Show simple item record

dc.contributor.authorTer Horst, S.
dc.contributor.authorKlem, E.M.
dc.identifier.citationTer Horst, S. & Klem, E.M. 2017. Graphs with sparsity order at most two: the complex case. Linear and multilinear algebra, 65(12):2367-2386. []en_US
dc.identifier.issn1563-5139 (Online)
dc.description.abstractThe sparsity order of a (simple undirected) graph is the highest possible rank (over or ) of the extremal elements in the matrix cone that consists of positive semidefinite matrices with prescribed zeros on the positions that correspond to non-edges of the graph (excluding the diagonal entries). The graphs of sparsity order 1 (for both and ) correspond to chordal graphs, those graphs that do not contain a cycle of length greater than three, as an induced subgraph, or equivalently, is a clique-sum of cliques. There exist analogues, though more complicated, characterizations of the case where the sparsity order is at most 2, which are different for and . The existing proof for the complex case, is based on the result for the real case. In this paper we provide a more elementary proof of the characterization of the graphs whose complex sparsity order is at most two. Part of our proof relies on a characterization of the -free graphs, with the path of length 3 and the stable set of cardinality 3, and of the class of clique-sums of such graphsen_US
dc.publisherTaylor & Francisen_US
dc.subjectSparsity orderen_US
dc.subjectMatrix conesen_US
dc.subjectForbidden subgraphsen_US
dc.titleGraphs with sparsity order at most two: the complex caseen_US
dc.contributor.researchID24116327 - Ter Horst, Sanne

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record