• Login
    View Item 
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Engineering
    • View Item
    •   NWU-IR Home
    • Electronic Theses and Dissertations (ETDs)
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A study of the influence of thermal drying on physical coal properties

    Thumbnail
    View/Open
    Badenhorst_MJG.pdf (73.01Mb)
    Date
    2009
    Author
    Badenhorst, Mathys Johannes Gerhardus
    Metadata
    Show full item record
    Abstract
    One of the major issues facing the coal industry today is the decline in economically recoverable reserves, especially in the Witbank 1 Mpumalanga region of South Africa. This necessitates a critical review of alternate coal sources. One such source was identified as previously discarded and currently arising coal fines. It is well known that great value lies within these fines, but that the high moisture content associated with fine coal leads to thermal inefficiencies, handling problems and increased transport cost. This study will investigate thermal drying as a feasible solution to effectively remove this moisture. During thermal drying coal is fed into a high temperature environment; this can influence the physical and mechanical properties of the coal. The effects include swelling, caking, cracking, loss of water, loss of volatiles, and many more. These effects are investigated by means of thennogravimetric analysis, scanning electron microscopy with a heating stage, proximate analysis and mercury intrusion. Coal samples with an average particle size of 500 um were selected for this study. It was found that: The rate of moisture loss up to temperatures between 150 and 200°C is at a maximum where after the rate declines up to temperatures between 350 and 450°C when primary devolatilisation initiates. No visual changes in the coal are observed up to temperatures between 350 and 450°C. A limited amount of volatiles evolve at a constant rate up to 250°C; this is not significant enough to decrease the calorific value of the coal. Porosity changes in the coal are observed from temperatures as low as 250°C. Thermal drying was found to be a feasible alternative to currently employed drying methods with 150°C selected as the optimal drying temperature. A thermal drying plant is proposed with recommendations for future work needed to realise such a plant.
    URI
    http://hdl.handle.net/10394/3989
    Collections
    • Engineering [891]

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of NWU-IR Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © North-West University
    Contact Us | Send Feedback
    Theme by 
    @mire NV