mirage

Modellering en sintese van alisikliese dendrimeerligande vir alkeenmetatese / Deseré Liebenberg

Boloka/Manakin Repository

Show simple item record

dc.contributor.author Liebenberg, Deseré en_US
dc.date.accessioned 2011-08-19T14:10:03Z
dc.date.available 2011-08-19T14:10:03Z
dc.date.issued 2010 en_US
dc.identifier.uri http://hdl.handle.net/10394/4393
dc.description Thesis (M.Sc. (Chemistry))--North-West University, Potchefstroom Campus, 2011.
dc.description.abstract Coupling homogeneous catalysts to dendrimers with rigid nuclei is one possible strategy to recycle these compounds in an industrial environment. During this study attempts were made to attach the well-defined ruthenium carbene complex 2 to the alicyclic compound 1A. To achieve this goal attempts were made to functionalise 1A with anime groups to facilitate the attachment of phosphine groups. The catalyst 2 would then be attached through a phosphine exchange reaction. Oximes were used as precursors in attempts to prepare cage amines from 1A. For this purpose, the dioxime 28 was prepared from 1A. Reduction of 28 was unsuccessful. Molecular modelling showed that the lobes of the LUMOs of the oxime carbon atoms of 28 do not protrude from the total electron density of this molecule. This observation indicates that 28 would probably not react with nucleophiles, such as the hydride ion. Molecular modelling was used to probe the unreactive nature of oxime 28. The probe revealed that the imide ring deactivates the oxime groups in this compound. Based on these results, attempts were made to change the carbon framework of 1A to eliminate unwanted interaction between the carbonyl groups. Clemmensen reduction of 1A did not yield the expected ketol 40, but gave a mixture of 62 and 63. Extended reaction times yielded 63 only. Reduction of 1A with zinc and acetic acid produced a mixture of 62 and 40 that could not be separated. Consequently, the applicability of 62 as a possible dendrimer nucleus was investigated. Compound 62 was obtained by oxidisation of the diol 63 with sodium periodate. Attempts to synthesise the dioxime 69 from 62 failed and only the mono oxime 71 was obtained. Reduction of 71 with lithium aluminium hydride was unsuccessful. Molecular modelling revealed that the oxime carbon atom does not have a LUMO and that the carbonyl carbon atom would probably be unreactive towards nucleophiles. Several other attempts were made at reducing the oxime 71 to an amine. None of these attempts met with any success. The reason for the unreactive nature of 71 is less clear than in the case of 28. Failure to produce a cage amine from 1A or derivatives of 1A meant failure in functionalising the cage system with phosphine groups and coupling the Grubbs-I catalyst. It seems that cage compounds based on 1A are generally not suitable as starting materials for amine-functionalised dendrimer nuclei. en_US
dc.publisher North-West University
dc.subject Hokstrukture en_US
dc.subject Hokamiene en_US
dc.subject Dendrimeer en_US
dc.subject Alisikliese dendrimeerligande en_US
dc.subject Dendritiese katalisatore en_US
dc.subject Cage compounds en_US
dc.subject Cage amines en_US
dc.subject Dendrimer en_US
dc.subject Alicyclic dendrimer ligands en_US
dc.subject Dendritic catalysis en_US
dc.title Modellering en sintese van alisikliese dendrimeerligande vir alkeenmetatese / Deseré Liebenberg en_US
dc.type Thesis en_US
dc.description.thesistype Masters en_US


Files in this item

This item appears in the following Collection(s)

  • ETD@PUK [5486]
    This collection contains the original digitized versions of research conducted at the North-West University (Potchefstroom Campus)

Show simple item record

Search the NWU Repository


Advanced Search

Browse

My Account

Statistics