mirage

Improved gold recovery by accelerated gravity separation / du Plessis J.A.

Boloka/Manakin Repository

Show simple item record

dc.contributor.author Du Plessis, Jan Antonie en_US
dc.date.accessioned 2012-09-10T16:24:56Z
dc.date.available 2012-09-10T16:24:56Z
dc.date.issued 2011 en_US
dc.identifier.uri http://hdl.handle.net/10394/7364
dc.description Thesis (M.Sc. Engineering Sciences (Chemical and Minerals Engineering))--North-West University, Potchefstroom Campus, 2012.
dc.description.abstract This project was specifically aimed at using increased acceleration separation, as a method to optimize the recovery of gold in an ore body mainly consisting of hematite. The specific gravity of gold is much higher in comparison to the carrying material, making it possible to separate gold from other materials such as silica, base metals and their oxides, usually associated with gravitation–gold–recovery processes. The ore body investigated in this project originated from a mined gold reef containing a large proportion of gold locked inside the gold pyrite complexes. In the mine's processing plant a gold pyrite concentrate was produced by means of a flotation process. The roasting process that followed, oxidized the pyrite to iron oxide (hematite) and sulphur dioxide. The gold particles which were locked up inside the pyrite gold complex were exposed or liberated, allowing the chemicals to penetrate the complex and dissolve the gold. After the cyanide gold extraction process, the material was pumped on to a mine reserve dump, referred to as tailings or tailings reserve dump. The tailings usually contain iron oxides, free gold, gold associated with iron oxides and gold associated with silica, and free silica, commonly referred to as calcine. The gold content on the calcine dump was significantly lower than the flotation concentrate before the extraction of the gold and it was no longer viable for the mine to process the tailings further. As the volume of the mine reserve dump increased over the years, it became viable to recover the gold in a high volume low grade plant. Several attempts were made to recover the gold in this dump, but due to the high cost of processing and milling the material, it was not done. The norm in the mining industry is that it is impossible to concentrate the gold by means of gravity separation techniques where the average particle sizes are smaller than 50 um in diameter and upgrading with inexpensive gravity separation techniques was ruled out by the mine, because the average particle sizes were too small. The dump investigated in this project differed from other reserve dumps in that the main phase of material in this dump was hematite and not silica. A suspension of this material would have different fall–out properties than other mine reserve dumps, because of the hematite's high specific gravity compared to silica. This property of the material birthed the idea that the material will respond positively to high acceleration separation, although the particle sizes were too small for effective upgrading according to the norm in the mining industry. Using acceleration concentration as a first stage in the gold recovery process the production cost per gram of gold produced could be reduced significantly. Firstly, the volume of concentrated material to be treated in the chemical extraction process was reduced ninety percent and secondly, the gold concentration was increased significantly. If the gold could be concentrated to more than twenty grams of gold per ton, it could be extracted economically with an aggressive chemical processes. This was not possible with low grade material contained in the dump. The theoretical principle, on which this project was based, was to make use of high acceleration separation to establish separation between the particles associated with the gold, and the particles not associated with gold. Applying a high gravitational force would have an influence on the velocity by which the particles would fall–out in a suspension. As the acceleration force increased the fall–out velocity would also be increased and the particles with higher specific gravity would be affected more. A factor that was equally important was the particle size and weight distribution. A large hematite particle would compete with a small gold particle due to the similarity in weight. This could cause loss in small gold particles or retention of hematite particles with no gold content. Very little scientific information was available on the material investigated and in order to assemble a concentration plant setup, the head grade and particle size distribution for both the dump and bulk sample were determined accurately. Thereafter, chemical analyses and mineralogical examination were done on a representative sample of the bulk sample, determining the chemical composition of the material. The results obtained thereof were evaluated and used to configure a pilot plant. A large bulk sample was processed in the pilot plant and from the analytical results the efficiency could be evaluated. The results at optimum acceleration forces applied, resulted in a recovery of 5% of the mass, with a gold concentrate of 90 g/t Au, which represented 58% recovery of the gold. The hematite with high specific gravity as main phase positively influenced the high acceleration separation process. It proved that if the specific gravity of particles in a suspension were increased, high acceleration separation could be applied effectively to separate much smaller particle sizes. en_US
dc.publisher North-West University
dc.subject Calcine en_US
dc.subject Gold recovery en_US
dc.subject Acceleration separation en_US
dc.subject Small particle separation en_US
dc.subject Increased specific gravity separation en_US
dc.subject Goudherwinning en_US
dc.subject Versnellingskeiding en_US
dc.subject Kleindeeltjieskeiding en_US
dc.subject Hoë soortlike massa skeiding en_US
dc.title Improved gold recovery by accelerated gravity separation / du Plessis J.A. en_US
dc.type Thesis en_US
dc.description.thesistype Masters en_US


Files in this item

This item appears in the following Collection(s)

  • ETD@PUK [5167]
    This collection contains the original digitized versions of research conducted at the North-West University (Potchefstroom Campus)

Show simple item record

Search the NWU Repository


Advanced Search

Browse

My Account

Statistics