modelled as single-input single-output sections. The data 

collected on the input and output of each system will be used to train a neural network. 

Power compressor 
Electrical resis nce heater 1 6  62 

High pressure turbine Low pressure turbine 

High pressure Low pressure 
Compressor Compressor Nitrogen injection 

Figure 5.3.2: Schematic layout of PBMM with simulated fault locations 

5.4 Modelling the PBMM using Flownex 

Flownex is a thermal fluid simulation software package that has the ability to simulate the 

steady state and transient operation of the integrated system. making use of the 

performance characteristics of the individual components. 



CHAFTER 5: FLOWNEX MODEL OF THE PBMM 

Model M400 of the PBMM is a model built in Flownex to simulate the behaviour of the 

PBMM. The model consists of all the power conversion cycle of the Brayton cycle. 

The intention of this project is not to design or test the working of Flownex software, but 

to usc Flownex to simulate the dynamic behaviour of plant, therefore description of 

Flownex software is considered to be out of the scope of this project. Flownex software 

has a Simulink-Flownet interface for external control. The operation of the PBMM 

model in Flownex can be triggered in Sirnulink using the link shown in Figure 5.4.1 

below. The control valve in Figure 5.4.1 is used to control the amount of nitrogen to be 

injected. 

FLOWNET 

L 
Flewnet Link 

LPC 'I0 

Figure 5.4.1: Flownex -Sirnulink interface 

Power output of the system can be controlled by increasing or decreasing the mass 

inventory in the system. This can be done by injecting or extracting the nitrogen gas. The 

nitrogen gas is injected just before the pre-cooler to rninimise the amount of energy for 

injection. The nitrogen gas is extracted at point of high pressure in order to case the 

extraction. The inventory decrease (nitrogen extraction) is used to lower the power output 

of the generator. 
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Figure 5.4.2 below shows an example of the control of injection of nitrogen into the

system. The injection from the nitrogen inventory control system tanks is controlled by

the control valve which controls the flow of nitrogen gas into the system. If the injection

of nitrogen gas is increased the pressure in the system also increases. The nitrogen gas

must not be injectedtoo fast in the system,as the systemcan shut down.

Time($)--- -- ~ ~

Figure 5.4.2: Valve opening during injectionof nitrogen gas

Thus, the first part to concentrateon is the modellingof pressure variation across the low

pressure compressor (LPC) and high pressure compressor (HPC). Later in the chapter

modelling of the inter-cooler (IC) and pre-cooler (PC) will be considered. Note that for

modellingofIC and PC only simulateddata will be used.

5.5 Modelling the LPC and HPC

For this study, both simulated and experimental data will be used to train the neural

network. The pressure in the inlet of both LPC, and HPC will be used as input to neural

network.The pressure in the outletof both LPC, and HPC will be used as target.
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The LPC is represented by element 10, and the HPC is represented by element 30 in the

Flownex model shown in Figure 5.5.1 below. The data to train the network will be

collected at element 104 (input) and element 12 (output) for the LPC. For the HPC the

data will be collected at element 22 and element 32 as shown in Figure 5.5.1 below.

Figure 5.5.1: Part of Flownex model schematic layout

Figure 5.5.2 shows both input and output pressure generated by Flownex. Figure 5.5.3

shows both input and output pressure generated experimentally when running the PBMM

plant. Note that the intention is not to compare the Flownex model with the experimental

data. The aim is to show that the dynamic behaviour of PBMM can be modelled using a

neural network as modelling tool for both simulated and experimental data.
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For fault diagnosis on the LPC and HPC, only the experimental data will be used,

because using simulated data will not contribute anything new.

Pressure variation during injection

- InletLPC
- OutletLPC
- InletHPC
- OutletHPC

100
o 500 1000 1500

Time(s)
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Figure 5.5.2: Flownex model of pressure variation during injection
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Figure 5.5.3: Experimental model of pressure variation during injection
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5.6 Modelling the IC and PC

Figure 5.6.1 below shows pressure variation on the PC and IC during injection. The

generated data was used to diagnose plant faults on the PC and IC. The typical plant

faults that were considered are plugged process line and heat exchanger fouling. These

types of faults are due to the decrease in available heat transfer area, and decreasing in

the overall heat transfer coefficient respectively.

350
Pressurevariationduringinjection

- InletlC
- Outlet IC
- Inlet PC
- Outlet PC

OJ

::;
(/)
(/)

£. 200

100
o 500 1000 1500

Time (s)
2000 2500

Figure 5.6.1: FJownexmodel of pressure variationduring injection

5.7 Simulation and fault diagnosis

A model-based diagnosis system starts its reasoning from a model. The model represents

in an explicit way the correct behaviour of the system to be diagnosed. If behaviour of the

observed situation is different from the estimation carried out by the model of the same

situation, the system concludes that there is a fault. Finding the causes of faults in the

system is the most challenging part of diagnosing faults.
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A model of the system to be diagnosed is used to make model-based diagnosis; the model 

can be well structured according to physical laws or can be made from human experience 

and data from the process, or combination of both. Model-based diagnosis is based on 

comparing observations of behaviour and the predictions from a model of the process. 

Model-based diagnosis depends on the model to make diagnosis. 

The parameters that describe the behaviour of a large class of man-made systems such as 

PBMR plant are continuous and time-varying. typically modelled by a set of non-linear 

differential equations that relate outputs. inputs and system parameters. Analytic solution 

methods exist if equations are linear. For complex and non-linear equations, numerical 

techniques may be applied but the solution methods are computationally complex and 

there is no guarantee that they will converge. 

One way of detecting faults in such complex plant is to have a set of sensors that will 

monitor the system behaviour. The deviation from normal operation of the sensors will 

indicate the occurrence of faults. The other problem in diagnosis is to isolate the occurred 

faults accurately. This can be done by studying the behaviour of the faults. Each occurred 

fault has its own characteristics. The method used to study the behaviour of faults should 

be reliable as the risk of isolating faults wrongly lies with the accuracy of the method. 

In the previous chapters, case studies on how to identify and diagnose faults using model- 

based diagnosis were done. The intention of this chapter is to combine the ideas 

accumulated in the previous sections. 

This study focused on analysing data generated by a Flnwnex simulation model, and 

experimental data generated when running the PBMM plant. The typical types of faults 

to be considered are instrumentation and plant faults. The question is how to simulate 

such faults? The faults can be simulated directly from the Flownex model, especially the 

plant faults. Plant faults will be simulated directly from the Flownex model (description 

covered later in the chapter). The sensor faults are simulated by adding a constant value 
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on the Flownex simulated data and experimental data. For location of faults see the 

attached schematic in the Appendix. 

Faults were added to simulated data from the Flownex model and experimental data 

obtained from the PBMM plant. A constant value was added to normal data to observe 

changes between neural network and Flownex model. Since the neural network learn by 

example, if a fault is induced at a specific time the neural network will react to the fault. 

This will cause deviation between the two outputs. 

As explained previously, the deviation between the two models is the key element to 

evaluate faults. The neural network model needs to be accurate in order to detect small 

faults. 

5.7.1 Neural network model 

Research has been done in  the past on modelling PBMR plant using different simulation 

methods. A study conducted by (Strydom, 2004), find that neural networks can be used to 

model the dynamic behaviour of the PBMR. 

A study conducted by (Strydom, 2004) compares different neural nctwork topologies to 

model the HPC and LPC of PBMR. This minimised the searching of the best neural 

network topology, therefore the part to concentrate on is to design an accurate neural 

network model. Comparison of different neural network topologies will mean reiteration 

of the study conducted by (Strydom. 2004). 

To gain a better understanding of the working of the PBMM plant, data was first 

simulated using Flownex, with the intention of finalising the test with experimental data. 
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57.2 Training the chosen neural network 

One thing to consider when designing a neural network is the number of layers to be 

used. Normally the choice of number of layers depends on the problem in hand. MLP 

with one hidden layer was shown to be sufficient in the previous section. A feed-forward 

MLP with three layers (input, hidden. and output) will be considered again in this 

chapter. 

When training a neural network (learning process) the examplcs must be selected 

carefully, otherwise useful time is wasted or even worse the network might not function 

properly. The problem is that it is very difficult to diagnose erroneous behaviour even for 

experienced analysts. 

However, and despite the difficulties in understanding how they work, neural networks 

are widely used in pattern recognition because of their ability to generalise and to respond 

well to novel patterns. 

The general concept is the following: During the training session neurons are taught to 

recognise specific patterns. Therefore the number of neurons plays a vital role in the 

performance of the network. The problem of selecting neurons is that there is no standard 

method to select the number of neurons to be used for a specific problem. Normally it is 

done by means of a trial and error method. In most situations, there is no way to 

determine the best number of hidden neurons without training several networks and 

estimate the generalisation error as shown on the table below. 

If you have too few units. you will get high training error and high generalisation error 

due to under-fining and high statistical bias. On the other hand, the training error can be 

made as small as desired by adding more neurons. but generally rach additional unit will 

produce less and less benetit, 

Starting with a single hidden neuron and increasing the number of neurons one at a time 

ensures that the smallest number of neurons is identified. However, the number of 

iterations can often be reduced by increasing the number of neurons by a small number 
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greater than one to get an approximate idea of how many neurons will be required, then 

refining this estimate. 

Table 5.7.2.1 below shows the performance of neural network when increasing the 

number of hidden neurons. It was found that the increase in number of hidden neurons 

makes the network to perform poor as opposed to the increase in number of input 

neurons. 

It is not only the neurons that affect the performance of the neural network, the time 

delay on input and hidden layers also has impact on network performance. Experiments 

have shown that the network perform well with only the input delay. The inclusion of a 

hidden delay makes the network to take too much time to train, or that it performs poorly. 

Table 5.7.2.1: Comparisons of neural network training functions 

The trainrp trains the best in terms of the Performance Measure (MSE). The M S E  

between the actual output and the neural network is small as compared to the other two 

training algorithms. 

The input layer delay was fixed at 200 delays. Figure 5.7.2.1 below shows the actual 

response compared to a neural network with both input and hidden layer delays. One can 

see that the neural network failed to learn the dynamic behaviour of the system. The 
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delay at the input was 200, and the hidden layer delay was 10 delays. The number of

hidden delays was increased to be the same as the input delays. The network performed

better, but it took too much time to converge. It shows that for the network to perform,

the number of input delays must be equal to the number of hidden layer delays. Since the

network performs better and fast with input delay only, the hidden layer delay was not

further used in the experiment.
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Figure 5.7.2.1: Modelling capabilities of NN with both input and hidden layer delay

The same experiment was repeated with input delays only, the network performed weB,

and the neural network learnt the system behaviour accurate as shown in Figure 5.7.2.2.

The same experiment was repeated using trainbfg, but the network ran out of memory.

This shows that trainbfg failed to train the data completely.

The same procedure (using a different training algorithm) was applied on the IC and PC

simulated data. It was found that trainbfg with no input and hidden layer delay train the

best in terms of the MSE. It shows that the training methods depend on the types of data

presented to it.
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Figure 5.7.2.2: Modelling capabilities of NN with input delay

5.7.3 Fault identification and diagnosis

The neural network performed well on both simulated and experimental data. Most of the

model-based fault detection and diagnosis methods rely on the concept of analytical

redundancy. In contrast to physical redundancy, when measurements from parallel

sensors are compared to each other, sensors measurements are compared to analytically

computed values of the respective variable. Such computations use present and/or

previous measurements of other variables, and the mathematical plant model describing

their nominal relationship to the measured variable. The idea can be extended to the

comparison of two analytically generated quantities, obtained from sets of variables. In

either case, the resulting differences, called residuals, are indicative of the presence of

faults in the system. The generation of residuals needs to be followed by residual

evaluation, in order to arrive at detection and isolation decisions. Because of the presence

of noise and model errors, the residuals are never zero, even if there is no fault. Therefore

the detection decision requires testing the residuals against thresholds, obtained
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empirically or by theoretical considerations. To facilitate fault isolation, the residual 

generators are usually designed for isolation enhanced residuals. exhibiting structural or 

directional properties (Tako, 2001). 

Figure 5.7.3.1 below shows the impact of adaptive threshold. One can see that despite the 

normal operation of the plant the residual generated by the neural network and the actual 

plant is not zero. 

A fault of 5% was introduced just after 5 seconds of normal operation. The fault was 

correctly detected by the threshold as the faulty signal deviated for 5 seconds from 

normal operation, and returned to normal operation as shown in Figure 5.7.3.2. 

The robustness of a fault detection system means that it  must be only sensitive to faults, 

even in the presence of model-reality differences. One of the approaches is based on 

generating residuals which are insensitive to uncertainty, while at the same time sensitive 

to faults (Tako, 2001). 

The simulated data from the output of LPC and HPC was used to model sensor 

behaviour. The experiments show that in the absence of an actual model, simulation by a 

neural network can be used to detect faulty behaviour of plant and sensors. 

This study was concluded with simulation of plant faults using output data from 1C and 

PC. First a system response was recorded for a normal operation scenario. Then a 

physical fault was imposed on the IC and PC. A fault of 20% was introduced into system 

which resembles a decrease in the available heat transfer area. The other fault resembles a 

decrease of overall heat transfer coefficient which is typical of fouling in feed water. 
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Figure 5.7.3.2: Detectionof faults using adaptivethreshold
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Figure 5.7.3.3below shows the setting of adaptive threshold to detected plant fault. One

can see that the threshold adapt to signal changes. Figure 5.7.3.4 depicts a detection of

plant fault in the PC (see Figure AS in the appendix for location of the fault in the

Flownex model).Unlike the sensor fault (Figure 5.7.3.2 above);the faulty signal does not

return to normal operation. It is because the plant fault causes the entire systemto deviate

from normal operation.

"C

.~
(ij
E
-......
o
Z

Selting threshold for faultdet'ection
__ "' _11IIIII"_ """ __ ___ I!9IIf..

100 120

--.--
Figure 5.7.3.3: Settingthreshold for detectionof plant fault

All induced faults were correctly diagnosed. In conclusion it shows that model-based

diagnosis can be used to detect and diagnose faults. One must bear in mind that to

implementsuch ideas on a real system will need some fine tuning. This simulationresults

need to be interpretedwith care. Finally, it shows that when accurate simulation software

is available, model-based diagnosis can be used to generate fault scenarios without

affectingplant operationor causingphysical damageto the plant.

9]
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Figure 5.7.3.4: Detection of pIant fault using adaptive threshold

5.8 Summary

The methodology for building a system model with Flownex, and neural networks, was

described, and then criteria for evaluating model effectiveness were given. The neural

network was mainly used to simulate the fault-free behaviour of the plant, in order to

generate residuals. Experiments on how to simulate and diagnose typical sensors and

plant faults have been covered in this section. It shows that model based diagnosis can be

used to diagnoseplant and sensor faults.
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6. CONCLUSION 

Synopses of the experimental results are given. The contributions of the research and 

areas for improvement in the study are stated. Some suggestions for future research are 

given. 
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6.1 Summary of experimental results 

In this study, model-based diagnosis was investigated. Neural networks were used as 

models to mimic the normal behaviour of plant. 

Experiments were conducted on various simulated plants. The knowledge accumulated 

on the benchmark model was used to diagnose faults on the PBMM plant. The model 

detected induced faults ranging from 5%-20% of the simulated data accurately. 

Experimental results havc shown that neural networks are capable of modelling the 

dynamic behaviour of the non-linear problems used in this study. Experiments have 

shown that different data patterns respond differently in terms of their accuracy measure 

(mean squared error). The mean squared error determines the discrepancies between the 

actual output and the predicted output after training the network. It is better to redesign 

the neural network each time you work with new pattern. Since most of the simulated 

faults investigated in this thesis are sensor faults, it was found that sensors failures can be 

diagnosed by using model-based diagnosis. Note it is not just sensors that become faulty: 

the plant as well may be faulty, therefore it is important to distinguish sensor faults from 

plant faults. The experiments were finalised by diagnosing sensor and plant faults 

successfully on the PBMM plant. 

6.2 Contributions of the study 

The multi-layer perceptron has shown to be able to model a wide variety of systems with 

both linear and non-linear characteristics. 

The idea of model-based fault diagnosis was explained. This was done by addressing the 

following aspects; residual generation, residual evaluation, robustness concerning model 

uncertainty, and performance issues. It was illustrated how the measurement noise and 

possible disturbances affect the residuals. The impact of threshold on fault detection was 

illustrated using fixed and adaptive thresholds. In case of a system which is subjected to 
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model uncertainties adaptive threshold perform better compared to fixed threshold. The 

isolation of different faults type depends on the availability of fault signatures. It was 

shown that using decision logic can help to isolate each occurred fault uniquely. 

6.3 Areas of improvements and future work 

This project has demonstrated that the use of neural networks, combined with the 

appropriate use of preprocessing methods, is effective at modelling faults at any plant. 

However, additional research may be desired to implement this technique in practice. 

Training neural networks using on-line data will make the results of this simulation 

practical. Future research should consider training of neural network on-line, which will 

be subjected to system disturbances due to noise and other uncerlainties. 
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7. APPENDIX 

In this appendix all schematic layouts which are too lengthy for the chapters are given. 
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7.1 Location of simulated faults in a drum control system 

Figure Al  below shows the location of the faults in the drum control system. For the 

purpose of fault detection, three types of faults have been considered. These types of 

faults resemblc typical sensor faults. The description of the faults has been covered in 

chapter 4 of this report. For diagnosis purposes, assumed that only one fault occurs at a 

time. 

Figure A l :  Schematic illustration of water level control system with the location of 

faults 

7.2 Faults location in the PBMM plant 

Figure A2 below shows a schematic layout of the PBMM plant. Note that for clarifying 

the diagram is zoomed. Sensor PTlO (circled red) from Figure A3 is used to capture the 

input data, and sensor PTI I is used collect the output data from the LPC. Those data are 

used to train the neural network as explained previously. Similarly, PT30 and PT31 are 

used to collect pressure response from the HPC (experimental data). 



APPENDIX

L--_..._____
d

Figure A2: Schematiclayout ofPBMM plant with sensors for collectionof data
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Figure A3: Zoomed schematic layout of PBMM plant 

For the purpose of fault detection and diagnosis, the output from sensor PTl 1, and PT3 I 

are added with a constant value 0.002. The faulty output is used to train the neural 

network. The same principle applied to Flownex simulated data. 

In the case of plant fault the physical properties of the PC and 1C were changed. First a 

system response was recorded for normal operation scenario. Then a physical fault was 

imposed on the IC and PC. A fault of 20% was introduced into system which resembles a 

decrease in the available heat transfer area. The other fault resembles a decrease of 

overall heat transfer coefficient which is typical of fouling in feed water. Elements 91 and 

101 were used to collect data for PC as shown in the Figure AS. Elements 14 and 21 were 

used to collect input and output data from 1C as shown in Figure 4 below. 
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Figure A4: Part of Flownex Model showing the collection of input and output data 
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Figure A5: Part of Flownex Model showing the collection of input and output data 
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7.4 Source code included in the compact disc 

7.4.1 Matlab Code 

The Matlab code that was used for this Project is included in the attached Disc. 

Chapter 3 Source code 

0 Single-input multi-output network: fid-4rd-simo.m 

0 Multi-input multi-output network: fid4rd-mim0.m 

Chapter 4 Source code 

Water-1evel.m 

Chapter 5 Source code 

PBMM Flownex simulated model: plant-fau1t.m 

0 PBMM Experimental results: instrumental-fau1t.m 

7.4.2 Data for training neural networks 

7.4.2.1 Generated data from the Simulink model (Drum level control) 
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7.4.2.2 Generated data from Pre-cooler and Inter-cooler (Flownex model) 

0 PC-in.txt 

PC-0u.txt 

PC-0ufl.txt 

1C-in.txt 

IC - ou.txt 

IC-oufl .txt 

Threshold-PCplant2.txt 

Threshold-lCplant2.txt 

hold - threshold.txt 

7.4.2.3 Experimental data from LPC and HPC 

LPC-inj-in.txt 

LPC-inj-ou.txt 

HPC-inj-in.txt 

HPC-inj-ou.txt 

fault-inj.txt 

LPC_threshold.txt 

HPC-threshold.txt 

hold-2.m 
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