• Login
    View Item 
    •   NWU-IR Home
    • Conference Papers
    • Conference Papers - Potchefstroom Campus
    • View Item
    •   NWU-IR Home
    • Conference Papers
    • Conference Papers - Potchefstroom Campus
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Using an effective viscosity to account for the effect of the walls on the pressure drop through an annular packed bed

    Thumbnail
    Date
    2009
    Author
    Du Toit, C.G.
    Van der Walt, A.J.K.
    Van der Merwe, J.
    Metadata
    Show full item record
    Abstract
    The question arose whether the correlation for the pressure drop prescribed for cylindrical pebble bed reactors by the Nuclear Safety Commission (KTA) of Germany could still be applied to the proposed annular configuration of the Pebble Bed Modular Reactor (PBMR) currently being developed in South Africa. An approach is described which uses the extended Brinkman equation for fully developed flow together with the original KTA correlation, to account for the resistance of the pebbles, and an effective viscosity, to account for the effect of the walls. A cylindrical packed bed with the same hydraulic diameter as the annular core was first of all considered. The pressure drops for various Reynolds numbers were calculated using a correlation which accounts for the effect of the wall. The formulation of the correlation for an infinite bed was then used along with the Brinkman equation to determine the appropriate values of the effective viscosity to give the same pressure drops. It was then assumed that the effective viscosities obtained in this way could be applied to the annular configuration of the PBMR. The pressure drop through the annular core was then calculated for various Reynolds numbers employing the effective viscosities in the extended Brinkman equation. It was found that the friction coefficients that could be derived from these pressure drops were in good agreement with the friction coefficients obtained from physical experiments performed on a scale model of the PBMR annular core. It was therefore concluded that the strategy followed could be used with the necessary care to predict the pressure drop through the annular core of the PBMR
    URI
    http://hdl.handle.net/10394/20628
    https://asmedigitalcollection.asme.org/HTR/proceedings-abstract/HTR2008/48548/411/334897
    https://doi.org/10.1115/HTR2008-58048
    Collections
    • Conference Papers - Potchefstroom Campus [697]
    • Faculty of Engineering [1115]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisor/SupervisorThesis Type

    My Account

    LoginRegister

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    Atmire NV