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Abstract: This paper is concerned with the control of an under-actuated, uncertain, delayed
non-linear system through the implementation of artificial neural networks(ANNs). The aim is
the development of a series-parallel training scheme for the on-line observer to ensure faster
convergence and more accurate estimations. Reinforcement learning is used to improve future
performance and maintain stability while an estimated tracking error is minimised. Lyapunov
stability measures are employed to guarantee the uniform ultimate boundedness of the closed-
loop tracking error. Real-time learning algorithms are derived for the individual components
(observer, actor, critic). Final performance is tested on a mathematical helicopter model and
real-world helicopter flight data.
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1. INTRODUCTION

Rotary wing aircraft are challenging dynamic systems
since they are non-linear, open-loop unstable and under-
actuated MIMO-systems. The purpose of this paper is
to illustrate the implementation of an artificial neural
network (ANN) controller on a helicopter system by
employing an on-line observer of which the design is
motivated by off-line procedures.

Neural networks are ideally suited for highly coupled,
highly non-linear problems Panchal et al. (2010). The de-
sign of adaptive observers have been actively studied in re-
cent years, Sharma and Verma (2010), while the successful
implementation of ANNs on helicopter platforms remain
fairly new, Nodland et al. (2013). Abbeel et al. (2010)
successfully applied machine learning to train (Artificial
Intelligence) AI-based systems on aerobatic manoeuvres,
but overall ANNs are not given full authority and sim-
ply augment PID-type control methodologies, Raimúndez
et al. (2006). The most common control method remains
PID, Kendoul (2012).

ANN-based control has the ability to approximate dy-
namic programming equations. Many variants exist, but
they typically include an off-line training phase to ensure
convergence, He and Jagannathan (2007). The use of
reinforcement learning is also common in adaptive-critic
schemes. An actor-critic structure, where one structure is
responsible for perception (critic) and the other for action
(actor), is normally employed. The actor decides on a
control scheme while the critic evaluates the outcome of
the actor’s decisions.

In order to find a suitable observer structure, various
ANNs were tested on actual flight data. The NARX-
network emerged as the most promising. Its mathematical
form also closely represents that of the reduced Brunovsky
canonical observer given by (1). This strict-feedback ob-
server has been successfully used for control purposes by
the recursive application of backstepping Khalil (2001).

x1(k + 1) = x2(k)

:

xn(k + 1) = f(x(k)) + g(x(k))u(k) + d′(k)

y(k) = x1(k)

(1)

In (1), x(k) = [xT1 (k), xT2 (k), . . . xTn (k)]T , u, y are the re-
spective states, inputs and system observer outputs.

The aim of the work presented in this paper is to com-
bine an off-line series-parallel training structure with the
identified NARX network through subtle alterations to the
update-law and structure. Supplying the observer network
with actual response values augments the estimations and
improves overall convergence rates. Final application will
be illustrated on a helicopter platform.

In this paper, section 2 provides a description of the
states used for control as well as a model summary.
The research layout can be found in section 3. Section
4 details the observer while section 5 focusses on the
controller. Stability requirements are stated in section 6,
with simulation results given in section 7.

2. PLATFORM DESCRIPTION

Controller design and testing will mainly be done on a
linear model presented in state-space form. Mettler et al.
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(1999) presents a detailed overview. Final validation is
based on actual flight data. The state-space representation
is

x(k + 1) = Ax(k) +Bu(k) (2)

where
x(k) = [u v p q φ θ a b w r rfb]

T (3)

and
u(k) = [δlat δlon δcol δped]T . (4)

Translational velocities, u, v, w are measured in m/s, angu-
lar rates, φ and θ in rad/s with roll- and pitch-angles being
radians. The rotor-tip path-plane angles are represented
by a and b with rfb being an active yaw-damper. Of these
11 states, only the 4 which completely describe the system
and exhibit the strongest coupling to specific inputs will
be used for stabilisation control. State selection for the
helicopter system is based on the singular value decompo-
sition (SVD) method presented in Valavanis (2007). The
recommended input-state pairings, Table 1, will be used
for estimation and control.

Table 1. Recommended input-output pairing

Input Pairing

Longitudinal (ulon) Pitch (θ)
Lateral (ulat) Roll (φ)
Pedals (uped) Yaw rate (r)

Collective (ucol) Heave velocity (z)

3. RESEARCH APPROACH

After modifying the NARX-network it can be implemented
as an on-line observer. Its estimated states will be used for
control in a critic-based control scheme as shown in Fig. 1.
The state vector is represented by x, the estimated state
by x̂, and the estimation error by x̃ = x̂− x. The number
of outputs and the number of states are represented by the
indices m and n, respectively.

Plant

ObserverCritic

Actor

Fig. 1. Subsystem interaction

State estimations, x̂(k), are evaluated by a critic which
computes system performance with a modified Bellman
equation. The critique signal Q̂(k) in turn adjusts the
control policy, u(k), to minimize the tracking error e(k).

The Sarangapani (2006) design approach is followed to
demonstrate the uniform ultimate boundedness (UUB) of
the system. Boundedness holds in the presence of bounded
disturbances and ANN approximation errors. The control-
system overcomes the persistent excitation (PE) condition
without an off-line training phase. Linear in the parameter
(LIP) assumptions are also not required.

In this paper, a novel alteration is made to the observer
design, combining the idea implemented in classic, series-
parallel off-line NARX-network training, Demuth (2013)
with the on-line structure. Additional alterations to the

update-law decouple internal parameters which allow for
faster optimization with genetic algorithms. Overall the
system exhibits faster convergence rates with less oscilla-
tory behaviour on more complex systems. Final validation
is done on the model, through the introduction of non-
linearities such as input saturation, rate-limiting and arti-
ficial noise. The system is also tested on a wind-tunnel
validated helicopter model, as well as actual helicopter
flight data.

4. ON-LINE OBSERVER

In the case when a sufficient number of states are available,
and these states accurately portray the system under
observation, a state-feedback controller can be designed for
the system, Landau et al. (2011). The aim of this section is
to combine the modelling capabilities of the NARX-type
neural network with state representation of the reduced
Brunovsky canonical form. In doing so, the Brunovksy
structure can be used to ensure that an adequate number
of states are available while the NARX-network ensures
the quality of state information.

4.1 Architecture

Using the universal function approximation capability of
the neural network Abdollahi (2011), (1) can be redefined
to include an artificial neural network.

x̂1(k) = x̂2(k − 1)

x̂2(k) = x̂3(k − 1)

...

x̂n(k) = ŵT
1 (k − 1)φ1(vT1 (k − 1)ẑ1(k − 1))

(5)

The state observer is used to estimate the entire state
vector x̂(k) ∈ Rnm through the determination of x̂n ∈ Rm

which propagates through x̂i ∈ Rm,for i = 1, . . . , n.
Representing the neural network in matrix form, the
output- and hidden-layer weight matrices are ŵ1(k −
1) ∈ R(n1×m) and v1 ∈ R(n+1)m×n1 respectively. The
hidden-layer activation function is chosen to be of the
tan-sigmoid form with a linear activation function on
the output-layer. An input vector, ẑ1(k), still has to be
defined before the neural network can be implemented as
an observer. It will be selected according to the NARX-
network definition where the network output depends on
past-estimates (outputs) and a delayed input. By defining,
ẑ1(k − 1) = [x̂T1 (k − 1), . . . , x̂Tn (k − 1), uT (k − 1)]T ∈
R(n+1)m, the structure definition of the observer neural
network completely takes the form of the NARX-network
illustrated in Demuth (2013).

4.2 Weight update law

Sarangapani (2006) recommends a subtle change to the
NARX-network’s standard update-law, (6), allowing the
neural network to estimate the future through output-
feedback tuning, (7). This change is the final alteration
required for the network to completely assimilate the
Brunovsky form where ŷ(k) = x̂1(k). The suggested
update law

ŵ1(k + 1) = ŵ1(k)−∆ŵ1(k), (6)
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with

∆ŵ1(k) = α1φ1(ẑ1(k))(x̂n(k) + l2x̃1(k))
T
, (7)

represents the starting point for a newly suggested ob-
server structure. The inclusion of the nth state-estimation,
x̂n(k), in the update-law ensures that the estimated signal,
x̂1(k), is bounded to the zero-side of the actual system
signal. Forcing the magnitude of the estimated signal to be
less than the actual signal contributes to system stability
and the overall Lyapunov proof, Sarangapani (2006). Neu-
ral network update-laws are either error- or reinforcement-
driven. This holds true for (7) where the design matrix
l2 ∈ Rm×m is selected to govern the ratio between error
contribution, x̂1(k), and estimator boundedness, x̂n(k).
The elements need to be selected, l2 >> 1, such that
the update-law is primarily error-driven. Even though
the approach binds the estimation, the position of the
l2 matrix not only governs the contribution ratio, it also
influences the overall adaptation gain and herein lies the
problem. To illustrate the effect, consider the SISO case
where l2 is treated as a constant:

∆ŵ1(k) = α1l2φ1(ẑ1(k))

(
1

l2
x̂n(k) + x̃1(k)

)T

, (8)

αnew = α1l2. (9)

For adequate tracking performance of the SISO-system,
the design constant should be chosen l2 > 1, resulting
in αnew > α1. According to Sarangapani (2006) the
recommend learning rate for stable weight-updates is α1 <
1
n1

. Clearly the choice of l2 can violate the stability
directive resulting, in highly oscillatory behaviour of the
estimated signal. Adaptation gain, α1, is generally selected
near the upper bound to ensure fast convergence. The
proposed update-law utilizes the x̂n-bound as well as the
l2 ratio without complicating the selection of α1 through
the inclusion of the l2 contribution. Selection of the final
adaptation gain can be done independently from ratio
selection if:

∆ŵ1(k) = α1φ1(ẑ1(k))(l2x̂n(k) + x̃1(k))
T
, (10)

where l2 << 1. The contribution of l2 towards the
adaptation gain is minimal, and if it is selected to be small
enough, the update error can be approximated as

l2x̂n(k) + x̃1(k) ≈ x̃1(k). (11)

Using the altered update-law facilitates the selection of α1

by not placing an additional constraint on the maximum
adaptation gain. The altered update-law represents only
a small part of the proposed changes. By altering the
input-vector it is possible to enhance the approximation
capabilities of the neural network. In essence, through the
Brunovsky form and output definition ŷ(k) = x̂1(k), the
observer estimates the future system output. Graphically
the altered observer is defined in Fig. 2 with the shift
register representing the input to the neural network.

Generally at least two states are required per degree-of
freedom. More state information can result in a more
accurate control signal, however, in the current design
state, information is coupled to the prediction horizon.
If the prediction horizon is made too large, the quality
of state information decreases due to the delay between
network output and error-comparison of that output as
shown in Fig. 2. To overcome this constraint it is suggested
that past values be included in the shift register. The

prediction horizon can be kept small enough thereby
preventing estimation degradation, while the amount of
state information can be maximized for optimal controller
performance. The position of the error computation shifts
as indicated in Fig. 2.
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Fig. 2. Past and future states with altered ANN observer

Instead of using the network estimation, ŷ(t), for training
purposes, the actual off-line output data, y(t), are pre-
sented to the network. If the observer structure is altered
to include past estimates, as in Fig. 2, it should also be
possible to replace these past estimates with the actual
past system outputs. In doing so the same advantages
gained in the off-line training scheme for the NARX-
network can be enjoyed in the on-line observer. Using the
actual system output as an input to the neural network,
provides a stable anchor-point for future estimations. It
increases system stability and accuracy by not only relying
on its own estimations but also implementing real system
values. The final input vector for the observer neural
network is defined as:

ẑ1(k) = [yT1 (k), . . . , yTactual(k), x̂T1 (k),

. . . , x̂Tn−actual(k), uT (k)]T ∈ R(n+1)m
(12)

where the subscript n still represents the number of states
and actual, the number of actual historic values from the
system. The update-law changes slightly to include the
shifted error position:

ŵ1(k + 1) = ŵ1(k)−∆ŵ1(k), (13)

∆ŵ1(k) = α1φ1(ẑ1(k))(l2x̂n(k) + x̃e(k))
T
, (14)

x̃e(k) = x0(k)− yactual(k). (15)

5. ADAPTIVE ANN CONTROLLER

With actor-critic based ANN control it is possible to
optimize a long-term performance measure together with
the minimization of a short-term error, as opposed to
classical adaptive and ANN control. The additional signal
used to evaluate the performance of the selected actions
(actor) is generated by the critic. It is the role of the actor
to map the environmental states to control signals, while it
is the role of the critic to change that mapping in order to
guarantee long-term stability and improve performance.
To minimise the computational overhead, single hidden-
layer networks will be used with output-layer only update-
laws.

5.1 Strategic Utility Function

The strategic utility function, Q(k), is defined as the long
term performance measure of the system. It represents
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the sum of all of the future system performance indices,
Sarangapani (2006), where each index is evaluated once
per control signal and determined by the binary utility
function, p(k) = [pi(k)]mi=1. As the tracking error en(k) is
unavailable at the kth time instant, the modified tracking
error ên(k) will be used. The utility function is defined as

pi(k) =

{
0, if

∣∣êin(k)
∣∣ 6 c

1, otherwise
i = 1, 2, . . . ,m (16)

with c ∈ R+ the predefined performance threshold and
êin(k) ∈ R the ith estimation error of the MIMO-vector. A
binary reinforcement of ”1” represents poor performance
while a ”0” indicates adequate tracking performance. Us-
ing the standard Bellman equation for dynamic program-
ming and the alterations suggested by Sarangapani (2006),
the long-term system-performance measure becomes

QT (k) = αNp(k+1)+αN−1p(k+2)+· · ·+αk+1p(N). (17)

Using mathematical induction (17) reduces to

QT (k) = minu(k)
{
αQ(k − 1)− αN+1p(k)

}
. (18)

In (18), α ∈ R is a design variable indicating the signal
decay rate with 0 < α < 1. The decay rate forces the
reinforcement signal back to zero if no additional penalties
are incurred. N represents the stage number. Since the
measure is similar to the Bellman equation, Si and Wang
(2001), for dynamic programming it can be used as the
only signal to tune the controller.

5.2 Critic Neural Network

Since Q(k) cannot be determined at the kth instant, an
estimator is required to approximate the strategic utility
function, known as the critic. By implementing a neural
network it is possible to estimate the function Q(k) if (18)
is rewritten in the prediction error form

ec(k) = Q̂(k)− α(Q̂(k − 1)− αNp(k)). (19)

The estimation of the strategic utility function becomes

Q̂(k) = ŵT
3 (k)φ3(vT3 x(k)) = ŵk

3φ3(k). (20)

In these equations n3 represents the number of hidden-
layer nodes with the hidden- and output-layer weight
matrices v3(k) ∈ Rnm×n3 and ŵ3(k) ∈ Rn3×m respec-
tively. The subscript ”c” indicates the error associated
with the critic estimation. If the basis vector φ3(vT3 x(k))
is selected large enough, the function approximation error
approaches zero. Since no hidden-layer tuning is done the
basis vector is simply written as φ3(x̂k). The choice of
activation function, constrains the hidden-layer output to
φ3 ∈ (−1, 1) if it is of the tan-sigmoid form.

The objective function to be minimised by the critic is
given in quadratic form, Sarangapani (2006),

Ec(k) =
1

2
eTc (k)ec(k). (21)

Using gradient based back-propagation, the weight adap-
tation rule becomes

ŵ3(k + 1) = ŵ3(k) + ∆ŵ3(k), (22)

where

∆ŵ3(k) = α3

[
−∂Ec(k)

∂ŵ3(k)

]
. (23)

The final update-law for the critic’s output-layer weights
is given by

ŵ3(k + 1) = ŵ3(k)− α3φ3(x̂(k))

× (Q̂(k) + αN+1p(k)− αQ̂(k − 1))T ,
(24)

where α3 ∈ R is the adaptation gain for the critic ANN. If
need be, the adaptation gain can be selected individually
for each output-node to increase the overall performance.
The critic network is tuned by its estimation of the
reinforcement signal and the discounted values of its past
output.

5.3 Actor Neural Network

In action-based adaptive control, the general purpose of
the actor is the generation of control inputs based on
the performance analysis supplied by the critic and/or
other error metrics. When using neural networks, the actor
learns a mapping policy from the environmental states to
the control signals. Changes to the policy are made by the
error metric, which increases controller performance. The
tracking error is defined as the error between the actual
model states xi(k) and the desired trajectory yd(k)

ei(k + 1) = xi(k + 1)− yd(k + i) i = 1, . . . , n. (25)

Combining the Brunovsky canonical form of (1) with
the tracking error definition in (25), the nth state error
becomes

en(k + 1) = f(x(k)) + g(x(k))u(k) + d′(k)

− yd(k + n).
(26)

Using (25), it is possible to define the desired auxiliary
control variable in such a way that the smooth functions
f(x(k)) and g(x(k)) describes the system fall away. If the
input is selected as

vd(k) = g−1(x(k))(−f(x(k)) + yd(k+ n) + l1en(k)), (27)

the state error (25) reduces to

en(k + 1) = l1en(k) + d′(k), (28)

which can be manipulated by the choice of l1. The design
matrix should be chosen such, that consecutive errors keep
decreasing. External disturbances are represented by d′(k)
and will be assumed negligible during the design of the
update law, but not during the stability proof. In theory it
should be possible to implement the desired control action.
Practically the smooth functions f(x(k)) and g(x(k)) are
unknown and should be estimated. The desired auxiliary
control signal vd(k) is approximated by the action neural
network

vd(k) = wT
2 φ2(vT2 s(k)) + ε2(s(k))

= wT
2 φ2(s(k)) + ε2(s(k)).

(29)

With the input vector s = [xT (k), en(k)]T ∈ R(n+1)m

and tan-sigmoid activation function, φ2, serves as network
basis wT

2 φ2(s(k)) ∈ Rn2 . Again, the approximation error
can be made arbitrarily small by selecting a large enough
basis. The ideal hidden- and output-layer weights are
defined as v2 ∈ R(n+1)×n2 and w2 ∈ Rn2×m respectively.
Using the tracking error definition in (25) together with
the error between the desired auxiliary control signal,
vd(k), and the actual control signal, v(k), it is possible to
derive an update-law for the actor in terms of the reduced
state error (28). The quadratic objective function to be
minimised is defined in Sarangapani (2006) as:

Ea(k) =
1

2
eTa (k)ea(k) (30)
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where ea(k) is a function similar to ec(k) including both
the instantaneous error and the critic signal. By replacing
the desired control signal, vd(k), with the actual control
signal,v(k) and the model states, x(k) with their estimated
states, x̂(k), it is possible to derive a tuning-law for the
following actor neural network, Sarangapani (2006):

v(k) = ŵT
2 φ2(vT2 ŝ(k)),

= ŵT
2 φ2(ŝ(k)).

Using gradient based back-propagation as the tuning
method, the weight adaptation rule is specified as:

ŵ2(k + 1) = ŵ2(k) + ∆ŵ2(k), (31)

where

∆ŵ2(k) = α2

[
−∂Ea(k)

∂ŵ2(k)

]
, (32)

which in turn results

ŵ2(k + 1) = ŵ2(k)− α2φ2(ŝ(k))(en(k + 1)

− l1en(k)− d2(k) + Q̂(k))T .

Replacing the states with their estimates also changes the
tracking error en(k) to the modified tracking error ên,
which can be measured at the kth time instant. In the ideal
case the disturbance signal d2(k) is taken as zero to obtain
the weight-update rule for the action neural network:

ŵ2(k + 1) = ŵ2(k)− α2φ2(ŝ(k))(ên(k + 1)

− l1ên(k) + Q̂(k))T
(33)

The activation function for the output-layer is selected to
be linear. This presents a problem for real-world systems
as the control signal can grow beyond the actual input
limitations of the system. Actuator constraints need to be
taken into account. The final actor output is defined as

u(k) =

{
v(k), if |v(k)| 6 umax

umaxsgn(v(k)), if |v(k)| > umax
(34)

where saturation limitations, umax are accounted for.
The addition of the magnitude-bound does not affect the
update-law or the final Lyapunov theorem.

6. STABILITY

According to Igelnik and Pao (1995) the reconstruction
error ε(k) approaches zero if the hidden-layer is selected
large enough. Assuming that the helicopter-system can be
modelled by the Brunovksy canonical form, (5), the uni-
versal function approximation ability implies that an ideal
network, with a minimum reconstruction error, exists. The
ideal network can approximate the nth state function. If
it is possible to prove that the weights of the actual ANN
will always converge to those of the ideal ANN, the system
is considered stable. This is the purpose of the Lypunov
function definition.

The Lypunov function includes the weight estimation
errors w̃i(k), i = 1, 2, 3 (of the observer, critic and actor),
the state-estimation errors, x̃i(k), and the tracking errors
ei(k) and en(k). By proving that all errors always converge
to zero, it is possible to prove system stability. The
Lypunov function is selected to be positive-definite with
its derivative being negative semi-definite if the following
conditions, stated in (Sarangapani, 2006) are met:

0< α1‖φ1(ẑ1(k))‖2 < 1, (35)

0< α2‖φ2(k)‖2 < min

(
gmin

g2max

,
1

gmin

)
, (36)

0< α3‖φ3(x̂1(k))‖2 < 1, (37)

0< α <

√
2

2
. (38)

The function derivative will always be non-positive if the
approach presented in Sarangapani (2006) is followed. This
concludes Lyapunov stability proof with the state estima-
tion error, x̃i(k), the weight estimates, ŵ1(k), ŵ2(k), ŵ3(k)
and the tracking error, ei(k), Uniformly Ultimate Bounded
(UUB).

7. SIMULATION RESULTS

The following section provides results for the control-
system. Both the observer and controller performance
is illustrated independently. Parameter selection was
done with a multi-objective genetic algorithm optimis-
ing tracking-performance. Selected parameters include:
α, α1, α2, α3, l1, l2, n, n1, n2, n3, N, and c.

7.1 State-space model

Only a single channel is illustrated in Fig. 3 to show
the learning capabilities of the ANN control structure.
Initial oscillations are caused by poor estimations from
the observer and not poor controller performance. As the
observer error decreases exponentially, the system perfor-
mance improves with time. The system remains stable
for the duration of the simulation. Notice a reduction in
overshoot magnitude as the actor learns how to control
the system behaviour. Successive execution of the same
manoeuvres are done with increased accuracy.
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Fig. 3. Control-system performance plot

7.2 Actual helicopter data

Experimental results show that the controller performance
is highly dependent on the observation signal. In order
to illustrate the disturbance rejection capabilities of the
ANN observer, it is implemented on actual flight data.
For the purpose of the study, recorded data from the
Rooivalk attack helicopter is used. Fig. 4 shows the track-
ing capabilities and disturbance rejection characteristics of
the modified observer structure. No additional filters are
applied to the data before use. It does however undergo
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Fig. 4. State prediction and filtering of Rooivalk data

a normilisation procedure. When predicting 5 time-steps
into the future, the estimated signal shows a 93.18%
correlation (NRMSE) to the actual signal. Considering the
presence of noise, the match is closer than the computed
value.

8. CONCLUSION AND RECOMMENDATIONS

It is found that the series-parallel, on-line, observer struc-
ture demonstrates superior prediction capabilities when
estimating over the same horizon. The estimated signal
converges faster and predicts more accurately than pre-
vious observers of similar structure. Through the subtle
alteration made to the training-law, genetic algorithm
optimization can compute an optimal solution in fewer
iterations.

It is possible to control a helicopter if the system can
be represented in the reduced Brunovsky canonical form.
Control was successfully implemented on a linear-model
by Mettler et al. (1999), with the addition of non-linear
properties in the form of a rate-limiter and artificial noise.
It was found that the controller is highly dependent on
the quality of observations and that the observer exhibits
disturbance rejection capabilities. Through the Lypunov
proof, it is shown that the system remains stable even
if initialized at random with stability and performance
increasing with time. The single-layer update-law allows
the controller to operate in real-time.

If faster sampling rates are required, the neural networks
can be operated on a parallel core system. This will supply
the computational power needed for multiple hidden-layers
and multi-layer tuning. An off-line training phase can also
be utilized to increase initial convergence time. Future
work should focus on more advanced stability proofs with
the ultimate aim of providing satisfactory mathematical
guarantees for industry implementation.
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