
 

Measuring the relationship between 
intraday returns, volatility spill-overs and 

market beta during financial distress 

 

 

 

WP Brewer 

21189056 

 

 
 

 

Dissertation submitted in partial fulfillment of the requirements 
for the degree Magister Commercii in Risk Management at the 

Potchefstroom Campus of the North-West University 

 

 

 

Supervisor:   Dr A Heymans 

 

 

 

September 2013 

 



 

 

Measuring the relationship between intraday 

returns, volatility spill-overs and market beta 

during financial distress 

 

 

 

Wayne Peter Brewer 

211 89 056 

 

 

 

 

 

 

 

The financial assistance of the National Research Foundation (NRF) towards this research is 

hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and 

are not necessarily to be attributed to the NRF. 

 

 

Dissertation submitted in partial fulfilment of the requirements for the degree Magister 

Commercii in Risk Management at the Potchefstroom Campus of the North-West University 

 

 

Supervisor: Dr. A. Heymans  

 

September 2013 



 

i 

 

ABSTRACT 

 

The modelling of volatility has long been seminal to finance and risk management in general, as 

it provides information on the spread of portfolio returns. In order to reduce the overall volatility 

of a stock portfolio, modern portfolio theory (MPT), within an efficient market hypothesis 

(EMH) framework, dictates that a well-diversified portfolio should have a market beta of one 

(thereafter adjusted for risk preference), and thus move in sync with a benchmark market 

portfolio. Such a stock portfolio is highly correlated with the market, and considered to be 

entirely hedged against unsystematic risk. However, the risks within and between stocks present 

in a portfolio still impact on each other. In particular, risk present in a particular stock may spill 

over and affect the risk profile of another stock included within a portfolio - a phenomenon 

known as volatility spill-over effects.  

 

In developing economies such as South Africa, portfolio managers are limited in their choices of 

stocks. This increases the difficulty of fully diversifying a stock portfolio given the volatility 

spill-over effects that may be present between stocks listed on the same exchange. In addition, 

stock portfolios are not static, and therefore require constant rebalancing according to the 

mandate of the managing fund. The process of constant rebalancing of a stock portfolio (for 

instance, to follow the market) becomes more complex and difficult during times of financial 

distress. Considering all these conditions, portfolio managers need all the relevant information 

(more than MPT would provide) available to them in order to select and rebalance a portfolio of 

stocks that are as mean-variance efficient as possible. 

 

This study provides an additional measure to market beta in order to construct a more efficient 

portfolio. The additional measure analyse the volatility spill-over effects between stocks within 

the same portfolio. Using intraday stock returns and a residual based test (aggregate shock [AS] 

model), volatility spill-over effects are estimated between stocks. It is shown that when a 

particular stock attracts fewer spill-over effects from the other stocks in the portfolio, the overall 

portfolio volatility would decrease as well. In most cases market beta showcased similar results; 

this change is however not linear in the case of market beta. Therefore, in order to construct a 
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more efficient portfolio, one requires both a portfolio that has a unit correlation with the market, 

but also includes stocks with the least amount of volatility spill-over effects among each other.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords: Modern portfolio theory, efficient market hypothesis, market beta, volatility spill-

over effects, E-GARCH, aggregate shock model. 



 

iii 

 

OPSOMMING 

 

Die modellering van volatiliteit is van seminale belang in die veld van finansies en risikobestuur, 

omrede dit inligting verskaf oor die verspreiding van portefeulje-opbrengste. Ten einde die 

algehele volatiliteit van 'n aandeel-portefeulje te verminder, staaf moderne portefeulje teorie 

(MPT) binne die doeltreffende mark hipotese (EMH) raamwerk dat 'n goed-gediversifiseerde 

portefeulje 'n mark-beta van een (daarna aangepas vir risiko voorkeur) moet hê, en dus in 

sinkronisasie met 'n maatstaf mark-portefeulje beweeg. So 'n aandeel-portefeulje wat hoogs 

gekorreleer is met die mark word beskou as heeltemal verskans teen onsistematiese risiko. Die 

risiko inherent binne en tussen aandele bied egter steeds 'n opmerklike inpak op 'n portefeulje. In 

besonder kan die risiko teenwoordig binne 'n bepaalde aandeel oorspoel en 'n invloed uitoefen op 

die risiko profiel van 'n ander aandeel - 'n verskynsel bekend as volatiliteit-oorspoel effekte. 

 

In 'n ontwikkelende ekonomie soos Suid-Afrika, is portefeuljebestuurders beperk in hul keuse 

van aandele. Dit verhoog die inspanning om 'n aandeel-portefeulje ten volle te diversifiseer 

gegewe die volatiliteit-oorspoel effekte wat teenwoordig mag wees tussen aandele. 

Daarbenewens is aandeel-portefeuljes nie staties nie, en vereis dus konstante herbalansering 

volgens die mandaat van die besturende fonds. Die proses van herbalansering van 'n aandeel-

portefeulje (om byvoorbeeld die mark te volg) raak meer ingewikkeld en moeilikker gedurende 

tye van finansiële verknorsing. Gegewe al hierdie voorwaardes, is dit noodsaaklik dat 

portefeuljebestuurders al die relevante inligting (meer as wat MPT kan voorsien) tot hul 

beskikking het om hul in staat te stel om 'n portefeulje van aandele so doeltreffend as moontlik te 

kan kies en herbalanseer. 

 

Hierdie studie stel 'n addisionele maatstaaf tot mark-beta alleenlik voor ten einde 'n meer 

doeltreffende portefeulje saam te stel. Die bykomende maatstaaf ontleed die volatiliteit-oorspoel 

effekte tussen aandele binne dieselfde portefeulje. Met die gebruik van intradag-data, en 'n 

residueel-gebaseerde toets (die kumulatiewe-skok [AS] model), is volatiliteit-oorspoel effekte 

bereken tussen die aandele. Daar is bewys dat wanneer 'n bepaalde aandeel minder oorspoel 

effekte lok vanaf die ander aandele in die portefeulje, die algehele portefeulje-volatiliteit dan 

opmerklik minder is. In die meeste gevalle het mark-beta soortgelyke resultate getoon, hoewel 
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die verandering in mark-beta nie linieêr is nie. Daarom, ten einde 'n meer doeltreffende 

portefeulje saam te stel, word 'n portefeulje vereis wat beide 'n eenheid-korrelasie met die mark 

het en aandele insluit wat met die minste hoeveelheid volatiliteit-oorspoel effekte onder mekaar 

toon. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sleutelwoorde: Moderne portefeuljeteorie, doeltreffende markhipotese, mark-beta, volatiliteit-

oorspoel effekte, E-GARCH, kumulatiewe-skokmodel. 
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“In the prevailing difficult global conditions uncertainty is at an even higher level… and 

requires that all of us better understand the immediate challenges of the mutating global 

environment.” 

~ Gill Marcus, SARB Governor, 2012 

 

CHAPTER 1 

 

INTRODUCTION  

 

Precise modelling of volatility is of vital importance in finance as well as risk management in 

general. Portfolio managers have long been familiar with modern portfolio theory (MPT) and the 

efficient market hypothesis (EMH) where a well-diversified portfolio with a unit correlation with 

the market is considered entirely hedged against unsystematic risk. However, systematic risk 

remains even after fully diversifying. In this regard volatility within and between stocks in a 

portfolio impacts on the profitability of the portfolio, as well as the portfolio‟s overall risk 

profile.  

 

From the considerable number of studies done on the EMH, one thing is clear - markets do not 

exhibit the same level of efficiency (Moix, 2001:61). This is because large markets with a great 

number of educated traders and high trading volumes exhibit stock returns that are less correlated 

than that of smaller markets (i.e. a market such as South Africa). Since portfolio managers in 

smaller economies are limited in their choices of stocks, it becomes increasingly difficult to fully 

diversify a stock portfolio given volatility spill-over effects between stocks listed on the same 

exchange. 

 

1.1 Background 

 

Modern portfolio theory (MPT), developed by Markowitz (1952; 1956; 1959) and various 

authors in the 1960s, most notably Sharpe (1964), has reshaped the way in which portfolio 

managers approach portfolio risk (Rubinstein, 2002:1044). This theory started by suggesting that 

portfolio risk is determined by the co-variances of assets included within a portfolio. The product 

of this was the capital asset pricing model (CAPM), which relies on a market related measure of 
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risk, called market beta. Furthermore, CAPM is based on a multitude of underlying assumptions, 

which included the efficiency of the market.
1
 This market efficiency was presented by Fama 

(1965; 1970; 1976) as the efficient market hypothesis (EMH). However, in order to effectively 

price assets and securities, diversify portfolios and hedge portfolio risk, it is important to gain an 

in-depth understanding of volatility as well (Harju & Hussain, 2011:82). This understanding 

should however not only be limited to the co-variance in returns, but should also encompass the 

volatility transmission between stocks. It is furthermore important to also look at shorter, and 

more revealing, intraday returns instead of only focusing on the volatility of daily returns. Since 

the financial market microstructure reveals so much about the patterns in volatility, it is not 

surprising that a large body of research has been devoted to understanding it (see Tse and Yang 

(2011)).  

 

Market microstructure analysis is an important tool in discerning the interaction between trading 

procedures and security price formation, because price formation is related to a security‟s return 

volatility (Tian & Guo, 2007:289). For instance, numerous empirical studies found that daily 

volatility of consecutive opening prices are typically higher than consecutive daily closing 

prices, and that volatility flattened in between the daily open and close of a security.
2
 This is the 

typical „U‟ shape volatility distribution first published by Wood, McInish and Ord (1985).  

 

With the rapid development in information technology and storage capacity, such data can be 

collected and analysed at extremely high frequencies. In the financial market setting this is 

especially the case. The specific timing of transaction events in a period of time (such as intraday 

data as opposed to daily data) is a significant economic variable which needs to be modelled, and 

for further relevance, forecasted (Cai, Kim, Leduc, Szczegot, Yixiao & Zamfur, 2007:1). 

Transaction timing of securities and the volatility it implies is therefore an important study in the 

field of portfolio management. The use of intraday data (or tick data) as opposed to daily squared 

returns has been seminal in improving volatility forecasts and the management of portfolios 

(Anderson & Bollerslev, 1998). The use of daily squared returns delivers inferior forecasting 

potential to the average of intraday squared returns (known as realised volatility) due to 

                                                           
1
  See Table 2.1 in section  2.5.3. 

2
  See for example Bollerslev (1986), Schreiber and Schwartz (1986), Anderson and Bollerslev (1998), Areal 

and Taylor (2002), Poon (2005) and Tian and Guo (2007). 
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excessive noise.
3
 These financial market microstructure theories are usually tested on an intraday 

transaction-by-transaction basis in order to improve the modelling of the moments of the return 

distribution (Cai et al., 2007:1).  

 

The analysis of the financial market microstructure has in turn created a need for the 

development of volatility models to accurately estimate large covariance matrices (McAleer & 

Veiga, 2008:3). Because of the particular prevalence of distinct intraday volatility patterns, 

which underlies most of the financial market microstructure literature, higher-frequency returns 

exemplify highly persistent conditionally heteroskedastic elements together with discrete 

information arrival effects (Anderson, Bollerslev & Das, 2001:306). For a greater understanding 

of microstructure elements, such as the presence of heteroskedasticity, volatility must be 

modelled with an adequate process such as the Generalised Autoregressive Conditional 

Heteroskedasticity (GARCH). The modelling of heteroskedaticity has its roots in GARCH model 

of Engle (1982) and Bollerslev (1986), which has spurred the development of various 

autoregressive conditional volatility models, including Aggregate Shock Models (AS models). 

The wide-spread use of ARCH-type models is based on their ability to capture several dynamics 

of financial returns, including time-varying volatility, persistence and clustering of volatility, 

asymmetric reactions to positive and negative shocks and therefore volatility spill-over effects 

(McAleer & Veiga, 2008:2). Volatility spill-over effects between different assets refer to 

causality in return variance, and has seen a great deal of study in the field of financial economics 

(Kitamura, 2010:158).
4
  

 

According to the mixture of distribution hypothesis (MDH), volatility (or the variance in returns) 

is an increasing function of information arrival.
5
 Given the dynamics of this hypothesis, it is 

reasonable to assume that the volatility spill-over effect between stocks is attributable to 

information spill-over effects. When there is an interdependent relationship between stocks, 

these interdependencies will be an increasing function of arrival information relating to the 

                                                           
3
  Realised volatility refers to the volatility estimate calculated using intraday squared returns at short 

intervals; normally 5 to 15 minutes (Poon, 2005:14). 
4
  Causality in return variance is the impact of any previous volatility of a particular asset on the current 

volatility of another asset. 
5
  See Clark (1973) and Tauchen and Pitt (1983). 
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market (Kitamura, 2010:159). Of particular interest are asymmetric information influences, 

which is especially prevalent during times of financial turmoil.  

 

1.2 Problem Statement and Research Question 

 

Stock portfolios are dynamic in nature and necessitate constant rebalancing according to the 

mandate of the managing fund. However, ineffective rebalancing of a stock portfolio can result 

in higher risk and more volatile returns, especially in times of market turmoil, which may cause 

the portfolio to underachieve the market portfolio and not attain the investor‟s required rate of 

returns. In order to correctly rebalance a stock portfolio in times of distress it is necessary to 

uncover the sources of risk within a portfolio, be it the stocks themselves or their effects on other 

stocks or even the market effects in volatile times.  

 

The problem that comes to the fore is that portfolio managers have mostly relied on the co-

variances and beta measures when managing a stock portfolio. Although these measures are 

fairly useful, other measures may be more prominent during times of financial distress as 

opposed to times of market stability. In order to change their strategies and methods, they need to 

be informed accordingly about the dynamics of the volatility (risk) that a stock portfolio is 

exposed to, especially at a microstructure level. The nature of these microstructure level changes 

mainly manifests as the volatility spill-over effects between stocks present in a portfolio.  

 

In order for strategy adjustments to take place, the volatility spill-over effects of a stock portfolio 

need to be estimated. Thus, the question that needs to be answered, knowing that volatility 

transmission on a microstructure level plays an important role in portfolio volatility dynamics, is 

whether these volatility spill-over effects provide significant information in addition to a more 

traditional measure, such as market beta, for the rebalancing of a stock portfolio? 

 

1.3 Objectives 

 

The objectives to be satisfied are as follows: 

i) To measure the portfolio return, volatility and beta of the different stocks during the 

2008 financial crisis and the subsequent two years, 
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ii) to measure the volatility spill-over effects between the stocks within a portfolio 

during this period, 

iii) and to analyse whether volatility spill-over effects between the stocks had a 

significant effect on portfolio volatility. 

In this sense intraday volatility spill-over effects need to be estimated between the stocks in order 

to determine the extent, if any, of these spill-over effects and whether these effects present an 

alternative to market beta when considering portfolio return and volatility.  

 

1.4 Motivation and Research Aim 

 

A limited number of studies have modelled the dynamic intraday interactions between stocks on 

the Johannesburg stock exchange (JSE) using high-frequency data. This study will partly fill the 

gap by examining the intraday price volatilities and volatility spill-over effects between 5 stocks 

listed on the JSE top-40 during, and after, the 2008 financial crisis. Volatility spill-over effects 

within a market play a vital role in risk management for portfolio managers and assessing the 

stability of a market for policymakers (Pati & Rajib, 2010:568). These considerations will form 

part of this study in order to provide portfolio managers with more accurate information 

regarding the dynamics of volatility in order to effectively rebalance a portfolio. 

 

The aim of this study is thus to investigate the intraday volatility interaction between the top-40 

stocks on the JSE using hourly intraday returns between the periods 1 July 2008 to 30 April 

2010, which coincides with the 2008 global financial crisis and its fallout. The effects of intraday 

realised volatility and volatility spill-over effects between the JSE top-40 stocks are analysed 

during the period under review. In addition to estimating volatility spill-over effects, market 

betas will also be estimated, in order to compare the measures against portfolio return and risk. 

The comparison is utilised to determine if volatility spill-over effects between stocks exhibit an 

effect on the characteristics of the portfolio, such as the co-variances (beta) exhibit. The study 

will further aim to test whether these volatility spill-over effects provide the portfolio manager 

with additional information that will enable him/her to construct a more efficient portfolio. 
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1.5 Methods 

 

1.5.1 Literature study 

 

The literature study will mainly focus on the following aspects: i) the history of portfolio 

management, ii) efficient markets, iii) the financial market microstructure, iv) the volatility 

dynamics of stocks within a portfolio in stable and turbulent market conditions, v) volatility 

transmission between stocks, and vi) the various models used in previous studies to examine 

these relationships and their findings. 

 

1.5.2  Empirical study 

 

The software to be used in the empirical study is: i) Microsoft Excel 2010, and ii) EViews 7. The 

data includes hourly intraday returns of five stocks listed on the JSE top-40 between the 1
st
 of 

July 2008 and the 30
th

 of April 2010. The JSE all-share index is also utilised during this period as 

a market portfolio proxy. The data is sourced from the Business Mathematics and Informatics 

(BMI) department of the North West University – South Africa. The empirical study focuses on 

the analysis of portfolio return, risk, beta and possible spill-over effects among the stocks. 

Aggregate shock (AS) models are estimated for the purpose of measuring return and volatility 

spill-over effects, with the error-terms being modelled using a univariate E-GARCH process. 

 

1.6 Provisional Chapter Division 

 

Chapter 2 provides a literature review of portfolio theory from its humble beginnings, up to the 

present use of modern portfolio theory (MPT). The focus is especially placed on Markowitz‟s 

(1952; 1956; 1959) and Sharp‟s (1964) seminal work on market beta and the capital asset 

pricing model (CAPM). This is followed by a review of the assumptions underlying MPT, with 

particular focus on efficient markets. 

 

Chapter 3 includes a review of why capital market anomalies cause discrepancies in efficient 

markets, and how some of these are captured in intraday data. Secondly, there is a literature 

review on the importance of using intraday data to model volatility, followed by a description of 

the characteristics of the price process of stocks (in stable and turbulent market conditions). 

Thirdly, statistical properties of returns volatility are used to provide insight and model financial 
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microstructure dynamics of the stocks within a portfolio. Fourthly, this chapter provides the 

methodology for this study, which makes use of ARCH-type models. More specifically the 

articulation of an aggregate shock (AS) model, used to determine volatility spill-over effects. 

 

Chapter 4 presents the empirical estimation and results. With Eviews 7 and Microsoft Excel 

2010, an AS model is constructed which provides estimates of portfolio returns, risk, market beta 

and volatility spill-over effects. The results are obtained from various combinations of a five-

stock portfolio over different periods, and compared to one another. The comparison provides 

further insight into the use of a residual based test for portfolio management in addition to the 

use of a more traditional measure, such as market beta. 

 

Chapter 5 concludes by referring to the aim and objectives of this study. This is followed by a 

summary of this study. Further conclusions from the results obtained are given with 

recommendations for portfolio managers about the validity of volatility spill-over effects within 

the management of a portfolio. Finally, recommendations are provided for further research. 
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“To achieve satisfactory investment results is easier than most people realise; 

to achieve superior results is harder than it looks.” 

~ Benjamin Graham, the father of value investing 

 

CHAPTER 2 

 

In order to introduce an additional measure for portfolio stock selection during financial distress 

it is necessary to give an account of the most prevalent measure already in use. This measure is 

known as market beta, and has been of cardinal importance for portfolio management since its 

inception. It is important to understand the role of beta and what information regarding portfolio 

management it captures. The aim of this chapter (and this study) is not to delve into to intricacies 

of a mean-variance efficient portfolio (nor the measurement of portfolio efficiency), but rather on 

an account of the development and the measurement of beta. Data constraints prohibit the 

efficient measurement of a mean-variance portfolio, and therefore would be a suggestion for 

further study.
6
 A clear understanding of beta (as portrayed in portfolio theory), however,  will 

help explain why an additional measure – capturing volatility spill-over effects – (as portrayed in 

chapter 3) is an appropriate compliment to beta for portfolio stock selection during times of 

financial distress. 

 

PORTFOLIO THEORY AND AN EFFICIENT PORTFOLIO 

 

Diversification of a portfolio of assets was a well-known practice long before the seminal paper 

published by Harry M. Markowitz (1952) on portfolio selection. As an example, since 1941 

Arthur Wiesenberger's annual reports on Investment Companies illustrated that firms held a large 

number of differing securities (Wiesenberger, 1941). These companies were modelled after the 

investment trusts of Scotland and England.
7
 By the middle of the 20

th
 century, diversification of 

a portfolio was not in its infancy, but an often-practised necessity. However, the drivers that 

made diversification work were not generally known. The most prominent factor absent, prior to 

1952, was adequate theory on investments that explained the effects of diversification when risks 

                                                           
6
  See chapter 5, section 5.3, on suggested further research. 

7
  These Scottish and English investment trusts started in the middle of the 19

th
 century (Markowitz, 1999:5). 
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are correlated, distinguished between efficient and inefficient portfolios, and analysed risk-return 

trade-offs on the portfolio as a whole (Markowitz, 1999:5).  

 

2.1 The Foundations of Efficiency (1564-1899) 

 

Dating back to the 16
th

 century, a foremost Italian mathematician named Girolamo Cardano 

noted, in his book entitled „Liber de Ludo Aleae‟ (The Book of Games of Chance), that gambling 

simply induced the fundamental principle of equal conditions (Cardano, c. 1564). These equal 

conditions applied to the opponents, the bystanders, money, the situation, the dice box, and the 

dice itself. In statistical terminology, it is described as random variables that are independently 

and identically distributed. This implies that every outcome is independent from the previous 

outcome, with every outcome having an equal chance of occurrence. By 1602, at least, stock and 

option markets had come into existence when the Dutch East India Company shares began 

trading in Amsterdam (de la Vega, 1688). In an eighteenth-century letter, „Don Quixote’, Sancho 

Panza writes, “It is the part of a wise man to . . . not venture all his eggs in one basket.” (Perold, 

2004:7). However, the proverb “Do not keep all your eggs in one basket” dates as far back as 

Torriano‟s (1666) „Common Place of Italian Proverbs’ (Herbison, 2003). Furthermore, in a 

famous article about the St. Petersburg Paradox published in 1738, a Swiss mathematician 

named Daniel Bernoulli contends that risk-averse investors should diversify their portfolios: “...it 

is advisable to divide goods which are exposed to some small danger into several portions rather 

than to risk them all together” (Bernoulli, 1738:26). This principle served investors well over 

centuries and was based on the premise that markets, and stocks themselves, moved randomly 

over time. This randomness can best be explained at the hand of Robert Brown‟s theory of 

random motion. 

 

In 1828 Robert Brown, a Scottish botanist, reported that grains of pollen demonstrated a rapid 

oscillatory motion when brought into contact with water (Brown, 1828).
8
 This result of particles 

drifting randomly in fluid was indicative of the fundamental principles of Brownian motion 

(named after its discoverer). Based on this randomness, a French stockbroker named Jules 

Regnault noted that as the holding period of a security increased, so did the chance of an investor 

winning or losing more on its price variation (Regnault, 1863). This price “deviation” was 

                                                           
8
  Oscillation is the repetitive variation about a central value.  
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directly proportional to the square root of time. Even the first signs of the notion on a random 

walk appeared as far back as 1880 when a British physicist, Lord Rayleigh, became aware that 

sound vibrations exhibited a “random walk” (Rayleigh, 1880). In addition, by 1888 the British 

logician and philosopher, John Venn, clearly comprehended the concept of both a random walk 

and Brownian motion in the field of logic (Venn, 1888).
9
 George Gibson even mentioned 

efficient markets by 1889 in his book entitled „The Stock Markets of London, Paris and New 

York‟ (Gibson, 1889). He wrote that when shares were introduced to the public, the prices they 

acquired could be regarded as the most efficient price concerning available information. The 

following year Alfred Marshall published „Principles of Economics‟ which established 

economics as a social science (Marshall, 1890). 

 

2.2 The Era of Unjust Risk and Wasteful Forecasting (1900-1951) 

 

2.2.1  Bachelier (1900): The random walk 

 

In 1900 a French mathematician named Louis Bachelier published his PhD thesis, „La Théorie 

de la Spéculation‟, which anticipated the random walk hypothesis (Bachelier, 1900). Bachelier 

had developed the mathematics and statistics behind Brownian motion half a decade before 

Einstein (1905).
10

 In addition, he also determined that „the mathematical expectation of the 

speculator is zero‟ 65 years before efficient markets were described in terms of a martingale by 

Samuelson (1965).
11

 Bachelier published remarkable work that was ahead of its time and was 

mostly overlooked until its rediscovery in 1954 by Leonard Savage, a statistician (Savage, 1954). 

Five years after Bachelier‟s seminal work a Professor and Fellow of the Royal Society, Karl 

Pearson, introduced the term “random walk” (Pearson, 1905). Statistically, the random walk 

hypothesis states that the return process can be expressed as a cumulated series of probabilistic 

independent shocks. Returns according to the random walk hypothesis can be expressed as: 

 

     (  )               (    )   (2.1) 

                                                           
9
  John Venn is also renowned for introducing the Venn diagram often used in set theory, probability, logical, 

statistical, and computer sciences (see Venn, 1880). 
10

  Bachelier discussed the use of Brownian motion in the evaluation of stock options (Bachelier, 1900). 
11

  Samuelson (1965) proposed the martingale hypothesis that is less restrictive than the random walk 

hypothesis. This hypothesis does not suffer from first or higher order interdependencies. However, under 

risk-aversion the martingale property cannot be justified (LeRoy, 1973). 
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where  (  ) is the expected return and    is strict white noise. Also in 1905, Albert Einstein, 

unaware of the research done by Bachelier, formulated the equations that explained the 

behaviour of Brownian motion (Einstein, 1905). Brownian motion was formally defined a year 

later by a Polish scientist named Marian von Smoluchowski (von Smoluchowski, 1906). André 

Barriol made use of Bachelier‟s arguments in his research on financial transactions (Barriol, 

1908). In addition, during that same year, de Montessus utilised Bachelier‟s work in his research 

on probability and its applications to finance (de Montessus, 1908). It was also in 1908 that Paul 

Langevin formulated the stochastic differential equation of Brownian motion (Langevin, 1908). 

Four years later Bachelier wrote a book entitled „Le Jeu, la Chance et le Hasard‟ (The Game, the 

Chance and the Hazard) (Bachelier, 1914). 

 

2.2.2  Irving Fisher (1906): variance as a measure of risk 

 

In 1906, variance as a measure of risk was first suggested by Irving Fisher in „The Nature of 

Capital and Income’ (Fisher, 1906). Statistically, variance refers to the spread of all likely 

outcomes around an uncertain variable, usually the mean. Variance, as a measure of risk, is 

expressed as: 

 

 ̂  
 

   
∑(    [  ])

 

 

   

   
(2.2) 

 

and standard deviation (as a measure of volatility and risk) expressed as: 

 

 

 ̂  √
 

   
∑(    [  ]) 

 

   

   

(2.3) 

 

where    is the return on day  , and  [  ] is the average (mean) return over the  -day period. It 

should be noted that variance or standard deviation is not risk, but rather related to risk. Risk is 

related to an unwanted outcome, where standard deviation measures uncertainty that may be 
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positive or negative. Variance therefore implies uncertainty, and uncertainty (together with 

abnormal returns) is the reason why forecasting is so appealing. 

 

2.2.3 The great depression in forecasting 

 

The first to note the “riskier” return distributions of assets, which are too “peaked” and “fat-

tailed” to comply with Gaussian populations was Wesley Mitchell (Mitchell, 1915).
12

 This study 

noticed for the first time the leptokurtic distribution of asset returns. In 1921, Frank Taussig 

published a paper, „Is market price determinate?‟, in which he states that the interaction between 

demand and supply cause short-run “irregularities” (and long-run “normality”) in return, and that 

speculation does not necessarily stabilise an asset‟s price (Taussig, 1921). This “riskiness” was 

incorporated in a fundamental notion of efficient markets; in 1923, John Maynard Keynes, the 

celebrated English economist, distinctly identified that investors on financial markets are 

rewarded not for predicting future stock returns, but rather for bearing the risk of an investment 

(Keynes, 1923). Stock returns were evidently too unpredictable. In 1925, this stock price 

unpredictability (or fluctuations) was described by an economist named Frederick MacCauley as 

exhibiting a remarkable resemblance to that of a dice toss (MacCauley, 1925). The following 

year Maurice Olivier provided undisputable proof for the leptokurtosis present in the 

distributions of asset returns within his doctoral thesis published in 1926 (Olivier, 1926). Further 

proof of leptokurtic returns was provided by Frederick Mills in „The Behavior of Prices‟ (Mills, 

1927). The last event on this timeline-narrative is dated late October 1929, when the Wall Street 

Crash occurred. Taking into account the full scope and duration of its devastating effects, it was 

more destructive than any other crisis in the history of the U.S. (Schwert, 2011). 

 

2.2.4 Working, Cowles and “animal spirits” 

 

In 1930 the Econometric Society with its related journal, „Econometrica‟, was founded and 

funded by Alfred Cowles, an American economist and businessman. In 1932 he also founded the 

Cowles Commission for Economic Research. In 1933 Cowles published a paper in which he 

analysed whether investment professionals could constantly outperform the stock market, and 

came to the conclusion that forecasters cannot forecast (Cowles, 1933). In corroboration of this 

                                                           
12

  See chapter 3, section 3.4.1, on kurtosis of stock returns. 
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result were the findings of Holbrook Working in 1934 which concluded that stock returns 

showcased similar behaviour to numbers from a lottery (Working, 1934). However, in 1936, 

Keynes published „The General Theory of Employment, Interest, and Money‟ in which he 

notoriously equalled the stock market to a beauty contest, claiming that most investors‟ choices 

are a result of “animal spirits” (Keynes, 1936).
13

 More logically expressed, it means “herd 

behaviour” where investment choices are driven not by the fundamental factors of stock returns, 

but rather by what other investors reason and reflect (Keynes, 1936). For this reason, stock 

returns were seen to be volatile unless you were an expert at predicting behaviour. Furthermore, 

in 1937 a Ukrainian statistician and political economist, Eugen Slutzky, observed that large sums 

of independent random variables may be the foundation of cyclical processes (Slutzky, 1937).
14

 

His research showed that the interaction between chance events could produce periodicity where 

no such patterns existed initially. In the same year Cowles and Jones discovered substantial 

evidence of serial correlation in averaged stock price indices (Cowles & Jones, 1937).
15,16

 

However, in 1944 (in furtherance of his 1933 results), Cowles once again provided research 

support that investment professionals do not constantly outperform the market (Cowles, 1944). 

Also in 1944 a rigorous theory on investor risk preferences and decision-making under 

uncertainty was put forth in the work done by von Neumann and Morgenstern (von Neumann & 

Morgenstern, 1944). In summary, almost all the research pointed to random future asset and 

stock returns as was shown by Working, in which he demonstrated that in an efficient futures 

market it would be unfeasible to accurately predict future price changes (Working, 1949).  

 

  

                                                           
13

  Keynes refers to a beauty contest published in a London newspaper of a 100 or so women. Entrants could 

guess the top-five women based on the consensus, and so would win a prize. Instead of submitting their 

own choice of women according to their individual perception of beauty, entrants would second-guess the 

other entrants‟ perception of beauty. Instead of relying on the fundamental value (profitability based on 

revenues and costs), investors try to predict “what the market will do”. This makes investments extremely 

volatile because returns are not based on fundamentals. 
14

  Slutzky is well known for the “Slutzky Equation” which is used in the field of microeconomics to separate 

the income effect from the substitution effect. 
15

  See chapter 3, section 3.4.2, on serial correlation of stock returns. 
16

  This is the only significant research published before 1960 which showcased substantial inefficiencies in 

stock returns (Sewell, 2011:3). 
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2.3 The Rise of Uncertainty (1935-1951) 

 

2.3.1  John R. Hicks (1935): theorising uncertainty 

 

John R. Hicks, in his 1935 article named „A Suggestion for Simplifying the Theory of Money‟, 

argued the need for improving monetary theory by structuring it around the existing theory of 

value (Hicks, 1935).
17

 He contended that monetary theory is intrinsically a function of real 

events. Furthermore, and more importantly, monetary issues need to be dynamically analysed in 

sequential context where “time” is imperative. He then developed a specific sequential analysis 

in which he studies i) what happens within a single period (“single-period theory”), and ii) 

linkages between a series of subsequent periods (“continuation theory”). Hicks introduced risk 

into his analysis, and noted that risk affects investments in two ways, namely: i) by influencing 

the expected period of investment, and ii) by influencing the expected net yield of the 

investment. Furthermore, Hicks added that where risk is present, the expected outcome of a 

riskless situation is substituted by a range of possibilities, all being somewhat probable in 

occurrence. He stated that these probabilities should be statistically presented by a mean value 

and a suitable measure of dispersion. However, he also remarked: “No single measure will be 

wholly satisfactory, but here this difficulty may be overlooked” (Hicks, 1935:8). He therefore 

never proposed variation or standard deviation as a measure of dispersion or when speaking of 

risk. Hicks was aware of the risk-mitigating effects of diversification rather than holding one 

particular asset, and he knew that by spreading an investment between “risky” assets, an investor 

could adjust the risk profile to suit his or her needs, but did not present any supporting empirics. 

Hicks (1935) was a precursor of Tobin (1985) in trying to explain the demand for money as a 

result of  investor preference for low-risk, high-return investments, but did not present a measure 

of dispersion, or distinguish between efficient or inefficient portfolios (Markowitz, 1999:12).  

 

2.3.2  Jacob Marschak (1938): articulating uncertainty 

 

Like Hicks, Jacob Marschak also tried to integrate the theory of money with the General Theory 

of Prices. He writes that in order to improve monetary problems, and more generally, investment 

                                                           
17

  “Theory of value” is a broad term encompassing all the various theories within economics that try to 

explain the exchange value (or price of goods and services). 
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problems, requires a properly generalized Economic Theory (Marschack, 1938). His paper 

entitled „Money and the Theory of Assets‟ proposed the idea of using the means and the 

covariance matrix of consumption of commodities as a first order estimate in measuring and 

maximising consumer utility, subject to a budget constraint.
18

 Firstly, Marschak‟s paper extended 

the concept of human tastes by considering consumers‟ aversion to waiting, their desire for 

safety, and other behavioural characteristics disregarded in the world of perfect certainty as 

articulated in classical static economics. Secondly, objectively given production conditions were 

altered into more realistic subjective expectations; because all market transactions are seen as 

investments. Marschak tried to explain the objective quantities and market prices of goods and 

claims held, given the subjective preferences and expectations of investors at a certain point in 

time. He recognised that investors usually prefer high mean and low standard deviation. He also 

observed that investors prefer “long odds”, i.e., high positive skewness of yields. Marschak 

stated that this “yield” is realistically confined by two parameters only, namely: i) the mean 

expectation (“lucrativity”) and the coefficient of variation (“risk”). From this articulation, the 

general analysis of portfolio selection is “the shortest of steps, but one not taken by Marschak” 

(Arrow, 1991:14). 

 

Marschack did not advance portfolio theory because no portfolios were considered. The means, 

standard deviations, and correlations of consumables are directly incorporated within the utility 

and transformation functions with no analysis on a “portfolio” of goods. However, Marschak did 

provide a basis for later work on theory of markets where investors act in regard to risk and 

uncertainty, as developed by Tobin (1958) and related research on the capital asset pricing 

models (Markowitz, 1999:13).
19

  

 

2.3.3  John B. Williams (1938): fundamentals and intrinsic value 

 

Prior to Williams‟ argument, economists viewed stock market prices as being largely influenced 

by expectations and counter-expectations, as had been observed by Keynes in 1936 (Markowitz, 

                                                           
18

  Marschak was Markowitz‟s supervisor on his influential paper in 1952, but never revealed his earlier work 

to Markowitz (Markowitz, 1999:12). 
19

  Marschak‟s paper in 1938 is the most advanced research on economics under risk and uncertainty prior to 

von Neumann and Morgenstern (1944). 
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1999:13).
20

 John B. Williams published a Ph.D. paper in 1938 entitled „The Theory of Investment 

Value‟, which was pioneering in formulating the theory of Discounted Cash Flow (DCF) based 

valuation, with special emphasis on dividend based valuation (Williams, 1938). Williams argued 

that financial markets were only “markets” and that a stock‟s price should therefore reflect its 

intrinsic value. Instead of focusing on the expectations based time varying value of a stock, an 

investor should evaluate the underlying components of a stock. The shift should therefore deviate 

from forecasting expected stock prices, and focus on future corporate earnings and dividends. 

Williams proposed that a stock‟s value should be determined by “the rule of present worth”. In 

other words, calculating the present value of future cash flows in the form of dividends and 

selling price. In its simplest form Williams developed the basis for the dividend discount model 

(DDM) where the present value of a common stock is expressed as: 

 

 
   ∑

  

(   ) 

 

   

   
(2.4) 

 

where    is the expected dividend in period   and   is the required rate of return for the 

investor.
21

 He called this approach (of modelling and forecasting cash flows) “algebraic 

budgeting”. Williams also argued that the present worth of all future cash flows was not 

dependent on a firm‟s capitalisation; hence anticipating the Modigliani-Miller theorem.
22

 

Considerable emphasis was therefore placed on the “intrinsic value” as the main determinant in 

current stock value, and as such, Williams was one of the founding developers of fundamental 

analysis.
23

 However, of particular note, Williams did observe that the future dividends of a stock 

might be uncertain. In such a scenario, he said, probabilities should be estimated for all possible 

                                                           
20

  See footnote 13 on the „Keynesian beauty contest‟. 
21

  The DDM has been further refined and augmented; most notably the Gordon Growth Model published by 

Myron J. Gordon in 1959 (Gordon, 1959). The cost of equity capital in this model is the “internal rate of 

return”, which is the discount rate that equates the present value of future cash flows to the current stock 

price. In this model, the expected dividend stream is    (   )   (   )   . The present value of these 

cash flows, when discounted at rate  , is   (   ), which, when set equal to the current stock price  , 

establishes   (   )   . 
22

  The Modigliani–Miller theorem expresses that, under a market price process (i.e. classically described as a 

random walk), in the absence of taxes, bankruptcy costs, agency costs, and asymmetric information, and in 

an efficient market, the value of a firm is uninfluenced by the means of how a firm is financed (Modigliani 

& Miller, 1958). 
23

  The DDM developed by Williams remains a popular standard for mean-variance analyses (c.f. Farrell, 

1985). 
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stock values, and the mean of these values used as the value of the stock.
24

 In the presence of 

risk, investing in a portfolio of stocks providing the maximum expected return was proposed, 

because the law of large numbers will ensure that the actual return almost equals the expected 

return.
25

 This substantiated the notion (as proposed by Williams) that portfolio variance could be 

completely diversified away by holding a well-diversified portfolio.  

 

2.3.4  Dickson H. Leavens (1945): diversification 

 

Dickson H. Leavens, a former member of the Cowles Commission, published an article on the 

subject of portfolio diversification in which he examined fifty books and articles on investments 

(Leavens, 1945). He found that most of these previously published researches referred to the 

desirability and benefits of diversification. In most of this previously published research, 

however, the desirability and benefits were generally discussed, and did not clearly state or prove 

why it was desirable. Leavens, on the other hand, did illustrate the benefits of diversification, 

although on the assumption that risks are independent between assets. However, Leavens 

concluded that the assumption of independent risks between assets is an “important” one, albeit 

an unrealistic restriction in practice. To illustrate the impracticality of independent risks, he 

mentioned that diversifying between companies in one industry cannot protect a portfolio against 

factors that might influence the whole industry, nor could diversification between industries 

protect against unfavourable market conditions. Thus, Leavens intuitively understood that risk 

between assets are inter-correlated and that some model of covariance is present when analysing 

an investment, but did not include this notion within his own analysis. 

 

2.4 The Genesis of Modern Portfolio Theory (1952-1959) 

 

2.4.1  Harry M. Markowitz (1952; 1956): mean-variance efficiency 

 

Markowitz writes, in his Nobel Prize autobiography, that he was enlightened with the basic 

concepts of portfolio theory whilst reading John B. Williams‟ „The Theory of Investment Value‟ 

(Markowitz, 1991:292). As talented as Williams was in presenting the first derivation of the 

Gordon growth formula, the Modigliani-Miller capital structure irrelevancy theorem, and avidly 

                                                           
24

  Williams did not propose variance as a measure of risk, but rather included a “premium for risk”. 
25

  Williams did not realise that the rule of large numbers could not diversify all the variance within a portfolio 

of stocks because of stock inter-correlations. 
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supporting the dividend discount model, he failed to recognise the effects of risk, believing that 

all risk could be diversified away (Williams, 1938:69).
26

 Markowitz (1952) was the first to 

empirically demonstrate that evaluating securities in isolation, as opposed to evaluating them as a 

group, provided misleading conclusions on portfolio returns and risk (Rubinstein, 2002:1043). 

This central idea was evidently missing from Williams (1938) and other authors such as Graham 

and Dodd (1934). Furthermore, at the time stock prices were structured according to the present 

value model of Williams (1938). Markowitz revealed that an investor should not analyse each 

individual security‟s own risk (measured by security variance), but rather the contribution each 

security made to the variance of the entire portfolio. He assumed that the beliefs (or projections) 

about security returns obey the same probability rules that random variables follow. From this 

assumption, it follows that i) the expected return on the portfolio is a weighted average of the 

expected returns on individual securities, and ii) the portfolio variance of return is a function of 

the variances of, and the covariances between, securities and their weights in the portfolio. In 

general the expected return on a portfolio is given by: 

 

  (  )  ∑   (  )

 

   (2.5) 

   

where    is the return on the portfolio,    is the return on security i and    is the weighting 

component of asset   (i.e. the share of asset   in the portfolio so that ∑     = 1). The portfolio 

return variance is given by: 

 

   
  ∑  

   
 

 

 ∑∑           

    

   (2.6) 

   

where     is the correlation coefficient between the returns on securities   and  .27
 Therefore 

        is the covariance of their returns. In addition, portfolio return volatility (standard 

deviation) is expressed as: 

                                                           
26

  Numerous authors made the same assumption based on Jacob Bernoulli‟s (1713) law of large numbers 

(Rubinstein, 2002:1042). 
27

  Markowitz‟s 1952 paper provides the first occurrence of the covariance equation in a published paper on 

financial economics (Rubinstein, 2002:1043). 
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   √  

    
(2.7) 

 

For a two asset portfolio return and portfolio variance is given by:  

 

  (  )     (  )     (  )   (2.8) 

 

   
    

   
    

   
                 (2.9) 

 

and for a three asset portfolio:  

 

  (  )     (  )     (  )     (  )   (2.10) 

 

   
    

   
    

   
    

   
               

                               

(2.11) 

 

and so forth. Markowitz did not assume that diversification would eliminate risk, but would 

rather reduce overall portfolio risk. His paper is therefore the first mathematical formalisation of 

diversifying a portfolio. In essence, stipulating the financial adaptation of “the whole is greater 

than the sum of its parts”. According to Markowitz, an investor should invest in a portfolio that 

maximizes expected portfolio return ( (  )) while minimizing portfolio variance of return (  
 ). 

Investing is therefore a trade-off between risk and expected return. Investors are assumed to be 

risk averse, and will therefore select the portfolio with the highest expected return given the level 

of risk, or select the portfolio with the lowest risk given the level of expected return.  

 

Investors could reduce portfolio risk by holding combinations of securities, which are not 

perfectly correlated (that is where         ). In other words, portfolio risk is reduced by 

holding a diversified portfolio. A combination of assets (i.e. a portfolio) is seen as “efficient” if it 

exhibits the best possible level of expected return given the level of risk. In figure 2.1 the 

combinations of risky assets (without the holding of a risk-free asset) are plotted in the risk-

expected return space. The hyperbola is known as the Markowitz efficient frontier, and portfolios 
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lying on this frontier are seen as “efficient”.
28

 The efficient frontier lies at the top of the 

opportunity set (or the feasible set), and is the positively sloped portion of the opportunity set 

that offers the highest expected return for a given level of risk. The risk-return indifference curve 

shows all points where an investor obtains the highest possible satisfaction from investing. The 

point of tangency is where the investor‟s utility is maximised given all possible risk-return 

combinations of securities. Differing investors showcase different indifference curves, so the 

curve may shift, causing the “optimal” portfolio to be located on a separate point of tangency on 

the efficient frontier. 

 

Figure 2.1  The efficient frontier for a portfolio of risky assets (source: Compiled by Author). 

 

 

No individual security is expected to lie on the efficient frontier due to the benefits of 

diversification. The efficient frontier, in matrix form for a given "risk tolerance" level,   

[   ), is given by minimising the following equation: 

 

   ∑          

 

(2.12) 
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  In Markowitz‟s 1952 paper, the „efficient frontier‟ was addressed as the „critical line algorithm‟. 
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where   is a vector of portfolio weights and ∑     = 1,   is the covariance matrix for the returns 

on the assets in the portfolio,    0 is a "risk tolerance" factor, where 0 results in the portfolio 

with minimal risk and   results in the portfolio infinitely far out on the frontier with both 

expected return and risk unbounded. It then follows that   is a vector of expected returns, 

  ∑  is the variance of portfolio return and     is the expected return on the portfolio. The 

complete frontier is parametric on  . A geometrical analysis was therefore used to illustrate the 

efficient sets, assuming non-negative investments subject to a budget constraint. This model is 

known as the HM model or Mean-Variance model.
29

 

 

2.4.2 Arthur D. Roy (July 1952): safety first 

 

Markowitz writes the following about Roy: “On the basis of Markowitz (1952), I am often called 

the father of modern portfolio theory (MPT), but Roy (1952) can claim an equal share of this 

honor”, (Markowitz, 1991:5). Roy (1952) also recommended choosing a portfolio based on its 

mean and variance as a whole. His approach was coined the safety-first criterion. More 

specifically, he suggested choosing the portfolio that minimizes the probability of a portfolio 

falling below a certain threshold. Suppose that an investor can choose between portfolio A or B, 

and has a return threshold of -1%. Then the investor would choose the portfolio that maximises 

the probability of the portfolio return being at least as high as -1%. The problem an investor 

meets using the safety-first criterion can be expressed as: 

 

      (    )   (2.13) 

   

where    (    ) is the probability of the actual return of the portfolio (  ) being less than the 

minimum acceptable return ( ). With the assumption of normally distributed returns, Roy‟s 

safety-first criterion can be reduced by maximising the safety-first ratio: 

 

 
         

 (    )

  
   

(2.14) 

                                                           
29

  HM model after the authors name or Mean-Variance model due to being based on expected return (mean) 

and standard deviation (squared variance). 
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where  (  ) is the expected return of the portfolio,    is the standard deviation of the portfolio‟s 

return, and   the minimum acceptable return.
30

 Roy's formula for calculating the variance of the 

portfolio (covariances of stock returns) was similar to the calculation used by Markowitz (1952). 

The main differences between the Roy and Markowitz‟s portfolio selection analyses were that i) 

Markowitz‟s required non-negative investments whereas Roy's allowed positive or negative 

investment amounts, and ii) Markowitz allowed the choice of a desired portfolio located on the 

efficient frontier whereas Roy suggested a particular portfolio (Markowitz, 1999:5).
31

 

 

2.4.3  James Tobin (1958): liquidity preference 

 

Tobin hypothesised that the demand for money was distinguishable from other "monetary 

assets". These monetary assets, including cash, were defined as "marketable, fixed in money 

value, free of default risk." He then presented his seminal theorem, now known as the Tobin 

Separation Theorem. He theorised that the investment process can be separated into two distinct 

steps, namely: i) the construction of an efficient portfolio, that is invariant to preference, as 

postulated by Markowitz (1952), and ii) combining the “risky” efficient portfolio with a risk-free 

investment (cash).
32

 A risk-free (  ) asset has an expected return that is entirely certain, and 

therefore a standard deviation that is zero (     ). Investor preference determines the optimal 

allocation between the efficient portfolio and the risk-free asset.
33

 Tobin suggested 

supplementing a portfolio with   risky assets and one risk-free asset, cash.
34

 In addition, 

holdings had to be non-negative. He showed that for a given set of means, variances, and 

covariances among efficient portfolios containing any cash at all, the mix among risky stocks is 

always constant. The primary purpose was to improve the theory for holding cash. He concluded 

that his analysis provides a logically more satisfactory basis for liquidity preference than 

                                                           
30

  Under the assumption of normality, and given an investor‟s minimum acceptable return is equal to the risk-

free rate, the safety-first ratio essentially converts to Sharpe’s ratio (refer to footnote 49). 
31

  So why did Markowitz, and not Roy, win the Nobel Prize in Economic Sciences in 1990? Maybe it is 

because Roy basically made this one marvellous contribution and vanished, while Markowitz wrote an 

assortment of books and articles in the given field (and was therefore more consistently active). 
32

  A risk-free asset is one that has zero variance, and has no correlation with other assets. Whereas a risky 

asset has an uncertain return, and this uncertainty is measured by variance, standard deviation or return. 
33

  This separation between risky and riskless investments was seminal in the conception of the capital market 

line and in the development of the Capital Asset Pricing Model (Markowitz, 1999:10). 
34

  Tobin‟s assets were monetary assets, so the risk was market risk and not default risk. 
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Keynesian theory, and provides the advantage of explaining diversification between stocks and 

bonds where Keynesian theory suggests the holding of only one of these risky assets. In practical 

terms the theorem suggests that an investor can control the risk of a portfolio of risky 

investments by borrowing at the risk free rate and leveraging the portfolio (and therefore its risk), 

or lending at the risk free rate and mitigating risk. Since investors are commonly risk-averse, 

they prefer to supplement a portfolio of risky assets with a risk-free asset, and thus lowering the 

possible downside risk.
35

 Tobin‟s work, in essence, showed that when investors are able to 

borrow and lend at the risk-free rate, the efficient frontier is simplified. 

 

2.4.4 Markowitz (1959): generalisation and changed views 

 

The primary goal of the book entitled „Portfolio Selection: Efficient Diversification of 

Investments‟ (published in 1959 by Markowitz) was to simplify the concepts of his seminal paper 

published in 1952, as well as to reflect how Markowitz‟s views changed during this period 

(Markowitz, 1999:7). As with Markowitz (1952), Markowitz (1959) illustrated mean-variance 

analyses, defined mean-variance efficiency and provided a geometric analysis of efficient sets, 

but without some errors present in the inaugural paper. The 1959 book also presented a more 

general derivation of the “efficient frontier” which was less restricted, and worked for any 

covariance matrix. The analyses of such a covariance model, for a large portfolio with many 

covariances, were too large to analyse the inter-relationships individually, so Markowitz 

proposed a one-factor (linear) model to ease computation. However, what Markowitz did not 

realise was that this linear factor model could be used to simplify the computation of the efficient 

frontier as Sharpe (1963) did. Markowitz (1959) also considered what happens to an equal-

weight portfolio‟s variance as diversification increases. He found that when a portfolio with 

stocks consisting of uncorrelated returns increases its diversification, overall risk approaches 

zero. However, when returns are correlated, portfolio variance tends to approach “average 

covariance” as diversification is increased (A term he coined the “law of the average 

covariance”).
36

 Correlated returns therefore had serious implications for portfolio variance. 

Markowitz (1959) also made use of semi-variance as a replacement for variance as a measure of 

                                                           
35

  This portfolio of risky and risk-free assets can be termed the stock/bond asset allocation decision. 
36

  The average covariance is defined as the sum of all the individual co-varying relationships divided by the 

total number of co-varying relationships. 
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risk.
37

 In addition, Markowitz insisted that the investor should choose a portfolio to maximise his 

expected utility according to the Savage (1954) axioms. However, due to the revolutionary ideas 

of the time, Markowitz (1999), in retrospect,  lists the discoveries that he did not anticipate in 

1959, which include: i) the consumption-investment game he developed was in discrete time 

rather than in continuous time (see Merton 1969), ii) he did not reveal the discovery of myopic 

utility functions (see Mossin 1968 & Samuelson 1969), and iii) he did not consider the behaviour 

of consumers and investors within this game (see Sharpe 1964). 

 

2.5 The Capital Asset Pricing Model (1960-1966) 

 

Prior to the development of the Capital Asset Pricing Model (CAPM), estimation of expected 

returns by an investor was based on the “cost of capital” of an asset; this in turn depended on the 

asset‟s manner of finance (see Bierman & Smidt, 1966). The weighted average of the “cost of 

equity capital” and the “cost of debt capital” denoted the cost of capital of the asset.
38

 A popular 

model for this approach was the Gordon (1959) model.
39

 Until the 1960s the empirical 

measurement of risk and return was in its infancy because of insufficient computing power 

(Perold, 2004:4). When sufficient computing power became available during this period, 

academics were capable of collecting, storing and processing market data for the purposes of 

empirical examination. And so began the narrative of market beta as a measure of portfolio risk. 

 

2.5.1  A student-master narrative (1960) 

 

The transition of MPT from the 1950s to the 1960s occurred naturally from one researcher to the 

next. The thoughts and research of one great academic influenced a subsequent other. Markowitz 

states that one day in 1960 a Ph.D. hopeful entered his office and asked about research in models 

of co-variance – for which there was a shortage at the time (Markowitz, 1999:14). This student 

was William Sharpe, and the encounter set him off on his many lines of research in the field of 

                                                           
37

  Semi-variance is defined like variance except that it only accounts for only deviations below some value. 
38

  The costs of debt and equity capital were inferred from the long-term yields of those instruments. The cost 

of debt capital was typically assumed to be the rate of interest owed on the debt, and the cost of equity 

capital was backed out from the cash flows that investors could expect to receive on their shares in relation 

to the current price of the shares. 
39

  Refer to footnote 21. 
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portfolio theory. From this chance meeting the evolution of the efficient frontier into the capital 

asset pricing model (CAPM) was set into motion. 

 

2.5.2  Jack Treynor (1961; 1962): A forgotten bygone 

 

Before Sharpe‟s seminal work on portfolio theory is discussed, it is worth mentioning that 

history generally credits Sharpe (1964), Lintner (1965a; 1965b) and Mossin (1966) with the 

development of the capital asset pricing model (CAPM).
40

 However, what general history does 

not often recognise is that Jack Treynor was one of the pioneers in developing CAPM (Black, 

1981:14). Treynor also deserves credit for developing CAPM because of his innovative 

manuscripts („Market value, time, and risk‟ written in 1961 and „Toward a theory of market 

value of risky assets‟ written in 1962) that circulated in draft-form, but never got published 

within a journal during that time.
41

 However, both Treynor and Sharpe developed their models 

independently and almost simultaneously (French, 2003:61).
42

 

 

Treynor (1961, 1962) was arguably the first to derive the linear relationship between expected 

return and covariance with the market portfolio, and concluded that in equilibrium the market 

portfolio itself was the only optimal mean-variance efficient portfolio. Treynor approached 

capital asset pricing from a cost-of-capital decision making perspective (Treynor, 1962).
43

 He 

begins by decomposing expected return into a risk-free component and a risk premium 

component. Treynor‟s risk-free component,  , is the perfect “lending rate”, which is incorporated 

within the one-period discount factor  , where: 

 

     (   )   (2.15) 

 

essentially defining   as the growth factor.
44

 Expected performance can therefore be given by: 

                                                           
40

  See, for example, Sharpe and Alexander (1978:194), Merton (1990:475), Bodie, Kane & Marcus 

(1993:242), Reilly (1994:270), and Cochrane (2001:152). 
41

  Treynor (1962) was eventually published as chapter 2 of Korajczyk (1999). Treynor (1961) remains 

unpublished. 
42

  Sharpe started working on his paper in 1960, and submitted his work to the Journal of Finance in 1962. 

However, it was only published in 1964 (French, 2003:61). 
43

  Treynor took into account the Modigliani-Miller theorem (see footnote 22). 
44

  Lintner‟s (1965a:16) risk-free component (  , the interest rate on risk-less asset or borrowing) is analogous 

to that of Treynor. 
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       (   )∑        
(2.16) 

 

where    is the return on capital at the risk-free rate, and (   )∑      the expected return due 

to the risk premia.
45

 The expected portfolio risk premium,  , is defined as the present value of 

the portfolio risk premium. He then derives the linear relation between risk and expected return 

(Treynor, 1962:18-19). Treynor makes use of Markowitz‟s formula to estimate the portfolio 

variance and covariance matrix. Treynor also finds a linear relation, which is analogous to the 

findings of Tobin (1958), providing proof of Tobin’s separation theorem.
46

 Treynor concludes 

that, in equilibrium i) the same combination of risky assets will be optimal for all investors, ii) 

the amount invested in risky asset   will be the same as the proportion of asset   in the aggregate 

market portfolio, and iii) each individual investment must be positive.
47

 

 

2.5.3  William Sharpe (1964), John Lintner (1965a; 1965b) and Jan Mossin (1966) 

 

The development of the capital asset pricing model (CAPM) starts off where Markowitz‟s work 

in the 1950s ended. Specifically, capital market theory has extended portfolio theory by building 

a model to price all risky assets (Brown & Reilly, 2009:205). This model is known as CAPM and 

was developed and further refined by Sharpe (1964), Lintner (1965a; 1965b) and Mossin (1966). 

CAPM allows an investor to determine the required rate of return for any risky asset. The major 

contributing factor that caused capital market theory to evolve from portfolio theory is the 

introduction of a risk-free asset (Hirt & Block, 2009:597). As stated before, a risk-free asset has 

zero variance, and is therefore uncorrelated with other risky assets. Several authors, including 

Tobin (1958), experimented with the idea of a risk-free asset after the work done by Markowitz 

(1952; 1956; 1959). The inclusion of a risk-free asset allowed for the development of a 

generalised theory of capital asset pricing (such as CAPM) under conditions of uncertainty 

(flowing on from Markowitz‟s portfolio theory).   

 

                                                           
45

  Likewise, Lintner‟s risk premia ( ̅ ) is analogous to Treynor‟s   . 
46

  See section 2.4.3 on James Tobin and liquidity preference. 
47

  Lintner (1965a) came to the same conclusions as Treynor (1962). 
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A generalised discussion of the development of CAPM by Sharpe (1964), Lintner (1965a; 

1965b) and Mossin (1966) follows. As stated earlier, the risk-free asset (  ) has zero variance 

(     ), and earns a risk-free rate of return (   ), which is the expected long-run growth rate 

of the economy, supplemented for short-run liquidity needs.
48

 When a risk-free asset is combined 

with a portfolio of risky assets (say portfolio Q), then the expected rate of return will be equal to 

the weighted average of the two returns: 

 

  (  )     (   )  (     ) (  )   (2.17) 

 

where  (  ) is the expected portfolio return,     the proportion of the portfolio invested in the 

risk-free asset, and  (  ) the expected return from portfolio Q. Recall from 2.9 that the 

variation of a two asset portfolio is given by: 

 

   
    

   
    

   
                 (2.18) 

   

By substituting the risk-free asset and risky asset portfolio Q in the equation, it is transformed 

into: 

 

   
     

    
  (     

 )   
      (     

 )             (2.19) 

 

However, the variance of a risk-free asset is zero (   
   ), as well as its correlation with other 

risky assets (       ). After these adjustments, the portfolio variance becomes: 

 

   
  (     

 )   
    (2.20) 

   

and portfolio standard deviation by: 

 

    (     
 )     (2.21) 

 

                                                           
48

  Government bonds or treasury bills are usually considered risk-free assets (Hirt & Block, 2006:597). 
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The standard deviation of a portfolio combining a risk-free asset with risky assets is therefore the 

linear proportion of the standard deviation of the risky asset portfolio. The risk-return 

relationship between  (  ) and    can therefore be given by: 

 

 
 (  )        [

 (  )     

  
]   

(2.22) 

 

Capital market theory therefore states that an investor can expect a return equal to the risk-free 

rate plus compensation for the number of risk units (  ), times the risk premium ([ (  )  

   ]   ), they accept. This relationship holds for any combination of a risk-free asset and any 

collection of risky assets.  

 

Since there is a clear payoff, investors try to maximise their expected return from a portfolio 

(combining a risk-free asset with a collection of risky assets) given the level of risk they are 

bearing. Assuming that portfolio Q maximises this risk premium, the portfolio will then be 

dubbed the “market portfolio” (denoted, henceforth, by subscript “ ”). By definition, the market 

portfolio contains all risky assets present within the market. It also has the characteristic of 

receiving the highest expected return per unit of risk for any combination of risky assets. Under 

such conditions, the risk-return relationship given by: 

 

 
 (  )        [

 (  )     

  
]   

(2.23) 

 

which is called the capital market line (CML). Combining the CML with the Markowitz efficient 

frontier shows an investor where he/she will obtain the highest possible expected return per unit 

of risk, as seen in figure 2.2. The efficient frontier is the positively sloped portion of the 

opportunity set that offers the highest expected return for a given level of risk. The efficient 

frontier lies at the top of the opportunity set (or the feasible set). The risk-return relationship is 

represented by the CML, which shows all points where an investor obtains the highest possible 
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expected return for a given level of risk. The slope of this line is known as Sharpe’s ratio.
49

 The 

point of tangency is where the investor obtains a portfolio combining a risk free asset and risky 

assets with the highest possible expected return per unit of risk (highest Sharpe ratio). 

 

Figure 2.2 The efficient frontier with a portfolio consisting of a risk-free asset and a 

combination of risky assets (source: Compiled by Author). 

 

 

 

By borrowing and lending, an investor‟s portfolio would move along the CML line. In 

accordance with the separation theorem proposed by Tobin (1958), an investor can move along 

the CML with regard to each individual‟s risk-return preference.
50

 This is because all portfolios 

are perfectly positively correlated with the market portfolio. The market portfolio is considered 

to be a completely diversified portfolio because it contains all risky assets. Sharpe (1964), 

Lintner (1965a; 1965b) and Mossin (1966) suggested that an investor should consider an 

external market measure of risk.  

                                                           
49

  The Sharpe ratio is expressed as [ (  )     ]   . This ratio measures excess return (risk premium) in 

relation to total portfolio risk (Sharpe, 1966). 
50

  A risk-averse investor will invest only a part into the market portfolio, and lend the rest at the      by 

buying risk-free securities (Therefore moving downward on the CML. If an investor prefers more risk, 

he/she will borrow at the     and invest everything into the market portfolio (Moving upwards along the 

CML). 
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In an efficient market all rational, profit-maximising investors want to hold a completely 

diversified portfolio with a level of risk and return that is in line with the risk preference of each 

investor. Under these (and other) assumptions, it was shown that the return of an individual asset 

moves with the market portfolio. This co-integrating movement is known as systematic risk, and 

is the variance of an asset that is explained by the variance of the market portfolio. There is also 

a non-market related risk present in a portfolio (discussed shortly), which is seen as 

“unimportant” because it can be diversified away in a large portfolio of stocks. Therefore, the 

risk premium for an individual asset is a function of an asset‟s systematic risk, where:
51

 

 

              (                      )  

 

This market measure of risk (systematic risk) has a significant relationship with the fundamental 

determinants of risk (Thompson, 1976).
52

 The risk premium can therefore be expressed as: 

 

            

  (                                             

               )  

 

In addition there is a non-market related risk present in an asset‟s variance called unsystematic 

risk. This is an asset specific risk and can therefore be diversified away as the number of assets 

in a portfolio increases.
53

 The interaction between systematic and unsystematic risk is shown in 

figure 2.3. According to efficient capital market theory, systematic risk cannot be diversified 

away, whereas unsystematic risk is mostly diversified away within a portfolio containing 12 or 

more diverse stocks. 

 

  

                                                           
51

  This measure is commonly known as beta. 
52

  Fundamental determinants of risk are accounting variables (Brown & Reilly, 2009:20). 
53

  Research has indicated that an investor needs around 12 to 18 diverse stocks within a diversified portfolio 

to eliminate a substantial amount of the unsystematic risk (Evans & Archer, 1968; Tole, 1982). 
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Figure 2.3 Systematic and unsystematic risk (source: Brown & Reilly, 2009:212). 

 

 

As noted earlier, a portfolio containing a risk-free asset and a set of risky assets are perfectly 

positively correlated with the market portfolio. A completely diversified portfolio will therefore 

have a unit correlation with the market portfolio. This is due to the elimination of unsystematic 

risk of a completely diversified portfolio. Therefore, the relevant risk measure for a risky asset or 

portfolio of risky assets is the average covariance it exhibits in relation to the market portfolio. 

Because all individual risky assets are part of the market portfolio, the rate of return of a risky 

asset can be linearly expressed as: 

 

                     (2.24) 

 

where      is the return for asset   during period  ,    is the constant term for asset  ,    is the 

slope coefficient for asset  ,      is the return of the market portfolio during time  , and    is the 

random error term. The variance of an asset   can therefore be expressed as:  

 

    (    )     (  )     (      )     (  ) 

    (      )     (  )   

(2.25) 
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where the    (      ) is the variance of asset   that is related to the market portfolio, thus the 

systematic risk of the portfolio. Also note that the    (  ) is the unsystematic risk that is 

attributable to asset  . However, the market portfolio is considered to be completely diversified, 

exhibiting no unsystematic risk. It is due this characteristic that Sharpe (1964), Lintner (1965a; 

1965b) and Mossin (1966) suggested that the variance of a portfolio (  ) in the CML expression:  

 

 
 (  )        [

 (  )     

  
]   

(2.26) 

 

can be replaced by a systematically related risk measure when evaluating the expected return of a 

risky asset or portfolio of risky assets. The expression is then transmuted into: 

 

 
 (  )           [

 (  )     

  
]   

(2.27) 

 

where     is the correlation coefficient between asset   and the market portfolio. The expression 

can be rearranged as follows: 

 

  (  )        [ (  )     ]  (2.28) 

 

where    (beta) captures the non-diversifiable portion of an asset‟s risk which is related to the 

market as a whole. The market risk premium, [ (  )     ], is therefore scaled by an asset‟s 

riskiness relative to the market,   . Beta for asset   can be calculated as: 

 

 
   (

  

  
) (    )  

   (     )

  
    

(2.29) 

 

where    (     ) is the covariance between the return on asset   and the return on the market 

portfolio. In addition, CAPM can be graphically expressed as the security market line (SML). 

This is shown in figure 2.4. The SML is similar to the CML, except that the SML only considers 
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systematic risk, and can be applied to individual assets, instead of just a completely diversified 

portfolio. In addition, beta can be negative. 

 

Figure 2.4 The security market line (source: Brown & Reilly, 2009:216). 

 

 

From figure 2.4 it is expected that all securities should exhibit an estimated rate of return that is 

consistent with its level of systematic risk. Securities plotting above the SML would be 

considered undervalued because its estimated rate of return is expected to be above its required 

rate of return, and vice versa for overvalued securities. In a completely efficient market, 

securities are expected to plot on the SML. CAPM assumes efficient markets (whereby all 

investors have access to the same information). For example, one of the assumptions is given as: 

agents have identical knowledge of the market and agree on the same forecasts of asset values 

(Treynor, 1962:16). Table 2.1 illustrates these assumptions, made by the pioneers of CAPM.  
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Table 2.1 CAPM assumptions (source: French, 2003:64). 
 

Assumption Treynor 

(1962) 

Sharpe 

(1964) 

Lintner 

(1965) 

Mossin 

(1966) 

No taxes 

No frictions (transaction costs) 

Agents are price takers who all face identical prices 

Agents maximise expected utility of future wealth 

Utility represented as a function of return and risk 

All agents agree that variance (or standard deviation) is 

the measure of security risk 

Agents prefer more return to less and display risk 

aversion 

A riskless asset (paying an exogenously determined 

positive rate of interest) exists, and all investors agree 

that it is riskless 

All agents share the same subjective probability 

distribution of expected future prices 

Fractional stocks may be held 

Short sales are allowed 

 

Leverage is allowed 

 

The number of stocks of each security is constant 

Agents share the same single period time horizon 

Explicit 

Explicit 

Explicit 

Explicit 

Explicit 

Explicit 

 

Explicit 

 

Explicit 

 

 

Explicit 

 

Implicit 

Explicitly 

allowed 

Explicitly 

allowed 

Implicit 

Explicit 

Implicit 

Implicit 

Implicit 

Explicit 

Explicit 

Explicit 

 

Explicit 

 

Explicit 

 

 

Explicit 

 

Implicit 

Explicitly 

disallowed 

Explicitly 

disallowed 

Implicit 

Explicit 

Explicit 

Explicit 

Explicit 

Explicit 

Explicit 

Explicit 

 

Explicit 

 

Explicit 

 

 

Explicit 

 

Explicit 

Explicitly 

allowed 

Explicitly 

allowed 

Implicit 

Implicit 

Implicit 

Implicit 

Implicit 

Explicit 

Explicit 

Explicit 

 

Explicit 

 

Explicit 

 

 

Explicit 

 

Explicit 

Explicitly 

allowed 

Implicitly 

allowed 

Implicit 

Implicit 

 

From the assumptions in table 2.1, it is clear that CAPM is based on efficient markets. Efficient 

markets and other assumptions have displayed mixed results on the real world application of 

CAPM (Perold, 2004:22). However, CAPM stimulated a different mind-set within investors. For 

instance how investors think about the relationship between expected returns and risk, allocation 

between assets, as well as portfolio performance and capital budgeting. Efficient markets, 

though, are instrumental for the simplified working of CAPM. 

 

2.6 Efficient Markets (1970-1976) 

 

Macroeconomic factors are an important consideration when trying to assess the functioning of 

financial markets, especially giving insights into how financial prices move (Moix, 2001:59). 

These factors, in turn, determine the extent of systematic risk that a completely diversified 

portfolio is exposed to. The general hypothesis at work is that of informational efficiency within 

capital markets. The Efficient Market Hypothesis (EMH) states that in an efficient capital market, 

prices of securities adjust instantaneously to the arrival of new information and, therefore, 
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current prices reflect all relevant information about the security (Brown & Reilly, 2009:151).
54

 In 

addition, an efficient market is also one in which investments with higher expected returns have 

higher levels of risk (Marx et al., 2008:31). There are three assumptions that underlie efficient 

capital markets (Reilly, 1994:195): 

 

i) There are a large number of independent, competing, profit-maximising participants 

who constantly analyse and value securities. 

ii) New information regarding securities comes to the market in a random independent 

fashion. 

iii) Competing investors adjust security prices rapidly to reflect the effect of new 

information (unbiased adjustment). 

 

These assumptions provide the basis for price changes that are random, and therefore not 

predictable. In this sense, current prices contain all relevant information, and the best forecast for 

future prices does not require past price information. Investors also assume that current prices of 

securities are an accurate reflection of their level of risk. There are, however, various forms of 

market efficiency that reflect on the informational content of past security prices. 

 

2.6.1  Eugene F. Fama (1965; 1970; 1976): The efficient market hypothesis 

 

Early work relating to efficient markets was based on the random walk hypothesis, which in turn 

is based on the notion that changes in stock prices occurred randomly (Brown & Reilly, 

2009:153).
55

 This hypothesis was extensively tested without any underlying theory.
56

 But in 

three influential articles, Fama (1965; 1970; 1976) attempted to formalise the theory by 

presenting a fair game model. This model stated that investors can be confident about the current 

market price of a stock because it reflects all relevant information, and therefore stocks provided 

an expected return consistent with its risk. The efficient market hypothesis (EMH) and the 

                                                           
54

  A more accurate definition is that securities are priced in an unbiased fashion at any given time because 

new information is assumed to arrive in a random, independent fashion, providing no foothold for an 

upward or downward pricing bias mechanism. Price adjustments are not always perfect, but unbiased, 

making forecasts unfruitful (Hirt & Block, 2006:256) 
55

  Samuelson (1965) offered the first proper economic argument for “efficient markets”, which focused on the 

concept of a martingale, rather than a random walk (such as Fama (1970)). Also, see footnote 11. 
56

  For example, studies including Osborne (1959), Mandelbrot (1963) and Fama (1965). 
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empirical tests of the hypothesis were separated into three sub-hypotheses on the basis of the 

information set involved: i) weak form efficiency, ii) semi-strong form efficiency and iii) strong 

form efficiency.
57

 

 

2.6.1.1  Weak form efficiency 

 

Firstly, weak form efficiency assumes that current stock prices fully reflect all security market 

information.
58

 This hypothesis therefore implies that past rates of return and other historical 

market data should have no relationship with future rates of return. If this hypothesis holds then 

there should be little or no gain from using any trading rule which provides buy or sell signals 

based on past market data (Bodie et al., 2007).
59

 There are two broad groups of tests for weak 

form efficiency, namely, tests of independence and trading rule tests (Brown & Reilly, 

2009:154).
60

 Tests of independence entail statistical independence tests between rates of return, 

while trading rule tests focus on a comparison of risk-return results for a trading rule relative to 

that of a buy-and-hold strategy. These tests seem to uphold weak form efficiency, meaning that 

stock prices seem to be independent over time, or in other words, follow a random walk (Hirt & 

Block, 2006:257). However, these results are not unanimous (Brown & Reilly, 2009:156). 

 

2.6.1.2  Semi-strong form efficiency 

 

Secondly, semi-strong form efficiency contends that stock prices fully reflect all public 

information.
61

 This hypothesis incorporates weak form efficiency because security market 

information is considered to be available to the public. The hypothesis therefore implies that 

investors will not be able to realise above-average returns based on new information that has 

already become public, because such new public information will already be reflected in the 

stock‟s price. No abnormal gain is therefore possible from analysing financial statements or new 

                                                           
57

  It was actually Roberts (1967) who distinguished and coined the terms weak, semi-strong and strong form 

tests, which Fama (1970) used in his later depiction of efficient markets. 
58

  This includes historical sequences of prices, rates of return, trading volume data, and other market-

generated data, such as odd-lot transactions, block trades, and transactions by exchange specialists (Brown 

& Reilly, 2009:153). 
59

  Known as chart or technical analyses. 
60

  As an example of a test of independence see Fama (1965), and a trading rule test see Fama and Blume 

(1970). 
61

  This includes all non-market information such as earnings and dividend announcements, price-to-earnings 

(P/E) ratios, dividend-yield (D/P) ratios, price-book value (P/BV) ratios, stock splits, news about the 

economy, and political news (Brown & Reilly, 2009:153). 
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public information.
62

 Tests for semi-strong form efficiency focus on predicting future rates of 

return using available public information beyond security market information, or via event 

studies that examine the speed of adjustment of stock prices to specific economic events (Brown 

& Reilly, 2009:156).
63

 Semi-strong form efficiency held unanimously for event studies.
64

 

However, in contradiction to semi-strong form efficiency there are studies on predicting rates of 

return for a cross-section of stocks that did not support the hypothesis (Hirt & Block, 

2006:259).
65

 The results of such studies were classified as anomalies, which are discussed further 

in chapter 4.  

 

2.6.1.3  Strong form efficiency 

 

Finally, strong form efficiency asserts that stock prices fully reflect all information from public 

and private sources. No investor or group of investors can constantly earn above-average returns 

because no one has monopolistic access to information. This hypothesis encompasses weak form 

and semi-strong form efficiency. In addition, strong form efficiency assumes perfect markets 

where information is cost-free and immediately available to everyone.
66

 Tests for strong form 

efficiency have centred on the analyses of returns, over time, for different investment groups, in 

order to identify whether any of these groups constantly outperformed the market (Brown & 

Reilly, 2009:166). Such investors should have access to important private information, or be able 

to act more quickly on public information.
67

 Overall, the research doesn‟t support strong form 

efficiency (Hirt & Block, 2006:260). For example, specialists on security exchanges were found 

to achieve above-average rates of return.
68

 However, tests on the performance of fund managers 

indicate that they do not outperform the market, and that market outperformance was negligible 

when measured against the overall trend (Ippolito, 1993).  
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  Known as fundamental analyses. 
63

  Studies utilising these tests include Fama et al. (1969), Archibald (1972), Kaplan and Roll (1972) and 

Sunder (1975). 
64

  These events include stock splits, initial public offerings, world events, economic news, accounting 

changes and corporate finance events, with mixed results coming from exchange listing research (Brown & 

Reilly, 2009:166). 
65

  This includes studies on risk premiums, calendar patterns, and quarterly earnings surprises etc. (Brown & 

Reilly, 2009:166). 
66

  No insider trading is possible because no one has access to private information (Brealey et al., 1999). 
67

  Tests analysed the performance of i) corporate insiders, ii) stock exchange specialists, iii) security analysts, 

and iv) professional money analysts (Brown & Reilly, 2009:167). 
68

  Further studies debunking strong form efficiency include SEC (1963), Peers (1992), Rozeff and Zaman 

(1988). 
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The fair game model assures investors that they can be confident about the current market price 

of a stock because it reflects all relevant information, and therefore stocks provided an expected 

return consistent with its risk; therefore capital market efficiency. CAPM assumes that capital 

markets are perfect in the sense that i) assets are infinitely divisible, ii) there are no transactions 

costs, short selling restrictions or taxes, iii) information is costless and available to everyone, and 

iv) all investors can borrow and lend at the risk-free rate (Perold, 2004:16). Within this 

framework the capitalisation weighted average of the market betas of all stocks is equal to the 

beta of the market portfolio. This implies that the average stock, in an efficient market, has a 

market beta of one. This is thus the benchmark an investor would strive for when holding a 

portfolio consisting of risky assets. 

 

2.7 Conclusion 

 

Markowitz‟s 1952 approach, and subsequent evolution of the idea by Sharpe (1964) and others, 

is the conventional method of approaching portfolio diversification by institutional portfolio 

managers, both in structuring their portfolios and measuring their performance (Rubinstein, 

2002:1044; Sheikh & Noreen, 2012). CAPM was developed on the foundation provided by 

Markowitz (1952; 1956; 1959) and Tobin (1958). With regards to CAPM, Lintner (1965a) 

provided the same conclusions that were reached by Treynor (1961, 1962), whereas Mossin 

(1966) provided a more exact specification within equilibrium conditions than Sharpe (1964) 

(French, 2003:65). In later studies it was shown that most of CAPM‟s assumptions could be 

relaxed. Examples include: i) integrating heterogeneous beliefs (Lintner, 1969; Merton 1987), ii) 

the effects of taxation (Brennan, 1970), iii) including trading restrictions, transaction costs and 

information asymmetries (Mayers, 1972), iv) including non-marketable assets (Mayers, 1973) v) 

allowing for multiple time periods with changing investment opportunities within these periods 

(Merton, 1973; Breeden, 1979) vi) allowing international investing (Solnik, 1974; Stulz, 1981; 

Adler & Dumas, 1983), vii) utilising weaker assumptions via arbitrage pricing (Ross, 1976), viii) 

a zero-beta CAPM  (Black, 1972), and finally ix) a riskless-asset CAPM (Rubinstein, 1973).  

 

In general, most variants of CAPM have a multi-beta expression for expected return, which 

stems from the same basis of notions (Perold, 2004:22): i) investors hold portfolios that are 

optimised given their specific needs, constraints and risk preferences, ii) in equilibrium, asset 
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prices reflect these demands, and iii) assets with high expected returns are correlated with a 

significant, non-diversifiable risk. In essence, capital market theory, as a subset of modern 

portfolio theory, suggests holding an efficient portfolio with underlying stocks that has a unit 

correlation with a market portfolio. No single portfolio of risky assets is optimal for every 

investor, but investors rather allocate their wealth differentially among several risky portfolios, 

which across all investors aggregate to the market portfolio.  

 

The application of MPT continued to grow in stature through the late 20
th

 and early 21
st
 

centuries, and it is unlikely that its popularity will fade anytime soon (Fabozzi, Gupta & 

Markowitz, 2002:20). The philosophies, notions and concepts since 1952 have been interwoven 

into financial economics and portfolio theory to such an extent, that they can no longer be 

disentangled (Rubinstein, 2002:1044). However, this is subject to the assumption of efficient 

markets. If markets were not “completely efficient”, and stock return patterns did exist to a 

significant extent (so much so as to realise an abnormal profit), wouldn‟t it be worthwhile to 

construct a portfolio with an additional risk measure other than only making use of market beta? 

Chapter 3 discusses the use of just such an additional measure – one that captures volatility 

dynamics in the form of spill-over effects.  
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“Shallow men believe in luck or circumstance.  

Strong men believe in cause and effect.” 

~ Ralph Waldo Emerson, essayist, lecturer and poet 

 

CHAPTER 3 

 

The EMH and beta have contributed significantly to the advancement of portfolio management. 

However, due to numerous assumptions and the dynamics of portfolio volatility, beta does not 

encapsulate all the information relevant to a portfolio manager. Volatility dynamics can not be 

ensnared by only considering its covariance with a market portfolio (beta). This chapter looks at 

the failings of beta (especially in the South African context), and why volatility transmission is 

an important measurement. Volatility may “spill over” from one volatile variable to another 

(especially during times of financial turmoil), and therefore it is necessary to look deeper into 

volatility dynamics than just return volatility “covariance”. The previous chapter introduced the 

concept of return covariance, however, this chapter introduces the concept of volatility spill-

over, and why such a measure is important when efficient markets are assumed. Using an 

additional measure that captures volatility dynamics will only be beneficial to a portfolio 

manager already using a measure that captures return dynamics, especially during times of 

financial distress. 

 

MODELLING RETURN PATTERNS AND VOLATILITY SPILL-OVER EFFECTS 

 

Some of the most important research over the past few decades has analysed whether capital 

markets are indeed efficient (Brown & Reilly, 2009:151). If markets were inefficient to a 

significant extent, the market measure of risk (beta) could be ineffective with regard to the 

construction of a portfolio, prompting the use of another measure for such a task. This research is 

especially prevalent because of the real-world implication for investors and portfolio managers. 

In addition, capital market efficiency is one of the most controversial areas in investment 

research (Marx et al., 2008:32). However, a new twist has been added to capital market 

efficiency by the rapidly expanding field of behavioural finance, which provides interesting 

insights into many of the financial market anomalies or patterns (Brown & Reilly, 2009:151). In 
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addition, it has been reported that markets can never be perfectly informationally efficient 

(Grossman & Stiglitz, 1980). Information is costly, resulting in prices that do not perfectly 

reflect the information that is available, therefore leaving some incentive for information-

gathering (security analysis) within a market equilibrium model. 

 

3.1 Stock Return Patterns 

 

As discussed in the previous chapter, Bachelier (1900) had already anticipated the random walk 

hypothesis, which stated that the return process can be expressed as a cumulated series of 

probabilistic independent shocks. Returns according to the random walk hypothesis can be 

expressed as: 

 

                   (    )   (3.1) 

 

In equation 3.1, it is assumed that    is identically and normally distributed (Cowles & Jones, 

1937; Kendall & Hill, 1953; Roberts, 1959; Osborne, 1959; Working, 1960). This property can 

be expected if daily returns are constructed from a sum of large numbers of intraday returns with 

identical distribution and finite variance.
69

 However, the sample characteristics of time series 

data, such as stock returns, are frequently inconsistent with the Gaussian assumption (Moix, 

2001:60). Even early studies suggest that a stock market does not follow a random walk 

(Cootner, 1962; Osborne, 1962). Therefore, several studies have attempted to rematch theory 

with empirical results by proposing non-Gaussian independent and identically distributed stock 

returns (Mandelbrot, 1963; Fama, 1965). More recent studies have indicated that the random 

walk hypothesis does not accurately hold, because stock prices do exhibit patterns during price 

development (Jegadeesh & Titman, 1993; Lo & MacKinlay, 1999; Malkiel, 2011:13). This 

proposition is especially of use when considering that stock market anomalies are known to 

cause serial correlation in returns (Fama, 1965). In more statistical terms, the random walk 

model does not only rule out dependence in the conditional expectation (i.e. first order 

interdependence), but also higher order dependencies, of which the most notable is the 

conditional variance (i.e. second order interdependence) (Moix, 2001:61). 
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  According to the central limit theorem. 
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From the considerable number of studies done on the EMH, one thing is clear - markets do not 

exhibit the same level of efficiency (Moix, 2001:61). This is because large markets with a great 

number of educated traders and high trading volumes exhibit stock returns that are less correlated 

than that of smaller markets (i.e. a market such as South Africa). As the professionalism of a 

stock market increases, so does its efficiency, giving at least some support to weak and semi-

strong form efficiency. 

 

3.2 EMH’s Bane: Anomalies 

 

Since research does not support strong form efficiency,
70

 a closer look will thus be given to semi-

strong form efficiency. Although semi-strong form efficiency is somewhat supported by research, 

there are exceptions to the rule. These are known as anomalies or deviations from the overall 

doctrine that the market is informationally efficient (Hirt & Block, 2006:259). This is exhibited 

in the empirical evidence that testifies that time series returns are not normally distributed (Moix, 

2001:62). The reason for this is captured in financial market anomalies (discussed below) and the 

patterns caused by asymmetry and persistence in volatility (see section 3.4). To understand the 

studies done on beta in the South African market requires a brief description of market 

anomalies, such as the customary calendar and value effects. 

  

3.2.1 Calendar and value effects 

 

Calendar effects are seasonal patterns that can be found in the returns of stocks (Moix, 2001:62). 

There is, for example, the January effect, where investors engage in tax selling stocks during the 

end of the year and buying these stocks, or similar stocks, back in the beginning of the year 

(Branch, 1977; Branch & Ryan, 1980; Branch & Chang, 1985). It puts downward price pressure 

on stocks during November and December, while putting upward price pressure on stocks during 

January.
71

 Another anomaly is known as the weekend effect, where stock returns tend to peak on 

Fridays and decline on Mondays (Cross, 1973; French, 1980; Harris, 1986). This is due to 

information released during weekends (a 72-hour non-trading period) that accentuates a stock‟s 

volatility on Monday (Moix, 2001:62). This results in stock mean returns that are negative on 
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  See chapter 2, section 2.6.1.3, on strong form efficiency. 
71

  This “tax-selling hypothesis” also held within foreign countries that had different tax laws to those of the 

United States (Brown & Reilly, 2009: 159). 



 

43 

 

Mondays, where the average return for the other four days are positive (Brown & Reilly, 2009: 

159). This publically available information on seasonal occurrences are inconsistent with semi-

strong form efficiency.  

 

Secondly, publically available information regarding firms is used by fundamental analysts to 

identify stocks that may outperform the market (Hirt & Block, 2006:200). One measure that 

attracts closer examination is the price-earnings (P/E) ratio. Several studies on the examination 

of the P/E ratio for stocks have found that stocks with a lower P/E ratio consistently 

outperformed the stocks with higher P/E ratios, on both a risk-adjusted and non-risk-adjusted 

basis (see Basu, 1977). Similar results were found even after adjusting for firm size, industry 

effects, and infrequent trading (Peavy & Goodman, 1983). In addition, the size effect reflects that 

smaller firms consistently experience significantly higher risk-adjusted returns than larger firms 

(see Banz, 1981). It has been contended that the above-average returns, due to a lower P/E ratio, 

was instead because of the size effect (Reinganum, 1981).
72

 The reason why the size effect is a 

major efficient market anomaly is because smaller firms‟ riskiness is measured incorrectly due to 

less frequent trading, causing rates of return to be higher than the risk estimate (Brown & Reilly, 

2009:161). Percentage transaction costs for these traded stocks are also higher, giving credit to 

the notion that the size effect only holds when a long-term buy-and-hold strategy is followed 

(Stoll & Whaley, 1983). Optimally, the rebalancing of a stock portfolio should only take place 

once a year when considering the size effect (Reinganum, 1983).
73

 This is evidence against semi-

strong efficiency because it implies that investors could use available public information on size 

and P/E ratios to generate an above-average future return on their portfolios.  

 

Finally, and of significance, is the book value/market value (BM/MV) ratio. It is the ratio 

between the book value of a firm‟s equity to the market value of its equity (Brown & Reilly, 

2009:162). There is a significant positive relationship between the current BM/MV ratio and 

future stock returns (Rosenberg, Reid & Lanstein, 1985).
74

 This provides evidence against the 

EMH. In addition, strong support of this finding was provided by testing the joint effects of 
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  However, this result was again disputed in favour of P/E ratios (Basu, 1983). 
73

  Arbel and Strebel (1983) did a study to confirm the size effect but also found evidence of a „neglected-firm 

effect‟. Beard and Sias (1997) contended the existence of the latter effect after controlling for capitalisation. 
74

  In many studies the BM/MV ratio is defined as “book-to-market value” (BV/MV) or “price-to-book value” 

(P/B). The concept stays the same. 
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market beta, size, P/E ratio, leverage and BV/MV ratio (Fama & French, 1992; 1996). The 

positive relationship between BM/MV persisted even after including all these various other 

variables. More significantly, leverage and the P/E ratio were significant on their own, but after 

including both size and the BM/MV ratio, became insignificant. Lending more credibility to the 

presence of both size and value effects. In summary, the P/E ratio, size effect and the BM/MV 

ratio provide strong evidence against semi-strong form efficiency. However, the more profound 

influence seems to be captured by including the size effect and the BM/MV ratio.
75

  

 

The arbitrage pricing model (APT), formulated by Stephen Ross in 1976, incorporates more than 

one risk factor, and provides support for a multifactor asset pricing model, as mentioned above 

(Ross, 1976). However, it should be noted that these individual risk measures are not explicitly 

about risk, but are at best a proxy for risk (Perold, 2004:22).
76

 This causes size and value effects 

to be problematic in deriving them, making beta a more appropriate risk measure because of its 

well-defined properties.
77

 In this sense, using CAPM above other multi-factor models provides 

simplicity, and although multi-factor risk models are well-defined, their inference possibilities 

are limited. However, this study focuses on the South African equity market, and therefore 

necessitates a review of beta within such context. 

 

3.3 Why not only Beta in South Africa  

 

The underlying principle of the CAPM is that there is a linear relationship between systematic 

risk (as measured by beta), and expected stock returns (Laubscher, 2002:131). The CAPM 

attempts to capture this relationship by means of beta to explain the differences between the 

expected returns on various stocks and stock portfolios. The relationship between beta and 

portfolio returns specifies that an investor‟s expected return is equal to the risk-free rate plus a 

risk premium, and that the risk premium increases as risk increases. These parameters need to be 

estimated. The problem is that these parameters are not constant, but variable over time (Ward, 
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  It should be noted that a study found these relationships to be significant only during periods of expansive 

monetary policy (Jensen, Johnson & Mercer, 1997). 
76

  These risk “proxies” are known as descriptors. Descriptors are not the risk factors but rather candidates for 

risk factors because of their ability to explain returns (Fabozzi, Gupta & Markowitz, 2002:18) 
77

  Size cannot be a risk factor that affects expected returns, since this will cause smaller firms to combine into 

larger firms; furthermore, the value effect is based on giving equal weight to small and large firms that is 

disproportionate to capitalisation-weighted value indexes (Perold, 2004:22). 
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2000:35); and because of problems with estimating these parameters, it is not possible to apply 

the CAPM in its purest form (Firer, 1993:25).   

 

Empirical studies done on the Johannesburg Stock Exchange (JSE) regarding the effectiveness of 

CAPM have mostly drawn the same conclusions as studies done on international markets 

(Laubscher, 2002:131). According to Bradfield, Barr and Affleck-Graves (1988) CAPM is a 

reasonable model for explaining the risk/return relationship on the JSE. This was confirmed by 

Ward (1994) who extended on the work of Bradfield et al. (1988) by providing evidence of the 

validity of the CAPM upon the valuation of JSE stocks. Van Rhijn (1994) also found the CAPM 

to be explanatory of JSE stock returns and beta to be satisfactory in explaining the risk/return 

relationship. In addition, Bowie and Bradfield (1997) found that the stability of beta is similar to 

those found on the US and UK stock markets after taking the effect of thin trading on the JSE 

into account.  

 

There are however also various studies that found contrary results. Upsher (1993) for example 

observed a significantly positive relationship between expected returns and predictable volatility 

on the JSE, but found that stock returns did not adhere to the CAPM assumptions. Although his 

findings provided some support for the CAPM, he found overbearing shortcomings with the 

effectiveness of the CAPM on the JSE. Keogh (1994) also found beta to be unstable over time, 

diminishing the practicality of using the CAPM with regard to the JSE.  

 

The CAPM is of use to portfolio managers as it does describe and explain the risk/return 

relationship; however, other risk factors, other than beta, may also be useful for capturing the 

risk of stock returns (Laubscher, 2002:131). Studies on whether other risk factors capture the 

stock return relationship better than beta have provided differing conclusions. Ward (1994) 

provided support for the CAPM on JSE mining and industrial stocks; however, he also provided 

evidence that a multi-factor arbitrage pricing theory (APT) provides a more effective 

explanation of JSE stock returns than that of CAPM. Van Rensburg (1998) suggested that there 

are at least two, but no more than three, risk factors that are priced on the JSE. Furthermore, 

according to Brevis (1998:6), studies done by Knight and Firer (1989), Smith and Chapman 
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(1994), Gavin (1995) and Meyer (1997) evidence is presented that APT models provide a more 

explanatory account of returns on JSE stock portfolios than the CAPM.  

 

Regarding value and size effects on the JSE, Graham and Uliana (2001) found that value stocks 

offer higher returns, and that value stocks outperform growth stocks. In addition, using a Fama 

and French three-factor model on the JSE, Basiewicz and Auret (2010) show that their model 

does indeed capture the value effect, but has more difficulty in capturing the size effect. This 

model significantly improved upon pricing errors observable on the JSE; something that the 

traditional CAPM could not capture. However, the lack of growth firms (and general illiquidity 

of the JSE compared to the U.S. markets) causes mispricing of different types of stocks 

(Basiewicz & Auret, 2010:23). Most interesting was a study done by Van Rensburg and 

Robertson (2003), who also found persistent size and value effects in the cross-section of stock 

returns on the JSE, but in addition, found that beta had an inverse relationship with returns. This 

is contrary to the large body of empirical research done on beta. Furthermore, Strugnell, Gilbert 

and Kruger (2011), using data from January 1994 to October 2007, found support for Van 

Rensburg and Robertson‟s (2003) earlier findings. However, when beta’s were estimated by 

means of the Dimson Aggregated Coefficients method (which takes thin trading into account) 

with a lead and lag of three months, the negative relationship between beta and return loses 

statistical significance, resulting in beta having no predictive power on JSE stock index returns.  

 

Despite the existence of empirical evidence and criticism against the CAPM and beta as risk 

measurement, it remains a beneficial measurement for portfolio managers, especially with regard 

to the cost of capital and investment performance evaluation (Campbell et al. 1997:183; Moyer 

et al. 2001:204). In addition, CAPM does provide insights into the risk/return relationship, and 

although various empirical studies have refuted the validity of CAPM, the fact that CAPM is 

stated in terms of ex ante parameters, ex post analyses cannot provide an absolute rejection of the 

CAPM and its parameters (Levy 1997:147). However, several of the CAPM assumptions does 

exhibit severe shortcomings.
78

 Of particular interest to this study is the assumption that investors 

are only interested in the mean and the variance of returns - and therefore does not care about the 

downside risk or upside risk within certain market conditions (Laubscher, 2002:131). This 
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  Also refer to section 3.2 and 3.4. 
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assumption is insufficient since investors do view risk more intricately as simply considering the 

mean and variance of returns (Ward 2000:35; Leland 1999:28). Therefore, beta is regarded as an 

incomplete risk measure on its own, and need some additional measures to properly capture the 

dynamics of portfolio return. 

 

In conclusion, from this review of the South African application of portfolio theory, it can be 

asserted that the CAPM is not completely miss-specified. However, the practical application of 

the model does present difficulties (especially in turbulent market conditions and within a less 

liquid market). Therefore, portfolio managers should be cautious with reliance on the CAPM, 

and indeed beta alone to evaluate investment performance, and should also include other 

measures of risk to enhance portfolio performance. 

 

3.4 Why Volatility Plays an Important Role in Risk Measurement 

 

The persistent nature of volatility also causes patterns in stock returns. As mentioned in section 

3.2, not only does anomalies cause doubt in the efficient application of beta, but also asymmetric 

and persistent volatility. Such patterns can be seen in the second, third and forth moments of the 

return distribution, as discussed below. 

 

3.4.1 Leptokurtosis and negative skewness 

 

Before continuing the discussion on the third and fourth moments of the return distribution, it is 

necessary to provide a brief description on asset return variation (volatility).
79

 A stylised fact 

about financial market data is that various asset returns have differing degrees of variation, but 

most of these exhibit long “tails” compared to a normal distribution (Larson, 1960; Working, 

1960; Houthakker, 1961; Alexander, 1961). Characteristically, financial asset return distributions 

(usually) cross the normal distribution at least three times, with asset returns exhibiting longer 

left tails and higher peaks. This implies that financial data returns vary within a smaller band 
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  The concept of financial market volatility will firstly be defined on a broader scale and then narrowed 

down. 
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than the normal distribution and exhibit significant negative outliers. Financial market data is 

therefore typecast as being leptokurtic (Maniya, & Magnusson, 2010:10).
80

  

 

In related studies conducted on monthly returns for S&P 500 for each decade between 1926 and 

2006, it was found that arithmetical returns were negatively skewed for five out of eight decades, 

with kurtosis varying between three to nine for these periods (Corrado & Su, 1997; William, 

2007).
81

 Skewness and kurtosis for a normal distribution is presented as: 
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(3.3) 

 

where   is the mean and    the variance of the distribution. A skewness of zero and a kurtosis of 

three will equal the form and tails of a normal distribution (Gujarati, 2006:66). The distribution 

in the studies mentioned previously was therefore non-normal. Financial time series data has 

been found to be significantly leptokurtic with evidence of weak negative skewness. This 

phenomenon has been recorded in numerous studies for stock returns.
82

 The consequence is that 

normality suppresses the occurrence of large positive and large negative returns (where the third 

moment is leptokurtic). This postulates a well-known shortcoming when working with financial 

market data (Maniya, & Magnusson, 2010:10). Of particular interest are the supporting empirics 

which indicate that the leptokurtosis of a return series increases as the frequency of the data 

increases (Blattberg & Gonedes, 1974). Evidence for non-normality is therefore weaker for 

monthly data than intraday data. 

 

  

                                                           
80

  Leptokurtic, meaning slim or long-tailed, indicates the presence of significant outliers to that of a normal 

distribution (Gujarati, 2006:67). 
81

  Kurtosis is known as the third moment of the distribution and skewness as the fourth moment. A normal 

distribution exhibits a kurtosis of three and a skewness of zero. Negative skewness means a longer left tail 

(extreme losses) then a right tail (extreme gains). 
82

  See Fama (1965), Praetz (1972), Blattberg and Gonedes (1974), Kon (1984), Tucker (1992), Kim and Kon 

(1994), Duffie and Pan (1997), and Hurst and Platen (1997). 
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3.4.2  Serial correlation in squared returns 

 

Stock returns,   , are not serially correlated except for a small possibility at lag one (DeFusco, 

McLeavey, Pinto & Runkle, 2004).
83

 This possible serial correlation at lag one is due to non-

synchronous or thin trading (Poon, 2005:7). The lack of serial correlation with stock return 

patterns is due to the notion that returns are not predictable with regard to speculative assets. 

This corresponds to weak form market efficiency, which states that outperformance of the market 

portfolio is impossible when based on past values of stock return (Brown & Reilly, 2009:153). In 

contrast, squared returns exhibit significant serial correlation although it appears roughly 

uncorrelated (Mandelbrot, 1963; Fama, 1965). This means that a large shock in the returns of a 

stock‟s price is likely to be followed by larger variance in the subsequent periods, and vice versa. 

This phenomenon is more widely described as volatility persistence (Poon, 2005:7). Squared 

returns are directly linked to the unconditional variance in returns (Moix, 2001:65), which can be 

expressed as: 

 

    [  ]   (    [  ])
  

                        [  
 ]  ( [  ])

    

(3.4) 

 

The average term  [  
 ] is greater than the term ( [  ])

  by a factor of approximately 700 to 

one for daily returns (Jorion, 1995). Ignoring this reality will cause bias in the variance estimate 

of returns (Moix, 2001:65). Serial correlation in the variance of returns is a plausible explanation 

for the serial correlation in squared returns. Financial asset returns exhibit periods of turbulent 

trading (high volatility) which are concentrated, followed by periods of tranquil trading (low 

volatility) which are also concentrated.
84

 If a stock experiences a period of highly volatile 

trading, it tends to experience highly volatile trading in the next period as well, and vice versa 

(Asteriou &Hall, 2007:249). This phenomenon is simply known as volatility clustering (Poon, 

2005:7).   
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  This is of relevance for any type of speculative asset, but for continuity purposes, reference is made to 

common stock. 
84

  Of note is that the normal distribution did not display any volatility clustering due to the property of equal 

variance. 
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In summary, all these anomalies (section 3.2 and 3.4) provide insight into why a market is not as 

efficient as theory postulates, and leaves the door open to exploit such patterns. However, it is 

less apparent whether violations of weak form efficiency exist, proving that unexploited stock 

price patterns (based on historical data) should not persist in any efficient market (Malkiel, 

2011:13). But various other patterns also form when a stock market is entrenched in financial 

turmoil. For example, from size and value effects it is noticeable that the price of a stock is linked 

to a firm‟s fundamentals in the long-run. However, stock prices do deviate from these 

fundamentals during “speculative bubbles”, where a stock‟s price becomes influenced by short-

term speculation (Sørensen & Whitta-Jacobson, 2010:399). Arguably the most profound 

argument against the EMH is that security markets have often experienced speculative bubbles 

(Malkiel, 2011:32). Such a speculative bubble did occur within the US housing market which 

unravelled during 2008, causing globally induced financial turmoil. There are various 

implications of such “financial turmoil induced” volatility. 

 

3.5 Further Accentuated Volatility: Financial Crises 

 

The financial crisis of 2008 crippled economies in its wake, and pushed the world into a global 

recession. The crisis shook the very basis of financial market efficiency. Furthermore, there 

exists a distinguishable pattern during financial distress. These patterns are seen in returns and 

volatility of differing assets of the same type (e.g. stocks listed on the same exchange) and 

different markets are biased in moving together (Bauwens, Laurent & Rombouts, 2006:79; Poon, 

2005:8). Numerous studies have found that the correlation between asset volatilities is stronger 

than that of asset returns and that both volatility and return correlations tend to increase during 

bear markets and financial crises (Longin & Solnik, 1995; Kaminsky & Reinhart, 1998; Maniya 

& Magnusson, 2010). A stock portfolio‟s second moment interdependencies therefore tend to 

become noisier during financial distress, not because of riskier stocks, but rather unstable 

unsystematic (market) conditions. Volatile market conditions therefore exposes a stock portfolio 

to harsher volatility circumstances than would otherwise be possible if the stocks only impacted 

on each other, therefore, positive co-integration.  
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3.6 Volatility 

 

It is generally accepted that financial volatilities are co-integrated (and therefore tend to move 

together) over time across assets and markets (Bauwens, Laurent & Rombouts, 2006:79; Poon, 

2005:8). Although numerous studies have been done within the field of market volatility spill-

over effects, less have been performed on the asset‟s side.
85

 Furthermore, there is a huge volume 

of literature on modelling daily volatility, and far less on modelling intra-daily volatility (Engle 

& Sokalska, 2012:56).  

 

Co-integrating volatilities between markets have been tested in numerous studies, of which some 

are mentioned. So far most studies of first and second order interdependencies (return and 

volatility spill-over effects) using an aggregate shock (AS) model have focused on inter-market 

contagion effects. For example, Lin, Engle and Ito (1994) used intra-daily data in an AS model 

to analyse the international transmission mechanism of volatility and returns between stocks 

listed on the New York Stock Exchange and the Tokyo Stock Exchange and find limited lagged 

contemporaneous spill-over effects from New York to Tokyo.
86

 Koutmos and Booth (1995) also 

tested spill-over effects between the New York Stock Exchange and the Tokyo Stock Exchange, 

further including the London Stock Exchange. They utilised a multivariate E-GARCH to model 

how quantity and quality of news affects stock prices across markets and found significant 

volatility spill-over effects between these markets.
87

 The significant finding was that bad news 

created greater sensitivity within markets. A multivariate E-GARCH model is also used by 

Christofi & Pericli (1999) to test volatility spill-over effects between five Latin American equity 

markets. Other examples include spill-over effects between European equity markets (Koutmos, 

1996), and Asian equity markets during the 1997 Asian Financial Crisis (In, Kim, Yoon & 

Viney, 2001). Kanas (1998) also made use of an E-GARCH model to test for volatility spill-over 

effects between the three largest European equity markets before and after the 1987 stock market 

crash. It was found that volatility spill-over effects essentially doubled during the post-crash 
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  Kearney and Patton (2000) and Karolyi (1995) exemplify such studies. See also Lin, Engle and Ito (1994), 

NG (2000), Worthington and Higgs (2004), and Piesse and Hearn (2005) to name but a few. 
86

  Three models were used to test for contemporaneous spill-overs. These were a GARCH-M model, an AS 

model, and a single extraction (SE) model. The GARCH-M and AS models performed similarly, and were 

both superior to the SE model. 
87

   A multivariate E-GARCH framework eliminated several problems associated with a univariate framework. 

For instance, efficiency of repressors and the impact of asymmetry are improved. 
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period. Finally, Piesse and Hearn (2005) tested the transmission of volatility returns between 

Sun-Saharan African countries. Using a univariate E-GARCH model they conclude that 

volatility in the South African market is affected more by bad news than positive news and these 

effects remain persistent throughout the study.
88

 These studies have shed light on the 

transmission of volatility between markets. However, this particular study aims to shed light on 

the transmission between stocks listed on the same exchange. The focus will be on a 

microstructure level rather than on a macrostructure level (as was the case in the studies 

mentioned above), particularly on intraday volatility spill-over effects between stocks listed on 

the JSE top-40 in the two years following the 2008 financial crisis. However, in order to 

understand volatility transmission between stocks listed on the same exchange, knowledge of the 

modelling of volatility is needed. 

 

The modelling of volatility has become of cardinal importance in finance and effective risk 

management. Volatility and return dynamics affect how various economic variables react to 

changing conditions. Portfolio managers, for example, consider the volatility of a given stock 

before adding it to a portfolio. This results of such an pre-emptive volatility analysis would thus 

be channelled back to rebalance the portfolio for optimal gains. However, an in-depth 

understanding of return volatility requires a better understanding of the price process of stocks 

within the financial microstructure. Therefore, traditional methods of portfolio management must 

firstly be considered for effective return volatility measurement. 

 

3.6.1 Beta and volatility spill-over effects 

 

Portfolio managers have long been familiar with the efficient market hypothesis (EMH) where a 

well-diversified portfolio with a unit correlation with the market is considered entirely hedged 

against unsystematic risk, in other words, a portfolio with a beta equal to one. However, 

systematic risk still remains even after fully diversifying. In this regard volatility within and 

between stocks in a portfolio impacts on the profitability of the portfolio, as well as the 

portfolio‟s overall risk profile. Since portfolio managers in smaller economies such as South 

Africa are limited in their choices of stocks, it becomes increasingly difficult to fully diversify a 
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  The Sub-Saharan countries include Botswana, Ghana, Kenya, Malawi, Mauritius, Namibia, Nigeria, South 

Africa, Zambia and Zimbabwe.  
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stock portfolio given volatility spill-over effects between stocks listed on the same exchange. 

Such spill-over effects become more prevalent during times of financial distress. Of particular 

interest are the intraday volatility spill-over effects between stocks, and whether considering this 

indicator of volatility provides a clearer picture for the effective rebalancing of a stock portfolio 

(and therefore a risk-return trade-off) than the traditional market beta risk measurement on its 

own. 

 

3.6.2 Measuring volatility 

 

Understanding volatility plays an imperative role in effectively pricing assets and securities, 

diversifying portfolios and hedging portfolio risk (Harju & Hussain, 2011:82). This is especially 

true when considering that stock portfolios are prone to downside volatility when financial 

markets are in turmoil. It is therefore not surprising that a large body of research has been 

devoted to understanding the financial market microstructure, with special emphasis on intraday 

stock returns (see Tse & Yang, 2011). Volatility estimates on an intraday level is especially 

useful to evaluate risk of slow trading or as an additional measure of time-varying liquidity 

(Engle & Ferstenberg, 2007). However, the most prevalent use of intraday volatility estimates is 

to optimise strategies for placing limit orders or to schedule trades (Engle & Sokalska, 

2012:56).
89

 

 

3.6.2.1  Using intraday data 

 

The past few decades have seen rapid development in information technology and storage 

capacity, which enabled data to be collected and analysed at extremely high frequencies (Poon, 

2005:10). In the financial market setting this is especially the case with the more prevalent 

availability and use of intraday data. Using intraday (high frequency) data may expose new 

information about a time series that is not observable in lower data aggregations (Harju & 

Hussain, 2011:84), and has therefore provided a means for more accurate volatility estimates 

(Poon, 2005:10).  
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  The literature provides adequate evidence that volatility is an important factor influencing order submission 

strategies (see Ellul, Holden, Jain & Jennings, 2007; Griffiths, Smith, Turnbull & White, 2000). 
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Lopez (2001) shows, by using daily squared returns, that the volatility estimator, for forecasting 

purposes, is exceedingly imprecise.
90

 The use of daily return data (as opposed to intraday data) to 

estimate daily volatility will generate a specifically noisy volatility estimator. This is due to the 

reality that most financial data is characterised by non-normality and therefore an asymmetric 

distribution (Poon, 2005:12).
91

 A volatility estimator of daily squared returns leads to extremely 

low    values and weakens the conclusions from such inference (Anderson & Bollerslev, 1998; 

Christodoulakis & Satchell, 1998). Caution is required in empirical findings that report such a 

noisy volatility estimator. However, by using an average of intraday squared returns, inference is 

improved (Anderson & Bollerslev, 1998; Blair, Poon & Taylor, 2001; Fuertes, Izzeldin & 

Kalotychow, 2009:5).  

 

Blair, Poon and Taylor (2001) report a three- to fourfold increase in    when 5-minute intraday 

squared returns are used to proxy return volatility instead of daily squared returns.
92

 Figure 3.1 

illustrates this difference. It shows the volatility estimates over a 7-year period stretching 

between January 1993 and December 1999. These two graphs look similar but show a clear 

reduction in noise when intraday data is used as the return volatility estimator. 
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  Using daily squared returns, Lopez (2001), shows that   
  is an imprecise estimator of   

  (although 

unbiased). In the results   
  was found to be 50% greater or smaller than   

  for about 75% of all 

estimations. 
91

  Most financial data is characterised by high kurtosis (leptokurtosis) which leads to fat-tailed distributions 

(Maniya & Magnusson, 2010:10). 
92

  The study conducted 1-day-ahead volatility forecasts based on historic return volatilities. 
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Figure 3.1 S&P100 daily volatility for the period from January 1993 to December 1999 

(source: Blair, Poon & Taylor, 2001:32). 

 

(a) Conditional variance proxied by daily squared returns. 

 

 

(b) Conditional variance derived as the sum of intraday squared returns. 
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In figure 3.1 the light grey line showcases the conditional variance, with standard deviation 

greatly reduced when the sum of intraday squared returns is used. However, for forecasting 

purposes, conventional modelling of intraday volatility was found to be unsatisfactory at the 

Olsen conference on High Frequency Data Analysis in Zurich in March 1995 (Engle & Sokalska, 

2012:55).
93

 Estimation of conventional intraday models for different intraday frequencies gives 

forecasting parameters that are unsatisfactory (Anderson & Bollerslev, 1997). These frequencies 

are not consistent with theory as proposed by Drost and Nijman (1993). The reason for these 

inconsistencies is the pronounced intraday pattern in stock returns and trading activity (Engle & 

Sokalska, 2012:55). These daily patterns indicate that there is great deal of information that is 

enclosed within intraday data (as opposed to larger data intervals), and the ability to utilise such 

information will only be beneficial to portfolio managers. The use of intraday data (or tick data) 

has been seminal in the management of portfolios (Anderson & Bollerslev, 1998). The specific 

timing of transaction events in a period of time (using intraday data as opposed to daily data) is 

therefore a significant economic variable which needs to be modelled in order to provide 

reasonable information regarding return volatility (Cai, Kim, Leduc, Szczegot, Yixiao & Zamfur, 

2007:1). Transaction timing of securities and the volatility it implies is therefore an important 

study in the field of portfolio management.  

 

3.6.2.2  Measuring return volatility 

 

As mentioned previously, the use of daily squared returns delivers inferior statistical inference 

potential when compared to intraday squared returns (known as realised volatility) due to 

excessive noise.
94

 The use of the latter, high frequency, data is adequate in modelling volatility 

(Merton, 1980). In more empirical terms, if the log price process is semi-martingale, then the 

increment of its quadratic variation over a specified time interval can be consistently estimated 

by its realised volatility (Protter, 2004). In particular, the ARCH type models, together with the 
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  Volatility is conventionally modelled using a GARCH framework (Engle, 1982; Bollerslev, 1986). 
94

  Realised volatility refers to the volatility estimate calculated using intraday squared returns at short 

intervals; normally 5 to 15 minutes (Poon, 2005:14). 
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majority of time series volatility models, are squared return models, thus utilising realised 

volatility (Poon, 2005:11).
95

  

 

There are various other proxies for measuring volatility because, unlike prices and returns, the 

volatility process is unobserved, even ex post (Fuertes, Izzeldin & Kalotychow, 2009:2). Various 

studies suggest measuring volatility directly from absolute returns because it provides models 

that are more robust against asymmetry and nonlinearity (Davidian & Caroll, 1987; Ding, 

Granger & Engle, 1993; Ederington & Guan, 2000). However, using absolute returns exposes the 

dependence structure to particularly more serial correlation than the squared return. This 

phenomenon was dubbed the “Taylor effect” as it was found that absolute returns of speculative 

assets have significant serial correlation over long horizons (Taylor, 1986). Furthermore, 

absolute returns contain a significant number of measurement errors and this impedes reliable 

inference (see Chan & Fong, 2006). Other studies on intraday volatility extend on the GARCH-

framework by including an additional augmented regressor that captures intraday information.
96

 

These financial market microstructure theories are usually tested on an intraday transaction-by-

transaction basis in order to improve the modelling of the moments of the return distribution (Cai 

et al., 2007:1).  

 

The main focus of the above-mentioned models is to bring normality to the return distribution. 

However, economic time series exhibit times of unusually high volatility followed by periods of 

tranquil volatility (Asteriou & Hall, 2007:249). Squared returns exhibit significant serial 

correlation although it appears roughly uncorrelated (Mandelbrot, 1963; Fama, 1965). This is 

also the case with stock return volatility within a trading day where daily open return volatilities, 

and to some extent the closing return volatility, is more volatile than the period between these 

boundaries (Bollerslev, 1986).
97

 Analysing the microstructure of stock returns is central to 

further the understanding of economics and portfolio management, especially during times of 

financial distress. This creates an environment where ARCH-type models are used to model the 

                                                           
95

  Engle (1982) introduced the first ARCH model. From his seminal work various other ARCH-type models 

were conceptualised, such as GARCH (Bollerslev, 1986), E-GARCH (Nelson, 1991), TGARTCH 

(Zakoian, 1994), etc. 
96

  Examples of the intraday augmented regressor include daily high-low price range (Parkinson, 1980; Taylor, 

1987), the number of intraday price changes (Laux & Ng, 1993), daily trading volume (Bessembinder & 

Seguin, 1993) and the standard deviation of intraday returns (Taylor & Xu, 1997). 
97

  This phenomenon is known as volatility clustering. 
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return volatility because such models are meticulously suited to deal with the variance of such 

time series (Asteriou & Hall, 2007:249). In addition, as stated earlier, ARCH-type models are 

squared return models. This study therefore focuses not on the unconditional variance of stock 

returns, but rather the conditional variance using intraday squared returns as a proxy for 

volatility. It is the price process of stocks within an intraday environment that is of concern in 

this study, especially the spill-over effects between stocks during certain times in the day. In 

order to estimate these spill-over effects, intraday stock patterns (price formation) need to be 

identified. 

 

3.6.3 The price process of stocks 

 

Market microstructure analysis is important in discerning the interaction between trading 

procedures and security price formation, because price formation is related to a security‟s return 

volatility (Tian & Guo, 2007:289). Numerous empirical studies have found that daily open return 

volatilities are usually higher than close volatilities, with flattened volatility in between the daily 

open and close of a security.
98

 This is the typical „U‟ shape volatility distribution first published 

by Wood, McInish and Ord (1985). Their data consisted of intraday returns of stocks listed on 

the New York Stock Exchange (NYSE) for the periods of September 1971-February 1972 and 

the calendar year of 1982, and the results are shown in figure 3.2. 
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  See for example Wood, McInish and Ord (1985), Schreiber and Schwartz (1986), Anderson and Bollerslev 

(1998), Areal and Taylor (2002), Poon (2005) and Tian and Guo (2007). 
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Figure 3.2 Standard deviation of NYSE returns across days (by minute) (source: Wood, 

McInish & Ord, 1985:727). 

 

 

 

The higher open volatility was first explained via three general views, namely: i) differing 

trading mechanisms between the opening and closing of a trading day (Amihud & Mendelson, 

1987), ii) the monopoly power of the specialist (Stoll & Whaley, 1990), and iii) the long halt 

(non-trading period) before the market opens (Amihud & Mendelson, 1991). However, the 

highly volatile opening price of intraday returns is not the result of trading mechanisms (such as 

call auction) but rather the combined effect of accumulated overnight information and the trading 

halt effect (Tian & Guo, 2007:290). The end of the trading day is volatile for a different reason – 

where traders seek to close some of their positions that may be exposed to further overnight 

information (Ozenbas, Pagano & Schwarts, 2010:45). These intraday patterns therefore originate 

from differing behaviour of traders during certain periods of the trading day (Wang, Yamasaki, 

Havlin & Stanley, 2006:2). An intraday volatility pattern does not essentially link higher 

volatility to a specific driver, but does reveal the price discovery process of stock returns (Tian & 

Guo, 2007:296). In today‟s highly complex markets, data that captures such behaviour is 
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becoming more readily available, painting a clearer picture about how new information and 

various microstructure factors affect the dynamics of stock returns and volatility within a trading 

day. Stock prices over longer periods, such as a week or a month, react mostly to the arrival of 

new information, whereas in short periods, such as daily or intra-daily, stock prices are also 

influenced by various microstructure factors (Ozenbas et al., 2010:45).
99

 More specifically, 

macro-economic and institutional changes contribute to lower frequency data volatility, whereas 

trading pressure and turbulence prompt volatility in high frequency data (Daly, 2008:2379).  

 

It is the arrival of new information pertaining to a stock‟s fundamentals that is the most 

important factor affecting the market price of a stock, and the sudden arrival of such information 

results in volatility clustering in high frequency data (Daly, 2008:2379). According to the 

mixture of distribution hypothesis (MDH), volatility (or the variance in returns) is an increasing 

function of arrival information.
100

 Given the dynamics of this hypothesis, it is reasonable to 

assume that the volatility spill-over effects between stocks are attributable to information spill-

over effects. When there is an interdependent relationship between stocks, these 

interdependencies will be an increasing function of arrival information relating to the market 

(Kitamura, 2010:159). Of particular interest are asymmetric information influences, which is 

especially prevalent during times of financial turmoil. The body of literature agrees that negative 

past information cause larger current volatility than positive past information.
101

 This 

phenomenon is known as the “leverage effect” (Christofi & Pericli, 1999:81).
102

 Furthermore, 

volatility asymmetry increases when the fall in a given stock price is larger.
103

 In addition, 

volatility within stock price returns can be traced back to an initial information flow (Karpoff, 

1987). This links with the view that overnight information flows, at a microstructural level, cause 

higher volatility within larger capitalisation stocks, which then leads smaller capitalisation stocks 

in price discovery (Ozenbas et al., 2010).  
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  Microstructural factors such as transaction costs, blockages, complexities of price discovery and stock 

volatility spill-overs. 
100

  See Clark (1973) and Tauchen and Pitt (1983). 
101

  For example see Mayers (1972),  Christofi and Pericli (1999),  McAleer and Veiga (2008),  Daly (2008), 

and Kitamura (2010). 
102

  According to the leverage effect, negative stock returns yield a higher debt-to-equity ratio, and therefore 

higher volatility (Black, 1976; Christy, 1982). 
103

  The use of realised volatility causes a similar, albeit weaker, relationship in volatility (Poon, 2005:8). 
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Ozenbas et al. (2010) found that when the market opened, price volatility was worse and relative 

trading was higher for larger capitalisation stocks than smaller capitalisation stocks. This is 

mainly due to the overnight non-trading period. No such relationship existed at the end of the 

trading day. Furthermore, it was also reported that larger capitalisation stocks lead smaller 

capitalisation stocks in price discovery during market opening; providing evidence of volatility 

spill-over effects from larger capitalisation stocks to smaller capitalisation stocks. Again, no such 

relationship existed during market closing because traders only accentuate volatility by trying to 

close out their own positions before the overnight non-trading period. Intraday volatility is 

therefore a complex variable, but the measurement and understanding thereof leads to greater 

efficiency of portfolio management. Such efficiency is especially important when considering 

that a period of financial distress is characterised by significantly higher volatility within stock 

markets. 

 

3.6.4 The effect of financial crises 

 

The globally devastating financial crisis of 2008 has left economies severely damaged, especially 

those of the United States and Europe. Emerging economies too, have suffered increased 

financial turbulence in the wake of increased global financial integration (Boshoff, 2006:61). 

Due to the emergence of economic shocks emanating from one country, investors in another opt 

to rebalance their portfolios in the wake of perceived macro-economic risk factors, that become 

more volatile in the wake of perceived contagion effects. This creates a situation where a non-

crisis country faces downward pressures on asset prices because investors are risk-averse, 

resulting in a crisis being transmitted from one country or market to another (Boshoff, 2006:65). 

 

The crisis has stunned the very basis of modern-day investment theory, which believed the 

doctrine that financial markets were mostly efficient. Although inefficiency within a crisis is not 

a given, the general investment public perceives volatility as an indicator of market disruption 

during a crisis, resulting in unambiguously priced stocks and equity markets not functioning 

properly (Daly, 2008:2378). Critics have gone so far as to suggest that the efficient market 

hypothesis (EMH) was largely responsible for the 2008 crisis (Malkiel, 2011:1). The EMH does 

not imply that assets are always “correctly” priced, because prices deviate from their 

fundamentals, but that all investors accept this “deviated price” as the most efficient (Malkiel, 
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2011:6; Reilly & Brown, 2012:140). The extent of “deviation” is uncertain, and this is known as 

a price bubble. A stock portfolio‟s second moment interdependencies therefore tend to become 

noisier during financial distress, not because of riskier stocks, but rather because of unstable 

unsystematic (market) conditions. Volatile market conditions therefore expose a stock portfolio 

to harsher volatility circumstances than would otherwise be possible if the stocks only impacted 

on each other. However, after a price bubble bust, there exists a distinguishable pattern during 

financial distress. It has been noted that the returns and volatility of differing assets of the same 

type (e.g. stocks listed on the same exchange) and different markets are inclined to move 

together (Bauwens, Laurent & Rombouts, 2006:79; Poon, 2005:8). Stock prices do overreact, 

providing evidence of substantial weak form market inefficiencies (De Bondt & Thaler, 1985).
104

 

Furthermore, stock prices are acknowledged to exhibit irrational price movements (known as 

fads), especially during an economic crisis (Cho & Yoo, 2011:246). However, stock return 

volatility across different time frequencies, different industries and different countries exhibited a 

short-lived, large burst of volatility during late-2008, which lasted for less than a year (Schwert, 

2011:18).
105

 A positive relationship between high market volatility, economic recessions and 

financial crises therefore does exist (Daly, 2008:2379). Considering all these influences means 

that volatility of stock returns encompasses a great deal of information. However, in order for 

such information to be discerned, stock returns (beta) and return volatility (spill-over effects) 

must somehow be empirically modelled for proper inference. 

 

3.7 From Beta to Spill-over Effects 

 

The CAPM helped in decomposing the returns of a portfolio into components that are of concern 

to portfolio managers (see Merton, 1973). These components are the market return and the risk 

involved in realising a return on the portfolio (beta). Studies done by Campbell (1996) and Chen 

(2003) take one step further by including additional risk factors for explaining portfolio returns. 

Firstly, Campbell (1996) reveals that additional relevant risk factors are market excess return and 

innovations in variables that predict market excess returns. The variables he uses to capture 

volatility in returns are the aggregate dividend yield (DIV), default premium (DEF), term 

premium (TERM) and the one-month Treasury bill yield (RF). A multifactor “CAPM”, which 
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  This study marked the start of behavioural finance (Sewell, 2011:5). 
105

  The countries include the U.S., U.K. and Japan. The frequencies include monthly, daily and intradaily.  
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includes such innovations (shocks) in variables, significantly increases the explanatory power in 

the cross-section of average portfolio returns (Petkova, 2006).
106

 However, there are some 

difficulties associated with such multifactor models.
107

 Volatility in returns only captures one 

dimension of portfolio returns. Volatility in return variance also holds invaluable information 

regarding portfolio returns, especially when there are volatility spill-over effects from the market 

or other sources. With this in mind, Chen (2003) extends on Campbell's work by introducing 

fluctuations in market volatility, and its spill-over effects to a portfolio of stocks, as an additional 

measure. He calls this new risk factor the aggregate volatility shock (AVS), which measures the 

market volatility spill-over effects to stocks for a given portfolio. Using a GARCH (1,1) model, 

Chen (2003) found that stock return variance that co-vary positively with this shock earn low 

average returns, while negative covariance with AVS have high expected returns. Misirli (2011), 

in turn, extends on Chen‟s work by estimating an E-GARCH (1,1) model to measure market 

volatility spill-over effects, because E-GARCH models capture asymmetric effects between 

positive and negative market returns. The essence of such asymmetric issues has been discussed 

by Michayluk et al. (2006); however, measuring such effects is a culmination of numerous 

empirical research projects in various fields. 

 

Measuring volatility spill-over effects between markets has garnered substantial study over the 

years, even before the widespread use of ARCH-type models. Eun and Shim (1989) used a 

vector autoregressive (VAR) system to test for spill-over effects between nine developed equity 

markets, and found substantial evidence of international market integration. However, ARCH-

type models, after its introduction by Engle (1982), has gained widespread recognition in its 

ability to capture volatility dynamics (McAleer & Veiga, 2008:2). For example, Wahab (2012) 

used an M-GARCH model to study asymmetric volatility spill-over effects from the U.S. to 

several European markets. Booth, Martikainen, and Tse (1997), and later Krause and Tse (2012), 
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  A multifactor model is also known as an arbitrage pricing theory (APT), which was first developed by 

Ross (1976). Researchers have advocated that the CAPM is flawed with respect to explaining expected 

returns, and that a multi-factor model such as the APT may provide a better description (Laubscher, 

2002:136). The APT advocates that returns are a function of various macroeconomic risk factors - and not 

just beta (Campbell, Lo and MacKinlay 1997:217; Radcliffe 1997:292). See chapter 2, section 2.3. 
107

  Problems which include: i) risk factors are not identified, ii) it is descriptive by nature (i.e. explaining what 

is and not what should be), and iii) it does not take into account that risk factors may cause stock returns to 

change rapidly (Jones 1998:247; Arnott 1993:16). 
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both use an E-GARCH model to show that volatility transmission among closely-related markets 

(former) and ETFs (later) is asymmetric in nature, thus exhibiting significant spill-over effects.  

 

The asymmetric volatility phenomenon (AVP) exhibited by markets and financial assets is well 

documented in the financial literature (see Bekaert & Wu, 2000). Most studies on the subject 

construe that the AVP is caused by either “leverage effects,” or “volatility spill-over effects”.
108

 

It is for this reason that the inclusion of an asymmetric parameter is seminal for capturing 

volatility spill-over effects in stock indices and financial assets (Bae & Karolyi, 1994). The wide-

spread use of ARCH-type models is specifically adapted to capture such asymmetric spill-over 

effects (McAleer & Veiga, 2008:2). In a study done by Liu, Chiang, and Cheng (2012) on the 

S&P 500 ETFs for testing spill-over effects, it was found that the E-GARCH model was the most 

appropriate of four GARCH specifications used. This corroborates Kim and Kon‟s (1994) 

findings that demonstrate that Nelson's (1991) E-GARCH model is most descriptive with regard 

to capturing spill-over effects between financial assets. Moreover, Engle and Ng (1993) and 

Stevenson (2003) provided support for the E-GARCH model performing remarkably well in 

capturing asymmetric volatility effects. Furthermore, the aggregate shock (AS) model utilises an 

E-GARCH model in a two-step process. Tamakoshi and Hamori (2013) made use of a two-step 

E-GARCH model (similar to the aggregate shock model) to capture volatility spill-over effects 

between sovereign and banking sector credit default swaps.
109

 In addition, Hamao et al. (1990), 

Park (2001), Ng (2000), Christiansen (2003) and  Cadarajat and Lubis (2012) used an AS model 

to analyse volatility and mean spill-over effects between financial assets.  

 

3.8 Modelling Return Volatility and Spill-over Effects 

 

The analysis of the financial market microstructure in turn created a need for the development of 

volatility models to accurately estimate large covariance matrices (McAleer & Veiga, 2008:3).
110
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  See Christie (1982), Pindyck (1984), French, Schwert, and Stambaugh (1987), Campbell and Hentschel 

(1992) and Wu (2001). 
109

  The only difference being causality tests using weighted cross correlations (Tamakoshi & Hamori, 

2013:263). 
110

  For financial application a portfolio of assets and risks is usually constructed, and subsequently assessed 

using one of several multivariate models, which specify the risk of one asset as depending dynamically on 

its own past risk as well as on the past risk of other assets. See Li et al. (2002) for a survey of theoretical 

developments for conditional volatility models, and McAleer (2005) for an examination of a variety of 

univariate and multivariate, conditional and stochastic, financial volatility models. 
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Because of the particular prevalence of distinct intraday volatility patterns, which underlie most 

of the financial market microstructure literature, higher-frequency returns exemplify highly 

persistent conditionally heteroskedastic elements together with discrete information arrival 

effects (Anderson, Bollerslev & Das, 2001:306). For a greater understanding of microstructure 

elements and spill-over influences, such effects must be modelled.  

 

The modelling of heteroskedasticity has its roots in the Autoregressive Conditional 

Heteroskedasticity (ARCH) model proposed by Engle (1982). The wide-spread use of ARCH-

type models is based on their ability to capture several dynamics of financial returns, including 

time-varying volatility, persistence and clustering of volatility, asymmetric reactions to positive 

and negative shocks and therefore volatility spill-over effects (McAleer & Veiga, 2008:2). 

Volatility spill-over effects between different assets refer to causality in return variance, and 

have seen a great deal of study in the field of financial economics (Kitamura, 2010:158).
111

   

 

3.8.1  The ARCH-family models 

 

Volatility clustering, squared returns, asymmetry and correlation within a stock portfolio on an 

intraday basis are conjoint in a particular family of models that deal with the prevalent 

heteroskedastic elements present in such data. As mentioned before, higher-frequency returns 

exemplify highly persistent conditional heteroskedastic elements together with discrete 

information arrival effects (Anderson, Bollerslev & Das, 2001:306). To start off, an investor who 

buys a stock at time   and sells it in time    would not be satisfied in only knowing the rate of 

return, nor will unconditional heteroskedasticity be of use. What is of importance is the 

conditional heteroskedasticity over the holding period as it is an estimate of the riskiness of the 

stock (Asteriou & Hall, 2007:250).
112

  

 

3.8.2  Engle (1982): ARCH 

 

Traditional econometric models typically assume unconditional heteroskedasticity (Maniya & 

Magnusson, 2010:9). Therefore, time series data needed to be transformed to exhibit constant 
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  Causality in return variance is the impact of any previous volatility of a particular asset on the current 

volatility of another asset. 
112

  Unconditional heteroskedasticity is defined as long-run forecast variance and is therefore treated as 

constant. Conditional heteroskedasticity is short-run variance and therefore mainly non-constant. 
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variance in order to be modelled. Engle (1982) present a model that did not assume constant 

variance, but rather modelled the prevalent conditional heteroskedasticity in time series data.
 113

 

The model proposes that the variance of the residuals at time   depends on past squared error 

terms. Consider the simple model: 

 

                (3.5) 

 

where    is a     vector of explanatory variables and   is a     vector of coefficients. 

Normally    is assumed to be independently distributed with a mean of zero and constant 

variance    . Mathematically shown as: 

 

           (    )   (3.6) 

 

Engle‟s idea starts by allowing the variance of the residuals (  ) to depend on its own past 

history, permitting the modelling of heteroskedaticity as follows: 

 

   
           

    (3.7) 

   

which is the basic ARCH( ) process with    representing the effect of the one-lag squared error 

on present variance. The ARCH( ) model simultaneously models the mean and variance of the 

time series with the following specification: 

 

              

  |          (    ) 

(3.8) 

 

             
    (3.9) 
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  Robert Fry Engle III won the 2003 Nobel Memorial Prize in Economic Sciences, sharing it with Clive 

Granger, for their seminal research in modelling time-varying volatility in economic time series (ARCH). 
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where    is the information set.
114

 Equation 3.8 is called the mean equation and equation 3.9 the 

variance equation. The ARCH( ) model states that when a shock happens in period    , it is 

more likely that the value of    will increase (in absolute terms due to the squares). That is, when 

    
  is large/small,    also tends to be large/small. Conditional heteroskedasticity can depend on 

more than one lag. In general the ARCH( ) process can be presented as: 

 

             
        

          
  

    ∑      
 

 

   

                                   

 

(3.10) 

 

In both these cases the estimated coefficients of  ‟s have to be positive for positive variance. The 

ARCH( ) model is covariance stationary when the sum of the autoregressive parameters is less 

than one (Poon, 2008:38). This model is attractive because it asserts that a large shock in the 

previous period is expected to cause considerable volatility in the current period (Maniya & 

Magnusson, 2010:10). ARCH models are therefore versatile on the grounds of capturing 

important stylised facts of financial data (Daly, 2008:2381).
115

 But, ARCH models do exhibit 

some weaknesses. For example, there is no sure-fire way of determining the number of lags to 

include, and ARCH models often yield negative estimates of the   ‟s (Asteriou & Hall, 

2007:260).
116

 For this reason ARCH models are used infrequently. To resolve these shortfalls, 

Bollerslev (1986) developed the Generalised ARCH (GARCH) model. 

 

3.8.3  Bollerslev (1986): GARCH 

 

One of the shortcomings of the ARCH process was that it looked more like a moving average 

specification than an auto regression (Engle, 1995). This is where the idea of including the 

lagged conditional variance terms as autoregressive terms sprouted, starting the family of 

GARCH models (Asteriou & Hall, 2007:260). The general GARCH(   ) model of Bollerslev 

(1986) can be mathematically described as: 

 

                                                           
114

  Note that the notation of the variance has changed from   
  to    for ease of representation. 

115
  These stylised facts were described in section 3.2 and 3.4. 

116
  Sometimes an immense number of lags are required to capture dependence in the conditional variance 
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  |          (    ) 

(3.11) 

 

 

      ∑  

 

   

     ∑      
 

 

   

   
(3.12) 

 

which states that the value of the variance scaling parameter,   , now depends both on past 

values of the shocks (    
 ) and on past values of itself (    ). Once again the estimated 

coefficients of  ‟s and   have to be positive for positive variance. For     the model is 

reduced to an ARCH( ) model. The GARCH(   ) is covariance stationary where: 

 

 

∑  

 

   

 ∑  

 

   

     
(3.13) 

 

The simplest GARCH is the GARCH(   ) model of which the variance equation can be given as: 

 

                    
    (3.14) 

 

This model specification has frequently performed well, and is simple to estimate due to only 

having three unknown parameters   ,   and    (Asteriou & Hall, 2007:260). There are many 

alternative specifications that emerged from the GARCH model, one of which, the E-GARCH 

specification developed by Nelson (1991), is employed in this study. 

 

3.9 Methodology 

 

There are three main differences between the E-GARCH model and the standard GARCH 

model. Firstly, GARCH models assume that good news and bad news of similar degrees impact 

volatility in the same way, whereas the E-GARCH model permits good news and bad news to 

impact volatility differently (Daly, 2008:2385). Thus, the GARCH model only assumes that the 

magnitude and not the sign of unpredicted excess returns determines    (Nelson, 1991:349). A 

second limitation of GARCH models is the imposition of nonnegative constraints on the 
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estimated coefficients of  ‟s and  , which ensure that    remains nonnegative for all   with 

probability one (Nelson, 1991:349). This constraint rules out any random oscillatory behaviour 

in the    process. In more familiar speech, GARCH fails to appropriately capture the volatility 

that excess negative returns in financial data causes due to leptokurtosis. Finally, the analyses of 

the persistence of shocks to conditional variance provide a limitation in GARCH modelling. If 

volatility shocks last indefinitely, it may cause the whole term-structure of risk premia to impact 

on investment decisions within long-lived capital goods (Nelson, 1991:349). For instance, in a 

GARCH(   ) model, shocks may persist in one form and die out in another, which may give rise 

to exploding conditional moments for a strictly stationary process (Nelson, 1991:350). 

 

The GARCH model‟s ability to gracefully capture volatility clustering of equity returns makes 

for an ideal setting for testing market volatility patterns (Nelson, 1991:349). However, despite its 

popularity in financial application, ARCH and GARCH models are incapable of capturing 

essential characteristics of financial and economic data. The most captivating of these 

characteristics being the leverage or asymmetric effect (Daly, 2008:2384).  

 

As stated before, unconditional price or equity returns tend to exhibit fatter tails than a normal 

distribution, in the form of weak skewness and excess kurtosis (Moix, 2001:62). The E-GARCH 

model formulated by Nelson (1991) is one of the more successful and effective attempts to 

model excess conditional kurtosis, which is based on a generalized exponential distribution 

(Daly, 2008:2394). Nelson‟s E-GARCH model aims to improve on Bollerslev‟s GARCH model 

by eliminating some of the restrictive shortcomings in capturing changes in the volatility of stock 

market returns (Nelson, 1991:347). 

 

3.9.1 Nelson (1991): E-GARCH 

 

Nelson starts of by stating that if    is to be the conditional variance of    given information at 

time  , it must be non-negative with probability one. GARCH models accomplish this by 

imposing a nonnegative constraint on the estimated coefficients, making    a linear combination 

(with positive weights) of positive random variables (Nelson, 1991:350). Nelson uses an 

alternative natural device for ensuring that    remains non-negative, by making       linear in 

some function of time and lagged   s. The E-GARCH model stipulates conditional variance in 
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logarithmic form. Therefore, no nonnegative constraint is required to avoid negative variance. 

The E-GARCH(   ) model‟s variance equation can be given as: 

 

 

        ∑        

 

   

 ∑   (    )

 

   

   
(3.15) 

 

where  (  )  [         (|    |   |    |)] and     . Equation 3.15 can therefore be 

rewritten as: 

 

 

        ∑        

 

   

 ∑[         (|    |   |    |)]  

 

   

 

(3.16) 

 

with: 

 

    
  

√  

   (3.17) 

   

In the above formulation    depends on both the size and sign of   , while    and    are real, 

non-stochastic, scalar sequences. In addition, this process is covariance stationary only if  

∑   
 
      (Poon 2005:41). The term        resolves the sign effect, and   (|    |   |    |) 

establishes the size effect of innovations (both terms having a mean of zero). If the distribution 

of    is symmetric, these components are statistically significant. Over the range       , 

 (  ) is linear in    with slope    , and over the range        ,  (  ) is linear with 

slope    . Thus,  (  ) permits the conditional variance process    
to react asymmetrically to 

rises and falls in stock price. If it is assumed that     and    , the innovation in        

would be positive (negative) when the magnitude of    is larger (smaller) than its expected value. 

Alternatively, if     and    , the innovation in        is now positive when returns shocks 

are negative, and vice versa. The E-GARCH specification therefore captures the stylised fact that 

negative shocks may lead to subsequently higher conditional variance than positive shocks and 

vice versa. 
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In relation to the previously discussed GARCH limitations, E-GARCH provides a solution in 

explaining positive and negative shocks to stock returns. In addition, concerning the second 

limitation, there are no inequality constraints present in equation 3.15 because the    terms can 

be both negative and positive. Thirdly, because the GARCH model suffers from an inability to 

evaluate variance shock persistence, the E-GARCH model improves on this by providing a linear 

process (    ) which is simple to validate for stationarity and ergodicity.
117

 The E-GARCH 

specification further improves on the standard ARCH models since it formulates conditional 

volatility to be a function of both the magnitude and direction of shocks (Samouilhan, 2006:250).  

 

3.9.2 Aggregate Shock model 

 

The AS model follows a two-step procedure in which fitted values for    and    in equations 

3.18 and 3.20 respectively, are obtained. These fitted values are then respectively substituted into 

equations 3.19 and 3.21, before revealing the estimated equations. In the AS model, the 

alternative stock returns in a given portfolio are specified as:  

 

                       (3.18) 

 

where   is the returns of an alternative stock within the same portfolio for period  ;    captures 

the factors that affect returns which are unexplained by the autocorrelation of the current period 

stock returns with the previous period stock returns (persistence or volatility clustering). Thus,    

represents that part of stock returns which cannot be explained based on available public 

information when equity trading is initiated at the start of each period. Stock returns at the same 

period  , can be modelled as: 

 

                       (3.19) 

   

Equation 3.19 includes a coefficient   which is the relationship between the returns on stock   

and the returns on stock  , all of which are within the same portfolio. The error term    now 
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  If shocks to     subside quickly and the deterministic component (  ) is eliminated, then      is strictly 

stationary and ergodic (Nelson, 1991:351). 
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represents the unexplained returns on stock   for period  . An E-GARCH(   ) process is used in 

order to determine the level of volatility spill-over between stock   and stock  . A univariate E-

GARCH approach is followed to eliminate the potential “curse of dimensionality”.
118

 It is 

assumed that the error term    in equation 3.18 is normally distributed with a mean of zero and a 

variance that follows an E-GARCH(   ) process: 

 

 
                       

      

√      

   

|      |

√      

   
(3.20) 

 

where the natural log of the conditional variance for    in period   is a function of the time 

invariable mean reversion value,  , the natural logarithm of the past conditional variance, 

        , as well as the level of the standardised residuals,       √      ⁄ , and absolute value of 

the standardised residuals, |      | √      ⁄ . The subscript   denotes an alternative stock (Stock 

 ).
119

 Finally, it is assumed that the error term on stock   returns,   , is also normally distributed 

with a mean of zero and a variance that follows an E-GARCH(   ) process: 

 

 
                       

      

√      

   

|      |

√      

          
(3.21) 

 

The model specification of the variance of stock   in 3.21 includes an alternative stock (stock  ) 

measure,     , which allows for explicit testing of the relation between stock   volatility and 

stock   volatility. The        term in equation 3.21 is stock  ‟s conditional variance term, and 

denotes the relation between stock  ‟s volatility and stock  ‟s volatility. The inclusion of the 

terms       √      ⁄  and |      | √      ⁄  makes it possible to model the asymmetric volatility 

to past shocks as long as     . If      then negative shocks (bad news/negative past errors) 

will have a larger effect on volatility than positive shocks (good news/positive past errors). When 

    , positive shocks cause a greater effect than negative shocks.  
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  The relatively “smaller” amount of data results in a parsimonious nature of testing, and avoids the large 

data sets that may render multivariate models impractical in empirical applications (McAleer & Veiga, 

2008:4). 
119

  That is all the various alternative stocks included within the same portfolio. 
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3.10 Motivation for E-GARCH in a Univariate Two-Step Process 

 

It should be mentioned that various GARCH-type models have especially been used to model the 

co-varying  movements of volatilities in financial assets (Asai & So, 2012:2). Some of the most 

prevalent models are the diagonal GARCH model (Bollerslev, Engle & Wooldridge, 1988; Ding 

& Engle, 2001) and the BEKK model (Engle & Kroner, 1995) which models conditional 

covariances directly. Other such models also include the M-GARCH model applied by 

Bollerslev (1990) to model short-run nominal exchange rates, the VARMA-GARCH model of 

(Ling & McAleer, 2003). The conditional correlation models are also seen in some seminal 

works; these include the dynamic conditional correlation (DCC) model of Engle (2002), the 

varying conditional correlation (VCC) model of Tse and Tsui (2002), the generalized DCC 

model of Bauwens, Laurent & Rombouts (2006), the generalized autoregressive conditional 

correlation (GARCC) model of McAleer, Chan, Hoti and Lieberman (2008), and the double 

smooth transition conditional correlation (DSTCC) model of Silvennoinen and Teräsvirta (2009), 

in which the assumption of constant conditional correlations and dynamic conditional 

correlations and covariances are relaxed. Finally there are also the generalized orthogonal 

GARCH model of van der Weide (2002) and the matrix E-GARCH model of Kawakatsu 

(2006).
120

 These multivariate specifications have been developed to incorporate the leverage 

effects and fat tails (i.e. asymmetric effects) that are typical characteristics of financial time 

series (Bauwens et. al., 2006).  

 

Multivariate model specifications capturing asymmetric effects, are generally based on either the 

GJR model (Glosten, Jagannathan & Runkle, 1992) or the E-GARCH model (Nelson, 1991), 

whereby positive and negative shocks of equivalent magnitude have dissimilar effects on 

conditional volatility (Asai & So, 2012:3). GJR based models include the VARMA-AGARCH 

model (McAleer, Hoti & Chan, 2009), as well as an asymmetric BEKK model (Kroner & Ng, 

1998). However, Laurent, Rombouts and Violante (2009) tested 16 different multivariate 

volatility models with the DCC and CCC variations, and found that the GARCH-type models 

always outperformed the other models (including GJR specifications). Interestingly, the DCC, 

specifically considers asymmetric effects on volatility and correlation separately (Cappiello, 

Engle & Sheppard, 2006). Nevertheless, this study utilises market beta to capture return 
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  For further details of these models, see the review papers of McAleer (2005) and Bauwens et. al. (2006). 
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correlation, and univariate AS modelling to capture asymmetric volatility co-movement; 

therefore, the need for multivariate specifications (such as BEKK and DCC) becomes less 

parsimonious. A serious restriction of DCC-type models is the assumption of common dynamic 

parameters for correlations across all pairs of stocks; and in the relaxation or absence of such 

restrictions, the number of parameters to be estimated becomes too large for dimensional models 

(Chen, 2011:18).
121

 Too many variables make the estimation of any multivariate GARCH-type 

model too complex and, in cases where the amount of data is limited, completely non-feasible 

(Borovkova & Lopuhaä, 2012). For this reason, individual effects on stock returns cannot be 

estimated accurately using multivariate specifications, and return correlation and volatility spill-

overs need be modelled independently within a univariate framework. 

 

The effect of beta needs to be measured separately in order to distinguish the effect from that of 

volatility spill-over effects. Hecq, Laurent & Franz (2012) suggested that it is more beneficial to 

firstly look at the individual influences a financial asset has on other financial assets prior to 

estimating complex multivariate GARCH-type models. This helps in discovering, and separately 

estimating, the dynamic behaviour certain assets share with one another, which cannot be seen in 

a whole set of assets.
122

 Moreover, univariate E-GARCH modelling in an AS framework is used 

to eliminate the potential “curse of dimensionality”.
123

 Caporin and McAleer (2009) found that 

BEKK models especially suffer from this condition. Multivariate GARCH models utilise a one-

step maximum likelihood estimation (MLE) procedure which jointly estimates variances and 

covariances as opposed to a two-step process in which covariances are estimated after variances 

(Chen, 2011:8).
124

 Estimation of variances and covariances in one-step (which guarantees 

positive semi-definiteness) requires numerous parameters and non-linear estimation, with the 

number of parameters increasing exponentially with the number of assets. It is for minimising 

dimensionality and maximising parsimony that this study utilises a two-step process. In addition, 
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  The DCC model imposes identical   and   coefficients across all the stocks. However, Chen (2011) shows 

that the  -coefficients may vary across pairs of stocks.  
122

  On a side note, Wang and Wu (2012) shows that univariate GARCH-type models allowing for asymmetric 

effects (such as the E-GARCH) are more accurate than multivariate models when used to capture volatility 

in the U.S. energy market. 
123

  The relatively “smaller” amount of data results in a parsimonious nature of testing, and avoids the large 

data sets that may render multivariate models impractical in empirical applications (McAleer & Veiga, 

2008:4). 
124

  Chen‟s (2011) study utilised a univariate two-step procedure, and preferred the use of an E-GARCH model 

to estimate the univariate steps (It was most accurate of several specifications tested). 
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using only a two-step E-GARCH process provides empirical results that can relate to most 

studies done on univariate volatility spill-over modelling. Lastly, the E-GARCH model presented 

by Nelson (1991) still remains “one of the most popular GARCH-type models for modelling the 

volatility of financial time series” (Hafner & Linton, 2013:1). 

 

3.11 Conclusion 
 

Since being presented, the ARCH model has been further developed and refined.  Of particular 

significance is the Generalised Autoregressive Conditional Heteroskedasticity (GARCH) model 

conceptualised by Bollerslev (1986) which includes a fitted variance from the historical variance. 

These models have spurred the development of various other autoregressive conditional 

volatility models, including the E-GARCH model developed by Nelson (1991). The E-GARCH 

model will also form the basis of measuring spill-over effects within the Aggregate Shock (AS) 

Model used in this study.
125

 The E-GARCH model is of particular interest within this study 

because it transforms the „leverage effect‟ into being exponential (rather than quadratic), 

subsequently guaranteeing that the estimates of conditional variance are non-negative (Asteriou 

& Hall, 2007:268). This causes the E-GARCH specification to be well suited for measuring 

asymmetries, especially in the sense that good news (positive shocks) generates less volatility 

than bad news (negative shocks), and consequently enabling researchers to study first and second 

order interdependencies between return generating assets.  

 

Intraday volatility is not just of cardinal importance for short-term traders, but also long-term 

investors. This is due to brief-time-interval-volatility being an indicator of the efficiency with 

which stock prices are set; and inefficient prices lead to overly expensive execution costs 

(Ozenbas et al., 2010:45). Furthermore, microstructure factors that influence stock price 

volatility dies out in the long-run (Hasbrouck & Schwartz, 1988; Bessembinder & Rath, 2008). 

This study seeks to shed some additional light on this issue by investigating the asymmetric 

transmission of intraday volatility between stocks listed on the same exchange during financial 

distress. This is done by testing for second moment interdependence between stock returns.  
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  As an example of an aggregate shock (AS) model see Lin, Engle and Ito (1994) who used a signal-

extraction (SE) model and an AS model to estimate the extent of return volatility correlation of stock 

indices between Tokyo and New York. 
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Although most studies testing for first and second order interdependencies (return and volatility 

spill-over effects) using the AS model have focused on inter-market contagion effects, this study 

will focus on a microstructure changes rather than looking at a macrostructure level. This is done 

for the purpose of providing more relevant information when rebalancing a stock portfolio. If 

significant volatility spill-over effects are found to exist between stocks on an intraday level, a 

comparison to market beta will be made to see if there is any relationship between return co-

movement and volatility interdependencies. The performance of the adjusted portfolio will be 

constructed to be the same as the original portfolio, which was equally weighted, and its market 

  measured. In conclusion, this study attempts to test whether it is possible to construct a less 

risky portfolio by additionally limiting volatility spill-over effects between stocks in the wake of 

turbulent stock exchange conditions, rather than using only market beta as a risk measure. 
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“Never invest in any ideas you can’t illustrate with a crayon.” 

~ Peter Lynch, US fund manager 

 

CHAPTER 4 

 

Chapter 2 gave an account of return dynamics, while chapter 3 provided an account of volatility 

dynamics. Both these chapters presented a measure for capturing each of these dynamics, and 

why it is important for a portfolio manager to use such measures in aiding portfolio stock 

selection. It is only fitting to test whether these measures can be used as compliments to each 

other, and therefore provide additional information to a portfolio manager who participates in a 

market where conditions, in itself, is volatile. 

 

EMPIRICAL ESTIMATION AND RESULTS 

 

The data used in this study consists of intraday stock returns from five stocks listed on the JSE 

top-40. The five stocks encompass those listed by Anglo-America, ABSA, Bidvest, SABMiller 

and Sasol. The stock price of each of these stocks was refined down to hourly prices for each 

trading day. This allows for eight data points per trading day, as trading starts at 09:00am on the 

JSE, and closes at 05:00pm. These hourly prices are converted into hourly returns, which is 

useful when considering the interpretation of the results that follow. Results are therefore given, 

for example, as average return per hour. 

 

The data for each of these stocks spans a period from the 1
st
 of July 2008 until the 30

th
 of April 

2010. This single period was broken up into 10 lesser periods, which were chosen at random, but 

still providing thorough coverage of the period as a whole. These 10 periods are each two 

months in length. A description of these periods is given in table 4.1. 

 

Table 4.1 Period dates and events. 

 
 Start date End date Significant Events 

Period 1 1 Jul. '08 29 Aug. '08  

Period 2 15 Sep. '08 14 Nov. '08 Lehman Brothers declares insolvency. Thabo Mbeki ousted. 

Period 3 1 Des. '08 30 Jan '09 Dow Jones drops 680 basis points. 
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Period 4 10 Feb. '09 9 Apr. '09  

Period 5 13 Mar. '09 13 May '09 Run-up to Zuma election. 

Period 6 22 Jun. '09 21 Aug. '09  

Period 7 3 Sep. '09 2 Nov. '09  

Period 8 9 Nov. '09 8 Jan. '10 Gill Marcus appointed SARB chair. 

Period 9 11 Jan. '10 10 Mrt. '10 Haiti Earthquake. 

Period 10 1 Mrt. '10 30 Apr. '10  

 

These periods provide a chance to capture volatility spill-over effects for a period just before the 

Lehman Brothers bankruptcy on 15 September 2008, and the subsequent periods thereafter 

(including other global events such as the 2010 Haiti earthquake). In addition, to measure market 

beta, the JSE All Share index (J203) is used. Daily returns on the J203 are estimated using the 

closing price of each day. The same method is then applied for estimating the returns for each 

stock in any given portfolio (for comparability).
126

 Daily beta is utilised because realised 

(intraday) beta is shown to be less persistent and predictable (Anderson, Bollerslev, Diebold & 

Wu, 2004:14).  

 

4.1 The Basic Idea 

 

This study attempts to expand on the research by Markowitz (1959) that concluded that an equal-

weighted portfolio‟s variance should decrease as diversification increases. As mentioned in 

chapter 2 above, Markowitz (1959) also found that portfolios consisting of stocks with 

uncorrelated returns increase its diversification, while the overall risk of the portfolio approaches 

zero. If returns are correlated, an increase in diversification will cause portfolio risk to approach 

“average covariance”, or as Markowitz coined it, “the law of the average covariance”. 

 

This study is therefore set up to test for a derivative of uncorrelated stocks by testing whether a 

reduction in volatility spill-over effects will also lead to lower portfolio risk. In order to test 

whether volatility spill-over effects between stocks play a noticeable role in overall portfolio 

risk, it necessitates the creation of proxy stocks of each stock within the portfolio during a given 

period. These proxy stocks will have similar returns and standard deviations as the actual stock it 

replaces. Table 4.2 provides the name of the actual stock and its designated proxy. 
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  The closing price of any given stock is captured in the last (eighth observation) of each trading day. 
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Table 4.2 Stock JSE codes and proxies. 

 
Company Name JSE Stock Symbol Proxy Symbol 

Anglo American Plc AGL V 

ABSA Group Limited ASA W 

Bidvest Group Limited BVT X 

SABMiller Plc SAB Y 

SASOL Limited SOL Z 

 

In each period, the mean and standard deviations of the original five-stock portfolio are 

measured. The proxy stocks are then used to interchangeably replace each of their actual stock 

counterparts. The portfolio mean and standard deviation will be measured again to gauge the 

effect of the change in stocks (for each period). In order to distinguish between the portfolios, the 

original stock portfolio is called “Portfolio”, while “portfolio X”, for instance, is the portfolio 

where stock BVT is replaced by its proxy (stock X), and so forth.
127

 The volatility spill-over 

effects between these stocks will be measured (graphically illustrated in figure 4.1) to determine 

whether there is noticeable interaction between volatility spill-over effects and overall portfolio 

risk. 

 

Figure 4.1 Crayon sketch of volatility spill-over effects - refer to Peter Lynch quote (source: 

Compiled by Author). 
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  Interchangeably substituting stock AGL for stock V (portfolio V), stock ASA for stock W (portfolio W), 

stock SAB for stock Y (portfolio Y), and stock SOL for Z (portfolio Z). 

AGL 
AGL 

ASA 

ASA 

SAB 

SAB 

SOL 

SOL 

BVT X 

                    Portfolio (𝜇𝑃 𝜎𝑝)                                                       Portfolio X (𝜇𝑋 𝜎𝑥) 
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In figure 4.1 each square represents a portfolio containing five stocks. Each portfolio has its own 

mean ( ) and standard deviation ( ). As was stated earlier, Markowitz (1952) had shown that the 

co-variances between stocks within the same portfolio play a determinate part in overall portfolio 

risk. This study, however, focuses on the volatility spill-over effects between the stocks in the 

same portfolio (denoted by the arrows in the figure). The ultimate aim is to ascertain whether 

overall portfolio risk declines when overall volatility spill-over effects to the proxy (replacement) 

stock are less than that of actual stock (in this case “stock X” acting as a substitute for “BVT”), 

with portfolio return kept constant. It is important to remember that the replacement stocks have 

that same mean and standard deviation than the actual stock. However, portfolio mean and 

standard deviation are not bound in the same way, and may change as the volatility spill-over 

effects differ between the actual stock and its proxy. This study therefore necessitates the use of 

proxy stocks as to finding an actual replacement stock. A replacement stock does not exhibit the 

unique return properties of the original stock, since no two stocks are the same. If a replacement 

stock provides different statistical characteristics within the portfolio than the stock it replaces, 

capturing the unique volatility spill-over effects becomes an impossible task. It is for this reason 

that proxy stocks are utilised. The return properties of a proxy stock can be simulated to retain 

the unique return, volatility and inter-correlated properties of the stock it replaces in the 

portfolio.  

 

In this sense it is possible to test whether portfolio risk declines when a stock is replaced by 

another with similar characteristics (but less volatility spill-over effects). In doing this, it should 

be possible to test whether volatility spill-over effects provide a different dimension to portfolio 

selection than that of beta. It is also important to test whether beta change linearly with a 

reduction or increase in portfolio standard deviation. If there is no linear relationship between 

beta and portfolio standard deviation, this will serve as further proof that volatility spill-over 

effects should also play a role during portfolio selection.  

 

 

4.2 Random Normal Stock Returns 

 

A Monte Carlo simulation is utilised in generating each of the proxy stock‟s returns. This 

involves a stochastic process that, given the probability,  , simulates random returns which is a 



 

81 

 

normally distributed random variable around a given mean,  , and standard deviation,  . The 

generated random returns provide the given probability. The inverse of the normal (or Gaussian) 

density function is used to generate these random returns, and is given by: 

 

    (      )     √      (    )                 (   )   (4.1) 

 

where the normal density function for general values of   and   are expressed as: 

 

 
 (      )  (

 

 √  
)  

 
(   ) 

    
(4.2) 

 

and the     (error function) is the integral of the normal density function, expressed as: 

 

 
 ( )  

 

√  
∫  

   

 

 

  

   
(4.3) 

 

4.2.1 More on Monte Carlo 

 

A Monte Carlo simulation, by design, generates a stochastic process that should exhibit no 

correlation to the original process it simulates. It should then hold that the proxy stocks generated 

should have no correlation with the stock it replaces. This property is the basis for controlling 

excessive influences that would have limited the results to pure speculation if real stocks were 

chosen. It allows the user to test whether a stock exhibiting different volatility characteristics 

(proxy stock) affects volatility spill-over effects in a different way, when the unique portfolio 

volatility, portfolio returns, and inter-correlations between the stock in a portfolio is kept 

constant.  

 

4.2.2 Results 

 

The purpose of the Monte Carlo simulation is to provide a proxy stock with returns that exhibit 

(approximately) identical returns and risk to the actual stock it replaces within the portfolio 

(during a particular period). Table 4.3 gives a summary of the actual stock and its simulated 

version‟s mean and standard deviation. 
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Table 4.3 Mean return and standard deviation of the stocks and their proxies. 

 
    Actual stocks and their simulated counterparts 

    AGL V ASA W BVT X SAB Y SOL Z 

Period 

1 

  -0.078% -0.078% 0.091% 0.091% 0.043% 0.043% -0.023% -0.023% -0.025% -0.025% 

  0.970% 0.970% 1.145% 1.145% 0.940% 0.940% 0.710% 0.710% 0.905% 0.905% 

Period 

2 

  -0.128% -0.128% -0.030% -0.030% -0.034% -0.034% -0.041% -0.041% -0.068% -0.068% 

  2.355% 2.355% 1.537% 1.537% 1.638% 1.638% 1.316% 1.316% 2.140% 2.140% 

Period 

3 

  -0.050% -0.050% -0.021% -0.021% 0.019% 0.019% 0.004% 0.004% -0.007% -0.007% 

  1.763% 1.763% 1.030% 1.030% 1.057% 1.057% 0.923% 0.923% 1.316% 1.316% 

Period 

4 

  -0.023% -0.023% 0.005% 0.005% -0.018% -0.018% -0.042% -0.042% -0.016% -0.016% 

  1.624% 1.624% 1.080% 1.080% 1.315% 1.315% 0.815% 0.815% 1.168% 1.169% 

Period 

5 

  0.075% 0.075% 0.016% 0.016% 0.030% 0.030% 0.063% 0.063% 0.042% 0.042% 

  1.429% 1.429% 0.995% 0.995% 1.161% 1.161% 0.798% 0.798% 1.090% 1.090% 

Period 

6 

  0.027% 0.027% 0.052% 0.052% 0.035% 0.035% 0.017% 0.017% 0.026% 0.026% 

  1.017% 1.017% 0.604% 0.604% 0.692% 0.692% 0.514% 0.514% 0.713% 0.713% 

Period 

7 

  0.057% 0.057% 0.003% 0.003% 0.014% 0.014% 0.046% 0.046% 0.006% 0.006% 

  0.829% 0.829% 0.586% 0.586% 0.505% 0.505% 0.499% 0.499% 0.597% 0.598% 

Period 

8 

  0.041% 0.041% 0.021% 0.021% 0.026% 0.026% 0.017% 0.017% 0.016% 0.016% 

  0.636% 0.636% 0.506% 0.506% 0.515% 0.515% 0.495% 0.496% 0.456% 0.456% 

Period 

9 

  -0.039% -0.039% 0.023% 0.023% 0.028% 0.029% -0.016% -0.016% -0.020% -0.021% 

  0.714% 0.714% 0.454% 0.454% 0.575% 0.575% 0.427% 0.428% 0.544% 0.544% 

Period 

10 

  0.039% 0.039% 0.013% 0.013% 0.018% 0.018% 0.047% 0.046% 0.019% 0.019% 

  0.596% 0.596% 0.470% 0.469% 0.535% 0.535% 0.393% 0.393% 0.470% 0.470% 

 

Table 4.3 expresses the similarities between the actual stock and its generated proxy. The 

difference only becomes apparent at a 1000
th

 of a per cent. In reality it will be difficult to find 

stocks within a market that replicate another stock‟s mean and standard deviation; however, 

these proxy stocks only serve as a simpler means to an end than would have been provided by 

using actual stocks as replacements. To extend on table 4.3, table 4.4 gives a full representation 

of the descriptive statistics. 

 

Table 4.4 Descriptive statistics. 

 
Descriptive Statistics 

Period 1 AGL ASA BVT SAB SOL V_AGL W_ASA X_BVT Y_SAB Z_SOL 

Obs. 343 343 343 343 343 343 343 343 343 343 

Mean -0.078% 0.091% 0.043% -0.023% -0.025% -0.078% 0.091% 0.043% -0.023% -0.025% 

Max. 3.348% 6.863% 3.770% 3.483% 2.977% 2.794% 2.827% 2.798% 2.206% 2.334% 

Min. -4.614% -4.639% -2.768% -2.431% -3.472% -2.891% -3.248% -2.403% -2.292% -2.179% 

Std. Dev. 0.970% 1.145% 0.940% 0.710% 0.905% 0.970% 1.145% 0.940% 0.710% 0.905% 

Skewness -0.1720 1.0120 0.4506 0.3865 0.0580 -0.1154 -0.0727 0.0034 0.0653 0.0430 

Kurtosis 5.1929 9.2248 4.6692 5.8688 4.4157 2.8590 2.7424 2.7399 3.3386 2.6395 

Period 2 AGL ASA BVT SAB SOL V_AGL W_ASA X_BVT Y_SAB Z_SOL 

Obs. 351 351 351 351 351 351 351 351 351 351 

Mean -0.128% -0.030% -0.034% -0.041% -0.068% -0.128% -0.030% -0.034% -0.041% -0.068% 

Max. 9.704% 6.417% 7.043% 6.381% 8.950% 6.653% 4.634% 7.941% 4.550% 5.950% 

Min. -8.994% -5.752% -6.404% -4.531% -8.691% -7.398% -4.395% -3.814% -3.876% -6.010% 

Std. Dev. 2.355% 1.537% 1.638% 1.316% 2.140% 2.355% 1.537% 1.638% 1.316% 2.140% 

Skewness 0.4636 0.2131 0.2952 0.4901 -0.1814 0.0840 0.1073 0.3985 -0.0533 0.1332 
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Kurtosis 5.9978 5.7760 5.9923 6.1010 5.6436 3.2177 2.9439 3.8047 3.2027 3.1298 

Period 3 AGL ASA BVT SAB SOL V_AGL W_ASA X_BVT Y_SAB Z_SOL 

Obs. 311 311 311 311 311 311 311 311 311 311 

Mean -0.050% -0.021% 0.019% 0.004% -0.007% -0.050% -0.021% 0.019% 0.004% -0.007% 

Max. 6.884% 3.987% 3.609% 3.438% 4.085% 4.759% 2.416% 2.636% 2.250% 3.952% 

Min. -8.534% -3.846% -4.019% -3.264% -6.880% -5.071% -2.930% -2.858% -2.474% -3.652% 

Std. Dev. 1.763% 1.030% 1.057% 0.923% 1.316% 1.763% 1.030% 1.057% 0.923% 1.316% 

Skewness 0.0624 -0.1008 0.1977 0.1528 -0.3011 0.0210 -0.1072 0.0171 -0.1201 -0.1027 

Kurtosis 5.4990 5.0734 4.5259 4.2940 5.6326 2.6578 2.7810 2.7709 2.7258 3.1363 

Period 4 AGL ASA BVT SAB SOL V_AGL W_ASA X_BVT Y_SAB Z_SOL 

Obs. 343 343 343 343 343 343 343 343 343 343 

Mean -0.023% 0.005% -0.018% -0.042% -0.016% -0.023% 0.005% -0.018% -0.042% -0.016% 

Max. 9.613% 3.666% 6.353% 4.742% 5.748% 4.497% 3.674% 4.080% 2.004% 3.092% 

Min. -5.935% -3.188% -5.402% -2.736% -3.551% -4.792% -3.168% -3.617% -2.470% -3.335% 

Std. Dev. 1.624% 1.080% 1.315% 0.815% 1.168% 1.624% 1.080% 1.315% 0.815% 1.169% 

Skewness 0.5733 0.2900 0.1262 0.5018 0.4222 0.0488 -0.0010 0.0961 -0.0212 -0.1373 

Kurtosis 7.2389 3.9093 6.1135 6.5205 6.5540 3.0087 3.4770 2.9963 2.7019 2.8015 

Period 5 AGL ASA BVT SAB SOL V_AGL W_ASA X_BVT Y_SAB Z_SOL 

Obs. 311 311 311 311 311 311 311 311 311 311 

Mean 0.075% 0.016% 0.030% 0.063% 0.042% 0.075% 0.016% 0.030% 0.063% 0.042% 

Max. 9.613% 3.685% 5.181% 4.742% 5.748% 4.095% 3.463% 3.149% 2.348% 2.874% 

Min. -4.424% -3.408% -3.950% -2.912% -4.331% -3.931% -2.900% -3.326% -2.283% -3.520% 

Std. Dev. 1.429% 0.995% 1.161% 0.798% 1.090% 1.429% 0.995% 1.161% 0.798% 1.090% 

Skewness 0.9571 0.1615 0.1421 0.6145 0.2089 -0.0821 0.1233 0.0166 -0.0788 -0.0454 

Kurtosis 9.7642 4.4232 5.1619 7.0610 6.4121 2.6844 3.3252 2.9132 3.0677 2.9929 

Period 6 AGL ASA BVT SAB SOL V_AGL W_ASA X_BVT Y_SAB Z_SOL 

Obs. 351 351 351 351 351 351 351 351 351 351 

Mean 0.027% 0.052% 0.035% 0.017% 0.026% 0.027% 0.052% 0.035% 0.017% 0.026% 

Max. 4.198% 2.050% 2.580% 1.784% 3.207% 2.774% 1.699% 2.032% 1.434% 1.878% 

Min. -4.158% -2.130% -2.346% -1.529% -2.749% -2.898% -2.126% -1.858% -1.652% -2.004% 

Std. Dev. 1.017% 0.604% 0.692% 0.514% 0.713% 1.017% 0.604% 0.692% 0.514% 0.713% 

Skewness -0.1199 0.1287 0.2163 0.2332 0.3052 -0.1428 -0.0819 0.1155 -0.0741 -0.0934 

Kurtosis 5.1758 4.0992 5.1023 4.1034 5.6767 2.9436 3.3609 2.9855 3.1026 3.0091 

Period 7 AGL ASA BVT SAB SOL V_AGL W_ASA X_BVT Y_SAB Z_SOL 

Obs. 335 335 335 335 335 335 335 335 335 335 

Mean 0.057% 0.003% 0.014% 0.046% 0.006% 0.057% 0.003% 0.014% 0.046% 0.006% 

Max. 2.458% 1.595% 2.220% 1.939% 2.338% 2.346% 1.798% 1.232% 1.474% 1.629% 

Min. -3.992% -2.447% -1.796% -1.511% -2.549% -1.924% -2.130% -1.467% -1.296% -1.483% 

Std. Dev. 0.829% 0.586% 0.505% 0.499% 0.597% 0.829% 0.586% 0.505% 0.499% 0.598% 

Skewness -0.3003 -0.3774 0.1947 0.2226 -0.2408 0.0806 -0.1482 -0.1939 0.0613 -0.0856 

Period 8 AGL ASA BVT SAB SOL V_AGL W_ASA X_BVT Y_SAB Z_SOL 

Obs. 319 319 319 319 319 319 319 319 319 319 

Mean 0.041% 0.021% 0.026% 0.017% 0.016% 0.041% 0.021% 0.026% 0.017% 0.016% 

Max. 3.738% 1.764% 1.783% 2.762% 1.473% 1.858% 1.675% 1.420% 1.379% 1.344% 

Min. -3.430% -2.251% -2.385% -1.617% -2.077% -2.205% -1.412% -1.241% -1.505% -1.476% 

Std. Dev. 0.636% 0.506% 0.515% 0.495% 0.456% 0.636% 0.506% 0.515% 0.496% 0.456% 

Skewness 0.3553 -0.1240 -0.2282 0.9280 -0.6740 -0.0039 0.1113 0.0133 0.0292 0.0561 

Kurtosis 10.2255 4.9326 5.2928 7.9140 6.1919 3.0773 3.1811 2.6365 3.0112 3.2283 

Period 9 AGL ASA BVT SAB SOL V_AGL W_ASA X_BVT Y_SAB Z_SOL 

Obs. 335 335 335 335 335 335 335 335 335 335 

Mean -0.039% 0.023% 0.028% -0.016% -0.020% -0.039% 0.023% 0.029% -0.016% -0.021% 

Max. 2.096% 2.067% 2.399% 1.617% 2.354% 2.259% 1.371% 1.876% 1.413% 1.873% 

Min. -3.296% -3.254% -3.623% -2.440% -3.333% -2.586% -1.218% -1.384% -1.080% -1.820% 

Std. Dev. 0.714% 0.454% 0.575% 0.427% 0.544% 0.714% 0.454% 0.575% 0.428% 0.544% 

Skewness -0.5318 -0.5868 -0.4961 -0.7010 -0.3918 -0.0719 -0.0908 0.2215 0.3459 -0.0788 

Kurtosis 5.3468 12.8554 8.9849 7.1277 7.8850 3.5090 2.7302 2.8513 3.0433 3.1566 

Period 10 AGL ASA BVT SAB SOL V_AGL W_ASA X_BVT Y_SAB Z_SOL 

Obs. 319 319 319 319 319 319 319 319 319 319 

Mean 0.039% 0.013% 0.018% 0.047% 0.019% 0.039% 0.013% 0.018% 0.046% 0.019% 
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Max. 1.708% 1.604% 2.600% 1.856% 2.376% 1.589% 1.262% 1.452% 1.086% 1.443% 

Min. -3.148% -2.415% -2.138% -1.388% -2.176% -1.710% -1.346% -1.924% -1.083% -1.313% 

Std. Dev. 0.596% 0.470% 0.535% 0.393% 0.470% 0.596% 0.469% 0.535% 0.393% 0.470% 

Skewness -0.5618 -0.2782 0.4585 0.7446 0.2019 -0.1221 -0.1641 -0.0100 -0.1344 0.0274 

Kurtosis 5.7903 6.7356 7.1891 6.0339 8.0333 3.0519 2.6462 3.1644 2.8828 2.9093 

Kurtosis 5.6865 4.5372 4.8577 4.2514 5.6325 2.9471 3.3342 2.7968 3.0016 2.7663 

 

In table 4.4 it can be seen that the number of observations for each two-month period ranges 

from 351 at most, to 311 at least. This provides an adequate number of data points to commence 

with statistical inference. The main descriptive statistics that this study will focus on have 

already been described in the discussion of table 4.3. In addition, the maximum and minimum 

values display a measure volatility of each stock. These values move in smaller bands for the 

proxy stocks, making them less prone to outliers than the actual stock they emulate. This 

observation can be (more formally) seen in the measure of kurtosis for each of the stocks. The 

kurtosis for the original stocks exhibit long “tails” (leptokurtic) compared to a normal 

distribution, which complies with studies done by Larson (1960), Working (1960), Houthakker 

(1961) and Alexander (1961). The random normal proxy stock returns exhibit random 

distributions, as expected. Although the actual stocks and their proxies have the same returns and 

standard deviation, their distribution characteristics start to differ from the 4
th

 moment onwards. 

However, the aim of this study is not on distribution characteristics, but to investigate whether 

these proxy stocks can provide proof of the correlation between lower portfolio risk and less 

volatility spill-over effects, or vice versa. However, the presentation of the results in table 4.4 

was somewhat informal. 

 

4.3 Formal Testing 

 

Formal testing of the link between portfolio risk and volatility transmission will consist of four 

parts. The first part provides a motive for the use of stock returns for reasons of stationarity. The 

second part will focus on the level of integration between the five original stocks and their 

proxies, by implementing Granger causality. However, these aforementioned tests are only for 

completeness, and did not form an integral part of the study. The third part presents a comparison 

of portfolio risk, portfolio return, and beta according to the methodology of Markowitz (1952) 

and Sharpe (1964). In the final part of the empirical study, the focus shifts towards establishing 
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the level of volatility transmission between the respective stocks and their proxies by applying an 

AS Model to each.
128

 

 

4.3.1 Stationarity and heteroskedasticity 

 

Stationarity is an important concept underlying a time series process. When a variable is non-

stationary (or trended), incorrect inferences could easily be made since the assumptions of the 

classical linear regression model are violated, leading to unreliable t-tests, F-tests or R-squared 

values (Asteriou & Hall, 2007:295). The order of integration (testing for a unit root) of a variable 

discloses significant information about its stationarity.  

 

An Augmented Dickey Fuller test (ADF) is utilised to test the order of integration of each stock. 

A series    is integrated of order one and contains a unit root, if    is non-stationary but     is 

stationary (Asteriou & Hall 2007:290).
129

 The three forms of the ADF tests are given as: 
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(4.4) 

 

 

             ∑       

 

   

      
(4.5) 

 

 

                 ∑       

 

   

      
(4.6) 

 

where    and     are deterministic elements. The results obtained from performing the ADF test 

indicated that the null hypothesis of a unit root cannot be rejected when using stock prices. 

However, when using stock returns (which enables comparability between stocks), the null 

hypothesis of a unit root can be rejected as the probability of the t-statistic is smaller than 0.05 

                                                           
128

  This study employs a similar methodology to the one used by Lin, Engle and Ito (1994) and Samouilhan 

(2006) with regards to the use of an AS Model. 
129

  A non-stationary time series    might need to be differenced more than once to make it stationary, resulting 

in a higher order of integration. 
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(      ). This confirms that all the stock returns are integrated of order zero (    ( )), 

therefore containing no unit root, and exhibiting stationarity. Accordingly, the stock returns need 

not be differenced in order to induce stationarity.
130

 For illustrative purposes figure 4.2 and 4.3 

provides a graphical view of period six‟s stock price and stock returns.
131

 

 

Figure 4.2 Period six stock price line graph. 

 

 

 

  

                                                           
130

  In contrast, stock prices will need to be differenced to induce stationarity. However, stock returns are 

utilised in this study. 
131

  The line graphs of the other stocks are presented in the appendix, sections A1 and A2. 

20,000

22,000

24,000

26,000

28,000

22 29 6 13 20 27 3 10 17

2009m7 2009m8

AGL

9,500

10,000

10,500

11,000

11,500

12,000

12,500

13,000

22 29 6 13 20 27 3 10 17

2009m7 2009m8

ASA

9,000

9,500

10,000

10,500

11,000

11,500

22 29 6 13 20 27 3 10 17

2009m7 2009m8

BVT

15,500

16,000

16,500

17,000

17,500

18,000

18,500

22 29 6 13 20 27 3 10 17

2009m7 2009m8

SAB

25,000

26,000

27,000

28,000

29,000

30,000

31,000

22 29 6 13 20 27 3 10 17

2009m7 2009m8

SOL

20,000

22,000

24,000

26,000

28,000

22 29 6 13 20 27 3 10 17

2009m7 2009m8

V_AGL

9,500

10,000

10,500

11,000

11,500

12,000

12,500

13,000

22 29 6 13 20 27 3 10 17

2009m7 2009m8

W_ASA

8,800

9,200

9,600

10,000

10,400

10,800

11,200

22 29 6 13 20 27 3 10 17

2009m7 2009m8

X_BVT

17,000

17,500

18,000

18,500

19,000

19,500

20,000

22 29 6 13 20 27 3 10 17

2009m7 2009m8

Y_SAB

26,000

28,000

30,000

32,000

34,000

36,000

22 29 6 13 20 27 3 10 17

2009m7 2009m8

Z_SOL



 

87 

 

Figure 4.3 Period six stock returns line graph. 

 

 

 

 

Figure 4.2 shows the trend present in stock prices, which contains a unit root, and therefore does 

not exhibit stationarity. However, in figure 4.3, the trend is eliminated by taking the hourly 

returns of every stock, resulting in stationarity. 

 

In addition, another central statistical inference measure is to test for the presence of 

heteroskedasticity, which is the serial correlation in error terms; the presence of which affects the 

distribution of the parameter estimators, and makes the estimators of the OLS inefficient 

(Asteriou & Hall, 2007:116). Heteroskedasticity, like non-stationarity, also impacts hypothesis 

testing, by estimating t-statistics and F-statistics that are not reliable (Asteriou & Hall, 

2007:116). For completion, White‟s test is used (after obtaining OLS results) to test for 

heteroskedasticity. The null hypothesis of heteroskedasticity was rejected as all of the  -values 

were significantly lower than the five per cent level of statistical significance. However, these 

results are of no use in this study as the focus is on the presence of ARCH effects (serial 

correlation in the variance of error terms).  
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4.3.2 Granger causality 

 

Contagion effects can be tested via the Granger causality methodology, however, this approach 

only allows one to capture the unidirectional spill-over (mean returns). In contrast, developments 

in the autoregressive conditional heteroskedastic (ARCH) family of models have made it 

possible to study the conditional volatility, and the transmission of such volatility (Worthington 

& Higgs, 2004:2). Nevertheless, Granger causality test will allow for a greater understanding of 

the direction and speed in which the stocks affect other and the level of integration. 

 

A time series   Granger causes time series  , if it is possible to reveal that the   values impart 

statistically significant information on future values of  . In common terminology, the test for 

Granger causality involves testing the null hypothesis that    does not cause   , by means of the 

following two regressions (Asteriou & Hall, 2007:285): 

 

 
   ∑      

 

   

 ∑      

 

   

      
(4.7) 

 

 
  ∑      

 

   

      
(4.8) 

 

where testing      for every  , and the assumption of uncorrelated disturbances. The 

unidirectional causality from all the various stocks (including the proxy stocks) will be tested for 

all periods. For stock   to Granger-cause stock  , the estimated coefficients on lagged stock   

values must be statistically different from zero, and the estimated coefficients on lagged stock   

values should not be statistically different from zero (Gujarati, 2003:697). For illustrative 

purposes table 4.5 only presents the Granger causality tests of the first period of the ten periods 

estimated.
132
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  The remainder of the Granger causality test are presented in the appendix, section A3. 



 

89 

 

Table 4.5 Granger causality tests. 
 

Period 1 

 Null Hypothesis Obs. Prob.   Null Hypothesis Obs. Prob.  

 R_ASA does not Granger Cause R_AGL 
341 

0.5077  R_SOL does not Granger Cause R_BVT 
341 

0.7592 

 R_AGL does not Granger Cause R_ASA 0.0077*  R_BVT does not Granger Cause R_SOL 0.4802 

 R_BVT does not Granger Cause R_AGL 
341 

0.0159*  R_V_AGL does not Granger Cause R_BVT 
341 

0.7348 

 R_AGL does not Granger Cause R_BVT 0.9632  R_BVT does not Granger Cause R_V_AGL 0.7430 

 R_SAB does not Granger Cause R_AGL 
341 

0.8623  R_W_ASA does not Granger Cause R_BVT 
341 

0.9105 

 R_AGL does not Granger Cause R_SAB 0.2047  R_BVT does not Granger Cause R_W_ASA 0.9342 

 R_SOL does not Granger Cause R_AGL 
341 

0.0029*  R_X_BVT does not Granger Cause R_BVT 
341 

0.7191 

 R_AGL does not Granger Cause R_SOL 0.7583  R_BVT does not Granger Cause R_X_BVT 0.5163 

 R_V_AGL does not Granger Cause R_AGL 
341 

0.2927  R_Y_SAB does not Granger Cause R_BVT 
341 

0.7764 

 R_AGL does not Granger Cause R_V_AGL 0.1714  R_BVT does not Granger Cause R_Y_SAB 0.6288 

R_W_ASA does not Granger Cause R_AGL 
341 

0.4815  R_Z_SOL does not Granger Cause R_BVT 
341 

0.5076 

 R_AGL does not Granger Cause R_W_ASA 0.1968  R_BVT does not Granger Cause R_Z_SOL 0.9207 

 R_X_BVT does not Granger Cause R_AGL 
341 

0.9336  R_SOL does not Granger Cause R_SAB 
341 

0.0765^ 

 R_AGL does not Granger Cause R_X_BVT 0.5893  R_SAB does not Granger Cause R_SOL 0.8805 

 R_Y_SAB does not Granger Cause R_AGL 
341 

0.0777^  R_V_AGL does not Granger Cause R_SAB 
341 

0.4815 

 R_AGL does not Granger Cause R_Y_SAB 0.5340  R_SAB does not Granger Cause R_V_AGL 0.5161 

 R_Z_SOL does not Granger Cause R_AGL 
341 

0.3715  R_W_ASA does not Granger Cause R_SAB 
341 

0.8189 

 R_AGL does not Granger Cause R_Z_SOL 0.9907  R_SAB does not Granger Cause R_W_ASA 0.4701 

 R_BVT does not Granger Cause R_ASA 
341 

0.2106  R_X_BVT does not Granger Cause R_SAB 
341 

0.7603 

 R_ASA does not Granger Cause R_BVT 0.1529  R_SAB does not Granger Cause R_X_BVT 0.9656 

 R_SAB does not Granger Cause R_ASA 
341 

0.5593  R_Y_SAB does not Granger Cause R_SAB 
341 

0.2812 

 R_ASA does not Granger Cause R_SAB 0.0044*  R_SAB does not Granger Cause R_Y_SAB 0.9141 

 R_SOL does not Granger Cause R_ASA 
341 

0.0745^  R_Z_SOL does not Granger Cause R_SAB 
341 

0.0099* 

 R_ASA does not Granger Cause R_SOL 0.0027*  R_SAB does not Granger Cause R_Z_SOL 0.7658 

 R_V_AGL does not Granger Cause R_ASA 
341 

0.8460  R_V_AGL does not Granger Cause R_SOL 
341 

0.3054 

 R_ASA does not Granger Cause R_V_AGL 0.2257  R_SOL does not Granger Cause R_V_AGL 0.5359 

 R_W_ASA does not Granger Cause R_ASA 
341 

0.7454  R_W_ASA does not Granger Cause R_SOL 
341 

0.5810 

 R_ASA does not Granger Cause R_W_ASA 0.0572^  R_SOL does not Granger Cause R_W_ASA 0.2153 

 R_X_BVT does not Granger Cause R_ASA 
341 

0.0117*  R_X_BVT does not Granger Cause R_SOL 
341 

0.9067 

 R_ASA does not Granger Cause R_X_BVT 0.4464  R_SOL does not Granger Cause R_X_BVT 0.0881^ 

 R_Y_SAB does not Granger Cause R_ASA 
341 

0.5321  R_Y_SAB does not Granger Cause R_SOL 
341 

0.0969^ 

 R_ASA does not Granger Cause R_Y_SAB 0.3054  R_SOL does not Granger Cause R_Y_SAB 0.3467 

 R_Z_SOL does not Granger Cause R_ASA 
341 

0.2191  R_Z_SOL does not Granger Cause R_SOL 
341 

0.1901 

 R_ASA does not Granger Cause R_Z_SOL 0.7403  R_SOL does not Granger Cause R_Z_SOL 0.2959 

 R_SAB does not Granger Cause R_BVT 
341 

0.4926       

 R_BVT does not Granger Cause R_SAB 0.0519^       

* Indicates statistical significance at the 95% level. 

^ Indicates statistical significance at the 90% level. 

 

Table 4.5 presents the Granger-causality test results. For illustrative purposes only one of the ten 

periods is shown. Where the causality is statistically significant, the null hypothesis is rejected, 

resulting in return causality from a given stock to another. In all the periods, most of the 

statistically significant causality in returns is present among the actual stocks. The proxy stocks 

exhibit far less influence in being Granger-caused or Granger-causing any return transmission at 

a significant level. Stated differently, the causality between the original stocks in the five-stock 

portfolio outweighs the causality present when a proxy stock is introduced. However, Granger 
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causality is a scarce occurrence, and therefore does not provide any significant explanatory 

capacity. For this reason the study moves on to the return and volatility spill-over effects when 

the stocks interact with each other within a five-stock portfolio. 

 

4.3.3 Portfolio risk, return and beta 

 

Modern portfolio theory (MPT), developed in the 1950s and gaining momentum in the 1960s, 

saw a shift in the management of portfolios. The introduction of the concept of co-variance 

between stocks provided a different facet to how stocks affect each other when co-existing in the 

same portfolio. In addition, portfolio managers have long been familiar with the efficient market 

hypotheses (EMH) where a well-diversified portfolio with a unit correlation (beta equal to one) 

with the market is considered entirely hedged against market (unsystematic) risk.
133

 Table 4.6 

provides the portfolio risk, portfolio returns and beta measures of all the different five-stock 

portfolios in all the different periods under study. 

 

Table 4.6 Portfolio risk, return and beta. 

 
  Volatility Measures 

Period 1 Portfolio Portfolio V Portfolio W Portfolio X Portfolio Y Portfolio Z 

Standard deviation 0.538% 0.480% 0.506% 0.500% 0.497% 0.496% 

Return 0.001% 0.001% 0.001% 0.001% 0.001% 0.001% 

Beta 0.7005 0.4505 0.6992 0.5633 0.5739 0.6864 

Period 2 Portfolio Portfolio V Portfolio W Portfolio X Portfolio Y Portfolio Z 

Standard deviation 1.333% 1.069% 1.180% 1.181% 1.246% 1.134% 

Return -0.060% -0.060% -0.060% -0.060% -0.060% -0.060% 

Beta 0.8805 0.6214 0.6884 0.7245 0.8085 0.7061 

Period 3 Portfolio Portfolio V Portfolio W Portfolio X Portfolio Y Portfolio Z 

Standard deviation 0.828% 0.682% 0.767% 0.754% 0.770% 0.672% 

Return -0.011% -0.011% -0.011% -0.011% -0.011% -0.011% 

Beta 0.8363 0.5091 0.7798 0.7436 0.7634 0.5959 

Period 4 Portfolio Portfolio V Portfolio W Portfolio X Portfolio Y Portfolio Z 

Standard deviation 0.830% 0.690% 0.753% 0.728% 0.771% 0.725% 

Return -0.019% -0.019% -0.019% -0.019% -0.019% -0.019% 

Beta 1.0935 0.6878 1.0439 0.8834 1.0610 0.9135 

Period 5 Portfolio Portfolio V Portfolio W Portfolio X Portfolio Y Portfolio Z 

Standard deviation 0.754% 0.613% 0.674% 0.670% 0.692% 0.668% 

Return 0.045% 0.045% 0.045% 0.045% 0.045% 0.045% 

Beta 0.9054 0.5425 0.8174 0.7589 0.8789 0.7316 

Period 6 Portfolio Portfolio V Portfolio W Portfolio X Portfolio Y Portfolio Z 

Standard deviation 0.482% 0.389% 0.419% 0.430% 0.454% 0.416% 

Return 0.031% 0.031% 0.031% 0.031% 0.031% 0.031% 

Beta 0.8024 0.3874 0.7035 0.6747 0.7218 0.5997 
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  Refer to chapter 2. 
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Period 7 Portfolio Portfolio V Portfolio W Portfolio X Portfolio Y Portfolio Z 

Standard deviation 0.408% 0.327% 0.357% 0.373% 0.372% 0.366% 

Return 0.025% 0.025% 0.025% 0.025% 0.025% 0.025% 

Beta 0.9092 0.6116 0.6950 0.7244 0.8562 0.7918 

Period 8 Portfolio Portfolio V Portfolio W Portfolio X Portfolio Y Portfolio Z 

Standard deviation 0.320% 0.277% 0.293% 0.295% 0.289% 0.283% 

Return 0.024% 0.024% 0.024% 0.024% 0.024% 0.024% 

Beta 0.7583 0.4826 0.5904 0.7085 0.7768 0.6603 

Period 9 Portfolio Portfolio V Portfolio W Portfolio X Portfolio Y Portfolio Z 

Standard deviation 0.360% 0.314% 0.337% 0.321% 0.339% 0.303% 

Return -0.005% -0.005% -0.005% -0.005% -0.005% -0.005% 

Beta 0.8345 0.4772 0.6773 0.7212 0.8134 0.6280 

Period 10 Portfolio Portfolio V Portfolio W Portfolio X Portfolio Y Portfolio Z 

Standard deviation 0.330% 0.274% 0.292% 0.298% 0.302% 0.286% 

Return 0.027% 0.027% 0.027% 0.027% 0.027% 0.027% 

Beta 0.8582 0.6813 0.7195 0.6875 0.7212 0.7028 

 

From table 4.6 it is evident that the portfolio returns in each period match each other equally. 

This is possible because of the proxy stock that replaces each stock in the five proxy portfolios 

effectively have the same returns. The differences of each portfolio are captured by portfolio 

standard deviation and market beta. Period one to four portfolios all have negative returns, as 

these were the periods hardest hit by the financial crisis (except period one, which is more of a 

lead up to the crisis). Period two captures the defining moment of the 2008 financial crisis, as it 

encompasses the two months after Lehman Brothers declared insolvency. It is for this reason that 

the portfolios in period two exhibit the highest portfolio risk. All the periods, except period four, 

exhibit portfolios that have a beta less than one. Period four signals the beginning of stabilisation 

of the JSE. However, the international exposure of some of the large capitalisation stocks may 

explain the excess riskiness of the stocks within period four portfolios (higher beta means a 

greater exposure to market risk than that of the market portfolio). From period five onwards 

portfolio returns are positive, giving impetus to recovery from the initial shock of the financial 

crisis. Period nine, in contrast, had a small volatility hike, with negative returns. This could 

possibly be attributed to the irrational investor behaviour due to the Haiti earthquake. 

Stabilisation of the JSE and stocks subsequently commenced thereafter (period 10). 

 

Interestingly, the original five-stock portfolio always exhibits a larger portfolio standard 

deviation than the five proxy portfolios in the same period. Market beta captures this effect to a 

significant extent. As the portfolio standard deviation decreases, the beta decreases (except for 

one case), and therefore the market exposure of the particular portfolio. In other words, when the 

volatility of the market increases (such as in a financial crisis), the volatility of the portfolio(s), 
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with a beta less than one, increases to a lesser extent. However, beta does not decrease linearly 

as portfolio standard deviation decreases. In one particular case, the beta of a proxy portfolio was 

higher than the original portfolio (period 8).  

 

Additionally, portfolio performance measures were estimated. These measures did not present 

any new information or further this study, but serve as an addendum for completeness.
134

 

However, the nature of a portfolio‟s risk-return relationship provides telling insights into whether 

a portfolio achieved a desirable return in relation to the risk incurred for this return. Therefore, 

several portfolio performance measures were developed to capture this element, most notably the 

measures used henceforth.  Firstly, Sharp‟s performance index (   ) is expressed as the 

portfolio‟s return per unit of risk, and is expressed as (Sharpe, 1966): 

 

 
     

(     )

  
   

(4.9) 

 

where   is the return on the portfolio,    the standard devition of the portfolio, and    the risk 

free rate. The     does not distinguish between systematic or unsystematic risk, but uses 

standard deviation as a measure of total risk.
135

  However, unsystematic risk can be effectively 

hedged by diversifying, leaving only the systematic (market) risk to impact on portfolio 

performance. Treynor‟s performance index (   ) indicates the portfolio‟s return per unit of 

market risk, and is expressed as (Treynor, 1965): 

 

 
    

(     )

  
   

(4.10) 
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  Because portfolio returns were kept constant, and the risk free rate remaining relatively constant, the risk 

measure was the only measure exhibiting variability. Therefore, if beta or standard deviation were lower in 

each period, the measure would automatically be more favourable. 
135

  This property makes the     attractive as it can measure how well diversified a portfolio is when used in 

conjunction with other measures such as the     (which assumes a well-diversified portfolio).  
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where a portfolio achieved superior performance if the     exeeds the market risk premium 

(     ).
136

 In addition, Jenson‟s alpha ( ) also uses portfolio beta (more specifically CAPM) as 

the basis for portfolio performance measurement, and can be expressed as (Jenson, 1968): 

 

      [     (     )]   (4.11) 

 

where    is the return of the market portfolio.   indicates the actual excess return over the return 

required as per the CAPM. Table 4.7 presents the results of these commonly used portfolio 

performance measures. 

 

Table 4.7 Portfolio performance measures. 

 
  Performance Measures 

Period 1 Portfolio Portfolio V Portfolio W Portfolio X Portfolio Y Portfolio Z 

SPI -0.00153 -0.00172 -0.00163 -0.00165 -0.00166 -0.00166 

TPI -0.00001 -0.00002 -0.00001 -0.00001 -0.00001 -0.00001 

α 0.00018 0.00011 0.00018 0.00014 0.00015 0.00018 

Period 2 Portfolio Portfolio V Portfolio W Portfolio X Portfolio Y Portfolio Z 

SPI -0.04638 -0.05783 -0.05239 -0.05235 -0.04962 -0.05452 

TPI -0.00070 -0.00099 -0.00090 -0.00085 -0.00076 -0.00088 

α 0.00008 -0.00013 -0.00008 -0.00005 0.00002 -0.00006 

Period 3 Portfolio Portfolio V Portfolio W Portfolio X Portfolio Y Portfolio Z 

SPI -0.01549 -0.01881 -0.01672 -0.01701 -0.01666 -0.01909 

TPI -0.00015 -0.00025 -0.00016 -0.00017 -0.00017 -0.00022 

α -0.00008 -0.00010 -0.00008 -0.00008 -0.00008 -0.00009 

Period 4 Portfolio Portfolio V Portfolio W Portfolio X Portfolio Y Portfolio Z 

SPI -0.02509 -0.03018 -0.02766 -0.02861 -0.02701 -0.02872 

TPI -0.00019 -0.00030 -0.00020 -0.00024 -0.00020 -0.00023 

α 0.00045 0.00020 0.00042 0.00032 0.00043 0.00034 

Period 5 Portfolio Portfolio V Portfolio W Portfolio X Portfolio Y Portfolio Z 

SPI 0.05726 0.07043 0.06406 0.06444 0.06239 0.06463 

TPI 0.00048 0.00080 0.00053 0.00057 0.00049 0.00059 

α 0.00012 0.00024 0.00015 0.00017 0.00013 0.00018 

Period 6 Portfolio Portfolio V Portfolio W Portfolio X Portfolio Y Portfolio Z 

SPI 0.06053 0.07500 0.06963 0.06785 0.06426 0.07013 

TPI 0.00036 0.00075 0.00041 0.00043 0.00040 0.00049 

α 0.00006 0.00018 0.00009 0.00009 0.00008 0.00012 

Period 7 Portfolio Portfolio V Portfolio W Portfolio X Portfolio Y Portfolio Z 

SPI 0.05680 0.07087 0.06492 0.06213 0.06230 0.06332 

TPI 0.00025 0.00038 0.00033 0.00032 0.00027 0.00029 

α 0.00007 0.00013 0.00011 0.00011 0.00008 0.00009 

Period 8 Portfolio Portfolio V Portfolio W Portfolio X Portfolio Y Portfolio Z 

SPI 0.06930 0.08005 0.07568 0.07517 0.07673 0.07836 

TPI 0.00029 0.00046 0.00038 0.00031 0.00029 0.00034 
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  The market index, by default, has a beta of one and therefore exhibits a     equal to      . 
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α 0.00004 0.00011 0.00008 0.00005 0.00004 0.00007 

Period 9 Portfolio Portfolio V Portfolio W Portfolio X Portfolio Y Portfolio Z 

SPI -0.01896 -0.02174 -0.02025 -0.02126 -0.02013 -0.02253 

TPI -0.00008 -0.00014 -0.00010 -0.00009 -0.00008 -0.00011 

α -0.00009 -0.00008 -0.00009 -0.00009 -0.00009 -0.00009 

Period 10 Portfolio Portfolio V Portfolio W Portfolio X Portfolio Y Portfolio Z 

SPI 0.07629 0.09188 0.08621 0.08448 0.08336 0.08802 

TPI 0.00029 0.00037 0.00035 0.00037 0.00035 0.00036 

α 0.00011 0.00014 0.00014 0.00014 0.00014 0.00014 

 

The results in table 4.7 further accentuate those in table 4.6. The original five-stock portfolio 

always exhibits a lower portfolio performance measure than the five proxy portfolios in the same 

period. This holds when the portfolio returns are positive and higher than the prevailing risk free 

rate (   ) for that period. Due to portfolio returns being kept constant, no economic value can be 

inference from periods were the portfolio returns were negative or less than the risk free rate 

(periods 1, 2, 3, 4 and 9).
137

 Because of turbulent economic conditions, investing in a money 

market account during these periods of negative access returns would have been a more sound 

option, which lends no credibility to portfolio performance measures. In addition, the use of 

daily beta could have limited the stability and accuracy of the beta measure. However, beta does 

explain portfolio risk to a significant extent, with the exception of some deviations and non-

linearity. It is for the later reasons that a closer look will be given to volatility spill-over effects 

as a supportive measure. 

 

4.3.4  Aggregate shock models 

 

4.3.4.1  Lag specification 

 

Various lag specifications are estimated for each stock within each portfolio, with the appropriate 

lag specification for the E-GARCH(   ) term chosen where the Akaike information criterion 

(AIC) and Schwarz criterion (SC) values are minimised. The AIC is computed as (Quantitative 

Micro Software LLC, 2009): 

 

 
      

 

 
  

 

 
   

(4.12) 
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  A constant negative access return for all portfolios will lead to higher negative return per unit of risk when 

the portfolio risk measure becomes smaller (less risky). This leads to wrongful interpretation. 
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The SC is an alternative to the AIC and imposes a larger penalty for additional coefficients 

(Quantitative Micro Software LLC, 2009): 

 

 
     

 

 
  

(     )

 
   

(4.13) 

 

Where   is the value of the log likelihood function,   is the number of observations, and  , the 

number of parameters. Both these information criterion are based on –2 times the average log 

likelihood function, adjusted by a penalty function. These criterions allow for choosing the 

appropriate aggregate shock model for each one estimated. 

 

4.3.4.2  Results 

 

The aggregate shock (AS) model allows one to formally test the relationship of both returns and 

volatility on the stocks within each five-stock portfolio. Recall that the AS model, as presented in 

chapter three, culminated in equation 3.21. The end product of the E-GARCH process is given 

by: 

 

 
                       

      

√      

   

|      |

√      

          
(4.14) 

 

Furthermore, the following summary of the coefficients with regards to the output estimation 

(given by equation 4.14) will be useful to interpret the results obtained from the AS model 

applied on each stock within each portfolio of each period. Therefore, from equation 4.14,    is 

the invariable mean reversion value,    indicates the past conditional variance,    captures the 

asymmetric function of volatility,    indicates the volatility persistence, and    captures the level 

of volatility spill-over. Table 4.8 provides the AS model output. Both the mean and variance 

equation coefficients are given, as well as the SC and AIC for each model.  
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Table 4.8 AS model results (mean and variance equations). 

 

Period 1 

Mean Equation Variance Equation 

  

 

Variable Coeff. Dep.Lag ϖ α γ δ κ AIC SC 

AGL 

ASA(e) 0.1383* -0.0283 -5.7445* -0.0862* 0.1927* -0.7667* 1.1893* -6.1879 -6.0870 

BVT(e) 0.2294* -0.0467 -5.5449* 0.2056* 0.0391 -0.7619* 0.5482* -6.2601 -6.1479 

SAB(e) 0.3956* -0.0997* -11.4796* 0.0130 0.0655* -0.9408* 0.8162* -6.2104 -6.1095 

SOL(e) 0.4188* 0.0673 -2.7551 0.3690* -0.0695 -0.5139* 0.5959* -6.6585 -6.5351 

V 

ASA(e) 0.0535 -0.0222 1.3553* -0.1076 0.0387 0.6346^ 0.3016* -6.3988 -6.2755 

BVT(e) -0.0796 -0.0207 -10.4198* 0.0495 0.0128 -0.9954* -0.1258 -6.4099 -6.2978 

SAB(e) -0.0750 -0.0116 -29.8176* 0.0173 -0.0342 -0.8437* 0.4079* -6.4153 -6.3032 

SOL(e) 0.0901^ -0.0200 -2.7380* -0.1898* 0.0102 0.1508 -0.2317* -6.4161 -6.2928 

ASA 

AGL(e) 0.1383* -0.0283 -5.7445* -0.0862* 0.1927* -0.7667* 1.1893* -6.1879 -6.0870 

BVT(e) 0.2963* -0.0594 -12.2864* 0.0436 0.0128 -1.0068* 0.9149* -6.2491 -6.1370 

SAB(e) 0.4071* -0.1114* -8.8475* 0.0565^ -0.0506* -0.9364* 1.0437* -6.2106 -6.0985 

SOL(e) 0.1048^ -0.0356 -26.7160* 0.0891* -0.0231 -0.9815* -0.1912* -6.1835 -6.0826 

W 

AGL(e) 0.1030 0.0268 -10.5173* 0.1052 0.0106 -0.7743* 0.7272^ -6.0815 -5.9694 

BVT(e) 0.0332 0.0336 -0.3476 0.0801 0.0194 0.9302* 0.0391 -6.0711 -5.9589 

SAB(e) 0.0421 0.0364 -4.1492* 0.0705* -0.0201* 0.8326* -0.1053* -6.0701 -5.9579 

SOL(e) 0.0295 0.0373 -5.3074 0.1593^ -0.0087 0.6774^ 0.0331 -6.0877 -5.9756 

BVT 

AGL(e) 0.1266* -0.1558* -11.9072* 0.1802* 0.0795 -0.9119* 0.7199* -6.6071 -6.4838 

ASA(e) 0.1627* -0.1471* 1.3588* -0.1679 0.0763* 0.9636* 0.1881* -6.6316 -6.5307 

SAB(e) 0.4001* -0.1630* 0.5655* -0.1025 0.1153* 0.1441* 0.0797* -6.6557 -6.5436 

SOL(e) 0.1430* -0.1561* -16.8218* 0.1974* 0.0361^ -0.9439* 0.2305* -6.6096 -6.5087 

X 

AGL(e) 0.0584 -0.0500 -2.9325* -0.0357* 0.0253 0.8428* -0.2328* -6.4594 -6.3361 

ASA(e) -0.0053 -0.0363 -1.6954 0.0703 -0.0789 0.9144* -0.0648 -6.4749 -6.3628 

SAB(e) -0.0178 -0.0609 -1.9731* -0.1058* -0.0966 0.8024* -0.1461* -6.4878 -6.3757 

SOL(e) 0.0453 -0.0583 -19.2730* -0.0405 -0.1222 -0.5829* 0.4399* -6.4853 -6.3731 

SAB 

AGL(e) 0.1481* 0.0297 -5.3463* 0.0187 -0.0232* -0.9995* 0.0811 -7.2312 -7.1303 

ASA(e) 0.1347* 0.0954^ 0.2486* -0.2282* 0.0461* 0.9181* 0.1017* -7.1296 -7.0287 

BVT(e) 0.1758* 0.0454 -3.4920* 0.0383 -0.0050 -1.0072* 0.2753* -7.2726 -7.1605 

SOL(e) 0.0211 0.0412 -4.1625* 0.0497* 0.1150 -0.9731* 0.2521* -7.1789 -7.0555 

Y 

AGL(e) 0.0033 -0.0496 -14.5232* -0.1338 -0.1564* -0.7126* -0.4281 -7.0351 -6.9230 

ASA(e) -0.0161 -0.0492 -16.3014* -0.1060 -0.1630* -0.5450* -1.0296 -7.0441 -6.9320 

BVT(e) -0.0677^ -0.0188 -29.2527* -0.1884^ 0.1236 -0.7107* -0.7298 -7.0583 -6.9461 

SOL(e) -0.0024 -0.0303 -11.7294* -0.2294 -0.2289* -0.2241 0.1792 -7.0423 -6.9189 

SOL 

AGL(e) 0.3943* 0.0510 -1.2960 0.2874* -0.2453* -0.3771* 0.9306* -6.8112 -6.6991 

ASA(e) 0.0394* 0.1294* -0.2255* -0.5846* -0.1758* 0.9118* 0.0455* -6.6920 -6.5911 

BVT(e) 0.1383* 0.0992^ -1.6402* -0.5906* -0.1784* 0.8366* -0.0299* -6.6885 -6.5876 

SAB(e) 0.0157 0.1332* -16.1268* 0.4084* -0.2983* -0.5334* -0.6849* -6.6337 -6.5215 

Z 

AGL(e) 0.0463 0.0410 -17.8822* 0.0190 -0.1062 -0.7296* -0.6523 -6.5404 -6.4282 

ASA(e) -0.0765 0.0361 -13.5048* 0.1470 0.0420 -0.6752* 0.8555* -6.5623 -6.4502 

BVT(e) 0.0389 0.0339 -18.3297* 0.1348 -0.0005 -0.9589* 0.4851 -6.5500 -6.4378 

SAB(e) -0.1273^ 0.0574 -22.5883* -0.0353 0.0926* -0.9346* 0.6801^ -6.5776 -6.4655 

* Indicates statistical significance at the 95% level. 

^ Indicates statistical significance at the 90% level. 
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Period 2 

Mean Equation Variance Equation     

  Variable Coeff. Dep.Lag ϖ α γ δ κ AIC SC 

AGL 

ASA(e) 0.5428* -0.1245* -1.3447* -0.1500* 0.0008 0.9215* -0.1244* -4.9085 -4.7983 

BVT(e) 0.6521* -0.0998* -0.3195* -0.1841* 0.1443* 0.5021* 0.0208* -4.8787 -4.7795 

SAB(e) 0.8852* -0.0610 0.9172 -0.0914^ -0.2113* 0.5534* 0.1877* -4.9216 -4.8114 

SOL(e) 0.6338* -0.1078* -12.5434* 0.1289* 0.0248 -0.9459* 0.5805* -5.0977 -4.9765 

V 

ASA(e) 0.0014 0.0168 -2.9748* 0.0613 -0.0738^ 0.8915* -0.1749* -4.6444 -4.5011 

BVT(e) -0.0299 0.0127 -1.4484 0.2410* 0.0978* 0.9037* 0.0859 -4.6881 -4.5448 

SAB(e) -0.0491 0.0397 -0.5776 0.1764* 0.0178 0.9478* 0.1109 -4.6554 -4.5341 

SOL(e) 0.0234 -0.0204 -0.5598* -0.2727* 0.1044* 0.6155* -0.0217* -4.6394 -4.5181 

ASA 

AGL(e) 0.2917* -0.0793 0.8324 0.2823* -0.1471* -0.3963* 1.3919* -5.7975 -5.6983 

BVT(e) 0.4205* -0.1517* -3.0858* -0.0518 -0.0074 -0.9961* 0.2427* -5.8919 -5.7817 

SAB(e) 0.2780* -0.1379* -13.8546* 0.0760* 0.0044 -0.9854* 0.4719* -5.6231 -5.5239 

SOL(e) 0.3559* -0.1196* -15.2229* 0.0886 -0.2749* 0.0628 -0.0350 -5.8660 -5.7558 

W 

AGL(e) -0.0752* 0.0212 -10.2612* 0.3910* 0.0736^ -0.3689^ -0.4520* -5.5070 -5.3747 

BVT(e) 0.0203 0.0328 -3.7790 0.1520* 0.0552 0.8199* -0.1151 -5.4968 -5.3755 

SAB(e) 0.0602 0.0156 -6.1584* 0.1269^ -0.0481 0.7308* -0.3890* -5.5165 -5.3953 

SOL(e) 0.0198 0.0080 -6.2748* 0.1009 0.0516 0.7561* -0.4915^ -5.4933 -5.3720 

BVT 

AGL(e) 0.3246* -0.0915* -5.1269* 0.1110* 0.0420* 0.3409* -0.2367* -5.7192 -5.6090 

ASA(e) 0.5241* -0.1742* -2.7320* 0.0160 -0.0699 -0.2818* -0.3087* -5.6830 -5.5618 

SAB(e) 0.2415* -0.1141* -6.7093* 0.0971* 0.0539 -0.9632* 0.1788* -5.4239 -5.3136 

SOL(e) 0.2780* -0.1217* -2.2194* 0.0701* -0.0283^ -0.9697* 0.3822* -5.6407 -5.5415 

X 

AGL(e) -0.0139 0.0292 -8.3891* 0.6065 -0.1183 0.4228^ -0.1876 -5.3970 -5.2757 

ASA(e) -0.0304 0.0337 -6.0605 0.5748* -0.1343 0.4303^ 0.1030 -5.3971 -5.2759 

SAB(e) 0.0483 0.0180 -5.5141 0.5984* -0.1200 0.4083^ 0.2199 -5.4002 -5.2790 

SOL(e) -0.0014 0.0154 -11.5625* 0.7112* -0.0651 0.0122 -0.5347 -5.4017 -5.2915 

SAB 

AGL(e) 0.2670* -0.0398 6.6108 0.2327* -0.0650 0.2940^ 1.7496* -6.1169 -6.0288 

ASA(e) 0.1605* -0.0653 -2.0471* 0.1704* 0.0738^ 0.8654* -0.1511* -5.9092 -5.7990 

BVT(e) 0.1201* -0.0302 -1.4245^ -0.2824* -0.0544 -0.7194* 0.4708* -5.9296 -5.8193 

SOL(e) 0.1763* -0.0083* 0.5104 0.2819* 0.0261 0.9270* 0.1768* -6.0318 -5.9216 

Y 

AGL(e) 0.0412 0.0486 -1.3485 0.2343* -0.0538 -0.6194* -0.0357 -5.8360 -5.7037 

ASA(e) 0.0084 0.0587 -1.7104^ 0.0231 0.0825* 0.4227 -0.1672^ -5.8321 -5.6888 

BVT(e) -0.0047 0.0728 -1.1832 0.1531^ 0.0562 0.7863* 0.0064 -5.8064 -5.6851 

SOL(e) 0.0147 0.0543 2.2315 0.1664* 0.0526 0.7721* 0.5110 -5.8137 -5.6925 

SOL 

AGL(e) 0.4848* -0.0093 -3.3265* -0.0929* 0.1154* 0.7681* -0.4175* -5.2907 -5.1695 

ASA(e) 0.5051* -0.0483 -0.3180* -0.1815* 0.0486 0.9385* -0.0100* -5.2192 -5.0979 

BVT(e) 0.4101* -0.0144 -3.3508^ 0.1600* -0.0923 0.1277* 1.2244* -5.1278 -5.0175 

SAB(e) 0.5680* -0.0646 1.0504* -0.4523* -0.1360* 0.9262* 0.1665* -5.0489 -4.9497 

Z 

AGL(e) 0.0700 -0.0558 -3.4083* -0.1812* -0.0421 0.7034* -0.2950* -4.8267 -4.7055 

ASA(e) 0.1299* -0.0574 -3.4037* -0.2144* -0.0744 0.7780* -0.2577* -4.8345 -4.7133 

BVT(e) -0.0983^ -0.0371 -1.4779* -0.2011* -0.0178 0.1029 -0.0190* -4.8099 -4.6776 

SAB(e) 0.1415 -0.0458 -7.9782* 0.1070* 0.0088 -0.4826* 0.3920* -4.8407 -4.7084 

* Indicates statistical significance at the 95% level. 
^ Indicates statistical significance at the 90% level. 
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Period 3 

Mean Equation Variance Equation     

  Variable Coeff. Dep.Lag ϖ α γ δ κ AIC SC 

AGL 

ASA(e) 0.3947* 0.0994* -16.1586* 0.0880* -0.0897* -1.0035* 0.0084 -5.3960 -5.2755 

BVT(e) 0.3367* 0.0934* -30.9449* -0.1851^ 0.0878^ -0.6580* -0.9849* -5.2709 -5.1504 

SAB(e) 0.7305* 0.0957^ 0.7785 -0.1053 -0.0783 0.8231* 0.3467 -5.4447 -5.3242 

SOL(e) 0.7250* 0.1048 -14.9991* -0.1960 0.0446* -0.9333* 0.3716* -5.6099 -5.4773 

V 

ASA(e) 0.0866 -0.1025^ -4.3271* 0.1322* -0.0430^ -0.9631* 0.0843^ -5.2490 -5.1285 

BVT(e) 0.0137 -0.0593 -1.4715* -0.1622 -0.0366 -0.1885 -0.0387 -5.1967 -5.0641 

SAB(e) -0.1273 -0.0506 -8.6641 -0.0369 -0.1115* -0.3334 0.5135^ -5.2201 -5.0634 

SOL(e) -0.0578 -0.0435 -8.8800^ -0.1909 -0.0665 -0.1163 -0.7390 -5.2031 -5.0705 

ASA 

AGL(e) 0.1353* 0.0051 -11.9491* 0.1743^ -0.1866* -0.7938* -0.0878 -6.3912 -6.2707 

BVT(e) 0.2934* -0.0412 -5.1700^ 0.5188* -0.2338* -0.3615* 0.7222* -6.4487 -6.3282 

SAB(e) 0.1485* 0.0115 -6.8079* 0.0616* -0.0137 -0.9978* -0.1141* -6.4434 -6.3229 

SOL(e) 0.2409* 0.0110 -0.0118 0.0178 0.0835* -0.9496* 0.6460* -6.5229 -6.4024 

W 

AGL(e) 0.0555^ -0.0094 -2.8354 0.1329 0.0983 0.7451* -0.0072 -6.2858 -6.1533 

BVT(e) -0.0267 0.0061 -1.6866* 0.0375 0.0430 0.0373* 0.0198 -6.2745 -6.1298 

SAB(e) 0.0073 -0.0035 -3.9970* 0.0121 0.0135 0.7140* 0.1317* -6.3090 -6.1764 

SOL(e) 0.0837* -0.0038 -0.2196 0.1370 0.1175* 0.7658* 0.2450 -6.2906 -6.1580 

BVT 

AGL(e) 0.1414* -0.1379* -3.2223^ 0.2766* 0.1701* 0.7137* 0.0513 -6.3777 -6.2571 

ASA(e) 0.2924* -0.1791* -9.8685* 0.4661* 0.1109* -0.0827* 0.6560* -6.4297 -6.3092 

SAB(e) 0.2204* -0.1398* -1.6729 0.2275* -0.1597* 0.2135 0.0014 -6.3588 -6.2382 

SOL(e) 0.1919* -0.1589* -21.5316* 0.5295* 0.0065 -0.6104* 0.5282* -6.4223 -6.3017 

X 

AGL(e) -0.0707 0.0414 -3.7963^ -0.3394* -0.2685* 0.1878 -0.0759 -6.2602 -6.1276 

ASA(e) -0.0419 0.0585 -3.2993* -0.5567* -0.2170* 0.3855* -0.1921* -6.2777 -6.1451 

SAB(e) -0.0490 0.0357 -1.5526 -0.3297* -0.2860* 0.0324 0.2407 -6.2521 -6.1195 

SOL(e) -0.0178 0.0329 -5.7669 -0.3117^ -0.2719* 0.1243 -0.2141 -6.2464 -6.1138 

SAB 

AGL(e) 0.2063* -0.0047 -15.2187* 0.3905* -0.1088* -0.7163* 0.6015* -6.7304 -6.6098 

ASA(e) 0.1163* -0.0054 -3.7334* 0.0732 -0.0498^ -0.8767* 0.2551* -6.6138 -6.4932 

BVT(e) 0.2557* -0.0304 -36.6389* 0.2351* 0.0552* -0.8893* -0.4966^ -6.5675 -6.4470 

SOL(e) 0.1169* 0.0155 0.6367 0.0709 -0.0620* -0.8941* 0.7160* -6.6381 -6.5176 

Y 

AGL(e) -0.0280 0.0320 -1.6320* -0.2166* -0.2087 -0.3933 -0.0585* -6.4856 -6.3531 

ASA(e) 0.0187 -0.0214 -11.4052 0.1051 0.0249 0.7308* -0.1977^ -6.5146 -6.3579 

BVT(e) 0.1156* -0.0091 -31.0539* -0.0041 0.0444 -0.9535* 0.2023 -6.5134 -6.3928 

SOL(e) -0.0109 0.0544 1.7676^ -0.2340* 0.1038^ -0.1039* 0.2686* -6.4862 -6.3295 

SOL 

AGL(e) 0.3943* 0.0790 -17.6043* 0.1761* 0.1418* -0.7404* 1.0834* -6.1612 -6.0407 

ASA(e) 0.4268* 0.0087 -28.3331* 0.1539* 0.1186* -0.8893* 0.0536 -5.9632 -5.8427 

BVT(e) 0.2877* -0.0028 -17.8021* 0.1559 -0.1518* 0.5252* -1.0437* -5.9429 -5.8224 

SAB(e) 0.2994* 0.0318 -18.9544* 0.0388 0.0585* -0.9907* 0.2783* -5.8620 -5.7294 

Z 

AGL(e) -0.1254* 0.0346 -14.5515^ -0.2539 0.0725^ -0.1728 0.5866* -5.8289 -5.7083 

ASA(e) -0.0125 -0.0808* -1.8788* 0.3458* -0.0286* -0.8816* -0.0874* -5.8583 -5.7377 

BVT(e) 0.0315 -0.0610 -13.2777* 0.0881 -0.0923^ -0.9964* -0.0134 -5.8127 -5.6801 

SAB(e) -0.1238 0.0008 -7.8394* -0.0359 -0.0790* -0.9003* 0.4518* -5.8398 -5.7072 

* Indicates statistical significance at the 95% level. 

^ Indicates statistical significance at the 90% level. 
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Period 4 

Mean Equation Variance Equation     

  Variable Coeff. Dep. Lag ϖ α γ δ κ AIC SC 

AGL 

ASA(e) 0.3292* 0.0488 -18.2040* -0.1034* -0.0545* -0.5917* 0.2349* -5.5096 -5.3974 

BVT(e) 0.3381* 0.0562 -0.2752* -0.2250* -0.0673* 0.6079^ 0.0704* -5.5204 -5.4082 

SAB(e) 0.6721* -0.0210 -0.1601* -0.2919* 0.1136* 0.1432* 0.0482* -5.6218 -5.5096 

SOL(e) 0.7422* 0.0754 -16.4602* 0.1864* -0.0545* -0.9685* 0.0929* -5.7627 -5.6618 

V 

ASA(e) 0.2103 -0.0242 -10.5186* 0.2323* -0.0521* -0.9324* -0.2635* -5.4257 -5.3136 

BVT(e) 0.0287 -0.0209 -2.5442* 0.1863* 0.0126 -0.9421* 0.1482^ -5.4104 -5.2983 

SAB(e) -0.1199 0.0004 0.0289 -0.1562 -0.0370 0.9223* 0.0565* -5.3842 -5.2833 

SOL(e) -0.0113 -0.0297 -7.2650* -0.1197 -0.0914 0.8160* -0.5759* -5.3809 -5.2576 

ASA 

AGL(e) 0.1495* 0.0533 -3.2148* -0.1377 0.0577 0.7219* 0.2158* -6.2977 -6.1519 

BVT(e) 0.2608* 0.0154 -5.5078* 0.0936^ 0.2088* -0.9613* 0.2060* -6.3374 -6.2141 

SAB(e) 0.3772* 0.0138 -3.5216* 0.1500* 0.1439^ -0.9560* 0.1763* -6.3709 -6.2364 

SOL(e) 0.2974* 0.0210 -21.2197* 0.0467 0.1910^ -0.9815* 0.0171 -6.3195 -6.1961 

W 

AGL(e) 0.0120 -0.0267 -1.5814* 0.0046 0.0047 0.9165* -0.1011* -6.2440 -6.1431 

BVT(e) 0.0225 -0.0362 -3.1585 0.2690^ 0.0210* -0.4910* 0.4495^ -6.2028 -6.0907 

SAB(e) 0.0205 -0.0101 -3.8978* 0.1520^ 1.3394* -0.8029* 0.0446 -6.2002 -6.0993 

SOL(e) -0.0304 -0.0254 3.9920^ 0.0321 1.5744* -0.6065* 0.4819 -6.2163 -6.1154 

BVT 

AGL(e) 0.2516* -0.1513* -2.1409* 0.1568* 0.0806^ 0.8936* -0.1257* -5.9893 -5.8772 

ASA(e) 0.4009* -0.1957* -1.2514* -0.2271* -0.0491^ 0.9744* -0.1213* -6.0694 -5.9685 

SAB(e) 0.2672* -0.1651* -20.8295* -0.1478 0.1283^ -0.5319 -0.7477* -5.8791 -5.7670 

SOL(e) 0.3384* -0.1482* -23.6445* 0.2292 0.0851 -0.3857* -0.5467* -5.9719 -5.8598 

X 

AGL(e) -0.0192 0.0146 -15.9240* -0.1906^ 0.0781 -0.8607* 0.1461 -5.8229 -5.7108 

ASA(e) -0.0310 -0.0209 -7.7611^ -0.4666* 0.0067 0.1307 -0.2419 -5.8128 -5.7007 

SAB(e) -0.0827 0.0103 -13.2877* 0.0356 0.0786^ -0.8736* 0.4012 -5.8277 -5.7155 

SOL(e) -0.0734 0.0103 -16.7581* -0.1772^ 0.0792 -0.8725* 0.0634 -5.8262 -5.7140 

SAB 

AGL(e) 0.2035* 0.0164 -18.6046* 0.0720 0.0043 -0.9157* 0.6558* -6.9434 -6.8312 

ASA(e) 0.1622* 0.0050 -0.7843 -0.1762 -0.0107 -0.6324* 0.2118* -6.8434 -6.7313 

BVT(e) 0.0903* -0.0337 -4.7725 -0.2942* 0.0267 0.6678* -0.2057 -6.8144 -6.7135 

SOL(e) 0.2228* -0.0233 -2.8138* -0.2548* 0.1089 0.4208* 0.2968* -6.9059 -6.8050 

Y 

AGL(e) 0.0377 -0.1212* -0.3751* -0.3249^ -0.0285 0.9386* 0.0164* -6.7891 -6.6881 

ASA(e) -0.0276 -0.1145* -3.0905 0.3325* 0.0072 0.4384^ 0.4668^ -6.7629 -6.6171 

BVT(e) 0.0090 -0.1280* -0.2875* -0.2973* 0.0011 0.9684* -0.0066* -6.7940 -6.6931 

SOL(e) 0.0251 -0.0872^ -0.0815 0.1779* -0.0587* 0.9594* 0.1252 -6.7815 -6.6582 

SOL 

AGL(e) 0.3598* 0.0353 -0.7059* -0.3070* 0.0650* 0.9257* -0.0206* -6.4326 -6.3205 

ASA(e) 0.3472* 0.0397 -3.0246 0.2315* 0.1513* 0.5821* 0.2055 -6.1618 -6.0496 

BVT(e) 0.2561* 0.0011 -3.4127* -0.0617^ 0.0206 -0.9930* 0.2318* -6.2571 -6.1449 

SAB(e) 0.4565* 0.0311 -6.7252* 0.4181* -0.1641* -0.6053* 0.8778* -6.2040 -6.1031 

Z 

AGL(e) 0.0501 -0.0084 -14.8625* -0.0040 -0.0172 -0.7959* 0.8350* -6.0356 -5.9235 

ASA(e) -0.0470 -0.0176 -0.5936* -0.1018* -0.0448 0.1505* -0.0477* -6.0403 -5.9281 

BVT(e) 0.0837^ -0.0011 -34.6718* 0.0013 -0.0536 -0.4884 -0.2599^ -6.0429 -5.9195 

SAB(e) 0.0796 -0.0069 0.1781 0.0653 -0.0232 0.9676* 0.0891 -6.0378 -5.9145 

* Indicates statistical significance at the 95% level. 

^ Indicates statistical significance at the 90% level. 
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Period 5 

Mean Equation Variance Equation     

  Variable Coeff. Dep. Lag ϖ α γ δ κ AIC SBC 

AGL 

ASA(e) 0.5951* -0.0643 -10.1934* -0.0239 0.0305 0.8058* -0.6460* -5.8362 -5.6915 

BVT(e) 0.3931* 0.0244 1.2163 0.1350* 0.0188 -0.9707* 0.7341* -5.9585 -5.8380 

SAB(e) 0.7225* 0.0127 -8.7034* 0.0517 0.0507 -0.7109* 0.6448* -5.8285 -5.7200 

SOL(e) 0.6793* -0.0183 1.8197* -0.1032 0.1618* 0.8456* 0.3381* -6.0337 -5.9252 

V 

ASA(e) -0.0396 -0.0873* -3.1573* 0.4058* 0.0558^ -0.9631* 0.1585 -5.6840 -5.5514 

BVT(e) -0.0231 -0.0441 -11.8713^ 0.1773^ 0.1144 0.3123 -0.6733 -5.6256 -5.4930 

SAB(e) 0.0366 -0.0574 -13.6554* 0.2635^ 0.1423 -0.5630^ 0.1933 -5.6218 -5.4892 

SOL(e) -0.0368 -0.0759 1.2438* -0.4226* 0.0456 0.0237 0.2053* -5.6205 -5.4879 

ASA 

AGL(e) 0.2313* -0.1357* -1.8478 0.1983^ -0.1312^ -0.3924* 0.9368* -6.5256 -6.4171 

BVT(e) 0.3136* -0.0200 -3.0595* -0.5474* -0.0837 0.7224* -0.0564* -6.5553 -6.4227 

SAB(e) 0.3281* 0.0085 -10.5693* 0.3630* 0.0065 -0.6768* 0.5438* -6.4724 -6.3760 

SOL(e) 0.2080* -0.1077* -12.3048* 0.3929* -0.0907* -0.8812* 0.6184* -6.5767 -6.4803 

W 

AGL(e) 0.0254 -0.0372* -7.4678* 0.1600* -0.0114 -0.9725* 0.0984 -6.4094 -6.2769 

BVT(e) 0.0100 -0.0160 -1.7021 -0.2455 0.1894* 0.6825* 0.1312* -6.3358 -6.2153 

SAB(e) -0.0731^ 0.0468* -22.4150* 0.2471* 0.0201 -0.9405* -0.3033^ -6.3948 -6.2743 

SOL(e) -0.1303* -0.0168 -10.1868* 0.2584* -0.0403 -0.7562* 0.2827 -6.3509 -6.2303 

BVT 

AGL(e) 0.2046* -0.3097* -7.9965* -0.2629* 0.0327 -0.6409* 0.7033* -6.2598 -6.1393 

ASA(e) 0.3764* -0.3434* -19.5935* 0.1442* -0.0062 -0.9718* 0.1505 -6.3276 -6.2192 

SAB(e) 0.2478* -0.2717* -1.3711* -0.4795* 0.1224* 0.6257* -0.0451* -6.2583 -6.1257 

SOL(e) 0.3663* -0.3047* -2.6836* -0.3395* 0.1160* 0.7301* -0.1805* -6.3678 -6.2352 

X 

AGL(e) -0.0189 0.0478 -6.5399* -0.2637* 0.1104 -0.2047 -0.3058^ -6.0520 -5.9435 

ASA(e) 0.0459 0.0843 -5.5829* -0.1416* 0.0712* 0.8945* -0.5545* -6.0722 -5.9517 

SAB(e) -0.1798* 0.0233 -9.4422* -0.2540* 0.1781* -0.5802* -0.0828 -6.0627 -5.9542 

SOL(e) 0.0012 0.0540 -15.4375* -0.1963 0.0944 -0.4550^ -0.5909^ -6.0539 -5.9334 

SAB 

AGL(e) 0.1679* -0.0196 -5.3965* -0.4532* 0.1015* 0.6038* 0.1351* -7.0532 -6.9326 

ASA(e) 0.1245* -0.0957* -5.1294* -0.4372* 0.1664* 0.7022* -0.0721^ -6.9761 -6.8555 

BVT(e) 0.1411* -0.0853* -1.0731* -0.2806* 0.0956* 0.9084* -0.0427* -6.9331 -6.8367 

SOL(e) 0.1442* -0.1136* -0.4952* -0.4369* -0.0044 0.4351* 0.0921* -6.9385 -6.8180 

Y 

AGL(e) -0.0368 0.0085 -0.3255 -0.0748 0.1388^ 0.6864* 0.3046 -6.8101 -6.7016 

ASA(e) -0.0038 0.0039 5.7725* -0.1853* 0.0264^ 0.9284* 0.6802* -6.8256 -6.7171 

BVT(e) 0.0480 0.0054 -6.6940* -0.0482 -0.0550 -0.9866* 0.2511 -6.7932 -6.6847 

SOL(e) 0.0284 0.0140 0.9013 -0.1250 0.0719 0.6975* 0.7257* -6.8198 -6.6872 

SOL 

AGL(e) 0.3524* 0.0243 -4.7334* 0.1301^ -0.0466* -0.9829* 0.1410* -6.6113 -6.4908 

ASA(e) 0.2244* 0.0003 0.3471 0.2313* 0.0456^ -0.9496* 0.6891* -6.4298 -6.2972 

BVT(e) 0.3304* 0.0543 2.2485^ 0.2303* -0.0367* -0.9559* 0.9209* -6.5254 -6.4048 

SAB(e) 0.3188* 0.0175 -3.8600* 0.1838* -0.0003 -0.9646* 0.1656* -6.4289 -6.3084 

Z 

AGL(e) 0.0849* -0.1640* -14.5942* 0.4494* 0.0665 -0.7995* 0.2672 -6.2321 -6.1236 

ASA(e) 0.1018^ -0.1663* -12.3548* -0.2611 0.0750 -0.5793* 0.2239 -6.2178 -6.0972 

BVT(e) 0.0630 -0.1453* -0.3638 -0.0316 0.1514^ 0.6785* 0.2790 -6.1899 -6.0934 

SAB(e) 0.1666* -0.1283* -1.2977 0.0273 0.1571* 0.7909* 0.0630 -6.2042 -6.1077 

* Indicates statistical significance at the 95% level. 

^ Indicates statistical significance at the 90% level. 
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Period 6 

Mean Equation Variance Equation     

  Variable Coeff. Dep. Lag ϖ α γ δ κ AIC SBC 

AGL 

ASA(e) 0.5122* -0.0303 -11.0043* -0.0018 -0.0522 0.8557* -0.9410* -6.4627 -6.3745 

BVT(e) 0.5740* -0.1737* -14.0011* 0.4572* 0.0436 -0.8720* 0.1763* -6.5428 -6.4215 

SAB(e) 0.0797 0.0071 0.2054* -0.0223 -0.0253 0.9759* 0.0391* -6.3563 -6.2681 

SOL(e) 0.7224* -0.0625^ -0.9587* -0.1153* -0.0213 0.8385* -0.0833* -6.6558 -6.5566 

V 

ASA(e) -0.1954* -0.0616 -5.1198* 0.2140* 0.0622* 0.8921* -0.2694 -6.3335 -6.2122 

BVT(e) -0.1363* 0.0265 -2.9866 0.2219* -0.0245 0.8198* 0.0572 -6.3444 -6.2231 

SAB(e) -0.1824 -0.0287 -17.4458* -0.1744^ 0.0418 -0.7947* 0.0874 -6.3084 -6.2092 

SOL(e) -0.1533* -0.0349* -9.8678* 0.2359* 0.0267^ -0.9393* 0.0033 -6.3521 -6.2419 

ASA 

AGL(e) 0.1777* -0.0194 -12.0904* -0.0817 0.1231* -0.8523* 0.2712 -7.4870 -7.3878 

BVT(e) 0.2087* -0.0962* -1.5737* 0.2160* -0.0323 0.7224* -0.1386* -7.4826 -7.3723 

SAB(e) -0.0171 -0.0229 -37.8032* -0.1096* 0.0101 -0.8746* -0.1418* -7.4343 -7.3351 

SOL(e) 0.3355* -0.0738* -15.7422* 0.2388* 0.0268 -0.9366* 0.0126 -7.5864 -7.4652 

W 

AGL(e) -0.0643^ -0.0057 -19.0049 0.0622 -0.0741 0.1516 -0.2935 -7.3526 -7.2534 

BVT(e) -0.0402 0.0020 -33.7269* -0.0309 -0.0145 -0.9196* -0.1225^ -7.3526 -7.2534 

SAB(e) -0.0558 -0.0089 -20.0929* 0.0586 -0.0728 -0.8732* -0.0813 -7.3537 -7.2655 

SOL(e) -0.1060* 0.0273 -21.4567* 0.1510* -0.0465* -0.9539* -0.1193* -7.3907 -7.3025 

BVT 

AGL(e) 0.2204* -0.1529* 4.7065 0.3326* 0.1286^ 0.0020 1.6474* -7.3278 -7.2396 

ASA(e) 0.1541* -0.2429* -17.5795* 0.1631* 0.1401* -0.9527* -1.0927* -7.4259 -7.3157 

SAB(e) 0.0840 -0.1310* -9.9028* 0.5536* -0.0845 -0.3140^ 0.0857 -7.2043 -7.0941 

SOL(e) 0.2778* -0.1757* -0.0895 -0.4208* 0.1205^ 0.7321* 0.2689* -7.3178 -7.2186 

X 

AGL(e) 0.0052 0.0152 -4.7449* 0.1113 0.1300 0.0889 -0.2615* -7.1092 -6.9880 

ASA(e) 0.0476 0.0219 -9.7326* -0.3388* -0.2813* 0.3836* -0.3734 -7.1258 -7.0377 

SAB(e) -0.0075 0.0265 -6.9235^ -0.3261* -0.2896* 0.4534* -0.1611 -7.1265 -7.0383 

SOL(e) 0.0380 0.0237 -5.7040* -0.3477* -0.2705* 0.4391* -0.0366 -7.1228 -7.0347 

SAB 

AGL(e) 0.1409* 0.0308 12.6836* 0.2864* 0.2032* -0.1581 2.2838* -7.8324 -7.7332 

ASA(e) 0.1419* -0.0084 -29.8013* 0.3974* 0.0606 -0.2080 0.4184* -7.7652 -7.6439 

BVT(e) 0.1406* -0.0661^ -34.0891* 0.3331* 0.0237 -0.8216* -0.2387* -7.7746 -7.6643 

SOL(e) 0.1624* 0.0937^ -3.5329 0.2672* 0.0620* 0.7971* 0.1574* -7.8111 -7.6898 

Y 

AGL(e) 0.0278 -0.0727^ -9.2210 0.1958^ 0.0047 0.8314* -0.2712* -7.7224 -7.6011 

ASA(e) 0.0019 -0.0293 -19.1923* -0.0217 0.0156 -0.9517* 0.1445* -7.7058 -7.6176 

BVT(e) 0.0328 -0.0348 -17.5690* -0.1611 -0.0113 -0.6771* 0.0033 -7.6782 -7.5790 

SOL(e) 0.0846* -0.0501 -4.8538^ 0.2099 0.0160 0.5484* -0.2664^ -7.6885 -7.5672 

SOL 

AGL(e) 0.3290* 0.0934* -11.8064* 0.1969* 0.0418* -0.9460* 0.4573* -7.4068 -7.2856 

ASA(e) 0.3711* 0.0316 -3.9206* 0.1829^ 0.2932* 0.9669* -0.3497* -7.2403 -7.1301 

BVT(e) 0.3087* 0.0743 -3.4609* 0.1114^ 0.2608* 0.8661* -0.2011* -7.1956 -7.0964 

SAB(e) 0.1256* 0.0903* -28.7509* 0.0168 -0.3490* -0.4318* -0.0365* -7.1909 -7.0697 

Z 

AGL(e) 0.0093 0.0290 0.8771 -0.2907* 0.0042 0.4832* 0.6279 -7.0321 -6.9439 

ASA(e) -0.0806 0.0434 -8.1754* -0.0767 -0.0066 -0.5759* 0.0860 -7.0269 -6.9056 

BVT(e) 0.0707 0.0633 -7.4581* 0.0868 0.0055 -0.7384* 0.1314 -7.0289 -6.9076 

SAB(e) -0.0411 0.0479 -11.3586* -0.0609 0.0080 -0.6021* -0.1549 -7.0238 -6.9026 

* Indicates statistical significance at the 95% level. 

^ Indicates statistical significance at the 90% level. 
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Period 7 

Mean Equation Variance Equation     

  Variable Coeff. Dep. Lag ϖ α γ δ κ AIC SC 

AGL 

ASA(e) 0.4711* -0.0146 -5.4828* -0.3962* -0.0396 -0.6949* -0.2342* -7.0610 -6.9583 

BVT(e) 0.1793* -0.0463^ -0.6587* -0.8476* 0.0401 0.6555* 0.1928* -6.9235 -6.8208 

SAB(e) 0.3900* 0.0022 -4.4282* -0.2646^ -0.0311 -0.7147* -0.0611* -6.9534 -6.8392 

SOL(e) 0.5643* 0.0186 -7.2593* 0.0654* -0.0147* -1.0094* -0.1361* -7.1979 -7.0838 

V 

ASA(e) -0.0389 0.1214* -2.7010* -0.1848* 0.0882^ 0.7556* -0.0480* -6.7450 -6.6537 

BVT(e) -0.1877* 0.1275* -1.1266 -0.1873^ 0.0629 0.7754* 0.0833 -6.7596 -6.6683 

SAB(e) 0.0191 0.0764^ -9.3938* -0.2929* 0.0876^ 0.7543* -0.6823* -6.7758 -6.6845 

SOL(e) -0.0776 0.1348* -5.5590* -0.1825* 0.1149* 0.7191* -0.2909* -6.7477 -6.6564 

ASA 

AGL(e) 0.2832* -0.0832 -8.5153* 0.1335 -0.0426 -0.7240* 0.3756^ -7.6268 -7.5127 

BVT(e) 0.2822* -0.1156* -31.0191* 0.3454* 0.0328 -0.8653* -1.0436* -7.5075 -7.4048 

SAB(e) 0.2420* -0.0628 -13.8137* 0.0444 -0.1214* -0.9720* -0.0773 -7.5144 -7.4003 

SOL(e) 0.3696* -0.0401 -2.0005 0.2974 0.0103 -0.0654 0.9236* -7.5655 -7.4628 

W 

AGL(e) -0.0448 0.0360 -20.9649* 0.0714 -0.0875 -0.6685* -0.3832^ -7.4391 -7.3478 

BVT(e) 0.0079 -0.0233 -24.3070* 0.1641* -0.0596^ -0.9653* -0.5014* -7.4431 -7.3290 

SAB(e) -0.0070 0.0395 -12.3666* 0.0145 0.0266 -0.9889* 0.0790 -7.4123 -7.3096 

SOL(e) -0.0334 0.0284 -10.9788* -0.0156 -0.0022 -0.9638* 0.2977* -7.4147 -7.3120 

BVT 

AGL(e) 0.1787* -0.1258* 2.1031^ 0.0046 -0.0259 -0.3974* 0.3029* -7.8485 -7.7344 

ASA(e) 0.2098* -0.1599* -20.8273* 0.3770* -0.0229* -0.9820* 0.1170^ -7.8698 -7.7671 

SAB(e) 0.1240* -0.0648 -8.2453^ 0.3026* -0.1783* -0.4568* 0.7093* -7.7909 -7.6882 

SOL(e) 0.2696* -0.0835* -16.4920* 0.2175* 0.0313^ 0.5931* -0.0124 -7.9005 -7.7749 

X 

AGL(e) -0.0188 -0.1439* -1.9056* -0.3223* 0.1059* 0.8016* -0.1240* -7.7533 -7.6392 

ASA(e) -0.0447 -0.0866 -20.3243* 0.1293 0.2012* 0.0690 -1.0029^ -7.7304 -7.6391 

SAB(e) 0.0467 -0.0618 -17.3833* 0.1915 0.1935* -0.1991 -0.4244 -7.7213 -7.6301 

SOL(e) -0.0244 -0.0815 -1.5397* -0.3022* -0.0976 0.3655* -0.1051* -7.7281 -7.6026 

SAB 

AGL(e) 0.1526* -0.0701 -3.1489* 0.0759 0.0199 -0.8915* 0.6185* -7.9013 -7.7986 

ASA(e) 0.1842* -0.0272 -15.5058* 0.2379* -0.0799 -0.7333* 0.6889* -7.8089 -7.6834 

BVT(e) 0.1322* -0.0888 -1.5455* -0.3523* -0.0111 0.9222* -0.0766* -7.7960 -7.6819 

SOL(e) 0.3080* -0.1142* -4.1389 0.3264* 0.0381 -0.9182* 0.5167* -7.8801 -7.7660 

Y 

AGL(e) -0.0460 0.0137 -8.1262* 0.0052 0.0251 -0.9892* -0.1122^ -7.7525 -7.6498 

ASA(e) -0.0352 0.0010 -36.3216* -0.1332 0.0039 -0.7076* -1.0954* -7.7523 -7.6496 

BVT(e) 0.0274 0.0229 -0.4262 -0.0013 0.0474 0.7316* 0.2274 -7.7270 -7.6357 

SOL(e) -0.0304 0.0305 -24.8247* -0.0223 0.0014 -1.0154* 0.0478 -7.7412 -7.6385 

SOL 

AGL(e) 0.3307* -0.0217 -5.1192* -0.0596 -0.1202* -0.8389* 0.6190* -7.6633 -7.5378 

ASA(e) 0.3095* -0.0581 -9.1502* -0.1494* -0.0250* -0.9637* 0.3571* -7.6624 -7.5369 

BVT(e) 0.2811* 0.1014* -9.3476* -0.1535* 0.0002 -0.9796* 0.3110* -7.6346 -7.5090 

SAB(e) 0.2315* 0.0067 -24.1498* 0.1753* 0.0843* -0.8738* 0.4454* -7.4795 -7.3768 

Z 

AGL(e) 0.0724^ 0.0385 -10.2425* -0.0032 0.0268 -0.9882* 0.1532^ -7.4061 -7.3034 

ASA(e) 0.0573 0.0189 -27.9389* 0.0752 -0.0413 -0.9345* 0.1549 -7.3693 -7.2552 

BVT(e) 0.0648 0.0487 -12.0488* -0.0626 0.0023 -0.9953* -0.1779^ -7.3884 -7.2857 

SAB(e) 0.1468* 0.0283 -25.3462* -0.1367 -0.0473 -0.5688* -0.8770* -7.3953 -7.3040 

* Indicates statistical significance at the 95% level. 

^ Indicates statistical significance at the 90% level. 
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Period 8 

Mean Equation Variance Equation     

  Variable Coeff. Dep. Lag ϖ α γ δ κ AIC SC 

AGL 

ASA(e) 0.2800* 0.0576 -36.1535* -0.0748^ 0.1088* -0.9795* -0.9530* -7.4642 -7.3459 

BVT(e) 0.1480* 0.0763* -11.8349* 0.0371 0.1627* -0.7712* 1.3266* -7.3919 -7.2736 

SAB(e) 0.2295* 0.1300* -1.6858* 0.1336* -0.3287* 0.9685* -0.1168* -7.5081 -7.4016 

SOL(e) 0.3468* -0.0121 -1.6486 0.2244* -0.0101 0.6967* 0.0422 -7.4332 -7.3149 

V 

ASA(e) -0.0452 -0.0930 -1.3089^ -0.2057 -0.0337 0.8044* -0.0927 -7.2704 -7.1521 

BVT(e) 0.0214 -0.0723 0.5072* -0.2335* -0.0141 0.9663* 0.0708* -7.2762 -7.1698 

SAB(e) 0.2025* -0.1169* -5.8430* 0.0309 -0.0153 -0.9375* 0.0250 -7.2645 -7.1343 

SOL(e) -0.0120 -0.0587 -30.5497* 0.0842 -0.0004 -0.4674^ -0.1415 -7.2493 -7.1429 

ASA 

AGL(e) 0.2507* -0.0725^ -11.2517* -0.2720* -0.0305 0.8314* -0.9511* -7.8537 -7.7590 

BVT(e) 0.2308* -0.0495 -1.7423* -0.1304* -0.2068* -0.6029* -0.0448* -7.7818 -7.6635 

SAB(e) 0.0514 -0.0432 -2.1460* -0.0531^ -0.0361 -0.5508* -0.0819* -7.7283 -7.6100 

SOL(e) 0.2669* -0.0486 -0.7268* -0.0040 0.0047 0.8067* 0.1049* -7.8034 -7.6851 

W 

AGL(e) 0.0220 -0.0153 -19.2045* 0.1682 -0.1155 -0.7592* -0.0335 -7.6942 -7.5759 

BVT(e) -0.0271 0.0170 0.6955* -0.0626 0.0135 0.9580* 0.1033* -7.7343 -7.6396 

SAB(e) 0.0495 0.0493 -4.4520* 0.1380 -0.0117 -0.7661* 0.0586 -7.7080 -7.6015 

SOL(e) 0.0523 0.0123 -6.4144* 0.1399^ -0.0225 -0.9153* 0.1157 -7.7130 -7.6065 

BVT 

AGL(e) 0.1405* -0.1194* -13.8430* -0.2174* 0.1613* -0.6678* -0.8583* -7.7334 -7.6151 

ASA(e) 0.2031* -0.1142* -18.7487* -0.1440^ 0.0435 -0.8820* -0.8224* -7.7566 -7.6383 

SAB(e) 0.1055* -0.1030* -6.0085* 0.1693* 0.0866* -0.9701* -0.0512* -7.8525 -7.7224 

SOL(e) 0.3641* -0.2740* -28.6042* 0.2517* -0.0138* -0.9384* 0.2851* -7.9681 -7.8498 

X 

AGL(e) -0.0048 -0.0158 0.3046* 0.0963* 0.0090 0.9734* 0.0523* -7.6613 -7.5549 

ASA(e) -0.0628 -0.0281 -0.0547 -0.1337* -0.0183 0.6038* 0.0333 -7.6635 -7.5571 

SAB(e) 0.0956 -0.0307 -0.0662 0.2357* 0.0407 0.9800* 0.0107* -7.6625 -7.5442 

SOL(e) 0.0116 0.0103 -11.6207* -0.0815 0.0169 -0.9781* -0.1002 -7.6692 -7.5627 

SAB 

AGL(e) 0.1562* -0.1090^ 8.2337* -0.5008* -0.0337 -0.5705* 1.4140* -8.0223 -7.9040 

ASA(e) 0.1163* -0.1219^ -2.3116 0.6237* 0.1482* 0.0001 0.8937^ -7.8986 -7.7803 

BVT(e) 0.0523* -0.0795 -14.4497* 0.5568* -0.1549* -0.7044* -0.7146* -7.9122 -7.7939 

SOL(e) 0.1603* -0.2526* -5.4892* 0.9477* 0.0263 -0.4211* 0.4164* -7.9371 -7.8307 

Y 

AGL(e) 0.0283 0.0424 -16.4203* -0.0670 -0.0560* -0.9539* 0.4789 -7.7505 -7.6441 

ASA(e) -0.1198* 0.0471 -5.3039* -0.1855 0.0461 0.4475* -0.3102* -7.7594 -7.6411 

BVT(e) -0.1289* 0.0787^ 0.3321* -0.1859* -0.0652* 0.9373* 0.0807* -7.7797 -7.6851 

SOL(e) -0.0106 0.1182* -13.9304* 0.1822* 0.0409 -0.9589* 0.1868* -7.7840 -7.6538 

SOL 

AGL(e) 0.2146* -0.0647 -28.1608* 0.1286* 0.0704* -0.8730* -1.8571* -8.0867 -7.9803 

ASA(e) 0.2395* -0.0846 -13.7935* 0.4841* 0.0871 -0.8223* 0.6729 -8.0805 -7.9622 

BVT(e) 0.3201* -0.0695 -1.8438* -0.7147* -0.0398 -0.0939* -0.1438* -8.1517 -8.0334 

SAB(e) 0.1976* -0.0639 -11.8029* -0.1457^ 0.0062 -0.8317* 0.2099* -8.0497 -7.9196 

Z 

AGL(e) 0.0095 -0.0307 -15.5738* -0.0449 0.0979* -0.9189* 0.3821 -7.9165 -7.8100 

ASA(e) 0.0118 0.0089 -13.6070* -0.1429* 0.0283 -0.9530* -0.1083 -7.9220 -7.8156 

BVT(e) -0.0474 -0.0114 -13.0162* 0.0337* 0.0330 -0.9162 0.7298^ -7.9018 -7.7953 

SAB(e) 0.0255 -0.0479 -8.4101* 0.1786* -0.0134 -0.9611* 0.0862* -7.9471 -7.8170 

* Indicates statistical significance at the 95% level. 

^ Indicates statistical significance at the 90% level. 

  



 

104 

 

Period 9 

Mean Equation Variance Equation     

  Variable Coeff. Dep. Lag ϖ α γ δ κ AIC SC 

AGL 

ASA(e) 0.4137* 0.0976^ -0.3346* -0.2385* -0.0921* -0.2780* 0.0442* -7.1533 -7.0392 

BVT(e) 0.3376* 0.0961* -1.7803* -0.0893^ -0.1247* 0.8660* -0.1518* -7.1606 -7.0465 

SAB(e) 0.2921* 0.1139* -14.4283* 0.1200^ -0.1674* -0.6563* 0.7810* -7.0812 -6.9785 

SOL(e) 0.6610* -0.0388 -5.5290* 0.1646* 0.0314^ -0.9709* 0.0486* -7.4066 -7.2925 

V 

ASA(e) 0.1403* -0.0428 -0.7646* -0.0479* -0.0544* 0.9277* -0.0175* -7.0333 -6.9306 

BVT(e) 0.0135 -0.0009 -15.2124* 0.0481 0.0511 -0.7496* 0.2077 -7.0092 -6.9065 

SAB(e) 0.3086* -0.0188 -26.4224* 0.2250* -0.0867* -0.9306* -0.6370* -7.0802 -6.9889 

SOL(e) 0.0872 -0.0139 -5.5782^ -0.0561 -0.0436 0.0469 -0.2878^ -7.0272 -6.9245 

ASA 

AGL(e) 0.0965* -0.0326 -4.8045* -0.4355* -0.1665* 0.7349* -0.0697 -8.1075 -7.9934 

BVT(e) 0.1936* -0.0070 -11.5906* 0.0978* 0.0681* -0.8975* 1.5953* -8.0872 -7.9731 

SAB(e) 0.0620* -0.0353^ -3.0669* -0.1346* -0.1244* 0.4997* 0.0218* -8.0997 -7.9856 

SOL(e) 0.2306* 0.0416 -8.1179* 0.0583 0.0431 -0.7563* 0.6185* -8.1260 -8.0233 

W 

AGL(e) 0.0724* -0.0388 -2.9566 0.1052 -0.0209 0.9101* 0.0205 -7.9533 -7.8277 

BVT(e) 0.0198 0.0079 -2.2517 0.1376^ -0.0132 0.5913* 0.5401 -7.9473 -7.8218 

SAB(e) -0.0214 -0.0357 -3.5800 0.1290 -0.0278 0.8805* 0.0376 -7.9322 -7.8067 

SOL(e) 0.1159* 0.0161 -21.9755* 0.0400 0.0083 -0.9402* -0.0874 -7.9424 -7.8511 

BVT 

AGL(e) 0.2593* -0.1853* -23.6123* 0.0235 0.0751* -0.9951* 0.4892 -7.6393 -7.5366 

ASA(e) 0.3697* -0.1510* -0.1477* -0.3631* 0.0611* 0.9660* 0.0120* -7.6449 -7.5422 

SAB(e) 0.2158* -0.1964* -1.0246* 0.1037* -0.0094 -0.9862* 0.0235^ -7.6417 -7.5162 

SOL(e) 0.2536* -0.0857* -10.3132* 0.1446* 0.0310 -0.8113* 0.1174* -7.7663 -7.6407 

X 

AGL(e) -0.0294 0.0511 -2.3523* 0.2464* -0.0349 -0.9266* 0.0119 -7.5063 -7.3808 

ASA(e) 0.0219 0.0571 -2.3640* 0.2485* -0.0382 -0.9197* 0.0059 -7.5005 -7.3749 

SAB(e) -0.0836 0.0456 -5.4178^ 0.1511 0.1356^ 0.5900* -0.1043 -7.4540 -7.3513 

SOL(e) -0.0213 0.0682* -4.6687 0.2305* 0.0336 0.7957* 0.0385 -7.4773 -7.3517 

SAB 

AGL(e) 0.1289* -0.0511 -3.8521* 0.1116* 0.0214 -0.9850* 0.2531* -8.3559 -8.2418 

ASA(e) 0.0866* -0.0736* -5.8582* 0.0705* -0.0066 -0.9970* 0.0549* -8.2798 -8.1543 

BVT(e) 0.1517* 0.1103* -0.2397* -0.5295* -0.1263* 0.9627* 0.0077* -8.1934 -8.0907 

SOL(e) 0.1945* -0.0157 -6.1187* 0.1546* -0.0759^ -0.8885* 0.1218* -8.1906 -8.0765 

Y 

AGL(e) 0.0348 0.0003 -8.7981* -0.0974^ 0.0354 -1.0024* 0.0848 -8.0476 -7.9449 

ASA(e) 0.0270 0.0136 -1.7036* -0.0120 -0.0068 -0.9822* 0.0227^ -8.0505 -7.9478 

BVT(e) -0.0354 0.0095 -16.3869 -0.0150 0.0524 0.5109^ 0.0382 -8.0396 -7.9255 

SOL(e) 0.0843* 0.0108 -9.7971* -0.0988* 0.0382 -0.9950* -0.0200 -8.0542 -7.9515 

SOL 

AGL(e) 0.2758* 0.0815^ -13.4358* 0.0231 -0.1689* -0.7903* 0.2027 -7.9056 -7.7800 

ASA(e) 0.3777* -0.0140 -16.4408* 0.2609 0.1279^ -0.3550* 0.5427* -7.7897 -7.6641 

BVT(e) 0.2251* 0.0006 -23.7168* 0.4014* 0.1987* -0.5209* 0.2224 -7.7420 -7.6165 

SAB(e) 0.1935* -0.0687 -22.6544* 0.6767* 0.0120 -0.9978* 0.0043 -7.7579 -7.6553 

Z 

AGL(e) -0.0186 -0.0901^ -1.6640* -0.1226^ 0.0197 0.8627* -0.0330* -7.5687 -7.4775 

ASA(e) -0.0852 -0.0880 -0.9893* -0.1173* 0.0081 0.9128* -0.0155* -7.5704 -7.4791 

BVT(e) 0.0239 -0.0820 0.4282 -0.0980* 0.0194 0.9051* 0.1295* -7.5647 -7.4734 

SAB(e) 0.0216 -0.0612 -1.3029* -0.2674* 0.0524* 0.8789* -0.0229* -7.5892 -7.4979 

* Indicates statistical significance at the 95% level. 

^ Indicates statistical significance at the 90% level. 
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Period 10 

Mean Equation Variance Equation     

  Variable Coeff. Dep. Lag ϖ α γ δ κ AIC SC 

AGL 

ASA(e) 0.5074* 0.0585 -15.5350* 0.3314* 0.0413 -0.6987* 0.2314* -7.5714 -7.4767 

BVT(e) 0.2522* 0.1015* -2.2456* -0.3818* -0.0328 0.7142* -0.2105* -7.5485 -7.4302 

SAB(e) 0.6249* -0.0175 -35.6720* 0.0600 -0.0932* -0.9255* 0.1006* -7.5887 -7.4704 

SOL(e) 0.4454* -0.0141 -26.1076* 0.1921* 0.0034 -0.4519* 0.2183* -7.5521 -7.4456 

V 

ASA(e) -0.0715 -0.0278 7.1676 -0.1765 0.0276 0.8406* 0.7989^ -7.4007 -7.2824 

BVT(e) -0.0246 -0.0041 -11.5922* 0.0790 0.0724* 0.4872* 0.1869* -7.4047 -7.2863 

SAB(e) -0.0658 -0.0228 2.1924 -0.1355 0.0383 -0.3519 0.3490^ -7.3897 -7.2714 

SOL(e) 0.0773 -0.0435 -0.4421 -0.1699* 0.0348 -0.3910^ 0.1330^ -7.3861 -7.2560 

ASA 

AGL(e) 0.3223* -0.1034^ -11.6932* 0.2429* 0.1273* -0.6730* 1.1143* -8.1017 -7.9952 

BVT(e) 0.2386* -0.2121* -15.1903* 0.2189* -0.0455 -0.9606* 0.6512* -8.1557 -8.0374 

SAB(e) 0.3539* -0.1597* 5.9589* -0.1333* -0.2563* 0.6777* 0.7377* -8.0186 -7.9002 

SOL(e) 0.2558* -0.2071* -14.3728* 0.1650* 0.0547* 0.2707* 0.1387* -8.0212 -7.9148 

W 

AGL(e) 0.0025 0.0636 5.7033 -0.0612 0.0262 0.8057* 0.8870* -7.8742 -7.7441 

BVT(e) -0.0985 0.0714 -7.6043 -0.1814 0.0902 0.3317 -0.5261 -7.8607 -7.7306 

SAB(e) -0.0504 0.0618 2.4776 0.0982 -0.1067 0.5999^ 0.6066^ -7.8671 -7.7607 

SOL(e) 0.0247 0.0648 -20.9176* 0.0527 0.0121 -0.9507* -0.0940 -7.8740 -7.7557 

BVT 

AGL(e) 0.2843* -0.2516* -36.3820* 0.2092* -0.0151 -0.9538* 0.1114* -7.8339 -7.7156 

ASA(e) 0.2848* -0.1470* 3.9718^ -0.3269* 0.1088* 0.6370* 0.3912* -7.8268 -7.7085 

SAB(e) 0.3960* -0.1745* 2.7521* -0.1581 0.1189* 0.9743* 0.2744* -7.7668 -7.6604 

SOL(e) 0.2829* -0.2194* -21.7580* 0.2688* -0.0588^ -0.9581* 0.2472* -7.8438 -7.7137 

X 

AGL(e) 0.0743 -0.0029 0.4896 0.0716 -0.0304 0.8158* 0.3946* -7.6076 -7.4775 

ASA(e) 0.0216 0.0327 -7.1264* -0.0951 -0.1946* 0.5172* -0.5502* -7.5933 -7.4750 

SAB(e) -0.0439 0.0437 -4.7089* -0.1352 -0.1662* 0.4918^ -0.3000 -7.5957 -7.4774 

SOL(e) 0.1120^ 0.0304 -2.8826 0.0549 0.1230* 0.4826 0.2324 -7.5970 -7.4787 

SAB 

AGL(e) 0.2040* -0.0043 -7.9483* 0.1013* 0.0432* -0.9931* -0.1453 -8.5709 -8.4526 

ASA(e) 0.2393* -0.0095 -16.7888* 0.1435 0.2102* -0.6074* 0.6261* -8.3789 -8.2606 

BVT(e) 0.1663* 0.0620 2.8875 -0.4458* 0.1233* -0.3404* 1.0402* -8.3450 -8.2267 

SOL(e) 0.1315* 0.0294 -21.3422* 0.1025^ 0.0226 -0.9968* 0.1662* -8.4402 -8.3219 

Y 

AGL(e) 0.0519 -0.0730 -34.6410* -0.0900 -0.0176 -0.9075* 0.1782 -8.2148 -8.0965 

ASA(e) -0.0264 -0.0386 -36.3414* -0.0021 0.0149 -0.9228* 0.2031* -8.2249 -8.1066 

BVT(e) 0.0138 -0.0769 -35.1121* -0.0605 -0.0105 -0.9336* 0.1622^ -8.2088 -8.0905 

SOL(e) -0.0108 -0.0816 -3.5695* -0.0307 0.0982 0.8538* -0.1824^ -8.2132 -8.1067 

SOL 

AGL(e) 0.2558* -0.0571 -21.9988* 0.4549* 0.2062* -0.4824* 0.5517* -8.1161 -7.9978 

ASA(e) 0.2334* -0.1441* -10.3657* 0.3930* 0.2886* -0.2845* 0.8839* -8.0531 -7.9348 

BVT(e) 0.2207* -0.0485 -15.0857* 0.4123* 0.1481* -0.6670* 0.4955* -8.0480 -7.9416 

SAB(e) 0.3855* -0.1782* -8.7174^ 0.6077* 0.1789* -0.3383 0.6357* -8.0699 -7.9634 

Z 

AGL(e) -0.0781* 0.0451 -26.2365* 0.1025^ -0.0113 -0.9864* 0.3074^ -7.8903 -7.7838 

ASA(e) -0.0747 0.0312 -21.4630* 0.1029 0.0009 -0.9559* 0.3799^ -7.8658 -7.7475 

BVT(e) -0.0650 0.0317 -25.4160* 0.2962* 0.0554 -0.8201* 0.1829 -7.8679 -7.7496 

SAB(e) -0.0117 0.0562 -25.0512* 0.1888^ -0.0740 -0.8220* -0.2314 -7.8669 -7.7604 

* Indicates statistical significance at the 95% level. 

^ Indicates statistical significance at the 90% level. 

 

In table 4.8 the stocks and their proxies in the first column represent the stock that is analysed for 

volatility spill-over effects from the stocks in the second column. The second column represents 

the coefficient of the error term of the stock causing a spill-over (or the  -coefficient in equation 

3.19). The actual stock and its replacement proxy are sequenced directly below each other to 

ease comparability. This allows for each eight rows, respectively, representing the volatility 

spill-over effects of all the other stocks present in the portfolio to one of the five stocks (first four 
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rows) and similarly for its proxy (second four rows). This allows for better comparison in testing 

whether replacing a stock that exhibits less volatility spill-over effects from all the other stocks 

present, reduces overall portfolio risk. 

 

The first peculiarity is present in the error term ( ) coefficients in the mean equation (first 

highlighted column), which represents the relationship between the stocks (or the part of a given 

stock‟s return that is captured in the error term of another). In all of the estimated AS model 

regressions the  -term is statistically significant for at least three of the four stocks for all the 

original stocks in each period. In contrast, the proxy stock replacements, occasionally and at 

most, exhibit only one statistically significant influence from the four  -terms. This means that 

the  -terms of each stock affected the returns of the proxy stocks minimally (if at all), whereas 

the  -terms captured a great deal of the returns present in the original stocks. The returns of the 

proxy stocks are therefore negligibly integrated with the returns of the other stocks present in the 

portfolio. In this regard, each proxy stock replaces a stock that exhibits statistically significant 

integration with the other stocks. This result is consistent with the Granger causality estimates. It 

is important to note that this reduction of returns spill-over does not affect the overall portfolio 

returns. 

 

Secondly, and most significant for this study, are the estimates for the variance equation. The   

parameter measures the asymmetry or the leverage effect of volatility. A negative sign indicates 

a negative asymmetric impact, which means that negative shocks cause a larger reaction in 

volatility than positive shocks, and vice versa. In all the periods and portfolios, the  -coefficient 

is extensively more significant for the actual stocks than that of the proxy stocks. Also of 

importance is the  -coefficient, which indicates the degree of volatility persistence. The majority 

of volatility persistence coefficients are significant for both the original and proxy stocks. In 

addition, all of the coefficients were found to be smaller than one (except for the odd two out of 

400 AS models), which, according to Xu and Fung (2005), is a requirement for the stability of 

volatility persistence terms. A high level of volatility persistence implies that fluctuations will 

remain for an extended period. The focus of this study is on the  -coefficients (in the second 

highlighted column). The  -terms capture the actual volatility spill-over effects of a given stock 

from all the other stocks present in the given portfolio. Once again, the more profound 
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statistically significant volatility transmission effects occurred between the original stocks 

included in the five-stock portfolio. As soon as a proxy stock is introduced, the overall volatility 

spill-over effects decrease. However, it is important to note that some stocks may transmit more 

volatility to a proxy stock than to the original stock, but that overall, the combined volatility 

spill-over effects (from all the other stocks) are greater for the original stocks than for the proxy 

stocks. In addition, volatility spill-over effects increased during the periods surrounding the 

height of the 2008 financial crisis (periods two to four), with volatility spill-over effects 

subsequently decreasing as the market started to calm. This is in accordance with studies that 

testify to the heightened integration between stocks (with regard to returns and volatility) during 

periods of financial turmoil.
138

 

 

Within all the portfolios, in all the periods, one thing stands out; the proxy stocks attract 

significantly less volatility spill-over effects from the other stocks in the portfolios than the 

original stocks attracts from the same stocks. This is evident from the considerably fewer 

statistically significant coefficients from both the mean equations ( -terms) and the variance 

equations ( -,  - and  -terms). Therefore, based on all the AS model estimations, the proxy 

stocks are far less prone to volatility transmission than the actual counterparts that they replace. 

 

4.4 Conclusion 

 

These results exhibit strong support for the inclusion of a volatility spill-over measure when 

constructing a portfolio based on past price information. Not only did this measure provide 

insight into the information captured within the residuals, but it also provides consistently stable 

results (even during times of financial distress). Both these advantages offer portfolio managers a 

greater range of stock selection and allocation, which are not captured by simply using the 

market beta. These results by no means rule out the use of beta, for beta captures co-variances in 

the mean equation. However, using beta estimates in conjunction with a residual based test (such 

as the AS model) will provide a more stable and reasonable choice in stock selection when trying 

to construct a mean-variance efficient portfolio. It should be noted that the construction of such a 

portfolio is based solely on past price information, and that future price movements remain 

unpredictable. 

                                                           
138

  See Longin and Solnik (1995), Kaminsky and Reinhart (1998), and Maniya and Magnusson (2010). 
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Considering that the proxy stocks, when replacing the actual stocks, are less prone to volatility 

spill-over effects (in all cases), and also reduce portfolio standard deviation (in all cases), it is 

reasonable to infer that when contemplating choices between stocks that have similar returns and 

risk, the obvious choice would be the one that exhibits the least volatility spill-over effects from 

the stocks included in a portfolio. The Granger causality tests also testify to this notion. 

However, beta also provides a tried and tested (and simple) method to help portfolio managers in 

portfolio allocation. Beta was shown to mostly co-move with portfolio standard deviation, 

although not linearly. In some instances, beta moved contrary to both portfolio standard 

deviation and volatility spill-over effects. This result is significant in that it proves that market 

beta will not always render an accurate depiction of the portfolio‟s risk profile. It is important to 

remember why this is so. Since beta is an indication of the co-movement of portfolio returns and 

the returns of the market portfolio, it does not capture the ultimate risk position of the portfolio.  

 

These results attest to the fact that portfolio managers ought to look deeper into the second 

moment relationships among stocks in the same proposed portfolio. It is very possible for a 

portfolio to achieve the same returns from a group of stocks with high portfolio risk, which could 

easily have performed just as well with another combination of stocks that possessed less causal 

relationships and therefore lower portfolio risk. Thus, when a stock within a portfolio has the 

same past return record as another stock, selection between these stocks should be made on the 

grounds of its co-variance with the other stocks and the market (beta), and its volatility spill-over 

effects received from other stocks within the portfolio. For optimal portfolio selection, the beta 

measure should therefore be equal to one (adjusted for risk preference), and the stocks selected 

for such a portfolio should exhibit the least volatility spill-over effects among each other, 

provided they deliver the same portfolio return. It should also be noted that during financial 

distress, volatility gets accentuated, which may cause results to be biased. However, the time 

periods under question did include times of financial instability, and the results did hold, to a 

lesser extent. Such behaviour was expected.  
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“For having lived long, I have experienced many instances of being obliged, by better 

information or fuller consideration, to change opinions, even on important subjects, which I once 

thought right but found to be otherwise.” 

~ Benjamin Franklin, author, politician, 

scientist, musician and inventor. 

 

CHAPTER 5 

 

CONCLUDING REMARKS AND RECOMMENDATIONS 

 

Modern portfolio theory has long been placing emphasis on using market beta as a measure in 

constructing an efficient portfolio; and because of its simplicity, beta has seen substantial 

integration into modern-day portfolio management. Portfolio managers have long been familiar 

with a unit-beta, under the efficient market hypothesis (EMH), translating to a well-diversified 

portfolio with a unit correlation with the market, and therefore considered entirely hedged 

against unsystematic risk. However, under these assumptions the beta measure does not capture 

all the relevant information pertaining to stock selection and allocation. Firstly, beta has been 

known to be an unstable measure in the wake of stock market anomalies, and secondly, beta only 

tells a portfolio manager more about the mean returns between stocks. In addition, systematic 

risk still remains even after fully diversifying (in accordance with beta). In this regard volatility 

within and between stocks in a portfolio impacts on the profitability of the portfolio, as well as 

the portfolio‟s overall risk profile. There is a wealth of information that is captured within the 

price fluctuations of stocks in a portfolio. These price fluctuations also exhibit “co-varying” 

properties. Understanding this concept is of utmost importance when a particular economy only 

offers a limited number of stocks.  

 

Since portfolio managers in smaller economies such as South Africa are limited in their choices 

of stocks, it becomes increasingly difficult to fully diversify a stock portfolio given volatility 

spill-over effects between stocks listed on the same exchange. In such a setting, using only beta 

to construct a portfolio that tracks the market or market index, may therefore lead to substandard 

portfolio returns, which could have been negated if one considered the impact of volatility spill-
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over effects during portfolio construction. If a limited number of stocks in an equity market is 

not enough to persuade the use of additional measures, then times of financial distress should 

necessitate the use of them. In this sense, the study focused on volatility spill-over effects as an 

additional measure to enhance portfolio selection and allocation. 

 

5.1 Research Aim, Question and Objectives 

 

The problem with conventional portfolio management has been the reliance on co-variances and 

beta measures when tracking the market and fully diversifying. However, other measures may be 

equally telling. Volatility spill-over effects between stocks may also provide useful information 

regarding portfolio rebalancing, especially when used in conjunction with return co-variances. 

Considering both these measures will enhance portfolio management by providing an incentive 

for strategy adjustment. In order for strategy adjustments to take place, volatility spill-over 

effects had to be determined and measured. Volatility transmission was measured on a 

microstructure level to estimate whether this transmission measure provides significant 

information as opposed to market beta for the rebalancing of a stock portfolio. 

 

To answer this proposed question the portfolio return, volatility and beta of the different stocks 

had to be estimated (during and following the 2008 financial crisis) in order to compare and 

estimate volatility spill-over effects between the stocks within a given portfolio. Volatility spill-

over effects were then analysed to determine if it had a significant effect on portfolio volatility. 

 

5.2 Findings and Recommendations 

 

The main findings were that volatility spill-over effects did indeed provide an additional measure 

for portfolio stock selection and allocation. Portfolio volatility decreased when a stock was 

replaced by one that attracts less volatility spill-over effects from the other stocks in the 

portfolio. This was true for all the observed portfolios in each period. In addition, when portfolio 

volatility decreased, portfolio beta, followed suit in most instances. Both these measures were 

accurate in capturing the reduced portfolio volatility. However, volatility spill-over effects and 

beta should not be seen as substitutes, but rather as complementing measures to enhance stock 

selection and allocation. This is because beta captures information related to the mean equation, 
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and volatility spill-over effects captures to the variance equation, both of which are important 

when considering that the more information is available, the more efficient the portfolio could be 

constructed. It is therefore recommended that both these measures be utilised in constructing an 

efficient portfolio. However, these findings are based on randomly generated stocks (for which 

parameters could be fixed), and is therefore only valid in theory. Further research and 

implementation will be needed to vindicate the performance of a portfolio which utilises 

volatility spill-over effects as an input in portfolio construction. 

 

5.3 Suggested Further Research 

 

These findings, however influential they may be, have only used the aggregate shock (AS) model 

as the preferred method of residual based testing. The most relevant further research, however, 

would be the estimation of mean-variance efficient portfolios if data constraints do not prohibit 

it. These mean-variance efficient portfolios‟ betas and volatility spill-over effects can then be 

tested to substantiate if the results from this study does, in fact, cause a more efficient portfolio. 

An outcome of this particular study was to ascertain if there was indeed scope to include a 

volatility spill-over measure to aid beta measures in portfolio selection and construction. The 

natural route to follow would be to test whether this combination of measures actually increases 

mean-variance efficiency of portfolios in South Africa during financial distress, or even financial 

stability. 

 

To further authenticate these results, other residual based tests may be used to test the validity of 

volatility spill-over effects. Other testable frameworks may include (but are not limited to) i) a 

multivariate E-GARCH (Karolyi, 1995), ii) GARCH-BEKK (Maniya & Magnusson, 2010), or 

the dynamic conditional correlation (DCC) model (Engle, 2002). Expanding on such volatility 

spill-over results may require the use of a “volatility spill-over index” as done by Diebold and 

Yilmaz (2008). Such an index could be expanded beyond the stocks within a portfolio, and may 

even include all the relevant stocks listed on an exchange. The index should include an up-to-

date method of measuring the volatility spill-over effects to a specific stock from a selection of 

stocks (to be included within a portfolio). Computationally it will be a daunting task; however, it 

will significantly facilitate the process of stock selection for any portfolio manager. Finally, these 

results can be tested on other emerging markets, or by using larger data intervals (such as daily 
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stock returns), or when market conditions have significantly improved. However, the overall 

period of testing in this study did include various two-month-periods in which volatility calmed.  

 

On a more microstructure and trading-related topic the intraday predictability and persistence in 

the cross-section of stock return and volatility spill-over effects can be estimated (Heston, 

Korajczyk & Sadka, 2010). In essence, such a study will capture the hourly (or shorter interval) 

cross-section spill-over effects between stocks on a day-to-day basis, and assess how returns and 

volatility spills over between stocks during certain times of the day, and how long such effects 

persist. Results from this study will especially be helpful for actively trading investors that seek 

adequate information before executing a trade. 

 

5.4 Conclusion 

 

Taking into consideration that the mandate of a managing fund requires the constant rebalancing 

of a stock portfolio, and that this process of rebalancing becomes more complex and difficult 

during times of financial distress, the need for adequate information becomes more important. 

This study provided an additional measure to market beta in order to construct a more efficient 

portfolio, namely, volatility spill-over effects between stocks within the same portfolio. Using 

intraday stock returns and a residual based test (aggregate shock (AS) model), volatility spill-

over effects were estimated between stocks. It was shown that when a particular stock attracts 

fewer spill-over effects from the other stocks in the portfolio, then the overall portfolio volatility 

decreased as well. In most cases market beta showcased similar results. Therefore, in order to 

construct a more efficient portfolio (which is effectively hedged against unsystematic risk), 

requires both a portfolio that has a unit correlation with the market, but also include stocks with 

the least amount of volatility spill-over effects among each other. Stock selection and allocation 

is a fine art in itself, therefore be vigilant of the various factors that may influence the return 

capability of a portfolio. 

 

 

 

 

  



 

113 

 

REFERENCE LIST 

 

 

ADLER, M. & DUMAS, B. 1983. International Portfolio Choice and Corporation Finance: A 

Synthesis. Journal of Finance, 38(3):925-984. 

 

ALEXANDER, S. S. 1961. Price Movements in Speculative Markets: Trends or Random Walks. 

Industrial Management Review, 2(2): 7-26. 

 

AMIHUD, Y. & MENDELSON, H. 1987. Trading Mechanism and Stock Returns: An Empirical 

Investigation. Journal of Finance, 42(3): 533-555. 

 

AMIHUD, Y. & MENDELSON, H. 1991. Efficiency and Trading: Evidence from the Japanese 

Stock Market. Journal of Finance, 46(5): 1765-1790. 

 

ANDERSON, T. G., & T. BOLLERSLEV. 1997. Intraday Periodicity and Volatility Persistence 

in Financial Markets. Journal of Empirical Finance, 4(2-3): 115-158. 

 

ANDERSON, T. G. & BOLLERSLEV, T. 1998. Answering the Sceptics: Yes, Standard 

Volatility Models do Provide Accurate Forecasts. International Economic Review, 39(1): 885-

906. 

 

ANDERSON, T. G., BOLLERSLEV, T. & DAS, A. 2001. Variance-Ratio Statistics and High-

Frequency Data: Testing for Changes in Intraday Volatility Patterns. Journal of Finance, 56(1): 

305-327. 

 

ANDERSON, T. G., BOLLERSLEV, T., DIEBOLD, F. X. & EBENS, H. 2001. The Distribution 

of Realized Stock Return Volatility. Journal of Financial Economics, 61(1): 43-76. 

 

ANDERSON, T. G., BOLLERSLEV, T., DIEBOLD, F. X. & LABYS, P. 2001. The Distribution 

of Exchange Rate Volatility. Journal of the American Statistical Association, 96(1): 42-55. 

Correction published in 2003, 98(1): 501. 

 

ANDERSON, T. G., BOLLERSLEV, T., DIEBOLD, F. X. & WU, P. 2004. Realized Beta: 

Persistence and Predictability. PIER Working Paper, no. 04-018. University of Pennsylvania. 

Philadelphia. 

 

ARBEL, A. & STREBEL, P. 1983. Pay Attention to Neglected Firms! Journal of Portfolio 

Management, 9(2): 37-42. 

 

ARCHIBALD, T. R. 1972. Stock Market Reaction to Depreciation Switch-Back. Accounting 

Review, 47(1): 22-30. 

 

AREAL, N. M. P. C., & TAYLOR, S. J. 2002. The Realized Volatility of FTSE-100 Futures 

Prices. Journal of Futures Markets, 22(2002): 627-648. 



 

114 

 

ARNOTT, R. D. 1993. The CAPM and Equity Management, Asset Allocation, and Performance 

Measurement. In The CAPM Controversy: Policy and Strategy Implications for Investment 

Management. ICFA Continuing Education. HARRINGTON, D. R. & R.A. KORAJCZYK, R. A. 

(editors). AIMR. New York. 16-24pp. 

 

ARROW, K. 1991. Cowles in the History of Economic Thought. Cowles Fiftieth Anniversary. 

The Cowles Foundation for Research in Economics. Yale University. 1-24pp. 

 

ASAI, M. & SO, M. K. P. 2012. Long Memory and Asymmetry for Matrix-Exponential 

Dynamic Correlation Processes. Working Paper. Soka University. 

 

ASTERIOU, D. & HALL, S. G. 2007. Applied Econometrics: A Modern Approach. Palgrave 

Macmillan. London. 249-268pp. 

 

BACHELIER, L. 1900. La Théorie de la Spéculation. Annales Scientifiques de l’École Normale 

Supérieure Sér, 3(17), 21-86. Gauthier-Villars. Paris. 

 

BAE, K. H. & KAROLYI, G. A. 1994. Good News, Bad News and International Spillovers of 

Stock Return Volatility Between Japan and the U.S. Pacific-Basin Finance Journal, 2(4): 405-

438. 

 

BACHELIER, L. 1914. Le Jeu, la Chance et le Hasard. Bibliothèque de Philosophie 

Scientifique. Ernest Flammarion, Paris. Reprinted by Editions Jacques Gabay. Paris. 1993. 

 

BANZ, R. W. 1981. The Relationship between Return and Market Value of Common Stocks. 

Journal of Financial Economics, 9(1): 3-18. 

 

BARRIOL, A. 1908. Théorie et Pratique des Opérations Financières. O. Doin, Paris. A 4
th

 

corrected edition appeared in 1931. 

 

BASIEWICZ, P. G. & AURET, C. J. 2010. Feasibility of the Fama and French Three Factor 

Model in Explaining Returns on the JSE. Investment Analysts Journal, 71: 13-25. 

 

BASU, S. 1977. Investment Performance of Common Stocks in Relation to their Price-Earnings 

Ratios: A Test of the Efficient Market Hypothesis. Journal of Finance, 32(3): 663-682. 

 

BASU, S. 1983. The Relationship between Earnings Yield, Market Value, and Return on NYSE 

Common Stocks: Further Evidence. Journal of Financial Economics, 12(1): 129-156. 

 

BAUWENS, L., LAURENT, S. & ROMBOUTS, J. K. V. 2006. Multivariate GARCH Models: 

A Survey. Journal of Applied Econometrics, 21(1): 79-109. 

 

BEARD, C. & SAIS, R. 1997. Is there a Neglected-Firm Effect? Financial Analysts Journal, 

53(5): 19-23. 

 



 

115 

 

BEKAERT, G. & WU, G. 2000. Asymmetric Volatility and Risk in Equity Markets. Review of 

Financial Studies, 13(1): 1-42. 

 

BERNOULLI, D. 1783. Specimen Theoriae Novae de Mensura Sortis. In Commentarii 

Academiae Scientiarum Imperialis Petropolitannae, 1738. Translated from Latin into English by 

SOMMER, L. 1954. Exposition of a New Theory on the Measurement of Risk. Econometrica, 

22(1): 23-36. 

 

BERNOULLI, J. 1713. Ars Conjectandi. Published posthumously after his death in 1705. Basel: 

Thurnisiorum. 1713. 

 

BESSEMBINDER, H. & SEGUIN, P. J. 1993. Price Volatility, Trading Volume and Market 

Depth: Evidence from Future Markets. Journal of Finance and Quantitative Analyses, 28(1): 21-

39. 

 

BIERMAN, H. & SMIDT, S. 1966. The Capital Budgeting Decision: Economic Analysis and 

Financing of Investment Projects. Macmillan Company. New York. 

 

BLACK, F. 1972. Capital Market Equilibrium with Restricted Borrowing. Journal of Business, 

45(3): 444-455.  

 

BLACK, F. 1976. Studies of Stock Price Volatility Changes. Proceedings of the 1976 Meeting of 

Business and Economic Statistics Section. American Statistical Association. 177-181pp. 

 

BLACK, F. 1981. An Open Letter to Jack Treynor. The Financial Analysts Journal, 37(4): 14. 

Letters to the editor. 

 

BLAIR, B., POON, S. H. & TAYLOR, S. J. 2001. Forecasting S&P 100 Volatility: The 

Incremental Information Content of Implied Volatilities and High Frequency Index Returns. 

Journal of Econometrics, 105(1): 5-26. 

 

BLATTBERG, R. & GONEDES, N. 1974. A Comparison of Stable and Student Distributions as 

Statistical Models for Stock Prices. Journal of Business, 47(2): 244-280. 

 

BODIE, Z., KANE, A. & MARCUS, A. J. 1993. Investments, 2
nd

 ed. Burr Ridge: Irwin. Special 

edition for CFA candidates. 

 

BODIE, Z., KANE, A. & MARCUS, A. J. 2007. Essentials of Investments, 6
th

 ed. McGraw- 

Hill/Irwin. New York. 

 

BOLLERSLEV, T. 1986. Generalised Autoregressive Conditional Heteroscedasticity. Journal of 

Econometrics, 31(1): 307-327. 

 

BOLLERSLEV, T. 1990. Modelling the Coherence in Short-Run Nominal Exchange Rates: A 

Multivariate Generalized ARCH Approach. Review of Economics and Statistics, 72(1) 498-505. 

 



 

116 

 

BOLLERSLEV, T., ENGLE, R. F. & WOOLDRIDGE, J. M. 1988. A Capital Asset Pricing 

Model with Time-Varying Covariances. The Journal of Political Economy, 96(1): 116-131. 

 

BOOTH, G. G., MARTIKAINEN, T. & TSE, Y. 1997. Price and Volatility Spillovers in 

Scandinavian Stock Markets. Journal of Banking & Finance, 21(6), 811–823. 

 

BOROVKOVA, S. & LOPUHAA, R. 2012. Spatial GARCH: A Spatial Approach to 

Multivariate Volatility Modeling. Available at: http://papers.ssrn.com/sol3/papers.cfm?abstr 

act_id=2176781. Date of use: 26 Feb 2013. 

 

BOSHOFF, W. H. 2006.  The Transmission of Foreign Financial Crises to South Africa: A Firm-

Level Study. http://mpra.ub.unimuenchen.de/9029/1/MPRA_paper_ 9029.pdf. Date of access: 25 

April 2013. 

 

BOWIE, D. C. & BRADFIELD, D. J. 1997. Some Evidence on the Stability of Beta Coefficients 

on the JSE. SA Journal of Accounting Research, 11(2): 1-20.  

 
BRADFIELD, D. J., BARR, G. D. I. & AFFLECK-GRAVES, J. F. 1988. Macroeconomic 

Identification of the Pricing Factors on the Johannesburg Stock Exchange. South African Journal 

of Business Management, 19(1): 11-21. 

 

BRANCH, B. 1977. A Tax Loss Trading Rule. Journal of Business, 50(2): 198-207. 

 

BRANCH, B. & CHANG, K. C. 1985. Tax-Loss Trading – Is the Game Over or Have the Rules 

Changed? Financial Review, 20(1): 55-69. 

 

BRANCH, B. & RYAN, J. 1980. Tax-Loss Trading: An Inefficiency Too Large to Ignore. 

Financial Review, 15(1): 20-29. 

 

BREALEY, R. A., MYERS, S. C. & MARCUS, A. J. 1999. Fundamentals of Corporate Finance. 

2
nd

 ed. McGraw-Hill. New York. 

 

BREEDEN, D. T. 1979. An Intertemporal Asset Pricing Model with Stochastic Consumption 

and Investment Opportunities. Journal of Financial Economics, 7(3): 265-96. 

 

BRENNAN, M. J. 1970. Taxes, Market Valuation, and Corporate Finance Policy. National Tax 

Journal, 4: 417-427. 

 

BREVIS, T. 1998. Tydsberekening Binne „n APT Raamwerk. DCom tesis. University of South 

Africa. Pretoria. 

 

BROWN, R. 1828. A brief account of microscopical observations. Mabberley. Reprinted in the 

Edinburgh New Philosophical Journal, (1828): 358-371. Also reprinted in numerous other 

journals.  

 



 

117 

 

BROWN, K. C. & REILLY, F. K. 2009. Analysis of Investments and Management of Portfolios, 

9
th

 ed. International Student Edition. South-Western CENGAGE Learning. 4-211pp. 

 

CADARAJAT, Y. & LUBIS, A. 2012. Offshore and Onshore IDR Market: An Evidence on 

Information Spillover. Bulletin of Monetary Economics and Banking, 14(4): 323-347. 

 

CAI, Y., KIM, B., LEDUC, M., SZCZEGOT, K., YIXIAO, Y. & ZAMFUR, M. 2007. A Model 

for Intraday Volatility: Modelling and Predicting Volatility. 1-13pp. Available at: 

http://users.iems.northwestern.edu/~armbruster/2007msande444/report2.pdf. Date of use: 25 

Apr. 2013. 

 

CAMPBELL, J. Y. 1996. Understanding Risk and Return. Journal of Political Economy, 104(1): 

298-345. 

 

CAMPBELL, J. Y., LO, A. W. & MacKINLAY, A. C. 1997. The Econometrics of Financial 

Markets. Princeton University Press. Princeton. New Jersey. 

 

CAMPBELL, J. Y. & HENTSCHEL, L. 1992. No News is Good News. Journal of Financial 

Economics, 31(3): 281-318. 

 

CAPORIN, M. & MCALEER, M. 2009. Do We Really Need Both BEKK and DCC? A Tale of 

Two Covariance Models. CIRJE Discussion Paper. CIRJE-F-638. Available at: http://www.e.u-

tokyo.ac.jp/cirje/research/03research02dp.html. Date of use: 24 Feb 2013. 

 

CARDANO, G. 1564. Liber de Ludo Aleae. First published in SPON, C. 1663. Opera Omnia, 

vol.1. Lyons. Translated into English by GOULD, H. S. in ORE, O. 1953. Cardano: The 

Gambling Scholar. Princeton University Press. Princeton, NJ. Reprinted in 1961. The Book on 

Games of Chance. Holt, Rinehart & Winston. New York.  

 

CLARK, P. K., 1973. A Subordinated Stochastic Process Model with Finite Variance for 

Speculative Prices. Econometrica, 41(1): 135-155. 

 

CHAN, C. C., & FONG, W. M. 2006. Realized Volatility and Transactions. Journal of Banking 

and Finance, 30(7): 2063-2085. 

 

CHAN, K., CHAN, K. C. & KAROLYI, G. A. 1991. Intraday Volatility in the Stock Index and 

Stock Index Futures Markets. Review of Financial Studies, 4(4): 657-684. 

 

CHANG, C. L., McALEER, M. & TANSUCHAT, R. 2011. Crude Oil Hedging Strategies using 

Dynamic Multivariate GARCH. Energy Econonomics, 33(5): 912-923. 

 

CHEN, H. F. 2011.  Three Essays on Stock Market Risk Estimation and Aggregation. Doctoral 

dissertation. University of Manitoba. 

 

CHEN, J. 2003, Intertemporal, CAPM and the Cross-section of Stock Returns. Working paper. 

University of Southern California. 



 

118 

 

CHO, J. & YOO, B. H. 2011. The Korean Stock Market Volatility during the Currency Crisis 

and the Credit Crisis. Japan and the World Economy, 23(4): 246-252. 

 

CHRISTIANSEN, C. 2003. Volatility Spillover Effects in European Bond Markets. Working 

Paper. Aarhus School of Business. 

 

CHRISTIE, A. A. 1982. The Stochastic Behaviour of Common Stock Variances: Value, 

Leverage and Interest Rate Effect. Journal of Financial Economics, 10(4): 407-432. 

 

CHRISTODOULAKIS, G. A. & SATCHELL, S. E. 1998. Hashing GARCH: A Re-Assessment 

of Volatility Forecast and Performance. Chapter 6. 168-192pp. In KNIGHT, J. & SATCHELL, 

S. E. Forecasting Volatility in the Financial Markets. Butterworth. London. 

 

CHRISTOFI, A. & PERICLI, A. 1999. Correlation in Price Changes and Volatility of Major 

Latin American Stock Markets. Journal of Multinational Financial Management, 9(1): 79-93. 

 

COCHRANE, J. H. 2001. Asset Pricing. Princeton University Press. Princeton. 

 

COOTNER, P. H. 1962. Stock Prices: Random vs. Systematic Changes. Industrial Management 

Review, 3(2): 24-45. 

 

CORRADO, C. J. & SU, T. 1997. Implied Volatility Skews and Stock Return Skewness and 

Kurtosis Implied By Stock Option Prices. European Journal of Finance, 3(1): 73-85. 

 

COWLES, A. 1933. Can Stock Market Forecasters Forecast? Econometrica, 1(3): 309-324. 

 

COWLES, A. 1944. Stock Market Forecasting. Econometrica, 12(3/4), 206-214. 

COWLES, A., & JONES, H. 1937. Some A Posteriori Probabilities in Stock Market Action. 

Econometrica, 5(3): 280-294. 

 

CROSS, F. 1973. The Behaviour of Stock Prices on Fridays and Mondays. Financial Analysts 

Journal, 29(6): 67-69. 

 

DIEBOLD, F. X. & YILMAZ, K. 2008. Measuring Financial Asset Returns and Volatility 

Spillovers, with Application to Global Equity Markets. Working Paper no. 08-16. University of 

Pennsylvania. Philadelphia. 

 

DALY, K. 2008. Financial Volatility: Issues and Measuring Techniques. Physica A: Statistical 

Mechanics and its Applications, 387(11): 2377-2393. 

 

DAVIDIAN, M. & CAROLL, R. J. 1987. Variance Function Estimation. Journal of American 

Statistical Association, 82(1987): 1079-1091. 

 

DEFUSCO, R. A., MCLEAVEY, D. W., PINTO, J. E. & RUNKLE, D. E. 2004. Quantitative 

Methods for Investment Analysis, 2
nd

 ed. Charlottesville, VA: CFA Institute. 

 



 

119 

 

DE BONDT, W. F. M. AND THALER, R. 1985. Does the stock market overreact? Journal of 

Finance, 40(3): 793-805. 

 

DE LA VEGA, J. P. 1688. Confusion de Confusiones. English translation by KALLENBENZ, H. 

1957. The Kress Library Series of Publications, no. 13. Cambridge, Mass. The Kress Library of 

Business and Economics. Harvard University Press. 

 

DE MONTESSUS, R. 1908. Leçons élémentaires sur le Calcul des Probabilités. Gauthier-

Villars. Paris. 

 

DING, Z. & ENGLE, R. F. 2001. Large Scale Conditional Covariance Matrix Modeling, 

Estimation and Testing. Academia Economic Papers, 1: 83-106. 

 

DING, Z. GRANGER, C. W. J. & ENGLE, R. F. 1993. A Long Memory Property of Stock 

Market Returns and a New Model. Journal of Empirical Finance, 1(1993): 83-106. 

 

DROST, F. C. & NIJMAN, T. E. 1993. Temporal Aggregation of GARCH Processes. 

Econometrica, 61(4): 909-927. 

 

DUFFIE, D. & PAN, J. 1997. An Overview of Value-at-Risk. The Journal of Derivatives, 4(3): 

7-49. 

 

EDERINGTON, L. H. & GUAN, W. 2000. Measuring Implied Volatility: Is an Average Better? 

Working Paper, University of Oklahoma.  

 

EINSTEIN, A. 1905. Über die von der molekularkinetischen Theorie der Wärme geforderte 

Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik, 322(8): 

549–560. 

 

ELLUL, A., HOLDEN, C. W., JAIN, P. & JENNINGS, R. 2007. Order Dynamics: Recent 

Evidence from the NYSE. Journal of Empirical Finance, 14(5): 636-661. 

 

ENGLE, R. F. 1982. Autoregressive Conditional Heteroscedasticity with Estimates of the 

Variance of United Kingdom Inflation. Econometrica, 50(1): 987-1007. 

 

ENGLE, R. F. 2002. Dynamic Conditional Correlation: A Simple Class of Multivariate 

Generalized Autoregressive Conditional Heteroskedasticity Models. Journal of Business and 

Economic Statistics, 20(3): 339-350. 

 

ENGLE, R. F., & FERSTENBERG, R. 2007. Execution Risk. Journal of Portfolio Management, 

33(2): 34-44. 

 

ENGLE, R. F. & KRONER, K. F. 1995. Multivariate Simultaneous Generalized ARCH. 

Econometric Theory, 11(1): 122-150. 

 



 

120 

 

ENGLE, R. F. & NG, V. K. 1993. Measuring and Testing the Impact of News on Volatility. 

Journal of Finance, 48(5), 1749-1778. 

 

ENGLE, R. F. & SOKALSKA, M. E. 2012. Forecasting Intraday Volatility in the US Equity 

Market: Multiplicative Component GARCH. Journal of Financial Econometrics, 10(1): 54-83. 

 

EVANS, J. L. & ARCHER, S. H. 1968. Diversification and the Reduction of Dispersion: An 

Empirical Analysis. Journal of Finance, 23(5): 761-767.  

 

EUN, C. S. & SHIM, S. 1989. International Transmission of Stock Market Movements. Journal 

of Financial & Quantitative Analysis, 24(2): 241-256. 

 

FABOZZI, F. J., GUPTA, F. & MARKOWITZ, H. M. 2002. The Legacy of Modern Portfolio 

Theory. Journal of Investing, 11(3):7-22. 

 

FAMA, E. F. 1965. The Behaviour of Stock Market Prices. Journal of Business, 38(1): 34-105. 

 

FAMA, E. F. 1970. Efficient Capital Markets: A Review of Theory and Empirical Work. 

Journal of Finance, 25(2): 383-417. 

 

FAMA, E. F. 1976. Foundations of Finance. Basic Books. New York. 

 

FAMA, E. F. & BLUME, M. 1966. Filter Rules and Stock Market Trading Profits. Journal of 

Business, 39(1): 226-241. 

 

FAMA, E. F., Fisher, L., Jensen, M. G. & Roll, R. 1969. The Adjustment of Stock Prices to New 

Information. International Economic Review, 10(1): 2-21. 

 

FAMA, E. F. & FRENCH, K. R. 1992. The Cross Section of Expected Stock Returns. Journal of 

Finance, 47(2): 427-465. 

 

FARRELL, J. L. 1985.  The Dividend Discount Model: A Primer. Financial Analysts Journal, 

41(6): 22-25. 

 

FIRER, C. 1993. Estimating the Return Parameters of the Capital Asset Pricing Model. De 

Ratione, 7(1): 23-39. 

 

FISHER, I. 1906. The Nature of Capital and Income. Macmillan. London. 

 

FRENCH, C. W. 2003. The Treynor Capital Asset Pricing Model. Journal of Investment 

Management, 1(2): 60-72. 

 

FRENCH, K. R. 1980. Stock Returns and the Weekend Effect. Journal of Financial Economics, 

8(1): 55-69. 

 



 

121 

 

FRENCH, K. R., SCHWERT, G. W. & STAMBAUGH, R. F. 1987. Expected Stock Returns and 

Volatility. Journal of Financial Economics, 19(1): 3-29. 

 

FUERTES, A., IZZELDIN, M. & KALOTYCHOW, E. 2009. On Forecasting Daily Stock 

Volatility: the Role of Intraday Information and Market Conditions. Working Paper 2008(006). 

Lancaster University Management School. 

 

GIBSON, G. 1889. The Stock Markets of London, Paris and New York. G.P. Putnam‟s Sons. 

New York. 

 

GLOSTEN, L., JAGANNATHAN, R. & RUNKLE, D. 1992. On the Relation Between the 

Expected Value and Volatility of Nominal Excess Returns on Stocks. Journal of Finance, 48(5): 

1779-1801. 

 

GORDON, M. J. 1959. Dividends, Earnings and Stock Prices. Review of Economics and 

Statistics, 41(2): 99-105. 

 

GRAHAM, B. & DODD, D. L 1934 Security Analysis: Principles and Technique. McGraw-Hill. 

Revised several times, including GRAHAM, B., DODD, D. L. & Cottle, S. 1962. Security 

Analysis: Principles and Technique, 4
th

 ed. McGraw-Hill. 

 

GRAHAM, M. & ULIANA, E. 2001. Evidence of a Value-growth Phenomenon on the 

Johannesburg Stock Exchange. Investment Analysts Journal, 53: 7-18. 

 

GRIFFITHS, M., SMITH, B., TURNBULL, D., & WHITE, R. 2000. The Costs and the 

Determinants of Order Aggressiveness. Journal of Financial Economics, 56(1): 65-88. 

 

GROSSMAN, S. J. & STIGLITZ, J. E. 1980. On The Impossibility of Informationally Efficient 

Markets. American Economic Review, 70(3), 393-408. 

 

GUJARATI, D. N.  2003.  Basic econometrics. 4
th

 ed.  McGraw-Hill.  New York. 697pp. 

 

GUJARATI, D. N. 2006. Essentials of Econometrics, 3
rd

 ed. International Edition. McGraw-Hill. 

New York. 54-67pp. 

 

HAFNER, C. M. & LINTON, O. 2013. An Almost Closed Form Estimator for the EGARCH 

model. Available at: http://ssrn.com/abstract=2139516. Date of use: 24 Feb 2013. 

 

HAMAO, Y., MASULIS, R.W. & NG, V. 1990. Correlation in Price Changes and Volatility 

Across International Stock Markets. The Review of Financial Studies, 3(2): 281-307. 

 

HARRIS, L. 1986. A Transaction Data Study of Weekly and Interdaily Patterns in Stock 

Returns. Journal of Financial Economics, 16(1): 99-117. 

 

HARJU, K. & HUSSAIN, S. M. 2011. Intraday Return and Volatility Spillovers Across 

International Equity Markets. Journal of Risk and Diversification. 3(2011): 82-97. 



 

122 

 

 

HASBROUCK, J. & SCHWARTZ, R. A. 1988. Liquidity and Execution Costs in Equity 

Markets. Journal of Portfolio Management, 14(3): 10-16. 

 

HECQ, A., LAURENT, S. & PALM, F. C. 2012. On the Univariate Representation of BEKK 

Models with Common Factors. Department of Quantitative Economics. Maastricht University. 

Netherlands. 

 

HERBISON, B. J. 2003. Notes on the Translation of Don Quixote. Available at: www.herbison. 

com/herbison/broken_eggs_quixote.html. Date of use: 03 May 2012. 

 

HESTON, S. L. KORAJCZYK, R. A. & SADKA, R. 2010. Intraday Patterns in the Cross-

section of Stock Returns. Journal of Finance, 65(4):1369-1407. 

 

HICKS, J. R. 1935. A Suggestion for Simplifying the Theory of Money. Economica, 2(5): 1-19. 

 

HIRT, G. A. & BLOCK, S. B. 2006. Fundamentals of Investment Management, 8
th

 ed. 

International Edition. McGraw-Hill. New York. 200-281pp. 

 

HOUTHAKKER, H. S. 1961. Systematic and Random Elements in Short-Term Price 

Movements. American Economic Review, 51(2): 164-172. 

 

HURST, S. & PLATEN, E. 1997. The Marginal Distributions of Returns and Volatility. In 

DODGE, Y., editor. L1-Statistical Procedures and Related Topics. IMS Lecture Notes-

Monograph Series, 13: 301-314. Institute of Mathematical Statistics, Harvard. 

 

IN, F., KIM, S., YOON, J. H. & VINEY, C. 2001. Dynamic Interdependence and Volatility 

Transmission of Asian Stock Markets. International Review of Financial Analysis, 10(2001): 87-

96. 

 

IPPOLITO, R. A. 1993. On Studies of Mutual Fund Performance. Financial Analysts Journal, 

49(1): 42-50. 

 

JEGADEESH, N., & TITMAN, S. 1993. Returns to Buying Winners and Selling Losers: 

Implications for Stock Market Efficiency. Journal of Finance, 48(1): 65-91. 

 

JENSEN, G. R., JOHNSON, R. R. & MERCER, J. M. 1997. New Evidence on Size and Price-

to-Book Effects in Stock Returns. Financial Analysts Journal, 53(6): 34-42. 

 

JENSEN, M. C. 1968. The Performance of Mutual Funds in the Period 1945-1964. The Journal 

of Finance, 23(2): 389-416. 

 

JONES, C. P. 1998. Investments: Analysis and Management, 6
th

 ed. Wiley. New York. 

 

JORION, P. 1995. Predicting Volatility in the Foreign Exchange Market. The Journal of 

Finance, 50(2): 507-528. 



 

123 

 

KAMINSKY, G. L. & REINHART, C. M. 1998. Financial Crises in Asia and Latin America: 

Then and Now. American Economic Review, 88(2): 444-448. 

 

KANAS, A. 1998. Volatility Spillovers across Equity Markets: European Evidence. Applied 

Financial Economics, 1998(8): 245-256. 

 

KAPLAN, R. S. & Roll, R. 1972. Investor Evaluation of Accounting Information: Some 

Empirical Evidence. Journal of Business, 45(2): 225-257.  

 

KARNOSKY, D. S. 1993. Global Investment in the CAPM Framework. In The CAPM 

Controversy: Policy and Strategy Implications for Investment Management. ICFA Continuing 

Education. HARRINGTON D. R. & KORAJCZYK, R. A. (editors). AIMR. New York. 56-61pp. 

 

KAROLYI, G. A. 1995. A Multivariate GARCH Model of International Transmission of Stock 

Returns and Volatility: The Case of the United States and Canada. Journal of Business and 

Economic Statistics 13(1): 11-25. 

 

KARPOFF, J. M. 1987. The Relation between Price Changes and Trading Volume: A Survey. 

Journal of Financial and Quantitative Analysis, 22(1): 109-126. 

 

KAWAKATSU, H. 2006. Matrix Exponential GARCH. Journal of Econometrics, 134(1): 95-

128. 

 

KEARNEY, C, PATTON, A. J. 2000. Multivariate GARCH Modelling of Exchange Rate 

Volatility Transmission in the European Monetary System. Financial Review, 35(1): 29-48. 

 

KEIM, D. B. 1986. The CAPM and Equity Return Regularities. Financial Analysts Journal, 

42(3): 19-34.  

 

KENDALL, M. &HILL, A. B. 1953. The Analysis of Economic Time Series, Part I: Prices. 

Journal of the Royal Statistical Society, 116(1): 11-34. 

 

KEOGH, W. J. 1994. The Stability of Beta and the Usability of the Capital Asset Pricing Model 

in the South African Context. MEcon dissertation. University of the Orange Free State. 

Bloemfontein. 

 

KEYNES, J. M. 1923. Some Aspects of Commodity Markets. Manchester Guardian 

Commercial. European Reconstruction Series, Section 13: 784-786. 29 March 1923. Reprinted 

in: The Collected Writings of John Maynard Keynes. Vol. XII. Macmillan. London. 1983. 

 

KEYNES, J. M. 1936. The General Theory of Employment, Interest and Money. Macmillan. 

London. 

 

KIM, D. & KON, S. J. 1994. Alternative Models for the Conditional Heteroscedasticity of Stock 

Returns. Journal of Business, 67(4): 563-598. 

 



 

124 

 

KITAMURA, Y. 2010. Testing for Intraday Interdependence and Volatility Spillover among the 

Euro, the Pound and the Swiss Franc Markets. Research in International Business and Finance, 

24(2010): 158-171. 

 

KORAJCZYK, R. A. 1999. Asset Pricing and Portfolio Performance: Models, Strategy and 

Performance Metrics. Risk Books. London. 

 

KOUTMOS, G. 1996. Modeling the Dynamic Interdependence of Major European Stock 

Markets. Journal of Business Finance and Accounting, 23(7): 975-988. 

 

KOUTMOS, G. & BOOTH, G.G. 1995. Asymmetric Volatility Transmission in International 

Stock Markets. Journal of international Money and finance, 14(6): 747-762. 

 

KON, S. 1984. Models of Stock Returns: A Comparison. The Journal of Finance, 39(1): 147-

163. 

 

KRAUSE, T. & TSE, Y. 2012. Volatility and Return Spillovers in Canadian and U.S. Industry 

ETFs. International Review of Economics and Finance, 25(2013): 244-259. 

 

KRONER, K.F. & NG, V. K. 1998. Modeling Asymmetric Co-movements of Assets Returns. 

Review of Financial Studies, 11(4): 817-844. 

 

LANGEVIN, P. 1908. Sur la Théorie du Mouvement Brownien. Comptes Rendus de l’Académie 

des Sciences de Paris, 146: 530-533. 

 

LARSON, A. B. 1960. Measurement of a Random Process in Futures Prices. Food Research 

Institute Studies, 1(3): 313–24. 

 

LAUBSCHER, E. R. 2002. A Review of the Theory of, and Evidence on, the use of the Capital 

Asset Pricing Model to Estimate Expected Share Returns. Meditari Accountancy Research, 

10(1): 131-146 . 

 

LAURENT, S., ROMBOUTS, J. V. K. & VIOLANTE, F. 2009. On Loss Functions and Ranking 

Forecasting Performances of Multivariate Volatility Models. Cahier de recherche/Working 

Paper, 9(2009): 48. 

 

LAUX, P. A. & NG, L. K. 1993. The Sources of GARCH: Empirical Evidence from an Intraday 

Returns Model Incorporating Systematic and Unique Risks. Journal of International Money and 

Finance, 12(1): 543-560. 

 

LEAVENS, D. H. 1945. Diversification of Investments. Trusts and Estates, 80: 469-473. 

 

LeROY, S. F. 1973. Risk Aversion and the Martingale Property of Stock Prices. International 

Economic Review, 14(2): 436-446. 

 



 

125 

 

LEVY, H. 1997. Risk and Return: An Experimental Analysis. International Economic Review, 

38(1): 119-149. 

 

LI, W. K., LING, S. & McALEER, M. 2002. Recent Theoretical Results for Time Series Models 

with GARCH Errors. Journal of Economic Surveys, 16(3): 245-269.  

 

LIN, W., ENGLE, R. & ITO, T.  1994.  Do Bulls and Bears Cross Borders? International 

Transmission of Stock Returns and Volatility.  The Review of Financial Studies, 7(3): 507-538. 

 

LINTNER, J. 1965a. The Valuation of Risk Assets and the Selection of Risky Investments in 

Stock Portfolios and Capital Budgets. The Review of Economic Statistics, 47(1): 13-37. 

 

LINTNER, J. 1965b. Securities Prices, Risk, and Maximal Gains from Diversification. The 

Journal of Finance, 20(4): 587-615. 

 

LINTNER, J. 1969. The Aggregation of Investor‟s Diverse Judgement and Preference in Purely 

Competitive Securities Markets. Journal of Financial and Quantitative Analysts, 4(4): 347-400. 

 

LIU, H. C., CHIANG, S. M. & CHENG, N. Y. P. 2012. Forecasting the Volatility of S&P 

Depositary Receipts using GARCH-type Models under Intraday Range-based and Return-based 

Proxy Measures. International Review of Economics and Finance, 22(1): 78-91. 

 

LO, A., & MAcKINLAY, A. 1999. A Non-Random Walk Down Wall Street. Princeton 

University Press. Princeton. 

 

LOPEZ, J. A. 2001. Evaluating the Predictive Accuracy of Volatility Models. Journal of 

Forecasting, 20(2): 87-109. 

 

LONGIN, F. & SOLNIK, B. 1995. Is The Correlation in International Equity Returns Constant: 

1960-1990? Journal of International Money and Finance, 14(1): 3-26. 

 

MALKIEL, B. G. 2011. The Efficient-Market Hypothesis and the Financial Crisis. Russel Sage 

Foundation. 1-59pp. 

 

MANDELBROT, B. 1963. The Variation of Certain Speculative Prices. Journal of Business, 

36(4): 394-419. 

 

MANIYA, S. R. & MAGNUSSON, F. 2010. Bear Periods Amplify Correlation: A GARCH 

BEKK Approach. University of Gothenburg, School of Business, Economics and Law.  Masters‟ 

Degree Project No. 2010:129: 1-10. 

 

MARKOWITZ, H. M. 1952. Portfolio Selection. Journal of Finance, 7(1): 77-91. 

 

MARKOWITZ, H. M. 1956. The Optimization of a Quadratic Function Subject to Linear 

Constraints. Naval Research Logistics Quarterly, 3(1-2): 111-133. 

 



 

126 

 

MARKOWITZ, H. M. 1959. Portfolio Selection: Efficient Diversification of Investments. Wiley. 

New York. 

 

MARKOWITZ, H. M. 1991. Foundations of Portfolio Theory. Les Prix Nobel 1990. 292p. Nobel 

Foundation. 

 

MARKOWITZ, H. M. 1999. The Early History of Portfolio Theory: 1600-1960. Financial 

Analysts Journal, 55(4): 5-16. 

 

MARX, J., MPOFU, R., VAN DE VENTER, G. & NORTJÉ, A. 2008. Investment Management. 

2
nd

 ed. Van Schaik Publishers. Pretoria. 23-35pp. 

 

MARSCHAK, J. 1938. Money and the Theory of Assets. Econometrica, 6(4): 311-325. 

 

MARSHALL, A. 1890. Principles of Economics. Macmillan. London. 

 

MAYERS, D. 1972. Nonmarketable Assets and Capital Market Equilibrium under Uncertainty. 

In Studies in the Theory of Capital Markets. JENSON, M. C. (editor). New York: Preager. 223-

248pp. 

 

MAYERS, D. 1973. Nonmarketable Assets and the Determination of Capital Asset Prices in the 

Absence of a Riskless Asset. Journal of Business, 46(2): 258-67. 

 

McALEER, M. 2005. Automated Inference and Learning in Modelling Financial Volatility. 

Econometric Theory, 21(1): 232-261. 

 

McALEER, M., CHAN, F., HOTI, S. & LIEBERMAN, O. 2008. Generalized Autoregressive 

Conditional Correlation. Econometric Theory, 24(6) 1554-1583. 

 

McALEER, M., HOTI, S. & CHAN, F. 2009. Structure and Asymptotic Theory for Multivariate 

Asymmetric Conditional Volatility. Econometric Reviews, 28(5) 422-440. 

 

McALEER, M. & VEIGA, B. 2008. Forecasting Value-At-Risk with a Parsimonious Portfolio 

Spillover GARCH (PS-GARCH) Model. Journal of Forecasting, 27(1): 2-29. 

 

McCAULEY, J. L., BASSLER, K. E. & GUNARATNE, G. H. 2008. Martingales, Detrending 

Data, and the Efficient Market Hypothesis. Physica A, 387(1): 202-216. 

 

MERTON, R. C. 1969. Lifetime Portfolio Selection under Uncertainty: The Continuous-Time 

Case. Review of Economics and Statistics, 51(3): 247-259. 

 

MERTON, R. C. 1973. An Intertemporal Capital Asset Pricing Model. Econometrica, 41(5): 

867-887. 

 

MERTON, R. C. 1980. On Estimating the Expected Return on the Market: An Exploratory 

Investigation. Journal of Financial Economics, 8(4): 323-361. 



 

127 

 

MERTON, R. C. 1987. A Simple Model of Capital Market Equilibrium with Incomplete 

Information. Journal of Finance, 42(3): 483-510. 

 

MERTON, R. C. 1990. Continuous-Time Finance, revised edition. Blackwell. Cambridge. 

 

MICHAYLUK, D., WILSON, P. J. & ZURBRUEGG, R. 2006. Asymmetric Volatility, 

Correlation and Return Dynamic between US and UK Real Estate Markets. Real Estate 

Economics, 34(1): 109-131. 

 

MILLS, F. C. 1927. The Behavior of Prices. National Bureau of Economic Research. New York. 

 

MISIRLI, E. U. 2011. Aggregate Volatility Risk and Momentum Returns. Working Paper, 

University of Rochester. 

 

MITCHELL, W. C. 1915. The Making and Using of Index Numbers. Bulletin of the US Bureau 

of Labor Statistics, No. 173. 

 

MODIGLIANI, F.; MILLER, M. 1958. The Cost of Capital, Corporation Finance and the Theory 

of Investment. American Economic Review, 48(3): 261-297. 

 

MOIX, P. 2001. The Measurement of Market Risk: Modelling of Risk Factors, Asset Pricing and 

Approximation of Portfolio Distributions. Lecture Notes in Economics and Mathematical 

Systems, 504(XI): 59-66. 

 

MOSSIN, J. 1966. Equilibrium in a Capital Asset Market. Econometrica, 34(4): 768-783. 

 

MOSSIN, J. 1968. Optimal Multiperiod Portfolio Policies. Journal of Business, 41(2): 215-229. 

 

MOYER, R. C., McGUIGAN, J. R. & KRETLOW, W. J. 2001. Contemporary Financial 

Management, 8
th

 ed. South-Western. Cincinnati. Ohio. 

 

NELSON, D. B. 1991. Conditional Heteroskedasticity in Asset Returns: A New Approach. 

Econometrica, 59(1): 347-370. 

 

NG, A. 2000. Volatility Spillover Effects from Japan and US to the Pacific-Basin. Journal of 

International Money and Finance, 19(2): 207-233. 

 

OLIVIER, M. 1926. Les Nombres Indices de la Variation des Prix. PhD thesis. University of 

Paris. Paris. 

 

O‟HARA, M. 1995. Market Microstructure Theory. Blackwell Publishers Inc. Cambridge, MA. 

 

OSBORNE, M. F. M. 1959. Brownian Motion in the Stock Market. Operations Research, 7(2): 

145-173. 

 

http://www.jstor.org/stable/1809766
http://www.jstor.org/stable/1809766


 

128 

 

OSBORNE, M. F. M. 1962. Periodic Structure in the Brownian Motion of Stock Prices. 

Operations Research, 10(3): 345-379. 

 

OZENBAS, D.,PAGANO, M. S. & SCHWARTS, R. A. 2010. Accentuated Intraday Stock Price 

Volatility: What is the Cause? Journal of Portfolio Management, 36(3): 45-55. 

 

PAGE, M. J. 1996. Further Evidence of Firm Size and Earnings Anomalies on the Johannesburg 

Stock Exchange. De Ratione, 10(1): 27-44. 

 

PARK, J. 2001. Information Flows between Non-deliverable Forwards (NDF) and Spot Markets: 

Evidence from Korean Currency. Pacific Basin Finance Journal, 9(4): 363-377. 

 

PARKINSON, M. 1980. The Extreme Value Method for Estimating the Variance of the Rate of 

Return. Journal of Business, 53(1): 61-65. 

 

PATI, P. C. & RAJIB, P. 2010. Intraday Return Dynamics and Volatility Spillovers Between 

NSE, S&P, CNX Nifty Stock Index and Stock Index Futures. Applied Economics Letters, 18(6): 

567-574. 

 

PEARSON, K. 1905. The Problem of the Random Walk. Nature, 72: 294-342. 

 

PEAVY, J. W. & GOODMAN, D. A. 1983. The Significance of P/E‟s for Portfolio Returns. 

Journal of Portfolio Management, 9(2): 9-12. 

 

PEERS, A. 1992. Insiders Reap Big Gains from Big Trades. The Wall Street Journal, C1: 1-12. 

 

PEROLD, A. F. 2004. The Capital Asset Pricing Model. Journal of Economic Perspectives, 

18(3): 3–24. 

 

PETKOVA, R. 2006. Do the Fama-French Factors Proxy for Innovations in Predictive 

Variables? Journal of Finance, 61(2): 581-612. 

 

PIESSE, J. & HEARN, B. 2005. Integration and the Asymmetric Transmission of Volatility: A 

Study of Equity Markets in Sub-Saharan Africa. South African Journal of Economics, 73(1): 36-

53. 

 

PINDYCK, R. S. 1984. Risk, Inflation, and the Stock Market. American Economic Review, 

74(3): 335-351. 

 

POON, S. 2005. A Practical Guide to Forecasting Financial Market Volatility. John Wiley & 

Sons, Ltd. New York. 3-79pp. 

 

PRAETZ, P. 1972. The Distribution of Share Price Changes. Journal of Business, 45(1): 49-55. 

 

PROTTER, P. 2004. Stochastic Integration and Differential Equations. Springer-Verlag. New 

York. 



 

129 

 

QUANTITATIVE MICRO SOFTWARE, LLC. 2009. E-Views7. User‟s Guide II . Version 9. 

Quantitative Micro Software, LLC. Irvine, CA. 

 

RADCLIFFE, R. C. 1997. Investment: Concepts, Analysis, Strategy, 5
th

 ed. Addison-Wesley. 

Reading. Massachusetts. 

 

RAYLEIGH, L. 1880. On the Resultant of a Large Number of Vibrations of the Same Pitch and 

of Arbitrary Phase. Philosophical Magazine, 10: 73-78. 

 

REGNAULT, J. 1863. Calcul des Chances et Philosophie de la Bourse. Mallet-Bachelier et 

Castel. Paris. 

 

REILLY, F. K. 1994. Investment Analysis and Portfolio Management. The Dryden Press. 

Orlando. 195pp. 

 

REILLY, F. K. & BROWN, K. C. 2012. Analysis of Investments and Management of Portfolios 

10
th

 ed. South-Western Cengage learning. 1066pp. 

 

REINGANUM, M. R. 1981. The Arbitrage Pricing Theory: Some Empirical Results. Journal of 

Finance, 36(2): 313-321.  

 

REINGANUM, M. R. 1983. Portfolio Strategies Based on Market Capitalization. Journal of 

Portfolio Management, 9(2): 29-36. 

 

ROBERTS, H. 1959. Stock Market "Patterns" and Financial Analysis: Methodological 

Suggestions. Journal of Finance, 14(1): 1-10. 

 

ROBERTS, H. 1967. Statistical Versus Clinical Prediction of the Stock Market. Unpublished 

manuscript. Available at: http://www.citeulike.org/group/2384/article/1204385. Date of use: 25 

Apr. 2012. 

 

ROSENBERG, B., REID, K. & LANSTEIN, R. 1985. Persuasive Evidence of Market 

Inefficiency. Journal of Portfolio Management, 11(3): 9-17. 

 

ROSS, S. A. 1976. The Arbitrage Theory of Capital Asset Pricing. Journal of Economic Theory, 

13(3): 343-362. 

 

ROY, A. D. 1952. Safety First and the Holding of Assets. Econometrica, 20(3): 431-439. 

 

ROZEFF, M. S. & ZAMAN, A. 1988. Market Efficiency and Insider Trading: New Evidence. 

Journal of Business, 61(1): 24-25. 

 

RUBINSTEIN, M. 1973. The Fundamental Theorem of Parameter-Preference Security 

Valuation. Journal of Financial and Quantitative Analysts, 8(1): 61-69. 

 



 

130 

 

RUBINSTEIN, M. 2002. Markowitz‟s “Portfolio Selection”: A Fifty-Year Retrospective. 

Journal of Finance, 57(3): 1041-1045. 

 

SADORSKY, P. 2006. Modeling and Forecasting Petroleum Futures Volatility. Energy 

Economics, 28(4): 467-488. 

 

SAMOUILHAN, N. L.  2006.  The relationship between international equity market behaviour 

and the JSE.  South African Journal of Economics, 74(2): 248-260. 

 

SAMUELSON. P. 1965. Proof that Properly Anticipated Prices Fluctuate Random. Industrial 

Management Review, 6(2): 41-49. 

 

SAMUELSON, P.A. 1969. Lifetime Portfolio Selection by Dynamic Stochastic Programming. 

Review of Economics and Statistics, 51(3): 239-246. 

 

SAVAGE, L. J. 1954. The Foundations of Statistics. Wiley. Revised in 1972. Dover. 

 

SCHREIBER, P. S. & SCHWARTZ, R. A. 1986. Price Discovery in Securities Markets. Journal 

of Portfolio Management, 12(1): 43-48. 

 

SCHWERT, G. W. 2011. Stock Volatility During the Recent Financial Crises. National Bureau 

of Economic Research. Graduate School of Business Administration. University of Rochester. 1-

20pp. 

 

SECURITIES AND EXCHANGE COMMISSION. 1963. Report of the Special Study of the 

Security Markets: Part 2. US Government Printing Office. Washington, DC. 96-746pp. 

 

SEWELL, M. 2011. History of the Efficient Market Hypothesis. UCL Research Note, RN/11/04. 

1-14pp. Available at: http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/images/Research_Student_ 

Information/RN_11_04.pdf. Date of Use: 25 April 2013. 

 

SHARPE, W. F. 1963. A Simplified Model for Portfolio Analysis. Management Science, 9(2): 

277-293.  

 

SHARPE, W. F. 1964. Capital Asset Prices: A Theory of Market Equilibrium under Conditions 

of Risk. Journal of Finance, 19(3): 425-442. 

 

SHARPE, W. F. 1966. Mutual Fund Performance. Journal of Business, 39(1): 119-138. 

 

SHARPE, W. F. & ALEXANDER, G. J. 1978. Investments, 4
th

 ed. Prentice-Hall. Englewood 

Cliffs. 

 

SHEIKH, M. J. & NOREEN, U. 2012. Validity of Efficient Market Hypothesis: Evidence from 

UK Mutual Funds. African Journal of Business Management, 6(2): 514-520. 

 



 

131 

 

SILVENNOINEN, A. & TERÄSVIRTA, T. 2008. Multivariate GARCH Models. Handbook of 

Financial Time Series. Springer Berlin Heidelberg. 201-229pp. 

 

SILVENNOINEN, A. & TERÄSVIRTA, T. 2009. Modeling Multivariate Autoregressive 

Conditional Heteroskedasticity with the Double Smooth Transition Conditional Correlation 

GARCH Model. Journal of Financial Econometrics, 7(4): 373-411. 

 

SLUTZKY, E. 1937. The Summation of Random Causes as the Source of Cyclic Processes. 

Econometrica, 5(2), 105–146. Translation of Russian original in Problems of Economic 

Conditions, vol. 3. Edited by the Conjuncture Institute. Moscow. 1927. 

 

SOLNIK, B. H. 1974. An Equilibrium Model of the International Capital Market. Journal of 

Economic Theory, 8(4): 500-524. 

 

STEVENSON, S. 2002. An Examination of Volatility Spillover in REIT Returns. Journal of 

Real Estate Portfolio Management, 8(3): 229-238. 

 

STOLL, H. R. & WHALEY, R. E. 1983. Transaction Costs and the Small Firm Effect. Journal 

of Financial Economics, 12(1): 57-79. 

 

STRUGNELL, D., GILBERT, E. & KRUGER, R. 2011. Beta, Size and Value Effects on the 

JSE, 1994-2007. Investment Analysts Journal, 74:1-17. 

 

STULZ, R. M. 1981. A Model of International Asset Pricing. Journal of Financial Economics, 

9(4): 383-406. 

 

SUNDER, S. 1975. Stock Price and Risk Related to Accounting Changes in Inventory Valuation. 

The Accounting Review, 50(2): 305-315. 

 

SØRENSEN, P. B. & WHITTA-JACOBSON, H. J. 2010. Introducing Advanced 

Macroeconomics: Growth and Business Cycles, 2
nd

 ed. McGraw-Hill. New York. 399pp. 

 

TAMAKOSHI, G. & HAMORI, S. 2013. Volatility and Mean Spillovers Between Sovereign and 

Banking Sector CDS Markets: A Note on the European Sovereign Debt Crisis. Applied 

Economics Letters, 20(3): 262-266. 

 

TAUCHEN, G. E., PITT, M. 1983. The Price Variability - Volume Relationship on Speculative 

Markets. Econometrica, 51(2): 485-505. 

 

TAUSSIG, F. W. 1921. Is Market Price Determinate? The Quarterly Journal of Economics, 

35(3): 394-411. 

 

TAYLOR S. J. 1986. Modelling Financial Time Series. John Wiley & Sons. New York. 

 

TAYLOR, S. J. 1987. Forecasting the Volatility of Currency Rates. International Journal of 

Forecasting, 3(1): 159-170. 



 

132 

 

TAYLOR, S. J. & XU, X. 1997. The Incremental Volatility Information in One Million Foreign 

Exchange Quotations. Journal of Empirical Finance, 4(1): 317-340. 

 

THOMPSON, D. J. 1976. Sources of Systematic Risk in Common Stocks. Journal of Business, 

49(2): 173-188. 

 

TIAN, G, & GUO, M. 2007. Interday and Intraday Volatility: Additional Evidence from the 

Shanghai Stock Exchange. Review of Quantitative Finance and Accounting, 28(3): 287-306. 

 

TOLE, T. M. 1982. You Can‟t Diversify without Diversifying. Journal of Portfolio 

Management, 8(2): 5-11. 

 

TREYNOR, J. L. 1961. Market Value, Time and Risk. Unpublished manuscript. Rough Draft 

dated 8/8/1961: 95-209. 

 

TREYNOR, J. L. 1962. Toward a Theory of Market Value of Risky Assets. Unpublished 

manuscript. Rough Draft dated 1962. A final version was published in KORAJCZYK, R. A. 

1999. Asset Pricing and Portfolio Performance: Models, Strategy and Performance Metrics. Risk 

Books. London. 

 

TREYNOR, J. L. 1965. How to Rate Management of Investment Funds. Harvard Business 

Review: January – February 1965. 

 

TSE, Y. K. & TSUI, A. K. C. 2002. A Multivariate GARCH Model with Time-varying 

Correlations. Journal of Business and Economic Statistics, 20: 351-362. 

 

TSE, Y. K. & YANG, T. 2011. Estimation of High-Frequency Volatility: An Autoregressive 

Conditional Duration Approach. Working paper. Singapore Management University. 

 

TUCKER, A. 1992. A Re-examination of Finite- and Infinite Variance Distributions as Models 

of Daily Stock Returns. Journal of Business & Economic Statistics, 10(1): 73-81. 

 

UPSHER, S. M. 1993. Expected Share Market Returns and Volatility: The South African 

Experience Including a Critique of the Capital Asset Pricing Model. MBA research project. 

University of Stellenbosch. Stellenbosch.  

 

VAN DER WEIDE, R. 2002. GO-GARCH: A Multivariate Generalized Orthogonal GARCH 

Model. Journal of Applied Econometrics, 17(5), 549-564. 

 

VAN RENSBURG, P. 1998. Unifying the Factor Analytic and Pre-specified Variable 

Approaches to APT Factor Identification on the Johannesburg Stock Exchange. SA Journal of 

Accounting Research, 12(1): 15-45. 

 

VAN RENSBURG, P. & ROBERTSON, M. 2003. Size, Price-to-earnings and Beta on the JSE 

Securities Exchange. Investment Analysts Journal, 58: 7-16. 



 

133 

 

VAN RHIJN, H. J. P. 1994. The Capital Asset Pricing Model for Financial Decision-making 

under South African Conditions. DBA thesis. University of Pretoria. Pretoria.  

 

VENN, J. 1880. On the Diagrammatic and Mechanical Representation of Proportions and 

Reasonings. Philosophical Magazine and Journal of Science, 59(10): 1-18. 

 

VENN, J. 1888. The Logic of Chance: An Essay on the Foundations and Province of the Theory 

of Probability with Special References to its Logical Bearings and its Application to Moral and 

Social Sciences, and to Statistics, 3
rd

 ed. MacMillan. London. 

 

VON NEUMANN, J. & MORGENSTERN, O. 1944. Theory of Games and Economic Behavior. 

Princeton University Press. Princeton. 

 

VON SMOLUCHOWSKI, M. 1906. Zarys Kinetycznej Teoriji Ruchów Browna I Roztworów 

Metnych. Rozprawy i Sprawozdaniaz Posiedzen Wydzialu Matematyczno-Przyrodniczego 

Akademii Umiejetnosci, 3: 257-282. A German translation appeared in the Annalen der Physik, 

21: 756-780. 1906. 

 

WAHAB, M. 2012. Asymmetric Effects of U.S. Stock Returns on European Equities. 

International Review of Economics and Finance, 21(1): 156-172. 

 

WANG, F., YAMASAKI, K., HAVLIN, S. & STANLEY, H. E. 2006. Scaling and Memory of 

Intraday Volatility Return Intervals in Stock Markets. Physics Review, 73(1): 1-19. 

 

WANG, Y. & WU, C. 2012. Forecasting Energy Market Volatility Using GARCH Models: Can 

Multivariate Models Beat Univariate Models? Energy Economics, 34(2012): 2167-2181. 

 

WARD, M. 1994. Risk on the Johannesburg Stock Exchange. De Ratione, 8(2): 99-114. 

 

WARD, M. 2000. The CAPM in an Options Pricing Framework. Investment Analysts Journal, 

52: 35-44. 

 

WIESENBERGER, A., & COMPANY. 1941. Investment Companies and Their Securities. New 

York. Annual Editions since 1941. 

 

WILLIAMS, J. B. 1938. The Theory of Investment Value. Harvard University Press. Cambridge. 

Reprinted in 1997. Fraser Publishing. 

 

WILLIAM, J. E. 2007. The Distribution of S&P 500 Index Returns. Unpublished Research 

Report. 1-15. Available at: http://www.dailyspeculations.com/Egan_Dis.pdf. Date of Use: 25 

April 2013. 

 

WOOD, R. A., McINISH, T. H. & ORD, J. K. 1985. An Investigation of Transactions Data for 

NYSE Stocks. Journal of Finance, 40(1): 723-739. 

 



 

134 

 

WORKING, H. 1934. A Random-Difference Series for use in the Analysis of Time Series. 

Journal of the American Statistical Association, 29(185): 11-24. 

 

WORKING, H. 1949. The Investigation of Economic Expectations. The American Economic 

Review, 39(3): 150-166.  

 

WORKING, H. 1960. Note on the Correlation of First Differences of Averages in a Random 

Chain. Econometrica, 28(4): 916-918. 

 

WORTHINGTON, A. & HIGGS, H.  2004.  Transmission of Equity Returns and Volatility in 

Asian Developed and Emerging Markets: A Multivariate GARCH Analysis.  International 

Journal of Finance and Economics, 9(1): 71-80. 

 

WU, G. 2001. The Determinants of Asymmetric Volatility. Review of Financial Studies, 14(3): 

837-859.  

 

XU, X. & FUNG, H.  2005.  Cross Market Linkages between U.S. and Japanese Precious Metals 

Futures Trading.  International Financial Markets, Institutions and Money, 15:107-124. 

 

ZAKOIAN, J. 1994. Threshold Heteroskedastic Models. Journal of Economic Dynamics and 

Control, 18(1): 931-955. 

 

  



 

135 

 

APPENDIX 

 

 

A1 Stock price line graphs. 
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A2 Stock returns line graphs. 
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-.02

.00

.02

.04

16 23 30 6 13 20 27 4

M3 M4 M5

R_X_BVT

-.03

-.02

-.01

.00

.01

.02

.03

16 23 30 6 13 20 27 4

M3 M4 M5

R_Y_SAB

-.04

-.02

.00

.02

.04

16 23 30 6 13 20 27 4

M3 M4 M5

R_Z_SOL

-.06

-.04

-.02

.00

.02

.04

.06

22 29 6 13 20 27 3 10 17

2009m7 2009m8

R_AGL

-.03

-.02

-.01

.00

.01

.02

.03

22 29 6 13 20 27 3 10 17

2009m7 2009m8

R_ASA

-.03

-.02

-.01

.00

.01

.02

.03

22 29 6 13 20 27 3 10 17

2009m7 2009m8

R_BVT

-.02

-.01

.00

.01

.02

22 29 6 13 20 27 3 10 17

2009m7 2009m8

R_SAB

-.04

-.02

.00

.02

.04

22 29 6 13 20 27 3 10 17

2009m7 2009m8

R_SOL

-.03

-.02

-.01

.00

.01

.02

.03

22 29 6 13 20 27 3 10 17

2009m7 2009m8

R_V_AGL

-.03

-.02

-.01

.00

.01

.02

22 29 6 13 20 27 3 10 17

2009m7 2009m8

R_W_ASA

-.02

-.01

.00

.01

.02

.03

22 29 6 13 20 27 3 10 17

2009m7 2009m8

R_X_BVT

-.02

-.01

.00

.01

.02

22 29 6 13 20 27 3 10 17

2009m7 2009m8

R_Y_SAB

-.03

-.02

-.01

.00

.01

.02

22 29 6 13 20 27 3 10 17

2009m7 2009m8

R_Z_SOL

-.06

-.04

-.02

.00

.02

.04

.06

22 29 6 13 20 27 3 10 17

2009m7 2009m8

R_AGL

-.03

-.02

-.01

.00

.01

.02

.03

22 29 6 13 20 27 3 10 17

2009m7 2009m8

R_ASA

-.03

-.02

-.01

.00

.01

.02

.03

22 29 6 13 20 27 3 10 17

2009m7 2009m8

R_BVT

-.02

-.01

.00

.01

.02

22 29 6 13 20 27 3 10 17

2009m7 2009m8

R_SAB

-.04

-.02

.00

.02

.04

22 29 6 13 20 27 3 10 17

2009m7 2009m8

R_SOL

-.03

-.02

-.01

.00

.01

.02

.03

22 29 6 13 20 27 3 10 17

2009m7 2009m8

R_V_AGL

-.03

-.02

-.01

.00

.01

.02

22 29 6 13 20 27 3 10 17

2009m7 2009m8

R_W_ASA

-.02

-.01

.00

.01

.02

.03

22 29 6 13 20 27 3 10 17

2009m7 2009m8

R_X_BVT

-.02

-.01

.00

.01

.02

22 29 6 13 20 27 3 10 17

2009m7 2009m8

R_Y_SAB

-.03

-.02

-.01

.00

.01

.02

22 29 6 13 20 27 3 10 17

2009m7 2009m8

R_Z_SOL
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Period 7 

 
 

 

Period 8 

 
 

  

-.06

-.04

-.02

.00

.02

.04

7 14 21 28 5 12 19 26

M9 M10

R_AGL

-.03

-.02

-.01

.00

.01

.02

7 14 21 28 5 12 19 26

M9 M10

R_ASA

-.02

-.01

.00

.01

.02

.03

7 14 21 28 5 12 19 26

M9 M10

R_BVT

-.02

-.01

.00

.01

.02

7 14 21 28 5 12 19 26

M9 M10

R_SAB

-.03

-.02

-.01

.00

.01

.02

.03

7 14 21 28 5 12 19 26

M9 M10

R_SOL

-.02

-.01

.00

.01

.02

.03

7 14 21 28 5 12 19 26

M9 M10

R_V_AGL

-.03

-.02

-.01

.00

.01

.02

7 14 21 28 5 12 19 26

M9 M10

R_W_ASA

-.015

-.010

-.005

.000

.005

.010

.015

7 14 21 28 5 12 19 26

M9 M10

R_X_BVT

-.015

-.010

-.005

.000

.005

.010

.015

7 14 21 28 5 12 19 26

M9 M10

R_Y_SAB

-.02

-.01

.00

.01

.02

7 14 21 28 5 12 19 26

M9 M10

R_Z_SOL

-.04

-.02

.00

.02

.04

9 16 23 30 7 14 21 28

M11 M12 M1

R_AGL

-.03

-.02

-.01

.00

.01

.02

9 16 23 30 7 14 21 28

M11 M12 M1

R_ASA

-.03

-.02

-.01

.00

.01

.02

9 16 23 30 7 14 21 28

M11 M12 M1

R_BVT

-.02

-.01

.00

.01

.02

.03

9 16 23 30 7 14 21 28

M11 M12 M1

R_SAB

-.03

-.02

-.01

.00

.01

.02

9 16 23 30 7 14 21 28

M11 M12 M1

R_SOL

-.03

-.02

-.01

.00

.01

.02

9 16 23 30 7 14 21 28

M11 M12 M1

R_V_AGL

-.02

-.01

.00

.01

.02

9 16 23 30 7 14 21 28

M11 M12 M1

R_W_ASA

-.015

-.010

-.005

.000

.005

.010

.015

9 16 23 30 7 14 21 28

M11 M12 M1

R_X_BVT

-.02

-.01

.00

.01

.02

9 16 23 30 7 14 21 28

M11 M12 M1

R_Y_SAB

-.015

-.010

-.005

.000

.005

.010

.015

9 16 23 30 7 14 21 28

M11 M12 M1

R_Z_SOL
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Period 9 

 
 

 

Period 10 

 
 

 

  

-.04

-.02

.00

.02

.04

11 18 25 1 8 15 22 1 8

M1 M2 M3

R_AGL

-.04

-.02

.00

.02

.04

11 18 25 1 8 15 22 1 8

M1 M2 M3

R_ASA

-.04

-.02

.00

.02

.04

11 18 25 1 8 15 22 1 8

M1 M2 M3

R_BVT

-.03

-.02

-.01

.00

.01

.02

11 18 25 1 8 15 22 1 8

M1 M2 M3

R_SAB

-.04

-.02

.00

.02

.04

11 18 25 1 8 15 22 1 8

M1 M2 M3

R_SOL

-.03

-.02

-.01

.00

.01

.02

.03

11 18 25 1 8 15 22 1 8

M1 M2 M3

R_V_AGL

-.015

-.010

-.005

.000

.005

.010

.015

11 18 25 1 8 15 22 1 8

M1 M2 M3

R_W_ASA

-.02

-.01

.00

.01

.02

11 18 25 1 8 15 22 1 8

M1 M2 M3

R_X_BVT

-.015

-.010

-.005

.000

.005

.010

.015

11 18 25 1 8 15 22 1 8

M1 M2 M3

R_Y_SAB

-.02

-.01

.00

.01

.02

11 18 25 1 8 15 22 1 8

M1 M2 M3

R_Z_SOL

-.04

-.03

-.02

-.01

.00

.01

.02

1 8 15 22 29 5 12 19

M3 M4

R_AGL

-.03

-.02

-.01

.00

.01

.02

1 8 15 22 29 5 12 19

M3 M4

R_ASA

-.03

-.02

-.01

.00

.01

.02

.03

1 8 15 22 29 5 12 19

M3 M4

R_BVT

-.02

-.01

.00

.01

.02

1 8 15 22 29 5 12 19

M3 M4

R_SAB

-.03

-.02

-.01

.00

.01

.02

.03

1 8 15 22 29 5 12 19

M3 M4

R_SOL

-.02

-.01

.00

.01

.02

1 8 15 22 29 5 12 19

M3 M4

R_V_AGL

-.015

-.010

-.005

.000

.005

.010

.015

1 8 15 22 29 5 12 19

M3 M4

R_W_ASA

-.02

-.01

.00

.01

.02

1 8 15 22 29 5 12 19

M3 M4

R_X_BVT

-.012

-.008

-.004

.000

.004

.008

.012

1 8 15 22 29 5 12 19

M3 M4

R_Y_SAB

-.015

-.010

-.005

.000

.005

.010

.015

1 8 15 22 29 5 12 19

M3 M4

R_Z_SOL
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A3 Granger causality tests. 

 

 
Period 2 

 Null Hypothesis Obs. Prob.   Null Hypothesis Obs. Prob.  

 R_ASA does not Granger Cause R_AGL 
349 

0.1749  R_SOL does not Granger Cause R_BVT 
349 

0.3106 

 R_AGL does not Granger Cause R_ASA 0.0010*  R_BVT does not Granger Cause R_SOL 0.5255 

 R_BVT does not Granger Cause R_AGL 
349 

0.7678  R_V_AGL does not Granger Cause R_BVT 
349 

0.8105 

 R_AGL does not Granger Cause R_BVT 0.0355*  R_BVT does not Granger Cause R_V_AGL 0.4110 

 R_SAB does not Granger Cause R_AGL 
349 

0.5512  R_W_ASA does not Granger Cause R_BVT 
349 

0.3576 

 R_AGL does not Granger Cause R_SAB 0.9508  R_BVT does not Granger Cause R_W_ASA 0.3385 

 R_SOL does not Granger Cause R_AGL 
349 

0.6701  R_X_BVT does not Granger Cause R_BVT 
349 

0.4796 

 R_AGL does not Granger Cause R_SOL 0.0114*  R_BVT does not Granger Cause R_X_BVT 0.1540 

 R_V_AGL does not Granger Cause R_AGL 
349 

0.3853  R_Y_SAB does not Granger Cause R_BVT 
349 

0.5174 

 R_AGL does not Granger Cause R_V_AGL 0.6009  R_BVT does not Granger Cause R_Y_SAB 0.4030 

 R_W_ASA does not Granger Cause R_AGL 
349 

0.3458  R_Z_SOL does not Granger Cause R_BVT 
349 

0.9387 

 R_AGL does not Granger Cause R_W_ASA 0.1860  R_BVT does not Granger Cause R_Z_SOL 0.9376 

 R_X_BVT does not Granger Cause R_AGL 
349 

0.4483  R_SOL does not Granger Cause R_SAB 
349 

0.7976 

 R_AGL does not Granger Cause R_X_BVT 0.5832  R_SAB does not Granger Cause R_SOL 0.9466 

 R_Y_SAB does not Granger Cause R_AGL 
349 

0.5334  R_V_AGL does not Granger Cause R_SAB 
349 

0.9191 

 R_AGL does not Granger Cause R_Y_SAB 0.0036*  R_SAB does not Granger Cause R_V_AGL 0.1112 

 R_Z_SOL does not Granger Cause R_AGL 
349 

0.1672  R_W_ASA does not Granger Cause R_SAB 
349 

0.0043* 

 R_AGL does not Granger Cause R_Z_SOL 0.8466  R_SAB does not Granger Cause R_W_ASA 0.3715 

 R_BVT does not Granger Cause R_ASA 
349 

0.2059  R_X_BVT does not Granger Cause R_SAB 
349 

0.9186 

 R_ASA does not Granger Cause R_BVT 0.2126  R_SAB does not Granger Cause R_X_BVT 0.2841 

 R_SAB does not Granger Cause R_ASA 
349 

0.1625  R_Y_SAB does not Granger Cause R_SAB 
349 

0.7039 

 R_ASA does not Granger Cause R_SAB 0.7160  R_SAB does not Granger Cause R_Y_SAB 0.1206 

 R_SOL does not Granger Cause R_ASA 
349 

0.0185*  R_Z_SOL does not Granger Cause R_SAB 
349 

0.1583 

 R_ASA does not Granger Cause R_SOL 0.8710  R_SAB does not Granger Cause R_Z_SOL 0.3527 

R_V_AGL does not Granger Cause R_ASA 
349 

0.9264  R_V_AGL does not Granger Cause R_SOL 
349 

0.7795 

 R_ASA does not Granger Cause R_V_AGL 0.0275*  R_SOL does not Granger Cause R_V_AGL 0.2415 

 R_W_ASA does not Granger Cause R_ASA 
349 

0.5079  R_W_ASA does not Granger Cause R_SOL 
349 

0.3707 

 R_ASA does not Granger Cause R_W_ASA 0.5383  R_SOL does not Granger Cause R_W_ASA 0.7736 

 R_X_BVT does not Granger Cause R_ASA 
349 

0.0273*  R_X_BVT does not Granger Cause R_SOL 
349 

0.0720^ 

 R_ASA does not Granger Cause R_X_BVT 0.6311  R_SOL does not Granger Cause R_X_BVT 0.6316 

 R_Y_SAB does not Granger Cause R_ASA 
349 

0.9425  R_Y_SAB does not Granger Cause R_SOL 
349 

0.6262 

 R_ASA does not Granger Cause R_Y_SAB 0.4727  R_SOL does not Granger Cause R_Y_SAB 0.2251 

 R_Z_SOL does not Granger Cause R_ASA 
349 

0.2649  R_Z_SOL does not Granger Cause R_SOL 
349 

0.6151 

 R_ASA does not Granger Cause R_Z_SOL 0.9794  R_SOL does not Granger Cause R_Z_SOL 0.3512 

 R_SAB does not Granger Cause R_BVT 
349 

0.0584^       

 R_BVT does not Granger Cause R_SAB 0.7484       

* Indicates statistical significance at the 95% level. 
^ Indicates statistical significance at the 90% level. 

 
Period 3 

 Null Hypothesis Obs. Prob.   Null Hypothesis Obs. Prob.  

 R_ASA does not Granger Cause R_AGL 
309 

0.9678  R_SOL does not Granger Cause R_BVT 
309 

0.4646 

 R_AGL does not Granger Cause R_ASA 0.5159  R_BVT does not Granger Cause R_SOL 0.6190 

 R_BVT does not Granger Cause R_AGL 
309 

0.5855  R_V_AGL does not Granger Cause R_BVT 
309 

0.5547 

 R_AGL does not Granger Cause R_BVT 0.7181  R_BVT does not Granger Cause R_V_AGL 0.7960 

 R_SAB does not Granger Cause R_AGL 
309 

0.5593  R_X_BVT does not Granger Cause R_BVT 
309 

0.5613 

 R_AGL does not Granger Cause R_SAB 0.3080  R_BVT does not Granger Cause R_X_BVT 0.5192 

 R_SOL does not Granger Cause R_AGL 
309 

0.6661  R_W_ASA does not Granger Cause R_BVT 
309 

0.3873 

 R_AGL does not Granger Cause R_SOL 0.0024*  R_BVT does not Granger Cause R_W_ASA 0.8998 

 R_V_AGL does not Granger Cause R_AGL 
309 

0.3431  R_Y_SAB does not Granger Cause R_BVT 
309 

0.7598 

 R_AGL does not Granger Cause R_V_AGL 0.9965  R_BVT does not Granger Cause R_Y_SAB 0.8328 
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 R_X_BVT does not Granger Cause R_AGL 
309 

0.4067  R_Z_SOL does not Granger Cause R_BVT 
309 

0.3515 

 R_AGL does not Granger Cause R_X_BVT 0.2652  R_BVT does not Granger Cause R_Z_SOL 0.4165 

 R_W_ASA does not Granger Cause R_AGL 
309 

0.3534  R_SOL does not Granger Cause R_SAB 
309 

0.5538 

 R_AGL does not Granger Cause R_W_ASA 0.0119*  R_SAB does not Granger Cause R_SOL 0.0762^ 

 R_Y_SAB does not Granger Cause R_AGL 
309 

0.3402  R_V_AGL does not Granger Cause R_SAB 
309 

0.6312 

 R_AGL does not Granger Cause R_Y_SAB 0.0783^  R_SAB does not Granger Cause R_V_AGL 0.2752 

 R_Z_SOL does not Granger Cause R_AGL 
309 

0.2196  R_X_BVT does not Granger Cause R_SAB 
309 

0.4965 

 R_AGL does not Granger Cause R_Z_SOL 0.7735  R_SAB does not Granger Cause R_X_BVT 0.6146 

 R_BVT does not Granger Cause R_ASA 
309 

0.8549  R_W_ASA does not Granger Cause R_SAB 
309 

0.5519 

 R_ASA does not Granger Cause R_BVT 0.7085  R_SAB does not Granger Cause R_W_ASA 0.6031 

 R_SAB does not Granger Cause R_ASA 
309 

0.0004*  R_Y_SAB does not Granger Cause R_SAB 
309 

0.9738 

 R_ASA does not Granger Cause R_SAB 0.9697  R_SAB does not Granger Cause R_Y_SAB 0.1881 

 R_SOL does not Granger Cause R_ASA 
309 

0.1080  R_Z_SOL does not Granger Cause R_SAB 
309 

0.6145 

 R_ASA does not Granger Cause R_SOL 0.3617  R_SAB does not Granger Cause R_Z_SOL 0.3162 

 R_V_AGL does not Granger Cause R_ASA 
309 

0.1948  R_V_AGL does not Granger Cause R_SOL 
309 

0.2607 

 R_ASA does not Granger Cause R_V_AGL 0.6886  R_SOL does not Granger Cause R_V_AGL 0.3554 

 R_X_BVT does not Granger Cause R_ASA 
309 

0.5612  R_X_BVT does not Granger Cause R_SOL 
309 

0.9934 

 R_ASA does not Granger Cause R_X_BVT 0.0989^  R_SOL does not Granger Cause R_X_BVT 0.3648 

 R_W_ASA does not Granger Cause R_ASA 
309 

0.4660  R_W_ASA does not Granger Cause R_SOL 
309 

0.6892 

 R_ASA does not Granger Cause R_W_ASA 0.4465  R_SOL does not Granger Cause R_W_ASA 0.1380 

 R_Y_SAB does not Granger Cause R_ASA 
309 

0.2058  R_Y_SAB does not Granger Cause R_SOL 
309 

0.6861 

 R_ASA does not Granger Cause R_Y_SAB 0.4169  R_SOL does not Granger Cause R_Y_SAB 0.0472* 

 R_Z_SOL does not Granger Cause R_ASA 
309 

0.9716  R_Z_SOL does not Granger Cause R_SOL 
309 

0.2142 

 R_ASA does not Granger Cause R_Z_SOL 0.7399  R_SOL does not Granger Cause R_Z_SOL 0.1479 

 R_SAB does not Granger Cause R_BVT 
309 

0.3867       

 R_BVT does not Granger Cause R_SAB 0.5409       

* Indicates statistical significance at the 95% level. 

^ Indicates statistical significance at the 90% level. 

 
Period 4 

 Null Hypothesis Obs. Prob.   Null Hypothesis Obs. Prob.  

 R_ASA does not Granger Cause R_AGL 
341 

0.0175*  R_SOL does not Granger Cause R_BVT 
341 

0.4685 

 R_AGL does not Granger Cause R_ASA 0.0040*  R_BVT does not Granger Cause R_SOL 0.6719 

 R_BVT does not Granger Cause R_AGL 
341 

0.3413  R_V_AGL does not Granger Cause R_BVT 
341 

0.2849 

 R_AGL does not Granger Cause R_BVT 0.0636^  R_BVT does not Granger Cause R_V_AGL 0.4064 

 R_SAB does not Granger Cause R_AGL 
341 

0.8001  R_X_BVT does not Granger Cause R_BVT 
341 

0.0700^ 

 R_AGL does not Granger Cause R_SAB 0.0309*  R_BVT does not Granger Cause R_X_BVT 0.6849 

 R_SOL does not Granger Cause R_AGL 
341 

0.7180  R_Z_SOL does not Granger Cause R_BVT 
341 

0.0286* 

 R_AGL does not Granger Cause R_SOL 0.4715  R_BVT does not Granger Cause R_Z_SOL 0.4050 

 R_V_AGL does not Granger Cause R_AGL 
341 

0.5224  R_W_ASA does not Granger Cause R_BVT 
341 

0.0200* 

 R_AGL does not Granger Cause R_V_AGL 0.9983  R_BVT does not Granger Cause R_W_ASA 0.7074 

 R_X_BVT does not Granger Cause R_AGL 
341 

0.6643  R_Y_SAB does not Granger Cause R_BVT 
341 

0.5214 

 R_AGL does not Granger Cause R_X_BVT 0.7733  R_BVT does not Granger Cause R_Y_SAB 0.2664 

 R_Z_SOL does not Granger Cause R_AGL 
341 

0.5488  R_SOL does not Granger Cause R_SAB 
341 

0.8442 

 R_AGL does not Granger Cause R_Z_SOL 0.7039  R_SAB does not Granger Cause R_SOL 0.4015 

 R_W_ASA does not Granger Cause R_AGL 
341 

0.0906^  R_V_AGL does not Granger Cause R_SAB 
341 

0.9510 

 R_AGL does not Granger Cause R_W_ASA 0.2886  R_SAB does not Granger Cause R_V_AGL 0.5247 

 R_Y_SAB does not Granger Cause R_AGL 
341 

0.0610^  R_X_BVT does not Granger Cause R_SAB 
341 

0.8319 

 R_AGL does not Granger Cause R_Y_SAB 0.5781  R_SAB does not Granger Cause R_X_BVT 0.1262 

 R_BVT does not Granger Cause R_ASA 
341 

0.5979  R_Z_SOL does not Granger Cause R_SAB 
341 

0.4018 

 R_ASA does not Granger Cause R_BVT 0.0094*  R_SAB does not Granger Cause R_Z_SOL 0.8207 

 R_SAB does not Granger Cause R_ASA 
341 

0.4022  R_W_ASA does not Granger Cause R_SAB 
341 

0.7386 

 R_ASA does not Granger Cause R_SAB 0.2971  R_SAB does not Granger Cause R_W_ASA 0.1429 

 R_SOL does not Granger Cause R_ASA 
341 

0.1871  R_Y_SAB does not Granger Cause R_SAB 
341 

0.5510 

 R_ASA does not Granger Cause R_SOL 0.2876  R_SAB does not Granger Cause R_Y_SAB 0.4449 

 R_V_AGL does not Granger Cause R_ASA 341 0.7313  R_V_AGL does not Granger Cause R_SOL 341 0.6429 
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 R_ASA does not Granger Cause R_V_AGL 0.4652  R_SOL does not Granger Cause R_V_AGL 0.3782 

 R_X_BVT does not Granger Cause R_ASA 
341 

0.4886  R_X_BVT does not Granger Cause R_SOL 
341 

0.9560 

 R_ASA does not Granger Cause R_X_BVT 0.6632  R_SOL does not Granger Cause R_X_BVT 0.7664 

 R_Z_SOL does not Granger Cause R_ASA 
341 

0.9496  R_Z_SOL does not Granger Cause R_SOL 
341 

0.7966 

 R_ASA does not Granger Cause R_Z_SOL 0.1042  R_SOL does not Granger Cause R_Z_SOL 0.4064 

 R_W_ASA does not Granger Cause R_ASA 
341 

0.0240*  R_W_ASA does not Granger Cause R_SOL 
341 

0.0381* 

 R_ASA does not Granger Cause R_W_ASA 0.1765  R_SOL does not Granger Cause R_W_ASA 0.9719 

 R_Y_SAB does not Granger Cause R_ASA 
341 

0.4193  R_Y_SAB does not Granger Cause R_SOL 
341 

0.0778^ 

 R_ASA does not Granger Cause R_Y_SAB 0.8549  R_SOL does not Granger Cause R_Y_SAB 0.7962 

 R_SAB does not Granger Cause R_BVT 
341 

0.8927       

 R_BVT does not Granger Cause R_SAB 0.8472       

* Indicates statistical significance at the 95% level. 

^ Indicates statistical significance at the 90% level. 

 

Period 5 

 Null Hypothesis Obs. Prob.   Null Hypothesis Obs. Prob.  

 R_ASA does not Granger Cause R_AGL 
309 

0.3325  R_SOL does not Granger Cause R_BVT 
309 

0.6072 

 R_AGL does not Granger Cause R_ASA 0.0349*  R_BVT does not Granger Cause R_SOL 0.2794 

 R_BVT does not Granger Cause R_AGL 
309 

0.7348  R_V_AGL does not Granger Cause R_BVT 
309 

0.8996 

 R_AGL does not Granger Cause R_BVT 0.3673  R_BVT does not Granger Cause R_V_AGL 0.3212 

 R_SAB does not Granger Cause R_AGL 
309 

0.9401  R_W_ASA does not Granger Cause R_BVT 
309 

0.6689 

 R_AGL does not Granger Cause R_SAB 0.0489*  R_BVT does not Granger Cause R_W_ASA 0.3172 

 R_SOL does not Granger Cause R_AGL 
309 

0.1025  R_X_BVT does not Granger Cause R_BVT 
309 

0.0584^ 

 R_AGL does not Granger Cause R_SOL 0.0746^  R_BVT does not Granger Cause R_X_BVT 0.0269* 

 R_V_AGL does not Granger Cause R_AGL 
309 

0.0472*  R_Y_SAB does not Granger Cause R_BVT 
309 

0.6170 

 R_AGL does not Granger Cause R_V_AGL 0.4145  R_BVT does not Granger Cause R_Y_SAB 0.1635 

 R_W_ASA does not Granger Cause R_AGL 
309 

0.5925  R_Z_SOL does not Granger Cause R_BVT 
309 

0.3746 

 R_AGL does not Granger Cause R_W_ASA 0.1069  R_BVT does not Granger Cause R_Z_SOL 0.9707 

 R_X_BVT does not Granger Cause R_AGL 
309 

0.7283  R_SOL does not Granger Cause R_SAB 
309 

0.7507 

 R_AGL does not Granger Cause R_X_BVT 0.5140  R_SAB does not Granger Cause R_SOL 0.2720 

 R_Y_SAB does not Granger Cause R_AGL 
309 

0.2570  R_V_AGL does not Granger Cause R_SAB 
309 

0.0963^ 

 R_AGL does not Granger Cause R_Y_SAB 0.3887  R_SAB does not Granger Cause R_V_AGL 0.0828^ 

 R_Z_SOL does not Granger Cause R_AGL 
309 

0.9976  R_W_ASA does not Granger Cause R_SAB 
309 

0.9036 

 R_AGL does not Granger Cause R_Z_SOL 0.3774  R_SAB does not Granger Cause R_W_ASA 0.3061 

 R_BVT does not Granger Cause R_ASA 
309 

0.3977  R_X_BVT does not Granger Cause R_SAB 
309 

0.1603 

 R_ASA does not Granger Cause R_BVT 0.8750  R_SAB does not Granger Cause R_X_BVT 0.5115 

 R_SAB does not Granger Cause R_ASA 
309 

0.9842  R_Y_SAB does not Granger Cause R_SAB 
309 

0.2454 

 R_ASA does not Granger Cause R_SAB 0.4590  R_SAB does not Granger Cause R_Y_SAB 0.9525 

 R_SOL does not Granger Cause R_ASA 
309 

0.2096  R_Z_SOL does not Granger Cause R_SAB 
309 

0.7230 

 R_ASA does not Granger Cause R_SOL 0.0834^  R_SAB does not Granger Cause R_Z_SOL 0.3141 

 R_V_AGL does not Granger Cause R_ASA 
309 

0.5946  R_V_AGL does not Granger Cause R_SOL 
309 

0.5898 

 R_ASA does not Granger Cause R_V_AGL 0.1934  R_SOL does not Granger Cause R_V_AGL 0.5189 

 R_W_ASA does not Granger Cause R_ASA 
309 

0.4160  R_W_ASA does not Granger Cause R_SOL 
309 

0.1402 

 R_ASA does not Granger Cause R_W_ASA 0.2167  R_SOL does not Granger Cause R_W_ASA 0.7951 

 R_X_BVT does not Granger Cause R_ASA 
309 

0.7942  R_X_BVT does not Granger Cause R_SOL 
309 

0.4640 

 R_ASA does not Granger Cause R_X_BVT 0.2290  R_SOL does not Granger Cause R_X_BVT 0.9303 

 R_Y_SAB does not Granger Cause R_ASA 
309 

0.6249  R_Y_SAB does not Granger Cause R_SOL 
309 

0.9815 

 R_ASA does not Granger Cause R_Y_SAB 0.1165  R_SOL does not Granger Cause R_Y_SAB 0.9624 

 R_Z_SOL does not Granger Cause R_ASA 
309 

0.9238  R_Z_SOL does not Granger Cause R_SOL 
309 

0.9132 

 R_ASA does not Granger Cause R_Z_SOL 0.0400*  R_SOL does not Granger Cause R_Z_SOL 0.4116 

 R_SAB does not Granger Cause R_BVT 
309 

0.8932       

 R_BVT does not Granger Cause R_SAB 0.7964       

* Indicates statistical significance at the 95% level. 

^ Indicates statistical significance at the 90% level. 

 
 



 

148 

 

Period 6 

 Null Hypothesis Obs. Prob.   Null Hypothesis Obs. Prob.  

 R_ASA does not Granger Cause R_AGL 
349 

0.5788  R_SOL does not Granger Cause R_BVT 
349 

0.1008 

 R_AGL does not Granger Cause R_ASA 0.3269  R_BVT does not Granger Cause R_SOL 0.1465 

 R_BVT does not Granger Cause R_AGL 
349 

0.0651^  R_V_AGL does not Granger Cause R_BVT 
349 

0.2678 

 R_AGL does not Granger Cause R_BVT 0.0597^  R_BVT does not Granger Cause R_V_AGL 0.8944 

 R_SAB does not Granger Cause R_AGL 
349 

0.6030  R_W_ASA does not Granger Cause R_BVT 
349 

0.0078* 

 R_AGL does not Granger Cause R_SAB 0.1567  R_BVT does not Granger Cause R_W_ASA 0.9109 

 R_SOL does not Granger Cause R_AGL 
349 

0.6534  R_X_BVT does not Granger Cause R_BVT 
349 

0.6102 

 R_AGL does not Granger Cause R_SOL 0.1154  R_BVT does not Granger Cause R_X_BVT 0.8669 

 R_V_AGL does not Granger Cause R_AGL 
349 

0.1522  R_Y_SAB does not Granger Cause R_BVT 
349 

0.3242 

 R_AGL does not Granger Cause R_V_AGL 0.9069  R_BVT does not Granger Cause R_Y_SAB 0.6827 

 R_W_ASA does not Granger Cause R_AGL 
349 

0.1999  R_Z_SOL does not Granger Cause R_BVT 
349 

0.6779 

 R_AGL does not Granger Cause R_W_ASA 0.8818  R_BVT does not Granger Cause R_Z_SOL 0.3621 

 R_X_BVT does not Granger Cause R_AGL 
349 

0.2305  R_SOL does not Granger Cause R_SAB 
349 

0.3475 

 R_AGL does not Granger Cause R_X_BVT 0.2487  R_SAB does not Granger Cause R_SOL 0.5840 

 R_Y_SAB does not Granger Cause R_AGL 
349 

0.9166  R_V_AGL does not Granger Cause R_SAB 
349 

0.1536 

 R_AGL does not Granger Cause R_Y_SAB 0.7644  R_SAB does not Granger Cause R_V_AGL 0.9341 

 R_Z_SOL does not Granger Cause R_AGL 
349 

0.3098  R_W_ASA does not Granger Cause R_SAB 
349 

0.0182* 

 R_AGL does not Granger Cause R_Z_SOL 0.5513  R_SAB does not Granger Cause R_W_ASA 0.4149 

 R_BVT does not Granger Cause R_ASA 
349 

0.1436  R_X_BVT does not Granger Cause R_SAB 
349 

0.8092 

 R_ASA does not Granger Cause R_BVT 0.0032*  R_SAB does not Granger Cause R_X_BVT 0.2579 

 R_SAB does not Granger Cause R_ASA 
349 

0.6403  R_Y_SAB does not Granger Cause R_SAB 
349 

0.5627 

 R_ASA does not Granger Cause R_SAB 0.5208  R_SAB does not Granger Cause R_Y_SAB 0.5053 

 R_SOL does not Granger Cause R_ASA 
349 

0.3539  R_Z_SOL does not Granger Cause R_SAB 
349 

0.4286 

 R_ASA does not Granger Cause R_SOL 0.6420  R_SAB does not Granger Cause R_Z_SOL 0.6671 

 R_V_AGL does not Granger Cause R_ASA 
349 

0.7241  R_V_AGL does not Granger Cause R_SOL 
349 

0.9143 

 R_ASA does not Granger Cause R_V_AGL 0.7108  R_SOL does not Granger Cause R_V_AGL 0.8307 

 R_W_ASA does not Granger Cause R_ASA 
349 

0.4442  R_W_ASA does not Granger Cause R_SOL 
349 

0.9593 

 R_ASA does not Granger Cause R_W_ASA 0.3659  R_SOL does not Granger Cause R_W_ASA 0.9002 

 R_X_BVT does not Granger Cause R_ASA 
349 

0.5357  R_X_BVT does not Granger Cause R_SOL 
349 

0.2661 

 R_ASA does not Granger Cause R_X_BVT 0.4082  R_SOL does not Granger Cause R_X_BVT 0.2322 

 R_Y_SAB does not Granger Cause R_ASA 
349 

0.1573  R_Y_SAB does not Granger Cause R_SOL 
349 

0.9056 

 R_ASA does not Granger Cause R_Y_SAB 0.9775  R_SOL does not Granger Cause R_Y_SAB 0.0161* 

 R_Z_SOL does not Granger Cause R_ASA 
349 

0.6188  R_Z_SOL does not Granger Cause R_SOL 
349 

0.8584 

 R_ASA does not Granger Cause R_Z_SOL 0.5493  R_SOL does not Granger Cause R_Z_SOL 0.2921 

 R_SAB does not Granger Cause R_BVT 
349 

0.2977       

 R_BVT does not Granger Cause R_SAB 0.8370       

* Indicates statistical significance at the 95% level. 

^ Indicates statistical significance at the 90% level. 

 

Period 7 

 Null Hypothesis Obs. Prob.   Null Hypothesis Obs. Prob.  

 R_ASA does not Granger Cause R_AGL 
333 

0.3561  R_SOL does not Granger Cause R_BVT 
333 

0.4111 

 R_AGL does not Granger Cause R_ASA 0.0552^  R_BVT does not Granger Cause R_SOL 0.9437 

 R_BVT does not Granger Cause R_AGL 
333 

0.6763  R_V_AGL does not Granger Cause R_BVT 
333 

0.4979 

 R_AGL does not Granger Cause R_BVT 0.0146*  R_BVT does not Granger Cause R_V_AGL 0.8881 

 R_SAB does not Granger Cause R_AGL 
333 

0.3549  R_W_ASA does not Granger Cause R_BVT 
333 

0.9769 

 R_AGL does not Granger Cause R_SAB 0.0892^  R_BVT does not Granger Cause R_W_ASA 0.6553 

 R_SOL does not Granger Cause R_AGL 
333 

0.8044  R_X_BVT does not Granger Cause R_BVT 
333 

0.4534 

 R_AGL does not Granger Cause R_SOL 0.3262  R_BVT does not Granger Cause R_X_BVT 0.9703 

 R_V_AGL does not Granger Cause R_AGL 
333 

0.7424  R_Y_SAB does not Granger Cause R_BVT 
333 

0.1047 

 R_AGL does not Granger Cause R_V_AGL 0.1092  R_BVT does not Granger Cause R_Y_SAB 0.7899 

 R_W_ASA does not Granger Cause R_AGL 
333 

0.9724  R_Z_SOL does not Granger Cause R_BVT 
333 

0.1820 

 R_AGL does not Granger Cause R_W_ASA 0.4032  R_BVT does not Granger Cause R_Z_SOL 0.4344 

 R_X_BVT does not Granger Cause R_AGL 333 0.3372  R_SOL does not Granger Cause R_SAB 333 0.9190 
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 R_AGL does not Granger Cause R_X_BVT 0.1787  R_SAB does not Granger Cause R_SOL 0.3749 

 R_Y_SAB does not Granger Cause R_AGL 
333 

0.2901  R_V_AGL does not Granger Cause R_SAB 
333 

0.9752 

 R_AGL does not Granger Cause R_Y_SAB 0.3903  R_SAB does not Granger Cause R_V_AGL 0.5781 

 R_Z_SOL does not Granger Cause R_AGL 
333 

0.0480*  R_W_ASA does not Granger Cause R_SAB 
333 

0.2199 

 R_AGL does not Granger Cause R_Z_SOL 0.7142  R_SAB does not Granger Cause R_W_ASA 0.6604 

 R_BVT does not Granger Cause R_ASA 
333 

0.5239  R_X_BVT does not Granger Cause R_SAB 
333 

0.2647 

 R_ASA does not Granger Cause R_BVT 0.0759^  R_SAB does not Granger Cause R_X_BVT 0.0521^ 

 R_SAB does not Granger Cause R_ASA 
333 

0.2065  R_Y_SAB does not Granger Cause R_SAB 
333 

0.2943 

 R_ASA does not Granger Cause R_SAB 0.7589  R_SAB does not Granger Cause R_Y_SAB 0.6442 

 R_SOL does not Granger Cause R_ASA 
333 

0.0398*  R_Z_SOL does not Granger Cause R_SAB 
333 

0.0851^ 

 R_ASA does not Granger Cause R_SOL 0.4953  R_SAB does not Granger Cause R_Z_SOL 0.4768 

 R_V_AGL does not Granger Cause R_ASA 
333 

0.3535  R_V_AGL does not Granger Cause R_SOL 
333 

0.3688 

 R_ASA does not Granger Cause R_V_AGL 0.4230  R_SOL does not Granger Cause R_V_AGL 0.4870 

 R_W_ASA does not Granger Cause R_ASA 
333 

0.8027  R_W_ASA does not Granger Cause R_SOL 
333 

0.7173 

 R_ASA does not Granger Cause R_W_ASA 0.0607^  R_SOL does not Granger Cause R_W_ASA 0.2085 

 R_X_BVT does not Granger Cause R_ASA 
333 

0.2382  R_X_BVT does not Granger Cause R_SOL 
333 

0.8625 

 R_ASA does not Granger Cause R_X_BVT 0.4462  R_SOL does not Granger Cause R_X_BVT 0.2823 

 R_Y_SAB does not Granger Cause R_ASA 
333 

0.2380  R_Y_SAB does not Granger Cause R_SOL 
333 

0.2527 

 R_ASA does not Granger Cause R_Y_SAB 0.1489  R_SOL does not Granger Cause R_Y_SAB 0.7460 

 R_Z_SOL does not Granger Cause R_ASA 
333 

0.2107  R_Z_SOL does not Granger Cause R_SOL 
333 

0.1971 

 R_ASA does not Granger Cause R_Z_SOL 0.4419  R_SOL does not Granger Cause R_Z_SOL 0.4732 

 R_SAB does not Granger Cause R_BVT 
333 

0.1466       

 R_BVT does not Granger Cause R_SAB 0.4051       

* Indicates statistical significance at the 95% level. 

^ Indicates statistical significance at the 90% level. 

 

Period 8 

 Null Hypothesis Obs. Prob.   Null Hypothesis Obs. Prob.  

 R_ASA does not Granger Cause R_AGL 
317 

0.4412  R_SOL does not Granger Cause R_BVT 
317 

0.4436 

 R_AGL does not Granger Cause R_ASA 0.0046*  R_BVT does not Granger Cause R_SOL 0.1193 

 R_BVT does not Granger Cause R_AGL 
317 

0.2952  R_V_AGL does not Granger Cause R_BVT 
317 

0.0513^ 

 R_AGL does not Granger Cause R_BVT 0.7532  R_BVT does not Granger Cause R_V_AGL 0.8204 

 R_SAB does not Granger Cause R_AGL 
317 

0.9224  R_W_ASA does not Granger Cause R_BVT 
317 

0.0502^ 

 R_AGL does not Granger Cause R_SAB 0.9753  R_BVT does not Granger Cause R_W_ASA 0.2995 

 R_SOL does not Granger Cause R_AGL 
317 

0.9529  R_X_BVT does not Granger Cause R_BVT 
317 

0.3283 

 R_AGL does not Granger Cause R_SOL 0.0002*  R_BVT does not Granger Cause R_X_BVT 0.2457 

 R_V_AGL does not Granger Cause R_AGL 
317 

0.0311*  R_Y_SAB does not Granger Cause R_BVT 
317 

0.2139 

 R_AGL does not Granger Cause R_V_AGL 0.4897  R_BVT does not Granger Cause R_Y_SAB 0.0620* 

 R_W_ASA does not Granger Cause R_AGL 
317 

0.8826  R_Z_SOL does not Granger Cause R_BVT 
317 

0.4781 

 R_AGL does not Granger Cause R_W_ASA 0.9901  R_BVT does not Granger Cause R_Z_SOL 0.2714 

 R_X_BVT does not Granger Cause R_AGL 
317 

0.9932  R_SOL does not Granger Cause R_SAB 
317 

0.3672 

 R_AGL does not Granger Cause R_X_BVT 0.9556  R_SAB does not Granger Cause R_SOL 0.0542^ 

 R_Y_SAB does not Granger Cause R_AGL 
317 

0.2615  R_V_AGL does not Granger Cause R_SAB 
317 

0.0101* 

 R_AGL does not Granger Cause R_Y_SAB 0.1101  R_SAB does not Granger Cause R_V_AGL 0.4767 

 R_Z_SOL does not Granger Cause R_AGL 
317 

0.8698  R_W_ASA does not Granger Cause R_SAB 
317 

0.8905 

 R_AGL does not Granger Cause R_Z_SOL 0.0905^  R_SAB does not Granger Cause R_W_ASA 0.9019 

 R_BVT does not Granger Cause R_ASA 
317 

0.1304  R_X_BVT does not Granger Cause R_SAB 
317 

0.7553 

 R_ASA does not Granger Cause R_BVT 0.9752  R_SAB does not Granger Cause R_X_BVT 0.6493 

 R_SAB does not Granger Cause R_ASA 
317 

0.2548  R_Y_SAB does not Granger Cause R_SAB 
317 

0.2762 

 R_ASA does not Granger Cause R_SAB 0.5284  R_SAB does not Granger Cause R_Y_SAB 0.7035 

 R_SOL does not Granger Cause R_ASA 
317 

0.6053  R_Z_SOL does not Granger Cause R_SAB 
317 

0.7865 

 R_ASA does not Granger Cause R_SOL 0.5134  R_SAB does not Granger Cause R_Z_SOL 0.1850 

 R_V_AGL does not Granger Cause R_ASA 
317 

0.6131  R_V_AGL does not Granger Cause R_SOL 
317 

0.8247 

 R_ASA does not Granger Cause R_V_AGL 0.9476  R_SOL does not Granger Cause R_V_AGL 0.9457 

 R_W_ASA does not Granger Cause R_ASA 
317 

0.5772  R_W_ASA does not Granger Cause R_SOL 
317 

0.8280 

 R_ASA does not Granger Cause R_W_ASA 0.4769  R_SOL does not Granger Cause R_W_ASA 0.5786 

 R_X_BVT does not Granger Cause R_ASA 317 0.5938  R_X_BVT does not Granger Cause R_SOL 317 0.8357 
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 R_ASA does not Granger Cause R_X_BVT 0.9158  R_SOL does not Granger Cause R_X_BVT 0.2096 

 R_Y_SAB does not Granger Cause R_ASA 
317 

0.7263  R_Y_SAB does not Granger Cause R_SOL 
317 

0.2286 

 R_ASA does not Granger Cause R_Y_SAB 0.3254  R_SOL does not Granger Cause R_Y_SAB 0.5561 

 R_Z_SOL does not Granger Cause R_ASA 
317 

0.2005  R_Z_SOL does not Granger Cause R_SOL 
317 

0.8777 

 R_ASA does not Granger Cause R_Z_SOL 0.2929  R_SOL does not Granger Cause R_Z_SOL 0.4620 

 R_SAB does not Granger Cause R_BVT 
317 

0.8177       

 R_BVT does not Granger Cause R_SAB 0.3504       

* Indicates statistical significance at the 95% level. 

^ Indicates statistical significance at the 90% level. 

 

Period 9 

 Null Hypothesis Obs. Prob.   Null Hypothesis Obs. Prob.  

 R_ASA does not Granger Cause R_AGL 
333 

0.2999  R_SOL does not Granger Cause R_BVT 
333 

0.1531 

 R_AGL does not Granger Cause R_ASA 0.0093*  R_BVT does not Granger Cause R_SOL 0.8193 

 R_BVT does not Granger Cause R_AGL 
333 

0.8347  R_V_AGL does not Granger Cause R_BVT 
333 

0.5758 

 R_AGL does not Granger Cause R_BVT 0.1442  R_BVT does not Granger Cause R_V_AGL 0.5039 

 R_SAB does not Granger Cause R_AGL 
333 

0.0788^  R_W_ASA does not Granger Cause R_BVT 
333 

0.7494 

 R_AGL does not Granger Cause R_SAB 0.0318*  R_BVT does not Granger Cause R_W_ASA 0.2397 

 R_SOL does not Granger Cause R_AGL 
333 

0.0812^  R_X_BVT does not Granger Cause R_BVT 
333 

0.2423 

 R_AGL does not Granger Cause R_SOL 0.0018*  R_BVT does not Granger Cause R_X_BVT 0.6973 

 R_V_AGL does not Granger Cause R_AGL 
333 

0.0941^  R_Y_SAB does not Granger Cause R_BVT 
333 

0.4625 

 R_AGL does not Granger Cause R_V_AGL 0.2609  R_BVT does not Granger Cause R_Y_SAB 0.3613 

 R_W_ASA does not Granger Cause R_AGL 
333 

0.7418  R_Z_SOL does not Granger Cause R_BVT 
333 

0.8173 

 R_AGL does not Granger Cause R_W_ASA 0.4204  R_BVT does not Granger Cause R_Z_SOL 0.1667 

 R_X_BVT does not Granger Cause R_AGL 
333 

0.7517  R_SOL does not Granger Cause R_SAB 
333 

0.3301 

 R_AGL does not Granger Cause R_X_BVT 0.4090  R_SAB does not Granger Cause R_SOL 0.2924 

 R_Y_SAB does not Granger Cause R_AGL 
333 

0.9216  R_V_AGL does not Granger Cause R_SAB 
333 

0.5540 

 R_AGL does not Granger Cause R_Y_SAB 0.9285  R_SAB does not Granger Cause R_V_AGL 0.3343 

 R_Z_SOL does not Granger Cause R_AGL 
333 

0.4311  R_W_ASA does not Granger Cause R_SAB 
333 

0.9838 

 R_AGL does not Granger Cause R_Z_SOL 0.0018*  R_SAB does not Granger Cause R_W_ASA 0.8633 

 R_BVT does not Granger Cause R_ASA 
333 

0.2488  R_X_BVT does not Granger Cause R_SAB 
333 

0.7886 

 R_ASA does not Granger Cause R_BVT 0.4387  R_SAB does not Granger Cause R_X_BVT 0.9257 

 R_SAB does not Granger Cause R_ASA 
333 

0.4988  R_Y_SAB does not Granger Cause R_SAB 
333 

0.4313 

 R_ASA does not Granger Cause R_SAB 0.9600  R_SAB does not Granger Cause R_Y_SAB 0.5077 

 R_SOL does not Granger Cause R_ASA 
333 

0.0856^  R_Z_SOL does not Granger Cause R_SAB 
333 

0.6914 

 R_ASA does not Granger Cause R_SOL 0.3436  R_SAB does not Granger Cause R_Z_SOL 0.5674 

 R_V_AGL does not Granger Cause R_ASA 
333 

0.1006  R_V_AGL does not Granger Cause R_SOL 
333 

0.2517 

 R_ASA does not Granger Cause R_V_AGL 0.3578  R_SOL does not Granger Cause R_V_AGL 0.6451 

 R_W_ASA does not Granger Cause R_ASA 
333 

0.3040  R_W_ASA does not Granger Cause R_SOL 
333 

0.9082 

 R_ASA does not Granger Cause R_W_ASA 0.8582  R_SOL does not Granger Cause R_W_ASA 0.3678 

 R_X_BVT does not Granger Cause R_ASA 
333 

0.3366  R_X_BVT does not Granger Cause R_SOL 
333 

0.6799 

 R_ASA does not Granger Cause R_X_BVT 0.7248  R_SOL does not Granger Cause R_X_BVT 0.9766 

 R_Y_SAB does not Granger Cause R_ASA 
333 

0.5818  R_Y_SAB does not Granger Cause R_SOL 
333 

0.2629 

 R_ASA does not Granger Cause R_Y_SAB 0.6803  R_SOL does not Granger Cause R_Y_SAB 0.4199 

 R_Z_SOL does not Granger Cause R_ASA 
333 

0.9401  R_Z_SOL does not Granger Cause R_SOL 
333 

0.4195 

 R_ASA does not Granger Cause R_Z_SOL 0.8734  R_SOL does not Granger Cause R_Z_SOL 0.6424 

 R_SAB does not Granger Cause R_BVT 
333 

0.8630       

 R_BVT does not Granger Cause R_SAB 0.1302       

* Indicates statistical significance at the 95% level. 

^ Indicates statistical significance at the 90% level. 

 
Period 10 

 Null Hypothesis Obs. Prob.   Null Hypothesis Obs. Prob.  

 R_ASA does not Granger Cause R_AGL 
317 

0.0394*  R_SOL does not Granger Cause R_BVT 
317 

0.3355 

 R_AGL does not Granger Cause R_ASA 0.6108  R_BVT does not Granger Cause R_SOL 0.4188 

 R_BVT does not Granger Cause R_AGL 317 0.2670  R_V_AGL does not Granger Cause R_BVT 317 0.2090 
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 R_AGL does not Granger Cause R_BVT 0.1175  R_BVT does not Granger Cause R_V_AGL 0.3977 

 R_SAB does not Granger Cause R_AGL 
317 

0.1896  R_W_ASA does not Granger Cause R_BVT 
317 

0.5647 

 R_AGL does not Granger Cause R_SAB 0.5251  R_BVT does not Granger Cause R_W_ASA 0.9154 

 R_SOL does not Granger Cause R_AGL 
317 

0.3722  R_X_BVT does not Granger Cause R_BVT 
317 

0.7033 

 R_AGL does not Granger Cause R_SOL 0.0139*  R_BVT does not Granger Cause R_X_BVT 0.1950 

 R_V_AGL does not Granger Cause R_AGL 
317 

0.5117  R_Y_SAB does not Granger Cause R_BVT 
317 

0.3570 

 R_AGL does not Granger Cause R_V_AGL 0.0965^  R_BVT does not Granger Cause R_Y_SAB 0.4777 

 R_W_ASA does not Granger Cause R_AGL 
317 

0.8139  R_Z_SOL does not Granger Cause R_BVT 
317 

0.4483 

 R_AGL does not Granger Cause R_W_ASA 0.4657  R_BVT does not Granger Cause R_Z_SOL 0.4525 

R_X_BVT does not Granger Cause R_AGL 
317 

0.2890  R_SOL does not Granger Cause R_SAB 
317 

0.2795 

 R_AGL does not Granger Cause R_X_BVT 0.9775  R_SAB does not Granger Cause R_SOL 0.9264 

 R_Y_SAB does not Granger Cause R_AGL 
317 

0.3020  R_V_AGL does not Granger Cause R_SAB 
317 

0.8272 

 R_AGL does not Granger Cause R_Y_SAB 0.1489  R_SAB does not Granger Cause R_V_AGL 0.3958 

 R_Z_SOL does not Granger Cause R_AGL 
317 

0.9447  R_W_ASA does not Granger Cause R_SAB 
317 

0.5428 

 R_AGL does not Granger Cause R_Z_SOL 0.7333  R_SAB does not Granger Cause R_W_ASA 0.2925 

 R_BVT does not Granger Cause R_ASA 
317 

0.1754  R_X_BVT does not Granger Cause R_SAB 
317 

0.8295 

 R_ASA does not Granger Cause R_BVT 0.0145*  R_SAB does not Granger Cause R_X_BVT 0.1230 

 R_SAB does not Granger Cause R_ASA 
317 

0.7677  R_Y_SAB does not Granger Cause R_SAB 
317 

0.3373 

 R_ASA does not Granger Cause R_SAB 0.2237  R_SAB does not Granger Cause R_Y_SAB 0.2089 

 R_SOL does not Granger Cause R_ASA 
317 

0.3362  R_Z_SOL does not Granger Cause R_SAB 
317 

0.9594 

 R_ASA does not Granger Cause R_SOL 0.9214  R_SAB does not Granger Cause R_Z_SOL 0.8159 

 R_V_AGL does not Granger Cause R_ASA 
317 

0.9690  R_V_AGL does not Granger Cause R_SOL 
317 

0.6775 

 R_ASA does not Granger Cause R_V_AGL 0.6031  R_SOL does not Granger Cause R_V_AGL 0.4536 

 R_W_ASA does not Granger Cause R_ASA 
317 

0.3545  R_W_ASA does not Granger Cause R_SOL 
317 

0.8302 

 R_ASA does not Granger Cause R_W_ASA 0.4614  R_SOL does not Granger Cause R_W_ASA 0.9043 

 R_X_BVT does not Granger Cause R_ASA 
317 

0.8509  R_X_BVT does not Granger Cause R_SOL 
317 

0.9137 

 R_ASA does not Granger Cause R_X_BVT 0.7739  R_SOL does not Granger Cause R_X_BVT 0.9850 

 R_Y_SAB does not Granger Cause R_ASA 
317 

0.3688  R_Y_SAB does not Granger Cause R_SOL 
317 

0.8597 

 R_ASA does not Granger Cause R_Y_SAB 0.6663  R_SOL does not Granger Cause R_Y_SAB 0.9003 

 R_Z_SOL does not Granger Cause R_ASA 
317 

0.8142  R_Z_SOL does not Granger Cause R_SOL 
317 

0.1220 

 R_ASA does not Granger Cause R_Z_SOL 0.4350  R_SOL does not Granger Cause R_Z_SOL 0.4665* 

R_SAB does not Granger Cause R_BVT 
317 

0.8814       

R_BVT does not Granger Cause R_SAB 0.1912       

* Indicates statistical significance at the 95% level. 
^ Indicates statistical significance at the 90% level. 
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