mirage

Preparation and characterisation of pheroid vesicles / Charlene Ethel Uys

Boloka/Manakin Repository

Show simple item record

dc.contributor.author Uys, Charlene Ethel
dc.date.accessioned 2009-03-17T06:03:36Z
dc.date.available 2009-03-17T06:03:36Z
dc.date.issued 2006
dc.identifier.uri http://hdl.handle.net/10394/1669
dc.description Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2007.
dc.description.abstract Pheroid is a patented system comprising of a unique submicron emulsion type formulation. Pheroid vesicles consist mainly of plant and essential fatty acids and can entrap, transport and deliver pharmacologically active compounds and other useful molecules. The aim of this study was to show that a modulation of components and parameters is necessary to obtain the optimum formula to be used in pharmaceutical preparations. Non-optimal or non-predictable stability properties of emulsions can be limiting for the applications of emulsions (Bjerregaard et al., 2001:23). Careful consideration was given to the apparatus used during the processing along with the ratios of the various components added to the formulation and the storage conditions of the Pheroid vesicles. A preliminary study was performed to optimize the most accurate processing parameters during emulsification. The effect of emulsification rate and time, the temperature of the aqueous phase, the number of days the water phase were gassed, the concentration of the surfactant, cremophor® RH 40, used and the concentration of Vitamin F Ethyl Ester CLR added to the oil phase of the o/w emulsion has been studied. Quantification of the mean particle size, zeta potential, turbidity, pH and current values were used to characterize the emulsions. The samples were characterised after 1, 2, 3, 7, 14, 21 and 28 days of storage. The emulsions were also characterised with confocal laser scanning microscopy (CLSM) to measure the number and size and size distribution of the vesicles. After determination of the processing variables influencing the emulsion stability an accelerated stability test was conducted on a final formula. In the present study, accelerated stability testing employing elevated temperatures and relative humidity were used with good accuracy to predict long-term stability of an o/w emulsion kept at both 5 and 25 OC with 60 % relative humidity and 40 OC with 75 % relative humidity. The results of the stability tests were presented in histograms of the physical properties 24 hours, 1 month, 2 months and 3 months after preparation of the emulsion. It was concluded that Pheroid vesicles demonstrate much potential as a drug delivery system. The high stability of this formula allows its use in a wide variety of applications in the pharmaceutical industry.
dc.publisher North-West University
dc.subject Pheroid en
dc.subject Emulsion stability en
dc.subject Particle size and size distribution en
dc.subject Zeta potential en
dc.subject Turbidity en
dc.subject pH en
dc.subject Current en
dc.subject Confocal laser scanning microscope ( CLSM) en
dc.subject Accelerated stability testing en
dc.title Preparation and characterisation of pheroid vesicles / Charlene Ethel Uys en
dc.type Thesis en
dc.description.thesistype Masters


Files in this item

This item appears in the following Collection(s)

  • ETD@PUK [5267]
    This collection contains the original digitized versions of research conducted at the North-West University (Potchefstroom Campus)

Show simple item record

Search the NWU Repository


Advanced Search

Browse

My Account

Statistics