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ABSTRACT

HESS J0632+057 is the only gamma-ray binary known so far whose position in the sky allows observations
with ground-based observatories in both the northern and southern hemispheres. Here we report on long-term
observations of HESS J0632+057 conducted with the Very Energetic Radiation Imaging Telescope Array System
and High Energy Stereoscopic System Cherenkov telescopes and the X-ray satellite Swift, spanning a time range
from 2004 to 2012 and covering most of the system’s orbit. The very-high-energy (VHE) emission is found to be
variable and is correlated with that at X-ray energies. An orbital period of 315+6

−4 days is derived from the X-ray
data set, which is compatible with previous results, P = (321 ± 5) days. The VHE light curve shows a distinct
maximum at orbital phases close to 0.3, or about 100 days after periastron passage, which coincides with the
periodic enhancement of the X-ray emission. Furthermore, the analysis of the TeV data shows for the first time a
statistically significant (>6.5σ ) detection at orbital phases 0.6–0.9. The obtained gamma-ray and X-ray light curves
and the correlation of the source emission at these two energy bands are discussed in the context of the recent
ephemeris obtained for the system. Our results are compared to those reported for other gamma-ray binaries.

Key words: acceleration of particles – binaries: general – gamma rays: general(HESS J0632+057,
VER J0633+057)
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1. INTRODUCTION

The very-high-energy (VHE; E > 100 GeV) gamma-ray
source HESS J0632+057 is a new member of the elusive class
of gamma-ray binaries (Aharonian et al. 2007; Hinton et al.
2009; Bongiorno et al. 2011). These objects are characterized
by a peak in their broad-band spectral energy distribution (SED)
at MeV–GeV energies, displaying variable high-energy emis-
sion as well as extended non-thermal radio structures. All
known gamma-ray binaries are high-mass X-ray binary systems,
consisting of a compact object orbiting around a massive
star of O or Be type. Besides HESS J0632+057, only three
binaries are clearly identified as VHE gamma-ray sources:
PSR B1259-63/LS 2883 (Aharonian et al. 2005a), LS 5039
(Aharonian et al. 2005b), and LS I +61 303 (Albert et al.
2006; Acciari et al. 2008). In addition, some evidence for
TeV emission has been observed from Cygnus X-1 with the
Major Atmospheric Gamma-ray Imaging Cherenkov telescope
(MAGIC; Albert et al. 2007). Finally, the High Energy Stereo-
scopic System (H.E.S.S.) Collaboration recently reported the
detection of a point-like source spatially coincident with the
newly discovered GeV gamma-ray binary 1FGL J1018-5859
(Fermi-LAT Collaboration 2012; Abramowski et al. 2012), al-
though no variability could be identified at TeV energies and
the complex morphology of the gamma-ray excess does not yet
allow an unequivocal association of the GeV and TeV sources.

Gamma-ray emission at VHE from HESS J0632+057 was dis-
covered serendipitously during observations of the Monoceros
region in 2004–2005 with H.E.S.S. (Aharonian et al. 2007).
Based on the point-like VHE gamma-ray appearance, X-ray
variability, and spectral properties of the source, Aharonian et al.
(2007) and Hinton et al. (2009) suggested its identification as a
new TeV binary system. HESS J0632+057, located in the direc-
tion of the edge of the star-forming region of the Rosette Nebula,
was observed in the following years with the Very Energetic
Radiation Imaging Telescope Array System (VERITAS),
H.E.S.S., and MAGIC telescopes. In 2006–2009, no signifi-
cant emission was detected from the system at energies above
1 TeV with VERITAS (Acciari et al. 2009), suggesting its vari-
ability at VHE. In 2010 and 2011 clear gamma-ray signals con-
sistent with the initial H.E.S.S. results were observed (Maier
et al. 2011; Aleksić et al. 2012; Bordas & Maier 2012), con-
firming the TeV variability. The picture became clearer with
the measurement of flux modulations with an initial period de-
termination of (321 ± 5) days from multi-year observations in
the 0.3–10 keV band with the Swift X-ray telescope (XRT; Bon-
giorno et al. 2011; Falcone et al. 2010). The periodic modulation
has been recently confirmed by photometric measurements in
the optical band (Casares et al. 2012). The X-ray observations
firmly established the binary nature of HESS J0632+057.

The optical counterpart of HESS J0632+057 is the massive
B-star MWC 148 (HD 259440=LS VI +05 11) at a distance
of 1.1–1.7 kpc (Aragona et al. 2010). MWC 148 is positionally
coincident with the hard-spectrum and variable X-ray source
XMMU J063259.3+054801 (Hinton et al. 2009). At radio fre-
quencies, weak emission was discovered at the position of
HESS J0632+057 with GMRT and Very Large Array by Skilton
et al. (2009). The radio source is variable, but about 10 times
fainter than the flux measured at similar frequencies from other
gamma-ray binaries (e.g., LS 5039; Moldón et al. 2012). Ob-
servations with the European VLBI Network (EVN) show pos-
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sible indications of an extended radio structure with a projected
size of ≈75 AU (Moldón et al. 2011). Searches for pulsed
emission from the system with Chandra and XMM-Newton in
X-rays yielded upper limits of ∼22%–48% (depending on the
frequency and emission state probed) on the pulsed fraction at
energies 0.3–10 keV (Rea & Torres 2011). A potential associa-
tion of HESS J0632+057 with the unidentified GeV gamma-ray
source 3EG J0632+0521 has been suggested by Aharonian et al.
(2007), although the source is marked as “possibly extended or
multiple sources” and “possibly source confused” in the third
EGRET catalog(Hartman et al. 1999). No gamma-ray emission
has been reported by the Fermi Large Area Telescope (LAT)
Collaboration (Caliandro et al. 2013) at MeV–GeV energies
(F100 < 3.0 × 10−8 photon cm−2 s−1 99% C.L. upper limit
above 100 MeV).

The spectral type of MWC 148 is B0pe (Morgan et al.
1955), characterized by an optically thick equatorial disk.
The disk inclination is uncertain with estimates ranging from
�47◦ to between 71◦ and 90◦ (Casares et al. 2012). Estimates
of the physical parameters of the star have been reported,
e.g., by Aragona et al. (2010) and Casares et al. (2012),
who derive an effective temperature of Teff ≈ 30,000 K, a
mass of 13–19 M�, and a radius of about 6–10 R�. Orbital
parameters of the binary system have been obtained through
spectroscopic measurements assuming an orbital period of
321 days derived from the X-ray measurements (Casares et al.
2012), including the orbit eccentricity e = 0.83 ± 0.08, phase
of the periastron Φ0 = 0.967 ± 0.008 (defining phase 0
arbitrarily at T0 = MJD 54857), and an uncertain inclination of
i ≈ 47◦–90◦. The large uncertainties involved in this calculation
lead to a broad range of masses allowed for the compact object
(Mc ≈ 1.3–7.1 M�). Its nature, neutron star or black hole, is
therefore unclear.

The physical processes leading to particle acceleration and
gamma-ray emission in binaries are under debate. Two major
classes of models are usually invoked to explain their high-
energy emission (see, e.g., Mirabel 2012). In the first one,
acceleration of charged particles takes place in accretion-
powered relativistic jets (so called microquasars; Taylor &
Gregory 1984; Mirabel & Rodriguez 1994) and usually implies
a black hole as compact object. In the second one, high-
energy emission is produced by the ultra-relativistic wind of
a rotation-powered energetic pulsar, either scattering directly
off the photon field of the companion star or photons from a
circumstellar disk (Ball & Kirk 2000; van Soelen & Meintjes
2011; Khangulyan et al. 2012), or accelerating particles in the
region where the pulsar wind collides with the disk material or
the wind of the massive companion (Maraschi & Treves 1981;
Dubus 2006a). Note that the shocked wind material could also
be relativistic in this last case (Bogovalov et al. 2008; Dubus
et al. 2010).

The interactions between the compact object, the massive
star, and their winds and magnetic fields form a complicated
environment, in which acceleration, radiation, and absorption
processes take place (see, e.g., Dubus 2013). This complex
nature of gamma-ray binaries may lead to the variety of emission
patterns observed in these systems. In particular, two of the best
studied gamma-ray binaries show emission that is modulated by
their orbital period (PSR B1259-63, Aharonian et al. 2005a; LS
5039, Aharonian et al. 2005b), while in the case of the system
LS I +61 303 the source displays both periodic and episodic
variability (Albert et al. 2009; Acciari et al. 2011; see also
Chernyakova et al. 2012).

3



The Astrophysical Journal, 780:168 (14pp), 2014 January 10 Aliu et al.

Below, long-term gamma-ray observations of HESS J0632+
057 with the VERITAS and H.E.S.S. facilities are reported, and
X-ray observations with the Swift-XRT telescope. Section 2 de-
scribes the VHE and the X-ray data sets, including VHE obser-
vations taken up to 2012 February and Swift-XRT observations
up to 2012 March. These results provide for the first time a wide
coverage of the system’s orbital phases. Section 3 is focused
on the results obtained from the VHE and X-ray data analysis.
These results are discussed in Section 4 in a multi-wavelength
context, and compared to those obtained from other well-studied
gamma-ray binaries.

2. OBSERVATIONS

VERITAS and H.E.S.S. are ground-based imaging atmo-
spheric Cherenkov telescopes (IACTs) built to detect the faint
flashes of Cherenkov light from air showers initiated in the atmo-
sphere by high-energy gamma-ray photons. The instruments are
very similar in their performance with effective areas of �105

m2 over an energy range from ∼100 GeV to 30 TeV, energy
resolution ∼15%–20%, and angular resolution ≈0.◦1. The high
sensitivities of H.E.S.S. and VERITAS enable the detection of
sources with a flux of 1% of the Crab Nebula in less than 30 hr
of observations.

The analysis of the VHE data from the two instruments
follows similar initial steps, consisting of calibration, image
cleaning, and second-moment parameterization of Cherenkov
shower images (Hillas 1985), which provide the reconstruction
of the shower direction, energy, and impact parameter using
stereoscopic methods (see, e.g., Krawczynski et al. 2006).
For the H.E.S.S. data analysis, a further fitting procedure is
employed, for which the Hillas parameters are used as the
starting point for a refined derivation of the shower parameters
based on a log-likelihood comparison of the raw, uncleaned
image with a pre-calculated shower model (de Naurois &
Rolland 2009). A shower event must be imaged by at least two
out of four telescopes to be used in the VHE analysis of data
from both instruments, and additional cuts on the shape of the
event images and the direction of the primary particles are used
to reject the far more numerous background events. Most of the
VHE data were taken in wobble mode in both the VERITAS and
H.E.S.S. data sets, wherein the source is positioned at an offset
from the camera center of about 0.◦5 to allow for simultaneous
and symmetric background regions to be used during the
data-analysis procedure. All results presented here have been
cross-checked with independent analysis chains.

2.1. VERITAS VHE Gamma-Ray Observations

The VERITAS observatory is an array of IACTs located at
the Fred Lawrence Whipple Observatory in southern Arizona
(1300 m above sea level, N31◦40′30′′, W110◦57′08′′). The
mirror area of each telescope is 110 m2 and the total field of
view (FoV) of the instrument is 3.◦5 in diameter.

VERITAS observed the sky around HESS J0632+057 for
a total of 162 hr between 2006 December and 2012 January
(see Table 1 for details). A total of 144 hr of observations
passed quality-selection criteria, which remove data taken
during bad weather or with technical problems. The instrument
went through several important changes during this period. The
data from 2006 December were taken during the construction
phase of VERITAS with three telescopes only. The array was
completed in 2007 September with four telescopes in total. In
2009 September the array layout was improved by moving one

telescope, leading to an improved sensitivity, which makes it
possible to detect point-like sources with a flux of 1% of the
Crab Nebula in less than 30 hr of observations (1 hr for 5% of
the Crab Nebula flux). The corresponding values prior to 2009
are less than 50 hr and 2 hr for sources with 1% and 5% of the
flux of the Crab Nebula respectively.

Observations with VERITAS are possible during dark sky
and moderate moonlight conditions (moon illumination <35%).
The elevated background light levels during moderate moonlight
lead to a lower sensitivity to gamma rays near the low energy
threshold of the instrument. Observations were performed in
a zenith angle range of 26◦–40◦. All VERITAS observations,
with the exception of the observations in 2006 December–2007
January, were taken at a fixed offset of 0.◦5 in one of four
directions. The energy threshold67 after analysis cuts, where
a cut on the integrated charge per image of 500 digital counts
(≈90 photoelectrons) is applied, is 230 GeV for the data set
presented here (average elevation angle of 62◦). For more details
on the VERITAS instrument see, e.g., Acciari et al. (2008).
The extraction region for photons from the putative gamma-ray
source is defined by a 0.◦09 radius circle centered on the position
of the X-ray source XMMU J063259.3+054801 (coincident
with the star MWC 148; Hog et al. 1998). The background
in the source region is estimated from the same FoV using the
ring-background model with a ring size of 0.◦5 (mean radius)
and a ring width of 0.◦1 (Berge et al. 2007). In order to reduce
systematics in the background estimation, regions around stars
with B-band magnitudes brighter than six are excluded from the
background control regions.

2.2. H.E.S.S. VHE Gamma-Ray Observations

The H.E.S.S. observatory is located in the Khomas highland
of Namibia (1800 m above sea level, S23◦16′18′′, E16◦30′00′′).
The H.E.S.S. array consists of four 13 m diameter telescopes
positioned in a square of side length 120 m. Each telescope
is equipped with a tessellated spherical mirror of 107 m2,
focusing the Cherenkov flashes onto a camera that covers an
FoV of about 5◦ in diameter. For a detailed description of the
system, see Aharonian et al. (2006) and references therein. No
data from the H.E.S.S.-II array, which includes the addition
of a central, 28 m diameter telescope, are included in this
publication.

HESS J0632+057 was observed yearly with H.E.S.S. from
2004 until 2012. The FoV around the source was initially
covered by deep observations of the Monoceros Loop supernova
remnant/Rosette Nebula region, in the search for potential
sources of VHE emission, including also two unidentified
EGRET sources. After the discovery of HESS J0632+057
(Aharonian et al. 2007), further dedicated observations were
obtained to better constrain its nature, in particular searching
for TeV variability/periodicity following the non-detection
of the source reported by the VERITAS Collaboration in
2006–2009 (Acciari et al. 2009). The total acceptance-corrected
effective exposure time on HESS J0632+057, including both the
initial discovery data set and the following pointed observations,
consists of 53.5 hr of data after standard quality selection cuts
(Aharonian et al. 2006). Observations were performed over a
large range of elevation angles (32◦–62◦, with an average of
56.◦0). The data have been analyzed using the Model Analysis

67 The energy threshold is defined as the position of the peak of the
differential energy spectrum (assuming a power law for the spectral shape;
here Γ = −2.5 was assumed) of the source convolved with the effective area
curve of the detector.
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Table 1
H.E.S.S. and VERITAS Analysis Results for Energies E > 1 TeV

MJD Mean Observatory Observation Mean On Off αb Significancec Flux
Range Phasea Time Elevation Events Events (σ ) (Upper Flux Limitd)

(minutes) (deg) (Pre-trial) (10−13 cm−2 s−1)

54089–54125 0.62 VERITAS 579 61.3 12 153 0.06 1.1 1.4 ± 1.5 (<6.1)
54830–54834 0.92 VERITAS 561 62.6 7 180 0.05 −0.9 −0.9 ± 0.9 (<2.3)
54856–54861 0.01 VERITAS 721 61.9 12 197 0.05 0.4 0.4 ± 1.0 (<3.6)
55122–55133 0.86 VERITAS 491 62.6 9 78 0.05 2.0 1.8 ± 1.1 (<4.5)
55235–55247 0.22 VERITAS 925 61.3 25 136 0.05 4.9 3.5 ± 1.0
55259–55276 0.30 VERITAS 309 59.5 18 55 0.05 5.6 8.2 ± 2.3
55544–55564 0.21 VERITAS 229 62.7 4 46 0.05 0.9 1.2 ± 1.6 (<7.1)
55571–55572 0.27 VERITAS 140 61.7 4 23 0.05 1.9 3.4 ± 2.5 (<12.8)
55585–55599 0.33 VERITAS 639 58.6 25 106 0.05 5.7 5.3 ± 1.4
55600–55602 0.36 VERITAS 541 58.9 27 104 0.05 6.2 6.9 ± 1.7
55614–55622 0.42 VERITAS 643 58.7 14 105 0.05 2.9 2.2 ± 1.0 (<5.5)
55624–55630 0.45 VERITAS 342 57.8 5 77 0.05 0.4 0.4 ± 1.2 (<4.6)
55643–55656 0.52 VERITAS 468 53.7 14 158 0.05 1.7 2.0 ± 1.4 (<6.5)
55891–55901 0.30 VERITAS 454 61.0 21 90 0.05 5.2 6.2 ± 1.8
55916–55920 0.37 VERITAS 632 59.8 31 98 0.05 7.3 6.9 ± 1.5
55921–55927 0.39 VERITAS 419 62.4 8 67 0.05 1.9 1.9 ± 1.2 (<6.0)
55940–55949 0.45 VERITAS 295 62.4 2 35 0.05 0.1 0.1 ± 0.9 (<3.8)
55951–55955 0.48 VERITAS 256 62.7 4 25 0.05 1.8 1.8 ± 1.3 (<6.8)

53087–53088 0.38 H.E.S.S. 77.7 43.9 13 185 0.05 1.1 1.3 ± 1.4 (<4.2)
53353–53356 0.23 H.E.S.S. 290.6 54.3 110 1209 0.05 6.0 4.0 ± 0.8
53685–53716 0.32 H.E.S.S. 324.7 53.4 113 1175 0.04 7.2 4.9 ± 0.9
53823–53823 0.71 H.E.S.S. 79.1 47.5 22 328 0.03 3.0 4.7 ± 1.9
54117–54118 0.65 H.E.S.S. 254.9 58.7 72 933 0.05 3.1 2.0 ± 0.7
54169–54170 0.81 H.E.S.S. 54.3 59.7 5 141 0.05 −0.8 −0.9 ± 0.09 (<1.4)
54414–54426 0.61 H.E.S.S. 156.4 59.5 50 538 0.05 3.7 3.3 ± 1.0
54467–54475 0.77 H.E.S.S. 217.1 58.4 69 644 0.05 5.2 3.9 ± 0.9
54859–54910 0.08 H.E.S.S. 161.6 52.1 26 368 0.05 1.5 1.3 ± 0.09 (<3.3)
55121–55157 0.89 H.E.S.S. 643.0 59.7 140 1664 0.05 5.2 2.1 ± 0.5
55178–55185 0.02 H.E.S.S. 437.5 55.1 51 869 0.05 0.8 0.5 ±0.6 (<1.6)
55895–55898 0.29 H.E.S.S. 230.7 59.4 87 885 0.05 5.2 3.6 ± 0.8
55931–55951 0.44 H.E.S.S. 233.2 52.5 53 673 0.05 2.9 2.1 ± 0.8 (<3.7)

Notes.
a Phases are calculated using an orbital period of 315 d and MJD0 = 54857.
b α denotes the ratio between the area used for the determination of on and off counts.
c Significances are calculated using Equation (17) from Li & Ma (1983).
d Errors on fluxes are 1σ statistical uncertainties. Upper limits (E > 1 TeV) are given in brackets at 99% confidence level (after Rolke et al. 2001) for
periods with a significance lower than 3σ .

technique (de Naurois & Rolland 2009) and cross checked with a
Hillas-based analysis, making use of an independent calibration
procedure of the raw data, providing compatible results. The
results presented here, using standard cuts where a cut of 60
photo-electrons on the intensity of the extensive air showers is
applied, provide a mean energy threshold of ∼220 GeV for the
data set presented.

2.3. Swift X-Ray Observations

The Swift-XRT, which is sensitive in the 0.3–10 keV band
(Burrows et al. 2005), was used to monitor HESS J0632+057
during the time period from 2009 January 26 to 2012 February
15. The observations had typical durations of ∼4–5 ks. The
temporal spacing between observations is typically ∼1 week,
although some time periods include several month-long time
gaps due to observing constraints, whilst others include daily
observations.

The Swift-XRT data were processed using the most recent
versions of the standard Swift tools: Swift Software version
3.9 and HEASoft FTOOLS version 6.12 (Blackburn 1995).
Observations were processed individually using xrtpipeline

version 0.12.6. Hot and flickering pixels were removed using
xrthotpix, and hot pixels were additionally removed by rejecting
data where the XRT CCD temperature is �−47◦C. Standard
grade selections of 0–12 were used for these Photon-Counting
mode data.

Light curves were generated using xrtgrblc version 1.6.
Circles were used to describe the source regions. The source
count rate was always <0.1 counts s−1, so pile-up correction
was not needed. Annuli with inner radii outside the radii of the
source regions were used to describe the background regions for
all data. The radii of the regions depend on the count rate in each
temporal bin. Point-spread-function corrections and corrections
for the relative sizes of the extraction regions were applied. For
light-curve plotting, each observation results in one bin.

In order to calculate count-rate to flux conversion fac-
tors, spectral fits were generated using XSPEC version 12.7.1
(Arnaud 1996). Since the spectral shape may vary, we defined
high, medium and low states based on the rate light curve, and
binned data together within each subset to perform a spectral
fit. The high state contains only data from the large peak (see
Figure 3), approximately at phases 0.32–0.39. The low state
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Figure 1. Long-term observations of HESS J0632+057 with H.E.S.S. (round purple markers) and VERITAS (square black markers) at energies >1 TeV and in X-rays
with Swift-XRT (0.3–10 keV; open gray markers) from 2004 March to 2012 February.

(A color version of this figure is available in the online journal.)

Table 2
Outcome of the Spectral Analysis of the Swift X-ray Data

Flux State Phase Range Flux Normalization Constant (×10−4) Photon Index χ2/N

(cm−2 s−1 keV−1)

High 0.32–0.39 (4.25 ± 0.24) 1.46 ± 0.06 80/78
Medium · · · (2.09 ± 0.08) 1.71 ± 0.04 224/168
Low 0.42–0.48 (0.50 ± 0.01) 1.19 ± 0.16 6/14

Notes. Parameters are derived from fitting an absorbed power law with a fixed absorption coefficient NH =
3.81 × 1021 cm−2. The spectral fit on medium flux states is added for illustration. Data for this fit are selected
according to their absolute flux values and not in a specific phase range.

contains only data during the “dip” that immediately follows
each large peak, roughly from phase 0.42–0.48. The medium
state data contains data from phase 0.6 to phase 0.32 (see
Table 2). An absorbed power-law was used to fit the spectra
from each of these three data subsets, using χ2 statistics and the
XSpec photoelectric model wabs to define absorption cross sec-
tions and abundances (Morrison & McCammon 1983). For the
combined data set, NH was left as a free parameter and converged
to 3.81(+0.29,−0.27)×1021 cm−2. For each of the data subsets,
we fixed the absorption parameter, NH, to 3.81 × 1021 cm−2.
After performing a spectral fit of an absorbed power-law to each
data subset, the unabsorbed flux was calculated to create three
separate rate-to-flux conversion factors.

3. RESULTS

HESS J0632+057 was detected as a source of VHE gamma
rays at a high confidence level by both observatories. The
detection significance of the highly variable gamma-ray source
derived from 144 hr of VERITAS observations is 15.5σ ,
whereas the source is detected with H.E.S.S. at a significance
of 13.6σ in a total of 53.5 hr of observations. Figure 1
summarizes these results by showing the long-term gamma-
ray light curve for energies above 1 TeV for all H.E.S.S. and
VERITAS measurements from 2004 to 2012 (detailed results of
these observations can be found in Table 1). All significances,
fluxes, and spectral analyses are calculated using the X-ray
source XMMU J063259.3+054801 position (Hinton et al. 2009).
Integral fluxes above 1 TeV are calculated assuming a spectral
distribution following a power law with a photon index of −2.5

(see Figure 7 for the measured differential energy spectrum of
HESS J0632+057).

The source has been found to be variable, as earlier measure-
ments with H.E.S.S. and VERITAS suggested (Acciari et al.
2009). A calculation of the variability index V, a χ2-criterion
described in detail in Abdo et al. (2010), results in V = 94.7
for the combined H.E.S.S./VERITAS light curve with 30 flux
points and the assumption of a systematic error on the flux esti-
mation of each instrument of 20% (Aharonian et al. 2006). This
means that the light curve is significantly different from a con-
stant one at a confidence level of 1–3.6×10−13 (7.1σ ). A search
for variability patterns and an orbital period in the VHE data is
unfortunately hampered by insufficient coverage and large gaps
in the light curve. A much larger data set with denser sampling
of the orbital period is needed to derive this from observations
of HESS J0632+057.

The high-significance detection allows the position of the
VHE source to be updated using both the VERITAS (from 2010
to 2012) and H.E.S.S. (from 2004 to 2012) data sets. The best fit
position from the VERITAS subset is R.A. = 06h33m0.s8±0.s5stat
and decl. = +5◦47′39′′ ± 10′′

stat (J2000 coordinates) with a
source extension of the gamma-ray image compatible with the
VERITAS gamma-ray point spread function.68 The systematic
uncertainty in the position due to telescope pointing errors is
below 50′′. This subset of VERITAS data, with observation
dates after the optimization of the array layout, has been chosen
to minimize systematic errors on the direction determination.
The best-fit position for HESS J0632+057 resulting from the

68 The object is added to the VERITAS source catalog with the name VER
J0633+057.
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Figure 2. Z-transformed discrete autocorrelation function (Z-DCF) for the Swift-
XRT light curve shown in Figure 1. The errors bars denote the 1σ sampling
errors resulting from a Monte Carlo-based error calculation as described in the
text. The dashed line and the blue band indicate the most likely modulation
period of 315+6

−4 days and the corresponding 68% fiducial interval.

(A color version of this figure is available in the online journal.)

new H.E.S.S. measurements is R.A. = 06h32m59.s4±1.s1stat and
decl. = +5◦47′20′′ ± 16.′′1stat (J2000). The positional agreement
between the updated VERITAS and H.E.S.S. position, the
original H.E.S.S. detection (Aharonian et al. 2007) and the X-ray
source XMMU J063259.3+054801, as well as its compatibility
with a point-like source, have thus been confirmed.

The long-term X-ray light curve of XMMU J063259.3+
054801, from 2009 January 26 to 2012 February 12, as mea-
sured with Swift-XRT is shown together with the VERITAS and
H.E.S.S. measurements in Figure 1. The X-ray light curve is
highly variable with several distinguishable features appearing
periodically. The analysis reported here follows closely that in
Bongiorno et al. (2011), but using one additional year of data.
Z-transformed discrete correlation functions (Z-DCFs) are ap-
plied to determine the overall variability patterns in the X-ray
light curve and the correlation between X-ray and gamma-ray
emission (the number of data points in the gamma-ray light
curve is not sufficient for an autocorrelation analysis). The
Z-transformed discrete correlation functions (Alexander 1997)
are based on the discrete correlation analysis developed by
Edelson & Krolik (1997), employing additionally equal popula-
tion binning and Fisher’s Z-transform, that transforms the cor-
relation coefficient into an approximately normally distributed
variable. This leads to a more robust estimation of the correlation
coefficients. Errors on the Z-DCF coefficients are calculated in
this analysis with a Monte Carlo-based approach using 10,000
simulated light curves with flux values randomly changed ac-
cording to their measurement uncertainties and assuming them
to be normally distributed. Time lags and their 68% fiducial
intervals are calculated from the peak likelihood of the Z-DCF
using Bayesian statistics. Z-DCF have been used in preference
to Pearson’s correlation coefficient as the latter does not take
uncertainties on the flux values into account.

Figure 2 shows the results from the autocorrelation analysis
of the X-ray light curve. Flux modulation with a period of
(321 ± 5) days has been presented in Bongiorno et al. (2011),
applying peak-fitting algorithms and Z-DCFs to a subset of
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the Swift-XRT data presented in this paper. The larger data
set available now (154 compared to 112 flux points used
in Bongiorno et al. 2011) results in a compatible period of
315+6

−4 days. We use therefore in this paper the following phase
definition: MJD0 = 54857 (arbitrarily set to the date of the first
Swift observations) and period P = 315 days. It should be noted
that the orbital parameters as derived from Casares et al. (2012)
remain approximately unchanged by this small change in orbital
period (J. Casares 2012, private communication).

The phase-folded X-ray light curves as shown in Figure 3
illustrate the very regular emission pattern of HESS J0632+057
with a strong maximum at phases ∼0.35, a marked dip at phases
∼0.45 and an intermediate flux level at orbital phases ∼0.6–0.3.
There are also indications of a second maximum at phases
∼0.6–0.9, with a flux level about half of that of the main peak
at phases ∼0.35. Apart from this very regular pattern, orbit-to-
orbit variability at X-ray energies is also visible, e.g., around
the region of the emission maxima.

The gamma-ray light curve has been folded with the orbital
period derived from the X-ray data. The uncertainty in the
orbital period translates into a noticeable uncertainty in orbital
phase, since the VHE observations presented here are taken
over a period of ∼8 yr. In order to ensure that none of the
conclusions presented in the following depends on the particular
value of the orbital period, we present in Figure 4 the gamma-
ray light curve folded by a period of 315 days, while in Figure 5
periods of 321 and 311 days have been applied. The phase-
folded light curves reveal several important characteristics of
the high-energy emission: a clear detection of the source in the
phase range 0.2–0.4, around the maximum of the X-ray light
curve, with a flux of 2%–3% of that of the Crab Nebula; a first
detection of a gamma-ray emission component at orbital phases
in the range 0.6–0.9, in which a secondary peak in the X-ray
light curve is also observed; and a non-detected low state at all
other orbital phases.

It should be noted that the H.E.S.S. data set leading to the
detection of VHE emission in orbital phases 0.6–0.9 comprises
observations taken at different epochs, from 2006 March to 2009
October (see Table 1 for details). HESS J0632+057 is detected

7



The Astrophysical Journal, 780:168 (14pp), 2014 January 10 Aliu et al.

phase
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

]
-1 s

-2
F

lu
x 

(E
>1

 T
eV

) 
[c

m

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-1210× ]
-1

 s
-2

 e
rg

 c
m

-1
2

F
lu

x 
(0

.3
-1

0 
ke

V
) 

[x
10

-1

0

1

2

3

4

5

6
MJD 52967-53281

MJD 53282-53596
MJD 53597-53911

MJD 53912-54226
MJD 54227-54541
MJD 54542-54856

MJD 54857-55171
MJD 55172-55486

MJD 55487-55801
MJD 55802-55956

 d
-4

+6orbital period P=315

Figure 4. Integral γ -ray fluxes above 1 TeV (vertical scale on the left) from H.E.S.S. (filled round markers), MAGIC (brown round open markers, scaled to 1 TeV
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(A color version of this figure is available in the online journal.)

at a significance level of 7.7σ when all data falling in this phase
interval are considered. The search for TeV emission has been
performed in this phase range as defined by the presence of
a second/smaller X-ray high-state. Therefore, no trial factor
penalty needs to be applied to the significance estimation.69

69 An upper limit on the number of trials for a blind search of significant
emission in the phase-folded light curve can nevertheless be derived as
follows: The light curve is first divided into 10 bins, and a significant detection
is then evaluated for all intervals of 0.1, 0.2, 0.3,. . ., 0.9 and 1.0 width in
orbital-phase, without repetition (e.g., intervals of 0.3 width, one has to
consider the cases 0.0–0.1 + 0.1–0.2 + 0.2–0.3, 0.0–0.1 + 0.1–0.2 +
0.3–0.4,. . ., 0.7–0.8 + 0.8–0.9 + 0.9–1.0.) In each case, a number of trials
= 10!/[n!(10 − n)!] is obtained, where n = 1, 2, 3, . . . , 9. The total number of
trials resulting from this computation is 1275. A 7.7σ detection would be
reduced to ∼6.7σ in this extreme case using Pt = 1.0 − (1.0 − P )Ntrials (Pt and
P are the pre- and post-trial probabilities, respectively, and Ntrials is the number
of trials), which is still highly significant. Note that this is a true lower limit on
the detection significance, as we do not require continuity when merging
different phase intervals, which would further reduce the total number of trials.

Moreover, the variability index for the 18 VHE flux points
outside of the phase bins around the main maximum (phases
0.2–0.4) has been computed. This calculation yields a value for
the variability index of V = 52.3, corresponding to a probability
of 2 × 10−5, suggesting that there may exist variations in the
source VHE light curve away from the main peak. A likelihood
ratio test was also performed to further explore if the detection
in phases 0.6–0.9 constitutes a significant secondary maximum
above the baseline level. This baseline flux is computed by
adding all data in the phase ranges 0.0–0.2, 0.4–0.6, and 0.9–1.0.
The likelihood function is then defined as a product of two
Gaussian distributions of flux measurements φ0.6–0.9 and φbase
for the emission in phases 0.6–0.9 and in the baseline range,
respectively, stating that φ0.6–0.9 is a factor K0.6–0.9 times higher
than φbase. The likelihood-ratio test provides a value for K0.6–0.9
in the range [0.83, 3.90] at a 99.7% (3σ ) confidence level, with a
best fit value K0.6–0.9 = 1.72. Therefore, although the emission
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(A color version of this figure is available in the online journal.)

Table 3
Outcome of the Spectral Analysis of VHE Photons

Year Orbital Flux Normalization Constant (×10−13) Photon Index χ2/N

Phase at 1 TeV (cm−2 s−1 TeV−1)

VERITAS 2010 0.2–0.4 (6.4 ± 1.0) 2.2 ± 0.4 1.7/3
VERITAS 2011 0.2–0.4 (11.0 ± 1.1) 2.5 ± 0.2 4.2/4
VERITAS 2012 0.2–0.4 (6.4 ± 0.8) 2.3 ± 0.2 5.8/6

H.E.S.S. 2004–2012 0.2–0.4 (5.7 ± 0.7) 2.3 ± 0.2 32.0/31
VERITAS 2010–2012 0.2–0.4 (7.7 ± 0.5) 2.6 ± 0.1 6.0/6
H.E.S.S. 2004–2012 0.6–0.9 (3.9 ± 0.7) 2.4 ± 0.2 44.0/27

H.E.S.S. 2004/2005a (9.1 ± 1.7) 2.53 ± 0.6 · · ·
MAGIC 2012b (12 ± 0.3) 2.6 ± 0.3 · · ·

Notes. The table lists the results of the power-law fits to the differential energy spectra; see Figure 7. The H.E.S.S.
and MAGIC results from the literature are taken over a phase range 0.2–0.5, but with different observational
coverage of the light curve. Errors are 1σ statistical errors only. The systematic error on the flux constant is
typically 20% and on the spectral index ≈0.1.
a Aharonian et al. (2007).
b Aleksić et al. (2012).

at orbital phases 0.6–0.9 is higher than the baseline flux, it cannot
be claimed as a secondary peak with the present data set at a
high confidence level.

The correlation between gamma-ray and X-ray fluxes for 21
roughly contemporaneous observations is shown in Figure 6.
X-ray data were selected within a ±2.5 day interval around
the VHE observing dates. Emission in these energy bands is
significantly correlated (ZDCF/ZDCFerror = 5.6 at a time lag
of zero). The time lag between gamma-ray and X-ray data is
consistent with zero (τZDCF = +3.3+8.1

−10.8 days).
In Figure 7 the differential energy spectra are shown for

gamma-ray energies above 200 GeV during the high-flux phases
0.2–0.4 and at phases 0.6–0.9. Figure 8 shows the broad-band
SED from X-ray to TeV energies. The shapes of the individual
VHE spectra are consistent with a power-law distribution; see
Table 3 for further details.

The differential energy spectrum at VHEs has been mea-
sured for three different orbits (2010, 2011 and 2012) and no
significant variability in photon index or flux normalization is

observed. The spectral results are in agreement with those re-
ported in Aharonian et al. (2007) and Aleksić et al. (2012).
The H.E.S.S. and VERITAS measurements presented here are
fully compatible within statistical and systematic uncertainties.
It should be noted that while the phase ranges for these spec-
tral analyses are similar, the coverage by observations inside
this phase range is very different for different observation cam-
paigns.

4. DISCUSSION

The long-term X-ray and TeV observations of HESS
J0632+057 at X-ray energies reported here allow for the first
time the modulation of the source gamma-ray flux to be char-
acterized in a wide orbital phase range, making use of a refined
value of the orbital period of the system derived from an up-
dated X-ray data set. Below, the implications of the results are
briefly discussed, focusing on the phase-folded X-ray and TeV
light curves and on the correlation of the emission observed at
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Figure 7. Differential energy spectra of VHE photons for HESS J0632+057 as measured by VERITAS and H.E.S.S. The continuous lines show the results from
fits assuming a power-law distribution of the data and a spectral index of −2.5. Fit results can be found in Table 3. Vertical error bars indicate 1σ statistical errors.
Left: differential energy spectrum for orbital phases 0.2–0.4 as measured by VERITAS during different orbits. Right: average differential energy spectrum for orbital
phases 0.2–0.4 and 0.6–0.9 as measured by H.E.S.S. For comparison, although taken at different orbital phases, the energy distributions as published by the H.E.S.S.
(Aharonian et al. 2007; measurement in 2004 December and 2005 December) and MAGIC Collaborations (Aleksić et al. 2012; measurement in 2011 February) are
indicated by the dashed and dot-dashed lines, respectively.

(A color version of this figure is available in the online journal.)

both energy bands. The findings are put in the context of cur-
rent scenarios proposed to explain the high-energy emission in
gamma-ray binaries, and compared to the results obtained for
other similar systems.

4.1. On the X-Ray/TeV Phase-Folded Light
Curves of HESS J0632+057

The X-ray light curve of HESS J0632+057 shows two distinct
periods of enhanced emission (see Figure 3). The first one,
sharper and higher, appears at orbital phases ∼0.3, which
corresponds to about 100 days after periastron passage (Casares
et al. 2012). The second one is found at phases between ∼0.6
and 0.9. It appears to be of broader profile with a lower flux
peak, although it is more irregularly sampled in the Swift-XRT
data set (the orbital period ∼315 days and the source position
with respect to the Sun made Swift unable to cover this phase-
range in detail during the previous few cycles). At VHEs, the
source has been repeatedly detected at orbital phases ∼0.3 with
the VERITAS, H.E.S.S., and MAGIC observatories. In addition,
the analysis of the H.E.S.S. data at orbital phases in the range
0.6–0.9 reported here (see Section 3) has yielded a detection of
the source at TeV energies for the first time in this phase range,
in rough coincidence with the secondary bump observed at
X-rays. However, only a few data points characterize the
emission at these orbital phases.

A double X-ray peak pattern has been observed in other
gamma-ray binaries. In LS I +61 303, a sharp X-ray peak arises
at orbital phases ∼0.6 (periastron is at phase ∼0.2), whilst a
broader second peak at orbital phases in the range 0.8–1.0 has
been reported, e.g., in Anderhub et al. (2009; see however Li
et al. 2011, 2012 and Chernyakova et al. 2012 for a study on
the long-term evolution of the phase-folded X-ray light curve
of the source). A similar behavior is seen also in the X-ray
light curve of the newly discovered system 1FGL J1018.6-5856
(Fermi-LAT Collaboration 2012). In this case, however, the

orbital parameters are still lacking, and a correspondence
of the position of the two peaks in the phase-folded light curve
and the relative orientation of the compact object and the com-
panion star has not been derived yet. For the well-studied system
LS 5039, which contains an O-type companion star as in 1FGL
J1018.6-5856, both the X-ray and TeV maxima are produced
close to the system inferior conjunction, when the compact ob-
ject is in front of the star, with no distinct double-peak structure
in the X-ray light curve (Takahashi et al. 2009; Hofmann et al.
2009). In the case of PSR B1259-63, composed of a pulsar and a
Be companion star, enhanced X-ray and TeV emission is found
close to periastron. A double X-ray peak has been observed
at these orbital phases, but in this case they have been inter-
preted as the compact object twice crossing the companion’s
circumstellar disk (Chernyakova et al. 2009). No double-peak
structure has been claimed yet at TeV energies in the data col-
lected in the 2004, 2007 and 2011 periastron passages (H.E.S.S.
Collaboration 2013). Finally, we note that the peak and dip struc-
ture in the X-ray light curve of HESS J0632+057 resembles that
observed in Eta Carinae, which is thought to be due to the strong
interaction of stellar winds as well as to the geometrical prop-
erties of the system orbit (Corcoran 2005). However, most of
the X-ray flux cannot arise from the shocked stellar wind as the
resulting thermal spectrum does not fit well the observed hard
X-ray spectrum (Falcone et al. 2010).

The VHE emission observed in known compact gamma-ray
binaries can be strongly modulated along the binary orbit due
to gamma-ray absorption in the photon field of the compan-
ion star (see, e.g., Böttcher & Dermer 2005; Dubus 2006b, and
references therein). In addition, in leptonic models a relatively
high target photon field density is required for gamma-rays to
be produced through inverse Compton (IC) emission processes,
whilst the anisotropy of the companion star photon field further
introduces a phase dependence of the spectrum of the upscat-
tered photons (see, e.g., Jackson 1972; Dubus et al. 2010). The
detection of VHE emission is therefore subject to the balance
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(A color version of this figure is available in the online journal.)

between the intrinsic gamma-ray flux and the attenuation factor,
which will depend on the system geometry and therefore on
the orbital phase. Considering the orbital parameters recently
obtained for HESS J0632+057 (Casares et al. 2012), the VHE
emission observed in the phase-folded light curve at phases
0.2–0.4 and 0.6–0.9 does not correspond to orbital phases in
which the compact object is found close to the Be companion
nor close to inferior conjunction where a low opacity to gamma-
ray propagation is expected (note however that there are large
uncertainties in the orbital solution for MWC 148, see Casares
et al. 2012).

Other factors may nevertheless contribute to and even domi-
nate the observed modulation in HESS J0632+057. In particular,
fluxes may be regulated by the variability of the underlying par-
ticle population emitting at VHEs. Such variability could come
from orbital-dependent adiabatic losses, which may eventually
constrain the maximum energies that particles can attain, or from
a discontinuous particle injection, either in a varying wind-wind
shock boundary in a pulsar scenario or due to a phase-dependent
accretion rate in a microquasar model.

It is worth noting that, facing a similar situation in the case of
LS I +61 303, numerical simulations have shown that a shifted
peak in the high-energy emission light curve may appear in an
accretion-based scenario (Romero et al. 2007; see also Hayasaki
& Okazaki 2005; Orellana and Romero 2007). A shift of the TeV
peak of ∼0.3 orbital phases from periastron is also obtained in
a pulsar scenario for the same source by Sierpowska-Bartosik
& Torres (2009; see also Zdziarski et al. 2010). For both models
there is a strong dependence of the orbital modulation of the
VHE emission on the geometry of the system. The orbital

parameters are not known to the required level of accuracy for
a more detailed comparison of the observed emission pattern
with the model predictions. In addition, adiabatic losses could
also be responsible for the X-ray and TeV double-peak profile
in the light curve of LS I + 61303 (Zabalza et al. 2011; see also
Takahashi et al. 2009 in the case of LS 5039). The physical
processes leading to this ad hoc adiabatic loss pattern are
however not clear. If the system contains a Be star, they could
be related to the structure of the stellar wind, with two distinct
polar and equatorial components (see, e.g., Waters et al. 1988),
or to perturbations of the Be circumstellar disk carried along or
affecting orbital phases away from the closest approach during
periastron passage. This would affect the emission properties in
both an accretion and a pulsar-wind-based model. In the former
case, the total X-ray and VHE fluxes depend linearly on the mass
accretion rate, which depends in turn on the companion’s wind
density and on the relative velocity with respect to the compact
object. If the power engine is a fast rotating pulsar, instead, the
wind profile may also affect the emitter position with respect to
the companion star, which would lead to different emissivities
through IC upscattering of the star’s photon field. The true nature
of the observed modulation of the gamma-ray and X-ray light
curves in HESS J0632+057 is not yet univocally determined.

4.2. On the X-Ray/TeV Correlation in HESS J0632+057

The results reported in Section 3 show a clear correlation
between X-rays and TeV gamma-rays. Together with the ob-
served periodicity, this correlation suggests a causal link be-
tween the emission at both energies, for instance produced by
processes related to the same population of accelerated par-
ticles. The SED from X-rays to VHE gamma-rays of HESS
J0632+057 (Figure 8) reveals a shape typical of non-thermal
high-energy gamma-ray emitters and, in particular, resembles
that of known TeV binaries, displaying hard X-ray and soft TeV
spectra. Such spectral shapes can be modeled with relatively
simple one-zone leptonic models, as shown, e.g., in Hinton
et al. (2009) and Aleksić et al. (2012), supporting the assump-
tion that X-rays are produced through synchrotron emission of
high-energy particles which, in turn, produce the VHE emission
through IC upscattering off the companion’s photon field. Note
however that, in contrast to other known gamma-ray binaries,
HESS J0632+057 has not been detected at MeV–GeV energies,
despite deep searches using ∼3.5 yr of Fermi-LAT data (Calian-
dro et al. 2013). This could point to a similar missing correlation
between GeV and TeV emission as observed in LS I + 61303 or
LS 5039 (Hadasch et al. 2012).

We assume in the following that the particles dominating
the emission at the X-ray maximum at phases ∼0.3 come
indeed from the same population that is responsible for the TeV
emission. We explore here the possibility that a cessation or
reduction of the acceleration is the main factor responsible
for the peak-to-dip transition in the X-ray light curve (phases
∼0.3–0.4), rather than absorption processes (Falcone et al.
2010; Bongiorno et al. 2011; see however Rea & Torres
2011). Note that this could also imply that the X-ray emission
within the dip may be dominated by a different parent particle
population than that seen during the peak. In this transition, a
rough characterization of the system properties can be derived.
Particles will lose their energy either through radiative (mainly
IC and synchrotron emission) or non-radiative processes (e.g.,
adiabatic expansion). In the first case, the ratio of IC over
synchrotron losses as a function of the particle energy can
be estimated through rIC/sync ≡ fKN Urad/Umag, where Urad
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and Umag are the photon and magnetic field energy densities,
respectively, and the factor fKN accounts for Klein–Nishina (KN)
effects in the IC cross-section (Moderski et al. 2005; see also
Hinton et al. 2009). Urad can be estimated assuming a distance
d ∼ a ≈ 2.38 AU from the emitter to the companion star (a is
the semimajor axis of the orbit; Casares et al. 2012), with a radius
R� = 6.0 R� and a temperature Teff = 27.500 K (Aragona
et al. 2010), which yields a peak of the target photon field at
ε0/mec

2 ≈ 1.3×10−5. For Umag, Moldón et al. (2011) reported
the detection of radio emission from HESS J0632+057 observed
close to the X-ray peak in 2011. The authors favor a synchrotron
origin for this radio emission, and assuming equipartition of the
magnetic field energy with the kinetic energy of the emitting
electrons they derive a value B ≈ 20 mG. The radio and VHE
emission regions could be very different in size and location,
however, so they may not be characterized by the same magnetic
field energy density. Assuming a range of magnetic field values
B = 10, 20 and 50 mG, the ratio rIC/sync = 1 would correspond
to electron energies Ee ≈ 8.7, 3.4, and 1.0 TeV, respectively.
For lower and higher energies, IC and synchrotron processes
would correspondingly dominate the total radiative losses. Note
however that the upper limits at GeV energies reported in
Caliandro et al. (2013), and the lack of information at hard
X-rays, prevent a more accurate evaluation of the energy output
channeled through both radiation mechanisms.

Further constraints can be obtained from the X-ray phase-
folded light curve. If the Swift-XRT flux has a syn-
chrotron origin, electrons with energies Ee ≈ 0.285 (Esync/

5.4 keV)1/2(B/1 G)−1/2 TeV are required (Esync is the character-
istic synchrotron energy of the emitted photon). For the range of
magnetic field values B = 10, 20, and 50 mG, Ee ∼ 4.5, 3.2, and
2.0 TeV, respectively, and from the considerations above, both
synchrotron and IC processes would contribute significantly to
the radiative particle cooling (see, e.g., Skilton et al. 2009). The
total time scale for the radiative losses, trad = (t−1

sync + t−1
IC-KN)−1

would range between ∼1.5 days and ∼2 days. This time scale is
roughly comparable to that in which the X-ray flux is observed
to decrease by a noticeable factor in the transition from the
X-ray maximum to the X-ray dip in Figure 4 (tpeak-dip ∼ 0.01
phases corresponding to 3.3 days using P = 315 days).

Regarding adiabatic losses, Moldón et al. (2011) report
also on the detection of extended radio emission from HESS
J0632+057 seen 30 days after the X-ray peak in 2011
January/February.70 The total extension of this emission was
of the order of 50 mas, which translates to about lext ∼75 AU
when a distance of ∼1.5 kpc to the source is assumed. If
material ejected from the vicinity of the compact object ex-
panded to reach lext in �30 days, an expansion velocity
vexp � 1.2 × 108 cm s−1 would imply an adiabatic cooling time
tad ∼ lext/vexp � 108 days. Therefore, radiative cooling may
have dominated the total losses during the X-ray peak-to-dip
transition, unless the ejected material expanded at a high veloc-
ity within the 30 day lag between the two radio observations,
vexp ∼ 0.25 c, in which case tad ≈ trad.

These crude estimates should be seen more as illustrative than
as a detailed description of the true physical processes leading
to the observed high-energy emission in HESS J0632+057,
and alternative scenarios may be considered. On the one
hand, electrons could produce X-rays through IC instead of

70 Note, however, that the flux obtained for this extended radio emission is
below the rms level of that derived for the point-like source emission obtained
close to the X-ray maximum.

synchrotron processes, reaching also the gamma-ray domain. In
that case, however, the wide range of electron energies required
would imply very different cooling time scales, at odds with
the tight correlation observed in the X-ray/TeV light curve.
Furthermore, the lack of GeV emission (Caliandro et al. 2013),
would be difficult to justify in such scenario. On the other hand,
VHE emission could be produced through hadronic interactions
of protons accelerated close to the compact object against ions
present in the companion’s wind and/or circumstellar disk. In
parallel, secondary electrons/positrons would then be produced
through pion decay in the same proton-proton interactions that
would initiate the gamma-ray fluxes, leading to an X-ray energy
flux at a level ∼1/2 of that produced at gamma-rays (see, e.g.,
Kelner et al. 2006). This is not observed, however, during the
X-ray/TeV peak at phase ∼0.3 (see Figure 8), in which a similar
luminosity is radiated at both X-rays and TeV energies. Note
also that there is no evidence of a cutoff of the X-ray spectrum,
which is relatively hard with a spectral index of 1.46±0.06, and
which may even extend into the hard X-ray domain, enhancing
the total X-ray luminosity of the source.

Finally, properties of the medium like the radiation and matter
density fields, rather than the intrinsic properties of the emitter,
could be responsible for the simultaneous modulation that
shapes the observed fluxes at X-ray and gamma-ray energies in
a periodic way. However, it should be noted that VHE radiation
is affected mainly by the interaction with the companion star
photon field. Conversely, X-ray fluxes are mainly reprocessed
through interactions with the ambient matter. In this regard,
an enhancement of the local matter density might be expected
during the X-ray light curve minima, which has not been
observed (see, e.g., Bongiorno et al. 2011; Rea & Torres 2011).
This, together with the tight X-ray/TeV correlation implying a
similar modulation of the fluxes at both energy bands, favors
a scenario in which the variability arises from a modulation of
a common underlying emitting-particle population.

A correlation of X-ray and TeV emission has also been
observed in other gamma-ray binaries. In particular, correlated
X-ray/VHE emission has been reported in the case of LS I +61
303 through simultaneous MAGIC, XMM-Newton, and Swift-
XRT observations in a multiwavelength campaign conducted
in 2007 (Anderhub et al. 2009). The correlation result was not
apparent however in later observations of the source (Acciari
et al. 2011), and a change in the source/medium properties
has also been observed in recent gamma-ray observations
(Acciari et al. 2011; Aleksić et al. 2012; Hadasch et al. 2012),
which display strong deviations of the source phase-folded
flux profiles as compared to older data. The processes leading
to such transitions in the modulation of the light curve are
not clear, although a relation to the superorbital variability of
the companion star seen at lower radio and X-ray energies
has been suggested (Gregory 2002; see also Li et al. 2012;
Chernyakova et al. 2012). As compared to LS I +61 303, the
emission from HESS J0632+057 seems to be steadier, with
a remarkably lower orbit-to-orbit variability and only small
deviations from the main, long-term pattern observed for more
than five years. Further observations are required to assess
whether a superorbital modulation is also present in HESS
J0632+057.

5. FINAL REMARKS

HESS J0632+057 together with LS I +61 303 and PSR
B1259-63 is one of the three gamma-ray binaries known to
contain a Be companion star. Common processes leading to the
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production of non-thermal emission from radio to VHE gamma
rays may explain the broad-band energy distribution in all of
them. However, differences in their orbital parameters and the
nature of the still-unknown power sources in LS I + 61303 and
HESS J0632+057, may ultimately define their individual ob-
servational properties, including the phase-folded patterns ob-
served in each case. Detailed models with a realistic description
of the geometry of the orbit, the interaction of the stellar wind
with the wind or jet of the compact object, and the distribu-
tion of photon and matter fields, are necessary to get a deeper
understanding of the system and its orbital variability.

Due to their variable and relatively well-constrained envi-
ronment, the characterization of the high-energy behavior of
gamma-ray binaries has become an important research field in
recent years. New candidates have been discovered (e.g., 1FGL
J1018.6-5856; Fermi-LAT Collaboration 2012; Abramowski
et al. 2012) and unexpected features are being observed in some
of the known sources as, e.g., in PSR B1259-63 (Abdo et al.
2011) and LS I +61 303 (Acciari et al. 2011). Furthermore, de-
tailed numerical simulations are being run (e.g., Romero et al.
2007; Sierpowska-Bartosik & Torres 2008; Perucho et al. 2010;
Perucho & Bosch-Ramon 2012; Bosch-Ramon et al. 2012) as
well as new scenarios are being proposed to explain them (see,
e.g., Khangulyan et al. 2012; see also Torres et al. 2012; Zabalza
et al. 2013; Bednarek & Sitarek 2013). These and future stud-
ies, together with the improved capabilities of next-generation
VHE observatories, may provide new clues to unveil the physics
behind gamma-ray binaries.
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Aleksić, J., Alvarez, E. A., Antonelli, L. A., et al. (MAGIC Collaboration)
2012, ApJL, 754, L10

Alexander, T. 1997, in Astronomical Time Series, ed. D. Maoz, A. Sternberg,
& E. M. Leibowitz (Dordrecht: Kluwer), 163

Anderhub, H., Antonelli, L. A., Antoranz, P., et al. (MAGIC Collaboration)
2009, ApJL, 706, L27

Aragona, C., McSwain, M. V., & De Becker, M. 2010, ApJ, 724, 306
Arnaud, K. A. 1996, in ASP Conf. Ser. 101, Astronomical Data Analysis

Software and Systems V, ed. G. Jacoby & J. Barnes (San Francisco, CA:
ASP), 17

Ball, L., & Kirk, J. G. 2000, APh, 12, 335
Bednarek, W., & Sitarek, J. 2013, MNRAS, 430, 2951
Berge, D., Funk, S., & Hinton, J. 2007, A&A, 466, 1219
Blackburn, J. K. 1995, in ASP Conf. Ser. 77, Astronomical Data Analysis

Software and Systems IV, ed. R. A. Shaw, H. E. Payne, & J. J. E. Hayes
(San Francisco, CA: ASP), 367

Bogovalov, S., Khangulyan, D., Koldoba, A. V., et al. 2008, MNRAS, 387, 63B
Bongiorno, S. D., Falcone, A. D., Stroh, M., et al. 2011, ApJL, 737, L11
Bordas, P. (H.E.S.S. Collaboration), & Maier, G. (VERITAS Collaboration)

2012, in AIP Conf. Proc. 1505, High Eenergy Gamma-Ray Astronomy: 5th
International Meeting on High Energy Gamma-Ray Astronomy, ed. F. A.
Aharonian, W. Hofman, & F. M. Rieger (Melville, NY: AIP), 366

Bosch-Ramon, V., Barkov, M. V., Khangulyan, D., & Perucho, M. 2012, A&A,
544, 59
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