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Abstract: 

The traditional view of drug design is that a single drug should interact with a single 

molecular target. As science progressed, there was an understanding that most drugs 

interact with more than one target and that multiple targets may be responsible for either 

adverse effects or additional therapeutic effects. The idea of polypharmacology, which 

suggests that the focus of drug design should shift from a single drug that interacts with a 

single target to a single drug that can have interactions with multiple targets and multiple 

therapeutic effects, revolutionized the drug discovery process. Discovering new drugs is a 

long and costly process with years of research and development and clinical trials required 

before the drugs reach the market for much needed therapeutic applications. By repurposing 

drugs that are already on the market for a new therapeutic target, the discovery process is 

accelerated significantly. 

One such a target disease, for which there is a great need for new effective therapies, is 

Parkinson’s disease (PD). PD is a progressive neurodegenerative disease that is caused by 

the death of dopaminergic neurons in the substantia nigra with the resulting loss of 

dopamine from the striatum. Degeneration in PD leads to varying degrees of motor difficulty 

and disability, along with other symptoms. Current therapies are focussed on symptomatic 

management and an improvement of the quality of life of patients, rather than on a cure. 

There are several therapeutic targets that are currently used in the treatment of PD. One of 

those targets is the monoamine oxidase (MAO) enzymes, in particular the MAO-B isoform. 

The MAO enzymes are responsible for the metabolism of amine neurotransmitters, such as 

dopamine, and inhibition of MAO-B has proven to be an effective strategy to increase the 

dopamine levels in the brain. Clinically, selective MAO-B inhibitors are administered 

concurrently with levodopa (a precursor of dopamine) to increase the levels of dopamine 

derived from levodopa. This approach prolongs the beneficial effects of levodopa. 

Because MAO-A is responsible for the breakdown of noradrenalin, adrenalin, serotonin and 

tyramine, non-selective and selective MAO-A inhibitors have therapeutic applications in 

other neurological and psychiatric disorders such as depression. MAO-A inhibitors, 

particularly irreversible inhibitors, are also notable from a toxicological point of view. 

Irreversible MAO-A inhibitors may lead to potentially dangerous effects when combined with 

serotonergic drugs and certain foods containing tyramine, such as cheeses and processed 

meats. Selective MAO-B inhibitors and reversible MAO-A inhibitors appear to be free of 

these interactions.  
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Based on the considerations above, this study aimed to identify clinically used drugs which 

also inhibit the MAO enzymes as a secondary pharmacological property. Such drugs may, in 

theory, be repurposed as MAO inhibitors for therapeutic use in the treatment of PD and 

depression. The identification of potential MAO-A inhibitory properties among clinically used 

drugs are of further importance since the irreversible inhibition of MAO-A may lead to 

dangerous effects when combined with certain drugs and foods.  

To screen clinically used drugs for potential MAO-A and MAO-B inhibitory activities, a 

pharmacophore approach was followed. A pharmacophore model is a virtual 3D 

representation of the common steric and electrostatic features of the interaction between an 

enzyme and a ligand. By identifying hydrogen bond acceptor, hydrogen bond donor and 

hydrophobic interactions between a reference ligand and an enzyme, a model is created that 

can search databases for other molecules that would have similar interactions with the 

enzyme and arguably also act as ligands. This enables the screening of a large amount of 

molecules in a short amount of time. To assist in the identification of MAO inhibitors, 

pharmacophore models of the MAO enzymes were constructed using the known 

crystallographic structures of MAO-A co-crystallized with harmine, and MAO-B co-

crystallized with safinamide. The Discovery Studio® software package (Accelrys) was used 

for this purpose. 

In this study, virtual libraries of United States Food and Drug Administration (FDA) approved 

drugs and the United States Environmental Protection Agency (EPA) maximum daily dose 

databases were screened with pharmacophore models of MAO-A and MAO-B. Among the 

hits, 26 drugs were selected on the basis of availability and cost, and were subjected to in 

vitro bio-assays in order to determine their potencies (IC50 values) as inhibitors of 

recombinant human MAO-A and/or MAO-B. Among the drugs tested, 6 compounds 

exhibited inhibitory activity towards the MAO enzymes. Of the 6 compounds, pentamidine 

(IC50 = 0.61 µM for MAO-A and IC50 = 0.22 µM for MAO-B) and phenformin (IC50 = 41 µM for 

MAO-A) were selected for further analysis. 

An examination of the recoveries of the enzymatic activities after dilution and dialysis of the 

enzyme-inhibitor complexes showed that both pentamidine and phenformin interact 

reversibly with the MAO enzymes. A kinetic analysis suggests that pentamidine acts as a 

competitive inhibitor with estimated Ki values of 0.41 µM and 0.22 µM for the inhibition of 

MAO-A and MAO-B, respectively. An analysis of the available pharmacokinetic data and 

typical therapeutic doses of phenformin and pentamidine suggests that the MAO inhibitory 

potencies (and reversible mode of action) of phenformin are unlikely to be of 

pharmacological relevance in humans. Pentamidine, on the other hand, is expected to 
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interact with both MAO-A and MAO-B at typical therapeutic doses. Because of its MAO-A 

inhibitory activity, pentamidine may thus, in theory, lead to a tyramine-associated 

hypertensive crisis when combined with tyramine-containing foods. However, pentamidine is 

unlikely to inhibit central MAO since it does not appear to penetrate the central nervous 

system to a large degree. 

In an attempt to gain further insight into the mode of binding to MAO, pentamidine and 

phenformin were docked into models of the active sites of MAO-A and/or MAO-B. An 

analysis of the interactions between the enzyme models and the ligands were carried out 

and the results are discussed in the dissertation. 

The results of this study show that the pharmacophore model approach may be useful in 

identifying existing drugs with potential MAO inhibitory effects. The search for new 

therapeutic MAO inhibitors, that can be used in the treatment of certain neurological 

disorders, including PD and depression, may be accelerated by employing a virtual 

screening approach. Such an approach may also be more cost effective than the de novo 

design of MAO inhibitors.  
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Monoamine oxidase, repurposing, Parkinson’s disease, virtual screening, toxicology, 

enzyme inhibition 
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Uittreksel: 

Die tradisionele beskouing van geneesmiddelontwerp was dat ŉ enkele geneesmiddel net 

met ŉ enkele molekulêre teiken interaksie ondergaan. Soos wat die wetenskap gevorder het, 

het die gedagterigting ontwikkel dat die meeste geneesmiddels met meer as een teiken 

interaksies het en dat meerdere teikens verantwoordelik mag wees vir beide die 

terapeutiese en newe-effekte. Die idee van polifarmakologie, wat voorstel dat die fokus van 

geneesmiddelontwerp behoort te verskuif vanaf ŉ enkele geneesmiddel wat net met ŉ 

enkele teiken ŉ interaksie het, na ŉ enkele geneesmiddel wat met verskeie teikens 

interaksies het om verskeie terapeutiese effekte te bewerkstellig, was verantwoordelik vir ŉ 

revolusie in die geneesmiddelontdekkingsproses. Om nuwe geneesmiddels te ontdek is ŉ 

lang en duur proses wat jare se navorsing, ontwikkeling en kliniese toetse vereis voordat 

geneesmiddels die mark bereik. Die geneesmiddelontdekkingsproses kan versnel word deur 

geneesmiddels wat alreeds op die mark is vir bestaande interaksies her aan te wend vir ŉ 

nuwe terapeutiese teiken.  

Een so ŉ teikensiekte, waarvoor daar ŉ groot nood vir nuwe, effektiewe behandelings is, is 

Parkinson se siekte (PD). PD is ŉ progressiewe neurodegeneratiewe siekte wat veroorsaak 

word deur die afsterwe van dopaminergiese neurone in die substantia nigra en die 

gepaardgaande verlies aan dopamien. PD lei tot verskillende grade van motorgestremdheid 

en ander simptome. Huidige terapieë fokus op simptomatiese behandeling en ŉ verbetering 

in lewenskwaliteit, eerder as op genesing. 

Daar bestaan verskeie terapeutiese teikens wat tans gebruik word vir die behandeling van 

PD. Een van dié teikens is die monoamienoksidase-ensieme (MAO), veral die MAO-B-

isoform. Die MAO-ensieme is verantwoordelik vir die afbreek van amien-neuro-

oordragstowwe, soos dopamien, en die inhibisie van MAO-B is ŉ effektiewe strategie om die 

dopamienvlakke in die brein te verhoog. Selektiewe MAO-B-inhibeerders word klinies 

gebruik saam met eksogeen toegediende levodopa (ŉ voorganger van dopamien) om die 

vlakke van dopamien wat uit die levodopa uit verkry word, te verhoog. Die benadering 

verleng die voordelige effekte van levodopaterapie. 

MAO-A is verantwoordelik vir die metabolisme van noradrenalien, adrenalien, serotonien en 

tiramien. Beide nie-selektiewe en selektiewe MAO-A-inhibeerders word gebruik in die 

behandeling van neurologiese en sielkundige afwykings soos depressie. MAO-A-

inhibeerders, veral onomkeerbare inhibeerders, is ook belangrik vanuit ŉ toksikologiese 

oogpunt, want onomkeerbare MAO-A-inhibeerders kan gevaarlike interaksies hê indien dit 

met serotonergiese geneesmiddels en kossoorte wat tiramien bevat, soos kase en verwerkte 
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vleis, gekombineer word. Selektiewe MAO-B-inhibeerders en omkeerbare MAO-A 

inhibeerders toon nie dié interaksies nie. 

Bogenoemde stellings in ag geneem, is met hierdie studie gepoog om klinies bruikbare 

geneesmiddels wat reeds in gebruik is, te identifiseer wat, benewens hulle primêre werking, 

ook die MAO-ensieme mag inhibeer as ŉ sekondêre farmakologiese eienskap. Sulke 

middels kan teoreties heraangewend word as MAO-inhibeerders vir gebruik in die terapie 

van PD en depressie. Die identifisering van potensiële MAO-A-inhiberende eienskappe van 

middels wat reeds gebruik word, is ook belangrik omdat die onomkeerbare inhibisie van 

MAO-A tot gevaarlike interaksies met sekere geneesmiddels en voedsel mag lei. 

ŉ Farmakofoorbenadering is gevolg om deur geneesmiddels wat klinies gebruik word, te sif 

vir middels wat moontlik MAO-A en MAO-B mag inhibeer. ŉ Farmakofoormodel is ŉ virtuele 

3D-voorstelling van die algemene ruimtelike en elektrostatiese eienskappe van die interaksie 

tussen ŉ ensiem en ŉ ligand. Deur waterstofbinding ontvanger, waterstofbinding skenker en 

hidrofobiese interaksies tussen ŉ verwysingsligand en ŉ ensiem te identifiseer, word ŉ 

model geskep wat gebruik kan word om deur ander databasisse te soek vir ander molekules 

wat soortgelyke interaksies met die ensiem sal hê en moontlik ook as ligande kan optree. Dit 

maak die sifting van groot hoeveelhede molekules in ŉ beperkte tyd moontlik. Om te help 

met die identifisering van MAO inhibeerders, is farmakofoormodelle van die MAO-ensieme 

geskep met behulp van bekende kristallografiese strukture van MAO-A wat mede-

gekristalliseer is met harmien en van MAO-B wat mede-gekristalliseer is met safienamied. 

Die Discovery Studio® sagtewarepakket van Accelrys is vir die doeleinde gebruik. 

Vir die studie is virtuele biblioteke van die Verenigde State Voedsel en Geneesmiddel 

Administrasie se aanvaarde geneesmiddels en die Verenigde State 

Omgewingsbeskermingsagentskap se maksimum daaglikse dosis databasis gesif met die 

farmakofoormodelle van MAO-A en MAO-B. Van al die molekules wat deur die modelle 

geïdentifiseer is, is 26 geneesmiddels gekies op grond van beskikbaarheid en koste, en dié 

geneesmiddels is onderwerp aan in vitro biotoetse om hulle sterktes (IC50 waardes) as 

inhibeerders van rekombinante menslike MAO-A en MAO-B te bepaal. Van al die 

geneesmiddels wat getoets is, het 6 verbindings MAO-inhiberende aktiwiteit getoon. Van die 

6 verbindings is pentamidien (IC50 = 0.61 µM vir MAO-A en IC50 = 0.22 µM vir MAO-B) en 

fenformien (IC50 = 41 µM vir MAO-A) gekies vir verdere analise. 

ŉ Ondersoek na die herstel van die ensimatiese aktiwiteite, na die verdunning en dialise van 

die ensiem-inhibeerder-komplekse, toon dat beide pentamidien en fenformien omkeerbare 

interaksies met die MAO-ensieme ondergaan. ŉ Kinetiese analise dui aan dat pentamidien 

as ŉ kompeterende inhibeerder optree met geskatte Ki-waardes van 0.41 µM en 0.22 µM vir 
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die inhibisie van MAO-A en MAO-B onderskeidelik. ŉ Analise van die beskikbare 

farmakokinetiese data en die tipiese terapeutiese doserings van pentamidien en fenformien 

dui daarop dat die MAO-inhiberende eienskappe (en omkeerbare binding) van fenformien 

waarskynlik nie van farmakologiese belang in mense is nie. Daar word egter verwag dat 

pentamidien interaksies met beide MAO-A en MAO-B sal hê teen normale terapeutiese 

dosisse. Omdat pentamidien MAO-A inhibeer, kan dit teoreties lei tot ŉ tiramien-

geassosieerde hipertensiewe krisis as dit gekombineer word met tiramien-bevattende 

voedsel. Dit is egter onwaarskynlik dat pentamidien MAO sentraal sal inhibeer omdat die 

mate waartoe pentamidien die senustelsel binnedring beperk is. 

In ŉ poging om verdere insig in die manier waarop binding aan MAO plaasvind te verkry, is 

pentamidien en fenformien vasgemeer in modelle van die aktiewe setels van MAO-A en/of 

MAO-B. ŉ Analise van die interaksies tussen die ensiem-modelle en die ligande is uitgevoer 

en die resultate word in die verhandeling bespreek. 

Die resultate van die studie toon dat die farmakofoormodel-benadering bruikbaar kan wees 

om bestaande geneesmiddels met potensiële MAO-inhiberende effekte te identifiseer. Die 

soektog na nuwe terapeutiese MAO-inhibeerders wat vir die behandeling van sekere 

neurologiese toestande, soos PD en depressie, gebruik kan word, kan versnel word deur ŉ 

virtuele siftingsbenadering te volg. So ŉ benadering mag ook meer koste-effektief wees as 

die de novo ontwerp van MAO-inhibeerders. 

 

Sleutelwoorde: 
Monoamienoksidase, heraanwending, Parkinson se siekte, virtuele sifting, toksikologie, 

ensiem-inhibisie 
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