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“Who rebels with mathematics?

...

She [Pari] said there was comfort to be found in the permanence of mathematical

truths, in the lack of arbitrariness and the absence of ambiguity. In knowing that

the answers may be elusive, but they could be found. They were there, waiting, chalk

scribbles away.”

Khaled Hosseini, And the Mountains Echoed.



Summary

The main objective of this dissertation is the development of CUSUM pro-

cedures based on signed and unsigned sequential ranks. These CUSUMs can be

applied to detect changes in the location or dispersion of a process. The signed

and unsigned sequential rank CUSUMs are distribution-free and robust against the

effect of outliers in the data. The only assumption that these CUSUMs require is

that the in-control distribution is symmetric around a known location parameter.

These procedures specifically do not require the existence of any higher order mo-

ments. Another advantage of these CUSUMs is that Monte Carlo simulation can

readily be applied to deliver valid estimates of control limits, irrespective of what

the underlying distribution may be.

Other objectives of this dissertation include a brief discussion of the results

and refinements of the CUSUM in the literature. We justify the use of a signed

sequential rank statistic. Also, we evaluate the relative efficiency of the suggested

procedure numerically and provide three real-world applications from the engineer-

ing and financial industries.

Keywords: CUSUM, distribution-free, sequential rank, symmetric distribu-

tion, location change, dispersion change.
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Uittreksel

Die verhandeling het hoofsaaklik ten doel om CUSUM prosedures te ontwik-

kel gebaseer op betekende en onbetekende sekwensiële range. Hierdie CUSUMs kan

aangewend word om ‘n verandering in die lokaliteit of spreiding van ‘n proses te

identifiseer. Die betekende en onbetekende sekwensiële range is verdelingsvry en

ook robuust teen die effek van uitskieters in data. Die enigste aanname wat hierdie

CUSUMs vereis is dat die in-beheer verdeling simmetries gesentreer is om ‘n bekende

lokaliteitsparameter. Hierdie prosedures maak spesifiek geen aannames aangaande

enige hoër orde momente nie. Nog ‘n voordeel van hierdie CUSUMs is dat Monte

Carlo simulasie met gemak toegepas kan word om kontrole grense te vind ongeag

die aard van die onderliggende verdeling.

Ander doelstellings van hierdie verhandeling sluit ‘n bondige bespreking van

die resultate en verfynings van die CUSUM in die literatuur in. Ons regverdig

die gebruik van die betekende sekwensiële rangstatistiek. Verder evalueer ons die

relatiewe doeltreffendheid van die voorgestelde prosedure numeries en verskaf drie

wêreldsgetroue toepassings vanuit die ingenieurs- en finansiële industrië.

Sleutelwoorde: CUSUM, verdelingsvry, sekwensiële rang, simmetriese verde-

ling, lokaliteitsverandering, spreidingsverandering.
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Frequently used notation

1. N(µ,σ2) denotes a normal distribution (or random variable) with mean µ and

variance σ2.

2. tdf denotes a t-distribution (or random variable) with df degrees of freedom.

3. U(a, b) denotes a uniform distribution (or random variable) over the interval

[a, b].

4. sign(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if x > 0

0 if x = 0

−1 if x < 0

5. u ∶= v means u is identically equal to v.

6. I(A) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if condition A holds

0 if condition A does not hold.

7. Xi∶j is the jth order statistic of the random variables X1,X2,⋯,Xi.

8. X
D= Y means that X and Y have the same distribution.

9. Xi → c means lim
i→∞

Xi = c.

10.
DÐ→ means convergence in distribution.

11. i.i.d. abbreviates “independent and identically distributed”.

12. “Cumulative distribution function” is abbreviated cdf.

13. “Average run length” is abbreviated ARL.

14. “Signed sequential rank” is abbreviated SSR.
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15. “Unsigned sequential rank” is abbreviated USR.

16. “Locally most powerful” is abbreviated LMP.
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Chapter 1

Introduction

1.1 Literature review

The CUSUM (cumulative sum) procedure is a fundamental tool of statistical

process control. Its aim is to detect a persistent or substantial change in the out-

put of a process. Such inspection schemes typically entail taking observations in a

sequential manner on a measurable property of a particular process. The process is

said to be in control as long as the location and scale parameters are at their desired

levels. The fundamental theory and history of sequential analysis can be found in

Ghosh and Sen (1991) and Siegmund (1985).

The first statistical process control procedure was developed by Shewhart

(1931). If n ≥ 1 observations are available at time t, the meanX t is plotted against

time t to obtain what is known as the Xbar chart. Assuming that the process is in

control when the population mean µ is 0, the control limits are typically of the form

µ ± 1.96σ/√n. As soon as a sample mean X t falls outside of these control limits

a change in distribution is signalled. Full details on this type of control chart can

be found in Dudding and Jennett (1942), Duncan (1959) and Montgomery (1996).

The main drawback of the Xbar chart is that it requires groups of observations at

each time point. However, in many situations such multiple observations are not

available. The CUSUM procedure suggested by Page (1954) as an extension of the

sequential probability ratio test of Wald (1947), provided a solution to this problem.
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There exists presently an extensive body of literature on CUSUM procedures. The

CUSUM finds application in numerous scientific fields that include, amongst oth-

ers, engineering (Hawkins and Olwell (1998), Timmer et al. (2001)), public health

applications (Woodall, 2006), business (Kahya and Theodossiou, 1999) and finance

(Yi et al. (2006), Lam and Yam (1997), Golosnoy and Schmid (2007), Mukherjee

(2009) and Coleman et al. (2001)).

According to Hawkins and Olwell (1998, pp. 1-5) two types of variability exists

in a process:

1. Common cause variability occurs when there exists random variation inherent

to the nature of the process. The observations on the measurable property

will have a statistical distribution characterized by a location and a scale

parameter. Both the location and scale parameters of the distribution are

important. If the location of the distribution differs from what is regarded as

acceptable, the quality of the process is compromised. If the spread of the

distribution tends to be too large then excessive variability will be present in

the observations leading to an excessive number of observations in the tails of

the distribution. The latter is also not desirable.

2. Special cause variability, on the other hand, occurs when some predictable

or systematic failure results in a change in the location of the distribution or

a change in the dispersion thereof. This type of variability may be due to

manufacturing or laboratory errors and may be, amongst others, a source of

quality problems or financial losses.

The fundamental objective of statistical process control is to identify the second

source of variability by regular monitoring and evaluation of the process. However,

once identified, common cause variability can only be rectified by making funda-

mental changes to the process design and operations.

The standard normal CUSUM relies on three assumptions in defining the in-

control model. These assumptions are:

1. Statistically independent and identically distributed random variables.

2. An underlying normal distribution.

3. The mean and variance of the distribution are at their desired levels.
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The majority of results in the literature on the CUSUM require specific para-

metric assumptions. The assumption most often made is that the observations are

generated from a normal distribution. However, there are many instances in which

this assumption is known to be false, see for instance Chapter 5.

To overcome the difficulties presented by parametric assumptions, nonparamet-

ric procedures have been developed. Sequential rank methods have been applied in

CUSUM-like procedures by Reynolds (1975) and Bhattacharya and Frierson (1981).

The sequential detection procedure developed by Reynolds (1975) relies on the as-

sumption that the data come from an underlying symmetric distribution. His ap-

proach is based on a truncated test where an upper bound is placed on the number

of observations and is therefore not a fully fledged CUSUM procedure. If the pro-

cedure reaches the upper bound on the number of observations without signalling a

change in distribution then the procedure is restarted from scratch. Bhattacharya

and Frierson (1981) developed a similar procedure based on unsigned sequential

ranks. Lombard (1983) generalises the control chart of Bhattacharya and Frierson

(1981).

Another CUSUM-like procedure assuming symmetry of the underlying distri-

bution around a known value, but based on the ordinary ranks of groups of obser-

vations, was developed by Bakir and Reynolds (1979). Bakir (2006) extends this

work to the case where the point of symmetry is unknown. Given groups of n ob-

servations the usual Wilcoxon signed rank statistic is calculated within each group

and the CUSUM procedure is based on this sequence of signed rank statistics. The

fixed group size together with the independence of the groups enables one to find

control limits using the Markov chain approach of Brook and Evans (1972). A dis-

cussion can be found in Hawkins and Olwell (1998, Chapter 6). This procedure is

reminiscent of the Xbar chart except that the sample mean in a group is replaced by

the Wilcoxon signed rank statistic in that group. Bandyopadhyay and Mukherjee

(2007) introduce a nonparametric sequential detection procedure analogous to that

of Bakir and Reynolds (1979) in the sense that their method also applies to grouped

observations rather than individual observations. The procedure of Bandyopadhyay

and Mukherjee (2007), however, differs from that of Bakir and Reynolds (1979) in

that no symmetry assumption of the underlying process is made.
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A nonparametric CUSUM procedure based on individual observations is devel-

oped by McDonald (1990). He uses unsigned sequential ranks together with the fact

that these are independently distributed and converge in distribution to independent

uniformly distributed random variables. He then develops a CUSUM procedure for

these uniform random variables, the expectation being that the results would also be

applicable to CUSUM procedures based directly on the sequential ranks. However,

the convergence to the uniform distribution occurs at a rather slow rate. This leads

to the procedure requiring a large start-up time or initial sample. It is then possible

that a change in distribution already occurs during this startup time and will then

go unnoticed.

The preceding methodologies are concerned with signalling a change in the

location parameter of a process, but neglects other types of structural change such

as a change in dispersion. An advance in this regard is due to Ross and Adams (2012)

who developed CUSUM procedures to detect arbitrary changes in a distribution, be

it a change in dispersion or a change in skewness or some other characteristic of the

distribution. This they accomplish by adapting the changepoint formulation of the

CUSUM suggested by Hawkins et al. (2003), applying it to the Kolmogorov-Smirnov

and Cramér-Von Mises statistics.

1.2 Overview of the dissertation

In the present work we propose CUSUM procedures based on signed and un-

signed sequential ranks to detect a change in location or dispersion. These CUSUM

procedures do not require any specific parametric assumptions. The only assump-

tions are that the underlying distribution is continuous and symmetric around its

median. Moreover, the procedures do not require the existence of any moments and

can therefore be applied to distributions with infinite variances such as the Cauchy

distribution. In view of the latter fact we will use the term “dispersion” to describe

variability.

Our approach differs from that of McDonald (1990) in that we do not use

the uniformly distributed random variables, but we apply the CUSUM procedure

directly to the signed and unsigned sequential ranks. We exploit the rapid conver-

gence of the partial sums of these quantities to normality. We also take advantage
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of the ease with which Monte Carlo simulation can be applied to our procedures in

order to obtain control limits irrespective of the underlying distribution. Further-

more, our CUSUM procedure to detect a change in the median does not require an

initial in-control sample of observations. The results in Chapters 3 and 4 of this

dissertation are, to the best of our knowledge, new.

The symmetry assumption that we make is by no means merely a matter of

convenience. The application that gave rise to the work in this dissertation involves

paired observations (V,W ) observed sequentially over time. The observations within

each pair are correlated. An example of such an application is coal quality determina-

tions V and W by two independent laboratories employing the same methodologies.

Here V and W would be exchangeable, that is (V,W ) and (W,V ) would have the

same joint distributions. Then the difference Z = V −W should be symmetrically

distributed around zero. A non-zero symmetry point indicates bias between the lab-

oratories. Moreover, it is desired that the variance of Z remain at its current level.

Ideally, the Z-values would be normally distributed, but this is not the case in our

particular application. However, if V and W are identically distributed the differ-

ences should follow a symmetric distribution (be it normal or non-normal) around

a zero median. This application is described in detail in Chapter 5.

The structure of this dissertation will now be outlined. Chapter 2 discusses

the standard normal CUSUM procedure, our primary reference being Hawkins

and Olwell (1998). We provide the theoretical background and illustrate its non-

robustness to deviations from normality. This provides the justification for develop-

ing distribution-free CUSUM procedures.

In Chapter 3 we introduce the signed sequential rank CUSUM (SSR CUSUM)

to detect a change in the median of a symmetric distribution. We study the in- and

out-of-control properties by theoretical means and Monte Carlo simulation.

Chapter 4 takes a similar form to Chapter 3. We introduce the unsigned

sequential rank CUSUM (USR CUSUM) to detect a change in the dispersion of a

symmetric distribution and study its properties, again by theoretical calculations

supplemented by Monte Carlo simulations.
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In Chapter 5, the application of the CUSUM procedures is illustrated on some

data sets from the fields of engineering and finance.

Finally, we discuss a number of matters for further research.
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Chapter 2

Introduction to the CUSUM

This chapter provides an overview of the standard normal cumulative sum

(CUSUM) procedure for data on the real line, concentrating on the theoretical

background. The focus falls predominantly on procedures designed to detect changes

in the mean and variance of the normal distribution.

2.1 The standard normal CUSUM for the mean

The standard normal CUSUM procedure has as its objective to detect a change

in the mean of a normal distribution as soon as possible after a change has occurred.

Let the random variables X1,X2,⋯,Xτ ,Xτ+1,⋯ be independent. X1,X2,⋯,Xτ are

identically distributed N(0,1) which is the in-control distribution. The out-of-

control values Xτ+1,Xτ+2,⋯ are N(δ,1), δ > 0, random variables. Thus τ denotes the

changepoint which is fixed but unknown. τ = ∞ indicates a sequence that remains

forever in control, while τ = 0 indicates a sequence that is out of control from the

start.

The assumption of unit variance can be replaced by one in which the variance

is any known value σ. Then X/σ has unit variance and the in- and out-of-control

means are 0 and δ/σ, respectively. Thus, we may take the variance to be 1 without

loss of generality, provided we interpret δ in units of the true underlying value of σ.

9



In order to derive a useful sequential procedure, we start by considering in-

control random variables X1,⋯,Xn with means µ1,⋯, µn and unit variance and

formulate the following hypotheses:

H0 ∶ µ1 = ⋯ = µn = 0

and, for 1 ≤ τ ≤ n,

Hτ ∶ µ1 = ⋯ = µτ = 0

µτ+1 = ⋯ = µn = δ.

The likelihood functions under H0 and Hτ are

λ0 =
n

∏
i=1
φ(Xi)

and

λτ =
τ

∏
i=1
φ(Xi)

n

∏
i=τ+1

φ(Xi − δ),

respectively, where φ(⋅ ) denotes the standard normal probability density function.

The resulting log-likelihood ratio is

Lτ =
n

∑
i=τ+1

log(φ(Xi − δ)/φ(Xi))

= δ(
n

∑
i=τ+1

(Xi − δ/2))

= δ(
n

∑
i=1

(Xi − δ/2) −
τ

∑
i=1

(Xi − δ/2))

= δ(Sn − Sτ)

where

Sk =
k

∑
i=1

(Xi − δ/2)

for k ≥ 1. Then the maximised log-likelihood ratio over τ is

max
1≤τ≤nLτ = δ(Sn − min

1≤k≤n
Sk).

10



H0 is rejected when this maximised log-likelihood ratio, which we denote by L̃n, is

sufficiently large.

When observations are made sequentially, it now seems reasonable to reject H0

as soon as L̃n becomes sufficiently large. For this, define

Dn =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Sn − min
1≤k≤n

Sk, n ≥ 1

0, n = 0
(2.1)

and

T = min{n ≥ 1 ∶Dn ≥ h}. (2.2)

Then H0 is rejected at observation number n = T . The “critical value” for rejection,

h, is known as the control limit while T is the run length. We say that the CUSUM

signals a change at time T . T = ∞ means that the CUSUM never signals. One

interesting feature of this CUSUM process is that Eτ [T ], the average run length, is

finite regardless of whether the process remains in control or not, that is, whether

τ = ∞ or τ < ∞ – see for example Siegmund (1985, Chapter 2, Section 6). In

particular this means that the type I error probability equals 1. Consequently, the

in-control properties of the CUSUM are typically specified in terms of average run

length rather than probability of falsely signalling a change in the mean. To design

a CUSUM scheme we therefore first fix E∞[T ], the in-control ARL, by choosing an

appropriate value of the control limit h. The larger the required ARL, the larger

h will be. The rate at which false signals occur is 1/E∞[T ] and it therefore seems

reasonable to fix this rate at a small value. This rate plays the same role as a

significance level does in an ordinary fixed sample hypothesis test.

Given δ and h, a measure of the performance of the CUSUM when the out-of-

control mean µ is positive is the out-of-control ARL E0[T ∣µ]. This is the average run

length assuming that the process starts out of control with mean µ. Software and

tables are widely available from which this value can easily be obtained, for example

anyarl.exe from https://www.stat.umn.edu/cusum/software.htm – see Hawkins and

Olwell (1998, Chapter 10).
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For computational purposes, it is convenient to express Dn in the following

recursive form,

Dn =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

max(0,Dn−1 +Xn − δ/2), n ≥ 1

0, n = 0
(2.3)

where the quantity δ/2 is referred to as the reference value. That equations (2.3)

and (2.1) are equivalent can be seen as follows. From (2.1) we obtain

Dn+1 = Sn+1 − min
1≤k≤n+1

Sk

= Sn+1 −min(Sn+1, min
1≤k≤n

Sk)

and

Dn+1 −Dn = Sn+1 −min(Sn+1, min
1≤k≤n

Sk) − (Sn − min
1≤k≤n

Sk)
= (Xn+1 − δ/2) −min(Sn+1, min

1≤k≤n
Sk) + min

1≤k≤n
Sk

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Xn+1 − δ/2 if Sn+1 ≥ min
1≤k≤n

Sk

Xn+1 − δ/2 − (Sn+1 − min
1≤k≤n

Sk) if Sn+1 < min
1≤k≤n

Sk.

Consequently,

Dn+1 =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Dn +Xn+1 − δ/2 if Sn+1 ≥ min
1≤k≤n

Sk

Dn +Xn+1 − δ/2 − (Sn+1 − min
1≤k≤n

Sk) if Sn+1 < min
1≤k≤n

Sk

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Dn +Xn+1 − δ/2 if Sn+1 ≥ min
1≤k≤n

Sk

0 otherwise

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Dn +Xn+1 − δ/2 if Dn +Xn+1 − δ/2 > 0

0 otherwise

= max(0,Dn +Xn+1 − δ/2).

The representation (2.3) of Dn also makes it clear that the CUSUM is a Markov

process.

12



Since

E0[Xn − δ/2∣µ = 0] < 0

the sequence (Dn)n≥1 will have a downward drift with an elastic barrier at 0 when

the process is in control. As a result, the CUSUM will reach the control limit h

infrequently. On the other hand, when the process is out of control, namely when

µ ≥ δ, then

E0[Xn − δ/2∣µ] > 0,

and the CUSUM will exhibit a strong upward drift, which causes it to reach the con-

trol limit h rather quickly. The transition from a downward to an upward drift is the

key feature of the CUSUM procedure which indicates that a change in distribution

has possibly occurred.

It has yet to be explained what happens when µ < δ. The CUSUM is designed

on the premises that changes in the mean larger than δ are considered substantial,

that is when µ ≥ δ the process is out of control and the level of change in the mean

is detrimental to the output that the process delivers. However, changes in the

mean smaller than δ are deemed “acceptable” in an attempt to keep unproductive

tinkering to the process to a minimum.

Once the CUSUM signals a change, it becomes important to estimate the time

point when the mean possible changed. Assuming that the change is real, we wish

to estimate τ . The changepoint estimate of Page (1954) is

τ̂ = max{1 ≤ n ≤ T − 1 ∶Dn = 0}, (2.4)

while the maximum likelihood estimator is – see Samuel et al. (1998) –

τ̂ = arg max
1≤t≤T−1

{(T − t)(XT,t)
2

} (2.5)

where

XT,t =
T

∑
i=t+1

X i/(T − t).

13



Both changepoint estimators are evaluated by Pignatiello and Samuel (2001). They

found that the estimator (2.5) performed better than the estimator of Page (1954) in

both precision and accuracy. They conclude that the estimator due to Page (1954)

generally underestimates the changepoint when the magnitude of the change exceeds

that for which the CUSUM was designed, namely δ. The maximum likelihood

estimator (2.5) is found to be less biased in this circumstance. For smaller changes

there is little to choose between the estimators.

For illustrative purposes we show two typical CUSUM paths in Figure 2.1: one

for which the reference value is δ/2, the other with δ, where δ is the target value. We

use out-of-control N(µ,1) data for both CUSUM paths and specify the value of µ

as 0.5. The CUSUM is designed according to the control limit 7.267 corresponding

to an in-control nominal ARL 500 and target value δ = 0.5. The control limit is

obtained from anygeth.exe of Hawkins and Olwell (1998, Chapter 10). The first

CUSUM signals a change at a short run length 29 and the changepoint estimate due

to Page (1954) is τ̂ = 2. On the other hand, the second CUSUM signals a change at

a much later time 74 with the corresponding changepoint estimate τ̂ = 40. Clearly,

the CUSUM designed with reference value δ/2 delivers more accurate and reliable

results since a change is signalled much sooner.
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Standard normal CUSUM sequences designed for target δ=0.5 and nominal ARL 500.

 

 
CUSUM sequence with reference value δ/2
CUSUM sequence with reference value δ
Control limit

Figure 2.1: Two typical CUSUM sequences for in-control ARL 500 and target change
size δ = 0.5.
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2.2 The standard normal CUSUM for variance

Assume an in-control distribution which is N(0,1) and an out-of-control

distribution which is N(0, σ2) for σ > 1. As before, the random variables

X1,X2,⋯,Xτ ,Xτ+1,⋯ are independent. τ again denotes the changepoint and is

fixed but unknown.

Towards deriving a useful sequential procedure, we consider the in-control ran-

dom variables X1,⋯,Xn with zero means and variances σ1,⋯, σn and formulate the

hypotheses

H0 ∶ σ1 = ⋯ = σn = 1

and for 1 ≤ τ ≤ n

Hτ ∶ σ1 = ⋯ = στ = 1

στ+1 = ⋯ = σn = λ.

The log-likelihood ratio is

Lτ =
n

∑
i=τ+1

log(φ(Xi/λ)/(λφ(Xi)))

=
n

∑
i=τ+1

log((2λ2π)−1/2e−(Xi/λ)2/2/(2π)−1/2e−X2
i /2)

=
n

∑
i=τ+1

(X2
i (1 − λ−2)/2 + log(λ−1))

= ((1 − λ−2)/2)
n

∑
i=τ+1

(X2
i − 2 log(λ−1)/(λ−2 − 1))

= ((1 − λ−2)/2)(
n

∑
i=1

(X2
i − 2 log(λ−1)/(λ−2 − 1)) −

τ

∑
i=1

(X2
i − 2 log(λ−1)/(λ−2 − 1)))

= ((1 − λ−2)/2)(Sn − Sτ)

where φ(⋅ ) is the probability density function of the standard normal distribution

and

Sk =
k

∑
i=1

(X2
i − 2 log(λ−1)/(λ−2 − 1)), k ≥ 1.
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Then the maximised log-likelihood ratio over τ is

max
1≤τ≤nLτ = ((1 − λ−2)/2)(Sn − min

1≤k≤n
Sk).

H0 is rejected when this maximised log-likelihood ratio, denoted by L̃n, is sufficiently

large.

When observations are made sequentially, it again seems reasonable to reject

H0 when L̃n is sufficiently large. Therefore, we define the run length T as in (2.2).

We express Dn in recursive form, as before,

Dn =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

max(0,Dn−1 +X2
n − ζ), n ≥ 1

0, n = 0
(2.6)

where

ζ = 2 log(λ−1)/(λ−2 − 1) for λ > 1.

Looking at (2.6) we see that this CUSUM has exactly the same form as the mean

CUSUM, apart from the reference value and the presence of X2
n rather than Xn in

the recursion formula. Therefore, the application of the variance CUSUM proceeds

along the same lines as that of the mean CUSUM.

2.3 Non-robustness of the standard normal

CUSUM

The question arises how the standard normal CUSUM performs when the un-

derlying distribution deviates from normality. To answer this, we will compare the

in-control ARL when the underlying distribution is non-normal with the nominal

ARL when normality is assumed.

The simulation routine to estimate the in-control average run length proceeds

as follows. The control limits h guaranteeing nominal in-control ARLs, denoted

by ARL0, of 125, 500 and 1000 at the typical choices δ = 0.5 and 1 for a normal

distribution, are applied – see Table 2.1. Data are then generated from a non-normal
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distribution with zero mean and unit variance and the run length is found. This

process is repeated 100 000 times, yielding an estimated ARL. We use the following

symmetric distributions, standardised to have zero mean and unit variance:

1. Logistic distribution (light-tailed).

2. Student’s t-distribution with 3 degrees of freedom (heavy-tailed).

Table 2.1 shows the standard normal CUSUM designs used in the simulations, with

ARL0 denoting the in-control average run length.

Nominal
ARL0

δ

0.5 1.0

125 4.788 3.057

500 7.267 4.389

1000 8.585 5.071

Table 2.1: The standard normal CUSUM designs used in the simulation. The entries
in the body of the table are the control limits h.

The simulation estimates obtained from 100 000 runs in each of the six designs are

shown in Table 2.2.

Nominal
ARL0 Distribution

δ

0.5 1.0

125
Logistic 127 115

t3 175 139

500
Logistic 491 406

t3 549 334

1000
Logistic 965 766

t3 932 494

Table 2.2: Simulation ARL0 estimates for two distributions.

It is evident from Table 2.2 that only for the logistic distribution, at relatively

small values of δ, are the simulation estimates of ARL0 acceptable. In all other

instances, the estimated ARL0 results show unacceptably large deviations from the

nominal ones.

17



The agreement in the case of the variance CUSUM is even worse. Table 2.4

shows the Monte Carlo simulation estimates obtained from 100 000 runs for each

of the variance CUSUM designs in Table 2.3. The differences between nominal and

simulated ARL0 are unacceptably large in all cases considered.

Nominal
ARL0

λ

1.25 1.50

125 9.259 7.679

500 15.441 12.169

1000 18.892 14.562

Table 2.3: The standard normal CUSUM designs used in the simulation. The entries
in the body of the table are the control limits h.

Nominal
ARL0 Distribution

λ

1.25 1.50

125
Logistic 80 73

t3 24 23

500
Logistic 218 182

t3 39 36

1000
Logistic 347 278

t3 47 44

Table 2.4: Simulation ARL0 estimates for two distributions.

Evidently, the standard normal CUSUM procedure is not robust against even

quite moderate deviations from normality. There are two approaches to dealing with

this problem. Consider first the instance where the underlying distribution is known,

but non-normal. In this case one can design an appropriate CUSUM using results

from Chapter 6 of Hawkins and Olwell (1998). In particular, the appropriate control

limits can be obtained using the Markov chain method. It is, however, rarely the case

that the true underlying distribution is known precisely. The second approach, which

we follow, involves the construction of CUSUM procedures that are distribution-free

when the process is in control. The signed and unsigned sequential ranks of the

observations are in fact distribution-free under the in-control assumption. Chapters

3 and 4 discuss the construction, implementation and evaluation of these sequential

rank CUSUMs.
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Chapter 3

A signed sequential rank CUSUM

for location

This chapter introduces a CUSUM procedure based on signed sequential ranks

with the aim of detecting a change in location of target size δ > 0. The particular

CUSUM procedure is designed specifically for symmetric distributions. The CUSUM

is in fact distribution-free when the distribution is in control and is robust against

outlier effects.

3.1 Design of the CUSUM

Assume that the i.i.d. random variables X1,X2,⋯,Xτ follow a distribution

which is symmetric around 0. The scale parameter, σ, may or may not be known.

Suppose that a change in location of size δ > 0 occurs at time τ < ∞ (an upward

change). The i.i.d. out-of-control random variables Xτ+1,Xτ+2,⋯ have the same

distribution as X1 + δ. τ = ∞ indicates a sequence which remains in control. Define

si = sign(Xi) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if Xi > 0

0 if Xi = 0

−1 if Xi < 0
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and denote by R+
i the sequential rank of ∣Xi∣ among ∣X1∣,⋯, ∣Xi∣, that is,

R+
i =

i

∑
j=1

I(∣Xj ∣ ≤ ∣Xi∣)

where I(⋅ ) denotes the indicator function. Consider the i.i.d. random variables

X1,X2,⋯,Xn. The corresponding sequential ranks of this sequence are independent

and distributed according to

P(R+
i = j) = 1/i for j = 1,2,⋯, i and i = 1,2,⋯, n. (3.1)

A proof of this fact may be found in Barndorff-Nielsen (1963). Therefore, R+
i is uni-

formly distributed on the set {1,2,⋯, i} no matter what the distribution underlying

the data may be. The signed sequential rank of Xi among X1,X2,⋯,Xi, is

V +
i = si⋅R+

i /(i + 1).

Now, if X1,X2,⋯,Xn are i.i.d. random variables with a continuous distribution

symmetric around 0, then the following properties hold:

1. V +
1 , V

+
2 ,⋯, V +

n are independent,

2. F (−x)⋅ (1 − F (0)) = F (0)⋅ (1 − F (x)) for all x ≥ 0,

3. ∣Xi∣ and sign(Xi) are independent for i = 1,2,⋯, n,

4. R+
i and sign(Xi) are independent for i = 1,2,⋯, n,

see Reynolds (1975, Theorem 2.1). Since Xi is symmetrically distributed around 0,

we have

P(si = 1) = P(si = −1) = 1/2.

Then, by statement 4 above,

E∞[V +
i ] = E∞[si⋅R+

i /(i + 1)] = 0.

The variance of V +
i is

Var∞[V +
i ] = E∞[(sign(Xi)(R+

i /(i + 1)))2]
= E∞[(R+

i /(i + 1))2]

= (
i

∑
k=1
k2)/(i(1 + i)2)

= (2i + 1)/(6(i + 1)),
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the next to last equality following from (3.1). Then

Vi =
√

6(i + 1)/(2i + 1)V +
i (3.2)

is the standardised version of V +
i . V1, V2,⋯, Vn are then independent with zero means

and unit variances and, furthermore, Vi converges in distribution to a U(−
√

3,
√

3)
random variable as i→∞.

At this point it is necessary to remark on the essential dissimilarities between

the assumptions underlying our method and those made by Bakir and Reynolds

(1979) and Bakir (2006). In the first instance, our method uses individual observa-

tions and not grouped observations. Secondly, our method assumes a known point

of symmetry, or rather a known median, in contrast to the approach followed by

Bakir (2006).

Suppose now that the median increases at time τ < ∞. It is shown in Section

3.2.2 that the signed sequential ranks of Xτ+1,Xτ+2,⋯ will then tend to be larger

than those of X1,X2,⋯,Xτ and consequently,

Eτ [Vi] > 0 for i > τ.

The latter feature provides the main motivation for the CUSUM based on signed se-

quential ranks (the SSR CUSUM). The upward SSR CUSUM is accordingly defined

by

Dn =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

max(0,Dn−1 + Vn − k), n ≥ 1

0, n = 0,
(3.3)

where the reference value k is a non-negative constant. We apply the same sequential

detection routine as in Chapter 2: the i.i.d. random variables X1,X2,⋯ are replaced

by their standardised signed sequential ranks V1, V2,⋯ and a change is signalled as

soon as Dn ≥ h where h is a positive control limit. To complete the design of an SSR

CUSUM, we need to specify a value of k and find h that will guarantee a prescribed

in-control ARL. These questions are discussed in Section 3.2.
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In the event that an increase in the median is signalled, the changepoint τ can

be estimated as the last observation where Dn = 0 – see (2.4). An analogue of the

maximum likelihood estimator of τ is obtained upon replacing X1,X2,⋯ by V1, V2,⋯
in (2.5), that is,

τ̂ = arg max
1≤t≤T−1

{(T − t)(V T,t)
2

}

where

V T,t =
T

∑
i=t+1

V i/(T − t).

However, this estimator has to date not been reviewed in academic literature and

constitutes a possible matter for further research.

3.2 The in-control behaviour of the CUSUM

3.2.1 Determination of control limits

Our first order of business is to determine control limits h for given reference

values k and specified in-control nominal ARLs. The distribution-free character

of the signs and sequential ranks enables us to obtain control limits for the SSR

CUSUM by Monte Carlo simulation using U(−1,1) random variables. Table 3.1

shows estimated Monte Carlo control limits for selected values of k and nominal

ARL0.

Nominal
ARL0

k

0.125 0.250 0.375 0.500

100 6.000 4.500 3.485 2.750

200 7.950 5.650 4.300 3.380

300 9.170 6.350 4.775 3.695

400 10.095 6.851 5.095 3.945

500 10.850 7.267 5.420 4.145

Table 3.1: Estimated control limits for the upward SSR CUSUM.
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To check the appropriateness of these estimated control limits, independent Monte

Carlo simulations were done with 100 000 runs in each cell of Table 3.2. The

estimated in-control ARL values found are shown in Table 3.2. The agreement

between estimated and nominal values is excellent in all cases. Where discrepancies

occur these err on the conservative side, that is estimated in-control ARL0 values

are slightly larger than the nominal values.

Nominal
ARL0

k

0.125 0.250 0.375 0.500

100 99 102 102 101

200 200 205 207 213

300 297 301 309 304

400 403 403 403 406

500 506 502 496 508

Table 3.2: Estimated ARL0 results for combinations of nominal ARL and reference
values for the upward SSR CUSUM.

We observe that the control limits in Table 3.1 for k ≤ 0.25 are quite close to those of

the standard normal CUSUM. On the other hand, for k > 0.25 the correspondence

is poor, the estimated in-control ARLs being much larger than the nominal values.

We provide two examples:

1. The control limit corresponding to an in-control nominal ARL 500 and refer-

ence value 0.25 for the SSR CUSUM is 7.267 (Table 3.1) which is equal to the

corresponding control limit for the standard normal CUSUM (Table 2.1) for

δ = 0.5.

2. If we look at a reference value 0.5 for the SSR CUSUM, the control limit from

Table 3.1 is 4.145 for a nominal in-control ARL 500. This control limit differs

substantially from that of the standard normal CUSUM which is 4.389 (from

Table 2.1).

These observations can be explained as follows.

Consider the standardised independent random variables V1, V2,⋯, Vn defined

in (3.2) and set

Sn = (V1 − k) + (V2 − k) +⋯ + (Vn − k).
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Then

E[Sn + nk] = 0,

Var[Sn + nk] = n

and

(Sn + nk)/
√
n

DÐ→ N(0,1) as n→∞,

see Theorem 5.1 of Mason (1981). Consequently,

Sn/
√
n = (Sn + nk)/

√
n −

√
nk

DÐ→ N(c,1) as n→∞

if k = c/√n. The partial sums Sn for the SSR CUSUM become normal and, therefore,

upon comparing the result with the representation of Dn in (2.1), it is not difficult

to imagine that the control limits of the SSR CUSUM will correspond closely to

those of the standard normal CUSUM when k is small.

In contrast, consider what happens when k is large. The Vi are bounded and

therefore the probability that it will exceed the reference value, k, is smaller than

the corresponding probability that a normally distributed Xi, which is unbounded,

will exceed it, in other words

P(Vi ≥ k) < P(Xi ≥ k).

In fact,

P(Vi ≥ k) = 0 for k >
√

3.

Consequently, it will take the SSR CUSUM longer to cross the control limit than

the normal CUSUM.
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3.2.2 Specification of the reference value

In the normal CUSUM the reference value is specified as one half of the number

of standard deviations that the target mean of the Xi is away from zero. The

simplest approach towards specifying the reference value in the SSR CUSUM is to

choose the reference value as a number of underlying standard deviations of the

Vi away from zero. However, we would really like to relate k to the actual target

change size in the median of the Xi. In general this is not possible because no

firm assumptions about the functional form of the underlying density function have

been made. Nevertheless, we can obtain some guidance by calculating the reference

values that would be applicable to a medium- or light-tailed distribution such as the

normal and a heavy-tailed distribution such as the t3-distribution.

To arrive at an appropriate reference value we will assess the behaviour of

Eτ [Vτ+j]/2, j ≥ 1 for a given τ . We assess this quantity on each of the following two

bases:

A.1. Suppose that τ = 0, i.e. the process starts out of control and we then com-

pute lim
j→∞

E0[Vj ∣δ].

A.2. Fix j ≥ 1 and compute lim
τ→∞Eτ [Vτ+j ∣δ], i.e. we assume that the process runs

in control for a long time and we then assess the expected change in Vi.

We begin with assessment A.1. Here X1,X2,⋯ are i.i.d. with median δ and

unit variance, that is, their common distribution function is G(x) = F (x − δ) where

F denotes the in-control distribution function. We have, for j ≥ 1,

R+
j = 1 +

j−1
∑
i=1

I(∣Xi∣ < ∣Xj ∣)

with

0

∑
i=1

I(∣Xi∣ < ∣X1∣) = 0.
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Then,

E[sj ⋅R+
j ] = E[sj] +E[sj ⋅

j−1
∑
i=1

I(∣Xi∣ < ∣Xj ∣)]

= (2F (δ) − 1) + (j − 1)E[sj ⋅ I(∣Xi∣ < ∣Xj ∣)]
= (2F (δ) − 1) + (j − 1)E[s2⋅ I(∣X1∣ < ∣X2∣)].

Now,

E[s2⋅ I(∣X1∣ < ∣X2∣)] = P(∣X1∣ < ∣X2∣,X2 > 0) − P(∣X1∣ < ∣X2∣,X2 < 0)
= P(∣X1∣ <X2,X2 > 0) − P(∣X1∣ < −X2,X2 < 0)
= ∫

∞

0
[F (w − δ) − F (−w − δ)]f(w − δ)dw

−∫
0

−∞
[F (−w − δ) − F (w − δ)]f(w − δ)dw

= ∫
∞

−∞
F (w − δ)f(w − δ)dw − ∫

∞

−∞
F (−w − δ)f(w − δ)dw

= 1/2 − ∫
∞

−∞
F (−w − δ)f(w − δ)dw

= 1/2 − ∫
∞

−∞
[1 − F (x + 2δ)]f(x)dx

= ∫
∞

−∞
F (x + 2δ)f(x)dx − 1/2

where the next to last equality is obtained by using the relation F (x) = 1−F (−x), x ≥
0 and the substitution x = w − δ. Therefore,

E[sj ⋅R+
j /(j + 1)∣δ] = (2F (δ) − 1)/(j + 1)

+((j − 1)/(j + 1))(∫
∞

−∞
F (x + 2δ)f(x)dx − 1/2)

→ ∫
∞

−∞
F (x + 2δ)f(x)dx − 1/2

as j →∞ and

E0[Vj ∣δ] →
√

3(∫
∞

−∞
F (x + 2δ)f(x)dx − 1/2).

Thus, the reference value is

k ∶= k(F, δ) =
√

3/4(∫
∞

−∞
F (x + 2δ)f(x)dx − 1/2). (3.4)

Table 3.3 gives the values of k for the normal and the t3-distribution for the typical

range of values of δ.
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Distribution

δ

0.25 0.50 1.00

Normal 0.12 0.23 0.36

t3 0.10 0.18 0.31

Table 3.3: Reference values from (3.4).

We next consider approach A.2. Here it is useful to introduce two sequences

of i.i.d. random variables Y1, Y2,⋯ distributed according to F and W1,W2,⋯ dis-

tributed according to G. Set

Xi
D=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Yi for 1 ≤ i ≤ τ
Wj for i = τ + j, j ≥ 1.

By definition, we have

R+
τ+j = 1 +

τ+j−1
∑
i=1

I(∣Xi∣ < ∣Xτ+j ∣)

= 1 +
τ

∑
i=1

I(∣Xi∣ < ∣Xτ+j ∣) +
τ+j−1
∑
i=τ+1

I(∣Xi∣ < ∣Xτ+j ∣)

= 1 +
τ

∑
i=1

I(∣Xi∣ < ∣Xτ+j ∣) +
j−1
∑
i=1

I(∣Xτ+i∣ < ∣Xτ+j ∣)

= 1 +
τ

∑
i=1

I(∣Yi∣ < ∣Wj ∣) +
j−1
∑
i=1

I(∣Wi∣ < ∣Wj ∣)

= 1 + τ(
τ

∑
i=1

I(∣Yi∣ < ∣Wj ∣))/τ +
j−1
∑
i=1

I(∣Wi∣ < ∣Wj ∣)

= 1 + τ ⋅F +
τ (∣Wj ∣) +

j−1
∑
i=1

I(∣Wi∣ < ∣Wj ∣)

where F +
τ (⋅ ) denotes the empirical distribution function of ∣Y1∣,⋯, ∣Yτ ∣. Then

Eτ [R+
τ+j] = τ E[F +

τ (∣Wj ∣)] + (j + 1)/2

because

E[I(∣Wi∣ < ∣Wj ∣)] = P(∣Wi∣ < ∣Wj ∣) = 1/2.

Moreover, F +
τ (y) converges to F +(y) almost surely as τ →∞ for every y where

F +(y) = P(∣Y ∣ ≤ y).
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Consequently, for every fixed j ≥ 1, as τ →∞,

Eτ [R+
τ+j/(τ + j + 1)] → E[F +(∣W ∣)]

which does not depend upon j. Therefore,

Eτ [sj ⋅R+
τ+j/(τ + j + 1)] → E[sign(W )⋅F +(∣W ∣)]

= 2E[sign(W )⋅F (∣W ∣)] −E[sign(W )]
= 2(∫

∞

−∞
sign(w)F (∣w∣)g(w)dw) − (2F (δ) − 1)

= 2(∫
∞

0
F (w)(f(w − δ) − f(−w − δ))dw − F (δ) + 1/2),

so that

Eτ [Vj ∣δ] →
√

3(2(∫
∞

0
F (w)(f(w − δ) − f(−w − δ))dw − F (δ) + 1/2))

as τ →∞, which gives the reference value

k ∶= k(F, δ) =
√

3(∫
∞

0
F (w)(f(w − δ) − f(−w − δ))dw − F (δ) + 1/2).(3.5)

Table 3.4 gives the values of k for the normal and the t3-distribution for the typical

range of values of δ.

Distribution

δ

0.25 0.50 1.00

Normal 0.12 0.24 0.45

t3 0.10 0.20 0.37

Table 3.4: Reference values from (3.5).

We notice that the quantities in Tables 3.3 and 3.4 are indeed very similar,

except at δ = 1. In particular, if A.2. is judged to be appropriate, we see from Table

3.4 that the choice k = δ/2 proposed at the beginning of this section seems to be

quite appropriate.
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3.3 Relative efficiency

To evaluate the relative efficiency of the SSR CUSUM with respect to the

standard normal CUSUM, it is necessary that both CUSUMs be comparable when

the process X1,X2,⋯ is in control. This means that both CUSUMs must have the

same in-control ARLs and use the appropriate reference values. For a target out-

of-control mean of δ, the appropriate reference value for the normal CUSUM is δ/2
(see Chapter 2, Section 2.1). In view of our findings in Section 3.2.2, we will use for

the SSR CUSUM the reference values given in the row corresponding to the normal

distribution in Table 3.4. We define the relative efficiency of the SSR CUSUM with

respect to the standard normal CUSUM when the out-of-control mean is µ by

e ∶= e(µ) = E0[TN ∣µ]/E0[TS ∣µ] for µ > 0 (3.6)

where TN and TS denote respectively the run lengths of the normal and SSR

CUSUMs. In other words, the relative efficiency is calculated under the assumption

that the process is out of control from the start, that is, on the basis of A.1. (see

Section 3.2.2), which is the usual assumption made in the literature. We do not use

A.2. (see Section 3.2.2) due to the impracticalities presented by the choice of a large

enough τ .

Given δ, the target out-of-control mean, and an in-control ARL, the numerator

in (3.6) can be found using the existing software (anyarl.exe) from Hawkins and

Olwell (1998) for any choice of the reference value k = δ/2 and the out-of-control

mean µ. For the SSR CUSUM, the appropriate control limits were again found by

Monte Carlo simulation and are given in Table 3.5. Notice from Table 3.1 that the

control limits in Table 3.5 at k = 0.12,0.24 and 0.45 are close to those in Table 3.1

at k = 0.125,0.25 and 0.5. The denominator in (3.6) was also found by Monte Carlo

simulation for the corresponding control limits and reference values (100 000 runs

in each instance). The values of the numerator and the denominator of the ratio e

in (3.6) are shown in Table 3.6 and the values of e itself are shown in Table 3.7.
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Nominal
ARL0

k

0.12 0.24 0.45

100 6.06 4.63 3.04

500 10.63 7.57 4.81

Table 3.5: Control limits for the upward SSR CUSUM corresponding to the appro-
priate reference values 0.12,0.24 and 0.45.

Normal CUSUM SSR CUSUM

µ
Nominal

ARL0

k k

0.125 0.25 0.50 0.12 0.24 0.45

0.25
100 31 31 35 32 35 39

500 65 71 98 67 79 119

0.5
100 15 15 16 19 19 21

500 28 26 31 33 32 43

1.0
100 8 7 6 12 11 11

500 13 10 9 19 17 18

Table 3.6: Out-of-control ARLs obtained from the standard normal and SSR
CUSUM for data from a N(µ,1) distribution.

µ
Nominal

ARL0

δ

0.25 0.50 1.00

0.25
100 0.97 0.89 0.90

500 0.97 0.90 0.82

0.5
100 0.79 0.79 0.76

500 0.85 0.81 0.72

1.0
100 0.67 0.64 0.55

5000 0.68 0.59 0.50

Table 3.7: Relative efficiency of the SSR CUSUM with respect to the standard
normal CUSUM.

Inspection of Table 3.7 reveals that the SSR CUSUM has high relative efficiency

at small values of δ and µ, but that its performance degenerates at larger values of

these parameters. This pattern could be expected because the SSR CUSUM is based

on the locally most powerful test of the hypothesis µ = 0 against µ > 0 in the logistic

30



distribution – see Section 3.4.3. Thus, since the logistic and normal densities are not

very different, this high local power of the SSR CUSUM is not entirely unexpected.

The comparison between the SSR and normal CUSUM above is, of course, not

entirely fair, because in the normal CUSUM the underlying variance is assumed to

be known whereas no such assumption is made in the SSR CUSUM.

In order to attain comparability with the SSR CUSUM we implement a modi-

fied version of the self-starting normal CUSUM (Hawkins and Olwell, 1998, Section

7.2) which assumes that the in-control mean is zero but does not require that the

variance be known. We will use the Monte Carlo method to gauge the efficacy of

the SSR CUSUM. We consider six designs:

1. target mean shift is µ = 0.25, in-control ARL is 100,

2. target mean shift is µ = 0.50, in-control ARL is 100,

3. target mean shift is µ = 1.00, in-control ARL is 100,

4. target mean shift is µ = 0.25, in-control ARL is 500,

5. target mean shift is µ = 0.50, in-control ARL is 500,

6. target mean shift is µ = 1.00, in-control ARL is 500.

For standard normal CUSUMs, which presume a known variance, the reference

values are µ/2 and the control limits guaranteeing the required in-control ARLs are

6.00, 4.49, 2.76, 10.738, 7.35 and 4.13, respectively. For a given in-control ARL,

the self-starting CUSUM uses the same reference values and control limits as the

standard normal CUSUM. However, the summand Vn in (3.3) is now

Vn = Φ−1(Tn−1(Wn)),

where Wn =Xn/sn−1 for n ≥ 2 with

s2n =
n

∑
i=1
X2
i /n. (3.7)

Tn−1 denotes the cdf of the t-distribution with n − 1 degrees of freedom and Φ

the cdf of the standard normal distribution. For the SSR CUSUMs we use the

reference values k = 0.1 and k = 0.2 in the first four designs and k = 0.36 (from

Table 3.3) in the last two cases. The corresponding control limits from Table 3.1

are 6.39, 11.79, 5.04, 8.49, 3.63 and 5.68.

31



Normal self-starting CUSUMs are thought to perform best when an initial

number, m, of in-control observations are available which, so to speak, “calibrate”

the CUSUM. In the simulations we therefore estimate the ARLs under each of the

six designs using (a) m = 0 initial in-control observations and (b) m = 20 initial

in-control observations.

Each of the “SSR” and “normal” ARL estimates in Table 3.8 comes from

10 000 Monte Carlo trials. Clearly, the SSR CUSUM compares very favourably

with the self-starting normal CUSUM. The results in Table 3.8 confirm that the

performance of the normal self-starting CUSUM improves with a larger number of

startup observations. However, the effect of this larger number on the SSR CUSUM

is less noticeable.

m = 0 m = 20

Design normal SSR normal SSR

1 31 32 30 31

2 15 16 15 15

3 14 10 7 7

4 66 70 67 67

5 33 31 28 29

6 21 15 11 12

Table 3.8: Out-of-control ARLs of the upward normal self-starting and SSR
CUSUMs.

3.4 Concluding remarks

3.4.1 Two-sided CUSUMs

It is generally desirable to detect either upward or downward changes in the

median of the underlying distribution. Thus far, we have only considered upward

changes. Denote by D+
n the CUSUM to detect an upward change in the median, i.e.,

D+
n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

max(0,D+
n−1 + Vn − k), n ≥ 1

0, n = 0.
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An upward change in distribution is signalled at the random time

T + = min{n ≥ 1 ∶D+
n ≥ h∗}.

The CUSUM to detect downward changes is

D−
n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

min(0,D−
n−1 + Vn + k), n ≥ 1

0, n = 0

where k is the non-negative reference value. The downward CUSUM terminates at

time

T − = min{n ≥ 1 ∶D−
n ≤ −h∗}.

The sequential detection routine proceeds analogously to the SSR CUSUM designed

to detect upward changes in the median. The run length, that is the number of

observations required for the two-sided SSR CUSUM to terminate, is

T ∗ = min{T +, T −}.

h∗ is the control limit chosen to make both E∞[T +] and E∞[T −] equal to twice the

nominal value of E∞[T ∗] – see Hawkins and Olwell (1998, Chapter 3, p. 55).

3.4.2 Justification for using sequential ranks

To motivate the use of sequential rank statistics rather than ordinary

rank statistics in our procedure, we consider the i.i.d. random variables

X1,X2,⋯,Xn,Xn+1,⋯ that arrive sequentially from the output of the process. Con-

sider now the fixed sample X1,⋯,Xn and denote by Rn∶i the ordinary rank of Xj

among X1,⋯,Xn, that is,

Rn∶i =
n

∑
j=1

I(Xj ≤Xi).
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For a sample size n = 1 the rank R1,1 = 1 always. When n = 2, the ordinary ranks

R2,1 and R1,2 are either 1 or 2 depending on whether X1 < X2 or X1 > X2. For

different sample sizes n = 1,2,⋯, r we have the sequences of ordinary ranks:

n = 1 ∶ R1,1

n = 2 ∶ R2,1,R2,2

n = 3 ∶ R3,1,R3,2,R3,3

⋯
n = r ∶ Rr,1,Rr,2,Rr,3,⋯,Rr,r. (3.8)

The sequential rank of Xi among X1,⋯,Xi is Ri,i, thus the diagonal entries of the

matrix (3.8) above.

It is a known fact that one can deduce uniquely the ordinary ranks from the

sequential ranks on the diagonal. This fact is explained: let the random variables

X1,X2,⋯ arrive in a sequential manner over time. We have seen that R1,1 = 1

always. Upon arrival of X2 one is then able to determine from the values of R2,2

and R1,1 the value of R2,1 and similarly from the value of R3,3 one can deduce the

values of R3,1 and R3,2. For illustration we consider the following example.

Example: Suppose X1 = 5 arrives from the process and the sequential

rank is R1,1 = 1. Next, we measure X2 = 3 for which the sequential rank is R2,2 = 1

such that it is clear that then X2 < X1 from which we deduce that R2,1 = 2. If we

then measure the next reading X3 = 9 with corresponding sequential rank R3,3 = 3

we may deduce from the fact that R2,1 = 2 and R2,2 = 1 that R3,1 = 2,R3,2 = 1 and

R3,3 = 3, yielding complete information about the sequence of ordinary ranks.

Note that the sequential ranksR11,R22,⋯ are independent, whilst the sequences

of ordinary ranks {R11},{R21,R22},{R31,R32,R33},⋯ are not independent. It is

possible to construct a test statistic based on the ordinary ranks. However, this

approach leads to cumbersome computations and since we have seen that the se-

quential ranks provide the same information as ordinary ranks it is convenient to

apply sequential ranks to the test procedure rather than ordinary ranks.
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3.4.3 Derivation of the SSR statistic

In this section we motivate the use of the signed sequential rank statistic in

(3.2). Let X1,⋯,Xn be i.i.d. random variables symmetrically distributed around µ.

We will derive the locally most powerful test for

H0 ∶ µ = 0

against

Hµ ∶ µ > 0.

Denote by F and f the distribution function and density function of X, respectively,

when µ = 0. Then the density of X under Hµ is f(x−µ). The locally most powerful

(LMP) test of H0 is based on the score statistic

n

∑
i=1

∂

∂µ
log(f(Xi − µ)) =

n

∑
i=1

( ∂
∂µ
f(Xi − µ))/f(Xi − µ)

evaluated at µ = 0 – see Rao (2002, pp. 453-456). Now,

∂

∂µ
f(Xi − µ)∣

µ=0
= −f ′(Xi)

and

f(Xi − µ)∣
µ=0

= f(Xi)

so that the score statistic is

n

∑
i=1
H(Xi) = −

n

∑
i=1
f ′(Xi)/f(Xi).

Since f ′(Xi) = −f ′(−Xi), we see that

−H(−Xi) = f ′(−Xi)/f(−Xi) = −f ′(Xi)/f(Xi) = H(Xi)

so that H(Xi) is an odd function of Xi. Thus, since

Xi = si⋅ ∣Xi∣,
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we have

H(Xi) = si⋅H(∣Xi∣),

so that the score statistic is

Tn ∶=
n

∑
i=1
H(Xi) =

n

∑
i=1
si⋅H(∣Xi∣).

To find the LMP signed sequential rank test statistic, we project Tn into the set of

linear signed sequential rank statistics using the projection lemma in Hájek et al.

(1999, p. 59). In order to find the projection, we define ∣X ∣i∶j for j ≤ i to be the jth

order statistic among ∣X1∣, ∣X2∣,⋯, ∣Xi∣. The projection is

n

∑
i=1

E[Tn∣si,R+
i ] =

n

∑
i=1
si⋅E[H(∣Xi∣)∣R+

i ]

=
n

∑
i=1
si⋅E[H(∣X ∣i∶R+i )∣R

+
i ]

=
n

∑
i=1
si⋅E[H(∣X ∣i∶j)]∣

j=R+i
(3.9)

since ∣Xi∣ = ∣X ∣i∶R+i and the sequential ranks R+
i , i = 1,⋯, n and the order statistics

∣X ∣i∶j, i = 1,⋯, n are independent – see Theorem 1 in Hájek et al. (1999, Chapter 2,

p. 37).

Consider, in particular, the case where f is the density of the logistic distribu-

tion,

f(x) = e−x/(1 + e−x)2, −∞ < x < ∞

with distribution function

F (x) = 1/(1 + e−x), −∞ < x < ∞.

Then some calculation shows that

H(x) = 2F (x) − 1 = F +(x),

the distribution function of ∣X ∣. Consequently, H(∣Xi∣) is uniformly distributed.
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Thus, in the projection (3.9),

E[H(∣X ∣i∶j)] = E[Ui∶j] = j/(i + 1), (3.10)

where U1, U2,⋯, Ui are independent U(0,1) random variables. Substituting (3.10)

into (3.9), we see that the locally most powerful signed sequential rank statistic is

n

∑
i=1
si⋅R+

i /(i + 1),

which is the SSR statistic. This is clearly reminiscent of the well-known Wilcoxon

signed rank statistic.

3.4.4 Asymmetric distributions

One might speculate that the SSR CUSUM will not be robust against devia-

tions from symmetry. For illustrative purposes, we simulate data from a Gumbel

distribution standardised to have zero mean and unit variance. The Gumbel is a

moderately skew distribution. Assuming that the mean and variance of the distribu-

tion remain fixed, we estimate the average run length in a Monte Carlo simulation

with 100 000 runs in each cell. The results are shown in Table 3.9. We use the

control limits from Table 3.1. In Table 3.9 we see that the estimated ARL0 values

are substantially smaller than the nominal ARL0 in all instances. This indicates

that the SSR CUSUM signals an upward change in the mean when, in fact, there is

no such change.

Nominal
ARL0

k

0.125 0.250 0.375 0.500

100 61 66 72 80

200 103 116 133 157

300 137 157 184 217

400 167 196 231 279

500 194 232 289 341

Table 3.9: Estimated ARL0 when applying the SSR CUSUM to a skew (Gumbel)
distribution.
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At first sight this may seem to be a defect of the SSR CUSUM. However, it indicates

that this CUSUM is also able to detect the onset of skewness in the underlying

distribution. From this point of view the apparent defect can be seen as an added

positive feature of the SSR CUSUM.
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Chapter 4

A sequential rank CUSUM for

dispersion

This chapter introduces a CUSUM procedure based on unsigned sequential

ranks for detecting a change in dispersion. Similar to the SSR CUSUM, this partic-

ular CUSUM is designed specifically for symmetric distributions, is distribution-free

when the process is in control and is also robust against the effects of outliers.

Moreover, the sequential rank CUSUM developed in this chapter does not require

the existence of any moments of the underlying distribution. We therefore use the

term “dispersion” rather than “variance” to describe variability.

4.1 Design of the CUSUM

Let the in-control random variables X1,X2,⋯,Xτ be i.i.d. from a distribution

which is symmetric around 0. We make no assumption regarding the dispersion

parameter σ, which may or may not be known. Suppose there occurs after the finite

time τ a change in the dispersion of the distribution of size λ > 1 (an upward change),

i.e. the out-of-control random variables Xτ+1,Xτ+2,⋯ have the same distribution as

λX1.
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We will assume throughout that the median of the Xi is known. By subtracting

the median from the Xi, we can take without loss of generality the median as zero.

We make no assumption regarding the numerical value of the in-control dispersion

parameter σ. The CUSUM procedure will only detect changes away from the current

level of dispersion, whatever that value may be. We use the symbol λ to denote the

factor by which σ changes. The in-control process X/σ has unit dispersion and the

out-of-control process has then dispersion λ > 1. We may therefore take, without

loss of generality, the in-control scale parameter σ as 1.

Consider the sequence of i.i.d. random variables X1,X2,⋯ from the in-control

process. Suppose that a change in dispersion occurs at time τ < ∞ and consider the

absolute values

∣X1∣,⋯, ∣Xτ ∣, λ∣Xτ+1∣, λ∣Xτ+2∣,⋯, (4.1)

the logarithms of which are

log ∣X1∣,⋯, log ∣Xτ ∣, logλ + log ∣Xτ+1∣, logλ + log ∣Xτ+2∣,⋯.

These logarithms have the same sequence of sequential ranks as the absolute values

in (4.1). Therefore, detecting a change in dispersion can be formulated as detecting

a change in location of the logarithms of the absolute values. Note that the log ∣Xi∣
will generally not be symmetrically distributed around 0 and, therefore, we cannot

use the SSR CUSUM. However, we can use the unsigned sequential ranks

R+
i =

i

∑
j=1

I(∣Xj ∣ ≤ ∣Xi∣)

to detect such a location change. Set

Ui = R+
i /(i + 1) for i = 1,2,⋯, n.

When the process is in control the random variables U1, U2,⋯, Un are uniformly

distributed over {1/(1 + n),2/(1 + n),⋯, n/(1 + n)} and U1 ≡ 1/2, U2,⋯, Un are inde-

pendent according to Parent (1965). Define, for i = 1,⋯, n,

V +
i = R+

i /(i + 1) − 1/2
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which has zero mean and variance

Var∞[V +
i ] = E∞[(R+

i /(i + 1) − 1/2)2]

= (
i

∑
k=1
k2)/(i(i + 1)2) − 1/4

= (i − 1)/(12(i + 1)).

Then the standardised versions

Vi =
√

12(i + 1)/(i − 1)V +
i

of V +
i are independent with zero expectation and unit variance when the process is

in control.

If an increase in dispersion occurs at time τ < ∞, the sequence of random

variables X1,X2,⋯,Xτ ,Xτ+1,⋯ are independent, but not necessarily identically dis-

tributed. It is shown in Section 4.2.2 that the sequential ranks of the out-of-control

random variables Xτ+1,Xτ+2,⋯ tend to be larger than those of the in-control random

variables. As a result,

Eτ [Vi] > 0 for i > τ

and, therefore, the CUSUM based on Vi should be able to detect increases in dis-

persion. A similar argument shows that the CUSUM should also be able to detect

decreases in dispersion.

Since we assume no specific knowledge of the in-control dispersion, an initial

in-control sample of m < τ observations is required in order to establish a baseline.

The upward CUSUM based on unsigned sequential ranks (the USR CUSUM) is

defined as

Dn =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

max(0,Dn−1 + Vn − k), n >m
0, 0 ≤ n ≤m

(4.2)

where k is the reference value, a non-negative constant. To complete the design of

the USR CUSUM, the values of k and h that will guarantee a prespecified in-control

ARL need to be specified. This is done in Section 4.2.
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If a change is signalled, we estimate the changepoint as

τ̂ = max{m < n ≤ T − 1 ∶Dn = 0},

as before.

4.2 The in-control behaviour of the CUSUM

4.2.1 Determination of control limits

First, we determine control limits h for given reference values k and in-control

nominal ARLs. Due to the distribution-free character of the sequential ranks, the

control limits can be obtained by Monte Carlo simulation using U(−1,1) random

variables. Table 4.1 shows the estimated control limits for the upward USR CUSUM.

We use an initial in-control sample of m = 20 observations in the simulations.

Nominal
ARL0

k

0.125 0.25 0.375 0.5

100 6.013 4.453 3.450 2.720

200 7.950 5.650 4.255 3.319

300 9.159 6.350 4.742 3.678

400 10.057 6.850 5.086 3.935

500 10.818 7.250 5.359 4.130

Table 4.1: Estimated control limits for the upward USR CUSUM.

To show that the estimated control limits are appropriate, we estimate in-control

ARL values corresponding to the control limits in Table 4.1. These estimates were

obtained from independent Monte Carlo simulations with 100 000 runs in each cell

of Table 4.1. The initial sample consists of m = 20 observations. The estimated

ARL0 results are shown in Table 4.2. Again, it is worth mentioning that the control

limits err on the conservative side in that we prefer an estimated in-control ARL0

that is slightly larger than the specified nominal values, rather than smaller.
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Nominal
ARL0

k

0.125 0.25 0.375 0.5

100 101 103 100 102

200 203 205 204 200

300 304 305 302 302

400 400 406 403 402

500 499 502 501 504

Table 4.2: Estimated ARL0 results for combinations of nominal ARL and reference
values for the upward USR CUSUM.

It remains to relate the reference value k to the target change size in dispersion

λ. This is done in Section 4.2.2.

4.2.2 Specification of the reference value

This section provides a calculation for the reference value of the USR CUSUM

in terms of the target change size λ in the dispersion of the Xi. As in the case of

the SSR CUSUM, we can obtain some guidance regarding the appropriate reference

value k by considering underlying normal and t3-distributions.

As in Chapter 3, in order to find an appropriate reference value, we assess

the behaviour of Eτ [Vτ+j]/2, j ≥ 1 for a given τ . We again consider two bases of

calculation:

B.1. Fix j ≥ 1 and compute lim
τ→∞Eτ [Vτ+j ∣λ], i.e. we assume that the process runs

in control for a long time and we then assess the expected change in Vi.

B.2. Suppose that τ is positive and fixed, i.e. the process goes out of control at

a fixed and positive time, and we then compute lim
j→∞

Eτ [Vj ∣λ].

In assessment B.1. the random variables X1,X2,⋯,Xτ are i.i.d. with zero me-

dian and unit dispersion. The out-of-control random variables Xτ+1,Xτ+2,⋯ have

distribution function G(x) = F (x/λ) where F denotes the in-control distribution

function. The out-of-control density function is assumed to exist and to be contin-

uous and is g(x) = f(x/λ)/λ. It is again convenient to consider sequences of i.i.d.
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random variables Y1, Y2,⋯ distributed according to F and W1,W2,⋯ distributed

according to G. Set

Xi =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Yi for 1 ≤ i ≤ τ
Wj for i = τ + j, j ≥ 1.

Denote by R+
j the sequential rank of ∣Xj ∣ among ∣X1∣, ∣X2∣,⋯, ∣Xj ∣, that is, for j ≥ 1,

R+
j = 1 +

j−1
∑
i=1

I(∣Xi∣ < ∣Xj ∣)

and

0

∑
i=1

I(∣Xi∣ < ∣X1∣) = 0.

By definition, we have, for a fixed j ≥ 1,

R+
τ+j = 1 +

τ+j−1
∑
i=1

I(∣Xi∣ < ∣Xτ+j ∣)

= 1 +
τ

∑
i=1

I(∣Xi∣ < ∣Xτ+j ∣) +
τ+j−1
∑
i=τ+1

I(∣Xi∣ < ∣Xτ+j ∣)

= 1 +
τ

∑
i=1

I(∣Xi∣ < ∣Xτ+j ∣) +
j−1
∑
i=1

I(∣Xτ+i∣ < ∣Xτ+j ∣)

= 1 +
τ

∑
i=1

I(∣Yi∣ < ∣Wj ∣) +
j−1
∑
i=1

I(∣Wi∣ < ∣Wj ∣)

= 1 + τ(
τ

∑
i=1

I(∣Yi∣ < ∣Wj ∣))/τ +
j−1
∑
i=1

I(∣Wi∣ < ∣Wj ∣)

= 1 + τ ⋅F +
τ (∣Wj ∣) +

j−1
∑
i=1

I(∣Wi∣ < ∣Wj ∣)

where F +
τ (⋅ ) denotes the empirical distribution function of ∣Y1∣, ∣Y2∣,⋯, ∣Yτ ∣. Then

Eτ [R+
τ+j] = τ E[F +

τ (∣Wj ∣)] + (j + 1)/2 (4.3)

because

E[I(∣Wi∣ < ∣Wj ∣)] = P(∣Wi∣ < ∣Wj ∣) = 1/2.
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Moreover, F +
τ (y) converges to F +(y) almost surely as τ →∞ for every y where

F +(y) = P(∣Y ∣ ≤ y).

Then by using (4.3), we have that

Eτ [R+
τ+j/(τ + j + 1)] → E[F +(∣W ∣)]

as τ → ∞. The last equality does not depend upon j and consequently, for a fixed

j ≥ 1 and by letting τ →∞,

Eτ [R+
τ+j/(τ + j + 1)] → E[F +(∣W ∣)]

= ∫
∞

−∞
(2F (∣w∣) − 1)g(w)dw

= 2∫
∞

−∞
F (∣w∣)g(w)dw − 1

= 2(∫
∞

0
F (w)g(w)dw + ∫

0

−∞
F (−w)g(w)dw) − 1

= 4∫
∞

0
F (w)g(w)dw − 1

= 4∫
∞

0
F (λy)f(y)dy − 1

upon setting in the next to last equality w = λy based on the construction Wj = λYj
for λ > 1 and j > τ . Therefore,

Eτ [Vj ∣λ] →
√

12(4∫
∞

0
F (λy)f(y)dy − 3/2) (4.4)

as τ →∞, yielding the reference value

k ∶= k(F,λ) =
√

3(4∫
∞

0
F (λy)f(y)dy − 3/2). (4.5)

Table 4.3 gives the value of k for the normal and the t3-distribution for typical

choices of λ.
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Distribution
λ

1.25 1.375 1.50

Normal 0.12 0.17 0.22

t3 0.10 0.15 0.19

Table 4.3: Reference values from (4.5).

We now consider basis B.2. From (4.3) we have for a fixed τ > 0,

Eτ [R+
τ+j/(τ + j + 1) − 1/2] → 0

as j → ∞. This result implies that after the onset of a change the upward USR

CUSUM will eventually return to what seems to be an in-control state. This is

to be expected, because if the USR CUSUM continues to run for a substantially

long time after the onset of a change, the impact of the change will become in-

creasingly minuscule. The out-of-control distribution in fact overrides the in-control

distribution and the USR CUSUM takes on the new dispersion as the desired level.

4.3 Relative efficiency

To evaluate the relative efficiency of the USR CUSUM with respect to the

standard normal CUSUM, it is necessary that both CUSUMs be comparable when

the process X1,X2,⋯ is in control. This means that both CUSUMs must have the

same in-control ARLs and use the appropriate reference values. For a target out-of-

control dispersion λ, the appropriate reference value for the normal CUSUM is ζ –

see (2.6). In view of our findings in Section 4.2.2, we will use for the USR CUSUM

the reference values given in the row corresponding to the normal distribution in

Table 4.3. In light of (4.4), we define the relative efficiency of the USR CUSUM

with respect to the standard normal CUSUM when the out-of-control variance is β2

for finite and positive values of τ by

e ∶= e(β) = Eτ [TN ∣β]/Eτ [TS ∣β] for β > 1 (4.6)

where TN and TS denote respectively the run lengths of the normal and USR

CUSUMs. In other words, the relative efficiency is calculated under the assumption
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that the process runs in control for a long time and then we assess the change (see

assessment B.1., Section 4.2.2).

Given λ, the target out-of-control dispersion scale factor, and an in-control

ARL, the numerator in (4.6) can be found using the existing software (anyarl.exe)

from Hawkins and Olwell (1998) for any choice of the reference value ζ – see (2.6) –

and the out-of-control dispersion β. For the USR CUSUM, the appropriate control

limits were again found by Monte Carlo simulation and are given in Table 4.4. The

denominator in (4.6) was also found by Monte Carlo simulation for the corresponding

control limits and reference values (100 000 runs in each instance). The values of

the numerator and the denominator of the ratio e in (4.6) are shown in Table 4.5

and the values of e itself are shown in Table 4.6.

Nominal
ARL0

k

0.12 0.17 0.22

100 6.08 5.45 4.83

500 10.96 9.53 8.11

Table 4.4: Control limits for the upward USR CUSUM corresponding to the appro-
priate reference values 0.12,0.17 and 0.22.

Normal CUSUM USR CUSUM

β
Nominal

ARL0

k k

1.24 1.35 1.46 0.12 0.17 0.22

1.25
100 21 21 17 55 58 58

500 41 42 43 316 384 381

1.375
100 14 14 14 40 43 44

500 24 24 24 243 296 298

1.50
100 10 10 10 32 32 33

500 17 16 16 179 220 229

Table 4.5: Out-of-control ARLs obtained from the standard normal and USR
CUSUM for data from a N(0, β2) distribution.
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β
Nominal

ARL0

λ

1.25 1.375 1.50

1.25
100 0.38 0.36 0.29

500 0.13 0.11 0.11

1.375
100 0.35 0.33 0.32

500 0.10 0.08 0.08

1.50
100 0.31 0.31 0.30

500 0.09 0.07 0.07

Table 4.6: Relative efficiency of the USR CUSUM with respect to the standard
normal CUSUM.

All of the relative efficiencies in Table 4.6 are substantially smaller than 1, indi-

cating that the standard normal variance CUSUM signals an upward change much

earlier than the USR CUSUM. However, the standard normal CUSUM assumes a

known underlying variance whereas the USR CUSUM does not. Thus the com-

parison in Table 4.6 is again not entirely fair. As in Section 3.3, in order to attain

comparability with the USR CUSUM we implement a version of the self-starting nor-

mal CUSUM for a variance (Hawkins and Olwell, 1998, Section 7.3) which assumes

that the in-control mean is zero but does not require knowledge of the in-control

variance. We will again use the Monte Carlo method to gauge the efficacy of the

USR CUSUM when the underlying distribution is normal. We consider four designs:

1. target scale factor is λ = 1.5, in-control ARL is 100,

2. target scale factor is λ = 2.0, in-control ARL is 100,

3. target scale factor is λ = 1.5, in-control ARL is 500,

4. target scale factor is λ = 2.0, in-control ARL is 500.

For normal variance CUSUMs, which presume a known variance, the reference

values from the formula

log(λ2)/(1 − 1/λ2)

are 1.46 for designs 1 and 3 and 1.85 for designs 2 and 4 – see (Hawkins and

Olwell, 1998, Section 6.2.3) – and the control limits guaranteeing the required in-

control ARLs are 7.007, 5.722, 12.169 and 9.743, respectively. For a given in-control

ARL, this CUSUM uses the same reference values and control limits as the normal
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variance CUSUM. However, the summand Vn in (4.2) is now

Vn = Γ−1(Fn−1(Wn))

where, Wn = X2
n/s2n−1 for n ≥ 2 with s2n−1 given in (3.7), where Fn−1 is the cdf of

Fisher’s F -distribution with 1 and n − 1 degrees of freedom and where Γ is the cdf

of a chi-square distribution with 1 degree of freedom.

For the sequential rank CUSUMs we use in the designs 1 and 3 the refer-

ence value k = 0.2 and we use k = 0.36 (from Table 4.3) in designs 2 and 4. The

corresponding control limits are 5.08, 3.57, 8.68 and 5.59. In the simulations we

estimate the ARLs for each of the four designs using m = τ = 10 and m = τ = 20

initial in-control observations. The CUSUMs were set to zero at m = τ , i.e. we set

D1 = ⋯ =Dm = 0.

Each of the “USR” and “normal” ARL estimates in Table 4.7 comes from

10 000 Monte Carlo trials. The columns with headings eff (efficiency) give the ratios

of the normal ARL to USR ARL.

m = 10 m = 20

Design normal USR eff normal USR eff

1 40 44 0.91 21 27 0.78

2 16 24 0.67 7 12 0.58

3 297 361 0.82 161 216 0.75

4 177 223 0.79 45 74 0.61

Table 4.7: Out-of-control ARLs of the upward normal self-starting and USR
CUSUMs.

Notice that the relative efficiencies (eff ) in Table 4.7 are much higher than those in

Table 4.6, which reflects the substantial effect that absence of knowledge regarding

the in-control variance has on the performance of the normal variance CUSUM.
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4.4 Concluding remarks

4.4.1 Two-sided CUSUMs

Two-sided CUSUMs can be constructed in the same manner as indicated in

Section 3.4.1.

4.4.2 Asymmetric distributions

Whether the i.i.d. random variables X1,X2,⋯ are skew or not, the sequential

ranks of ∣X1∣, ∣X2∣,⋯ are independent and follow a discrete uniform distribution.

Thus, the USR CUSUM will be valid under the in-control situation regardless of

whether the underlying distribution is symmetric or not. Table 4.8 shows that the

estimated ARL0 values are a good approximation to the nominal ARL0 values,

confirming that the USR CUSUM is also valid for this moderately skew in-control

distribution.

Nominal
ARL0

k

0.125 0.250 0.375 0.500

100 101 101 101 98

200 204 200 200 200

300 303 304 303 307

400 401 398 404 398

500 508 500 497 503

Table 4.8: Estimated ARL0 results for combinations of nominal ARL and reference
value when applying the USR CUSUM to a Gumbel distribution.

The matter at hand is whether there is a reduction in the ARL when the process

goes out of control. Consequently, we will evaluate the estimated ARL results of the

USR CUSUM when the underlying distribution is skew with a non-unit dispersion

λ = 1.5. The estimates were obtained in a Monte Carlo simulation with 100 000 runs

in each cell. The results are shown in Table 4.9. We took m = 20 as the initial in-

control sample to allow for the sequential ranks to reach a state of statistical control

under the in-control distribution, a Gumbel with zero mean and unit dispersion.
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We then generate data from a Gumbel distribution with dispersion λ = 1.5 after the

changepoint m = τ = 20. Clearly, the USR CUSUM results in a substantially reduced

ARL when a change in dispersion occurred, which is desirable. The out-of-control

ARL values in Table 4.9 agree very well with those of the USR CUSUM applied to

data from a normal distribution – see Table 4.5.

λ
Nominal

ARL0

k

0.125 0.250 0.375 0.500

1.5
100 32 34 34 35

500 178 204 282 258

Table 4.9: Estimated out-of-control ARLs of the USR CUSUM for data from a skew
(Gumbel) distribution with dispersion λ = 1.5.
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Chapter 5

Applications and data analysis

This chapter implements the SSR and USR CUSUM procedures in Chapters 3

and 4 to two engineering applications and one financial application. The applications

include

1. the ash content of coal,

2. the calorific value (CV) of coal, and

3. the Dow Jones financial index.

5.1 Ash content of coal

Here we analyse a data set consisting of independent pairs of observations

(Vi,Wi), i ≥ 1 on the ash content of coal from two nominally identical laboratories.

The measurements Vi and Wi, for i ≥ 1, are made on a sample of coal split between

the laboratories employing the same methodologies. Suppose the true value of the

ash content of coal sample i is Qi. Then the measurements are, respectively,

Vi = Qi + εVi (5.1)

and

Wi = Qi + εWi
(5.2)
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where εVi and εWi
denote the measurement errors in each of the two laboratories. If

the laboratories are indeed nominally identical, then the pairwise differences

Zi = Vi −Wi

should be symmetrically distributed around zero. A non-zero median indicates the

presence of bias between the laboratories, while asymmetry in the distribution of

Zi indicates that Vi and Wi are not identically distributed. The monitoring process

should therefore be designed to detect a change in the median of Zi away from zero,

but also asymmetry in the distribution of Zi. It is also necessary that the dispersion

of the Zi be monitored. If the dispersion should increase from its current value, it

could possibly indicate procedural discrepancies between the laboratories.

Next, we discuss the application of the SSR and USR CUSUMs. First, consider

detecting a change in the median of the measurements Zi away from zero using the

two-sided CUSUM discussed in Section 3.4.1. There is no expectation, a priori, that

the tails of the distribution of the Zi will be excessively heavy. We therefore opt

for the reference values applicable to the normal distribution. We apply the SSR

CUSUM with nominal ARL 250 and target change size ∣δ∣ = 0.5 standard deviations.

From Table 3.4 the appropriate reference value is 0.24 which is close to δ/2. We

therefore take the reference value k = 0.25 as acceptable. The corresponding control

limits are ±7.267 from Table 3.1.

Simultaneously, we run the USR CUSUM to detect a change in the dispersion

of the Zi. For this we assume that the first 20 observations are in control. We apply

the two-sided USR CUSUM with nominal ARL 250 and target change by a factor

λ = 1.5. From Table 4.3 the appropriate reference value is k = 0.22. Application of

linear interpolation to the control limits in Table 4.1 gives ±8.11 as the appropriate

control limits.

The monitoring process stops once either of the SSR or USR CUSUMs signals

a change. The two-sided USR CUSUM signals an upward change at time i = 109.

Because of the time delay between laboratory observations and the CUSUM analysis,

we actually have observations up to i = 130. From Figure 5.3 we see that the CUSUM

has quickly returned to zero after the signal at time i = 109. This suggests strongly

that this signal is a false alarm. Having decided, for the moment, that the signal at

i = 109 is a false alarm, we continue the CUSUM plots. The two-sided SSR CUSUM
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signals a downward change at time i = 163 – see Figure 5.2 – while the USR CUSUM

has not again signalled up to that point. We again have observations up to i = 180

due to time delays. From Figure 5.2 we see that the CUSUM has quickly returned

to zero after crossing the control limit at i = 163, which suggests strongly that the

signal at i = 163 is a false alarm. This is further confirmed by the fact that the two-

sample Wilcoxon rank sum statistic for the samples Z1,⋯, Z163 and Z164,⋯, Z180 has

a p-value of 0.55.

Figure 5.1 shows a symmetry plot of observations Z1,⋯, Z163. Except for the

one “outlier” there is little reason to suspect asymmetry. Further confirmation comes

from the Wilcoxon signed rank statistic which has a p-value of 0.45. The outlier

corresponds to the observation at i = 103 which can be clearly seen in Figure 5.4

(this figure shows a time series plot of the set of Zi up to i = 250). This outlier

being a positive Z-value cannot be the cause of the signal at i = 163 which indicates

a decrease in the median, however it may have possibly caused the USR CUSUM

to signal at observation i = 109. This outlier could be due to a special cause (see

Section 1.1) which should be investigated after the fact.
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Figure 5.1: Symmetry plot of Z1,⋯, Z163.
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Having decided that the signal at i = 163 is a false alarm, we continue the

CUSUM plot and see that there is another similar signal at time i = 214. After time

i = 214, however, the CUSUM increases rapidly crossing the upper control limit at

i = 225 and remains above it. The estimated changepoint for the increase in the

median is τ̂ = 214. The USR CUSUM exhibits the same behaviour. The increase

indicated by the USR CUSUM is due to the change in the median of the Zi.
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Figure 5.2: Two-sided SSR CUSUM for a change in the median of Zi.
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Figure 5.3: Two-sided USR CUSUM for a change in the dispersion of Zi.
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Figure 5.4: Time series plot of Zi.
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At this point it is again necessary to access the symmetry of the Z164,⋯, Z214.

The Wilcoxon signed rank statistic gives a p-value of 0.52 which suggests that there

is little reason to suspect asymmetry. The mean and standard deviation of the Zi

for the segments i = 1,⋯,214 and i = 215,⋯,250 are shown in Table 5.1.

Segments 164:214 215:250

Mean -0.01 0.46

Standard deviation 0.61 0.70

Table 5.1: Descriptive statistics for the segments Z164,⋯, Z214 and Z215,⋯, Z250.

From this table we see that there was an increase in the mean after time

214 which was signalled by the SSR CUSUM. The two-sample Wilcoxon rank sum

statistic gives a p-value of 0.001 and there is enough evidence to suggest that the

mean of Zi after the estimated changepoint τ̂ = 214 is substantially different from

zero. The standard deviation remains largely unchanged between the segments.

Our overall conclusions are that the median remained at 0 up to observation i = 214

after which there was a sudden increase. There is little to no evidence suggesting a

substantial deviation from the assumption of symmetry.

5.2 Calorific value of coal

The calorific value (CV) of coal is an indication of the quantity of heat pro-

duced by the combustion of coal at a constant pressure of 1013 mbar under normal

conditions of 0○C. The calorific value is measured in kilojoules per kilogram (KJ/kg)

(Mason and Gandhi, 1983). As in the case of the ash data set, the present data set

consists of independent pairs of observations (Vi,Wi), i ≥ 1 on the CV of coal from

two nominally identical laboratories. The conceptual model in (5.1) and (5.2) again

holds.

Figure 5.5 shows the two-sided SSR CUSUM (in-control ARL 250, reference

value k = 0.25 and control limits ±7.267), and signals an increase at observation

i = 57. This increase seems sustained through observation i = 80.
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Figure 5.5: Two-sided SSR CUSUM for a change in the median of Zi.

In Table 5.2 below a substantial increase in the mean appears to occur from the

sample Z1,⋯, Z49 to Z50,⋯, Z80. The two-sample Wilcoxon rank sum statistic gives

a p-value of 0 to four decimals confirming that there is enough evidence suggesting

a substantial increase in the mean after the estimated changepoint τ̂ = 49.

Segments 1:49 50:80

Mean -0.11 0.36

Standard deviation 0.38 0.54

Table 5.2: Descriptive statistics for the segments Z1,⋯, Z49 and Z50,⋯, Z80.

A question that remains is whether this putative change in the median is per-

haps not due to asymmetry in the distribution of the Zi. Figure 5.6 shows the

symmetry plot of Z1,⋯, Z49. The Wilcoxon signed rank statistic gives a p-value

of 0.10 suggesting that there is little evidence that the distribution is asymmet-

ric. We subtract the median 0.46 of Zi for i = 50,⋯,80 from Z50,⋯, Z80 to obtain

ZZ50,⋯, ZZ80 and show the symmetry plot in Figure 5.7. The Wilcoxon signed rank

statistic gives a p-value of 0.49, again suggesting that there is little evidence that

the distribution is asymmetric. However, the points on both symmetry plots seem

to diverge away from the 45o symmetry-line indicating the presence of asymmetry.
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Since the sample sizes are relatively small, it is not entirely surprising that the sym-

metry plots and the Wilcoxon signed rank statistic give contradictory results. We

therefore conclude that the SSR CUSUM may have signalled either due to an in-

crease in the median or due to the presence of asymmetry in the distribution of the

Zi. Inspection of Figure 5.8 reveals an increase in the median after the estimated

changepoint τ̂ = 49.
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Figure 5.6: Symmetry plot of Z1,⋯, Z49.

59



0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Symmetry plot of the segment 50:80

ZZ
(n+1−i)

 − Median

M
ed

ia
n 

−
 Z

Z
(i)

Figure 5.7: Symmetry plot of ZZ50,⋯, ZZ80.
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Figure 5.8: Time series plot of Zi.
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5.3 Dow Jones Index

Finally, we analyse the Dow Jones monthly index series, Yi, i ≥ 1. Investors are

usually concerned with both the level and volatility of stock indices. The mean and

the variance of the log returns

Zi = log(Yi+1/Yi)

are to be monitored. An increase in the mean of the log returns indicates that an

investor might consider buying into the index, while a decrease suggests the opposite.

The standard deviation of the Zi is generally accepted as a measure of volatility,

which represents risk in this context.

We apply the SSR CUSUM (in-control ARL 250, reference value k = 0.25

and control limits ±7.267) and USR CUSUM (in-control ARL 250, reference value

k = 0.22 and control limits ±8.11) in a manner similar to the approach described in

Sections 5.1 and 5.2. The USR CUSUM signals at observation i = 57 that a decrease

in variance has occurred. The estimate of the changepoint from Figure 5.10 is τ̂ = 30.

Up to this time the SSR CUSUM has not signalled a change, although the CUSUM

has come close to both the lower and upper control limit – see Figure 5.9. After the

signal we observe that the USR CUSUM sequence continues to decline below the

lower control limit indicating that the decrease in the variance is persistent.
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Figure 5.9: Two-sided SSR CUSUM for a change in the mean of Zi.
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Figure 5.10: Two-sided USR CUSUM for a change in the variance of Zi.
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Figure 5.11: Time series plot of Zi.

To better understand the behaviour of the two CUSUMs it is useful to look at

the time series plot of the Zi in Figure 5.11. The SSR CUSUMs seem to indicate a

decrease followed by an increase in the median of the Zi, however neither CUSUM

exceeds the control limit. In the time series plot we see that initially the median

of the Zi is negative and then becomes positive for a relatively short time before

settling down around zero. This explains to some extent the behaviour of the SSR

CUSUM in Figure 5.9. However, what is clear from the time series plot in Figure

5.11 is that the overall variability has decreased and this is clearly signalled by the

USR CUSUM.

An important assumption that we have made throughout is that the obser-

vations are independent. Figure 5.12 shows a correlogram of the first autocorrela-

tions of the series Z1,⋯, Z30 together with the conventional confidence limits ±2/√n.

While this does not establish independence (unless the Zi are normally distributed),

it does indicate no serial correlation in the series. This apparent lack of correla-

tion may at first sight be against the expectation from the literature (Campbell

et al., 1996, p. 68) that financial returns generally exhibit autocorrelation. How-

ever, it is also known that the correlation decreases as the measurement interval

increases. The one-month interval which we have used appears to be sufficient to

preclude the presence of autocorrelation.
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Figure 5.12: Correlogram of the first seven autocorrelations of the series Z1,⋯, Z30.
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Suggestions for further research

This chapter concludes the dissertation with a few remarks concerning future

research in the field of sequential rank CUSUM procedures.

The first remark that comes to mind concerns the assumption of a known

in-control median. In the analysis of the Dow Jones data, Section 5.3, the initial

median is clearly not zero. Thus one would want a sequential rank procedure which

does not assume a known initial median.

Following on this, the assumption of symmetry in the SSR CUSUM can also

be problematic. Therefore, research should also be conducted into relaxing the

symmetry assumption. Some work in this direction is due to McDonald (1990).

In Chapter 3, Section 3.1, we mentioned a sequential rank analogue of the Pig-

natiello and Samuel (2001) changepoint estimator. The properties of this estimator

remain to be investigated.

Finally, one could consider the use of signed and unsigned sequential ranks

in monitoring procedures other than the CUSUM, such as the Shiryaev-Roberts

procedures (see Shiryaev (1963) and Roberts (1966)).
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