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Abstract: For a pair (Y1, Y2) of random variables there exist several mea-
sures of association that characterize the dependence between Y1 and Y2 by
means of one single value. Classical examples are Pearson’s correlation co-
efficient, Kendall’s tau and Spearman’s rho. For the situation where next to
the pair (Y1, Y2) there is also a third variable X present, so-called partial as-
sociation measures, such as a partial Pearson’s correlation coefficient and a
partial Kendall’s tau, have been proposed in the 1940’s. Following criticism
on e.g. partial Kendall’s tau, better alternatives to these original partial
association measures appeared in the literature: the conditional association
measures, e.g. conditional Kendall’s tau, and conditional Spearman’s rho.
Both, unconditional and conditional association measures can be expressed
in terms of copulas. Even in case the dependence structure between Y1

and Y2 is influenced by a third variable X, we still want to be able to
summarize the level of dependence by one single number. In this paper we
discuss two different ways to do so, leading to two relatively new concepts:
the (new concept of) partial Kendall’s tau, and the average Kendall’s tau.
We provide a unifying framework for the diversity of concepts: global (or
unconditional) association measures, conditional association measures, and
partial and average association measures. The main contribution is that we
discuss estimation of the newly-defined concepts: the partial and average
copulas and association measures, and establish theoretical results for the
estimators. The various concepts of association measures are illustrated on
a real data example.
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1. Introduction

Suppose we observe a random vector (Y1, Y2). In statistics we often need to
characterize the degree of dependence of Y1 and Y2. The most standard (and
probably also the oldest) measure of dependence is Pearson’s correlation coeffi-
cient

ρ(P)(Y1, Y2) =
cov(Y1, Y2)√
var(Y1) var(Y2)

=
E(Y1Y2)− E(Y1)E(Y2)√

var(Y1) var(Y2)
, (1.1)

which proved to be useful in many situations. In particular, if (Y1, Y2) follows
a bivariate normal distribution, then ρ(P)(Y1, Y2) completely characterizes the
dependence structure of (Y1, Y2). On the other hand, ρ(P)(Y1, Y2) can be of
little use if the bivariate distribution of (Y1, Y2) is far away from being normal.
Moreover, ρ(P) is even not defined if the distribution of (Y1, Y2) does not have
finite and positive variances of Y1 and Y2. That is why alternative measures of
dependence have been introduced.

Among the most popular measures of dependence are Kendall’s tau and
Spearman’s rho. See Section A.1 for a brief recall of their definitions and an
overview of other commonly-used association measures.

The situation becomes more difficult when we observe a three-dimensional
vector (Y1, Y2, X) and one is interested in the relationship between Y1 and Y2

when the effect of X is taken into consideration. A simple concept which has
proved to be useful in many situations is that of the original partial Pearson’s
correlation coefficient given by

ρ
(P)
X (Y1, Y2) =

ρ(P)(Y1, Y2)− ρ(P)(Y1, X) ρ(P)(Y2, X)√
1−

(
ρ(P)(Y1, X)

)2 √
1−

(
ρ(P)(Y2, X)

)2 . (1.2)

In Section 2 we will introduce a new concept of partial association measures,
not to be confused with this original partial correlation coefficient.

Similarly as for the global Pearson’s correlation coefficient ρ(P)(Y1, Y2) defined
in (1.1), the partial Pearson’s correlation coefficient only completely character-
izes the dependence structure of Y1 and Y2 taking into account X, if (Y1, Y2, X)
has a trivariate normal distribution. Among the earliest attempts to get away
from this normality assumption, is the concept of the original partial Kendall’s
tau (see (A.4)). However some criticism were formulated regarding this measure.
See Section A.2 for a brief recall and some examples to illustrate the criticism.
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A more comprehensive and detailed characterization of the dependence struc-
ture is provided by conditional measures of dependency/association, that mea-
sure the dependence structure in (Y1, Y2) conditionally upon an event formulated
in terms of X. The simplest (and most common) conditional setting is to con-
sider dependency in (Y1, Y2) given the event X = x (i.e. a value x taken by
the covariate). In Section A.3 we briefly recall such conditional association mea-
sures, and provide an example to illustrate their merits when compared to the
original partial type of association measures. If one is in particular interested in
high value settings of the covariate one might consider looking at the condition-
ing event that X ≥ x (or conversely X ≤ x). This is for example often the case
in economic (e.g. production frontier) or actuarial applications. In Section 4 an
example of such a conditioning event is included. Although the presentation in
this paper almost entirely focuses on conditioning upon the event X = x, the
concepts and methodology apply to general events in terms of the covariate X.

Conditional association measures thus quantify clearly how the dependence
structure between the two components in (Y1, Y2) changes in terms of (the event
related to) X. Graphically such a conditional association measure is depicted as
a function ofX. Of interest is then to look into issues of average (or alternatively,
for example, median) strength of dependence. Furthermore, one might want to
quantify the differences in dependence structures within (Y1, Y2) and (V1, V2),
conditionally upon a similar event related to the same covariate X. Comparing
the strengths of the two dependence structures, taken into account the behaviour
of the common covariate, then translates into comparing two curves. A first
approach to do so is to look into a kind of global (mean) behaviour of the
curves.

In summary, the aim of the paper is to provide some insights in different
ways to study such a global/mean behaviour of conditional dependencies. We
discuss two approaches to do this, leading to the concepts of partial and av-
erage conditional association measures. A unifying framework for our study is
provided by focusing on association measures that can be expressed as a func-
tional of the copula function C (assumed to be unique), denoted as ϕ(C). See
Table 1 for some commonly-used association measures in this class. In case of
the conditional dependence (given X) one has to deal with a conditional cop-
ula function CX , leading to the corresponding conditional association measure
ϕ(CX). A first approach towards a global/mean behaviour of the conditional
dependencies is to take the average (with respect to X) of this conditional as-
sociation measure, i.e. EX{ϕ(CX)}. We refer to this as the average conditional
association measure. In a second approach one starts from the so-called partial
copula, defined by EX{CX(·, ·)} and denoted by C̄(·, ·); and then considers the
corresponding association measure ϕ(C̄). This is referred to as the partial asso-
ciation measure. Table 1 (third column) gives an overview of some average and
partial association measures. We show that for most, but not all, conditional
association measures these approaches coincide. An interesting case where they
do not coincide is Kendall’s tau. A second contribution of this paper consists of
discussing estimation of the partial and average association measures. A crucial
starting point for this is the estimation of CX and C̄; that of CX has been
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Table 1

Overview of some (un)conditional association measures and their average and partial
versions. ∗Measures of tail dependence as introduced in Schmid and Schmidt (2007)

(abbreviated as S.S. (2007) below)

unconditional association measure conditional,
Type in terms of C average, Facts

functional ϕ(C) and partial versions
S
p
ea

rm
a
n
’s

rh
o

ρ = 12

∫∫
C(u1, u2) du1 du2 − 3 ρ(x) = 12

∫∫
Cx(u1, u2) du1 du2 − 3

ρA = EX ρ(X) ρA = ρ̄

ρ̄ = 12

∫∫
C̄(u1, u2) du1 du2 − 3

K
en

d
a
ll
’s

ta
u

τ = 4

∫∫
C(u1, u2) dC(u1, u2)− 1 τ(x) = 4

∫∫
Cx(u1, u2) dCx(u1, u2)− 1 in general:

τA = EX τ(X) τA �= τ̄

τ̄ = 4

∫∫
C̄(u1, u2) dC̄(u1, u2)− 1 Example A.3

(Appendix A)

B
lo
m
q
v
is
t’
s
b
et
a

β = 4C(0.5, 0.5)− 1 β(x) = 4Cx(0.5, 0.5)− 1
βA = EX β(X) βA = β̄
β̄ = 4 C̄(0.5, 0.5)− 1

G
in
i
in
d
ex

γ = 4

∫
C(u, 1− u)du γ(x) = 4

∫
Cx(u, 1− u)du

−4

∫
[u− C(u, u)]du − 4

∫
[u− Cx(u, u)]du

γA = EX γ(X) γA = γ̄

γ̄ = 4

∫
C̄(u, 1− u)du

−4

∫
[u− C̄(u, u)]du

T
a
il
co

effi
ci
en

ts λL = lim
t→0+

C(t, t)

t
λL(x) = lim

t→0+

Cx(t, t)

t
λA
L = λ̄L

λA
L = EX λL(X) Proposition A.1

λ̄L = lim
t→0+

C̄(t, t)

t
(Appendix A)

λU = lim
t→1−

1− 2t+ C(t, t)

1− t
analogously λA

U = λ̄U

S
.S
.(
2
0
0
7
)
T
a
il
co

effi
ci
en

ts
∗

ρL = lim
t→0+

3

t3

∫ t

0

∫ t

0
C(u1, u2)du1 du2 ρL(x) = lim

t→0+

3

t3

∫ t

0

∫ t

0
Cx(u1, u2)du1 du2 ρAL = ρ̄L

ρAL = EX ρL(X) Proposition A.1

ρ̄L = lim
t→0+

3

t3

∫ t

0

∫ t

0
C̄(u1, u2)du1 du2 (Appendix A)

ρU = lim
t→1−

3

(1− t)3

×
∫ 1

t

∫ 1

t
[1− u1 − u2 + C(u1, u2)] du1 du2 analogously ρAU = ρ̄U

studied in recent literature, whereas that of C̄ is part of the contribution in this
paper. For the most interesting case of partial and average Kendall’s tau we also
establish the asymptotic behaviour of the estimators.
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The paper is further organized as follows. In Section 2 we discuss briefly
the unifying framework for the various concepts of association measures (such
as unconditional and conditional), and introduce the two fairly-new concepts of
association measures. Section 3 discusses estimation of the various concepts, and
for the proposed estimators of the average copula and the average and partial
Kendall’s tau, we establish the asymptotic properties in Section 5. The use of the
various concepts of association measures is illustrated on a real data application
in Section 4. Some conclusions and discussions are in Section 6. Appendix A
provides a brief review on association measures, their specific drawbacks and
merits. The proofs of the theoretical results, the assumptions under which these
hold, as well as some needed auxiliary results are provided in Appendices B—F.

2. Various concepts of association measures, defined in terms of
copulas

Many measures of association can be expressed as functionals of copulas, which
link the marginal distributions into the joint distribution. This unifying frame-
work, together with different conceptional notions of copulas, allows to provide
a unified approach towards various concepts of association measures. In Sec-
tion 2.1 we briefly review existing concepts, whereas in Section 2.2 we introduce
new concepts, all in the same unifying framework.

2.1. Unconditional (global) and conditional copulas and association
measures

To formalize the definition of a (unconditional) copula let H(y1, y2) be the
joint distribution function of the random vector (Y1, Y2) and denote by FY1

and FY2 the marginal distribution functions of Y1 and Y2 respectively. Then a
copula CY1,Y2 on [0, 1]2 is a function such that

H(y1, y2) = CY1,Y2(FY1(y1), FY2(y2)), (y1, y2) ∈ R
2.

In case of continuous marginal distribution functions FY1 and FY2 , the copula
function CY1,Y2 is uniquely defined. See Nelsen (2006).

Many association measures can be expressed as specific functionals of CY1,Y2 ,
say as ϕ(CY1,Y2) or, shortly, as ϕ(C). For example, Kendall’s tau and Spearman’s
rho, are given by

τ(Y1, Y2) = 4

∫∫
CY1,Y2(u1, u2) dCY1,Y2(u1, u2)− 1 (2.1)

ρ(S)(Y1, Y2) = 12

∫∫
CY1,Y2(u1, u2) du1 du2 − 3.

Table 1 lists other association measures indicating the specific functional ϕ(·).
These include also the lower and upper tail coefficients (denoted with λL and
λU) and other association measures focusing on tail behaviour, such as these
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introduced by Schmid and Schmidt (2007). For a detailed study of association
measures see Chapter 5 of Nelsen (2006).

In the literature so far, one has studied unconditional copulas as well as
conditional copulas. The latter concept was introduced in Patton (2006), and
serves to study the conditional dependence structure of Y1 and Y2 given X = x
(as the simplest conditioning event). Denote the joint and marginal distribution
functions of (Y1, Y2), conditionally upon X = x, as

Hx(y1, y2) = P(Y1 ≤ y1, Y2 ≤ y2 |X = x),

F1x(y1) = P(Y1 ≤ y1 |X = x), F2x(y2) = P(Y2 ≤ y2 |X = x).

If F1x and F2x are continuous, then according to Sklar’s theorem (see e.g. Nelsen,
2006) there exists a unique copula Cx which links the conditional marginals into
the conditional joint distribution

Hx(y1, y2) = Cx

(
F1x(y1), F2x(y2)

)
. (2.2)

The function Cx fully describes the conditional dependence structure of the
bivariate vector (Y1, Y2) given X = x and it is called a conditional copula.

As discussed in Gijbels, Veraverbeke and Omelka (2011) and Veraverbeke,
Omelka and Gijbels (2011) the conditional measures of association that do not
depend on the marginal distributions of Y1 and Y2 can be written as function-
als of Cx. For instance the conditional Kendall’s tau defined in (A.6) can be
expressed as

τ(x) = 4

∫∫
Cx(u1, u2) dCx(u1, u2)− 1.

Similarly, the conditional Spearman’s rho is given by

ρ(S)(x) = 12

∫∫
Cx(u1, u2) du1 du2 − 3.

Other conditional association measures, including conditional tail coefficients
are given in the first rows in each block of column 3 of Table 1.

2.2. Partial and average copulas and association measures

Conditional association measures (or more generally conditional copulas) are
very useful when one wants to get a deeper insight into the dependence structure
and how it changes with the covariate X. However, it still might be of interest
to summarize/capture the strength of this dependence with one single number.
Indeed, in case of two random vectors (Y1, Y2, X) and (V1, V2, X), such a global
number would allow us to make simple comparisons of the strengths of the
dependencies between Y1 and Y2 on the one hand and these between V1 and V2

on the other hand, taking into account the covariate X.
We thus need one number (one copula) summarizing the dependence of Y1

and Y2 when adjusted for X. We now discuss two approaches to get to such a
summarizing type of copula.
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A first obvious idea is to average the conditional measures with respect to
the distribution of X and to get the average conditional copula

CA(u1, u2) = EX CX(u1, u2), (2.3)

and, for example, average (conditional) Kendall’s tau

τA = EX τ(X),

or the average (conditional) lower tail coefficient (see Table 1)

λA
L = EX λL(X) .

The concept of average conditional copula was first mentioned by Bergsma
(2011, 2004).

Another way is to follow the original idea that a partial correlation coefficient
is supposed to measure correlation of Y1 and Y2 after removal of any part of
the variation due to the influence of X, (see e.g. p. 306 of Cramér, 1946). The
most general way of removing the effect of X on Y1 and on Y2 is through their
conditional (marginal) distribution functions, which results into U1 = F1X(Y1)
and U2 = F2X(Y2). Note that neither U1 nor U2 depends on X any more,
and both are uniformly distributed (due to the probability integral transform).
Indeed, for example, for all t ∈ [0, 1],

P {F1X(Y1) ≤ t} =

∫
P {F1x(Y1) ≤ t|X = x} dFX(x)

=

∫
P
{
Y1 ≤ F−1

1x (t)|X = x
}
dFX(x)

=

∫
F1x

(
F−1
1x (t)

)
dFX(x) = t ,

with FX the cumulative distribution function of X. See also Song (2009) who
exploits this transformation in the problem of testing for conditional indepen-
dence.

So, after having removed the effect of X on the marginal distributions, the
dependence structure of the transformed random variables is fully described by
the copula function C̄ corresponding to the pair (U1, U2). We will call this the
partial copula. See also Definition 3 of Bergsma (2004). As the marginals of
(U1, U2) are already uniform, C̄ coincides with the joint distribution function of
(U1, U2): the partial copula is defined by

C̄(u1, u2) = P(U1 ≤ u1, U2 ≤ u2) with (U1, U2) = (F1X(Y1), F2X(Y2)). (2.4)

Joe (2006) builds on partial correlations to generate random correlation matri-
ces. The paper uses a vine decomposition to access the joint density of pair-
wise correlations. Bedford and Cooke (2002) introduced the concept of vines for
dependent random variables. In Gaussian copulas commonly-used association
measures such as Kendall’s tau, Blomqvist’s beta, Spearman’s rho and Gini’s
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index can all be expressed in terms of Pearson’s correlation coefficient, whereas
the upper and lower tail coefficients are zero. Kim et al. (2011) studied partial
correlation assuming a Gaussian copula for C̄.

The notions of average (conditional) copula and partial copula, defined in
respectively (2.3) and (2.4), in fact coincide, as is stated and proved in Propo-
sition 1.

Proposition 1. For random variables Y1 and Y2 with continuous distribution
functions, it holds that

C̄(u1, u2) = CA(u1, u2) ∀(u1, u2) ∈ [0, 1]2.

Proof. This is straightforward since

C̄(u1, u2) = P(U1 ≤ u1, U2 ≤ u2) =

∫
P(U1 ≤ u1, U2 ≤ u2 |X = x) dFX(x)

=

∫
Cx(u1, u2) dFX(x) = CA(u1, u2).

Thus the copula of Y1 and Y2 after removal of the effect of X on the marginal
distributions, coincides with the average conditional copula function. In other
words, there are two ways of viewing the copula C̄: it is the copula describing
the dependence between Y1 and Y2 after removal of the effect of X; but also the
copula obtained after taking the expectation (with respect to the covariate X)
of the conditional copula.

We can now think of considering association measures derived from the partial
copula C̄. We call these measures the partial association measures. For instance
the partial Kendall’s tau is given by

τ̄ = τ(U1, U2) = 2P [(U1 − U ′
1)(U2 − U ′

2) > 0]− 1

= 4

∫∫
C̄(u1, u2) dC̄(u1, u2)− 1, (2.5)

where (U ′
1, U

′
2) is an independent copy of the random vector (U1, U2), defined

in (2.4). Similarly, the partial Spearman’s rho is defined by

ρ̄(S) = 12

∫∫
C̄(u1, u2) du1 du2 − 3.

The partial measure τ̄ should not be confused with the original partial Kendall’s
tau given in (A.4).

Note that C̄ = CA does not imply that the average conditional measures,
obtained by averaging the conditional measures with respect to X, equal the
partial measures. In general this holds true only when Cx does not depend
on x (see also Section 2.3 below) or if the measure of association is a linear
functional of the underlying copula. Thus while ρ̄(S) = ρ(S),A = EXρ(S)(X), in
general τ̄ �= τA as

τA = EX τ(X) = 4

∫
RX

∫∫
[0,1]2

Cx(u1, u2) dCx(u1, u2) dFX(x)− 1, (2.6)
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Table 2

Different concepts of copulas and association Kendall’s measure

Concepts notations
population quantities nonparametric

copula association measure estimators

unconditional copula
CY1,Y2 τ(Y1, Y2) τn(Y1, Y2)unconditional Kendall’s tau

original partial Kendall’s tau τ̄K = τX(Y1, Y2) τ̄Kn

conditional copula
Cx τ(x) = τ(Y1, Y2|X = x) τn(x)conditional Kendall’s tau

partial copula
C̄ τ̄ τ̄npartial Kendall’s tau

average (conditional) copula
CA (= C̄) τA = EX [τ(X)] τAnaverage (conditional) Kendall’s tau

and

τ̄ = 4

∫
RX

∫
RX

∫∫
[0,1]2

Cx(u1, u2) dCx′(u1, u2) dFX(x) dFX(x′)− 1.

See also Section A.4 in Appendix A for an example where τ̄ �= τA.
Nevertheless, for many association measures the functional ϕ(C) constitutes a

linear functional in C, and hence the equality EX{ϕ(CX)} = ϕ(C̄) is rather evi-
dent. For other association measures such as the upper and lower tail coefficients
that involve limit expressions, Proposition A.1 establishes the coincidence.

2.3. Simplified pair-copula construction

Sometimes, it is reasonable to expect that the covariate X only affects the
marginal distributions of Y1 and Y2, but does not affect the dependence struc-
ture. This results in the conditional joint distribution of (Y1, Y2) given by

Hx(y1, y2) = C
(
F1x(y1), F2x(y2)

)
. (2.7)

This is also called the simplified pair-copula construction in the recent literature.
See e.g. Hobæk Haff, Aas and Frigessi (2010) and Acar, Genest and Nešlehová
(2012). Note that in model (2.7) the conditional copula Cx does not depend
on x (i.e. Cx = C), which is in contrast to the general model (2.2). Hence, in
this special setting, the conditional and the partial copula coincide (C = C̄) and
also all the three types of association measures (conditional, average conditional,
partial) coincide, i.e. for the Kendall’s type of association measures:

τ(x) = τA = τ̄ .

2.4. Summary: Various concepts of association measures

Table 2 gives a summary of the different notions of copulas and corresponding
association measures (focusing for ease of presentation only on Kendall’s tau
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Fig 1. Example A.3: unconditional (global) Kendall’s tau (horizontal dashed-dotted line),
the original partial Kendall’s tau (horizontal long-dashed line), the conditional Kendall’s
tau (solid line), the partial Kendall’s tau (horizontal short-dashed line), and the average
conditional Kendall’s tau (horizontal dotted line).

types of association measures), with their respective notations. The entries in
the last column will be discussed in Section 3.

In Figure 1 we depict the unconditional, original partial, the conditional, the
partial and the average conditional Kendall’s tau for Example A.3.

3. Estimation of copulas and association measures

Suppose we have independent random vectors (Y11, Y21, X1), . . . , (Y1n, Y2n, Xn),
all having the same distribution as (Y1, Y2, X). To illustrate the estimation of
(un)conditional, average and partial association measures, we concentrate on
estimation of different notions of Kendall’s tau. The various notions of other
association measures (Spearman’s rho, Gini coefficient, Blomqvist’s beta, upper
and lower tail coefficients, ...) can be estimated analogously.

A crucial point is that all these different notions of association measures (un-
conditional or global, conditional, partial and average) can be expressed as func-
tionals of the corresponding notion of copula (i.e. ϕ(CX) or ϕ(C̄)). Hence, plug-
ging in an appropriate nonparametric estimator for the specific copula function
(CX or C̄) into these expressions, leads directly to a nonparametric estimator for
the specific notion of the association measure. Nonparametric estimation of un-
conditional and conditional copulas has been studied in the (recent) literature,
whereas nonparametric estimation of the partial copula is largely unexplored. In
Section 5 we discuss and study a nonparametric estimator for the partial copula.
In this paper we focus on kernel type of estimation, for two reasons: (i) to be
able to rely on results available in the literature on nonparametric estimation
of a conditional copula; (ii) since all estimators have explicit forms this allows
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to establish asymptotic results. Obviously alternative flexible estimation meth-
ods such as spline basis expansions (see e.g. Kauermann and Schellhase, 2014)
and/or Bayesian methods (see e.g. Burda and Prokhorov, 2014) could also be
applied.

In the sequel of this section, we immediately focus, for brevity and clarity,
on the estimators of the association measures, resulting from the above plug-in
step involving nonparametric estimation of the appropriate notion of copula.

3.1. Unconditional (global) Kendall’s tau

Recall expression (2.1). Several nonparametric estimators for the unconditional
copula CY1,Y2 are available in the literature. The simplest estimator is the em-
pirical copula function

Cn(u1, u2) =
1

n

n∑
i=1

I
{
F1n(Y1i) ≤ u1, F2n(Y2i) ≤ u2

}
,

where Fjn, for j = 1, 2, is the empirical cumulative distribution function based
on the observations Yj1, . . . , Yjn. This estimator was introduced and studied by
Deheuvels (1979), and subsequently studied by Gänssler and Stute (1987), Fer-
manian, Radulovič and Wegkamp (2004), Tsukuhara (2005) and Segers (2012),
among others. Kernel estimators for the unconditional copula are studied in
Gijbels and Mielniczuk (1990), Chen and Huang (2007), and Omelka, Gijbels
and Veraverbeke (2009), among others.

Substituting this estimator into the expression (2.1) leads to an estimator for
τ(Y1, Y2). The obtained estimator is first order asymptotically equivalent with
the estimator

τn = τn(Y1, Y2) =
4

n(n− 1)

n∑
i=1

n∑
j=1

I
{
Y1i < Y1j , Y2i < Y2j

}
− 1. (3.1)

See Nelsen (2006). Subsequently, one can estimate the original partial Kendall’s
tau by Kendall (1942) simply via

τ̄Kn =
τn(Y1, Y2)− τn(Y1, X) τn(Y2, X)√

1− τ2n(Y1, X)
√

1− τ2n(Y2, X)
.

3.2. Conditional and average conditional Kendall’s tau

Note that by mimicking formula (3.1) it would be possible to estimate the
conditional Kendall’s tau through the formula

τn(x) =
4

1−
∑n

i=1 w
2
ni(x, hn)

(3.2)

×
n∑

i=1

n∑
j=1

wni(x, hn)wnj(x, hn) I{Y1i < Y1j , Y2i < Y2j} − 1,
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where {wni(x, hn)} is a sequence of weights that smooth over the covariate
space. But as discussed in Veraverbeke, Omelka and Gijbels (2011) it is better
to replace the original observations (Y1i, Y2i) in formula (3.2) with observations
that are already adjusted for the effect of the covariate X. For detailed dis-
cussions on nonparametric estimation of conditional copulas see Veraverbeke,
Omelka and Gijbels (2011) and Gijbels, Veraverbeke and Omelka (2011), among
others.

The method that is used to remove the effect of X on the marginal distri-
butions of Y1 and Y2 depends on what can be assumed about this effect (see
Section 3.4). In general let Gj(y, x) stand for the transformation that removes
the effect of X on Yj . Generally, Gj(y, x) = Fjx(y) does the job, but sometimes
simpler functions (not requiring nonparametric estimation of Fjx, and hence
the introduction of an additional smoothing parameter) are available. For in-
stance in Example A.1 of Appendix A one can use G1(Y1, X) = Y1 − X and

G2(Y2, X) = Y2 − X2. Further, let Ĝjn stand for an estimate of the function
Gj . Then the adjusted observations are given by(

Ŷ a
1i, Ŷ

a
2i

)
=

(
Ĝ1n(Y1i, Xi), Ĝ2n(Y2i, Xi)

)
, i = 1, . . . , n. (3.3)

The estimate of the conditional Kendall’s tau is then given by

τn(x) =
4

1−
∑n

i=1 w
2
ni(x, hn)

(3.4)

×
n∑

i=1

n∑
j=1

wni(x, hn)wnj(x, hn) I
{
Ŷ a
1i < Ŷ a

1j , Ŷ
a
2i < Ŷ a

2j

}
− 1.

An estimator of the average (conditional) Kendall’s tau τA = EX τ(X) is now
simply

τAn =
1

n

n∑
i=1

τn(Xi), (3.5)

where τn(Xi) is the estimate (3.4) evaluated at the point Xi.

3.3. Partial Kendall’s tau

The population version of partial Kendall’s tau was introduced in (2.5). With
the help of the adjusted observations given by (3.3) one can estimate τ̄ by

τ̄n =
4

n(n− 1)

n∑
i=1

n∑
j=1

I
{
Ŷ a
1i < Ŷ a

1j , Ŷ
a
2i < Ŷ a

2j

}
− 1. (3.6)

Note that while both τ̄ and τA are well defined and reasonable summaries of
the dependence of Y1 and Y2 when adjusted for X, the advantage of τ̄ is that
its estimator τ̄n given by (3.6) is less computationally intensive than τAn . On
the other hand we establish an asymptotic normality result for τAn under more
general assumptions than for τ̄n (see Section 5).
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3.4. Some standard methods of adjustments

In this section we list some appealing methods for adjusting the observations
for the effect of the covariate.

3.4.1. Parametric location-scale model estimation of F1x and F2x

Consider the following model

Y1 = m1(X,β1) + σ1(X,γ1) ε1, Y2 = m2(X,β2) + σ2(X,γ2) ε2,

where m1,m2, σ1, σ2 are known functions, β1,β2,γ1,γ2 are unknown finite-
dimensional parameters and ε1 and ε2 are independent of X with unknown
distribution functions F1ε and F2ε.

Note that the ‘ideal’ transformation function would be given by the function
Gj(y, x) =

(
y−mj(x,βj)

)
/σj(x,γj). The straightforward estimate of this func-

tion is given by Ĝjn(y, x) =
(
y − mj(x, β̂jn)

)
/σj(x, γ̂jn), where β̂jn and γ̂jn

are the estimates of the unknown parameters. The adjusted observations now
coincide with the estimated residuals

Ŷ a
ji = ε̂ji =

Yji −mj

(
Xi, β̂jn

)
σj

(
Xi, γ̂jn

) , i = 1, . . . , n, j = 1, 2.

3.4.2. Nonparametric location-scale model estimation of F1x and F2x

In this setting one assumes that the influence of the covariate on the marginal
distributions is given by the model

Y1 = m1(X) + σ1(X) ε1, Y2 = m2(X) + σ2(X) ε2,

where m1, m2, σ1 and σ2 are unknown functions and both ε1 and ε2 are inde-
pendent of X with E ε1 = E ε2 = 0 and var(ε1) = var(ε2) = 1.

For simplicity of presentation we will consider only local linear regression
estimates of these unknown functions (j = 1, 2):

m̂jn(t) =

n∑
i=1

wni(t, gjn)Yji, σ̂2
jn(t) =

n∑
i=1

wni(t, gjn)
(
Yji − m̂jn(Xi)

)2
, (3.7)

with the weights wni(x, gn) given by

wni(x, gn) =

1
n gn

k(x−Xi

gn
)
(
Sn,2(x)− x−Xi

gn
Sn,1(x)

)
Sn,0(x)Sn,2(x)− S2

n,1(x)
, i = 1, . . . , n, (3.8)

where

Sn,j(x) =
1

n gn

n∑
i=1

(
x−Xi

gn

)j
k
(
x−Xi

gn

)
, j = 0, 1, 2, (3.9)

with k(·) a given kernel function.
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The transformation function is now given by Gj(y, x) =
y−mj(x)
σj(x)

and its

estimate by Ĝjn(y, x) =
y−m̂jn(x)
σ̂jn(x)

. The adjusted observations now coincide with

the estimated residuals

Ŷ a
ji = ε̂ji =

Yji − m̂jn(Xi)

σ̂jn(Xi)
, i = 1, . . . , n, j = 1, 2. (3.10)

3.4.3. General nonparametric estimation of F1x and F2x

Sometimes, one has no idea about the influence of X on Y1 and Y2. Then one
uses the general transformation functions Gj(y, x) = Fjx(y) that is estimated
as

Ĝjn(y, x) = F̂jx(y) =

n∑
i=1

wni(x, gjn) I{Yji ≤ y}, (3.11)

where {wni(x, gjn)} is a sequence of local linear weights introduced in (3.8). The
estimator in (3.11) is a standard kernel distribution function estimator. Other
nonparametric estimators for a conditional distribution function can be used.
For a recent contribution in this area, see e.g. Veraverbeke, Gijbels and Omelka
(2014).

4. Application

As a practical illustration, the data on hydro-geochemical stream and sediment
reconnaissance from Cook and Johnson (1981) are revisited. They consist of the
observed log-concentrations of seven chemicals in 655 water samples collected
near Grand Junction, Colorado. The data can be found e.g. as a data set called
uranium in the R-package copula (Kojadinovic and Yan, 2010).

Following Acar, Genest and Nešlehová (2012) we first concentrate on Cobalt
(Co), Scandium (Sc) and Titanium (Ti). The pairwise scatter plots are shown in
Figure 2. Suppose we are interested in the relation of Cobalt (Y1) and Scandium
(Y2) when Titanium (X) is taken into account. For exploration purpose, we fitted
simple linear models (lm) Yj = βj1+βj2 X+εj , indicated in Figures 2 (b) and (c)
with a dotted line. Similarly, nonparametric location models Yj = mj(X) + εj
were fitted with the help of the locpol R-package (Cabrera, 2012). The fits are
indicated in Figures 2 (b) and (c) with a solid line (lp).

As the fits of the nonparametric mean functions in Figures 2 (b) and (c) are in
reasonably good agreement with the simple linear fits for the majority of data
points, we use the following methods of adjustments to estimate the partial
Kendall’s tau:

lm Adjustment by simple linear regression models Yj = βj1 + βj2 X + εj ;
unif Adjustment by nonparametric estimation of the conditional distribution

functions F1x and F2x (see Section 3.4.3).
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Fig 2. Pairwise scatter plots of the values of Cobalt (Co), Scandium (Sc) and Titanium (Ti).

Table 3

Estimated values of the unconditional (global), the original partial, the partial lm (using
method lm), partial unif (using method unif), and the average conditional Kendall’s tau for

the indicated variables. Boldface notated values are plotted in Figure 3

estimated Kendall’s tau Co vs Sc Cs vs K Cs vs Sc
(given Ti) (given Ti) (given Ti)

unconditional (global) 0.535 0.207 0.233
original partial 0.449 0.205 0.117
partial (lm) 0.406 0.201 0.070
partial (unif) 0.402 0.225 0.055
average conditional 0.391 0.204 0.066

The results for both methods, partial lm and partial unif, applied to the
triplet (Co, Sc, Ti)=(Y1, Y2, X) are quite comparable, as can be seen from Ta-
ble 3. The table also lists the estimated value of the average conditional Kendall’s
tau defined in (2.6), and the sample version of original partial Kendall’s tau τ̄K ,
see (A.4), which is slightly higher than all the above values. Note that all these
values are lower than the unconditional (global) Kendall’s tau, defined in (A.2),
of Co and Sc (so unadjusted for Ti) that is 0.535.

As explained in previous sections, although the marginals may be adjusted for
the effect of the covariate, the dependence structure may change with the value
of the covariate. Then the (original) partial, partial and average conditional
measures provide different approaches to measuring average dependence over X.
To quantify the effect of the covariate in more detail we present also the condi-
tional Kendall’s tau that measures the dependence of Co and Sc when Titanium
is fixed to a given value. In Figure 3 we present the estimator of the conditional
Kendall’s tau, constructed from the observations adjusted (nonparametrically)

for the values of the covariate, i.e. using
(
Ŷ a
1i, Ŷ

a
2i

)
=

(
F̂1Xi(Y1i), F̂2Xi(Y2i)

)
,

where the observations are weighted according to the distance of Xi to the point
of interest x, as in (3.4). For details about the construction of an estimator of
the conditional Kendall’s tau see Gijbels, Veraverbeke and Omelka (2011). The
bandwidth used to construct the weights (for smoothing in the covariate direc-
tion) was fixed to 0.57 in order to have comparable results with Acar, Genest
and Nešlehová (2012).
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Fig 3. Estimated unconditional, conditional and partial Kendall’s tau for (a) Cobalt (Co) and
Scandium (Sc) given Titanium (Ti); (b) Cesium (Cs) and Pottasium (K) given Titanium
(Ti); and (c) Cesium (Cs) and Scandium (Sc) given Titanium (Ti).

The estimated conditional Kendall’s tau together with pointwise 95% con-
fidence intervals is plotted for different values of Ti in Figure 3 (a), using a
solid line and dotted lines, respectively. The lower and the upper limits of the
confidence intervals are derived by the bootstrap method presented in Omelka,
Veraverbeke and Gijbels (2013). The estimates for the unconditional (global)
Kendall’s tau and the partial (via the method unif) Kendall’s tau are indicated
by the horizontal lines (dashed-dotted and dashed lines respectively). The range
of Ti extends from the 5th to the 95th quantile of that variable. The 10th and
the 90th quantiles of Ti are indicated by dotted vertical lines.

The dependence between Cobalt and Scandium clearly depends on the Tita-
nium value, as shown by the estimated conditional Kendall’s tau.

We also present similar results for log-concentrations of other chemicals. The
considered additional triplets are (Cesium, Pottasium, Titanium) and (Cesium,
Scandium, Titanium): (Cs, K, Ti) = (Y1, Y2, X) and (Cs, Sc, Ti) = (Y1, Y2, X).
Figures 3 (b) and (c) summarize the results. Of particular interest is to note that
the unconditional Kendall’s tau is for both pairs (Y1, Y2) around 0.2, whereas
the partial Kendall’s tau is for the pair (Cs, Sc) close to zero. In other words, the
average strength of the dependence between the log-concentrations of Cesium
and Scandium is far smaller than that between the log-concentrations of Cesium
and Pottasium, when taking the log-concentration of Titanium into account. See
also Table 3 for the estimated values of the other quantities. From this and other
examples and simulations, we experienced that the values for the original partial
Kendall’s tau are often in between these of the unconditional Kendall’s tau and
the newly-defined partial Kendall’s tau. See also Figure 3 and Table 3.

To illustrate further the use of other association measures and other con-
ditioning settings, we provide in Figure 4 (a) (respectively Figure 4 (b)) the
estimated upper (respectively lower) unconditional, conditional, partial and av-
erage tail coefficient of Schmid and Schmidt (2007) (ρL, ρL(X), ρ̄L and ρAL ; and
similarly for the upper tail coefficients). Note that the average and partial co-
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Fig 4. Dependence structures between Cobalt (Co) and Scandium (Sc) given Titanium (Ti).
(a) & (b). Estimated unconditional, conditional, partial and average lower (ρL, ρL(X), ρ̄L
and ρAL) and upper tail (ρU, ρU(X), ρ̄U and ρAU) coefficients; (c). Estimated conditional
Kendall’s tau (solid lines) and average Kendall’s tau (horizontal dotted lines) for two different
conditioning settings: X = x (black lines) and X ≥ x (grey lines).

efficients are close (their population versions coincide as proved in Proposition
A.1). Further, the tail dependence seems to be a bit higher in the upper tail
than in the lower tail. Moreover the upper tail dependence reaches a maximum
around a Ti-value of 3.6 and then the tail dependence weakens. Figure 4 (c) de-
picts the estimates for the conditional and average (conditional) Kendall’s tau
for two different conditioning settings: X = x and X ≥ x (respectively the black
and grey solid curves). Although the curves look quite different with a switching
regime in dependence strength (around 3.65), their average values (the horizon-
tal lines) are close to each other, meaning that on average the strength of the
dependence between Cobalt and Scandium is comparable when either looking at
a given Titanium value, or at Titanium values exceeding a given threshold. For
all estimated conditional association measures in Figure 4 (a)–(c) we also plot
95% confidence intervals. For most confidence intervals the bootstrap procedure
of Omelka, Veraverbeke and Gijbels (2013) was applied, but intervals for the
conditional Kendall’s tau, when conditioning on the event X ≥ x, were con-
structed based on the asymptotic normality result for the conditional Kendall’s
tau.

5. Theoretical results

In this section we first discuss nonparametric estimation of a partial copula,
defined in (2.4).

We need to transform the observed random variables Y1i and Y2i, i = 1, . . . , n
to be less (or not) dependent on Xi. The transformations are based on Gj(y, x)

(with j = 1, 2) using their estimates Ĝjn(y, x). Depending on whether the influ-
ence of X on Yj (j = 1, 2) can be modelled by a parametric location-scale model
(see Section 3.4.1), a nonparametric location-scale model (see Section 3.4.2), or
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this influence is fully unknown as in Section 3.4.3, we use the following estimated
transformations

• for parametric location-scale adjustments: Ĝjn(y, x) =
y −mj(x, β̂jn)

σj(x, γ̂jn)

• for nonparametric location-scale adjustments: Ĝjn(y, x) =
y − m̂jn(x)

σ̂jn(x)
• for general nonparametric adjustments:

Ĝjn(y, x) = F̂jx(y) =
n∑

i=1

wnj(x, gjn) I{Yji ≤ y}. (5.1)

Based on the transformed observations (Ŷ a
11, Ŷ

a
21, X1), . . . , (Ŷ

a
1n, Ŷ

a
2n, Xn), with

Ŷ a
ji = ε̂ji = Ĝjn(Yji, Xi) i = 1, . . . , n , (5.2)

the nonparametric estimator of the partial copula in (2.4) is then given by

C̄n(u1, u2) =
1

n

n∑
i=1

I

{
ε̂1i ≤ F̂−1

1ε̂ (u1), ε̂2i ≤ F̂−1
2ε̂ (u2)

}
, (5.3)

where, for j = 1, 2,

F̂jε̂(y) =
1

n

n∑
i=1

I
{
ε̂ji ≤ y

}
,

is the estimate of the marginal distribution function Fjε(y) = P(εj ≤ y) of
εj = Gj(Yj , X).

The estimator (5.3) was studied in Gijbels, Omelka and Veraverbeke (2015)
but under the restrictive setting that the simplifying assumption holds, i.e.
that only the marginal distribution functions are affected by the covariate X
(see (2.7)).

In the next section we establish the asymptotic properties of the estimator
defined in (5.3), in its general setting. These results are then the basis for proving
asymptotic properties (see Section 5.2) of the estimator of the partial Kendall’s
tau, defined in (3.6). Finally, in Section 5.3, we provide asymptotic results for
the estimator of the average conditional Kendall’s tau, given in (3.5). For clarity
of presentation, all assumptions are formulated in the Appendix. The theoretical
results are presented according to the three major transformations considered
in the adjustment/transformation step (5.2), as the asymptotic behaviour of
the estimators depends on this step (and the degree of prior knowledge that it
reflects).

5.1. Asymptotic results for the nonparametric partial copula
estimator

Theorems 1, 2, and 3, establish asymptotic i.i.d. representations for the esti-
mator (5.3) of the partial copula (2.4), when using the respective estimated
transformations in (5.1).

In what follows let U1i = F1Xi(Y1i), U2i = F2Xi(Y2i) for i = 1, . . . , n.
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5.1.1. Parametric location-scale adjustments

Theorem 1. Assume that the marginal distributions follow parametric location-
scale models described in Section 3.4.1 and that (Cp), (βγ), (F1p), (F2p),
(mσp) given in the Appendix hold. Then uniformly in (u1, u2) ∈ [0, 1]2

√
n
(
C̄n(u1, u2)− C̄(u1, u2)

)
=

1√
n

n∑
i=1

ψ(U1i, U2i, u1, u2) +
2∑

j=1

fjε
(
F−1
jε (uj)

)
AT

j (u1, u2)
√
n
(
β̂jn − βj

)
+

2∑
j=1

fjε
(
F−1
jε (uj)

)
F−1
jε (uj)B

T
j (u1, u2)

√
n
(
γ̂jn − γj

)
+ oP (1),

where

ψ(v1, v2, u1, u2)) = I{v1 ≤ u1, v2 ≤ u2} − C̄(u1, u2)

− C̄(1)(u1, u2)
[
I{v1 ≤ u1} − u1

]
− C̄(2)(u1, u2)

[
I{v2 ≤ u2} − u2

]
, (5.4)

Aj(u1, u2) = EX

[
C

(j)
X (u1, u2)

ṁj(X,βj)

σj(X,γj)

]
− EX

[
C

(j)
X (u1, u2)

]
EX

[
ṁj(X,βj)

σj(X,γj)

]
,

Bj(u1, u2) = EX

[
C

(j)
X (u1, u2)

σ̇j(X,γj)

σj(X,γj)

]
− EX

[
C

(j)
X (u1, u2)

]
EX

[
σ̇j(X,γj)

σj(X,γj)

]
,

with

ṁj(X,βj) =
∂mj(X,βj)

∂βj

and σ̇j(X,γj) =
∂σj(X,γj)

∂γj

.

As mentioned in the introduction of Section 5, Theorem 1 can be viewed as
an extension of the results presented in Gijbels, Omelka and Veraverbeke (2015).
From this we thus can tell what happens if the pairwise simplifying assumption
is wrongly assumed. The consequences for the estimator C̄n can be summarized
as follows.

• C̄n still converges at
√
n-rate, but now C̄n estimates the partial copula

function C̄ (and not C which is not even well defined now).
• The limiting structure of the estimator C̄n is more complicated due to the

second and third term in the asymptotic representation of
√
n
(
C̄n − C̄

)
.

On the other hand if the pairwise simplifying assumption (2.7) really holds, then
C̄ ≡ C and both Aj(u1, u2) and Bj(u1, u2) vanish and thus also the second and
third term in the asymptotic representation of

√
n
(
C̄n − C̄

)
. The latter then

coincides with the results of Gijbels, Omelka and Veraverbeke (2015), where the
asymptotic representation

√
n
(
C̄n(u1, u2)− C(u1, u2)

)
=

1√
n

n∑
i=1

ψ(U1i, U2i, u1, u2) + oP (1)

is derived.
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5.1.2. Nonparametric location-scale adjustments

Let Fjε be the distribution function of εj .

Theorem 2. Assume that the marginal distributions follow nonparametric loca-
tion-scale models described in Section 3.4.2 and that (Cn), (Bwn), (F1n),
(F2n), (kn), (mσ) and (Xn) given in the Appendix hold. Then uniformly in
(u1, u2) ∈ [0, 1]2

√
n
(
C̄n(u1, u2)− C̄(u1, u2)

)
=

1√
n

n∑
i=1

ψ(U1i, U2i, u1, u2)

+

2∑
j=1

fjε
(
F−1
jε (uj)

) 1√
n

n∑
i=1

φj(Xi, Uji, u1, u2) + oP (1),

with ψ be given in (5.4) and where for j = 1, 2

φj(x, v, u1, u2) =
{
C(j)

x (u1, u2)− EX

[
C

(j)
X (u1, u2)

]}
×
{
F−1
jε (v) +

F−1
jε (uj)

2

[(
F−1
jε (v)

)2 − 1
]}

. (5.5)

Analogously as Theorem 1 extends the result of Gijbels, Omelka and Ver-
averbeke (2015) for the parametric location-scale model adjustment, Theorem 2
does this for the nonparametric location-scale model adjustment. If the simpli-
fying assumption (2.7) holds, then the functions φj given in (5.5) vanish and
the result of Theorem 2 is in agreement with Gijbels, Omelka and Veraverbeke
(2015). On the other hand if the simplifying assumption (2.7) does not hold,
then C̄n still converges at

√
n-rate, but now it estimates C̄ and the limiting

structure of the estimator is more involved.

5.1.3. General nonparametric adjustments

Theorem 3. Suppose that assumptions (Bw), (F), (k) and (X) given in the
Appendix are satisfied. Then the estimator C̄n is a consistent estimator of the
copula C, that is

sup
u1,u2

∣∣C̄n(u1, u2)− C̄(u1, u2)
∣∣ = OP (rn), (5.6)

where rn = max
{
g21n, g

2
2n,

√
log n
n gn1

,
√

logn
n gn2

}
.

Note that this theorem also gives the same rate as the corresponding (more
restrictive) theorem in Gijbels, Omelka and Veraverbeke (2015).
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5.2. Asymptotic results for the estimator of the partial Kendall’s
tau

5.2.1. Parametric location-scale adjustments

Note that thanks to Hadamard differentiability of the functional C 	→
∫∫

C dC
(tangentially to the set of functions that are continuous on [0, 1]2) proved in
Lemma 1 of Veraverbeke, Omelka and Gijbels (2011) one gets

√
n
(
τ̄n − τ̄

)
= 8

∫∫
αn(u1, u2) dC(u1, u2) + oP (1), (5.7)

where αn stands for the asymptotic representation of
√
n
(
C̄n − C̄

)
(see Theo-

rem 1). Now (5.7) together with some further calculations yields the following
result.

Theorem 4. Assume that the marginal distributions follow parametric location-
scale models described in Section 3.4.1 and that (Cp), (βγ), (F1p), (F2p),
(mσp) are satisfied. Then

√
n
(
τ̄n − τ̄

)
=

1√
n

n∑
i=1

[
8 C̄

(
U1i, U2i

)
− 4U1i − 4U2i + 2− 2 τ̄

]
+ 8

2∑
j=1

ÃT
j

√
n
(
β̂jn − βj

)
+ 8

2∑
j=1

B̃T
j

√
n
(
γ̂jn − γj

)
+ oP (1), (5.8)

where Ãj =

∫∫
fjε

(
F−1
jε (uj)

)
Aj(u1, u2) dC̄(u1, u2),

B̃j =

∫∫
fjε

(
F−1
jε (uj)

)
F−1
jε (uj)Bj(u1, u2) dC̄(u1, u2).

Note that provided one has asymptotic representations for
√
n
(
β̂jn−βj

)
and√

n
(
γ̂jn−γj

)
, one can with the help of (5.8) derive the asymptotic distribution

of τ̄n.

5.2.2. Nonparametric location-scale adjustments

With the help of (5.7) and similarly as in the previous section one can show the
following i.i.d. representation of the estimator of the partial Kendall’s tau.

Theorem 5. Assume that the marginal distributions follow nonparametric loca-
tion-scale models described in Section 3.4.2 and that (Cn), (Bwn), (F1n),
(F2n), (kn), (mσ) and (Xn) given in the Appendix hold. Then

√
n
(
τ̄n − τ̄

)
=

1√
n

n∑
i=1

[
8 C̄

(
U1i, U2i

)
− 4U1i − 4U2i + 2− 2 τ̄

]
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+
8√
n

2∑
j=1

n∑
i=1

{
φ̃1j(Xi)F

−1
jε (Uji) + φ̃2j(Xi)

[(
F−1

jε (Uji)
)2

2 − 1
]}

+ oP (1),

where

φ̃1j(Xi) =

∫∫
fjε

(
F−1
jε (uj)

){
C

(j)
Xi

(u1, u2)− EX

[
C

(j)
X (u1, u2)

]}
dC̄(u1, u2),

φ̃2j(Xi) =
1

2

∫∫
fjε

(
F−1
jε (uj)

)
F−1
jε (uj)

×
{
C

(j)
Xi

(u1, u2)− EX

[
C

(j)
X (u1, u2)

]}
dC̄(u1, u2).

5.2.3. General nonparametric adjustments

Theorem 6. Suppose that assumptions (Bw), (F), (k) and (X) given in the
Appendix are satisfied. Then τ̄n − τ̄ = OP (rn), where rn is given in (5.6).

5.3. Asymptotic results for the estimator of the average conditional
Kendall’s tau

Let τAn = 1
n

∑n
i=1 τn(Xi) with τn(x) given by (3.2).

Theorem 7. Assume that (kn), (Xn) and (H) given in the Appendix hold.
Assume also that the bandwidth hn satisfies the assumptions of a bandwidth
stated in (Bwn). Then

√
n
(
τAn − τA

)
=

1√
n

n∑
i=1

φ(Xi, U1i, U2i) + oP (1),

where

φ(x, u1, u2) = 2
[
4Cx(u1, u2)− 1− τA

]
− 4

[
u1 + u2 − 1

]
−

[
τ(x)− τA]. (5.9)

Note that the nice thing about τAn when compared with τ̄n is that it is asymp-
totically normal without requiring that the marginal distributions follow either
parametric or nonparametric location scale models. This might be surprising as
for each x ∈ RX the estimator of the conditional Kendall’s tau τn(x) converges
typically at most at n2/5-rate (Veraverbeke, Omelka and Gijbels, 2011). But
thanks to averaging of τn(Xi) this rate is improved to

√
n (see Akritas and Van

Keilegom, 2001; Neumeyer and Van Keilegom, 2010, among others, for simi-
lar settings in nonparametric smoothing where averaging improves the rate of
convergence).

Note that asymptotically we do not even need to bother about the adjust-
ments of the marginals. At first sight this might be surprising in view of the
previous results on conditional Kendall’s tau estimation (Veraverbeke, Omelka
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and Gijbels, 2011). This can be explained by assumption (Bwn) on the band-
width which together with assumption (H) guarantees that for each x ∈ RX the
conditional bias (given X1, . . . , Xn) of the conditional Kendall’s tau estimator
τn(x) is of order oP

(
n−1/2

)
uniformly in x. The bias of τAn is of the same order.

To improve the finite sample properties we still recommend to pre-adjust the
observations for the effect of X on their marginal distributions as described in
Section 3.2. The asymptotic normality of the resulting estimator for the average
conditional Kendall’s tau has also been established by the authors (result not
included here, for brevity).

Remark 1. Suppose that the pairwise simplifying assumption (2.7) holds. Then
the function φ in (5.9) simplifies to

φ(x, u1, u2) = 2
[
4C(u1, u2)− 1− τA

]
− 4

[
u1 + u2 − 1

]
and in fact does not depend on x any more. This implies that the estimator of
the average conditional Kendall’s tau τAn has the same asymptotic distribution
as the oracle estimator

τA(or)
n =

1

n(n− 1)

n∑
i=1

n∑
j=1

I{U1i < U1j , U2i < U2j}

based on unobserved
{
(U1i, U2i), i = 1, . . . , n

}
. Note that this asymptotic dis-

tribution then coincides also with the asymptotic distribution of the estimator
of the partial Kendall’s tau when either parametric or nonparametric location
scale models are correctly used to remove the effects of the covariate on the
marginal distributions (see Theorems 2 and 4).

6. Conclusion and Discussion

In this paper we focus on several conditional association measures describing the
dependence between two response variables Y1 and Y2, given that a third (covari-
ate) variable X takes some value x. The common feature of all these measures
is that they are copula-based, i.e. they can be described as functionals ϕ(CX) of
the conditional copula CX . This leads to two different ways of summarizing the
level of dependence by a single number. The first is to consider EX

(
ϕ(CX)

)
, lead-

ing to the average (conditional) association measures. The second is to calculate
ϕ(C̄) where C̄ is the so-called partial copula C̄(·, ·) = EX

(
CX(·, ·)

)
, resulting

in partial association measures. We provide statistical inference for the corre-
sponding estimators in the important case of the average and partial Kendall’s
tau.

Based on the obtained results on estimation of the average and partial Ken-
dall’s tau we reported on the following interesting findings. A first finding is that
the nonparametric estimator of the partial Kendall’s tau τ̄n (given in (3.6)) is
easier to compute than the nonparametric estimator for the average (condi-
tional) Kendall’s tau τAn (see (3.2), (3.4) and (3.5)). A second finding is that
for τAn we can establish an (asymptotic) i.i.d. representation for

√
n
(
τAn − τA

)
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in a general setting (see Theorem 7) and hence for τAn an asymptotic normality
result is available under this general setting. For the partial Kendall’s tau es-
timator τ̄n however we could only establish (asymptotic) i.i.d. representations
for

√
n (τ̄n − τ̄) under the more restrictive settings of parametric or nonpara-

metric location-scale modelling of the conditional marginal distributions. Under
the more general setting (not requiring such location-scales models to hold) we
only achieve consistency of the estimator τ̄n at the nonparametric rate rn (see
Theorem 6). In conclusion, both estimators exhibit a specific advantage (for one
of computational type and for the other estimator of theoretical type).

In practical examples the choice between the various association metrics de-
pends, among others, on the considered research question, but also on the taste
of the researcher. For example, if one is interested in dependence structures in
the tails of joint distributions, then a study of tail coefficient type of association
measures would be of primary interest.

The association measures of the Kendall’s tau and Spearman’s rho type are
often used in economic and social statistics. A possible disadvantage however is
that these concordance measures are not very sensitive to the dependence in the
tails of the bivariate copula. Such additional information is crucial in bivariate
extreme value theory and can be provided by the tail coefficient measures, see
Table 1. Their definitions describe the limiting amount of dependence in the
edges of the copula domain. The classical lower and upper tail dependence coef-
ficients have some drawback since they only evaluate the copula at the diagonal
sections. The association metrics of Schmid and Schmidt (2007) in Table 1 offers
an alternative by averaging over all directions in the edge.

Appendix A: (Un)conditional, average and partial association
measures

In this appendix we provide, in Sections A.1 and A.2, some background infor-
mation on the original partial correlation measures, illustrate their drawback
with an example, and illustrate the notion of conditional association measure (in
Section A.3). Moreover, we provide some further insights in coincidence, or not,
of the notions of average conditional association measure and partial association
measure.

A.1. Global or unconditional association measures

Among the most popular unconditional association measures is Kendall’s tau.
Consider (Y ′

1 , Y
′
2) an independent copy of (Y1, Y2). Kendall’s tau is then defined

as the probability of concordance minus the probability of discordance between
the couples (Y1, Y2) and (Y ′

1 , Y
′
2), i.e.

τ(Y1, Y2) = P
[
(Y1 − Y ′

1)(Y2 − Y ′
2) > 0

]
− P

[
(Y1 − Y ′

1)(Y2 − Y ′
2) < 0

]
(A.1)

= 2P
[
(Y1 − Y ′

1)(Y2 − Y ′
2) > 0

]
− 1, (A.2)
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where the second equality holds when Y1 and Y2 are continuous random vari-
ables.

Another popular association measure is Spearman’s rho defined as follows.
Consider (Y ′

1 , Y
′
2) and (Y ′′

1 , Y ′′
2 ) two independent copies of (Y1, Y2). Spearman’s

rho is defined as

ρ(S)(Y1, Y2) = 3
{
P
[
(Y1 − Y ′

1)(Y2 − Y ′′
2 ) > 0

]
− P

[
(Y1 − Y ′

1)(Y2 − Y ′′
2 ) < 0

]}
.

Recall that, due to the probability integral transformation, it holds that: if Y1

and Y2 are continuous random variables with respective distribution functions
FY1 and FY2 , then FY1(Y1) and FY2(Y2) are uniformly on [0, 1] distributed ran-
dom variables. In this particular case of continuous random variables Y1 and Y2,
Spearman’s rho is equal to Pearson’s correlation coefficient for the transformed
random variables, FY1(Y1) and FY2(Y2), that is (see Nelsen, 2006)

ρ(S)(Y1, Y2) = ρ(P)
(
FY1(Y1), FY2(Y2)

)
=

cov
(
FY1(Y1), FY2(Y2)

)√
var(FY1(Y1)) var(FY2(Y2))

= 12 cov
(
FY1(Y1), FY2(Y2)

)
,

since the variance of a uniform distribution on [0, 1] equals 1
12 .

A.2. On some original partial association measures

Assuming a trivariate normal distribution for the triple (Y1, Y2, X) implies the
following regression model structures:

Y1 = α1 + β1X + ε1, Y2 = α2 + β2X + ε2, (A.3)

where ε1 and ε2 are independent ofX. The Pearson partial correlation coefficient

ρ
(P)
X (Y1, Y2) (see (1.2)) then measures the correlation of ε1 and ε2. Note that

model (A.3) implies that the dependence structure of the ‘X adjusted’ variables
Y1 − α1 − β1X and Y2 − α2 − β2X does not depend on X any more, thus
in this model the partial correlation coefficient coincides with the conditional
correlation coefficient that measures the dependence of Y1 and Y2 given X = x.

Analogously as for the Pearson’s correlation coefficient, researchers soon real-
ized the need for alternatives to the partial Pearson’s correlation coefficient that
would not require the assumption of a trivariate normal distribution. Inspired
by formula (1.2) for the partial Pearson’s correlation coefficient, Kendall (1942)
suggested to define the (original) partial Kendall’s tau whose population version
is denoted and given by

τ̄K = τX(Y1, Y2) =
τ(Y1, Y2)− τ(Y1, X) τ(Y2, X)√
1− τ2(Y1, X)

√
1− τ2(Y2, X)

, (A.4)

where τ(A,B) is the (global) Kendall’s tau of the random variables A and B,
see (A.1). See also Goodman (1959). While the obvious advantage of τ̄K is its
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simplicity (to get the estimate it is sufficient to replace the pairwise Kendall’s
tau with their empirical versions), several criticism appeared in the literature,
questioning whether τ̄K is a reasonable measure of the dependence of Y1 and
Y2 when X is taken into consideration, see e.g. Korn (1984), Nelson and Yang
(1988) and Gripenberg (1992). The difficulties of τ̄K are illustrated also by the
following two examples (for other examples see the references given above).

Example A.1 Consider the models:

Y1 = X + ε, Y2 = X2 + ε,

where X ∼ N (0, 1), ε ∼ N (0, σ2) and X and ε are independent. Note that
Y1 − X = Y2 − X2, thus Y1 and Y2 are perfectly dependent when (correctly)
adjusted for the effect of X, but it can be checked via Monte Carlo simulations
that τ̄K depends on the value of σ and even τ̄K → 0 as σ → 0. Thus for small
σ the coefficient τ̄K completely fails to measure the dependence of Y1 and Y2

when adjusted for X.

Example A.2 Suppose we have the models

Y1 = 2 exp{X}+ ε1, Y2 = 2 exp{X}+ ε2, (A.5)

where X, ε1 and ε2 are independent and all with a uniform distribution on [0, 1]
(denoted by U [0, 1]). Note that here Y1 − 2 exp{X} and Y2 − 2 exp{X} (that
is Y1 and Y2 adjusted for X) are independent. But by Monte Carlo simulation
one can find out that τ̄K

.
= −0.24.

A.3. Conditional association measures

A more detailed characterization of the dependence structure can be gained with
the help of conditional measures of dependency/association, that measure the
dependency/association of (Y1, Y2) conditionally on the event that X = x. Let
us consider for instance the conditional Kendall’s tau (see Gijbels, Veraverbeke
and Omelka, 2011) that is denoted and defined as

τ(x) = τ(Y1, Y2|X = x) = 2P
[
(Y1−Y ′

1)(Y2−Y ′
2) > 0 |X = X ′ = x

]
−1, (A.6)

where (Y ′
1 , Y

′
2 , X

′) is an independent copy of the random vector (Y1, Y2, X) and
Y1 and Y2 are continuous random variables. See also (A.1) and (A.2). It is easy to
see that in the first example (Example A.1) τ(x) = 1 for all x, while in Example
A.2 τ(x) = 0 for all x. Examples A.1 and A.2 are thus simple in the sense that
the conditional dependence structures do not change with x, i.e. are constant
in x. Denote by Y a

1 the variable Y1 adjusted for X, and similarly the variable
Y a
2 , the variable Y2 adjusted for X. Note that in the above two examples one

can characterize the dependence of Y a
1 and Y a

2 by a single (global) association
measure (respectively 1 and 0).
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In more complex (and realistic) models, the dependency structure of Y a
1

and Y a
2 can still change with X, which prevents us from describing the depen-

dency/association structure of Y a
1 and Y a

2 by one single real number. Such a
more complex model is presented in the following example that modifies Exam-
ple A.2.

Example A.3 Suppose that Y1 and Y2 follow (A.5), and that the marginal
distributions of X, ε1 and ε2 are the same as in Example A.2. But now the
conditional joint distribution of (ε1, ε2) given X = x, with x in [0, 1] and
(u1, u2) ∈ [0, 1]2, is given by

P
(
ε1 ≤ u1, ε2 ≤ u2 |X = x

)
= xu1 u2 + (1− x)min(u1, u2), (A.7)

Note that ε1 is independent of X, and thus ε1 given X = x is U [0, 1] for each
value of x ∈ [0, 1]. The same holds for ε2 given X = x. But X still influences
the dependence structure of the random vector (ε1, ε2). In this case, a straight-
forward calculation shows that the conditional Kendall’s tau equals

τ(x) = (1− x)(1− x
3 ).

This example just illustrates the usefulness of the concept of conditional Ken-
dall’s tau, or more generally, the concept of conditional association measures
(see also Section 2).

A.4. On average conditional and partial association measures

We now look into the average conditional association measures, defined in gen-
eral as EX {ϕ(X)}, and the partial association measures, defined as ϕ(C̄). Ta-
ble 1 in Section 1 indicates in the last column some interesting facts regarding
equality (or not) of the two concepts. Example A.3 serves to illustrate that for
Kendall’s tau they in general do not coincide.

Example A.3 (continued) Note that in this example the conditional copula
is given by the right-hand side of (A.7). Denote C1(u1, u2) = u1u2 (the inde-
pendence copula) and C2(u1, u2) = min(u1, u2) (the upper Fréchet-Hoeffding
bound). Then one can write, with fX denoting the density of X,

τ̄ = 4

∫
RX

∫
RX

∫∫
[0,1]2

[
xC1(u1, u2) + (1− x)C2(u1, u2)

]
d
[
x′ C1(u1, u2) + (1− x′)C2(u1, u2)

]
fX(x)fX(x′) dx dx′ − 1,

= τ11
4 + τ12

4 + τ21
4 + τ22

4 ,

where τij = 4
∫∫

[0,1]2
Ci(u1, u2) dCj(u1, u2)− 1.
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On the other hand

EX τ(X) = 4

∫
RX

∫∫
[0,1]2

[
xC1(u1, u2) + (1− x)C2(u1, u2)

]
d
[
xC1(u1, u2) + (1− x)C2(u1, u2)

]
fX(x) dx− 1,

= τ11
3 + τ12

6 + τ21
6 + τ22

3 .

Now it is easy to calculate that τ11 = 0, τ12 = τ21 = 1
3 and τ22 = 1, which

further implies

τ̄ = 1
4 (0 +

2
3 + 1) = 5

12 , and τA = EXτ(X) = 1
6 (0 +

2
3 + 2) = 4

9 .

For the lower and upper tail coefficients, λL, λU, ρL and ρU in Table 1 the
functional ϕ(·) involves a limit expression. It is fairly easy to show though that
for this type of association measure, the concepts of average and partial tail
coefficients coincide. Since the limits do not need to exist (see e.g. Larsson
et al., 2011) we need to request existence.

Proposition A.1. Suppose that all quantities below exist. Then

λA
L = λ̄L , λA

U = λ̄U , and ρAL = ρ̄L , ρAU = ρ̄U .

Proof. Note that

λA
L = EX λL(X) = EX

[
lim
t→0+

CX(t, t)

t

]
= lim

t→0+
EX

[
CX(t, t)

t

]
= lim

t→0+

C̄(t, t)

t
= λ̄L ,

where the second equality is justified by applying Lebesgue’s dominated conver-
gence theorem (allowing to interchange the integral and the limit). Indeed, by
Lipschitz continuity of the copula Cx we have

|Cx(t, t)| = |Cx(t, t)− Cx(0, 0)| ≤ 2|t− 0| ≤ 2|t| ,
and hence ∣∣∣∣CX(t, t)

t

∣∣∣∣ ≤ 2 ,

which is integrable with respect to dFX(x).
The other statements can be proven in a similar way.

Appendices B–F: Assumptions, proofs and auxiliary results

Here we list the assumptions needed for each of the theoretical results, and pro-
vide proofs for these. The proofs of the asymptotic results for the nonparametric
partial copula estimator are presented in Appendices B, C and D respectively, a
division according to the three major transformations. The proof of Theorem 7,
establishing the asymptotic representation for the estimator of the average con-
ditional Kendalls’ tau, is given in Appendix E. Finally, some auxiliary results,
needed in the proofs, can be found in Appendix F.
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Appendix B: Adjusting through parametric location-scale models

In this appendix we prove Theorem 1.

Regularity assumptions

(Cp) For j = 1, 2, the j-th first-order partial derivative of Cx exists and is
continuous on the set {(u1, u2) ∈ [0, 1]2 : 0 < uj < 1} uniformly in
x ∈ RX , where RX is the support of fX , the marginal density of X.

(βγ) For j = 1, 2 the differences
√
n(β̂jn −βj) and

√
n(γ̂jn −γ) converge in

distribution.
(F1p) The functions F1ε(y) and F2ε(y) are continuously differentiable.
(F2p) For j = 1, 2 the functions fjε

(
F−1
jε (u)

)
and fjε

(
F−1
jε (u)

)
F−1
jε (u) are

continuous and tend to zero when u → 0+ or u → 1−, where fjε = F ′
jε.

(mσp) For j = 1, 2 there exist open neighbourhoods U(βj) and U(γj) of βj

and γj respectively, such that the partial derivatives of the functions
mj(x, ·) of σj(x, ·) with respect to their second arguments are uniformly
continuous as functions of both arguments on RX × U(βj) and RX ×
U(γj). Moreover, infx∈RX ,c∈U(γj)

σj(x, c) > 0.

Note that if the parameters β1,β2,γ1,γ2 were known, then one could esti-
mate the unknown distribution function Fjε as

F̂jε(y) =
1

n

n∑
i=1

I
{
εji ≤ y

}
, j = 1, 2.

The estimator of C̄ then could be

C̄(or)
n (u1, u2) =

1

n

n∑
i=1

I
{
ε1i ≤ F̂−1

1ε (u1), ε2i ≤ F̂−1
2ε (u2)

}
, (B.1)

which can be viewed as a kind of ‘oracle’ estimator.
The proof of Theorem 1 follows by Proposition B.1 and by applying standard

results on the asymptotic representation of the empirical copula process applied

to C̄
(or)
n (see e.g. Gänssler and Stute, 1987; Fermanian, Radulovič and Wegkamp,

2004; Tsukuhara, 2005; Segers, 2012, among others).

Proposition B.1. Assume that the assumptions of Theorem 1 are satisfied.
Then
√
n
(
C̄n(u1, u2)− C̄(or)

n (u1, u2)
)

=

2∑
j=1

fjε
(
F−1
jε (uj)

)
AT

j (u1, u2)
√
n
(
β̂jn − βj

)
+

2∑
j=1

fjε
(
F−1
jε (uj)

)
F−1
jε (uj)B

T
j (u1, u2)

√
n
(
γ̂jn − γj

)
+ oP (1), (B.2)

where C̄
(or)
n (u1, u2) is defined in (B.1).
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Proof of Proposition B.1

The proof closely follows the proof of Theorem 4 in Gijbels, Omelka and Ver-
averbeke (2015).

Decomposition

Let us decompose the copula process
√
n
(
C̄n − C̄

(or)
n

)
as

√
n
(
C̄n − C̄(or)

n

)
= Ān + B̄n + En, (B.3)

where Ān = An − EAn, with

An(u1, u2) =
1√
n

n∑
i=1

[
I
{
ε̂1i ≤ F̂−1

1ε̂ (u1), ε̂2i ≤ F̂−1
2ε̂ (u2)

}
− I

{
ε1i ≤ F̂−1

1ε̂ (u1), ε2i ≤ F̂−1
2ε̂ (u2)

}]
,

and B̄n = Bn − EBn, with

Bn(u1, u2) =
1√
n

n∑
i=1

[
I
{
ε1i ≤ F̂−1

1ε̂ (u1), ε2i ≤ F̂−1
2ε̂ (u2)

}
− I

{
ε1i ≤ F̂−1

1ε (u1), ε2i ≤ F̂−1
2ε (u2)

}]
.

Finally, En is given by

En(u1, u2) = EAn(u1, u2) + EBn(u1, u2)

=
1√
n

n∑
i=1

[
E I

{
ε̂1i ≤ F̂−1

1ε̂ (u1), ε̂2i ≤ F̂−1
2ε̂ (u2)

}
− E I

{
ε1i ≤ F̂−1

1ε (u1), ε2i ≤ F̂−1
2ε (u2)

}]
.

Completely analogously as in the proof of Theorem 4 in Gijbels, Omelka and
Veraverbeke (2015) one can show that Ān, B̄n are asymptotically negligible
uniformly in (u1, u2). Thus it remains to investigate the process En.

The process En

Note that

En(u1, u2) =
√
nEX

[
CX

(
F1X

(
F̂−1
1X (u1)

)
, F2X

(
F̂−1
2X (u2)

))
− CX

(
F1ε

(
F̂−1
1ε (u)

)
, F2ε

(
F̂−1
2ε (u)

))]
, (B.4)

where

FjX(y) = Fjε

(
y−mj(X,βj)

σj(X,γj)

)
and F̂jX(y) = F̂jε̂

(
y−mj(X,β̂jn)

σj(X,γ̂jn)

)
, j = 1, 2.
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Applying the mean value theorem yields

En(u1, u2) = EX C
(1)
X (u1X , u2X)Y

(n)
1X (u1) + EX C

(2)
X (u1X , u2X)Y

(n)
2X (u2), (B.5)

where for given x ∈ RX

Y
(n)
jx (u) =

√
n
[
Fjx

(
F̂−1
jx (u)

)
− Fjε

(
F̂−1
jε (u)

)]
, j = 1, 2, (B.6)

and the point ujx lies between the points Fjx

(
F̂−1
jx (u)

)
and Fjε

(
F̂−1
jε (u)

)
.

Suppose for a moment that

Y
(n)
jx (u) = fjε

(
F−1
jε (u)

)
F−1
jε (u)

(
σ̇j(x,γj)

σj(x,γj)
− EX

[
σ̇j(X,γj)

σj(X,γj)

])√
n (γ̂jn − γj)

+ fjε
(
F−1
jε (u)

) [
ṁj(x,βj)− EX ṁj(X,βj)

]√
n
(
β̂jn − βj

)
+ oP (1) (B.7)

holds uniformly in x ∈ RX and u ∈ [0, 1] (this is proved below, see pages 2451–
2454). Then thanks to assumptions (βγ) and (F2p) for each ε > 0 one can find
δ > 0 such that

P

(
sup

x∈RX

sup
u∈[0,δ]∪[1−δ,1]

∣∣Y (n)
jx (u)

∣∣ > ε

)
< ε (B.8)

for all sufficiently large n. This further implies that it is sufficient that we deal

with the term EX C
(1)
X (u1X , u2X)Y

(n)
1X (u1)

(
EX C

(2)
X (u1X , u2X)Y

(n)
2X (u2)

)
on the

right-hand side of (B.5) when u1 ∈ [δ, 1 − δ] (u2 ∈ [δ, 1 − δ]). As ujx lies

between Fjx

(
F̂−1
jx (uj)

)
and Fjε

(
F̂−1
jε (uj)

)
, (B.22) and (B.23) (proved below, see

page 2454) yield that ujx = uj + oP (1) uniformly in (x, uj) ∈ RX × [0, 1]. This
together with assumption (Cp) implies that

sup
x∈RX

sup
(u1,u2)∈[δ,1−δ]×[0,1]

∣∣C(1)
x (u1x, u2x)− C(1)

x (u1, u2)
∣∣ = oP (1), (B.9)

sup
x∈RX

sup
(u1,u2)∈[0,1]×[δ,1−δ]

∣∣C(2)
x (u1x, u2x)− C(2)

x (u1, u2)
∣∣ = oP (1), (B.10)

Now combining (B.7), (B.8), (B.9) and (B.10) yields that the right-hand
side of (B.5) can be approximated by the right-hand side of (B.2) uniformly in
(u1, u2) ∈ [0, 1]2, which finishes the proof of the theorem.

Proving (B.7)

Using the mean value theorem one can calculate that

Fjx

(
F̂−1
jx (u)

)
= Fjε

(
F̂−1

jε̂
(u)σj(x,γ̂jn)+mj(x,β̂jn)−mj(x,βj)

σj(x,γj)

)
= Fjε

(
F̂−1
jε̂ (u)

)
+ fjε

(
yxj (u)

)
F̂−1
jε̂ (u)

(
σj(x,γ̂jn)

σj(x,γj)
− 1

)
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+ fjε
(
yxj (u)

)mj(x,β̂jn)−mj(x,βj)

σj(x,γj)

= Fjε

(
F̂−1
jε̂ (u)

)
+ fjε

(
yxj (u)

)
F̂−1
jε̂ (u)

σ̇j(x,γ
∗
j )

σj(x,γj)
(γ̂jn − γj)

+ fjε
(
yxj (u)

) ṁj(x,β
∗
j )

σj(x,γj)

(
β̂jn − βj

)
, (B.11)

where yxj (u) lies between F̂−1
jε̂ (u) and

F̂−1
jε̂

(u)σj(x,γ̂jn)+mj(x,β̂jn)−mj(x,βj)

σj(x,γj)
, γ∗

j be-

tween γ̂jn and γj , and finally β∗
j between β̂jn and βj .

First note that by assumptions (βγ) and (mσp)

ṁj(x,β
∗
j ) = ṁj(x,βj) + oP (1), σ̇j(x,γ

∗
j ) = σ̇j(x,γj) + oP (1) (B.12)

uniformly in x.
To proceed further with the analysis of the right-hand side of (B.11), one

needs to analyse the term Fjε

(
F̂−1
jε̂ (u)

)
. To do so it is useful to investigate the

process
{
F̂jε̂

(
F−1
jε (u)

)
, u ∈ [0, 1]

}
. In the same way as in the proof of Theorem 4

in Gijbels, Omelka and Veraverbeke (2015) one can show that uniformly in
u ∈ [0, 1]

F̂jε̂

(
F−1
jε (u)

)
− F̂jε

(
F−1
jε (u)

)
− E F̂jε̂

(
F−1
jε (u)

)
+ u = oP

(
1√
n

)
. (B.13)

This together with

E F̂jε̂

(
F−1
jε (u)

)
= E I

{ εjσj(X,γj)+mj(X,βj)−mj(X,β̂jn)

σj(X,γ̂jn)
≤ F−1

jε (u)
}

= EX Fjε

(
F−1

jε (u)σj(X,γ̂jn)+mj(X,β̂jn)−mj(X,βj)

σj(X,γj)

)
further implies that uniformly in u ∈ [0, 1]

F̂jε̂

(
F−1
jε (u)

)
= F̂jε

(
F−1
jε (u)

)
+ EX fjε

(
zXj (u)

)
F−1
jε (u)

[
σj(X,γ̂jn)

σj(X,γj)
− 1

]
+ EX fjε

(
zXj (u)

) [mj(X,β̂jn)−mj(X,βj)

σj(X,γj)

]
+ oP

(
1√
n

)
,

where zxj (u) lies between F−1
jε (u) and

F−1
jε (u)σj(x,γ̂jn)+mj(x,β̂jn)−mj(x,βj)

σj(x,γjn)
. Now

thanks to assumptions (βγ), (mσp) and Lemma F.4 (see Appendix F)

fjε
(
zxj (u)

)
= fjε

(
F−1
jε (u)

)
+ oP (1),

fjε
(
zxj (u)

)
F−1
jε (u) = fjε

(
F−1
jε (u)

)
F−1
jε (u) + oP (1),

uniformly in u and x, which further yields that

F̂jε̂

(
F−1
jε (u)

)
= F̂jε

(
F−1
jε (u)

)
+ fjε

(
F−1
jε (u)

)
F−1
jε (u)EX

[
σ̇j(X,γj)

σj(X,γj)

]
(γ̂jn − γj)

+ fjε
(
F−1
jε (u)

)
EX

[
ṁj(X,βj)

σj(X,γj)

](
β̂jn − βj

)
+ oP

(
1√
n

)
. (B.14)
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Now, thanks to (B.14) and assumptions (βγ), (F2p) and (mσp) one gets that
the process {√

n
[
F̂jε̂(z)− Fjε(z)

]
, z ∈ R

}
converges in distribution to a limiting process Fj . Further, Fj satisfies that
P
(
Fj ∈ A

)
= 1, where A is a set of functions on [0, 1] such that each function

α ∈ A can be written as α(x) = h(Fjε(x)), where h is a continuous function
on [0, 1] that meets h(0) = h(1) = 0.

Now, we are ready to use the Hadamard-differentiability of the functional
F̃ → F ◦ F̃−1 at the point F̃ = F (see Lemma A.2 of Omelka, Gijbels and

Veraverbeke, 2009). Put αn(z) =
√
n
[
F̂jε̂(z)− Fjε(z)

]
and rewrite

√
n
[
Fjε

(
F̂−1
jε̂ (u)

)
− u

]
=

√
n
[
Fjε

((
Fjε +

αn√
n

)−1
(u)

)
− u

]
. (B.15)

Now, one can use Theorem 3.9.4 of van der Vaart and Wellner (1996) together
with the Hadamard differentiability, (B.14) and (B.15) to deduce that uniformly
in u ∈ [0, 1]

√
n
[
Fjε

(
F̂−1
jε̂ (u)

)
− u

]
= −αn

(
F−1
jε (u)

)
+ oP (1)

= −
√
n
[
F̂jε

(
F−1
jε (u)

)
− u

]
−
√
n fjε

(
F−1
jε (u)

)
F−1
jε (u)EX

[
σ̇j(X,γj)

σj(X,γj)

]
(γ̂jn − γj)

−
√
n fjε

(
F−1
jε (u)

)
EX

[
ṁj(X,βj)

σj(X,γj)

] (
β̂jn − βj

)
+ oP (1). (B.16)

Now, it remains to deal with the terms fjε
(
yxj (u)

)
and fjε

(
yxj (u)

)
F̂−1
jε̂ (u) on

the right-hand side of (B.11). First note that (B.16) together with (F2p) implies
that uniformly in u ∈ [0, 1]

fjε
(
F̂−1
jε̂ (u)

)
= fjε

(
F−1
jε

[
Fjε(F̂

−1
jε̂ (u))

])
= fjε

(
F−1
jε (u)

)
+ oP (1) (B.17)

and analogously

fjε
(
F̂−1
jε̂ (u)

)
F̂−1
jε̂ (u) = fjε

(
F−1
jε (u)

)
F−1
jε (u) + oP (1). (B.18)

Further note that yxj (u) introduced in (B.11) satisfies yxj (u) = F̂−1
jε̂ (u)(1 +

an)+ bn, where both an and bn are of order oP (1) (uniformly in u and x). Thus
it holds uniformly in u, x

Fjε(y
x
j (u)) = Fjε

(
F̂−1
jε̂ (u)(1 + an) + bn

)
= Fjε

(
F̂−1
jε̂ (u)

)
+ fjε

(
F̂−1
jε̂ (u)(1 + a∗n) + b∗n

)
(anF̂

−1
jε̂ (u) + bn)

= Fjε

(
F̂−1
jε̂ (u)

)
+ an

1+a∗
n
fjε

(
F̂−1
jε̂ (u)(1 + a∗n) + b∗n

)(
F̂−1
jε̂ (u)(1 + a∗n) + b∗n

)
+ oP (1)

= Fjε

(
F̂−1
jε̂ (u)

)
+ oP (1), (B.19)
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where a∗n (b∗n) lies between zero and an (bn). Now, (B.19) together with (B.17)
and (B.18) implies that (uniformly in u and x)

fjε
(
yxj (u)

)
= fjε

(
F−1
jε (u)

)
+ oP (1), (B.20)

fjε
(
yxj (u)

)
F̂−1
jε̂ (u) = fjε

(
F−1
jε (u)

)
F−1
jε (u) + oP (1). (B.21)

Finally using (B.12), (B.17), (B.18), (B.20), (B.21) and approximation (B.16)

for Fjε

(
F̂−1
jε̂ (u)

)
in (B.11) yields that uniformly in u ∈ [0, 1] and x ∈ RX

√
n
[
Fjx

(
F̂−1
jx (u)

)
− u

]
= −

√
n
[
F̂jε

(
F−1
jε (u)

)
− u

]
+ fjε

(
F−1
jε (u)

)
F−1
jε (u)

[
σ̇j(x,γj)

σj(x,γj)
− EX

σ̇j(X,γj)

σj(X,γj)

]√
n (γ̂jn − γj)

+ fjε
(
F−1
jε (u)

) [
ṁj(x,βj)− EX ṁj(X,βj)

]√
n
(
β̂jn − βj

)
+ oP (1). (B.22)

Analogously to (B.16) using the Hadamard differentiability of the functional

F̃ → F ◦ F̃−1 but considering αn(z) =
√
n
[
F̂jε(z)− Fjε(z)

]
one can show that

√
n
[
Fjε

(
F̂−1
jε (u)

)
− u

]
= −

√
n
[
F̂jε

(
F−1
jε (u)

)
− u

]
+ oP (1), (B.23)

which together with (B.6) and (B.22) yields (B.7).

Appendix C: Adjusting through nonparametric location-scale
models

In this appendix we list the assumptions needed for Theorem 2, and we provide
a proof for this result.

Regularity assumptions

Let Fjε stand for the distribution function of εj .

(Cn) The second-order partial derivatives C
(1,1)
x , C

(1,2)
x and C

(2,2)
x of the cop-

ula function Cx, with C
(i,j)
x (u2, u2) =

∂2Cx(u1,u2)
∂ui∂uj

, satisfy

C(1,1)
x (u1, u2) = O

(
1

u1(1−u1)

)
, C(2,2)

x (u1, u2) = O
(

1
u2(1−u2)

)
,

C(1,2)
x (u1, u2) = O

(
1√

u1u2(1−u1)(1−u2)

)
uniformly in x ∈ RX .

Further C
(j)
x (u1, u2) viewed as a function of x is continuously differen-

tiable in RX uniformly in (u1, u2) ∈ [0, 1]2 for j = 1, 2.
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(Bwn) For j = 1, 2 and for some δ > 0:

n g3+δ
jn

logn
→ ∞ and n g4jn → 0.

(F1n) The functions F1ε(y) and F2ε(y) are twice continuously differentiable
and E ε4j < ∞ for j = 1, 2.

(F2n) For j = 1, 2 the functions F ′
jε

(
F−1
jε (u)

)(
1 + F−1

jε (u)
)

are of order

O(uδ(1 − u)δ) for some δ ≥ 1
3 and the functions F ′′

jε(y)(1 + y)2 are
bounded.

(kn) The kernel k is twice continuously differentiable, symmetric with sup-
port [−1, 1], decreasing on [0, 1), and integrates out to one.

(Xn) The support RX of X is a non-empty finite interval (a, b). Suppose
that infx∈RX

fX(x) > 0 and fX(x) is twice continuously differentiable
in RX .

(mσ) For j = 1, 2 the functions mj and σj are twice continuously differen-
tiable on the interior of RX and infx∈RX

σj(x) > 0.

Remark 2. Note that assumption (Bwn) requires that gjn = o(n−1/4). As the
optimal rate is usually gjn = O(n−1/5), assumption (Bwn) says that gjn should
converge to zero faster than at an optimal rate.

The proof of Theorem 2 follows from Proposition C.1 and standard results on

the asymptotic representation of the empirical copula process applied to C̄
(or)
n ,

that is given in (B.1).

Proposition C.1. Assume that the assumptions of Theorem 2 are satisfied.
Then uniformly in (u1, u2) ∈ [0, 1]2

√
n
(
C̄n(u1, u2)− C̄(or)

n (u1, u2)
)

=

2∑
j=1

fjε
(
F−1
jε (uj)

) 1√
n

n∑
i=1

φj(Xi, Uji, u1, u2) + oP (1). (C.1)

Proof of Proposition C.1

As the proof is analogous to the proof of Proposition B.1 in Appendix B only
the differences between these two proofs are briefly indicated.

In the same way as in the proof of Proposition B.1 one can use the decom-
position (B.3) with the copula estimator C̄n and the distribution functions F̂jε̂

based on the residuals given by (3.10).

Further, completely analogously as in the proof of Theorem 6 in Gijbels,
Omelka and Veraverbeke (2015) one can show that Ān, B̄n are asymptotically
negligible uniformly in (u1, u2). Thus it remains to investigate the process En.
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Treatment of En

Note that En can be expressed as (B.4) with Fjx(y) and F̂jx(y) given by

Fjx(y) = Fjε

(
y−mj(x)
σj(x)

)
and F̂jx(y) = F̂jε̂

(
y−m̂jn(x)
σ̂jn(x)

)
, j = 1, 2. (C.2)

Now with the help of a second-order Taylor series expansion one gets

En(u1, u2) = EX C
(1)
X (u1, u2)Y

(n)
1X (u1) + EX C

(2)
X (u1X , u2X)Y

(n)
2X (u2) (C.3)

+ 1
2 EX

2∑
j=1

2∑
k=1

C
(j,k)
X (u1X , u2X)Y

(n)
jX (uj)Y

(n)
kX (uk), (C.4)

where ujx (for j = 1, 2) lies between the points Fjx

(
F̂−1
jx (u)

)
and Fjε

(
F̂−1
jε (u)

)
and Y

(n)
jx is given in (B.6) (with Fjx(y) and F̂jx(y) given by (C.2)).

Now completely analogously as in the proof of Theorem 6 of Gijbels, Omelka
and Veraverbeke (2015) one can show that all the terms given in (C.4), are of
order oP

(
1√
n

)
uniformly in (u1, u2) ∈ [0, 1]2. The only difference is that thanks

to the results of Ojeda (2008) and assumption (Bwn) one gets

sup
x∈RX

∣∣mj(x)− m̂jn(x)
∣∣ = oP

(
n−a

)
, sup
x∈RX

∣∣σj(x)− σ̂jn(x)
∣∣ = oP

(
n−a

)
, (C.5)

with a = 1
3 instead of a = 3

8 as in (C5) of Gijbels, Omelka and Veraverbeke
(2015). But this is compensated by requiring that δ > 1

3 in (F2n) (instead of
δ > 1

4 as in (F2n) of Gijbels, Omelka and Veraverbeke (2015)) so that Lemma 3
of Gijbels, Omelka and Veraverbeke (2015) still holds true.

Thus it remains to investigate the right-hand side of (C.3). To proceed with

the investigation of Y
(n)
jx one needs to deal with the quantity Fjx

(
F̂−1
jx (u)

)
. By

(F2n), (C.5) and a second-order Taylor series expansion one gets that uniformly
in u ∈ [0, 1] and x ∈ RX

Fjx

(
F̂−1
jx (u)

)
= Fjε

(
F̂−1

jε̂
(u)σ̂jn(x)+mj(x)−m̂jn(x)

σj(x)

)
= Fjε

(
F̂−1
jε̂ (u)

)
+ fjε

(
F̂−1
jε̂ (u)

)
F̂−1
jε̂ (u)

(
σ̂jn(x)
σj(x)

− 1
)

(C.6)

+ fjε
(
F̂−1
jε̂ (u)

) m̂jn(x)−m(x)
σj(x)

+ oP
(

1√
n

)
.

To go on one needs to treat the quantity Fjε

(
F̂−1
jε̂ (u)

)
. Analogously as in the

proof of Proposition B.1 it is useful to investigate F̂jε̂

(
F−1
jε (u)

)
. In the same

way as in the proof of Theorem 6 in Gijbels, Omelka and Veraverbeke (2015)
one can show that (B.13) holds. This together with

E F̂jε̂

(
F−1
jε (u)

)
= EX Fjε

(
F−1

jε (u)σ̂j(X)+m̂jn(X)−mj(X)

σj(X)

)
,
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assumptions (mσ), (F1n), (F2n), (C.5), and Lemmas F.2 and F.3 (see Ap-
pendix F) yields that uniformly in u ∈ [0, 1]

F̂jε̂

(
F−1
jε (u)

)
= F̂jε

(
F−1
jε (u)

)
+ fjε

(
F−1
jε (u)

)
F−1
jε (u)EX

[
σ̂jn(X)
σj(X) − 1

]
+ fjε

(
F−1
jε (u)

)
EX

[
m̂jn(X)−mj(X)

σj(X)

]
+ oP

(
1√
n

)
= F̂jε

(
F−1
jε (u)

)
+ fjε

(
F−1
jε (u)

)
F−1
jε (u)

1

n

n∑
i=1

ε2ji − 1

2

+ fjε
(
F−1
jε (u)

) 1

n

n∑
i=1

εji + oP
(

1√
n

)
.

Now, analogously as in the proof of Proposition B.1 one can use the Hada-
mard-differentiability of the functional F̃ → F ◦ F̃−1 at the point F̃ = F to
deduce that uniformly in u ∈ [0, 1]

√
n
[
Fjε

(
F̂−1
jε̂ (u)

)
− u

]
= −

√
n
[
F̂jε

(
F−1
jε (u)

)
− u

]
− fjε

(
F−1
jε (u)

)
F−1
jε (u)

1√
n

n∑
i=1

ε2ji − 1

2
(C.7)

− fjε
(
F−1
jε (u)

) 1√
n

n∑
i=1

εji + oP (1).

Note that (C.7) together with (F2n) also yields that (B.17) and (B.18) hold
uniformly in u ∈ [0, 1].

Now using (B.17) and (B.18) and approximation (C.7) for Fjε

(
F̂−1
jε̂ (u)

)
in

(C.6) gives that uniformly in u ∈ [0, 1] and x ∈ RX

√
n
[
Fjx

(
F̂−1
jx (u)

)
− u

]
= −

√
n
[
F̂jε

(
F−1
jε (u)

)
− u

]
+ fjε

(
F−1
jε (u)

)
F−1
jε (u)

√
n

[
σ̂jn(x)

σj(x)
− 1− 1

n

n∑
i=1

ε2ji − 1

2

]

+ fjε
(
F−1
jε (u)

)√
n

[
m̂jn(x)−mj(x)

σj(x)
− 1

n

n∑
i=1

εji

]
+ oP (1).

Analogously one can show that (B.23) holds, which together with (B.22) yields
that uniformly in u ∈ [0, 1] and x ∈ RX

Y
(n)
jx (u) = fjε

(
F−1
jε (u)

)
F−1
jε (u)

√
n

[
σ̂jn(x)

σj(x)
− 1− 1

n

n∑
i=1

ε2ji − 1

2

]
(C.8)

+ fjε
(
F−1
jε (u)

)√
n

[
m̂jn(x)−mj(x)

σj(x)
− 1

n

n∑
i=1

εji

]
+ oP (1).
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Now combining (C.8) together with Lemmas F.2 and F.3 yields that uni-
formly in (u1, u2)

EX C
(j)
X (u1, u2)Y

(n)
jX (uj) =

1√
n

n∑
i=1

φj(Xi, εji, u1, u2) + oP (1),

where φj is defined in (5.5). Thus the right-hand side of (C.3) can be approx-
imated by the right-hand side of (C.1) uniformly in (u1, u2) ∈ [0, 1]2, which
finishes the proof of the proposition.

Appendix D: Adjusting through general nonparametric estimators
of F1x and F2x

The regularity assumptions needed in Theorem 3 are provided below.

Regularity assumptions

(Bw) For j = 1, 2: gjn = o(1) and n gjn → ∞.
(F) The second derivatives of the functions F1x(y) and F2x(y) with respect

to x are bounded.
(k) The kernel k is a symmetric and continuous function with support [−1, 1].
(X) The support RX of X is a non-empty finite interval (a, b).

The proof of Theorem 3 is completely analogous to the proof of Theorem 1
in Gijbels, Omelka and Veraverbeke (2015).

Appendix E: Asymptotic result for the average conditional
Kendall’s tau

We provide the technical details concerning the asymptotic result for the average
conditional Kendall’s tau, stated in Theorem 7.

(H) The joint conditional distribution function Hx(y1, y2) has continuous mar-
ginal conditional distribution functions F1x and F2x. Further Hx(y1, y2)
is twice continuously differentiable as a function of x ∈ RX uniformly in
(y1, y2) ∈ R

2.

Proof of Theorem 7

Analogously as in Lemma 4 of Gijbels, Omelka and Veraverbeke (2015) with
the help of assumptions (Bwn), (Xn) and (kn) one can show that

sup
x∈RX

n∑
i=1

w2
ni(x, hn) = OP

(√
logn
nhn

)
= oP

(
1√
n

)
.
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This further yields that

τ̂n(x) = 4

n∑
j=1

n∑
k=1

wnj(x, hn)wnk(x, hn) I{Y1j < Y1k, Y2j < Y2k} − 1 + oP
(

1√
n

)
uniformly in x ∈ RX . So one can approximate τAn as

τAn =
4

n

n∑
i=1

n∑
j=1

n∑
k=1

wnj(Xi, hn)wnk(Xi, hn) I{Y1j < Y1k, Y2j < Y2k} − 1

+ oP
(

1√
n

)
.

Further, let τ(x) stand for the conditional Kendall’s tau at the point x and
note that τ(x) = 4 t(x)− 1, where

t(x) =

∫∫
Hx(y1, y2) dHx(y1, y2).

Now, put

v(y1, y2, y
′
1, y

′
2, x) =

[
I{y1 < y′1, y2 < y′2} − t(x)

]
(E.1)

and note that one can decompose

τAn − τA =
4

n

n∑
i=1

n∑
j=1

n∑
k=1

wnj(Xi, hn)wnk(Xi, hn) v(Y1j , Y2j , Y1k, Y2k, Xi)

+
4

n

n∑
i=1

t(Xi)− 1− τA + oP
(

1√
n

)
. (E.2)

≡ 4Vn +
1

n

n∑
i=1

[
τ(Xi)− τA

]
+ oP

(
1√
n

)
, (E.3)

where Vn is given by the first term (except for the factor 4) of the right-hand
side of (E.2).

For x ∈ RX put

Dn(x) = Sn,2(x)Sn,0(x)− S2
n,1(x), (E.4)

where Sn,j(x) is introduced in (3.9). Note that Vn can be rewritten as

Vn =
1

n

n∑
i=1

[
V1n(Xi) + V2n(Xi) + V3n(Xi) + V4n(Xi)

]
, (E.5)

where

V1n(x) =
S2
n,2(x)

D2
n(x)n

2

n∑
j=1

n∑
k=1

1
h2
n
k
(x−Xj

hn

)
k
(
x−Xk

hn

)
v(Y1j , Y1k, Y2j , Y2k, x),
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V2n(x) =
−Sn,2(x)Sn,1(x)

D2
n(x)n

2

n∑
j=1

n∑
k=1

x−Xk

h3
n

k
(x−Xj

hn

)
k
(
x−Xk

hn

)
v(Y1j , Y1k, Y2j , Y2k, x),

V3n(x) =
−Sn,2(x)Sn,1(x)

D2
n(x)n

2

n∑
j=1

n∑
k=1

x−Xj

h2
n

k
(x−Xj

hn

)
k
(
x−Xk

hn

)
v(Y1j , Y1k, Y2j , Y2k, x),

V4n(x) =
S2
n,1(x)

D2
n(x)n

2

n∑
j=1

n∑
k=1

x−Xj

h2
n

x−Xk

h2
n

k
(x−Xj

hn

)
k
(
x−Xk

hn

)
v(Y1j , Y1k, Y2j , Y2k, x),

and the function v(y1, y2, y
′
1, y

′
2, x) is defined in (E.1).

Below (see pages 2462–2463) we show that uniformly in x ∈ RX

V1n(x) =
1

f2
X(x)n2

n∑
j=1

n∑
k=1

1
hn

k
(x−Xj

hn

)
1
hn

k
(
x−Xk

hn

)
v(Y1j , Y1k, Y2j , Y2k, x)

+ oP
(

1√
n

)
(E.6)

and
Vjn(x) = oP

(
1√
n

)
, j = 2, 3, 4. (E.7)

Combining (E.5), (E.6), (E.7) now yields

Vn =
1

n3

n∑
i=1

n∑
j=1

n∑
k=1

h(Y1i, Y2i, Xi, Y1j , Y2j , Xj , Y1k, Y2k, Xk) + oP
(

1√
n

)
,

where

h(y1, y2, x, y
′
1, y

′
2, x

′, y′′1 , y
′′
2 , x

′′) = 1
f2
X(x)

1
hn

k
(
x−x′

hn

)
1
hn

k
(
x−x′′

hn

)
×
[
I{y′1 < y′′1 , y

′
2 < y′′2} − t(x)

]
.

Note that h in fact does not depend on y1 and y2. The reason why we put
these arguments is to stress that Vn is a V -statistic (see e.g. Chapter 5.1.2
Serfling, 1980) with a kernel h of degree 3. Although the kernel is not symmetric,
it could be easily symmetrized without affecting the quantity Vn. Further, as
V -statistics and U -statistics are in terms of the

√
n-asymptotic distribution

equivalent (Chapter 5.7.3 of Serfling, 1980), in what follows we can think of Vn

as a U -statistic.

In the following the expectation E is taken with respect to the distribution
of the random vectors (Y ′

1 , Y
′
2 , X

′) and (Y ′′
1 , Y ′′

2 , X ′′) that are two independent
copies of (Y1, Y2, X).

Denote the projections of h as

hπ1(y1, y2, x) = Eh(y1, y2, x, Y
′
1 , Y

′
2 , X

′, Y ′′
1 , Y ′′

2 , X ′′),

hπ2(y1, y2, x) = Eh(Y ′
1 , Y

′
2 , X

′, y1, y2, x, Y
′′
1 , Y ′′

2 , X ′′),

hπ3(y1, y2, x) = Eh(Y ′
1 , Y

′
2 , X

′, Y ′′
1 , Y ′′

2 , X ′′, y1, y2, x).
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Note that thanks to assumptions (Bwn), (kn), (Xn) and (H) it holds uniformly
in (y1, y2, x) ∈ R

2 ×RX

hπ1(y1, y2, x) =
1

f2
X(x)

E
{

1
hn

k
(
x−X′

hn

)
1
hn

k
(
x−X′′

hn

)
×
[
I{Y ′

1 < Y ′′
1 , Y ′

2 < Y ′′
2 } − t(x)

]}
= 1

f2
X(x)

E
{

1
hn

k
(
x−X′′

hn

)[
Hx(Y

′′
1 , Y ′′

2 )− t(x)
]
fX(x)

}
+ o

(
1√
n

)
= o

(
1√
n

)
. (E.8)

Analogously one can derive that it holds uniformly in (y1, y2, x)

hπ2(y1, y2, x) = E
{

1
f2
X(X′)

1
hn

k
(
X′−x
hn

)
1
hn

k
(
X′−X′′

hn

)
×

[
I{y1 < Y ′′

1 , y2 < Y ′′
2 } − t(X ′)

]}
= E

{
1

f2
X(X′)

1
hn

k
(
X′−x
hn

)
1
hn

k
(
X′−X′′

hn

)
×

[
1− F1X′′(y1)− F2X′′(y2) +HX′′(y1, y2)− t(X ′)

]}
= EX′

{
1

fX(X′)
1
hn

k
(
X′−x
hn

)
×

[
1− F1X′(y1)− F2X′(y2) +HX′(y1, y2)− t(X ′)

]}
+ o

(
1√
n

)
= 1− F1x(y1)− F2x(y2) +Hx(y1, y2)− t(x) + o

(
1√
n

)
, (E.9)

hπ3(y1, y2, x) = Hx(y1, y2)− t(x) + o
(

1√
n

)
, (E.10)

and

h = Eh(Y1, Y2, X, Y ′
1 , Y

′
2 , X

′, Y ′′
1 , Y ′′

2 , X ′′) = o
(

1√
n

)
. (E.11)

Now put

h̃(y1, y2, x, y
′
1, y

′
2, x

′) = h(y1, y2, x, y
′
1, y

′
2, x

′, y′′1 , y
′′
2 , x

′′)

− hπ1(y1, y2, x)− hπ2(y′1, y
′
2, x

′)− hπ3(y′′1 , y
′′
2 , x

′′) + 2h.

Using the notation introduced above one can decompose Vn as

Vn =
1

n

n∑
j=1

[
hπ1(Y1j , Y2j , Xj) + hπ2(Y1j , Y2j , Xj) + hπ3(Y1j , Y2j , Xj)− 2h

]
+

1

n(n− 1)

n∑
j=1

n∑
k=1

h̃(Y1j , Y2j , Xj , Y1k, Y2k, Xk) + oP
(

1√
n

)
(E.12)

≡ V π
n +Rn + oP

(
1√
n

)
,

where V π
n is the first term on the right-hand side of (E.12).
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With the help of assumptions (Bwn), (kn), (Xn) and Lemma A of Section 5.1
of Serfling (1980) one gets that for sufficiently large constant K and for all
sufficiently large n ∈ N

var
(√

nRn

)
≤ K

n E
[
h(Y1, Y2, . . . , X

′′)
]2

= O
(

1
nh2

n

)
= o(1),

which together with ERn = 0, Chebyshev’s inequality implies that Rn =
oP

(
1√
n

)
.

Thus one can concentrate on V π
n . Combining (E.8), (E.9), (E.10), (E.11)

yields that

V π
n =

2

n

n∑
i=1

[
CXi

(
U1i, U2i

)
− t(Xi)

]
+

1

n

n∑
i=1

[
1− U1i − U2i

]
+ oP

(
1√
n

)
,

which together with (E.3) implies

τAn − τA =
2

n

n∑
i=1

[
4CXi

(
U1i, U2i

)
− 1− τ(Xi)

]
+

4

n

n∑
i=1

[
1− U1i − U2i

]
+

1

n

n∑
i=1

[
τ(Xi)− τA

]
+ oP

(
1√
n

)
,

=
2

n

n∑
i=1

[
4CXi

(
U1i, U2i

)
− 1− τA

]
+

4

n

n∑
i=1

[
1− U1i − U2i

]
− 1

n

n∑
i=1

[
τ(Xi)− τA

]
+ oP

(
1√
n

)
and finishes the proof of the theorem.

Proof of statements (E.6) and (E.7)

First note that analogously as in Lemma 4 of Gijbels, Omelka and Veraverbeke
(2015) using assumptions (Bwn), (kn) and (Xn) one can show that uniformly
in x ∈ RX

Sn,0(x) = fX(x) +OP (rn), Sn,1(x) = OP (rn),

Sn,2(x) = μ2k fX(x) +OP (rn),
(E.13)

where rn =
√

logn
nhn

and μ2k =
∫
u2 k(u) du.

Treatment of V1n. (E.13) and the definition of Dn(x) in (E.4) imply that
uniformly in x ∈ RX

S2
n,2(x)

D2
n(x)

=
1

f2
X(x)

+OP

(√
logn
nhn

)
. (E.14)
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Further by Lemma F.5 in Appendix F

sup
x∈RX

∣∣Un(x)− EUn(x)
∣∣ = oP

(√
hn

log n

)
, (E.15)

where

Un(x) =
1

n2

n∑
j=1

n∑
k=1

1
hn

k
(x−Xj

hn

)
1
hn

k
(
x−Xk

hn

)
I{Y1j < Y1k, Y2j < Y2k}.

By a straightforward calculation uniformly in x ∈ RX

EUn(x) = f2
X(x)t(x) +O(h2

n) (E.16)

and

1

n2

n∑
j=1

n∑
k=1

1
hn

k
(x−Xj

hn

)
1
hn

k
(
x−Xk

hn

)
t(x) = S2

n,0(x) t(x)

= f2
X(x)t(x) +OP

(√
logn
nhn

)
. (E.17)

Now combining (E.15), (E.16), (E.17) yields

1

n2

n∑
j=1

n∑
k=1

1
hn

k
(x−Xj

hn

)
1
hn

k
(
x−Xk

hn

)[
I{Y1j < Y1k, Y2j < Y2k} − t(x)

]
= oP

(√
hn

logn

)
uniformly in x ∈ RX , which together with (E.14) yields (E.6).

Treatment of Vjn, j = 2, 3, 4. Let us start with j = 2. Analogously as
before thanks to Lemma F.5 of Appendix F one gets (E.15) with Un(x) given
by

Un(x) =
1

n2

n∑
j=1

n∑
k=1

1
hn

k
(x−Xj

hn

)
x−Xk

h2
n

k
(
x−Xk

hn

)
I{Y1j < Y1k, Y2j < Y2k}. (E.18)

Further uniformly in x ∈ RX

EUn(x) = O(hn) (E.19)

and with the help of (E.13)

1

n2

n∑
j=1

n∑
k=1

1
hn

k
(x−Xj

hn

)
x−Xk

h2
n

k
(
x−Xk

hn

)
t(x) = Sn,0(x)Sn,1(x) t(x)

= OP

(√
logn
nhn

)
. (E.20)

Combining (E.15), (E.18), (E.19) and (E.20) yields (E.7) for j = 2.

Analogously one can prove (E.7) for j = 3 and 4.
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Appendix F: Auxiliary results

In this appendix we state auxiliary results that are used in the proofs of the
main theorems and that can also be of independent interest. The results will be
formulated with the help of assumptions defined in the previous appendices. To
simplify the notation the index j is usually dropped.

The following lemma is a simple adaptation of Lemma 19.24 of van der Vaart
(2000), and will be useful in the proofs of Lemmas F.2 and F.3.

Lemma F.1. Suppose that X1,X2, . . . are identically distributed random vec-
tors with distribution P and H is the set of real valued uniformly bounded func-
tions defined on SX that is P -Donsker. Further let g be a real valued function
on SX with a finite second moment and {hn} be a sequence of real valued func-
tions on SX such that

lim
n→∞

P
(
hn ∈ H

)
= 1, sup

x∈SX

∣∣hn(x)
∣∣ = oP (1), and E g(X1)hn(X1) = 0.

Then 1
n

∑n
i=1 g(Xi)hn(Xi) = oP

(
1√
n

)
.

Proof. Thanks to assumption of the lemma one can suppose that hn ∈ H and
that hn is bounded. Further by the permanence of Donsker property also the set
of functions F = {g h, h ∈ H} is Donsker. The proof now follows by applying
Lemma 19.24 of van der Vaart (2000) with fn(x) = g(x)hn(x) and f0 taken to
be a zero function.

Further in the proofs of Lemmas F.2 and F.3 we make use of the bracketing
numbers for sets of differentiable functions. Following the notation of Chap-
ter 2.7 of van der Vaart and Wellner (1996) let CM

1 (RX) stand for a set of real
valued functions defined on RX that are Lipschitz of order 1, with the Lipschitz
constant bounded with M , that is

sup
h∈CM

1 (RX)

sup
x∈RX

∣∣h′(x)
∣∣ ≤ M.

By Corollary 2.7.2 of van der Vaart and Wellner (1996) there exists a constantK
such that the logarithm of the bracketing number N[ ]

(
ε, CM

1 (RX), L2(P )
)
of the

set CM
1 (RX) (with L2(P ) denoting the norm that is used) is bounded by

logN[ ]

(
ε, CM

1 (RX), L2(P )
)
≤ K

ε
(F.1)

for every ε > 0 and probability measure P on RX . Note that (F.1) implies that
CM

1 (RX) is Donsker (see e.g. Theorem 19.5 in van der Vaart, 2000).

Lemma F.2. Suppose that our observations follow the nonparametric location
scale models described at the beginning of Section 3.4.2 and m̂n(X) be given
by (3.7). Further let the assumptions (Bwn), (F1n), (kn), (Xn), and (mσ)
hold and b : RX → R possesses a bounded derivative on RX . Then

EX

{
b(X)

(
m̂n(X)−m(X)

)}
=

1

n

n∑
i=1

b(Xi)σ(Xi) εi + oP
(

1√
n

)
.
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Proof.

EX

{
b(X)

(
m̂n(X)−m(X)

)}
= EX

{
b(X)

n∑
i=1

wni(X, gn)
(
Yi −m(X)

)}
(F.2)

= EX

{
b(X)

n∑
i=1

wni(X, gn)
(
m(Xi)−m(X)

)}
+ EX

{
b(X)

n∑
i=1

wni(X, gn)σ(Xi)εi

}
(F.3)

≡ An +Bn,

where An and Bn are the first and second terms on the right-hand side of (F.3)
respectively.

Now to deal with An, which stands for the first term on the right-hand side of
(F.3), one can use a second-order Taylor series expansion of m(Xi) with respect
to Xi at the point X which together with the properties of the local linear
weights yields

An = EX

{
b(X)

n∑
i=1

wni(X, gn)
m′′(X∗

i )
2 (X −Xi)

2
}
,

where X∗
i lies between Xi and X. Note that m′′ is bounded and wni(X, gn) = 0

for |Xi −X| > gn. Further, following the arguments of Section 2.4.1 of Omelka,
Veraverbeke and Gijbels (2013) one can easily show that

∑n
i=1

∣∣wni(x, gn)
∣∣ =

1+OP (1) uniformly in x ∈ RX and thus using (mσ) and (Bwn) one can bound

|An| ≤ EX

[∣∣b(X)
∣∣] g2n(1 +OP (1)

)
= OP (g

2
n) = oP

(
1√
n

)
. (F.4)

Now, one can concentrate on Bn, which stands for the second term on the
right-hand side of (F.3). As the local linear weights are given by (3.8), one needs
to investigate the following two quantities

B1n = EX

{
b1n(X)

n∑
i=1

1
n gn

k
(
X−Xi

gn

)
σ(Xi) εi

}
,

B2n = EX

{
b2n(X)

n∑
i=1

1
n gn

X−Xi

gn
k
(
X−Xi

gn

)
σ(Xi) εi

}
,

where

b1n(x) =
b(x)Sn,2(x)

Sn,0(x)Sn,2(x)− S2
n,1(x)

and b2n(x) =
b(x)Sn,1(x)

Sn,0(x)Sn,2(x)− S2
n,1(x)

,

with Sn,j(x) defined in (3.9).
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Note that with the help of (E.13) and assumptions of the lemma about g one
gets

b1n(x) =
b(x)

fX(x)
+OP

(√
log n
n gn

)
and b2n(x) = OP

(√
log n
n gn

)
. (F.5)

Further, analogously as in the proof of Lemma 4 of Gijbels, Omelka and Ver-
averbeke (2015) one can show

n∑
i=1

(x−Xi)
l

n gl+1
n

k
(
x−Xi

gn

)
σ(Xi) εi = OP

(√
logn
n gn

)
(F.6)

for l = 0, 1 uniformly in x ∈ RX . Now combining (Bwn), (F.5) and (F.6) with
l = 0 yields that

B1n = EX

{
b(X)
fX(X)

n∑
i=1

1
n gn

k
(
X−Xi

gn

)
σ(Xi) εi

}
+ oP

(
1√
n

)
, (F.7)

Analogously combining (Bwn), (F.5) and (F.6) with l = 1 yieldsB2n = oP
(

1√
n

)
.

Thus it remains to treat only B1n. Thanks to (F.7) this quantity can be approx-
imated as

B1n =
1

n

n∑
i=1

EX

{
b(X)
fX(X)

1
gn

k
(
X−Xi

gn

)
σ(Xi) εi

}
+ oP

(
1√
n

)
,

=
1

n

n∑
i=1

σ(Xi) εi

∫
b(x)
fX(x)

1
gn

k
(
x−Xi

gn

)
fX(x) dx+ oP

(
1√
n

)
,

=
1

n

n∑
i=1

σ(Xi) εi

∫
b(Xi + tgn) k(t) dt+ oP

(
1√
n

)
. (F.8)

Let us introduce the set of functions on RX × R

F =

{
(x, e) 	→

∫
b(x+ t g)k(t) dt σ(x) e, g > 0

}
.

Then the first term on the right-hand side of (F.8) can be viewed as an empirical
measure Pn of (Xi, εi)

n
i=1 that is indexed by the functions from F and evaluated

at the function f̃n(x, e) =
∫
b(x+ t gn)k(t) dt σ(x) e. Thanks to the boundedness

of the derivative of b the set of the functions

H =

{
x 	→

∫
b(x+ t g)k(t) dt, g > 0

}
.

is a subset of CM
1 (RX) for a sufficiently large M and thus Donsker. Thus

Lemma F.1 with Xi = (Xi, εi) and hn(x, e) =
( ∫

b(x + t gn)k(t) dt − b(x)
)

and g(x, e) = σ(x) e yields that

B1n =
1

n

n∑
i=1

b(Xi)σ(Xi) εi + oP
(

1√
n

)
,

which finishes the proof of the lemma.
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Lemma F.3. Suppose that our observations follow the nonparametric location
scale models described at the beginning of Section 3.4.2 and σ̂n(X) be given
by (3.7). Further let the assumptions (Bwn), (F1n), (kn), (Xn) and (mσ)
hold and b : RX → R possesses a bounded derivative on RX . Then

EX

{
b(X)

(
σ̂n(X)
σ(X) − 1

)}
=

1

n

n∑
i=1

b(Xi)
2 (ε2i − 1) + oP

(
1√
n

)
. (F.9)

Proof. First, rewrite the left-hand side of (F.9) as

EX

{
b(X)

(
σ̂n(X)
σ(X) − 1

)}
= EX

{
b(X)

σ̂2
n(X)−σ2(X)

σ(X)
[
σ̂n(X)+σ(X)

]}
= EX

{
bn(X)

[
σ̂2
n(X)− σ2(X)

]}
, (F.10)

where bn(x) =
b(x)

σ(x)[σ̂n(x)+σ(x)] . Now, the right-hand side of (F.10) equals

EX

{
bn(X)

[
σ̂2
n(X)− σ2(X)

]}
= EX

{
bn(X)

n∑
i=1

wni(X, gn)
[(
Yi − m̂n(Xi)

)2 − σ2(Xi) + σ2(Xi)− σ2(X)
]}

= EX

{
bn(X)

n∑
i=1

wni(X, gn)
[(
m(Xi) + εiσ(Xi)− m̂n(Xi)

)2 − σ2(Xi)
]}

+ EX

{
bn(X)

n∑
i=1

wni(X, gn)
[
σ2(Xi)− σ2(X)

]}
= EX

{
bn(X)

n∑
i=1

wni(X, gn)
(
m(Xi)− m̂n(Xi)

)2}
(F.11)

+ EX

{
bn(X)

n∑
i=1

wni(X, gn)σ
2(Xi) (ε

2
i − 1)

}
(F.12)

+ 2EX

{
bn(X)

n∑
i=1

wni(X, gn)
(
m(Xi)− m̂n(Xi)

)
σ(Xi) εi

}
(F.13)

+ EX

{
bn(X)

n∑
i=1

wni(X, gn)
[
σ2(Xi)− σ2(X)

]}
(F.14)

≡ A1n +A2n +A3n +A4n,

where A1n, A2n, A3n and A4n are given by (F.11), (F.12), (F.13) and (F.14)
respectively.

Let us start with the term A1n. Thanks to the results published in Ojeda
(2008) we know that supx∈RX

|m̂n(x)−m(x)| = oP (n
−1/3), which yields

A1n = oP
(

1√
n

)
. (F.15)
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Further, A2n given by (F.12) can be rewritten as

A2n =
1

n

n∑
i=1

b̃n(Xi)σ
2(Xi) (ε

2
i − 1), (F.16)

where

b̃n(x) =

∫
b1n(x+ tgn) k(t)fX(x+ tgn) dt+

∫
b2n(x+ tgn) t k(t)fX(x+ tgn) dt,

with

b1n(x) =
bn(x)Sn,2(x)

Sn,0(x)Sn,2(x)− S2
n,1(x)

and b2n(x) =
bn(x)Sn,1(x)

Sn,0(x)Sn,2(x)− S2
n,1(x)

.

Thanks to Ojeda (2008) and our assumptions one gets supx∈RX
|σ̂2

n(x)−σ2(x)| =
oP (n

−1/3), which together with (mσ) yields that supx∈RX
|σ̂n(x) − σ(x)| =

oP (n
−1/3), which gives us that uniformly in x ∈ RX

b1n(x) =
b(x)

2σ2(x) fX(x) + oP (n
−1/3), b2n(x) = OP

(√
log n
n gn

)
.

Analogously as in Lemma F.2 one can show that A2n given by (F.16) can be
approximated as

A2n =
1

n

n∑
i=1

σ2(Xi) (ε
2
i − 1)

∫
b(Xi+t gn)

2σ2(Xi+t gn)
k(t) dt+ oP

(
1√
n

)
,

and further use Lemma F.1 to deduce that

A2n =
1

n

n∑
i=1

b(Xi)
2σ2(Xi)

σ2(Xi)(ε
2
i − 1) + oP

(
1√
n

)
=

1

n

n∑
i=1

b(Xi)
2 (ε2i − 1) + oP

(
1√
n

)
. (F.17)

Further, similarly as in the proof of Lemma F.2 one can show that A3n given
by (F.13) can be approximated as

A3n =
1

n

n∑
i=1

(
m(Xi)− m̂n(Xi)

)
σ(Xi) εi

∫
b(Xi + tgn) k(t) dt+ oP

(
1√
n

)
.

By the results of Ojeda (2008) one gets P
(
m̂n ∈ CM

1 (RX)
)
→ 1 and thus one

can view A3n as Pn(fn), where Pn is the empirical measure indexed by the set
of functions

F =
{
(x, e) 	→ r(x)σ(x)e; r ∈ CM

1 (RX)}

evaluated at at fn(x, e) =
(
m(x) − m̂n(x)

)
σ(x) εi

∫
b(x + tgn) k(t) dt. Further,

m̂n(x) = m(x)+oP (1) uniformly in x ∈ RX Thus one can put hn(x, e) = m(x)−
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m̂n(x) and g(x, e) = σ(x) e in Lemma F.1 and get that Pn(g hn) = oP
(

1√
n

)
,

which further gives
A3n = oP

(
1√
n

)
. (F.18)

Finally similarly as in (F.4) in the proof of Lemma F.2 one can use (Bwn)
and (mσ) to bound the quantity A4n given by (F.14)

|A4n| ≤ EX

{
|bn(X)|

n∑
i=1

|wni(X, gn)|(Xi −X)2
}

sup
x∈Rx

∣∣∣∂2σ2(x)
∂x2

∣∣∣ = oP
(

1√
n

)
.

Now combining (F.15), (F.17) and (F.18) yields the statement of the lemma.

Lemma F.4. Let (F1p) and (F2p) be satisfied for a distribution function F
(with the subscripts j and ε dropped). Then the functions

gu(s, t) = F−1(u) f
(
(1 + s)F−1(u) + t

)
, hu(s, t) = f

(
(1 + s)F−1(u) + t

)
,

are continuous at the point (0, 0) uniformly in u ∈ [0, 1].

Proof. We prove the lemma only for gu. The proof for hu is analogous.
Note that by the assumptions the function

(
|y|+ 1

)
f(y) is bounded and

lim
|y|→∞

(
|y|+ 1

)
f(y) = 0.

Thus, for each ε > 0 there exists M such that sup|y|≥M

∣∣(|y| + 1
)
f(y)

∣∣ < ε. So

there exists u0 ∈ (0, 1
2 ) such that for each s, t ∈

(
− 1

2 ,
1
2

)
:

sup
u∈Iu0

∣∣gu(s, t)∣∣ ≤ sup
u∈Iu0

∣∣F−1(u) f
(
F−1(u)(1 + s) + t

)∣∣ < ε,

where Iu0 = [0, u0] ∪ [1− u0, 1]. Now, one can bound

sup
u∈[0,1]

∣∣gu(s, t)− gu(0, 0)
∣∣

≤ sup
u∈Iu0

∣∣gu(s, t)− gu(0, 0)
∣∣+ sup

u∈[u0,1−u0]

∣∣gu(s, t)− gu(0, 0)
∣∣. (F.19)

Now, the first term on the right-hand side of (F.19) can be bounded by 2ε and
the second term can be made arbitrarily small for all s, t sufficiently close to
zero.

Lemma F.5. For l1, l2 ∈ {0, 1} define U
(l1,l2)
n (x) as

U (l1,l2)
n (x) =

1

n2

n∑
j=1

n∑
k=1

(x−Xj)
l1

h
l1+1
n

k
(x−Xj

hn

)
× (x−Xk)

l2

h
l2+1
n

k
(
x−Xk

hn

)
I{Y1j < Y1k, Y2j < Y2k}
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and let (Xn), (kn), (Bwn) and (H) hold. Then

sup
x∈RX

∣∣U (l1,l2)
n (x)− EU (l1,l2)

n (x)
∣∣ = oP

(√
h1+δ
n

logn

)
.

Proof. Note that h2
n U

(l1,l2)
n can be viewed as U -process indexed by the set of

functions Fn that is for each n ∈ N a subset of

F =
{(

y′1, y
′
2, x

′, y′′1 , y
′′
2 , x

′′) 	→ (x−x′)l1

hl1
k
(
x−x′

h

) (x−x′′)l2

hl2
k
(
x−x′′

h

)
× I{y′1 < y′′1 , y

′
2 < y′′2}; x ∈ RX , h > 0

}
. (F.20)

Further it is easy to see that F is a subset of a product of F1 and F2, where

F1 =
{(

y′1, y
′
2, x

′, y′′1 , y
′′
2 , x

′′) 	→ (x−x′)l1

hl1
k
(
x−x′

h

)
I{y′1 < y′′1 , y

′
2 < y′′2};

x ∈ RX , h > 0
}

(F.21)

and

F2 =
{(

y′1, y
′
2, x

′, y′′1 , y
′′
2 , x

′′) 	→ (x−x′′)l2

hl2
k
(
x−x′′

h

)
I{y′1 < y′′1 , y

′
2 < y′′2};

x ∈ RX , h > 0
}
. (F.22)

By Lemma 22 of Nolan and Pollard (1987) and Lemma 2.6.18 (vi) of van der
Vaart and Wellner (1996) one can show that both F1 and F2 are VC-classes with
bounded envelopes. Thus by Theorem 2.6.7 of van der Vaart and Wellner (1996)
there exist universal constants A1, B1 and A2, B2 such that for each probability
measure Q the covering numbers of F1 and F2 are bounded by

∀ε>0 N
(
ε,F1, L2(Q)

)
≤ A1

(
1
ε

)B1
, N

(
ε,F2, L2(Q)

)
≤ A2

(
1
ε

)B2
. (F.23)

Further, by the boundedness of F1 and F2 and (F.23) one can conclude that
there exist universal constants A,B such that for each probability measure Q
also

∀ε>0 N
(
ε,F , L2(Q)

)
≤ A

(
1
ε

)B
. (F.24)

Now by the Hoeffding decomposition one gets

U (l1,l2)
n (x)− EU (l1,l2)

n (x) = U
(l1,l2)
1n (x)− EU

(l1,l2)
1n (x) + U

(l1,l2)
2n (x),

where U
(l1,l2)
1n (x) stands for the main (projection) term and U

(l1,l2)
2n (x) for the

remaining (degenerate) term. Thanks to (F.24) one can use Theorem 5.3.7 of
De la Peña and Giné (1999) (with k = 2) to deduce that

sup
x∈RX

∣∣nh2
n U

(l1,l2)
2n (x)

∣∣ = OP (1),
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which further together with (Bwn) implies that

sup
x∈RX

∣∣U (l1,l2)
2n (x)

∣∣ = OP

(
1

nh2
n

)
= oP (hn). (F.25)

Thus it remains to deal with U
(l1,l2)
1n (x). We consider only l1 = l2 = 0. The

other cases can be treated analogously. With the help of (Bwn), (Xn), (H)
and (E.13)

U
(0,0)
1n (x) =

1

n

n∑
j=1

1
hn

k
(x−Xj

hn

)
(F.26)

× EX′′ 1
hn

k
(
x−X′′

hn

)[
2HX′′(Y1j , Y2j)− F1X′′(Y1j)− F2X′′(Y2j) + 1

]
=

1

n

n∑
j=1

1
hn

k
(x−Xj

hn

)
fX(x)

[
2Hx(Y1j , Y2j)− F1x(Y1j)− F2x(Y2j) + 1

]
+ oP

(
1√
n

)
=

1

n

n∑
j=1

1
hn

k
(x−Xj

hn

)
fX(Xj) (F.27)

×
[
2HXj (Y1j , Y2j)− F1Xj (Y1j)− F2Xj (Y2j) + 1

]
+OP

(
hn

)
≡ B1n(x) +OP

(
hn

)
, (F.28)

where for equation (F.27) we use a Taylor series expansion with respect to x
at the point Xj , and B1n(x) stands for the first term on the right-hand side
of (F.27).

Note that hn B1n(x) can be viewed as an empirical process indexed by a
subset of the set of functions

G =
{
(x′, y′1, y

′
2) 	→ k

(
x−x′

h

)
fX(x′)

[
2Hx′(y′1, y

′
2)− F1x′(y′1)− F2x′(y′2) + 1

]
,

x ∈ RX , h > 0
}
.

With the help of Lemma 22 of Nolan and Pollard (1987) and Lemma 2.6.18 (vi)
of van der Vaart and Wellner (1996) one can show that G is a bounded VC-class.
Thus for instance Theorem 2.5.2 of van der Vaart and Wellner (1996) yields that

sup
x∈RX

∣∣√nhn

(
B1n(x)− EB1n(x)

)∣∣ = OP (1),

which further with assumption (Bwn) gives

sup
x∈RX

∣∣B1n(x)− EB1n(x)
∣∣ = OP

(
1√
nh2

n

)
= oP

(√
h1+δ
n

logn

)
and thus together with (F.25) and (F.28) verifies the statement of the lemma.
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