mirage

The potential utilization of nuclear hydrogen for synthetic fuels production at a coal–to–liquid facility / Steven Chiuta

Boloka/Manakin Repository

Show simple item record

dc.contributor.author Chiuta, Steven en_US
dc.date.accessioned 2011-10-03T07:55:43Z
dc.date.available 2011-10-03T07:55:43Z
dc.date.issued 2010 en_US
dc.identifier.uri http://hdl.handle.net/10394/4840
dc.description Thesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2011.
dc.description.abstract The production of synthetic fuels (synfuels) in coal–to–liquids (CTL) facilities has contributed to global warming due to the huge CO2 emissions of the process. This corresponds to inefficient carbon conversion, a problem growing in importance particularly given the limited lifespan of coal reserves. These simultaneous challenges of environmental sustainability and energy security associated with CTL facilities have been defined in earlier studies. To reduce the environmental impact and improve the carbon conversion of existing CTL facilities, this paper proposes the concept of a nuclear–assisted CTL plant where a hybrid sulphur (HyS) plant powered by 10 modules of the high temperature nuclear reactor (HTR) splits water to produce hydrogen (nuclear hydrogen) and oxygen, which are in turn utilised in the CTL plant. A synthesis gas (syngas) plant mass–analysis model described in this paper demonstrates that the water–gas shift (WGS) and combustion reactions occurring in hypothetical gasifiers contribute 67% and 33% to the CO2 emissions, respectively. The nuclear–assisted CTL plant concept that we have developed is entirely based on the elimination of the WGS reaction, and the consequent benefits are investigated. In this kind of plant, the nuclear hydrogen is mixed with the outlet stream of the Rectisol unit and the oxygen forms part of the feed to the gasifier. The significant potential benefits include a 75% reduction in CO2 emissions, a 40% reduction in the coal requirement for the gasification plant and a 50% reduction in installed syngas plant costs, all to achieve the same syngas output. In addition, we have developed a financial model for use as a strategic decision analysis (SDA) tool that compares the relative syngas manufacturing costs for conventional and nuclear–assisted syngas plants. Our model predicts that syngas manufactured in the nuclear–assisted CTL plant would cost 21% more than that produced in the conventional CTL plant when the average cost of producing nuclear hydrogen is US$3/kg H2. The model also evaluates the cost of CO2 avoided as $58/t CO2. Sensitivity analyses performed on the costing model reveal, however, that the cost of CO2 avoided is zero at a hydrogen production cost of US$2/kg H2 or at a delivered coal cost of US$128/t coal. The economic advantages of the nuclear–assisted plant are lost above the threshold cost of $100/t CO2. However, the cost of CO2 avoided in our model works out to below this threshold for the range of critical assumptions considered in the sensitivity analyses. Consequently, this paper demonstrates the practicality, feasibility and economic attractiveness of the nuclear–assisted CTL plant. en_US
dc.publisher North-West University
dc.subject Synthesis gas en_US
dc.subject Nuclear hydrogen en_US
dc.subject High temperature nuclear reactor (HTR) en_US
dc.subject Coal gasification en_US
dc.subject Carbon dioxide en_US
dc.subject Economics en_US
dc.title The potential utilization of nuclear hydrogen for synthetic fuels production at a coal–to–liquid facility / Steven Chiuta en_US
dc.type Thesis en_US
dc.description.thesistype Masters en_US


Files in this item

This item appears in the following Collection(s)

  • ETD@PUK [5159]
    This collection contains the original digitized versions of research conducted at the North-West University (Potchefstroom Campus)

Show simple item record

Search the NWU Repository


Advanced Search

Browse

My Account

Statistics