Show simple item record

dc.contributor.authorNel, Marika V.
dc.contributor.authorStrydom, Christien A.
dc.contributor.authorSchobert, Harold H.
dc.contributor.authorBeukes, J. Paul
dc.contributor.authorBunt, John R.
dc.date.accessioned2012-10-08T08:11:12Z
dc.date.available2012-10-08T08:11:12Z
dc.date.issued2011
dc.identifier.citationNel, M.V. et al. 2011. Comparison of sintering and compressive strength tendencies of a model coal mineral mixture heat-treated in inert and oxidizing atmospheres. Fuel processing technology, 92(5):1042-1051. [http://www.journals.elsevier.com/fuel-processing-technology/]en_US
dc.identifier.issn0378-3820
dc.identifier.urihttp://hdl.handle.net/10394/7450
dc.identifier.urihttp://dx.doi.org/10.1016/j.fuproc.2010.12.030
dc.description.abstractThe chemical interactions responsible for sintering in a coal mineral mixture were investigated in air and in N2. A mineral mixture was made up by mixing kaolin, pyrite, quartz, calcite, hydromagnesite, FeCO3 and anatase in a fixed ratio. The mineral mixture was pelletized and heat-treated up to 1100 °C in order to evaluate sintering by recording the compressive strength values and visual assessment with scanning electron microscopy (SEM). Chemical interactions responsible for the trends in the compressive strength results were investigated with simultaneous thermogravimetric and differential thermal analysis (TG/DTA), as well as X-ray diffraction. The results indicated that the formation of anhydrite (CaSO4) was responsible for increased mechanical strength in the mineral mixture pellets heated in air at temperatures higher that 400 °C. CaSO4 formed from the reaction of the decomposition products of pyrite and calcite (SOx and CaO). The TG/DTA results also indicated that the reaction with pyrite in air caused the decomposition of calcite in the mixture at a lower temperature than was observed for calcite only. The pellets heated in N2 did not increase in mechanical strength during heat-treatment due to the lack of CaSO4 formation in the inert atmosphere. However, SEM analysis indicated that sintering did occur at the higher temperatures in N2. A decrease was observed in the compressive strength values obtained in air at temperatures from 900 °C to 1100 °C. Reasons for the decreased compressive strengths may include increased porosity, decomposition of CaSO4, and changes in the characteristics of the aluminosilicate phases.en_US
dc.language.isoenen_US
dc.publisherElsevier Scienceen_US
dc.subjectSinteringen_US
dc.subjectmineralsen_US
dc.subjectCaSO4en_US
dc.subjectcompressive strength testen_US
dc.subjectTG/DTAen_US
dc.titleComparison of sintering and compressive strength tendencies of a model coal mineral mixture heat-treated in inert and oxidizing atmospheresen_US
dc.typeArticleen_US
dc.contributor.researchID20682972 - Strydom, Christiena Adriana
dc.contributor.researchID10092390 - Beukes, Johan Paul
dc.contributor.researchID20164200 - Bunt, John Reginald


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record