Challenges with implementation of nutrition interventions aimed at non-communicable diseases among black urban South Africans

N Solomons

orcid.org 0000-0002-1271-9288

Thesis/Dissertation/Mini-dissertation submitted in partial fulfilment of the requirements for the degree Doctor of Philosophy Nutrition at the Potchefstroom Campus of the North West University

Supervisor/Promoter: Prof HS Kruger

Graduation May 2018
Student number: 20683006
ACKNOWLEDGEMENTS

Firstly, I would to express my heartfelt gratitude to the Almighty for giving me the strength to see this thesis through to completion.

I would like to express my heartfelt thanks and gratitude to the following people:

- My promoter, Prof. Salome Kruger thank you for all your support, patience, guidance and assistance with statistical analysis and guidance. You are a wonderful promoter.
- My co-promoter, Prof. Thandi Puoane for your support, patience, guidance, and assistance with gaining access to the PURE study data and for being a wonderful co-promoter.
- Clarina Vorster for language editing.
- All the participants, fieldworkers and supporting staff of the PURE study, thank you for allowing me to use this data.
- The National Research Fund (NRF) for the financial assistance.
DECLARATION

I declare that “Challenges with implementation of nutrition interventions aimed at non-communicable diseases among black urban South Africans, 2017” is my own work; that it has not been submitted previously for any degree or examination in any other university, and that all the sources I have used or quoted have been indicated and acknowledged by complete reference.

DATE: 16/11/2017
TABLE OF CONTENTS

Table of Contents

ACKNOWLEDGEMENTS ..i

DECLARATION .. ii

AUTHOR CONTRIBUTIONS AND STATEMENT .. xiv

SUMMARY .. xv

OPSOMMING ... xix

CHAPTER 1: INTRODUCTION, AIMS, OBJECTIVES AND HYPOTHESIS .. 1

1.1 Introduction .. 1

1.2 Problem statement: setting and background .. 1

1.3 Rationale ... 3

1.4 Theoretical framework ... 4

1.5 Aim of the study .. 5

1.6 Objectives of the study ... 5

1.7 Research hypothesis .. 6

1.8 Significance of the study/value of the study .. 6

1.9 Scope and limitations ... 7

1.10 Organisation of the remainder of the report ... 8

REFERENCE LIST .. 9
CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

2.2 Definitions

2.3 Global and South African epidemic of chronic non-communicable diseases

2.3.1 Type-2 Diabetes mellitus

2.3.2 Cardiovascular diseases

2.3.3 Cancer

2.3.4 Chronic obstructive pulmonary diseases

2.4 Causes and risk factors for CNCDs

2.4.1 Epidemiological and nutrition transition

2.4.2 Tobacco use

2.4.3 Lack of physical activity

2.4.4 Alcohol use

2.4.5 Dietary intake

2.4.7 Diet and cardiovascular disease

2.4.8 Diet and cancer

2.4.9 Obesity

2.4.10 Other factors

2.5 Global consequences of chronic non-communicable diseases
2.6 Prevention of CNCDs .. 40

2.6.1 Dietary approaches to prevent CNCDs .. 40

2.6.2 Novel substrates/ controversial or experimental treatments .. 47

2.6.3 Physical activity ... 64

2.6.4 Smoking cessation.. 65

2.6.5 Alcohol use .. 66

2.7 Intervention programmes, policies and/or guidelines for chronic non-communicable diseases in
other countries.. 66

2.8 Consequences of CNCDs in South Africa ... 68

2.8.1 Policies and guidelines ... 68

2.8.2 Legislation... 69

2.8.3 Interventions .. 69

2.8.4 Successes and failures of current/existing interventions in South Africa 72

2.9 Barriers to intervention programmes in South Africa ... 74

2.10 Summary .. 74

REFERENCE LIST ... 75

CHAPTER 3: RESEARCH METHODOLOGY ... 133

3.1 Introduction.. 133

3.2 Section 1: Methodology for the PURE study... 133

3.2.1 Study design... 133
Addendum A: Letter of confirmation for ethical approval ... 158
Addendum B: Methodology for blood pressure and physical measurements (Kruger, 2005) 159
Addendum C: Consent form: PURE ... 164
Addendum D: Adult questionnaire .. 165
Addendum E: Physical activity questionnaire .. 185
Addendum F: Food frequency questionnaire ... 192
Addendum G: Information sheet for PURE participants ... 216
Addendum H: Consent form for PURE participants ... 219
Addendum I: Challenges to intervention programmes individual questionnaire 220
Addendum J: Information sheet for Department of Health officials .. 230
Addendum K: Consent form DoH .. 232
Addendum L: Department of Health information package for MCM interview 233
Addendum M: DOH questionnaire ... 240
Addendum N: Focus group confidentiality binding form .. 243
Addendum O: Focus group discussion Guide .. 244
Addendum P: Language editing certificate: Clarina Vorster .. 247

CHAPTER 4: MANUSCRIPT 1 .. 248

Association between dietary adherence, anthropometric measurements and blood pressure in an urban Black population, South Africa .. 249

4.2 Introduction .. 251
Tackling the chronic non-communicable diseases epidemic in the Western Cape: Are health professionals on track? ..

Acknowledgements ..

Corresponding author ...

Authors’ contributions ...

Significance for public health ..

6.1 Abstract ..

Background ..

Design and methods ...

Results ..

Conclusion ...

6.2 Introduction ..

6.3 Design and methods ... 308

Research design ...

Sampling and setting ..

Assessment instruments and multi-criteria mapping ...

Data collection ... 313

Ethics approval ...

Data analysis ...

ix
CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS ... 347

7.1 Introduction .. 347

7.2 Objectives of the study and methods used ... 347

7.3 Summary of findings .. 348

7.3.1 Association between dietary adherence, anthropometric measurements and blood pressure in an urban black population, South Africa ... 348

7.3.2 Adherence challenges encountered in an intervention programme to combat chronic non-communicable diseases in an urban black community, Cape Town ... 349

7.3.3 Tackling the chronic non-communicable diseases epidemic in the Western Cape: Are health professionals on track? ... 350
7.4 Research hypotheses acceptance / rejection ... 351
7.5 Discussion and conclusion .. 352
7.6 Recommendations ... 356

REFERENCE LIST ... 357
PREFACE

This thesis is presented in article-format and consists of three peer-reviewed published or submitted manuscripts as recommended by the North-West University’s guidelines for postgraduate studies. The thesis is set out as follows:

Chapter 1: Introduction. In this chapter the topic is introduced as formulated from literature. The rationale, aim and objectives are also included in this chapter.

Chapter 2: Literature review. In this chapter a comprehensive literature study is presented.

Chapter 3: Research Methodology. This chapter describes the research methodology employed for the study and statistical analysis of the data in detail.

Chapter 4: The first article is the association between dietary adherence (as determined by a dietary adherence score), anthropometric measurement and blood pressure is investigated. This manuscript was submitted to the journal: *South African Journal of Clinical Nutrition*.

Chapter 5: The second article explores the challenges and barriers to the implementation of, and adherence to chronic non-communicable disease interventions. The manuscript was accepted for publication by the journal *HealthSA*.

Chapter 6: The third article explores the needs of the study population regarding implementation and compliance with chronic non-communicable disease interventions. In addition the opinions of key roleplayers from the Department of Health in the Western Cape as to the performance of possible intervention strategies to address the CNCDs epidemic is explored by means of the multicriteria mapping (MCM) interviewing technique. This manuscript will be submitted to the *Public Health Research Journal*.

Chapter 7: Summary. In this chapter results of this study are discussed, conclusions are drawn and recommendations are made based on the findings of this study.

The first author, namely the PhD candidate, was responsible for the initiation and all parts of this
thesis. This includes the literature searches, collection and cleaning of data, statistical analyses, as well as writing of the manuscripts with valuable input and assistance provided by my promoter and co-promoter who were included as co-authors in each manuscript.

Permission has been granted by my co-authors that the manuscripts may be submitted in this thesis (See the author contribution form page xi).

The relevant references are provided at the end of each chapter. Each manuscript was prepared according to the guidelines for authors of the relevant journals. These are provided before each manuscript.

The Harvard referencing system was used for chapters 1, 2, 3 and 7. The Vancouver referencing style was used for chapters 4, 5 and 6 as per the relevant journal’s instruction.
AUTHOR CONTRIBUTIONS AND STATEMENT

The researchers listed below contributed to this thesis in the following capacities:

Ms. N. Solomons

Responsible for initial proposal of the study along with all the comprehensive literature searches, study protocol and methodology, data collection, data cleaning, statistical analyses. The design and planning of research articles and the thesis, as well as writing all sections of this thesis.

Prof. Salome Kruger (promoter)

Responsible for guidance, intellectual input, statistical assistance, and critical evaluation of statistical analyses and also the final product.

Prof. Thandi Puoane (co-promoter)

Responsible for guidance, intellectual input, and critical evaluation of the final product.

The following is a declaration by the promoters regarding their contribution to this thesis:

I hereby declare that I approved the manuscripts which I co-authored, and that my role in this thesis as stated above is a true reflection of my actual contribution. I also give my permission that the manuscripts may be published as part of the PhD thesis of Ms Nasheetah Solomons.

Date: 12/12/2017

Date: 12/12/2017
SUMMARY

TITLE

Challenges with the implementation of nutrition interventions aimed at non-communicable diseases among black urban South Africans

AIM

To investigate challenges to the implementation of nutrition interventions aimed at chronic non-communicable diseases (CNCDs) at government, community and individual levels in the Langa PURE study site in Cape Town, South Africa.

METHODS

This cross-sectional study was embedded in the Prospective Urban and Rural Epidemiological (PURE) Study. The PURE study is a large-scale worldwide epidemiological cohort study. The PURE study aimed to recruit approximately 150,000 participants aged between 35 and 70 years living in more than 600 communities in 17 low-, middle- and high-income countries around the world. The participating countries’ selection were based on representativeness of different economic levels and the study sites included were based on the commitment of investigators to collect good quality data over the planned 10-year period. The University of the Western Cape’s (UWC) School of Public Health (SoPH) committed itself to carry out data collection in Langa (urban community) in the Western Cape Province and Mount Frere (rural community) in the Eastern Cape Province.

The current study was conducted in the urban study site (Langa). For phase 1 of the study existing baseline information (demographic, dietary, anthropometric and blood pressure (BP)) was used for secondary data analysis, 300 participants were randomly selected. For phase 2 DoH officials were identified and interviewed using the multicriteria mapping (MCM) interviewing method. For phase 3, 47 participants were selected to participate in FDGs. Data were collected at baseline from the existing PURE Western Cape Province cohort for cross-sectional analysis. For the second part of this study, 300 male and female participants aged between 35 and 70 years, from the urban
community were included. Structured interviews on challenges to the implementation of nutrition interventions aimed at chronic non-communicable diseases (CNCDs) with the study participants were conducted, using a questionnaire. The multi-criteria mapping (MCM) interviewing method was used to conduct interviews with key officers from the Department of Health (DoH), to explore best courses of action to address CNCDs. Structured interviews were also conducted with DoH officials to determine challenges to the implementation of existing nutrition interventions aimed at CNCDs, as well as to determine their awareness of existing CNCDs policies. The third part of the study was a qualitative analysis of focus group discussions with a subsample of the PURE participants to explore challenges and barriers to the implementation of, and adherence to, CNCDs interventions.

Medians and frequencies were calculated for demographic data, anthropometric measurements, smoking habits, alcohol use and BP of men and women. The dietary data was analysed using the MRC Foodfinder III software package. Furthermore, diet adherence was determined by calculating a dietary adherence score which was based on a combination of the Dietary Approaches to Stop Hypertension (DASH) guidelines and the South African Food-Based Dietary Guidelines (SAFBDG). The dietary adherence score was calculated using an adaptation of the DASH score. Correlations were calculated between continuous variables (dietary intakes, anthropometric variables and BP) for men and women. A comparison between anthropometric variables and BP, by diet quality (adherence group) was determined using the Mann-Whitney U test. The presence of associations between diet adherence category and body mass index (BMI) (overweight/obese vs normal weight), waist-height ratio (WtHR) (</> 0.5), waist-hip ratio (WHR) and waist circumference (WC) (</> cut-points), were determined by means of the chi square test (two-by-two tables). Logistic regression and odds ratios were used to determine associations between BP as the dependent variable and dietary adherence score, age, smoking and physical activity as covariates. Data analysis was done using the Statistical Package for Social Studies (SPSS) version 23 (SPSS Inc., Chicago, IL, USA) software programme. The MCM data was analysed using the MCM software package 2016 version (University of Sussex).

The responses of the participants to the structured interviews were presented as frequencies. The results of the MCM interviews were summarised. The focus group discussions were analysed using
RESULTS AND CONCLUSION OF MANUSCRIPTS

Three manuscripts were written to meet the aims of this thesis. In the first manuscript, the association between dietary adherence score and blood pressure, as well as anthropometric measurements were investigated. Positive relationships were found between age, for both men and women and systolic and diastolic BP. A significant positive relationship between added sugar intake and systolic blood pressure (SBP) was only present in the women’s group. A significant positive relationship was found between SBP, diastolic blood pressure (DBP) and BMI for men only. No significant differences existed between blood pressure of men or women in the lowest and top tertile groups, according to dietary adherence score, but a significant inverse correlation between the dietary adherence score and SBP in women was found. The findings revealed that there were no significant differences between anthropometric measurements or blood pressure in the three groups according to dietary adherence, but women with the highest adherence scores had the lowest SBP.

In the second manuscript, the aim was to determine the challenges that participants had regarding CNCDs interventions and their needs from intervention programmes were explored. In addition, the strategies that the Department of Health officials viewed as the best options to address the CNCDs epidemic were also investigated. Participants sought education on foods associated with weight gain, what food and drinks to purchase and how to prepare healthy food and recipes as part of CNCDs intervention programmes. Department of Health officials regarded the integration of health services, community participation, improved inter-sectoral partnerships and food taxation as the most favourable options to address the CNCDs epidemic. The findings revealed that current CNCDs interventions should be adapted to include context-based needs of community members.

In the third manuscript, perceived challenges with the implementation of, and adherence to, CNCDs intervention health messages were explored. The study attempted to gain an understanding of participants’ expectations of CNCDs intervention programmes and explored the acceptability and preference of health message dissemination. In addition, preferred modes of health message dissemination were explored. Four themes emerged from the data analysis: practical aspects of

xvii
implementation and adherence to intervention programmes; participants’ expectations of intervention programmes; aspects influencing participants’ acceptance of interventions and their preferences for health message dissemination. The findings revealed that, although participants found current methods of health message dissemination in CNCD interventions acceptable, they faced real challenges with implementing and adhering to these messages.

GENERAL CONCLUSION

The study revealed that the challenges faced with the implementation of and adherence to CNCDs health messages are multifactorial and that current CNCDs intervention programmes do not necessarily meet participants’ expectations and perceived needs. This indicates the need for culturally-sensitive health messages and dietary recommendations that are context-based. By including the community members from the onset when planning CNCDs intervention programmes, possible gaps between the planned interventions of the Department of Health and the expectations about intervention programmes of target groups could be addressed.

Keywords: Chronic non-communicable diseases, challenges, dietary adherence score, intervention programmes, multi-criteria mapping, urban black population
OPSOMMING

TITEL

Hindernisse teen die implementasie van voedingintervensies vir kroniese nie-oordraagbare siektes op owerheid, gemeenskap en individuele vlakke in 'n stedelike swart bevolking in Suid-Afrika

DOELWIT

Die doelwit van hierdie die tesis was om:

- Hindernisse teen die implementasie van voedingintervensies gemik teen kroniese nie-oordraagbare siektes (KNOS) in die Langa PURE kohortstudie in Suid-Afrika te bestudeer.

METODES

Die dwarsprofielstudie is deel van die “Prospective Urban and Rural Epidemiological” (PURE) Studie. Die PURE studie is ’n groot skaalse wêreld-wye epidemiologiese kohortstudie. Die PURE studie beoog om ongeveer 150,000 deelnemers tussen die ouderdomme van 35 en 70 jaar in meer as 600 gemeenskappe in 17 lae-, middel-, en hoë-inkomste lande wêreldwyd te werf. Die Skool van Publieke Gesondheid van die Universiteit van Wes-Kaapland het data in die Langa (stedelike gemeenskap) in die Wes-Kaap en Mount Frere (landelike gemeenskap) in die Oos-Kaap ingesamel.

Vir die eerste gedeelte van hierdie studie is kwantitatiewe demografiese, dieet-, antropometriese en bloeddruk (BD) data vir deursnee-analise by die basislyn ingesamel uit die PURE Wes-Kaapprovinsie kohortstudie. Vir die tweede fase van die studie is 300 manlike en vroulike deelnemers tussen die ouderdom van 35 en 70 jaar van die stedelike gemeenskap ingesluit. Gestruktureerde onderhoude is met deelnemers gevoer met behulp van vraelyste, om hindernisse teen die implementasie van voedingintervensies, gemik teen KNOS, te identifiseer. Die multi-kriteria kartering onderhoudmetode is gebruik om onderhoude met sleutelpersoneel van die Departement van Gesondheid te voer om strategieë te verken wat as die beste beskou word om die KNOS epidemie stop te sit. Gestruktureerde onderhoude met behulp van ’n vraelys is ook met personeel van die Departement van Gesondheid gevoer om hindernisse teen die implementasie van
voedingintervensies, gemik teen KNOS, te identifiseer, asook om hul kennis van bestaande KNOS beleide vas te stel. Die derde fase van die studie was fokusgroepbesprekings met ’n subgroep van die PURE studie deelnemers om hindernisse en versperring teen die implementasie van, en meewerkendheid van KNOS intervensies te bepaal.

Mediane en frekwensies vir demografiese data, antropometriese metings, rookgewoontes, alkoholinnname en bloeddruk vir mans en vrouens is bepaal. Die dieetdata is geanaliseer met behulp van die MNR “Foodfinder” III program. Verder is dieetkwaliteit bepaal deur ’n dieetinskiklikheidstelling, gebaseer op ’n kombinasie van die “Dietary Approaches to Stop Hypertension” (DASH) en die Suid Afrikaanse Voedsel-Gebaseerde Riglyne (SAVGBR).

In die eerste manuskrip is die moontlike assosiasie tussen dieet-meewerkendheidstelling, bloeddruk en antropometriese metings ondersoek. ’n Positiewe verwantskap/verhouding tussen sistoliiese en diastoliiese bloeddrukke en ouderdom by beide mans en vroue is gevind. ’n Beduidende positiewe verhouding tussen bygevoegde suikerinname en sistoliiese bloeddruk is by die vroue gevind. ’n Beduidende positiewe verwantskap tussen diastoliiese bloeddruk en LMI was teenwoordig alleenlik by die mans. teenwoordig tussen die bloeddruk van mans en vroue in die laagste en hoogste tertielgroep volgens dieet-meewerkendheidstelling nie, maar ’n beduidende omgekeerde korrelasie tussen dieet-meewerkendheidstelling en sistoliiese bloeddruk is by vroue gevind. Die resultate het bewys dat daar geen beduidende verskille was tussen antropometriese metings of bloeddruk in die drie groepe volgens dieet-meewerkendheidstelling nie.

Met die tweede manuskrip is beoog om die uitdagings/hindernisse rakende KNOS intervensies, asook deelnemers se behoeftes ten opsigte van KNOS intervensieprogramme te ondersoek. Kennis van die Departement van Gesondheid amptenare met betrekking tot huidige beleide vir KNOS, sowel as strategieë as die beste opsies om die KNOS epidemie te bekamp, is ook met die Departement van Gesondheid personeel ondersoek. Resultate het aangedui dat huidige KNOS intervensies aangepas moet word om behoeftes in die konteks van die gemeenskap te adresseer.

In die derde manuskrip is uitdagings/hindernisse teen die implementasie en volging van KNOS gesondheidsboodskappe ondersoek. Daar is gepoog om insig te verkry oor wat studiedeelnemers
van KNOS intervensieprogramme verwag en die aanvaarbaarheid en voorkeure van disseminasie van gesondheidsboodskappe is ook ondersoek. Die metodes vir die disseminasie van gesondheidsboodskappe wat deelnemers verkies, is ook bestudeer. Vier temas het na vore gekom: praktiese aspekte van implementasie en volging van intervensieprogramme; deelnemers se verwagtinge van intervensieprogramme; aspekte wat deelnemers se aanvaarbaarheid van intervensies beïnvloed en deelnemers se voorkeur vir gesondheidsboodskap-disseminasie. Resultate het bevind dat, alhoewel huidige disseminasietekes van gesondheidsboodskappe aanvaarbaar was, deelnemers uitdagings/hindernisse met die implementasie en volging van dié boodskappe ondervind.

ALGEMENE GEVOLGTREKKING

Daar is bewys dat die uitdagings ten opsigte van die implementasie en volging van KNOS gesondheidsboodskappe multifaktoriaal is en dat huidige KNOS intervensieprogramme nie aan die deelnemers se verwagtinge en behoeftes voldoen nie. Daar is dus 'n behoefte vir kultuur-sensitiewe gesondheidsboodskappe en dieetvoorstelle wat deelnemers se konteks in ag neem. Deur gemeenskapslede by die beplanning van KNOS intervensieprogramme te betrek kan moontlike leemtes tussen die Departement van Gesondheid en groepe op wie die intervensies gemik is verhoed word.

Trefwoorde: Kroniese nie-oordraagbare siektes, hindernisse, dieetinskiklikheid, multi-kriteria kartering, intervensieprogramme, stedelike swart bevolkingsgroep
LIST OF TABLES

CHAPTER 3

Table 3.1: Participating countries and target recruitment 135
Table 3.2: Summary of research methodology for different phases of the study 139
Table 3.3: Multicriteria mapping interview options 142

CHAPTER 4

Table 4.1: Sociodemographic, BMI and lifestyle profile of participants 256
Table 4.2: Anthropometric measurements, blood pressure and mean dietary intakes of study population 258
Table 4.3: Scoring criteria for dietary recommendations and intake for quintiles 1 to 5 260
Table 4.4: Dietary intake and physical measurements according to tertiles of dietary adherence score 261
Table 4.5: Correlation of anthropometric parameters and dietary intake with BP 262
Table 4.6: Variables associated with hypertension in the logistic regression model 263

CHAPTER 5

Table 1: Focus group group discussion guide 283
Table 2: Identified themes, categories and subcategories (codes) 285
CHAPTER 6

Table 6.1: Clusters, options and definitions of options to address nutrition-related CNCD 311

Table 6.2: Grouping of criteria into issues 315

Table 6.3: Characteristics of the study sample (n, %) 317

Table 6.4: Challenges with implementation and adherence to CNCD interventions 319

Table 6.5: Obstacles to address the CNCD epidemic identified by DoH officials 323
LIST OF FIGURES

CHAPTER 1

Figure 1.1: Innovative care for Chronic Conditions Framework 5

CHAPTER 3

Figure 3.1: PURE study data collection 136

CHAPTER 6

Figure 6.1: Reasons for wanting to lose weight 318
Figure 6.2: Reasons for willingness to join a weight loss programme 318
Figure 6.3: Participants’ needs from an intervention programme 319
Figure 6.4: Range of ranks of options assessed by the total group of DoH officials 321
Figure 6.5: Range of ranks of issues assessed by DoH managers 321
Figure 6.6: Range of ranks of issues assessed by DoH implementers 322
ADDENDA

<table>
<thead>
<tr>
<th>Addendum</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Letter of confirmation for Ethical approval</td>
<td>158</td>
</tr>
<tr>
<td>B</td>
<td>Methodology for blood pressure and physical measurements</td>
<td>159</td>
</tr>
<tr>
<td>C</td>
<td>Consent form (PURE)</td>
<td>164</td>
</tr>
<tr>
<td>D</td>
<td>PURE South Africa Adult Questionnaire</td>
<td>165</td>
</tr>
<tr>
<td>E</td>
<td>PURE Physical Activity Questionnaire</td>
<td>185</td>
</tr>
<tr>
<td>F</td>
<td>PURE South Africa Quantitative Food Frequency Questionnaire</td>
<td>190</td>
</tr>
<tr>
<td>G</td>
<td>Information sheet: PURE participants</td>
<td>216</td>
</tr>
<tr>
<td>H</td>
<td>Consent form: PURE Participants</td>
<td>219</td>
</tr>
<tr>
<td>I</td>
<td>Challenges to intervention programmes individual questionnaire</td>
<td>220</td>
</tr>
<tr>
<td>J</td>
<td>Information sheet: Department of Health</td>
<td>230</td>
</tr>
<tr>
<td>K</td>
<td>Consent form (DoH)</td>
<td>232</td>
</tr>
<tr>
<td>L</td>
<td>Additional information regarding MCM process</td>
<td>233</td>
</tr>
<tr>
<td>M</td>
<td>Department of Health Questionnaire</td>
<td>240</td>
</tr>
<tr>
<td>N</td>
<td>Focus groups confidentiality binding form</td>
<td>243</td>
</tr>
<tr>
<td>O</td>
<td>Focus group discussion guide</td>
<td>244</td>
</tr>
<tr>
<td>P</td>
<td>Language editing certificate: C. Vorster</td>
<td>247</td>
</tr>
<tr>
<td>Q</td>
<td>Author guidelines: SAJCN</td>
<td>274</td>
</tr>
</tbody>
</table>
ADDENDUM R: Author guidelines: HSAG 290
ADDENDUM S: Author guidelines: JPRES 338
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMI</td>
<td>Acute Myocardial Infarct</td>
</tr>
<tr>
<td>ALA</td>
<td>Alpha linolenic acid</td>
</tr>
<tr>
<td>AHA</td>
<td>American Heart Association</td>
</tr>
<tr>
<td>ADA</td>
<td>American Diabetes Association</td>
</tr>
<tr>
<td>ARVs</td>
<td>Anti-retrovirals</td>
</tr>
<tr>
<td>apoB</td>
<td>Apolipoprotein B</td>
</tr>
<tr>
<td>BP</td>
<td>Blood pressure</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>CRP</td>
<td>C-Reactive Protein</td>
</tr>
<tr>
<td>CANSA</td>
<td>Cancer Association of South Africa</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular Disease</td>
</tr>
<tr>
<td>CHC</td>
<td>Community Healthcare Centre</td>
</tr>
<tr>
<td>COPD</td>
<td>Chronic Obstructive Pulmonary Disease</td>
</tr>
<tr>
<td>CAD</td>
<td>Coronary Artery Disease</td>
</tr>
<tr>
<td>CHD</td>
<td>Coronary Heart Disease</td>
</tr>
<tr>
<td>CNCDs</td>
<td>Chronic Non-communicable Diseases</td>
</tr>
<tr>
<td>DALYs</td>
<td>Disability adjusted life years</td>
</tr>
</tbody>
</table>

xxvii
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHA</td>
<td>Docosahexaenoic acid</td>
</tr>
<tr>
<td>DHS</td>
<td>Demographic and Health Survey</td>
</tr>
<tr>
<td>DoH</td>
<td>Department of Health</td>
</tr>
<tr>
<td>DM</td>
<td>Diabetes Mellitus</td>
</tr>
<tr>
<td>DASH</td>
<td>Dietary Approaches to Stop Hypertension</td>
</tr>
<tr>
<td>EPA</td>
<td>Eicosapentaenoic acid</td>
</tr>
<tr>
<td>ER+</td>
<td>Oestrogen Receptor positive</td>
</tr>
<tr>
<td>FBG</td>
<td>Fasting blood glucose</td>
</tr>
<tr>
<td>FEV₁</td>
<td>Forced Expiratory Volume in 1 second</td>
</tr>
<tr>
<td>FGDs</td>
<td>Focus Group Discussions</td>
</tr>
<tr>
<td>FV</td>
<td>Fruit and vegetables</td>
</tr>
<tr>
<td>GI</td>
<td>Glycaemic index</td>
</tr>
<tr>
<td>GL</td>
<td>Glycaemic load</td>
</tr>
<tr>
<td>GLUT4</td>
<td>Glucose transporter subtype 4</td>
</tr>
<tr>
<td>HbA₁c</td>
<td>Glycosylated Haemoglobin</td>
</tr>
<tr>
<td>HSFSA</td>
<td>Heart and Stroke Foundation of South Africa</td>
</tr>
<tr>
<td>HDL</td>
<td>High-density lipoprotein</td>
</tr>
<tr>
<td>HIV</td>
<td>Human Immunodeficiency Virus</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>HIV/AIDS</td>
<td>Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome</td>
</tr>
<tr>
<td>HOMA</td>
<td>Homeostatic assessment model</td>
</tr>
<tr>
<td>ICCC</td>
<td>Innovative Care for Chronic Conditions</td>
</tr>
<tr>
<td>IHD</td>
<td>Ischaemic Heart Disease</td>
</tr>
<tr>
<td>IGF-1</td>
<td>Insulin Growth-like factor 1</td>
</tr>
<tr>
<td>LCD</td>
<td>Low-carbohydrate diets</td>
</tr>
<tr>
<td>LCM</td>
<td>Low Carbohydrate Mediterranean</td>
</tr>
<tr>
<td>LDL</td>
<td>Low-density lipoprotein</td>
</tr>
<tr>
<td>LICs</td>
<td>Low-income countries</td>
</tr>
<tr>
<td>LMICS</td>
<td>Low-middle income countries</td>
</tr>
<tr>
<td>MUFA</td>
<td>Monounsaturated fatty acids</td>
</tr>
<tr>
<td>MI</td>
<td>Myocardial Infarct</td>
</tr>
<tr>
<td>NHANES</td>
<td>National Health and Nutrition Examination Survey</td>
</tr>
<tr>
<td>NCR</td>
<td>National Cancer Registry</td>
</tr>
<tr>
<td>NCDs</td>
<td>Noncommunicable diseases</td>
</tr>
<tr>
<td>NDoH</td>
<td>National Department of Health</td>
</tr>
<tr>
<td>NGOs</td>
<td>Non-Governmental Organisations</td>
</tr>
<tr>
<td>ω-3</td>
<td>Omega-3</td>
</tr>
</tbody>
</table>
ω-6 Omega-6
PA Physical activity
PUFA Polyunsaturated fatty acids
PURE Prospective Urban Rural Epidemiology
RCT Randomised control trial
SA South Africa
SANHANES-1 South African National Health and Nutrition Examination Survey
SADHS South African Demographic and Health Survey
SAFBDGs South African Food Based Dietary Guidelines
STATSSA Statistics South Africa
TLC Therapeutic Lifestyle Changes
TFAs Total fatty acids
TM Traditional Mediterranean
TG Triglycerides
TB Tuberculosis
T2DM Type-2 Diabetes Mellitus
UMICs Upper-middle income countries
WHR Waist-height-ratio
WHR Waist-hip ratio
WC Waist circumference
WHO World Health Organisation
CHAPTER 1: INTRODUCTION, AIMS, OBJECTIVES AND HYPOTHESIS

1.1 Introduction

Numerous studies have proven conclusively that chronic non-communicable diseases (CNCDs) - diseases that are non-transmissible and non-infectious - are the main cause of adult mortality and morbidity worldwide (Whiteside, 2014; Oli et al., 2013). This term encompasses mainly diabetes, cardiovascular diseases, cancers and chronic respiratory diseases (Herrera-Cuenca et al., 2014; Li, 2014; Ezzati et al., 2012). Currently CNCDs are responsible for more than 50% of the global disease burden and are expected to be responsible for more deaths than that due to infectious diseases (Rossier et al., 2014; Isaacs et al., 2014; Levitt et al., 2011). The rapid increase in CNCDs in low- and middle-income countries is well–documented, South Africa being classified as an upper middle-income country (UMIC) according to the World Bank income classification, is also experiencing this trend (Alwan et al., 2009; Teo et al., 2009). According to Dalal (2011), non-communicable diseases (NCDs) will be responsible for 46% of deaths in sub-Saharan Africa (SSA) with higher age-standardised death rates in four of these countries, namely the Democratic Republic of Congo, Ethiopia, Nigeria and South Africa, in comparison with those in high-income countries.

1.2 Problem statement: setting and background

According to the South African 2011 mortality and causes of death report, NCDs accounted for six of the top ten causes of death in persons aged 15-49 years; eight of the top ten causes of death in the 50-64 years category and nine out of the top ten causes of death for persons aged 65 years and older in the Western Cape province of South Africa (Statssa, 2011).

The growing epidemic is attributable to several factors: firstly, the ageing population owing to the decrease in mortality due to infectious diseases and secondly, urbanisation which is accompanied by changes in lifestyle due to economic development. These changes include dietary changes (adoption of a Westernised diet which is high in fat and refined carbohydrates) and decreased physical activity as a result of easy access to transport. Smoking, adiposity and alcohol use have also been implicated conclusively in the CNCDs epidemic in developing countries (Gostin, 2014; Puoane, 2013; Bhalla, 2013; Baldwin et al. 2012; Pouane et al., 2012; Dalal et al., 2011). In South Africa, the number of
persons afflicted with CNCDs is growing in both rural and urban areas and is highest among the poor who live in urban areas. Thus urbanisation, together with the growing CNCDs epidemic, is adding to the great strain placed on the country’s public health sector, which is the chief provider of healthcare for the poor (Isaacs et al., 2014).

Findings from the recent South African National Health and Nutrition Examination Survey (SANHANES-1) were that South Africans surveyed, who had self-reported histories of CNCDs, fit the CNCDs profile – being overweight or obese, having a high fat and refined carbohydrate diet, consumed excessive amounts of alcohol, smoked tobacco and were less physically active. The rates of self-reported CNCDs history were also highest in formal urban areas (Shisana et al., 2013).

In 2006, the National Department of Health in South Africa developed national guidelines for the management and control of NCDs which are comparable with international standards (Mayosi et al., 2009; South Africa, 2005). These guidelines were however not implemented effectively since they were not circulated widely enough and the handling and control of chronic diseases were not monitored or reviewed (Mayosi et al., 2009). Quite a number of community-based interventions for CNCDs exist in South Africa, the efficacy of which is not known. There is also a lack of association between non-governmental organisations (NGOs) and community-based organisations concerned with CNCDs and government, with each level working independently even though their ultimate goal is the same (Mayosi et al., 2009). South Africa is unique in that it is faced with a quadruple burden of disease (HIV/AIDS; nutritional deficiencies, injuries and chronic diseases) which places major strain on its resources (Westaway, 2010; Househam, 2010; ECONEX, 2009). The public outcry from concerned health authorities has resulted in declarations made to address the exploding CNCDs epidemic, however, in order to formulate an effective, cost-effective and sustainable intervention which will not put added strain on current resources, possible challenges should be identified first.

This study’s first research question is thus: how adherent are urban South Africans living in the Western Cape to existing CNCDs policy guidelines and do those who are adherent have a healthier metabolic profile than those who do not adhere? The second question is: what are the challenges that need to be addressed in order to plan a successful and sustainable CNCDs intervention
programme in South Africa?

1.3 Rationale

Chronic non-communicable diseases, in particular diabetes, cardiovascular disease, cancer and chronic respiratory disease which are known as the four most prevalent NCDs, are forecast to increase the mortality worldwide by 17% by the year 2015 (Ebrahim et al., 2013; Alwan et al., 2009).

Many studies have evidently identified the risk factors, some of which are common to the prominent CNCDs. These modifiable risk factors which include physical inactivity, overweight/obesity, tobacco use, unhealthy diet and harmful alcohol use have been the focus of much research and intervention programmes in some countries (Wagner et al., 2012; Habib et al., 2010; de-Graft Aikins et al., 2010; Westaway, 2010; Alwan et al., 2009; De Caterina et al., 2006). The epidemic of these CNCDs however continues to grow and this calls for urgent interventions to curb the scourge.

Many interventions have been implemented worldwide, but not many have been successful in achieving their aims (de-Graft Aikins et al., 2010). One possible explanation for this failure could be that these interventions only aimed to educate target populations with the belief that knowledge would be enough to achieve the desired result, usually behavioural change (de-Graft Aikins et al., 2010). Researchers have proven that knowledge alone does not ensure change and that many levels (political, social, socio-economic, cultural, etc.) need to be addressed in order to obtain the desired outcome (de-Graft Aikins et al., 2010; Puska et al., 2002). Documented intervention programmes which have been successful and sustainable targeted the identified disease condition at more than one level, unlike unsuccessful intervention programmes (de-Graft Aikins et al., 2010; Wolff et al., 2003; Puska et al., 2002; Nissinen et al., 2001).

The Prospective Urban and Rural Epidemiology (PURE) study aims to identify social, individual and community factors with the view to develop societal interventions and policies to address the CNCD epidemic worldwide (Yusuf et al., 2007).

Hence, the data collected in the PURE cohort from the Langa urban community in the Western
Cape Province in South Africa was used to investigate challenges to the implementation of nutrition interventions aimed at CNCDs at a government, community and individual level. Data collected in this study could thus assist in the planning of a “tailor-made” intervention programme which could effectively stem the CNCDs epidemic in similar settings worldwide.

1.4 Theoretical framework

Chronic non-communicable diseases usually appear slowly, their development is progressive and their treatment is often multifaceted. The current health systems which are mostly based on “an acute, reactive and episodic model”, are thus not suited to address the need of persons at risk of developing, nor those suffering from chronic conditions (Nuño et al., 2012). The WHO Innovative Care for Chronic Conditions (ICCC) Framework (Figure 2) which is an improved international version of the Chronic Care Model (CCM) is geared towards addressing the needs of persons at risk of developing chronic conditions as well as those who are afflicted by chronic conditions based on scientific evidence (Nuño et al., 2012; Epping-Jordan et al., 2004; WHO, 2002). The ICCC framework consists of three levels, namely the macro (policy), meso (healthcare organisation and community) and micro (individual and family) levels (Nuño et al., 2012; Epping-Jordan et al., 2004; WHO, 2002). The macro level focuses on legislation and regulation, leadership and advocacy, inter-sectoral action, integration of policies, partnerships between all stakeholders, financing and the provision and development of human resources (Nuño et al., 2012; WHO, 2002). At the meso level, the ICCC emphasises the role of the community and the importance of integration-coordination of services and resources. The community and the healthcare organisation are equally responsible for chronic care (Nuño et al., 2012; WHO, 2002). At the micro level, the focus is on interaction between healthcare professionals, patients and families and community partnerships. The ICCC framework targets all stages in the prevention and management of chronic conditions: “from health promotion and prevention, to diagnosis, treatment, care, rehabilitation and palliative care” (Nuño et al., 2012). Even though this framework has been applied in both high- and low-income countries, the effective application of the framework has not been assessed (Nuño, et al., 2012).
1.5 Aim of the study

The aim of this study was to investigate challenges to the implementation of intervention programmes aimed at CNCDs in the Langa PURE study site in South Africa.

1.6 Objectives of the study

The following objectives were formulated:

- To determine participants’ dietary adherence by calculating a diet adherence score according to a Dietary Approaches to Stop Hypertension (DASH)-style diet.
- To determine if there was an association between dietary adherence score, anthropometric measurements (waist circumference, body mass index, waist-hip ratio, waist-to-height ratio) and blood pressure in a South African urban dwelling black population.
- To investigate participants’ awareness of existing CNCDs intervention programmes in their community and their willingness to participate in nutrition intervention programmes.
- To determine challenges the target groups faced regarding CNCD interventions and what they require from a CNCD nutrition intervention programme.
- To explore what courses of action the Department of Health (DoH) officials involved in the prevention of the CNCD epidemic, think would perform best.
• To determine DoH officials’ awareness of existing CNCD policies and what factors they perceive as obstacles to address the CNCD epidemic.
• To explore perceived challenges with the implementation of and adherence to health messages disseminated as part of a CNCD intervention programme.
• To gain an understanding of participants’ expectations of CNCD intervention programmes.
• To explore the acceptability and preferences of health message dissemination methods in CNCD intervention programmes.

1.7 Research hypothesis

• Participants do not adhere to a Dietary Approaches to Stop Hypertension (DASH)-style diet.
• There is an inverse association between dietary adherence score and waist circumference, body mass index, waist-hip ratio, waist-to-height ratio and blood pressure, respectively in a South African urban dwelling black population.
• Department of Health (DoH) officials and target groups have different perceptions of what is needed in nutrition intervention programmes aimed at CNCDs in South Africa.
• Individuals will be more willing to participate and adhere to advice given at intervention programmes, if they perceive it to meet their needs.
• Individuals will be more willing to participate and adhere to advice given at intervention programmes, if they find the advice culturally acceptable.

1.8 Significance of the study/value of the study

By identifying factors and perception differences which prevent target audiences from implementing current interventions aimed at eradicating the CNCDs epidemic, government (DOH) and other bodies concerned with public health (such as CANSA, HSFSA) could reconsider current interventions. This study aids in identifying whether a need for “tailor-made” interventions is required, or whether existing intervention programmes should be expanded to address issues identified as being deterrents to the implementation of current CNCDs interventions. For example, one of the risk factors for CNCDs is being overweight or obese, however, in the Black population being overweight or obese may be regarded as an indication of wealth (Stern, et al., 2010).
1.9 Scope and limitations

Chronic non-communicable diseases need to be addressed urgently in order to curb its growth and ease the burden on the overtaxed public health sector. Although many attempts and systems have been put in place in an attempt to address this epidemic, it is not showing any signs of improvement. Innovative ways need to be found to address this epidemic in conjunction/concurrently with other epidemics (such as HIV/AIDS, TB) in an already overtaxed healthcare sector.

An attempt to identify obstacles to controlling/curbing the CNCDs growth needs to be identified, so that intervention programmes and policy can be “tailor made” to suit the target audience.

Limitations of the study are:

Only two community healthcare centres (CHCs) service the Langa community, but Langa hospital is no longer in operation and Vanguard CHC is situated adjacent to Langa in Bonteheuwel. Permission to access Langa hospital for this study was refused by the City of Cape Town on the grounds that they do not provide healthcare to persons with CNCDs. Permission was granted to access Vanguard CHC, however, the manager of the facility CHC declined the opportunity to participate in the study. Thus, no data is included for the municipal level of the study. In addition, only six out of the ten officials from the DoH were willing to participate in the study.

The researcher was unable to carry out any secondary analysis of the baseline biochemical data (cholesterol, triglycerides, blood glucose, LDL-cholesterol and HDL-cholesterol) since at the time of writing up this thesis, the blood samples had not yet been analysed as such, secondary analysis was limited to anthropometry and blood pressure measurements.

Dietary adherence was determined by calculating a dietary score based on a combination of the Dietary Approaches to Stop Hypertension (DASH) guidelines and the South African Food-Based Dietary Guidelines (SAFBDG). The dietary adherence score was calculated using an adaptation of the DASH score. However, the quantified food frequency questionnaire used to collect dietary data did not distinguish between refined carbohydrate and complex carbohydrate intake. We were thus unable to draw clear conclusions regarding fibre intake, even though it is known that South Africans
traditionally consumed a starch-based diet. Regarding legume intake, very few participants consumed lentils, beans or soy and soy products and concrete conclusions regarding legume intake could also not be drawn.

1.10 Organisation of the remainder of the report

The rest of the document is set out as follows:

Chapter 2: Literature review. In this chapter a comprehensive literature study is presented.

Chapter 3: Empirical Investigation. This chapter discusses the research methodology employed for the study and analysis of the data in detail.

Chapter 4: Article 1: This chapter presents a comparison of the blood pressure and anthropometric profiles of participants with the highest dietary adherence scores (based on SAFBG and DASH-style dietary guidelines), compared with those with the lowest dietary adherence scores of an existing cohort study.

Chapter 5: Article 2: This chapter presents data obtained at provincial level (DoH) regarding existing policies for CNCDs and data obtained during multicriteria mapping (MCM) interviews with DoH personnel.

Chapter 6: Article 3: This chapter presents the qualitative analysis of the data obtained from the focus group discussions in the form of a publication published in a scientific journal.

Chapter 7: Conclusions and recommendations. For this chapter, conclusions were drawn from all the findings of the study and recommendations are made based on these findings. The results are used to summarise findings on challenges to the implementation of nutrition intervention programmes aimed at CNCDs in an urban Western Cape Black community.

A reference list of all the resources used is provided and copies of all research instruments (questionnaires) used during this study are provided as appendices.
REFERENCE LIST

Yusuf, S., Teo, K., Anand, S., Rangarajan, S., Dehghan, M., & Chow, C. 2007. Prospective Urban and Rural Epidemiological Study (PURE) protocol: a prospective cohort study to track changing lifestyles, risk factors and chronic disease in Urban and Rural areas of Argentina, Bangladesh, Brazil, Canada, Chile, China, Colombia, India, Iran, Malaysia, Pakistan, Poland, South Africa, Sweden, Tanzania, Turkey, UAE, and Zimbabwe.
CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

The purpose of this chapter is to appraise the existing literature on chronic non-communicable diseases (CNCDs), to emphasise the significance of the problem, as well as to review earlier efforts to control this epidemic. The challenges, failures and successes of nutrition interventions aimed at CNCDs are also explored. To this end, the appraisal of literature is conducted on:

a) CNCDs and its risk factors, with a focus on nutrition;
b) the burden of CNCDs;
c) nutrition intervention programmes aimed at CNCDs, highlighting successes and failures; and
d) frameworks for existing intervention programmes.

The following electronic databases were accessed for the purpose of this literature review: EbscoHost Web (Academic Search Complete, Academic Search Premier, CINAHL Plus, MEDLINE Complete and Nursing Reference Centre); Science Direct; SAGE Journals Online; SciVerse Hub; Google and Google Scholar. The following keywords were employed: non-communicable diseases; chronic non-communicable diseases; chronic diseases of lifestyle; lifestyle, healthy lifestyle interventions; risk factors; intervention programmes; frameworks for intervention programmes; diabetes; cardiovascular diseases; cancer; physical activity; and diet. Additional sources were identified by hand searching reference lists of articles cited by authors in primary sources.

2.2 Definitions

Chronic non-communicable disease: Chronic non-communicable diseases (CNCDs) refer to the four major chronic diseases of lifestyle, which have a profound impact on mortality and morbidity rates worldwide (Alwan & MacLean, 2009). These four major diseases are type-2 diabetes mellitus (T2DM), cardiovascular diseases (CVDs), some types of cancers and chronic respiratory diseases (Wagner & Brath, 2012; Habib & Saha, 2010; Westaway, 2010; Alwan et al., 2009). The rapid
increase of these CNCDs is mostly observed in low- and middle-income countries (LMICs) and is associated with unhealthy eating habits, decreased physical activity, smoking (tobacco use) and alcohol use. Urbanisation, industrialisation and globalisation, in turn, are linked to these changing behaviours (Wagner et al., 2012; Habib et al., 2010; Westaway, 2010; Alwan et al., 2009; Puska, 2002). Some of the CNCD risk factors, which include unhealthy eating habits, decreased physical activity, smoking (tobacco use) and alcohol use, are considered to be modifiable (Wagner et al., 2012; Habib et al., 2010; Alwan et al. 2009; Steyn, 2007; Puska, 2002).

Cardiovascular disease: The term cardiovascular disease (CVD) is the all-encompassing term used to describe any disorder of the heart and blood vessels. It includes, among others, stroke, heart attack and heart disease due to high blood pressure (Steyn, 2007). It has been documented globally that CVD is responsible for most deaths annually (World Health Organisation [WHO], 2011a).

Type-2 diabetes mellitus: Type-2 diabetes mellitus is a long-term illness, which manifests when the pancreas manufactures an inadequate amount of insulin, or when the body is unable to utilise the insulin it produces successfully. This leads to increased levels of glucose in the blood (hyperglycaemia). It often results from excess body weight and physical inactivity. T2DM is linked to decreased life expectancy, increased morbidity as well as diminished quality of life, because of its related complications (WHO, 2011b).

Cancer: Cancer (tumour/neoplasm) refers to the fast growth of abnormal cells, which can occur in any part of the body, or its organs (WHO, 2011c).

Chronic respiratory diseases: Chronic respiratory diseases are long-lasting medical conditions, which affect the respiratory system. The most reported are asthma, chronic obstructive pulmonary disease (COPD), occupational lung diseases and pulmonary hypertension (WHO, 2011d)

Obesity: Obesity can be defined as ‘an excess of body adiposity’ or having a body mass index (BMI) of 30kg/m², or more (Shah & Braverman, 2012; Hurt et al. 2010; Caballero, 2007; Berrington de Gonzalez et al., 2010). BMI is often used to determine a person’s weight status. BMI is determined by dividing the weight in kilograms, by the square of the height in metres (Shah et al., 2012). According to the World Health Organisation (WHO), a person with BMI below 18.5kg/m² is
considered to be underweight; between 18.5 and 24.9kg/m\(^2\) – normal weight; 25.0 to 29.9kg/m\(^2\) – pre-obese; 30.0 to 34.9kg/m\(^2\) – obese class I; 35.0 to 39.9kg/m\(^2\) – obese class II; and above 40 kg/m\(^2\) – obese class III (WHO, 2004). Obesity has been linked to increased mortality rates due to heart disease, dyslipidaemia, sleep apnoea, cognitive dysfunction, non-alcoholic liver disease, stroke and cancers (Dalais et al., 2014; Mitchell et al., 2011; Berrington de Gonzalez et al., 2010).

2.3 Global and South African epidemic of chronic non-communicable diseases

The number of individuals suffering from, or who are at risk of developing, CNCDs which is referred to worldwide as CVDs, cancer, diabetes and chronic respiratory diseases, are increasing annually (Wagner et al., 2012; Habib et al., 2010; Westaway, 2010; Alwan et al., 2009). The global, as well as South African epidemic of each CNCD is discussed briefly.

South Africa (SA) differs from other countries in transition, in that it has a quadruple burden of disease, which is HIV/AIDS; Maternal and child mortality; CNCDs and Violence (Maredza et al., 2011; Househam 2010; Kean and Erasmus 2009). In South Africa, the number of deaths from HIV is still higher than from the four major CNCDs, however, the disability adjusted life years (DALYs) indicate that, currently, CNCDs and HIV each account for 35% of the disease burden (Hofman, 2011). Heart disease is often associated with wealth, but in SA it has been revealed that stroke, due to hypertension, is more prevalent in persons living in poverty (Hofman, 2011; Mayosi et al., 2009). In South Africa, there has been an increase of CNCDs involving individuals residing in rural communities, however, the statistics are still lower than those individuals of poor socio-economic status, who reside in urban areas (Draper et al., 2014; Househam, 2010).

In SA, most of the poor do not have access to affordable, nutritious foods, with many individuals residing in urban areas and known to consume foods with a higher fat content and little fruit and vegetables (Hofman, 2011; Kruger et al., 2005). In addition, most of the poor people live in environments that are not conducive to physical activity. Most often, there are no designated safe areas to exercise, walk, ride a bicycle or play. Additionally, they are also far removed from places built for leisurely activities and public swimming pools (Hofman, 2011; Kruger et al., 2005).
South Africa is leading in the development and implementation of legislation for tobacco control, with the passing of the Tobacco Products Control Act (83 of 1993) and increasing tobacco taxes to 52% per pack (Maredza et al., 2011; Hofman, 2011). SA is also not lagging far behind the rest of the world, in terms of obesity. A recent systematic analysis showed that South African women had the highest prevalence of obesity in 2013 (Ng et al., 2014). Besides the influence of urbanisation on dietary and lifestyle habits on weight, culture also plays a very important role. Ethnic black women often do not view themselves as being overweight, as it is perceived to be attractive and related to respect, dignity and wealth (Micklesfield et al., 2013; Malaza et al., 2012; Stern et al., 2010). The success of interventions for HIV/AIDS has resulted in an increased survival rate of HIV-positive persons, however, the known side effects of long-term ARVs & increasing age of HIV-survivors will also contribute to the growth of CNCDs (Lalkhen & Mash, 2015).

In his speech at the SA Summit on the Prevention and Control of Non-communicable diseases, held in Gauteng, September 2011, the Health Minister, Aaron Motsoaledi, expressed his concern for the CNCDs epidemic that South Africa is facing. The summit culminated in the South African Declaration on the prevention and control of non-communicable diseases (South Africa Department of Health [DoH], 2011).

2.3.1 Type-2 Diabetes mellitus

In the year 2014, it was estimated that 422 million people in the world were living with type-2 diabetes mellitus (T2DM). This represents an increase in T2DM prevalence of 8.5% worldwide (WHO, 2016). As stated by the International federation of Diabetes (IDF), 2.2 million cases of T2DM were reported in South Africa in 2015 (IDF, 2015). According to findings from the SANHANES-1 report, persons of coloured and Asian/Indian ethnicity had significantly elevated glycosylated haemoglobin (HbA1c) levels compared to those from White or Black ethnic groups. (Shisana et al., 2013).

2.3.2 Cardiovascular diseases

In 2015, it was estimated that 17.7 million people had died from CVDs. Of the 17.7 million, 7.4 million and 6.7 million deaths were due to coronary artery disease stroke, respectively. This
comprised 31% of all global deaths in that year. More than 80% of these deaths occurred in LMICs, with an equal distribution across genders (WHO, 2017).

Statistics from the American Heart (2010) indicate that approximately 82,600,000 American adults suffer from one or more type/s of CVD, with 40,400,000 being older than 60 years of age (Starr, 2012). In America, it has been predicted that approximately one death every 39 seconds is attributable to CVD (Bhupathiraju & Tucker, 2011).

According to the Heart and Stroke Foundation of South Africa (HSFSA), in 2015, 6.3 million individuals suffered from hypertension in South Africa – 130 heart attacks and 240 strokes occurred on a daily basis (HSFSA, 2016). The estimated number of daily deaths due to CVD in South Africa equates to 20% of daily deaths caused by HIV/AIDS (Maredza et al., 2011). Even though HIV is still considered the leading cause of deaths in South Africa, the number of deaths due to cardiovascular disease is forecasted to increase by 48% between the years 2000 and 2030, in the economically active age group (35 - 64 years), unless strategies are put in place to address the problem (Hofman, 2011).

2.3.3 Cancer

According to the WHO, cancer is the second biggest contributor to global deaths with an estimated 8.8 million people losing their lives due to this disease. In addition, the WHO had predicted that 14 million people would be diagnosed with cancer in 2012 (WHO, 2017). It has been forecasted that, by the year 2030, the number of cancer cases will increase to 82% in low-income countries (LICs), 70% in LMICs and 70% in upper-middle-income (UMICs), with only an expected 40% increase in high-income countries (HICs) (Wagner et al., 2012).

Breast cancer is the most common cancer diagnosed in women. It accounts for one in every three cancers diagnosed, with more than 230,000 new cases diagnosed annually in the United States (Thomson, 2012). According to the South African National Cancer Registry [SANCR] (African Cancer Registry Network [AFCRN], 2012), the topmost nutrition-related cancers in South African men are prostate cancer, cancer of the lungs, colorectal cancer, oesophageal cancer and stomach cancer. In South African women, the topmost nutrition-related cancers diagnosed are breast cancer,
cervical cancer, colorectal cancer and oesophageal cancer (AFCRN, 2012). Each year, in South Africa, it is estimated that about 4000 deaths are attributable to cancer (Mayosi et al., 2009). According to a report by Health 24, dated 26 August 2014, the information officer of the Cancer Association of South Africa (CANSA) highlighted the common cancers in South African women and men. S/he also stated that some cancers, such as cervical cancer, breast cancer, oesophageal cancer, uterine cancer and lung cancer were more prevalent among black South African women (CANSA, 2017).

2.3.4 Chronic obstructive pulmonary diseases

A number of chronic respiratory diseases exist, the most common group being chronic obstructive pulmonary disease (COPD), which usually refers to chronic bronchitis and emphysema, both of which are characterised by progressive airflow obstruction that is only reversible to a degree (Schwellnus et al., 2008). According to the WHO, there are 235 million individual asthma sufferers worldwide. In 2015, more than 3 million people died from COPD globally (WHO, 2016). COPD is the leading cause of lung-related death and disability (Schwellnus et al., 2008). Besides the systemic consequences of chronic respiratory disease, co-morbidities, such as cardiac disease, diabetes mellitus, hypertension, osteoporosis and psychological disorders are also frequently present in COPD sufferers (Schwellnus et al., 2008).

The predominant non-communicable chronic respiratory diseases in South Africa are COPD, asthma, occupational lung disease and lung cancer (Mayosi et al., 2009). Statistics for non-communicable chronic respiratory diseases in South Africa are not readily available, however, South African demographic and health surveys’ (SADHS) self-reported data in 2003 found that more women (8.5%) than men (7.8%) suffer from asthma, which is categorised as a chronic respiratory disease. A study conducted in Cape Town supported the SADHS findings and revealed that asthma was more common in rural than urban areas (Cullinan, 1998; Mayosi et al., 2009).

2.4 Causes and risk factors for CNCDs

As far back as the early 1900s, increasing levels of CNCDs were associated with socio-economic development, as witnessed by increased salaries, education, employment, lifestyle changes,
improved health status and life expectancy (Amuna & Zotor, 2008).

2.4.1 Epidemiological and nutrition transition

In South Africa, as in other developing countries, migration from rural to urban areas has been linked with significant lifestyle changes, especially changes in diet (to a more ‘westernised’ one that is fatty and calorie-dense), lifestyle habits (consumption of alcohol and smoking) and decreased activity levels (Crowther, 2009). This nutrition transition, defined as a shift in dietary habits, together with changes in lifestyle, result in increased weight gain over time and, ultimately, the development of CNCDs (Bishwajit et al., 2014; Crowther, 2009; Amuna et al., 2008).

The key risk factors for CNCDs are similar in almost all countries (Wagner et al., 2012). These nine risk factors, as identified by the INTERHEART study are:

1) Tobacco use;
2) Lack of physical activity;
3) Excessive alcohol use;
4) A diet that is high in calories and sugar;
5) A diet that is high in salt;
6) High saturated and trans-fatty acids (trans-fats) intake;
7) Low fruit and vegetables intake;
8) Obesity; and
9) Psychosocial stress

(Wagner et al., 2012; Maredza et al., 2011; Habib et al., 2010; Alwan et al., 2009).

This review will focus on nutrition-related risk factors, including tobacco use and physical activity.

2.4.2 Tobacco use

Smoking has been associated with death resulting from the development of 21 diseases. These diseases include 12 types of cancer, 6 categories of CVDs, diabetes, COPD and pneumonia (Carter et al., 2015; Vineis et al., 2007). The mortality rate of smokers is reportedly 2-3 times higher than
that of non-smokers (Carter et al., 2015).

2.4.2.1 Tobacco use and obesity

Even though smokers seemingly have a lower bodyweight and body mass index (BMI) compared to non-smokers they tend to have larger waist circumferences (WC) and waist-hip-ratios (WHR) than non-smokers (Kim et al., 2012; Clair et al., 2011). According to literature, abdominal fat (determined by WC and WHR) is associated with the risk for diabetes and cardiovascular disease (Clair et al., 2011). Greater risk of abdominal obesity is associated with heavy smoking [more than 10 cigarettes per day] compared to light smoking [up to 10 cigarettes per day] (Clair et al., 2011).

2.4.2.2 Tobacco use and diabetes

Tobacco use has been autonomously linked with the occurrence of diabetes. The aetiology is not yet completely understood, however, it is alleged that the advancement of visceral obesity (fat tissue surrounding the intra-abdominal organs), increased hypercortisolemia, nicotine-induced impaired beta-cell function and increases in inflammatory markers, as well as oxidative stress, due to smoking, are to blame (Hilawe et al., 2015; Luo et al., 2013; Shuster et al., 2012). Smoking has also been linked with visceral fatness, which in turn has been linked to more health risks than peripheral adipose tissue. It has also been established that visceral fatness results in hepatic insulin resistance and the elevated production of glucose, as well as increased production of very low lipoproteins by the liver (Kim et al., 2012).

In the diabetic population, it has been reported that smoking increased the risk of death, coronary heart disease (CHD), stroke and myocardial infarct (MI), with the risk for CHD, stroke and proteinuria being directly associated with the number of cigarettes smoked daily (Nagrebetsky et al., 2014). In addition, it has been revealed that smokers with diabetes have increased levels of glycated haemoglobin (HbA1c) and are also at greater risk of experiencing severe hypoglycaemia (Nagrebetsky et al., 2014). The findings of a previous study have shown an association between passive smoking and the risk of type 2 diabetes (T2DM), however, the researchers recommended that further studies be done to conclusively confirm their findings (Wang et al., 2013).
2.4.2.3 Tobacco use and cardiovascular disease

Tobacco use is considered to be one of the major contributors to the high CVD mortality rate, with smokers exposed to twice the risk of suffering an acute myocardial infarct (AMI) compared to non-smokers (Wambua & Jamal, 2012; Huxley & Woodward, 2011). In addition, it has been revealed that female smokers are exposed to a 25% greater risk of developing CHD than men are. However, the reason for this variation in risk between genders is unknown (Huxley et al., 2011). The proposed mechanisms for the development of CVD in smokers include an inflammatory response and modification of the smoker’s lipid profile. For several years, various studies have revealed that smoking results in an elevated peripheral leukocyte count, while promoting atherosclerosis, by changing the smoker’s lipid profile (Wambua et al., 2012; Kim et al., 2012). Epidemiological studies have not only proven that cigarette smoking increases the incidence of MI and fatal coronary artery disease (CAD), evidence also exists that passive smoking is associated with more or less a 30% increase in CAD (Salahuddin et al., 2012; Ambrose & Barua, 2004).

2.4.2.4 Tobacco use and cancer

The association between tobacco use and cancer goes as far back as 1670 (Hymowitz, 2011). Over the years population studies, animal experiments, cellular pathology and the identification of cancer-causing chemicals in cigarette smoke has all cemented the link between tobacco use and cancer (Proctor, 2012). Tobacco use has been strongly associated with lung cancer (Hymowitz, 2011; Proctor, 2012). Cigarette smoking has been shown to cause atrophy of the cilia lining the upper airway passages, which is responsible for the removal of harmful particles from the lungs (Proctor, 2012). In addition, polycyclic aromatic hydrocarbon, a known cancer-causing chemical plus other carcinogens including arsenic, chromium and nickel, has been identified in cigarette smoke (Proctor, 2012). Smoking has also been linked to 17 types of cancers, including cancer of the lip, mouth, oesophagus, stomach, colorectum, liver, pancreas, liver, larynx, urinary bladder, kidney and renal pelvis (Alexandrov et al., 2016; Carter et al., 2015). In their research on head and neck cancer, Zhang et al. (2015) found that tobacco use was a greater risk factor for head and neck cancer compared to alcohol use (Zhang et al., 2015).
2.4.2.5 Tobacco use and chronic obstructive pulmonary disease

Over the years, a number of risk factors linked to the development of COPD have been identified (for example, genetic, occupational or environmental exposure, gender, age, respiratory infections, socio-economic status, nutrition and co-morbidities). However, smoking and exposure to second-hand smoking are still pinpointed as major risk factors for COPD, which is ranked as the third most frequent cause of worldwide mortality (Burney et al., 2013; Parker & Eaton, 2012).

2.4.3 Lack of physical activity

Since the 1950s, inactivity of the US population has been deemed a matter of concern. This resulted in President Eisenhower creating the Council on Fitness and Health in an attempt to increase physical activity. In 2000, it was estimated that less than 30 per cent of the US population had an adequate level of physical activity (Caballero, 2007).

In South Africa, the Demographic and Health Survey [DHS] (South Africa Department of Health [DoH], 2003) found that 32% of adolescent men and 47% of adolescent women were inactive. The same survey also reported that of the men and women (15 years and older) surveyed, 48% of the men and 63% of the women were inactive (SA DoH, 2003). In 2010, it was estimated that approximately 46.9% of adults (18 years and older) were physically inactive in South Africa (WHO, 2010). Reports that are more recent inform that only 24% of South African women and 36% of men participate in sufficient levels of daily health-enhancing physical activity (Kolbe-Alexander et al., 2012).

2.4.3.1 Lack of physical activity and overweight/obesity

Physical activity has been proven to aid weight loss and weight maintenance (Wiklund, 2016; Hruby et al., 2016). It thus follows reason that a lack of physical activity could be a contributing factor to overweight and obesity. In fact, low physical activity or a decrease in physical activity has been associated with an increased risk of weight gain (Hruby et al., 2016; Wiklund, 2016).
2.4.3.2 Lack of physical activity and cardiovascular disease

Since 1953, many studies have proven that a lack of physical activity is linked to an increased risk of cardiovascular and coronary heart disease (Shiroma & Lee, 2010). Chronic low-grade inflammation has recently been observed to be the common factor linking T2DM, metabolic syndrome, insulin resistance, endothelial dysfunction and CVD (Balducci et al., 2012). It has been suggested that a lack of physical activity have a direct effect on the structure and functioning of blood vessels and in this way, alter the risk of cardiovascular disease (Thijssen et al., 2010). Several studies have shown that physical activity reduces levels of C-reactive protein (CRP), an acute-phase protein, which is an independent predictor of CVD and coronary artery syndromes, as well as other pro-inflammatory cytokines (Shrivastava et al., 2015; Balducci et al., 2012; Yousuf et al., 2013). This anti-inflammatory effect was greatest in groups that performed a combination of aerobic and resistance exercises at a high-intensity level, including daytime physical activity for a long duration of time (Balducci et al., 2012). The anti-inflammatory effect was perceived to be due to inhibition of pro-inflammatory pathways, stimulation of anti-inflammatory pathways, as well as modulation of adipokines, which regulate insulin sensitivity (Balducci et al., 2012).

2.4.3.3 Lack of physical activity and diabetes mellitus

A lack of exercise has been associated with reduced muscle mass and obesity (Ozougwu et al., 2013; Marinho et al., 2013; Olokoba et al., 2012). Excess intra-abdominal fat (visceral fat) is known to cause insulin resistance, a characteristic of T2DM (Ozougwu et al., 2013; Olokoba et al. 2012). Over the past decade, several studies involving animal and human models have demonstrated that insulin action is improved and glucose absorption enhanced, after exercise (Khan, 2013; Maarbjerg et al., 2011). This increased insulin sensitivity has been demonstrated in healthy, insulin resistant and type 2 diabetic subjects. This insulin sensitivity is perceived to be due to increased glucose transporter type 4 (GLUT4) translocation to the surface membrane, during exercise and a combination of several small enhancements in insulin signalling and microvascular perfusion (Maarbjerg et al., 2011).
2.4.3.4 Lack of physical activity and cancer

Even though the mechanism involved in cancer and physical inactivity has not been clearly ascertained, it has been proven that obesity (excessive adiposity), excess energy intake and physical inactivity, increase the risk of many cancers and other chronic diseases of lifestyle (Kushi et al., 2010).

2.4.3.5 Lack of physical activity and COPD

In recent years, researchers have established that physical inactivity and obesity can lead to the development of COPD. Although the exact interrelationship is unclear, it is known that both physical inactivity and obesity are associated with low-grade systemic inflammation. It has been established that low-grade systemic inflammation plays a pivotal role in the pathogenesis of many chronic diseases. Spirometry is often used to measure lung function. The measurements made with this test include forced expiratory volume in 1 second (FEV$_1$), a measurement of the maximum amount of air an individual can forcefully blow out of their lungs in one second (Ranu et al., 2011). C-reactive protein (CRP) levels have been linked to a lower FEV$_1$ and strongly and independently linked with a higher occurrence of bronchial hyper-responsiveness in a study conducted by Ten Hacken (2009). In persons suffering from COPD, physical inactivity has been linked to more hospitalisations, co-morbidities and adverse outcomes (Troosters, 2013; Zanoria & ZuWallack, 2013).

2.4.4 Alcohol use

An excessive intake of alcohol has been linked to increased risks of cancer of the breast (female), colon, rectum, liver, oral cavity, pharynx, larynx and oesophagus (Chan & Giovannucci, 2011; Room & Rehm, 2010).

2.4.4.1 Alcohol and overweight/obesity

Excessive alcohol intake and binge drinking has been associated with an increased risk of becoming overweight and obese (Traversy et al., 2015; Yeomans, 2010). Several possible explanations for the
26
effect of alcohol on weight gain have been put forth in the literature. One explanation is that the kilocalories (kcal) from alcohol is additive to kcal from other food and beverages consumed (Yeomans, 2010). It has been observed that an increased food intake was consumed by study participants on days alcohol was consumed (Yeomans, 2010). It was thus hypothesised that alcohol stimulates appetite and promote overconsumption of food in the short term (Yeomans, 2010). Since it has been proven that alcohol affects a number of hormones associated with satiety, it has been suggested that alcohol may affect kcal intake by limiting the effect of these hormones (Traversy et al., 2015). Alcohol has also been shown to inhibit fat oxidation, thus frequent alcohol intake may result in increased body fat over years (Traversy et al., 2015).

2.4.4.2 Alcohol and cardiovascular disease

Moderate alcohol consumption has also been associated with a decreased risk for developing CVD (Bhupathiraju et al., 2011; Sisson et al., 2005). On the other hand, irregular heavy drinking (>60g of pure alcohol or ≥5 drinks at a time) i.e. binge drinking has been linked to a 45% higher risk for CVD. It has been documented that regular heavy drinkers (>2 days/week) have a 25% lower risk for CVD in comparison with non-drinkers. Irregular heavy drinkers (2 days or less per week) were found to have a notably higher risk for CVD compared to non-drinkers (Bhupathiraju et al., 2011).

Even though wine is perceived to be more beneficial, all forms of moderate alcohol intake seem to be of benefit. Wine has been found to be of greater benefit against CVD risk than beer and beer is said to have a greater benefit than spirits (Bhupathiraju et al., 2011). Various modes of action have been considered, to explain the association between alcohol and CVD. Studies have shown that 30g of ethanol per day resulted in higher levels of HDL-C and apolipoprotein A1. In addition, moderate alcohol consumption might improve the thrombolytic profile. Yet other researchers have observed that moderate alcohol intake is associated with lower CRP levels and higher insulin sensitivity. Red wine advocates believe that reservatol is cardioprotective due to its antioxidant and anti-apoptotic effects (Bhupathiraju et al., 2011).

Currently the American Heart Association (AHA) recommends that alcohol consumption should be limited to no more than two drinks per day for males and one drink per day for females. In addition,
the Association recommends that non-drinkers should not start to consume alcohol, because of the risks associated with its heavy consumption, such as addiction, liver disease and cancer (Bhupathiraju et al., 2011).

2.4.4.3 Alcohol and diabetes mellitus

A low to moderate consumption of alcohol has been associated with decreased risk of T2DM in many studies (Mekary et al., 2011; Crandall et al., 2009; Baliunas et al., 2009). It has been suggested that several factors may play a role, including increased insulin sensitivity, post-moderate alcohol intake, changes in the levels of alcohol metabolites, increased HDL cholesterol levels, or the anti-inflammatory effect of alcohol (Baliunas et al., 2009).

BMI has been found to be a determining factor in the risk of developing T2DM and alcohol consumption. Moderate and heavy drinking is associated with increased risk of T2DM in men with low BMI, while moderate alcohol consumption seems to have a protective effect in men with higher BMIs (Pietraszek et al., 2010). The type of alcohol consumed is also a determinant in the risk of developing T2DM, with wine being the most protective and spirits being the most harmful (Pietraszek et al., 2010).

Even though researchers have agreed, in recent years, that alcohol intake plays a role in the risk of T2DM, the physiological mechanism is not clear. In their systematic review and meta-analysis, Baliunas et al. (2009) found that an alcohol intake of 51g/d for women and 62g/d for men, was harmful and, therefore, reinforced the current recommendation for low alcohol intake (Baliunas et al., 2009).

2.4.4.4 Alcohol use and cancer

Studies have clearly established that alcohol consumption is a factor for cancers of the mouth, pharynx, larynx, oesophagus, liver, colon, rectum and breast (Room et al., 2010). Excessive intakes of alcohol, defined as more than 2 drinks per day in men, have been associated with a two-fold risk of colon cancer and an increased risk of colorectal adenoma (Chan et al., 2010; Parkin, 2011; Latino-Martel et al., 2011; Baan et al., 2007). In their study, Breslow et al. (2011) found that the
quantity of alcohol consumed affected all-site cancer mortality in men, whereas the frequency was more important in females. Higher alcohol consumption was linked to increased risk of colorectal cancer in women and more frequent drinking was associated with increased prostate and breast cancer risk (Breslow et al., 2011). Acetaldehyde, which is the first product formed during the metabolism of ethanol, causes DNA damage and has been classified as a Group 1 carcinogen (Connor, 2016; Room et al., 2010; Secretan et al., 2009; Baan et al., 2007). It has also been hypothesised that excessive alcohol use reduces folate, a co-factor in DNA synthesis, repair and methylation (Hu et al., 2016). It is believed that folate deficiency might induce p53 mutations resulting in the development of cancer (Chan et al., 2010).

2.4.5 Dietary intake

An inadequate quality diet is a key cause of worldwide mortality and morbidity, with diet-related health problems, such as CNCDs, topping the list of health problems due to under-nutrition (Imamura et al., 2015). Over the past four decades, the dietary composition in LMICs has changed to a more calorific one, which is high in total and saturated fat (Imamura et al., 2015; Kearney, 2010).

Determinants of dietary intake have been identified as income, urbanisation, trade liberalisation, transitional food corporations, retailing, food industry marketing, as well as consumer attitudes and behaviour (Kearney, 2010). High intakes of energy, especially of calorie-dense, but low-nutrient dense foods, are a major problem in industrialised societies (Egger & Dixon, 2014). Excessive consumption of calories will result in the individual becoming overweight and/or obese, which in turn could result in the individual becoming insulin resistant and consequently developing T2DM and CVD (Egger et al., 2014; De Caterina et al., 2006). A large percentage of the increased caloric intake can be attributed to a high intake of sweetened beverages, as well as excess intake of low-cost energy-dense food, which displaces calories from fresh fruits and vegetables (Caballero, 2007).

“Metaflammation”, a term used to describe a form of low-grade chronic and systemic inflammation that appears to be present in many chronic diseases, was originally credited to obesity. Subsequent studies, however, have described increased risk and elevated metaflammation from
overconsumption of sugars, salt, alcohol and fats (saturated and trans), as well as inadequate intake of fibre, fruit, vegetables, grains and certain nutrients (Egger et al., 2014).

2.4.6 Diet and diabetes mellitus

2.4.6.1 Carbohydrates

The glycaemic index (GI) is “an indicator of carbohydrate quality that reflects the effect on blood glucose” (Salas-Salvadó et al., 2011; Oh et al., 2005). The glycaemic load (GL) is “an indicator of both carbohydrate quality and quantity” (Salas-Salvadó et al., 2011; Oh et al., 2005). It has been revealed that high GI and GL diets are linked to increased risk of diabetes and that low-GI diets are linked to improved glycaemic control, insulin sensitivity and other biomarkers for diabetes (Salas-Salvadó et al., 2011). A strong postprandial metaflammatory trajectory has been seen with the consumption of highly processed foods (Egger et al., 2014).

2.4.6.2 Dietary fibre

Studies have shown that high intakes of fibre and fibre-rich foods reduce the risk of T2DM (InterAct Consortium [The], 2015; Post et al., 2012). Soluble fibre is known to slow down gastric emptying and intestinal nutrient absorption and, in this way, play an important role in controlling postprandial glycaemia and insulin responses and satiety (Salas-Salvadó et al. 2011). A high insoluble fibre (cereals, legumes, nuts) intake has also been linked to decreased incidence of T2DM. It has been hypothesised that this could be because food sources of insoluble fibre contain many bioactive phytochemicals (Salas-Salvadó et al., 2011).

2.4.6.3 Dietary fat

In their systematic review, Salas-Salvadó et al. (2011) concluded that dietary fat is not a risk factor for T2DM. They also found that total fat consumption of 18-40% of energy did not affect body fatness. Recent studies have shown that vegetable-based high-fat diets (35-40% of total energy) improved insulin sensitivity, decreased triglyceride (TG) levels and elevated HDL cholesterol levels (Salas-Salvadó et al., 2011; Halton et al., 2008; Hession et al., 2009). However, Salas-Salvadó et al.
conclude that, since no long-term randomised studies had been done on the effects of high-fat diets, well-founded recommendations cannot be made. Additionally, their study also found that the type of fat (saturated versus unsaturated fatty acids) play a role in the risk of diabetes. It has been established that mono-unsaturated fatty acids (MUFAs) have no effect on T2DM development, whereas saturated fatty acids (SFA), especially from the consumption of processed meat and total meat intake has been associated with the risk of T2DM (Salas-Salvadó et al., 2011).

2.4.6.4 Salt

Hypertension is often present in persons with diabetes due the increased rate of atherosclerosis seen in diabetes (Feldstein, 2002). Since hypertension in a person with diabetes has been linked to various harmful effects, it has been recommended that the prevention of hypertension should be the goal. Therefore, it has been recommended that this population group should restrict their salt intake, since it has been proven that salt restriction provides a modest reduction on blood pressure in persons with T2DM (Ekinci et al., 2011).

2.4.6.5 Fruit and vegetables

In a critical review of the literature, Boeing et al. (2012) assert that an increased intake of fruit and vegetables might indirectly reduce the incidence of T2DM, by preventing weight gain, which is considered the chief risk factor for T2DM. However, this review also found no proof that increased fruit and vegetable consumption increased the risk of T2DM, independent of overweight. Others concluded that specific vegetable groups, especially green leafy vegetables and root vegetables, might be valuable in preventing diabetes (Boeing et al., 2012; Cooper et al., 2012a). In addition, it has been established that inclusion of a larger amount of vegetables, as well as a bigger variety of fruit and vegetables, is associated with a decreased risk of T2DM (Cooper et al., 2012b). Concerns about the effect of the sugar content of fruit on glycaemic control of persons with T2DM have also been proven to be unfounded. Christensen et al. (2013), in their randomised controlled trial (RCT), found that limiting fruit intake had no effect on HbA1c and recommended that fruit consumption should not be strictly limited in persons with T2DM.
2.4.7 Diet and cardiovascular disease

The association between diet and CVD has been researched extensively for almost half a century (Mente et al., 2009). The universal agreement from current available literature is that a dietary pattern that is low in saturated and trans-fatty acids TFAs), while high in fruit and vegetables, whole-wheat products and polyunsaturated fatty acid (PUFAs), including ω-3 fatty acids, is probably helpful in preventing CVD (Mente et al., 2009).

2.4.7.1 Carbohydrate intake

It has been documented that a high carbohydrate intake can have an unfavourable effect on fat and glucose metabolism, which increases the risk of CVD (Oh et al., 2005). Evidence exists to support the claim that a high glycaemic load (GL), or glycaemic index (GI), may increase the risks of CHD and T2DM. On the other hand, total carbohydrate intake has a weaker association with these conditions. In addition, it has also been established that the undesirable effect of a high carbohydrate intake, or glycaemic load, is more enhanced in persons with underlying insulin resistance (Oh et al., 2005).

In their prospective study, Oh et al. (2005) found a relationship between high carbohydrate intake and risk for haemorrhagic stroke, which was independent of other cardiovascular risk factors. Their findings also revealed that this relationship was more powerful in females, who were overweight or obese (Oh et al., 2005). In their study that explored the risk of stroke and carbohydrate intake, Oh et al. (2005) found that total carbohydrate intake was a greater risk factor for total and haemorrhagic stroke, than glycaemic index, or glycaemic load. A possible explanation for this is that, as previously established, a high-carbohydrate intake may decrease total LDL and HDL levels, which may cause weakening of the arterial wall and subsequently, the rupturing of intra-cerebral arteries (Oh et al., 2005).

Another possible explanation is that with a higher carbohydrate intake, there might be a compensatory lower intake of protein. A low intake of animal protein has been linked to an increased risk of haemorrhagic stroke (Oh et al., 2005). Yet another possible explanation is that high carbohydrate, low-protein diets may increase blood pressure, which is a powerful risk factor.
for stroke. Carbohydrates have also been linked to higher CRP levels, which may signify a worsening of insulin resistance that might be associated with an increased risk for stroke (Oh et al., 2005).

Literature documents that the risk for chronic diseases may be lessened by means of a high fibre intake (Lottenberg et al., 2010; Oh et al., 2005). It has been hypothesised that fibre might improve postprandial glycaemic response and insulin levels (Oh et al., 2005; Fuji et al., 2013). It is also assumed that the micronutrients, present in fibre-containing foods, might have an additive effect on lowering the risk of stroke (Oh et al., 2005). Based on their findings, the researchers suggest that the risk of haemorrhagic stroke can be decreased, especially in overweight women, by replacing refined starches and sugar with whole-wheat, high-fibre forms of carbohydrate (Oh et al., 2005).

2.4.7.2 Dietary fat

A diet high in SFA, TFA and dietary cholesterol (chol) plays an exceptional role in the advancement of atherosclerosis (Derman et al., 2008a). Mente et al. (2009), in their systematic review, found a relationship between low fat diets, increased TG and decreased high-density lipoprotein (HDL) cholesterol levels. These authors also found that diets supplemented with unsaturated fatty acid, such as olive oil, tended to have a beneficial effect on serum fats (Mente et al., 2009).

The AHA currently recommends consuming <7% of energy as saturated fat and <1% of energy as TFA to decrease CVD risk. The latest Dietary Guidelines for Americans also recommend the replacement of SFA with dietary sources of MUFAs and polyunsaturated fats (PUFAs) (Bhupathiraju et al., 2011).

Saturated fat has been implicated in the increased risk of CVD by increasing the low-density lipoprotein (LDL) concentrations (Bhupathiraju et al., 2011). Studies reveal that by substituting SFA with unsaturated fatty acids increases the HDL to LDL ratio, which reduces the risk for CVD (Vafeiadou et al., 2015; Kris-Etherton & Fleming, 2015; Guasch-Ferré et al., 2015). Trans-fatty acids have recently been identified to be as bad a risk for CVD as SFA. Additionally, it has been predicted that CVD risk could be decreased by 17%, should TFA be substituted with SFA, MUFA or PUFA (Bhupathiraju et al., 2011).
2.4.7.3 Fruit and vegetables

Fruit and vegetable (FV) intake has been directly linked with lower mortality from ischaemic heart disease (Bazzano et al., 2002). This same study revealed that the incidence of stroke, stroke mortality, ischaemic heart disease (IHD) mortality, CVD mortality and all-cause mortality in the greater USA population decreased with regular FV intake (Bazzano et al., 2002).

It has been reported that the global total mortality, because of inadequate FV consumption, is approximately 2.64 million deaths per year (Bhupathiraju et al., 2011). It has been forecast that consuming 600g of FV per day may decrease the global strain of IHD and ischaemic stroke by 31% and 19%, respectively. A range of studies has shown that the protective effects of FV are dose-dependent (Wallace et al., 2013; Wang et al., 2014). The mode through which FV exert their beneficial effects are not fully known, but it has been hypothesised that it includes antioxidant and anti-inflammatory effects (Bhupathiraju et al., 2011).

The authors also recently noted that there is a relationship between a greater variety of FV and lower circulating C-reactive protein levels, which is a systemic inflammatory marker. In addition, it is believed that the bioactive constituents in FV, such as carotenoids, vitamin, fibre, magnesium and potassium work together to advance a holistic protective effect (Bhupathiraju et al., 2011).

2.4.7.4 Fish intake

The results regarding the beneficial effect of an increased fish intake have been conflicting (Mente et al., 2009). Concern has been raised regarding the increased risk for prostate cancer with high fish intakes, as well as the potential effects of mercury and other contaminants (Bhupathiraju et al., 2011). It has been documented that individuals, who consumed fish 2-4 times per week, had a 23% lower risk of CVD mortality. Each 20g/d of fish intake was linked to a 7% lower risk of CVD mortality. The preparation method has also been noted to affect the beneficial effect of fish. Grilled or baked fish, but not fried fish, has been established to reduce the risk of incident heart failure. It is believed that the omega-6 (ω-6) fatty acid ratio is increased during frying, as omega-3 (ω-3) fatty acids might be lost, or substituted, with the frying oil (Bhupathiraju et al., 2011).
2.4.7.5 Salt

Excess salt intake is known to play a major role in the development of hypertension (Aaron & Sanders, 2013; Ha, 2014). This has led to researchers investigating the effect of dietary salt reduction on blood pressure, with many revealing that reducing the dietary intake of salt would result in lower blood pressure and decreased risk for CVD (Appel et al., 2011; Bibbins-Domingo et al., 2010). In their projection, Bibbins-Domingo et al. (2010) found that a salt intake reduction of 1g per day would be more cost-effective than prescribing anti-hypertensive medication.

2.4.8 Diet and cancer

It has been confirmed that diet plays an important role in reducing cancer risk, which has resulted in the American Cancer society releasing nutrition guidelines, based on this scientific evidence (Thomson, 2012).

2.4.8.1 Carbohydrates

The intake of highly refined carbohydrates has been linked to colorectal cancer. It is believed that the short-term insulin spikes, following refined carbohydrate ingestion, may stimulate colonic carcinogenesis (Chan et al., 2010). A systematic review by Chan & Giovannucci (2010) determined that findings of studies investigating the effect of high glycaemic load, or glycaemic index, as well as the risk of colorectal adenoma, or cancer, has been inconsistent (Chan et al., 2010).

2.4.8.2 Dietary Fat

Dietary fat has been found to have a diffident effect on breast cancer risk (Khoarahmin & Azadbakht, 2014; Thomson, 2012). The type of dietary fat consumed, influences the risk of developing specific types of breast cancer (Khoarahmin & Azadbakht, 2014; Thomson, 2012). Saturated fat has been linked with an increased risk for post-menopausal cancer, while polyunsaturated fat has been linked with increased cancer risk, despite the menopausal status, however, monounsaturated fat has been found to have no link to any cancer risk (Thomson, 2012). Regarding the tumour subtype, vegetable oil-based margarine has been linked with a 31% greater
risk of developing oestrogen-receptor/progesterone-receptor negative tumours (Thomson, 2012).

A high-fat diet (>40% of energy as fat) consisting of a higher intake of processed meats, margarine, butter and other animal fats, has been linked to double breast cancer risk (Thomson, 2012). In their study investigating the effect of dietary fat on sex hormones, Young et al. (2011) found that a high-fat diet is linked to a 51% increase in plasma estradiol, however, ω-3 fatty acids had no effect on sex hormone levels (Young et al., 2011). Post-menopausal women, therefore, may decrease their breast cancer risk by following a low-fat diet, which may aid in the reduction of age-linked weight gain, a risk factor for breast cancer (Thomson, 2012).

2.4.8.3 Vegetables and fruit

No cohort studies or systematic reviews have revealed, consistently, that FV intake is linked to a decreased risk for breast cancer, or total cancer mortality (Wang et al., 2014; Thomson, 2012; Chan et al., 2010).

2.4.8.4 Salt

The high incidence of stomach cancer in Eastern countries, such as Japan and Korea, has led to the suspicion that this might be due to their high-salt dietary pattern (Kanavos, 2006).

2.4.8.5 Red meat

Studies conducted over the years have found a link between high red meat consumption and increased risk for colon cancer (Chan et al., 2010; Aykan, 2015; Norat et al., 2005). It has been suggested that red meat might fuel the release of endogenous insulin, which is considered a mitogen (Chan et al., 2010). Various studies have found that meat prepared at high temperatures for prolonged periods, play a major role in the risk for colon cancer (Chan et al., 2011; Chan et al., 2010; Zheng & Lee, 2009). The carcinogenic mechanism involved is that, when meat is cooked at high temperatures, mutagenic heterocyclic amines are formed from creatinine, which interacts with amino acids (Mahan et al., 2012; Chan et al., 2010).
2.4.9 Obesity

Obesity, especially central obesity, is a well-known risk factor for CVD and is due to an excessive calorie intake (De Caterina et al., 2006). Abdominal obesity has been associated with insulin resistance, oxidative stress and increased levels of (adipo) cytokines and inflammatory markers, which lead to endothelial dysfunction (Ten Hacken, 2009). It has been revealed that adipose tissue is an active secretory organ, which plays a role in the regulation of many pathological processes (Lottenberg et al., 2010; Jung & Choi, 2014). Abdominal obesity has been associated with insulin resistance, oxidative stress and increased levels of (adipo) cytokines and inflammatory markers, which lead to endothelial dysfunction (Ten Hacken, 2009).

Studies have also revealed that obesity is linked to the accumulation of macrophages in adipose tissue (Lottenberg et al., 2010; Fantuzzi, 2005). Obesity, therefore, seems to increase the risk for CVD via two inflammation-mediated pathways. Firstly, obesity enhances insulin resistance, which raises the production of many inflammatory mediators. Secondly, it is linked to an inflammatory response, which results in the production of several pro-inflammatory cytokines and hormones (Fardet & Boirie, 2013; De Caterina et al., 2006).

In the past, obesity has always been associated with excess intake, therefore, treatment and prevention strategies were mostly focused on changing individual behaviour. During the past ten years, the focus of the treatment of obesity has changed to other factors that might be contributing to the obesity epidemic, such as the person’s working and living environments. The ways in which these contribute to obesity, include automation and mechanisation, which result in decreased energy expenditure (Caballero, 2007).

2.4.9.1 Obesity and cardiovascular disease

Obesity is defined as “a medical condition in which excess body fat has accumulated to the extent that it may have an adverse effect on health, leading to reduced life expectancy and/or increased health problems” (Sarnali, 2010). Obesity can often be attributed to an amalgamation of excessive calories, lack of physical activity and genetic predisposition (Sarnali, 2010). Studies has shown that a significant relationship exists between glycaemic load and risk for CHD in overweight and obese
women (Kulie et al., 2011; Oh et al., 2005).

2.4.9.2 Obesity and diabetes mellitus

Obesity has been linked to insulin resistance and the subsequent development of T2DM (Kumar, 2013; Schuster, 2010; Hussain et al., 2010; Schwellnus, 2009). Chronic overweight/obesity encourages a vicious cycle of pro-inflammatory release and macrophage infiltration, which leads to metabolic imbalances, such as insulin resistance and T2DM (Schuster, 2010; Hussain et al., 2010). Chronic overeating results in an elevated free fatty acids level, which leads to decreased glucose uptake by the skeletal muscle and the cardiac muscle. In addition, the increased fatty acids level has an inhibitory effect on beta cells, which leads to decreased beta cell function and, consequently, decreased insulin secretion. Another outcome of increased adiposity is oxidative stress, which has been proven to play a role in the development of T2DM, as well as hypertension and CVD disease (Schuster, 2010; Hussain et al., 2010).

Inflammation has been implicated in diabetes development and progression. Prolonged inflammation in fat tissue, liver and skeletal muscle aggravates insulin resistance and causes beta cell dysfunction at the islets (Schuster, 2010; Hussain et al., 2010).

2.4.9.3 Obesity and chronic obstructive pulmonary disease

Over the past two decades many studies have identified a relationship between obesity and the risk of asthma in childhood, though the mechanism is not clearly understood (Noal et al., 2011; Franssen et al., 2008). In his systematic review, Sood (2010) concluded that obesity is an independent risk factor for asthma, as well as for chronic airflow obstruction. In addition, he also found strong evidence that obesity, not only leads to the development of asthma, but is also linked to the persistence and intensity of asthma symptoms (Sood, 2010). In contrast, obesity has also been shown to have a protective effect in COPD, on the level of hyperinflation, especially in individuals, who have severe COPD (El-Shafey & El-Deib, 2015; Hanson et al., 2014). A recent meta-analysis concluded that overweight and obesity were associated with decreased mortality in persons with COPD, in comparison with those, who had a normal BMI (Hanson et al., 2014).
2.4.9.4 Obesity and cancer

Obesity has been linked to the development of several cancers, as well as reduced survival from especially lung, breast and pancreatic cancer (Tan et al., 2015). Body weight has constantly been linked to greater risk of postmenopausal cancer, however, this is not the case for premenopausal breast cancer development (Thomson, 2012). A possible reason for this is that greater body fat results in higher plasma oestrogen levels; since most cancers are oestrogen receptor positive (ER+), it seems that circulating oestrogen plays a role in the risk for developing breast cancer (Thomson, 2012).

A rat model, suggests oestrogen is not the chief cause of obesity-linked disease, but that insulin-like growth factor 1 (IGF-1) and associated insulin levels could be a dynamic risk factor (Zhu et al., 2012). In support of this, a previous meta-analysis has shown that waist circumference (which is an indicator of central obesity and insulin resistance) increases breast cancer risk by 79% and 50% respectively in premenopausal and postmenopausal women (Connolly et al., 2002). The authors, therefore, concluded that the reduction of visceral fatness is important to control breast cancer risk (Connolly et al., 2002).

A meta-analysis of case-control and prospective studies has shown that being overweight is associated with an increased risk for colon cancer. It has been proposed that obesity-related insulin resistance and the associated hyperinsulinaemia might play a role in colon cancer pathogenesis, by increasing the levels of bioactive insulin-like growth factors (Chan et al., 2010).

2.4.10 Other factors

Globalisation has facilitated the accessibility of many products, especially to the low- and middle-income countries, which were previously inaccessible. These include tobacco, alcohol and modern technology, all of which contribute to the NCD epidemic in some way or another (Camilo et al., 2010; Beaglehole & Yach, 2003).

Globalisation is perceived to have had a great impact on diet, activity and ensuing imbalances, which has led to the obesity epidemic. According to Popkin (2006), even though the global food
production, marketing and distribution sectors are at the core of the obesity epidemic, he asserts that other aspects: (1) mechanisation and automation, (2) modern food processing, marketing and distribution techniques, (3) global mass media expansion and (4) other factors also play a great role (Camilo et al., 2010; Popkin, 2006).

2.5 Global consequences of chronic non-communicable diseases

It has been forecasted that, by the year 2020, CNCDs will be the principal cause of death in all countries (Kankeu et al., 2013). CNCDs affect, not only on the afflicted persons (affecting their functional ability), their households (extra medical costs) and livelihood (affecting ability to work), but also on the country’s economy and healthcare sector, through productivity losses, lengthy incapacity and increased health and social care spending (Jakovljevic & Milovanovic, 2015; Muka et al., 2015; Theodore, 2011).

In its report on the global status of NCDs, the WHO states that CNCDs are currently the main cause of mortality. Additionally, the report states that CVD (48%), cancers (21%), chronic respiratory diseases (12%) and diabetes (3%) were the main causes of death in 2008 worldwide, with almost 80% of these deaths occurring in LMICs (WHO, 2014).

In LMICs, financial costs for CNCDs are often carried by the households, since people often are not affiliated to a health insurance scheme. Besides this extra financial burden, the afflicted person is often unable to earn an income, which places further financial strain on the household. The costs are also higher if the person suffers from multi-morbidity. Additional income losses are incurred when another household member has to care for the affected person (Jakovljevic et al., 2015; Muka et al., 2015; Kankeu et al., 2013).

A great number of the persons with CNCDs fall in the working-age category (18 to 65 years). The increased morbidity and mortality rates, due to CNCDs, therefore, will also greatly affect economic growth, especially in developing countries (Chaker et al., 2015; Theodore, 2011).
2.6 Prevention of CNCDs

Literature is filled with suggestions, on how CNCDs can be addressed. Many dietary interventions and specific nutrients have been investigated as potential means of prevention and treatment of CNCDs, however, no consensus has been reached as to which dietary approach is the gold standard (Mente et al., 2009).

Whole-wheat foods contain a number of substances with potentially protective health benefits, such as antioxidants, phytoestrogens and fibre, which have been linked to lower energy intake, improved metabolic profile and lower risk of obesity, central adiposity, diabetes and cardiovascular disease (Merchant et al., 2009).

A review of possible dietary approaches, which may be protective of CNCDs risk, will be presented in the following sections.

2.6.1 Dietary approaches to prevent CNCDs

Different dietary approaches have been developed and tested over the years to address obesity, CVD, diabetes mellitus and cancer. These approaches include, low-fat diets, low-GI diets, Dietary Approaches to Stop Hypertension (DASH), Therapeutic lifestyle changes (TLC), low-carbohydrate diets, high-protein diets and the Mediterranean diets (Ebrahimof & Mirmiran, 2013; Ajala et al., 2013; Mozaffarian et al., 2011).

2.6.1.1 Low-fat diets

A low-fat diet comprises fat that supplies approximately 30% of the total caloric intake (Brehm et al. 2003; Larsen et al. 2011)

Obesity: Overweight and obesity are risk factors for CNCDs; therefore, weight reduction is seen as the primary strategy for the prevention of CNCDs (Hu et al., 2012). Low-fat diets have been traditionally recommended for weight loss (Hu et al., 2012). A recent systematic review concluded that low-fat diets are not advantageous over other dietary interventions for long-term weight loss (Tobias et al., 2015)

40
Cardiovascular disease: Although it has been determined that low-fat diets are beneficial for the reduction of LDL-cholesterol levels, this beneficial effect does not extend to TG, HDL-C and insulin resistance (Ebrahimof & Mirmiran, 2013). A recent systematic review revealed that high fat diets raised TG levels and lowered HDL cholesterol levels. However, the researchers found that low fat diets were more beneficial than high-fat diets on total cholesterol, as well as LDL cholesterol, in the long term (Schwingshackl & Hoffmann, 2013a).

Diabetes: Weight loss has been established to improve insulin resistance, glucose control and decrease the development of comorbidities (Nordmann et al., 2006; Noto et al., 2013). Different types of diets have been prescribed, including low-fat and low-carbohydrate diets (Makris & Foster, 2011). A year-long study revealed that low-fat diets resulted in weight losses, similar to that achieved with low-carbohydrate diets (Davis et al., 2009).

Cancer: The amount of fat consumed might be linked to prostate and oesophageal cancer, however, there is no conclusive proof that the amount of fat consumed can be linked to breast cancer, ovarian cancer, lung cancer or pancreatic cancer (Schwab et al., 2014).

2.6.1.2 Low-GI diet

Obesity: Even though it has been established that a low-GI diet improves satiety, many studies have failed to confirm that it results in weight loss, without alteration to energy and macronutrient composition (Makris, 2011).

Cardiovascular disease: Low GI carbohydrates have been linked to a reduced risk of myocardial infarct, when it is substituted for SFA in the diet (Jakobsen et al., 2010; Hu, 2010). Total carbohydrate and not GI or dietary GL, has also been strongly linked to the risk of stroke (Oh et al., 2005). A high consumption of refined carbohydrates increases the risk of haemorrhagic stroke and this effect is worse in persons who are overweight or obese (Oh et al., 2005).

A higher wholegrain (fruit, vegetables, legumes and whole-wheat cereals) intake has been linked to a 21% lower risk of CVD cases. The beneficial effect of the wholegrain mode of action in CVD risk includes its effect on insulin sensitivity, blood pressure, lipids and inflammation (Bhupathiraju et
Diabetes: When assessing a low-GI diet in comparison with other diets in type 2 diabetic individuals, those who consumed a low-GI diet presented increased levels of HDL-cholesterol and slightly lower HbA1c levels, as opposed to those on the high-GI diet. However, the Low-GI diet did not have any effect on weight loss (Ajala et al., 2013).

2.6.1.3 Dietary Approaches to Stop Hypertension (DASH)

Obesity: The DASH diet that is endorsed by the American Heart Association (AHA), advocates a low SFA, cholesterol and total fat intake and emphasises fruits, vegetables, fat-free dairy products, wholegrain products, fish, poultry and nuts. The diet also encourages decreased intake of lean red meats, sweets, added sugars and sugar-containing drinks, which has been proven valuable for weight loss (Shirani et al., 2013; Champagne et al., 2011; Bhupathiraju et al., 2011; Hodson et al., 2010).

Cardiovascular diseases: A high salt intake has been linked directly with hypertension, CVD and renal damage. The DASH diet addresses this issue by encouraging the intake of foods that are naturally lower in sodium, such as fruit and vegetables (Shirani et al., 2013; Bhupathiraju et al., 2011; Derman et al., 2009b). Other dietary recommendations, incorporated in the DASH diet, include a high intake of natural food sources of potassium, calcium and magnesium – nutrients that potentially have blood pressure lowering effects (Derman et al., 2009b).

It has been proven that the DASH diet aids in the treatment and prevention of hypertension; effectively lowers blood pressure; aids in weight loss; lowers plasma apolipoprotein B (apoB) and CRP concentrations; improves insulin sensitivity and the metabolic syndrome (Shirani et al., 2013; Bhupathiraju et al., 2011; Hodson et al., 2010). The mechanism employed by the DASH diet to lower blood pressure is unclear, however, Hodson et al. (2010) revealed that it does not alter the peripheral vascular function and concluded that it is mediated through autonomic and cardiac mechanisms.
Diabetes: It has been suggested that the DASH diet may improve insulin resistance and high blood glucose levels, as well as decrease the risk for T2DM (Azabakht *et al*., 2011; Ard *et al*., 2004). This is attributable to the diet’s high fibre, antioxidant constituents, unsaturated fatty acids and low-fat dairy content. In addition, it has been proposed that this dietary approach may be beneficial for the management of risk factors of persons with T2DM (Shirani *et al*., 2013; Liese *et al*., 2009).

The DASH diet has also been investigated in individuals with T2DM to determine its impact on cardiovascular risks (fasting blood glucose, HbA$_1c$, weight, waist circumference and lipid profiles), which this population is prone to (Azabakht *et al*., 2011). This study established that the DASH diet could decrease LDL and the TG levels, while it increases HDL cholesterol. Therefore, the researchers concluded that the DASH diet might play a significant role in the management of cardiovascular risks in the T2DM population (Azabakht *et al*., 2011).

Cancer: DASH-style diets have been associated with a decreased risk of colorectal cancer, but not breast cancer. This has been attributed to the high consumption of plant foods, in combination with decreased intake of red and processed meat, as well as refined carbohydrates, which this dietary approach recommends (Fung *et al*., 2011).

COPD: No studies have been conducted to evaluate the effectiveness of the DASH diet in the COPD population, although it can be postulated that, since the diet results in weight loss, it could have some benefit for persons with COPD, who are overweight.

2.6.1.4 **Therapeutic lifestyle changes (TLC)**

Obesity and Cardiovascular diseases: The therapeutic lifestyle changes (TLC) approach is aimed at lowering blood pressure through dietary changes (increased consumption of non-starch polysaccharides, whole grains, dietary fibres, vegetables, fruits, oily fish and poultry, with no or very low consumption of saturated and TFAs, refined cereals, sugar, red meat, calorie-dense foods and sweetened beverages). In addition, exercise (2.5-4 hours/week), weight control, decreased alcohol consumption and the elimination of tobacco use is advocated (Mitra *et al*., 2012; Bhupathiraju *et al*., 2011; Scisney-Matlock *et al*., 2009).
The problems associated with TLC include patient difficulty with implementation recommendations, as well as healthcare professionals having trouble with the prescription of TLC as a method for better hypertension control (Scisney-Matlock et al., 2009). Despite these issues with prescription and implementation, plenty of evidence exists to support the TLC approach as an effective method to lower and improve blood pressure control (Scisney-Matlock et al., 2009; Bavikati et al., 2008).

Diabetes: Various RCTs have revealed that the implementation of dietary modifications and increased physical activity has beneficial effects on the blood glucose and lipid profile of individuals with T2DM. The authors, therefore, concluded that the TLC approach is a good defensive measure against T2DM (Mitra et al., 2012).

2.6.1.5 Low-carbohydrate diets (LCD)

There is no uniform definition for a low-carbohydrate diet (LCD). Low-carbohydrate diets (LCDs) vary from very low-carbohydrate, moderately low-carbohydrate and moderate-carbohydrate intakes (Wylie-Rossett et al., 2014). Very low-carbohydrate diets (VLCDs) frequently specifies the total amount of carbohydrate intake allowed, whereas other levels of LCDs specify the carbohydrate intake as a percentage of energy intake (Wylie-Rossett et al. 2014). Some define LCDs as having a carbohydrate content of <130g/d, which equates to 26% of total calories, of a 2000-calorie diet (Fields et al., 2016; Feinman et al., 2015; Liebman, 2014). While others define it as a carbohydrate intake ≤45% of energy from carbohydrates (Fields et al., 2016).

Obesity: Studies have revealed that a LCD initially results in greater weight loss in comparison to calorie-restricted and low-fat diets (McAuley et al., 2006; Gardner et al., 2007; Sacks et al., 2009; Foster et al., 2010). At one year, the difference between LCDs and other weight loss diets are insignificant (McAuley et al., 2006; Dansinger et al., 2005; Gardner et al., 2007; Shai et al., 2008). Similarly, a recent systematic review and meta-analysis concluded that similar weight loss is achieved with a LCD, or balanced weight loss diet (Naudé et al., 2014; Makris, 2011).
Cardiovascular disease: Evidence exists that low-carbohydrate diets (LCDs) are effective in weight loss, which could cause short-term beneficial effects on CVD risk markers (Wylie-Rosett et al., 2013; Ajala et al., 2013). A recent systematic review and meta-analysis, however, found no cardiovascular benefit (Noto et al., 2013). The authors also raised concerns regarding the nutritional quality of LCDs, which tend to result in decreased consumption of fibres and fruits and increased consumption of protein from animal sources, cholesterol and saturated fat. They recommended that, despite existing support for LCDs, these diets should not be endorsed until further studies have been conducted to assess the effect of plant versus animal protein (Noto et al., 2013).

Diabetes: A number of RCTs have revealed that LCDs result in lower fasting blood glucose (FBG) levels, HbA1c, serum insulin and/or homeostatic model assessment (HOMA), to a similar extent as isocaloric low-fat diets (Hu et al., 2014a; Noto et al., 2013). Various studies have revealed that the weight loss experienced with LCDs resulted in improved CVD biomarkers and glycaemic levels, evident in persons with T2DM (Appel et al., 2005; Nordmann et al., 2006; Hussain et al., 2012; Paoli et al., 2013; Forsythe et al., 2008). Conclusions drawn from studies were that weight loss was reliant on adherence to the diet, rather than the macronutrient composition of the diet (Liebman, 2014).

2.6.1.6 High-protein diet

A diet that consists of a protein intake above the recommended daily allowance (RDA) is known as a high-protein diet (Delimaris, 2013).

Obesity: High protein diets often result in rapid weight loss, which improves body composition (Ebrahimof & Mirmiran, 2013). In contrast, Schwingshackl and Hoffmann (2013b) determined that high-protein diets had neither a better, nor a worse, effect on the outcome of obesity, in comparison to low-fat diets.

Cardiovascular disease: It has been established that high protein diets have a beneficial effect on the reduction of biomarkers for CVD and BP (Ebrahimof & Mirmiran, 2013; Wycherley et al., 2012).
Diabetes: In a two-year long study, a high-protein, low-carbohydrate diet did not result in bigger weight loss, when compared to a low-fat diet (Krebs *et al*., 2012). A year-long randomised controlled trial also found that high-protein, low-carbohydrate reducing diets did not exhibit better effects on glycaemic control in type 2 diabetics than high carbohydrate reducing diets (Larsen *et al*., 2011).

Cancer: An increased cancer risk may be associated with high protein diets (Delimaris, 2013). In their study, Levine *et al.* (2014) determined that a high protein intake was associated with a four-fold increase in cancer (Levine *et al*., 2014).

2.6.1.7 Mediterranean diet

The Mediterranean diet (made up of approximately 40% energy from fat, high in whole grains, fruit and vegetables) is considered as effective as low-carbohydrate and low-fat diets in weight reduction over a 2-year period (Merchant *et al*., 2009). In their study, Merchant *et al.* (2009) found that, when participants consumed between 47% and 64% of their calories from carbohydrates, they were less likely to be overweight or obese (Merchant *et al*., 2009).

The Mediterranean diet is defined by the following components: high ratio of monounsaturated and saturated fatty acids, moderate alcohol intake, high legume intake, high grain intake, high fruit and nuts intake, high vegetable intake, low meat and meat products intake, high fish intake and moderate milk and dairy products intake (Bhupathiraju *et al*., 2011; Martínez-González *et al*., 2008).

Obesity: A number of studies, including a 2-year dietary intervention study, have revealed that the Mediterranean diet is an effective alternative to low fat diets for weight loss (Shai *et al*., 2008). A more recent meta-analysis of RCTs revealed that the Mediterranean diet might be beneficial for weight loss, particularly; if it is calorie-restricted and physical activity is encouraged (Esposito *et al*., 2011). In addition, this type of diet revealed a greater weight loss than low-fat diets. A concern that the high fat content of this diet could result in weight gain, was also verified as unfounded by this meta-analysis (Esposito *et al*., 2011).
Diabetes and CVD have some risk factors in common and, since many studies have revealed that, the Mediterranean diet plays a role in the prevention of CVD and may be beneficial in the prevention of diabetes (Martínez-González et al., 2008). The chief protective features of this diet include a high fibre and vegetable intake, low TFAs and a moderate alcohol intake. Since this diet makes plentiful use of olive oil, there is a high ratio of MUFA to SFA. Diets, rich in MUFAs, improve lipid profiles and glycaemic control in individuals with diabetes, which implies that a high intake improves insulin sensitivity (Martínez-González et al., 2008).

In a study that compared the 2003 American Diabetes Association (ADA) diet with the traditional Mediterranean (TM) diet and low carbohydrate Mediterranean (LCM) diets, revealed that the LCM diet was the only one that resulted in an increase in the HDL-C levels and was also superior in reducing LDL, TG and HbA1c levels (Elhayany et al., 2010).

Cancer: It has been postulated that the consumption of the Mediterranean diet (MD) could decrease the incidence of colorectal, breast, prostate and pancreatic cancers by up to 25%, 15% and 10% respectively and it might even prevent the development of endometrial cancer. A review of studies, associated with the MD and cancer prevention, however, concluded that there is no definitive proof of the association of MD with different types of cancer (Knotou et al., 2011).

2.6.2 Novel substrates/controversial or experimental treatments

2.6.2.1 Fruit and vegetables

Obesity: A critical review of prospective and intervention studies on the association of fruit and vegetable (FV) consumption and weight loss concluded that increased FV consumption leads to weight loss, if it is used as a substitute for fat and energy-dense foods. In addition, the authors state that it is probable that increased FV consumption contribute to weight stability (Boeing et al. 2012).

Type 2 diabetes: According to a review that included five cohort studies, daily consumption of three or more servings of fruit and vegetables did not result in a significant decrease in T2DM risk (Hamer & Chida, 2007). Subsequently, other systematic reviews and meta-analyses have supported this finding (Wu et al., 2015; Boeing et al., 2012). A more recent meta-analysis has indicated that
increased consumption of, especially, green leafy vegetables could be linked to a decreased risk of T2DM (Wang et al., 2016). The EPIC-Norfolk study revealed that a high consumption of FV was related to a 22% T2DM risk reduction (Harding et al., 2008). This study also found that the risk reduction was highest for plasma vitamin C, resulting in a 62% reduction in diabetes risk.

A study conducted in China revealed that vegetable intake and not fruit, was inversely linked to T2DM risk (Villegas et al., 2008), however, in the EPIC-Norfolk study, the link with diabetes risk was stronger for fruit, than vegetables (Harding et al. 2008). Other studies have also revealed the link between plasma vitamin C and reduced diabetes risk, as well as a link between carotenoids status and intake (Ylönen et al., 2003; Ford et al., 1999; Facchini et al., 2000). Carotenoids have been potential markers of fruit and vegetable intake, as well as glucose metabolism (Spence et al., 2010).

The Botnia Dietary study revealed that dietary carotenoid intake in men at high risk of T2DM was inversely linked with fasting plasma glucose concentrations, while plasma β-carotene concentrations was inversely linked with insulin resistance (Ylönen et al., 2003). The Third National Health and Nutrition Examination Survey also found an inverse link between serum carotenoids (especially β-carotene and lycopene) and fasting serum insulin concentration (Ford et al., 1999). An inverse relationship was also found between steady-state plasma glucose and plasma glucose concentrations of α-carotene, β-carotene and lutein, in a small study of non-diabetic persons (Facchini et al., 2000). In their critical review, Boeing et al. (2012) found no link between FV consumption and T2DM risk.

Cardiovascular diseases: The role of fruit and vegetables in the prevention of CVD has also been investigated. One study conducted by Van’t Veer et al. (2000) found that individuals, who had a daily FV intake of 150g/d, had a 16% lower mortality from cardiovascular disease. It has been suggested that the decreased risk for stroke and mortality from CVD could be due to the effect of specific nutrients (potassium, antioxidants, folic acid) which are abound in fruit and vegetables (Wang et al., 2014; Boeing et al., 2012; Bazzano et al., 2002).
Cancer: A critical review on the link between vegetable and fruit consumption and risk of chronic diseases concluded that, even though some evidence reveals an association between FV consumption and cancer risk, it has not been proven conclusively that this is true (Boeing *et al.*, 2012). Similarly, a more recent meta-analysis of prospective cohort studies found that a higher consumption of fruit and vegetables was not substantially associated with a decreased cancer mortality risk (Wang *et al.*, 2014). The authors, however, stated that fruit and vegetable consumption might be linked to specific cancer sites and recommended that studies should be conducted to verify the relationship between the intake of different fruit and vegetables with various types of cancer.

COPD: An increased intake of fruits has been found to be inversely associated with the risk of COPD (Celik & Topcu, 2006). A case-control study conducted on a Japanese population sample revealed an inverse relationship between vegetable consumption and the risk of COPD (Hirayama *et al.* 2010b), which is similar to the findings of other studies (Celik & Topcu, 2006; Watson *et al.*, 2002). Observational studies reveal that a diet with high intakes of fruit, vegetables, oily fish and whole grains is positively associated with forced expiratory volume in seconds (FEV$_1$) (Shaheen *et al.*, 2010; Tabak *et al.*, 2001; Varraso *et al.*, 2007a; Varraso *et al.*, 2007b). In addition, when NHANES data of the US population was analysed, it showed that higher intakes of vitamin C, E and total carotenes were all linked to FEV$_1$ (Hanson *et al.*, 2014). In their critical review, Boeing *et al.* (2012) assessed that it is possible for a high intake of FV to reduce the risk of COPD.

2.6.2.2 Garlic

Diabetes: There are reports that various constituents of garlic oil have the same hypoglycaemic effect as that of glibenclamide (Ashraf *et al.*, 2011; Liu *et al.*, 2006). In addition, garlic has been shown to reduce blood glucose levels in rat, mice and rabbit models (Ashraf *et al.*, 2011). It has been suggested that garlic might induce an increase in the pancreatic secretion of insulin, release bound insulin or enhance insulin activity, which results in its hypoglycaemic effect (Londhe *et al.*, 2011).
Cardiovascular diseases: *Garlic* is often used in the preparation of food in many households. Much research has been done to investigate the beneficial effects of garlic on CVD (Bayan *et al.*, 2014). Garlic’s health benefits, apparently, are attributed to the sulphur-compounds and their by-products. Garlic is reported to prevent CVD by various mechanisms, including platelet aggregation and reducing LDL-cholesterol via the inhibitory action of alliin and allicin on hepatic hydroxymethylglutaryl-CoA reductase activity (Tsai *et al.*, 2012; Rahman & Lowe, 2006).

Cancer: It has been reported that individuals, who consume high amounts of garlic have decreased risk for cancer of the colon and stomach (Setiawan *et al.*, 2005; Hu *et al.*, 2014b). An evidence-based review of human studies has revealed garlic’s antimutogenic ability in cancer of the stomach, colon, rectum, breast, lung and endometrium (Tsai *et al.*, 2012). There is, however, a paucity of data linking garlic with decreased risk for cancer of the prostate, oesophagus, larynx mouth, ovary and renal cells (Tsai *et al.*, 2012). Animal models and cell studies suggest that garlic is chemopreventive for several types of cancers (Bayan *et al.*, 2014; Majewski, 2014; Londhe *et al.*, 2011). The proposed mechanisms of action involved in garlic’s chemopreventive effect, are the inhibition of cell proliferation, blocking the cell cycle, inducing cell apoptosis and blocking invasion and metastasis (Tsai *et al.*, 2012; Londhe *et al.*, 2011).

2.6.2.3 Soy protein

Obesity: It has been established that soy protein has a positive effect on satiety and reduces excess body fat in obese animals and humans (Tripathi *et al.*, 2013; Velasquez & Bhathena, 2007). During animal studies, soy protein has been documented to induce lower body weight, in comparison with casein protein (Velasquez *et al.*, 2007). In human studies, subjects, who were fed a soy-based meal replacement, lost more weight as opposed to the control group (Velasquez *et al.*, 2007).

Diabetes: It has been determined that soy protein intake decreases hyperinsulinaemia, by stimulating insulin secretion at a lower rate (Tripathi *et al.*, 2013). The results of a prospective cohort study in men with high BMI revealed that 2-hour plasma glucose and fasting plasma glucose increases were prevented with soybean intake. This effect is perceived to be attributable to the fibre content and glycaemic index of soybeans (Asif *et al.*, 2013; Tatsumi *et al.*, 2013).
Cardiovascular disease: Various studies have verified that phytoestrogens are beneficial in modulating CVD risk markers (Asif & Acharya, 2013; Tripathi *et al.*, 2013; He *et al.*, 2011). Intakes of soy products are associated with lower serum cholesterol levels (Asif & Acharya, 2013; Tripathi *et al.*, 2013). Soy protein has also been associated with lower blood pressure [BP] (Moghaddam *et al.*, 2014). It has been suggested that soy polyphenols affect endothelial function and thus BP. Another possible mechanism is that soy protein intake is thought to increase nitric oxide levels, which have a vasodilatory effect (Moghaddam *et al.*, 2014).

Cancer: It has been ascertained that soybeans are beneficial in breast cancer. It is believed that the bioactive compounds present (including phytic acid, α-linolenic acid and isoflavones) might aid health through antioxidant, anti-inflammatory and oestrogen-modulating effects (Thomson, 2012). It has also been determined that high soy intake has been linked to a 14% reduction in breast cancer risk. This benefit was more obvious in premenopausal women (Thomson, 2012).

COPD: A recent study revealed an inverse relationship between soy intake and COPD risk and respiratory symptoms. It has been suggested that isoflavones act as anti-inflammatory agents in the lung and, in this way, protect it from carcinogens in smokers (Hirayama *et al.*, 2010a).

2.6.2.4 Omega-3 fatty acids

Obesity: Obesity, as well as its comorbidities (T2DM, CVD), have been associated with inflammation (Belchior *et al.*, 2015; Lorente-Cebrián *et al.*, 2013). Omega -3 (ω-3) fatty acids are known to be anti-inflammatory, therefore, it makes sense that an increased intake would be beneficial to obese persons (Belchior *et al.*, 2015; Lorente-Cebrián *et al.*, 2013; Talukdar *et al.*, 2012; Tokunaga *et al.*, 2012). Recently, researchers have investigated whether ω-3 fatty acids might be beneficial for weight loss in obese persons (Martinéz-Victoria & Yago, 2012). Even though only a few studies have been conducted on humans, the results of these studies have shown that persons with higher ω-3 fatty acid intakes tend to have lower body weight, lowest BMI and improved overall health (Simopoulos & DiNicolantonio, 2016; Martinéz-Victoria & Yago, 2012). It has been proposed that ω-3 fatty acids can reduce adiposity, ease postprandial hunger sensation and promote an increase in lean tissue mass (Campbell & Bello, 2012; Oh *et al.*, 2010).
Diabetes: The results have been inconsistent about ω-3 fatty acids’ effect on insulin sensitivity and T2DM (Lorente-Cebrián et al., 2013). A recent study, however, has concluded that increased body ω-3 fatty acid levels decreases obesity rates, glucose intolerance and fat tissue inflammation (Belchior et al., 2015).

Cardiovascular disease: Omega -3 (ω-3) fatty acids have been under investigation since the 1970s, when it was observed that Eskimos in Greenland had low ischaemic heart disease rates (Vedtofte et al., 2014; Kromhout et al., 2012). The beneficial effect was attributed to the anti-thrombotic effect of long-chain PUFAs obtain because of their high fish intake (Bhupathiraju et al., 2011).

Studies have shown that 1-2 servings of fatty fish per week are sufficient for primary prevention (Mozaffarian 2008; National Heart Foundation of Australia 2008). Yet other studies suggest that ω-3 fatty acids may be of benefit for secondary prevention (Mohebi-Nejad & Bikdeli, 2014). It is believed that ω-3 fatty acids decrease CVD risk by preventing arrhythmias, decreasing heart rate and blood pressure, as well as reducing platelet aggregation and decreasing TG levels (Bhupathiraju et al., 2011). In their systematic review, Mente et al. (2009) found that ω-3 fatty acids were only of benefit in the prevention of CHD in individuals, who are at high risk and women.

Recently researchers have been studying the effect of plant-based ω-3 fatty acids, alpha linolenic acid (ALA), which is a short-chain ω-3 PUFA, on CVD risk. Food sources include rapeseed oil, soybean, flaxseed and walnuts. Since ALA can be converted into eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which is found in fish, it has been suggested that plant-based ω-3 fatty acids may be substituted for fish in the diet (Rajaram, 2014). The limitation of this is that evidence to support this is limited and conflicting.

Studies on animals have shown that ALA has anti-arrhythmic attributes (Devarshi et al., 2013; Kromhout & De Goede, 2014; Mozaffarian et al., 2011). A meta-analysis of five prospective studies have shown that high ALA intakes lower risk for fatal heart disease by 21%, but increases prostate cancer risk (Brouwer et al., 2004). The current recommendation for ALA is 2-3g per day for both primary and secondary prevention (Bhupathiraju et al., 2011). Mente et al. (2009) found increased fish intake only had a protective impact in populations, who are at higher risk for CHD.
Cancer: Observational studies have suggested that there is a link between the incidence of colorectal, lung and prostate cancers (Renehan *et al.*, 2008; Gandini *et al.*, 2011). A systematic review and meta-analysis of RCTs, however, found that fatty acid supplementation has no effect on the incidence of cancer or total mortality (Zhang *et al.*, 2014).

COPD: COPD is associated with both airway and systemic inflammation. It has been hypothesised that, since ω-3 fatty acids are beneficial for inflammatory conditions, such as rheumatoid arthritis and CVD, it might also be beneficial for persons with COPD (Fulton *et al.*, 2012). Currently there is a paucity of information regarding the beneficial effects of ω-3 fatty acids on COPD (Fulton *et al.*, 2012). A recent prospective study explored the Alternative Healthy Eating Index (AHEI) 2010 and the risk of COPD. It determined that a diet, with a high intake of whole grains, PUFAs, nuts and long-chain ω-3 fatty acids and a low intake of red and processed meats, refined grains and sugar sweetened beverages, was associated with a lower risk of newly-diagnosed COPD (Varraso *et al.*, 2015).

2.6.2.5 Micronutrients

2.6.2.5.1 *B* vitamins

Obesity: Recently researchers have linked food fortification and excess vitamin intake with obesity and the subsequent rise in the incidence of T2DM (Zhou *et al.*, 2010a; Zhou & Zhou, 2014). Over the past decades, the increase in weight gain and diabetes has been linked to carbohydrate intake. Zhou *et al.* (2010a), as well as Zhou and Zhou (2014) argue that this swift increase in the global prevalence of obesity and T2DM, followed the worldwide implementation of B-vitamins (niacin, thiamine and riboflavin) fortification of foods, especially grains. In addition, Zhou *et al.* (2014) assert that weight has increased, parallel with the increased levels of B-vitamin fortification. Niacin has been implicated with glucose intolerance, insulin resistance and liver injury, which are all signs of obesity and T2DM (Zhou *et al.*, 2010a). Since it is known that B-vitamins stimulate appetite, it has been hypothesised that chronic excess B-vitamins intake may be responsible for the increased energy intakes observed, which in turn contributes to the obesity epidemic (Zhou *et al.*, 2010a; Zhou & Zhou, 2014).
Diabetes: Several studies have established that vitamin B$_1$ and B$_{12}$ deficiencies are present in persons with type-1 and type-2 diabetes (Obeid *et al.*, 2013; Al-Atta *et al.*, 2012; Satyanarayana *et al.*, 2011; Pflipsen *et al.*, 2009; Thornalley *et al.*, 2007). More recent studies have revealed that low levels of plasma pyridoxal 5’-phosphate (PLP) and altered vitamin B$_6$ metabolism are present in persons with T2DM (Nix *et al.*, 2015; Valdés-Ramos *et al.*, 2015). These findings are similar to other studies where the blood PLP of T2DM sufferers was compared to that of non-diabetic persons (Satyanarayana *et al.*, 2011; Ahn *et al.*, 2001). Conversely, it has been suggested lately that excess intakes of vitamins can increase the risk of diabetes, by promoting obesity. In addition, certain vitamins trigger adverse effects, such as niacin’s ability to cause glucose intolerance and insulin resistance (Zhou *et al.*, 2010a; Zhou & Zhou, 2014).

Cardiovascular disease: Homocysteine is a sulfur-containing amino acid, which is produced by the demethylation of methionine (Bhupathiraju *et al.*, 2011). Every 5μmol/L of homocysteine has been linked to an estimated 20% increased risk for CVD disease, in the absence of the usual CVD risk factors (Bhupathiraju *et al.*, 2011). B vitamins (folate, B$_6$ and B$_{12}$) have been associated with lower homocysteine levels (Bhupathiraju *et al.*, 2011). Due to conflicting results, no consensus has been reached, therefore the current recommendation is that further research is needed before dose recommendations can be made (Bhupathiraju *et al.*, 2011).

Cancer: While appraising the existing literature, the researcher observed the results of studies assessing the effects of single, or combinations of vitamin and mineral supplements, to be conflicting. The findings of one meta-analysis of 6 RCTs of folic acid supplementation, revealed folic acid to be associated with an increased risk of any cancer, whereas another meta-analysis found that folic acid supplementation is associated with 40% to 50% decrease in the risk of oesophageal, gastric and pancreatic cancers (Baggott *et al.*, 2012; Larsson *et al.*, 2006). A small study, investigating the link between folate, methionine and vitamins B$_{12}$ and B$_6$ intake with prostate cancer, revealed that lower intakes of folate and B-vitamins are linked to increased colorectal adenoma in persons older than 60 years of age (Vidal *et al.*, 2012). The investigators hypothesised that age may alter the link between cancer and folate. Regarding a dose-response meta-analysis of the link between vitamins B$_6$, B$_{12}$ and methionine to breast cancer risk, Wu, Kang and Zhang (2013) found that PLP concentrations and methionine intake might be inversely linked with breast cancer.
risk in postmenopausal women. The authors, however, recommend that further research be done to confirm their findings (Wu et al., 2013).

COPD: Studies have found that the presence of decreased blood levels of vitamin B₁₂ and folate in persons with COPD, lead to increased levels of plasma homocysteine, which is a CVD risk factor (Tsiliogianni & Van der Molen, 2010)

2.6.2.5.2 Carotenoids

Obesity: Carotenoids (α-carotenes and β-carotenes) found in FV are known to safeguard cells from oxidative stress (Bonet et al., 2015; Suzuki et al., 2006). Obesity, it has been established, contributes to oxidative stress, which in turn has been associated with CHD, T2DM and certain cancers (Suzuki et al., 2006). In their study, Suzuki et al. (2006) found a positive link between abdominal adiposity and low serum levels of several carotenoids in females, but not in males. Similarly, Markovits et al. (2009) found that obese patients had abnormally elevated markers of inflammation and oxidation products together with reduced plasma carotenoid levels. β-carotene supplementation has been shown to have a beneficial effect on adiposity in animal and human studies (Bonet et al., 2015; Canas et al., 2012; Amengual et al., 2011).

Diabetes: Oxidative stress plays a major role in the development of T2DM. It has been suggested that carotenoids that have antioxidant functions may decrease T2DM risk, by reducing oxidative stress (Sluijs et al., 2015). The analysis of the dietary intake of the EPIC-NL study participants (Beulens et al., 2009) revealed that higher dietary intakes of β-carotene and α-carotene are linked to decreased risk of diabetes (Sluijs et al., 2015).

Cardiovascular disease: The effect of carotenoids in CVD disease found its roots in studies, which established that the increased fruit and vegetable intake decreased CVD risk (Boeing et al., 2012; He et al., 2007). A range of different types of studies had conflicting results (Voutilainen et al., 2006; Liu, 2013; Ciccone et al., 2013). Therefore, the current consensus, until further investigation, is that the increased consumption of carotenoid-rich fruit and vegetables should be encouraged (Bhupathiraju et al., 2011).
Cancer: Literature shows that the link of β-carotene to lung cancer is controversial (Gallicchio *et al*., 2008; Vieira *et al*., 2016; Martínez *et al*., 2012; Fritz *et al*., 2011). In 1996, an epidemiological study revealed that there is an association between serum β-carotene levels and incidence of lung cancer (De Luca & Ross, 1996). In contrast, two intervention studies found that high doses of β-carotene increased the risk of lung cancer in smokers (Schäffer *et al*., 2013; Dela Cruz *et al*., 2011).

COPD: Studies have established that an association does exist between lower level of vitamin A and the risk of COPD and that daily oral supplementation of 25 000 IE of vitamin A, reduced COPD symptoms (Schäffer *et al*., 2013). In addition, it has been suggested that a local vitamin A deficiency may develop because of chronic cigarette exposure, since a systemic vitamin A deficiency is often not present in smokers (Schäffer *et al*., 2013; Lin *et al*., 2010).

2.6.2.5.3 **Vitamin E**

Obesity: According to Via (2012), obese persons have decreased levels of vitamin E. In obese persons, extracellular modelling (changes in the number and size of fat cells, activation of macrophages pro-inflammatory and stimulation of a fibrotic process that limits adipocyte growth) has been linked to metabolic disturbances (Alcalá *et al*., 2015). In their insulin resistant, hypertriglyceridaemic mouse model, Alcalá *et al.* (2015) found that the administration of vitamin E improved insulin resistance and triglyceride levels, improving fat tissue expansion by decreasing the fibrotic process.

Diabetes: Increased serum levels of α-tocopherol are linked to the reduced risk of diabetes in the general population, except middle-aged smokers (Kataja-Tuomola *et al*., 2008). Studies of T2DM patients revealed decreased serum levels of vitamin E (Valdés-Ramos *et al*., 2015; Via 2012). A recent meta-analysis of antioxidant interventions in T2DM patients established that Vitamin E supplementation had a beneficial effect on glycaemic control (Akbar *et al*., 2011). The meta-analysis, however, revealed that higher doses of vitamin E (600mg daily), for longer periods (2 months), resulted in the biggest decrease in HbA1c (Akbar *et al*., 2011).

Cardiovascular disease: Vitamin E acts as a chain-breaking antioxidant in plasma and on LDL to prevent the proliferation of free radical damage in membranes (Lobo *et al*., 2010; Saliha *et al*.,
Since oxidised LDL has been identified as being atherogenic, various large epidemiological studies have been conducted in an attempt to assess the role of vitamin E in CVD (Bhupathiraju et al., 2011; Vardi et al., 2013). Even though the epidemiological studies had consistent results, a review of RCTs has revealed that Vitamin E supplementation does not prevent CVD (Myung et al., 2013; Ye et al., 2013; Hankey, 2012). The current debate is around which form of vitamin E and dosage is the best to prevent CVD. Currently evidence does not support vitamin E supplementation for primary and secondary CVD prevention (Fortmann et al., 2013; Myung et al., 2013; Desai et al. 2014). The different findings between RCTs and observational studies suggest that the beneficial effects of α-tocopherol, another form of vitamin E, transpire in the presence of other nutrients (Bhupathiraju et al., 2011). Therefore, the current recommendation is that it is best to obtain vitamin E from food (Bhupathiraju et al., 2011).

Cancer: Vitamin E taken in diets or as supplements that are high in γ- and δ- tocopherols has been found to be chemopreventive (Smolarek a& Nanjoo Suh, 2011). In contrast, supplementation with high doses of α-tocopherol has been found to be effective for cancer prevention (Yang et al., 2012). Vitamin E’s carcinogenic effects are perceived to stop the formation of nitrosamine and to promote immune system function. In addition, it acts as an antioxidant, by scavenging free radicals in cell membranes (Iqubal et al., 2014).

COPD: Numerous studies have linked vitamin E with lung function (Lin et al., 2010). A large RCT revealed that the supplementation with 600IU of α-tocopherol, every other day, resulted in a 10% decrease in risk of chronic lung disease in women (Agler et al., 2011). A study that involved 3 European countries established that vitamin E intake is associated with a lower COPD mortality (Tsiligianni et al, 2010; Ford et al., 2014. In addition, low serum levels of vitamin E have also been linked to more wheezing, phlegm production and dyspnoea (Hanson et al., 2014; Tsiligianni et al., 2010).

2.6.2.5.4 Vitamin C

Obesity: It has been reported that obese persons have increased levels of oxidative stress (Fernández-Sánchez et al., 2011). Vitamin C is an antioxidant, which has been observed to retain
beneficial effects in obese animal and human studies (Garcia-Diaz et al., 2014). In addition, Garcia-Diaz et al. (2014) assert that vitamin C could be involved in a variety of mechanisms, implicated in the initiation, development and further consequences of body weight increase. Vitamin C deficiency has been reported to be present in 35-40% of obese persons, who planned to undergo bariatric surgery (Via, 2012). Additionally, Via (2012) asserts that serum levels of vitamin C are inversely associated with BMI.

Since vitamin C is an antioxidant, it has been theorised that it may have a preventative effect on CVD (Baradaran et al., 2014). Various studies, however, had contrasting results, which is understood to be due to vitamin C acting as a pro-oxidant in high oxidative stress environments (Bhupathiraju et al., 2011; Figueroa-Méndez & Rivas-Arancibia, 2015; Bouayed & Torsten Bohn, 2010). Two studies, focusing on the individual role of vitamin C, found no effect of vitamin C on chief cardiovascular occurrences, total heart attacks, or CVD mortality (Desai et al., 2014; Moser & Chun, 2016). Regardless of the lack of evidence to support the role of vitamin C in CVD prevention, 500mg/d supplemental vitamin C, for at least a month, has been associated with lower serum LDL and TG levels (Bhupathiraju et al., 2011). It has been established that the protective effects of antioxidant nutrients against CVD are lost when isolated; therefore, the current recommendation is that antioxidants are best obtained through the consumption of healthy foods, instead of supplements (Bhupathiraju et al., 2011).

Diabetes: Several studies have shown that diabetic patients have low levels of vitamin C and increased levels of oxidative stress (Valdés-Ramos et al., 2015; Christie-David et al., 2015). Recently, it has been suggested that hyperglycaemia could be the initiation step for oxidative stress (Rafighi et al., 2011). In addition, DM is considered a state of chronic inflammation, which is linked to oxidative stress (Garcia-Bailo et al., 2011). Vitamin C is an antioxidant, which is able to scavenge free radicals, improve hyperlipidaemia and reduce BP (Rafighi et al., 2011; Baradaran et al., 2014). In addition, due to its similarity in structure, vitamin C can replace glucose in many chemical reactions and in this manner, prevent on-enzymatic glycosylation of proteins (Rafighi et al., 2011).
Cancer: A dose-response meta-analysis, investigating the link between vitamin C intake and lung cancer, established that the level of vitamin C intake was associated with the risk of lung cancer (Luo *et al.*, 2014). A 7% reduction on risk was observed for every 100mg/d increase in intake (Luo *et al.*, 2014).

COPD: Various studies have shown that a higher intake of vitamin C is linked to improved lung function (Itoh *et al.*, 2013; Park *et al.*, 2012; Hanson *et al.*, 2014). In addition, Ansari *et al.* (2010) concurred that vitamin C supplementation delayed the deterioration of lung function in their study subjects.

2.6.2.5.5 Vitamin D

Obesity: Various studies have established conclusively that low serum levels of vitamin D are associated with obesity (Cipriani *et al.*, 2014). It has been determined that 25-hydroxy-vitamin D (25(OH) D) levels decrease by 1.15% for each unit increase in BMI (Cipriani *et al.*, 2014). Possible reasons for this are:

1) a high body fat content act as a pool for fat-soluble vitamin D, elevates its sequestration and in so doing, cause it to be less bioavailable;

2) synthesis of 25(OH)D might be reduced in obese persons due to hepatic steatosis;

3) decreased synthesis due to limited sunlight exposure and limited outdoor activity; and

4) the higher circulating leptin and interleukin-6 levels may have an inhibitory effect on 25(OH)D synthesis via their receptors.

Diabetes: One of several studies has shown that vitamin D supplementation can increase insulin sensitivity by up to 54% (Talaie *et al.*, 2013). It has been suggested that vitamin D reduces insulin resistance through its effect on calcium and phosphorus metabolism and via up regulation of the insulin receptor gene (Maestro *et al.*, 2002). In addition, a 20 year follow up study on 4843 patients with T2DM has shown that vitamin D intake was linked to a reduced prevalence of T2DM (Pittas *et al.*, 2006).
Cardiovascular disease: Various studies have determined that vitamin D is beneficial for primary CVD prevention. Most studies have revealed that CVD occurrences were associated with low vitamin D levels. Regardless of these positive findings, it has been recommended that RCTs be carried out to prove a causal role concretely (Bhupathiraju *et al*., 2011). Current proof, from observational studies, show that vitamin D is most useful in individuals with low, or sub-optimal levels (Welsh & Sattar, 2014; Bhupathiraju *et al*., 2011; Borges *et al*., 2011).

Cancer: Vitamin D deficiency has been linked with cancer of the colon, breast, ovaries and pancreas (Zhang & Naughton, 2010). It has been established that Vitamin D aids the regulation of cell growth and has been evidenced to inhibit the spread of cancer. Lung, colon, kidney, breast and prostate cancer models have demonstrated that Vitamin D fulfils a vital role in the activity against metastasis (Zhang *et al*., 2010).

COPD: It has been determined that increased levels of vitamin D is associated with improved lung function (Zendedel *et al*., 2015; Tsiligianni, *et al*., 2010). Findings from a variety of studies have shown that persons with COPD tend to be vitamin D deficient (Ghoneim *et al*., 2015; Zendedel *et al*., 2015; Persson *et al*., 2012; Tsiligianni *et al*., 2010). Vitamin D deficiency has also been implicated in the increased incidence of chronic respiratory infections (Hejazi & Entezari-Maleki, 2010). Vitamin D plays an important role in airway remodelling via the inhibition of tumour necrosis factorα and improvement of IL-10 in immune cells (Berraies *et al*., 2014). In addition, a RCT study has shown that vitamin D reduced the worsening of COPD and improved FEV₁ (Zendedel *et al*., 2015).

2.6.2.5.6 Calcium

Obesity: Calcium is known to affect numerous biochemical actions concerned with weight regulation [fat absorption and adipocyte differentiation] (Bougle *et al*., 2009). Several studies of calcium supplementation in women revealed reduced weight gain in those, who were in the treatment group (Davies *et al*., 2000; Astrup, 2008). On the other hand, results from studies of calcium supplementation in obese patients had been conflicting (Zhou *et al*., 2010b; Li *et al* 2016). Calcium supplementation only had a beneficial effect on weight loss for those who had lower
intakes (Bougle et al., 2009).

Cardiovascular disease: Calcium is an essential nutrient, which is not only essential for bone formation, but also plays a role in nerve conduction, muscle contraction, cell adhesiveness and mitosis and blood coagulation (Vaskonen, 2003). In the aging population, low calcium intakes have been linked to osteoporosis, hypertension, colon cancer, breast cancer and renal stones (Heaney et al., 2012; Vaskonen, 2003).

Throughout the past decade, numerous studies have been conducted to assess the effect of calcium on CVD events (Chung et al., 2016). Concerns regarding increased cardiac events associated with calcium intake from diets, or supplements have not been verified and, therefore, current recommendations for calcium intake are still being recommended (Heaney et al., 2012).

Cancer: The findings of several studies, conducted over the past decade, have concluded that calcium plays a protective role in cancer of the colon, rectum, breast and ovaries (Davoodi et al., 2013; Lappe et al., 2007; Merritt et al., 2013). The proposed mechanism involved is that calcium might affect several intracellular pathways, which lead to differentiation in normal cells and apoptosis in transformed cells (Davoodi et al., 2013).

COPD: COPD has been implicated in bone loss (Cielen et al., 2014; Mazokopakis & Starakis, 2011). Calcium supplementation, in combination with vitamin D, has been shown to improve balance, increased bone mineral density (BMD), inhibited bone remodelling and improved muscle function in persons with COPD (Cielen et al., 2014).

2.6.2.5.7 **Fibre**

Obesity: Epidemiological, observational and cross-sectional studies have revealed that an inverse relationship exists between dietary fibre intake and body weight (Papathanasopoulos & Camilleri, 2010). In addition, some intervention studies in humans disclosed weight reduction with fibre-rich diets, or dietary fibre supplements (Slavin, 2013; Papathanasopoulos & Camilleri, 2010).
Cardiovascular disease: Epidemiologic studies have revealed that the consumption of 15g of fibre per 1000kcal lowers the risk of CVD and CHD by reducing LDL levels (Slavin, 2013). On the other hand, RCTs suggest that fibre might have a beneficial role in lowering CRP levels, apolipoprotein levels and BP. Water-soluble fibres, in particular, has proven to be the most effective for reducing serum LDL-cholesterol levels without having any effect on HDL levels (Slavin, 2013).

Diabetes: In 2004, researchers, exploring the link between GI and GL with the incidence of T2DM, established that increased consumption of cereal and fruit fibre was associated with a decreased risk of diabetes (Gross *et al*., 2004). Many studies have since verified those studies (Makris, 2011; Schulze *et al*., 2004). The results from a recent meta-analysis showed that fasting blood glucose (FBG) and HbA1c improved significantly in patients with T2DM, when their dietary fibre intake was increased (Post *et al*., 2012).

Cancer: The European Prospective Investigation into Cancer and Nutrition (EPIC) study and many other large cohort studies have clearly determined that a dose-response association between fibre intake and risk of colorectal exist (Aune *et al*., 2011; Murphy *et al*., 2012; Riboli *et al*., 2002). The results from a systematic review and meta-analysis revealed that for every 10g/day consumption of total dietary fibre and cereal fibre there is a 10% decrease of colorectal cancer risk. In addition, a 20% reduction in risk of colorectal cancer is observed for every three servings (90g/day) intake of whole grains (Murphy *et al*., 2012; Aune *et al*., 2011).

2.6.2.5.8 Coffee

Obesity: It has been suggested that the caffeine present in coffee could raise energy expenditure and, therefore, reduce body weight (Greenberg *et al*., 2006). A study conducted in a Malaysian population revealed no significant association between coffee consumption of >2 cups per day and obesity (Haque *et al*., 2015). However, the findings of several observational studies determined that high coffee intake (>4 cups per day) was linked to a reduced risk of obesity (Nordestgaard *et al*., 2015). The findings of a recent Mendelian randomised study failed to find a causal link between coffee intake and risk of obesity (Nordestgaard *et al*., 2015).
Cardiovascular disease: Evidence exists that indicate that there is an inverse relationship between coffee intake and risk for CVD (Mure et al., 2013). Similarly, a recent review assessing the impact of coffee and health determined that coffee is beneficial for CVD. This review suggests several mechanisms by which the bioactive constituents in coffee confer beneficial effects on the coffee consumer (Cano-Marquina et al., 2013). These actions include the effects on the arterial wall (by affecting flow-mediated dilation), blood pressure and lipid metabolism (Cano-Marquina et al., 2013).

Diabetes: An inverse relationship between coffee consumption and the incidence of T2DM has been observed, with a recent study finding of a 25% reduction in risk for diabetes in individuals, who consumed ≥4 servings of coffee a day (Jiang, Zhang & Jiang, 2014; Cano-Marquina et al., 2013; Mure et al., 2013). Zhang et al. (2011) found a substantial link between a lower HbA\(_1c\) in women with T2DM and higher decaffeinated coffee intake, but no similar results were found in population-based studies. According to Bhupathiraju et al. (2014), the findings of their research observed that participants, who increased their consumption of coffee over a period of 4 years, had a reduced risk of T2DM, while the reverse was true for those who reduced their coffee consumption over the same period. The mechanism involved is not clear, however, it has been suggested that coffee’s beneficial effects could be due to its antioxidant activity (Mure et al., 2013; Abrahão et al., 2013).

Cancer: Evidence exists that coffee intake of up to 6 cups per day has no detrimental effect on most cancer sites (Arab, 2010). The protective role of coffee in different cancer types is still controversial; with many studies finding that coffee has *neither a beneficial, nor adverse* effect (Zeegers, 2001; Zhou et al., 2012; Dong et al., 2011). There is, however, some evidence of a possible protective role of coffee for liver cancer risk. The coffee’s protective role against cancer is hypothesised to be due the pro-inflammatory actions of caffeine (Cano-Marquina et al., 2013; Arab, 2010).

COPD: The results of studies investigating the effects of caffeine intake on the respiratory system, has been conflicting (Hirayama et al., 2012). One study found that coffee intake had very little impact on the factors of COPD (Hanson et al., 2014). Recently a case-control trial found a positive association between coffee consumption and caffeine intake and prevalence of COPD (Hirayama et
2.6.3 Physical activity

It is evident that regular exercise, as primary prevention, is able to avert, or impede, the onset of illness and disease (Derman et al., 2008a). It is believed that physical activity acts on the cardiovascular system and in this way, brings about positive changes in metabolism, body weight and body composition (Derman et al., 2008a). The beneficial effects of exercise are, however, of short duration and a lasting commitment to do regular exercise at high intensity is needed to reduce the risk of chronic diseases (Colberg et al., 2010; Derman et al., 2008a). The benefits of regular exercise for diabetics include: improved insulin sensitivity in muscle and the liver, improved glucose uptake by muscle, better glycaemic control, reduction in HbA1c, improved lipid profile, decreased body weight, lower blood pressure, decreased risk of embolisms and reductions in overall cardiovascular risk (Khan, 2010; Derman et al., 2009b). Several prospective cohort and cross-sectional observational studies have established that higher levels of physical activity are beneficial in preventing the development of diabetes (Colberg et al., 2010). Regarding hypertension, the consensus is that the beneficial effects of exercise on blood pressure can be seen if a hypertensive individual exercises for more than 30 minutes of exercise per week (Derman et al., 2009b).

Credible proof exists for the benefits of physical activity and the prevention of colon, endometrial and breast cancer (Winzer et al., 2011; Derman et al., 2009a). Current evidence also suggests that physical activity is associated with decreased lung, endometrial, prostate and ovarian cancer risk (Winzer et al., 2011; Derman et al., 2009a). It has been proven that a daily bout of 30 to 60 minutes of moderate to high-intensity aerobic activity can reduce the risk of colon cancer by 30%, with a dose-response being seen (Derman et al., 2009a). The American College of Sports Medicine (ACSMA 2011) recommends that healthy adults and cancer survivors participate in exercise of moderate-intensity for a minimum of 30 minutes during 5 days of the week. On the other hand, the American Institute for Cancer (AIC) and the World Cancer Research Fund (WCRF) promotes 60 minutes of moderate-intensity exercise, or 30 minutes of vigorous-intensity exercise daily to reduce cancer risk (Kushi et al., 2010; Winzer et al., 2011). It has been theorised that physical activity may be linked to improved immune function and decreased gut transit time, which decreases exposure to
carcinogens and so reduces risk of colon cancer (Derman et al., 2009a). Many studies have revealed that women, who are physically active, had a lower breast cancer risk, with moderate and high levels of physical activity being related to a 20 to 40% decrease in breast cancer (Derman et al., 2009a). The decreased breast cancer risk can be due to a decrease in oestrogen and androgen concentrations, fortification of the immune system and decreased body fat (Winzer et al., 2011; Derman et al., 2009a).

2.6.4 Smoking cessation

Smoking cessation is said to be one of the most important and cost-effective means of reducing COPD risk, as well as preventing and delaying the development of airflow limitation (Parker & Eaton, 2012a; Schwellnus et al., 2008). A pooled analysis conducted in 2008, determined that the risk for head and neck cancers was decreased in persons, who had ceased to smoke 1-4 years previously, while those, who had stopped smoking more than 20 years previously, had a head and neck cancer risk equal to individuals, who had never smoked (Marron et al., 2010). It has also been revealed that smoking cessation reduces the risk of developing a primary tumour of all major types of lung cancers (Parsons et al., 2010). In their year-long prospective study, Gepner et al. (2011) determined that smoking cessation decreased risk for cardiovascular disease, especially in women. They also established that the increased HDL-C levels, after smoking cessation, counteracted the impact of subjects’ weight gain, after smoking cessation. It has been asserted that the effect of smoking cessation has an almost immediate effect on an individual’s health, by reducing the risk of cardiac events and that the effect of smoking on cardiovascular risk is reversible over time (Bullen, 2008).

Smoking cessation, it has been found, has no short-term benefits for the reduction of diabetes risks (Yeh et al., 2010; Tonstad, 2009). The beneficial effects of smoking cessation were found to be evident only approximately, 5 years post smoking cessation (Tonstad, 2009). Smoking cessation has been linked to increased risk of developing NCDs due to the weight gain, which is often experienced in this population. This weight gain often results in greater waist circumference, which leads to insulin resistance (Mackay et al., 2013). The conclusion drawn from studies exploring smoking cessation is that smoking quitters should be educated on weight gain prevention to
minimise their risk for developing CNCDs (Yeh et al., 2010; Tonstad, 2009).

2.6.5 Alcohol use

A review of 84 studies concluded that about one drink of alcohol per day results in a 14-25% reduction in cardiovascular disease, but that heavier consumption of alcohol was linked to increased risk for stroke and mortality (Ronksley et al., 2011; Patra et al., 2010). Recently, evidence has emerged that moderate red wine consumption might provide additional cardiovascular benefits (Lippi et al., 2010). Moderate alcohol consumption was linked to the lowest diabetes risk, while heavy intake was linked to an increased diabetes risk (Boggs et al., 2010).

2.7 Intervention programmes, policies and/or guidelines for chronic non-communicable diseases in other countries

Worldwide CNCDs are placing the biggest demand on health care expenditure with up to 10.4 billion euros being spent on obesity-related healthcare (Jakovljevic & Milovanovic 2015; Mayes & Oliver 2012; Chan et al. 2010). In order to address the CNCDs epidemic, intervention programmes are often implemented. It has been asserted that a successful intervention programme should have the following characteristics:

1) it reaches the desired target,
2) is cost-effective and
3) involves many levels and disciplines

(De-Graft Aikins et al., 2010; Puska 2002).

Hunter and Reddy (2013) assert that, in order to be all-inclusive, a CNCD prevention programme should integrate policies that have been planned to cultivate an atmosphere, in which people are urged to make and maintain healthy living choices, as well as advance health literacy. The prevention programme should also encourage people to safeguard and improve their health, while providing health services that focus on early detection, as well as cost-effective management of CNCDs and their associated risk factors (Hunter et al., 2013). In addition, Chan et al. (2012)
suggest that effective public health interventions, especially those aimed at addressing obesity should, “(1) target the food environments, the physical activity environments and the broader socioeconomic environments; (2) directly influence behaviour, aiming at improving eating and physical activity behaviours; and (3) support health services and clinical interventions.”

Although intervention programmes for CNCDs had previously focused on modifiable risk factors, very few have accomplished the desired result (WHO 2011e; Puska, 2002; Puska et al., 2002). The interventions that are currently implemented include legislation to control salt content of processed foodstuffs in many countries, namely, the United Kingdom (UK), Belgium, Greece, Hungary, the Netherlands, Paraguay and Portugal (Charlton, Webster and Kowal 2014). Alcohol intake restriction is another intervention against CNCDs, with the UK Government recommending that men should not consume more than 3-4 units [23-32g/d pure alcohol] per day and women, not more than 2-3 units [16-24g/d pure alcohol] (Nichols et al., 2012). The promotion of physical activity, as a means of preventing CNCDs, is another worldwide approach taken, with some cities in countries, for example, Sao Paulo in Brazil that launched their “Agita Mundo/Move for Health” global campaign in 1995. The success of this campaign resulted in the WHO adopting this effort for World Health Day in 2002 (Kolbe-Alexander et al., 2012).

In the United States of America (USA), the Healthy People Program, since its inception in 1979, has been a prominent part of the country’s approach to address population health. This program provides a detailed framework and plan for the improvement of the country’s health, which can be utilised in policies and programmes. This program is updated every decade to accommodate the changing health needs of the country, as well as to make improvements to the programme, based on evaluations made during the preceding decade (U.S. Department of Health and Human Services, 2011). The success of this initiative, however, has been questioned, since very few of its objectives have been met (Fielding et al., 2013). The main challenges for this programme, as identified by Fielding et al. (2013), are:

1) evidence-based targets are not being set;
2) documentation of important data is not done often enough, which makes tracking progress difficult;
3) the programme’s objectives are not prioritised at national level;
4) issues regarding the integration of healthcare delivery with those aimed at wider health determinants need to be addressed;
5) barriers to health inequities, which are worsened by a lack of universal health insurance coverage and what they perceive to be the greatest challenges of all; and
6) changing the attitude of the population about what the best way is to decrease preventable diseases (Fielding et al., 2013).

During the community interventions for health (CIH) projects in China, India and Mexico, the investigators sought to determine whether it was possible to upscale targeted interventions for CNCDs to a population level. The findings of this RCT revealed that up scaling community-based health promoting interventions for CNCDs to a whole population approach was practical, affordable and effective for the control of risk factors for CNCDs in LMICs (Dyson et al., 2015).

2.8 Consequences of CNCDs in South Africa

In 2010, it was determined that the overall costs of CVDs had more than doubled over the previous 20 years (Maredza et al., 2011). The prediction is that the overall costs of chronic diseases will continue to rise, which will affect efforts to address poverty, unless the CNCDs epidemic is stemmed (Alwan et al., 2009). It has also been estimated that the annual national disability grants would increase to R4.2 billion by 2040, due to the escalation of CVD (Househam, 2010). According to Hofman (2011), unless the chronic conditions of the epidemic in South Africa are addressed, the cost to the health system, as well as the existing negative effect on South Africa’s workforce and productivity, will worsen. In SA, most of the deaths from CNCDs occur in persons younger than 60 years, particularly in the economically productive age group of 35-64 years (Hofman, 2011).

2.8.1 Policies and guidelines

The National Department of Health established the Directorate of Chronic Diseases, Disabilities and Geriatrics, which developed national guidelines for the prevention and control of NCDs (Maredza et al., 2011; Mayosi et al., 2009). Guidelines to address hypertension, chronic diseases of lifestyle and T2DM have also been developed (Draper et al., 2014; Maredza et al., 2011). Even though these
guidelines included interventions, proven cost-effective in low- and middle-income countries, it has been revealed that these guidelines had no great effect on the primary prevention and management of the common heart conditions (Maredza et al., 2011). Recently, the guidelines for the management of ischaemic stroke and transient ischaemic attack has been revised, which is perceived to be an important measure in the campaign to lessen the disease burden, due to stroke (Maredza et al., 2011).

2.8.2 Legislation

In February 2011, the Minister of Health signed off regulations on the reduction of trans-fat to no more than 2 grams per 100g of oil or fat (SA DoH, 2011). A high intake of trans-fatty acids has been associated with the development of CVD, which, consequently, can result in the development of other CNCDs, such as cancer and T2DM (HSFSA, 2016). Additionally, in March 2013, Dr Motsoaledi signed into law the regulation for the reduction of sodium content in foodstuffs. Food manufacturers of basic foodstuffs were expected to comply with these regulations by 2016 and further salt reductions are expected to be met by 2019 (South Africa Department of Health [DoH], 2013).

Current legislation in place to address CNCDs in South Africa include, the tobacco control act that came into effect in 1993 and the Liquor Act that was implemented in 2003 (Mayosi, 2009). Recent developments include the launch of the Western Cape Department of Health’s Western Cape of Wellness (WoW) initiative and the sugar tax, proposed by the finance minister during his 2016 budget speech (Donnelly, 2016; Fokazi, 2015).

2.8.3 Interventions

In South Africa, as in many other countries, CVD is not considered as serious a health issue as the HIV/AIDS epidemic (Maredza et al., 2011). A few guidelines that target hypertension, chronic diseases of lifestyle and diabetes have been developed, however, these might not have a great enough effect (Maredza et al., 2011).

Many community-based programmes that address CNCDs have been implemented in South Africa,
however, most have not scaled up, nor have they been evaluated to establish their efficacy (Maredza et al., 2011). South Africa has been at the forefront regarding tobacco control, but despite this, the smoking rate is still considered unacceptably high, therefore, advocacy groups have appealed to the Minister of Finance to increase the tobacco tax rates, in the hope that it will produce the desired result (Maredza et al., 2011; Mayosi et al., 2009)

In South Africa, there are many community-based interventions for the control and management of NCDs. These include the Community Health Intervention Programme (CHIPS), the Woolworths Health Promotion Programme, the Soul City Health Promotion Programme, the Promoting Healthy Lifestyles in Khayelitsha Project and the Vuka South Africa: Move For Your Health. In addition, there are several non-governmental organisations (NGOs) that focus on CNCDs, including the Cancer Association of South Africa (CANSA), the Heart and Stroke Foundation of South Africa and the National Council Against Smoking (Mayosi et al., 2009)

2.8.3.1 Community-based intervention programmes in the South Africa

The Sports Science Institute of South Africa (SISSA) has implemented a number of projects to address the increasing rate of obesity and CNCDS in the Western Cape Province of South Africa. These projects are:

- **The Community Health Intervention Programme (CHIPS)** was initiated in 1997. The aim of this programme is to create a culture of health by encouraging physical activity and health education in previously disadvantaged communities.

- **Healthnutz**, is a programme aimed at children aged 5-12 years, run by dedicated teachers at three primary schools in the Western Cape. The aim of this project is to introduce physical activity to children in a fun and non-competitive manner.

- **OptiFit Outreach** programme, which persons aged 15 to 60 years of age can join for a fee of R20 per month, provides members with a cheap and conveniently situated exercise venue. At these community-based venues, members’ anthropometric measurements and BP are also regularly monitored.
- **Live It Up** is a seated exercise programme offered twice weekly to 55-year-olds and older in 16 communities. The programme also provides education on CNCD management.

(Sports Science Institute of South Africa [SSISA], 2015)

Medical Aid schemes have also implemented different strategies to aid their members and the community at large, to incorporate healthier habits. Discovery Health’s ‘Vitality’ Programme and Momentum’s ‘Multiply’ reward programmes are just two such initiatives. Discovery Health has implemented its Vitality Schools Programme in 2008 with the aim of encouraging physical activity in schoolchildren (Discovery Health, 2008a).

The Soul City Institute for Health and Development Communication was established in 1992. Over time, it has expanded its range of health intervention programmes according to the needs of the country (Soul City Institute for Health and Development Communication, 1992). On their website they have toolkits for NCDs and nutrition (https://www.k4health.org/toolkits/pc-ncd).

In 2005, the DoH launched the ‘Move for Health Day’ initiative with the slogan ‘Vuka South Africa, move for your health’ (South African Government, 2015). This campaign stemmed from the initial National Department of Health (NDoH) and the local WHO office’s ‘Move for Health’ campaign, which was launched in 2002. Afterwards, the NDoH launched its Healthy Lifestyles campaign that evolved into the current ‘Vuka SA’ campaign (Kolbe-Alexander *et al.*, 2012).

2.8.3.2 Non-governmental organisations and advocacy groups

Many NGOs, like the Heart and Stroke Foundation of South Africa (HSFSA), established in 1980, are rallying to fight CNCDS. The HSFSA focusses on fighting preventable heart disease and stroke, in the hope of decreasing premature deaths and morbidity. Over time, the number of programmes offered has expanded to include Saltwatch; the Heart mark; testing and screening; ‘go red for women’; ‘#have heart’, ‘cooking from the heart’; and others (Heart and Stroke Foundation of South Africa [HSFSA], 2011).
Another NGO, the Cancer Association of South Africa (CANSA) came into existence to combat cancer in South Africa. It enables research, educates the public and provides support to all people affected by cancer (Cancer Association of South Africa [CANSA], 2015).

2.8.4 Successes and failures of current/existing interventions in South Africa

South Africa’s most successful health intervention thus far, is its HIV/AIDS programme. Currently, not much progress has been made to address the CNCDs epidemic, even though goals had been set at a national summit on NCDs in September 2011 (Mayosi et al., 2012). Positive steps include:

- the signing of the regulation to reduce sodium intake;
- the Health ministry’s plan to reduce alcohol advertising;
- the phasing in over a 14-year period of the National Health Insurance Project to assure universal health coverage;
- a re-engineered system of Primary Health Care (PHC); and
- the launch of the SANHANES by the Human Sciences Research Council (HSRC), which will provide data regarding the prevalence of CNCDs and their risk factors (Mayosi et al., 2012).

2.8.4.1 Private sector

In the private sector, medical aid companies have introduced rewards-based wellness programmes, of which Discovery’s ‘Vitality’ (Discovery Health, 2008b) and Momentum’s ‘Multiply’ (Momentum Health, 2008) are examples, in an effort to combat CVDs. Incentives, such as discounts on the purchases of healthier food options, gym memberships and movie tickets are offered by both medical schemes to members, who join the rewards programmes for a certain fee. These incentives are aimed at encouraging healthy behaviour by, for example, providing access to facilities for prevention. Research, conducted by Discovery with individuals, who had signed up for their rewards programme and were committed to using the facilities for prevention made available to them through the programme, revealed that hospital admissions and claims costs related to cardiovascular conditions had been reduced (Maredza et al., 2011). The downside of this rewards-based wellness programme is that the member is expected to pay an extra fee, which could be the
reason why only, approximately, 40% of Discovery Health beneficiaries are on the ‘Vitality’ programme (Maredza et al., 2011).

The pharmaceutical company, PharmaDynamics, has launched the ‘iChange4Health’ programme, as part of a joint initiative with the Chronic Disease Initiative for Africa [CDIA] (PharmaDynamics 2015; Chronic Disease Initiative for Africa [CDIA], 2015). The aim of this programme is to assist South Africans to substitute their bad habits with healthier ones. In addition, PharmaDynamics has teamed up with the HSFSA to produce a free cookbook in 2012 (PharmaDynamics, 2015)

2.8.4.2 Food industry

In South Africa, Woolworths has voluntarily reworked a number of their brand-specific recipes to contain less salt (Maredza et al., 2011). In addition, Woolworths has also implemented its ‘the Woolworths Making the Difference’ (MTD) programme (Woolworths, 2004), which aims to promote a healthy lifestyle through nutrition and physical activity, using school-based interventions. Currently 230 schools, located in the Western Cape, are participating in this programme. The Healthy Tuck Shop Guide, recently added to the MTD programme and developed by registered dieticians, aims to aid schools with the provision of healthier eating options to learners daily (Marraccini et al., 2012). Many food products also display the CANSA, glycaemic index (GI), South African Diabetes Association (SADA) and /or Heart and Stroke foundation (Heart Mark) on their labels, in order to aid the population in making better food purchasing choices, which, consequently, could play a role in the prevention and/or management of CNCDs.

2.8.4.3 South African Food Based Dietary Guidelines

The South African Food Based Dietary Guidelines (SAFBDGs), which are based on existing eating patterns and diet-related health problems, were developed over a period of four years with the intention to address nutrition-related health problems in South African persons, who do not have special dietary needs (Vorster, 2013). It consists of thirteen brief, distinct and easy to understand messages, tested for understanding, aptness and relevance in groups of various ethnic backgrounds, in rural and urban areas. These guidelines have been updated in 2014 to make them more acceptable to the South African population (Vorster, 2013; Gibney et al., 2001).
2.9 Barriers to intervention programmes in South Africa

The main challenges in addressing the CNCD epidemic in South Africa are poverty, unemployment, sexism and socioeconomic inequalities. In addition, the South African public health system is unable to cope with the demands placed on it, while the lack of health surveillance and health information need to be addressed (Mayosi et al., 2012).

In the Western Cape Province of South Africa, the primary healthcare approach has been implemented to address the rising number of CNCDs cases (Lalkhen et al., 2015; Draper et al., 2014). In order to provide a good service, an adequate number of staff, knowledgeable about CNCDs and its management is required, as well as the availability of the necessary tools (Parker et al., 2012). A recent survey of the health promotion services for individuals with CNCDs revealed that patients preferred to receive their health messages from a trained health professional, which is not always possible, due to staff constraints (Parker et al., 2012). In addition, staff members are not always aware of the availability of policies and health material, as not all facilities have access to health promotion materials (pamphlets). In addition, factors such as patients’ literacy levels and language barriers are also impediments to health education (Draper et al., 2014; Parker et al., 2012). Other barriers include a poorly managed healthcare system, disruption in drug supply and healthcare workers’ incapability to manage CNCDs (Lalkhen et al., 2015).

2.10 Summary

The problem of CNCDs is worldwide and it has been predicted to worsen in years to come, unless drastic measures are taken to address it. Many countries, including South Africa, have started to pay attention to the CNCD epidemic and have implemented certain actions to stem its growth. Although many issues still need to be addressed (social inequalities, poverty, staff shortages), some progress has been made. Unless the populations’ ‘buy in’ is obtained, decreasing CNCD morbidity and mortality will be impossible.
REFERENCE LIST

Acts see South Africa.

80

Delimaris, I. 2013. Adverse effects associated with protein intake above the recommended daily allowances for adults. *International scholarly research notices: Nutrition*.

Schwingshackl, L. & Hoffmann, G. 2013b. Comparison of effects of long-term low-fat versus high-fat diets on blood lipid levels in overweight or obese patients: a systematic review and meta-

Shirani, F., Salehi-Abargouei, A. & Azadbakht, L. 2013. Effects of Dietary Approaches to Stop Hypertension (DASH) diet on some risk for developing type 2 diabetes: a systematic review and

https://www.soulcity.or.za/about-us Date of access: 20 Aug. 2015.

access: 13 May 2012.

access: 13 May 2012.

health-day-2015. Date of access: 20 Aug. 2015.

insulin resistance and diabetes: the right (pro)portions. Proceedings of the nutrition society, 69:61-
69.

CHAPTER 3: RESEARCH METHODOLOGY

3.1 Introduction

This study is embedded in the Prospective Urban and Rural epidemiology (PURE) study, a large-scale worldwide epidemiological cohort study (Teo et al., 2009). This study was initiated in 2009 and is currently still active. This chapter will be divided into two sections, section 1 will describe the methodology of the PURE study and section will describe the methodology utilised in the current study.

3.2 Section 1: Methodology for the PURE study

3.2.1 Study design

A cross-sectional study design was used.

3.2.2 Study population

The PURE study aimed to recruit approximately 150,000 participants, aged between 35 and 70 years, living in more than 600 communities, in 17 low-, middle-, and high-income countries around the world (see Table 1). The selection of the participating countries was based on the representativeness of different economic levels and the study sites included were based on the commitment of investigators to collect good quality data over the planned 10-year period (Teo et al., 2009). The UWC SoPH committed itself to conduct data collection in Langa (urban community) in the Western Cape Province and Mount Frere (rural community) in the Eastern Cape Province.

3.2.3 Sample size

The sample size of the University of the Western Cape’s PURE study sites consisted of 2000 men and women. One thousand participants were recruited from each identified study site.
3.2.4 Sampling method

For the PURE study, households and individual selection criteria were based on:

- representativeness;
- apparent physical and mental health – no known serious diseases;
- feasibility of long-term follow-up;
- at least one household member aged between 35 and 70 years; and
- the relevant household member continuing to live in their current residence for at least the next four years.

Exclusion criteria included:

- individuals not intending to continue living in their current residence for the following 4 years; and
- serious known diseases.
Table 3.1: Participating countries and target recruitment goals (Teo et al., 2009)

<table>
<thead>
<tr>
<th>World bank income classification</th>
<th>Country</th>
<th>Urban communities</th>
<th>Urban individuals</th>
<th>Rural communities</th>
<th>Rural individuals</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-income countries (HIC)</td>
<td>Canada</td>
<td>44</td>
<td>5500</td>
<td>21</td>
<td>4500</td>
<td>11000</td>
</tr>
<tr>
<td></td>
<td>Sweden</td>
<td>3</td>
<td>3500</td>
<td>3</td>
<td>1500</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>UAE</td>
<td>1</td>
<td>1000</td>
<td>2</td>
<td>1000</td>
<td>2000</td>
</tr>
<tr>
<td>Upper-middle-income countries (UMIC)</td>
<td>Argentina</td>
<td>14</td>
<td>2500</td>
<td>14</td>
<td>2500</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>Brazil</td>
<td>22</td>
<td>2500</td>
<td>42</td>
<td>2500</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>Chile</td>
<td>6</td>
<td>2500</td>
<td>9</td>
<td>2500</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>Malaysia</td>
<td>61</td>
<td>5000</td>
<td>26</td>
<td>5000</td>
<td>10000</td>
</tr>
<tr>
<td></td>
<td>Poland</td>
<td>1</td>
<td>1000</td>
<td>3</td>
<td>1000</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>South Africa</td>
<td>4</td>
<td>2000</td>
<td>4</td>
<td>2000</td>
<td>4000</td>
</tr>
<tr>
<td></td>
<td>Turkey</td>
<td>29</td>
<td>1000</td>
<td>12</td>
<td>1000</td>
<td>2000</td>
</tr>
<tr>
<td>Lower-middle-income countries (LMIC)</td>
<td>China</td>
<td>100</td>
<td>2500</td>
<td>117</td>
<td>25000</td>
<td>60000</td>
</tr>
<tr>
<td></td>
<td>Colombia</td>
<td>30</td>
<td>2500</td>
<td>10</td>
<td>2500</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>Iran</td>
<td>9</td>
<td>2500</td>
<td>7</td>
<td>2500</td>
<td>5000</td>
</tr>
<tr>
<td>Low-income countries (LIC)</td>
<td>Bangladesh</td>
<td>30</td>
<td>2500</td>
<td>26</td>
<td>2500</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>India</td>
<td>31</td>
<td>15000</td>
<td>60</td>
<td>15000</td>
<td>30000</td>
</tr>
<tr>
<td></td>
<td>Pakistan</td>
<td>3</td>
<td>1000</td>
<td>3</td>
<td>1000</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>Zimbabwe</td>
<td>2</td>
<td>500</td>
<td>2</td>
<td>500</td>
<td>1000</td>
</tr>
</tbody>
</table>

3.3 Quantitative method

3.3.1 Data collected in the PURE study

Existing data collected for the PURE study in 2010 (anthropometry, dietary intake, physical activity and blood pressure) formed part of the data for this study. The PURE study was initiated in 2009 (Cape Town, South Africa) and is currently still on-going. Since this current study was embedded in the bigger PURE study, the participants were already familiar with the fieldworkers and the researcher had no need to introduce them, or have them sanctioned by the participants. The fieldworkers therefore visited selected households, introduced themselves and explained the purpose of the study. Written informed consent was obtained and individuals were assured that confidentiality would be maintained (Figure 3.1).
Subsequently, all questionnaires were completed and physical measurements (blood pressure, height, weight, waist, hip and mid-upper arm circumference) were taken. Appointments were made with individuals to obtain the fasting blood samples and urine samples. Quality control measures were introduced to complete the questionnaires and measurements and therefore ensured that all missing data was obtained.

3.3.2 Research tools

3.3.2.1 Questionnaires

Data collection for the PURE study occurred at provincial, community, household and individual levels. Provincial level data was collected at baseline in 2009-2010. Community level data include social and environmental factors that influence health. The Environmental Profile of a Community’s Health (EPOCH) questionnaire was used to collect data regarding social and environmental factors affecting health. The family census questionnaire was used to collect socio-demographic data. The household questionnaire was used to collect data on the head of the household, available amenities, access to water and sanitation. The Adult Questionnaire was used to collect data on the nine
INTERHEART risk factors (diagnosed hyperlipidaemia, hypertension, diabetes, obesity, psychosocial stress disorders, as well as smoking and regular consumption of fruit, vegetables and alcohol).

The PURE Physical Activity questionnaire was used to collect data on individual physical activity. The PURE Quantified Food Frequency Questionnaire together with a food photo book was used to collect data on dietary intake. (Teo et al., 2009). Nutrient intakes were calculated using the MRC Foodfinder III software package (all research instruments used are attached as Addenda A to O).

3.3.2.2 Measurements

Weight was measured in minimal clothing to the nearest 0.1kg, using a digital scale (A & D Personal Precision scale UC 321, A&D Company Limited, Tokyo, Japan). Height was measured using a stadiometer (model: Seca 213) with the participant barefoot to the nearest 0.1cm. Body mass index (BMI) was calculated and presented by BMI category. Waist circumference was measured over minimal clothing at the narrowest part, between the ribcage and hip bone. Hip circumference was measured over minimal clothing at the widest part of the body, across the buttocks. Mid-upper arm circumference was measured at the mid-point of the right arm, all measured using a non-stretchable measuring tape (Dean, London UK). Two readings were taken at each site and mean measurements were recorded to the nearest 0.1cm. Blood pressure was measured on the right arm with the participant sitting relaxed, with the arm at heart level using a digital blood pressure monitor (Omron HEM-757, Omron Healthcare, Kyoto, Japan). Blood pressure and waist circumference data were used to describe the metabolic profile of the study participants, with systolic blood pressure >130mmHg or diastolic blood pressure >85mmHg defined as high blood pressure. A waist circumference cut-off point of >80cm in women or >94cm in men was used to define increased metabolic risk (Alberti et al., 2009).

3.3.3 Staff training

Fieldworkers were trained to complete the questionnaires correctly and on how to take the anthropometric and blood pressure measurements.
3.4 Section 2: Methodology of the current study

The current study was conducted in three phases as illustrated in Table 3.2.

3.4.1 Study design

The study designs utilised during the various phases of the study is listed below:

Phase 1: Cross-sectional study design, quantitative exploratory

Phase 2: Qualitative and quantitative study design

Phase 3: Qualitative study design

A cross-sectional study design was implemented. Even though this study had qualitative and quantitative components, it is not a mixed-methods study. A mixed methods study should be performed according to specific steps for the formulation of objectives, reflecting quantitative, qualitative and integration of quantitative and qualitative objects. The rationale for a mixed methods design and type of mixed methods design should be stated and used to present flow of data collection and integration of results. In this study there were no integrative objectives, although results were finally discussed and integrated.

3.4.2 Study population

For the current study only participants from the urban community (Langa) were included. Langa is a suburb in Cape Town, which was established in 1923 to house predominantly black Africans. This suburb spreads over a total area of 2.87 km2 (Plak, 2012). The 2011 census report stated that Langa had a total population of 52,410 (City of Cape Town, 2011).

Phase 1: One thousand PURE participants

Phase 2: DoH officials

Phase 3: Three hundred PURE participants
Table 3.2: Summary of research methodology for different phases of the study

<table>
<thead>
<tr>
<th></th>
<th>Phase 1 (Article 1)</th>
<th>Phase 2 (Article)</th>
<th>Phase 3 (Article 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data collection phase</td>
<td>Secondary analysis of data from PURE study</td>
<td>Interviews with DoH officials</td>
<td>Focus group discussions with participants</td>
</tr>
<tr>
<td>Aims and objectives</td>
<td>To determine dietary adherence to a DASH-type diet by calculating a dietary adherence score. To determine association between dietary adherence score, blood pressure and anthropometry.</td>
<td>To determine participants’ challenges with implementation of nutrition interventions. To determine participants’ needs regarding CNCD interventions. To explore what courses of action DoH officials think would best address the CNCDs epidemic. To determine DoH officials’ awareness and knowledge regarding existing CNCD policies.</td>
<td>To explore perceived challenges regarding the implementation and adherence to nutrition intervention messages. To gain an understanding of participants’ expectations of CNCD interventions. To explore acceptability of health message interventions. To explore preferences for CNCD health message dissemination methods. To determine participants’ awareness of CNCD programmes and their willingness to participate in these programmes.</td>
</tr>
<tr>
<td>Study design</td>
<td>Cross-sectional</td>
<td>Qualitative and quantitative</td>
<td>Qualitative</td>
</tr>
<tr>
<td>Study population</td>
<td>1000 PURE participants</td>
<td>DoH officials</td>
<td>300 PURE participants</td>
</tr>
<tr>
<td>Sampling</td>
<td>Random selection of 300</td>
<td>Snowball effect</td>
<td>Convenience sampling</td>
</tr>
<tr>
<td>Instruments and analysis</td>
<td>Data collected at baseline (socio-demographics, dietary (QFFQ), physical activity, anthropometry and blood pressure) Medians Cross-tabulations Chi-square Correlations</td>
<td>Interviews MCM mapping</td>
<td>Focus group discussion Content analysis</td>
</tr>
<tr>
<td>Response rate</td>
<td>300</td>
<td>6/10 identified</td>
<td>47/48</td>
</tr>
</tbody>
</table>
3.4.3 Sampling

Phase 1: A sub-sample of 300 participants was drawn by means of selective random sampling from the existing PURE Langa cohort study participants. This sample size was determined based on similar studies in literature (Khan et al., 2012).

Phase 2: Ten key officers at the Department of Health, who are involved in the treatment and prevention of persons with CNCDs and CNCD policy development, were identified and were recruited by means of the snowball effect.

Phase 3: The 47 PURE participants who participate in the FGDs were conveniently sampled from the 300 sub-sample who were recruited for face-to-face interviews.

3.4.4 Research tools

Phase 1: In order to assess the participants’ dietary intakes and to determine whether they were in line with existing policy guidelines, the following was done:

- Baseline dietary data from the individual, food frequency questionnaires were analysed to present the participants’ macronutrient intakes, as well as total fruit and vegetable intakes. The sodium intake, as well as the total fat, saturated fat, poly- and mono-unsaturated fat intakes, as a percentage of total energy, were also determined.

- To determine dietary adherence, a dietary adherence score was calculated, using a combination of a DASH-style diet and recommendations made by the South African Food-based Dietary Guidelines (SAFBDG) for the participants’ dietary intake. The blood pressure and anthropometric measurements (waist circumference, body mass index, waist-hip ratio and waist-to-height ratio) of participants in the lowest tertile and highest tertile was then compared.
• Interviews were conducted at a local level with PURE study participants, using an open-ended and closed-ended questionnaire (The “Challenges to Intervention Programmes” questionnaire). The aims of these interviews were to establish: (1) their awareness of intervention programmes in their community and (2) the reasons (if any) for resistance to intervention programmes. In addition this questionnaire was used to collect data on the participants’ knowledge and awareness of CNCDs intervention programmes, offered in their community; their willingness to participate in these programmes; their reasons for not wanting to participate in existing CNCD intervention programmes as well as, how and by whom they would prefer CNCDs messages to be disseminated.

Phase 2: Interviews were conducted with key officers at the provincial Department of Health (DoH), using the MCM method and The DoH questionnaire (an open-ended and closed-ended questionnaire). The aims of the interviews, conducted at the DoH, were to determine: (1) whether they knew of any policies for CNCDs that existed, (2) what they perceived to be the challenges for the implementation of these policies, and (3) how frequently policies were reviewed.

Multicriteria mapping

Multicriteria mapping (MCM) was used to explore intervention options that key government officers, as programme managers and implementers, considered appropriate to address the four major CNCDs in SA. MCM is a computer-assisted interview process from which quantitative and qualitative data is generated. This method is used to assess or weigh up different courses of action to be taken regarding multifaceted and contentious policy issues (Deliberative mapping, 2004). MCM consists of a four-step process (Stirling, 2014).

• **Step 1: Choose options**

MCM uses a set of core options (Table 3.3) that permit comparisons to be made between the positions taken by different participants, when the interviews are analysed. The interviewer developed a set of core options, in advance, through review of the literature (González-Zapata et al., 2008; Tromp & Baltussen, 2012; Stirling et al., 2007). The core options are variables, the performance of which should be assessed by all interviewees, in order to obtain a comparison.
Discretionary options were added to provide interviewees with the opportunity to assess the performance of additional factors, other than the core options provided (Stirling et al., 2007).

Table 3.3: Multicriteria Mapping (MCM) Interview Options: best way to address the CNCDs epidemic in SA

<table>
<thead>
<tr>
<th>Core options</th>
<th>Discretionary options</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Legislation and regulation for CNCDs (policies)</td>
<td>1. Improved health education of citizens</td>
</tr>
<tr>
<td>2. Control of food and drink advertisements</td>
<td>2. Improve training of health professionals in CNCDs</td>
</tr>
<tr>
<td>3. Control of food sales at public institutions and places</td>
<td>3. Integrated health service delivery</td>
</tr>
<tr>
<td>4. Compulsory food labelling</td>
<td>4. Skill-shifting among health professionals</td>
</tr>
<tr>
<td>5. Fatty food tax (“sin tax”) and healthy food subsidies</td>
<td>5. Improve health information systems</td>
</tr>
<tr>
<td>6. Cheaper prices of healthy foods</td>
<td>6. Improve the school curriculum: include more health and nutrition education</td>
</tr>
<tr>
<td>7. Improving inter-sectoral partnerships</td>
<td>7. Improve workplace health initiatives</td>
</tr>
<tr>
<td>8. Community participation</td>
<td>8. Compulsory free annual medical check-up</td>
</tr>
<tr>
<td>9. Control of food and drink advertisements</td>
<td>9. Increase use of sugar and fat substitutes</td>
</tr>
<tr>
<td>10. Compulsory free annual medical check-up</td>
<td>10. Growing healthier foods such as genetically-modified (GM) foods</td>
</tr>
<tr>
<td>11. Control marketing terminology on food labels (e.g. use of “lite”)</td>
<td>11. Control marketing terminology on food labels (e.g. use of “lite”)</td>
</tr>
<tr>
<td>13. Nutrient analysis of catering menus to show energy, sugar, salt and fat content</td>
<td>13. Nutrient analysis of catering menus to show energy, sugar, salt and fat content</td>
</tr>
</tbody>
</table>

(Stirling et al., 2007; Holdsworth et al., 2007)

The following option clusters were identified, in order to group/aid in the analysis process (Stirling et al., 2014):

Cluster 1: CNCDs prevention and management oriented

- Legislation and regulation for CNCDs
Cluster 2: Food supply control

- Control of food sales at public institutions and places
- Fatty food tax (‘sin tax’) and healthy food subsidies
- Cheaper prices of healthy foods
- Healthier restaurant menus

Cluster 3: Food information

- Control of food and drink advertisements
- Compulsory food labelling
- Control marketing terminology on food labels (e.g. use of “lite”)
- Nutrient analysis of catering menus to show energy, sugar, salt and fat content

Cluster 4: Educational

- Improved health education of citizens
- Improve training of health professionals in CNCDs
- School curriculum to include more health and nutrition education

Cluster 5: Health care reform

- Integrated health service delivery
- Skill-shifting among health professionals
- Improve health information systems

Cluster 6: Innovative preventive initiatives

- Improve workplace health initiatives
- Compulsory free annual medical check-up
Cluster 7: Technological advances

- Increase use of sugar and fat substitutes
- Growing healthier foods, such as genetically modified (GM) foods

Cluster 8: Partnerships and collaboration

- Improving inter-sectoral partnerships
- Community participation

The core and discretionary options may be described as follows:

- **Legislation and regulation for CNCDs (policies)**

The development and implementation of policies for salt reduction and alcohol use could aid in decreasing the use of alcohol and salt. The development and implementation of environmental planning policies will aid in the improvement of community facilities, so that it is safe and conducive to physical activity. Policies to control the composition of processed foods, in terms of fat (type and amount), salt content and kilocalories, will aid in the control of overweight and obesity, as well as other CNCDs (Moodie et al., 2013; Stirling et al., 2007).

- **Control of food and drink advertisements**

This will entail the banning of food advertisements aired during children programmes, as well as in cinemas. It will also include the banning of advertisements of tobacco products, alcohol and unhealthy foodstuff aimed at adults on television, billboards, magazines and in cinemas (González-Zapata et al., 2008; Stirling et al., 2007).

- **Control of food sales at public institutions and places**

This entails controlling food and drink items sold at schools, colleges, Technikons and universities. Young children are easily influenced, so only offering healthy food choices at school tuck shops, for example, could lay the foundation for them to continue making healthy food choices into adulthood.
(Moodie et al., 2013; González-Zapata et al., 2008; Stirling et al., 2007).

- **Compulsory food labelling**

 Compulsory food labelling would aid in the public making better food choices. The food labels should be easy to understand and standardised for all products, so that consumers could easily make better food choices (Liem et al., 2012; González-Zapata et al., 2008; Holdsworth et al., 2007; Stirling et al., 2007).

- **Fatty food tax (“sin tax”) and healthy food subsidies**

 Taxing food-manufacturing companies for the production of food items, which contain fat and salt above the recommended levels, could encourage these companies to reformulate their recipes and therefore influence consumers’ intake. On the other hand, the simultaneous decrease in healthy food prices (by means of subsidies) could encourage the purchasing of these healthier food items (Holdsworth et al., 2007; Stirling et al., 2007).

- **Cheaper prices of healthy foods**

 Providing healthier foods at lower prices would encourage citizens to purchase these food items. This could be done by subsidising healthier food options (González-Zapata et al., 2008; Holdsworth et al., 2007; Stirling et al., 2007).

- **Improving intersectoral partnerships**

 Joining forces with other government departments, the food industry, community associations and non-governmental organisations (NGOs) could aid in the pooling of resources and therefore result in a holistic approach to tackling the CNCDs epidemic (Alleyne et al., 2013; McDonald et al., 2011).
➢ **Community participation**

The community members know what their needs are. In order for an intervention to be successful, it must address the community’s self-identified needs (Metta *et al*., 2014).

➢ **Improved health education of citizens**

Citizens will be provided with more information and a better understanding of CNCDs, including their risk factors, prevention and management. In this way, they will be aided in decreasing their risk for developing CNCDs. Teaching them how to make healthier food choices (teaching them how to read food labels) would play a role in combating CNCDs (Holdsworth *et al*., 2007; Stirling *et al*., 2007).

➢ **Improve training of health professionals in CNCDs**

Providing health professionals with the skills and knowledge to identify, counsel and care for persons with CNCDs could aid in reversing the CNCDs epidemic (Parker *et al*., 2012; Stirling *et al*., 2007).

➢ **Integrated health service delivery**

Integrating services, where individuals who are, for example, HIV-positive and suffering from a CNCD, could receive the necessary care for both conditions in one place, simultaneously (Atun *et al*., 2013).

➢ **Skill-shifting among health professionals**

Training more assistant health professionals (e.g. nursing assistants) and community health workers to assist with the care of individuals with CNCDs, could play a role in alleviating the workload of existing health professionals, as well as address the current health human resource problems (Aikins *et al*., 2014; Parker *et al*., 2012).
 Improve health information systems

Improved health information systems will aid in identifying and monitoring individuals at risk of, or diagnosed with CNCDs. In this way, better care can be provided to these individuals and help to end the CNCDs epidemic (Mayosi et al., 2009).

 Improve the school curriculum: include more health and nutrition education

Including health and nutrition education in the school curriculum will equip young children to make better food choices and will lay the foundation for their future health (Stirling et al., 2007).

 Improve workplace health initiatives

By providing incentives to their workforce, companies can encourage their employees to maintain better health. This may include the provision of health education workshops, annual health checks, or even installing a gym at the workplace, as well as the work cafeteria only providing healthy foods (Ismail et al., 2014).

 Compulsory free annual medical check-up

Making it compulsory for all individuals, regardless of age, to go for an annual medical check-up, could aid in identifying individuals at risk of, or who suffer from, CNCDs, as well as provide the opportunity to impart information on the prevention of CNCDs (Rodic et al., 2008).

 Increase use of sugar and fat substitutes

Companies are developing new products regularly. The use of sugar and fat substitutes, such as modified starch, gums and pectins, could assist individuals with their weight control (González-Zapata et al., 2007; Stirling et al., 2007; Wylie-Rosett, 2002; Akoh, 1998; Miraglio, 1995).

 Growing healthier foods, such as genetically modified (GM) foods

Agriculture could find ways in which to produce healthier foods for the general public, which will have nutrient content (Alleyne et al., 2013; Holdsworth et al., 2007).
Control marketing terminology on food labels (e.g. use of ‘lite’)

Policies can control what items fulfil the criteria to be labelled ‘lite’, or ‘low’ in certain dietary constituents, such as fat, sugar and salt. In this way, the consumer is assured that s/he is making better food choices, without being misled (Holdsworth et al., 2007; Stirling et al., 2007).

Healthier restaurant menus

Restaurants can be provided with incentives to reformulate their recipes, so that they can offer healthier food to their patrons (Holdsworth et al., 2007).

Nutrient analysis of catering menus to show energy, sugar, salt and fat content

More public eating-places should provide their patrons with nutritional information of all food items prepared on the premises. This will aid patrons in ordering the healthier food items (Sinclair et al., 2014; Ellison et al., 2013; Roberto et al., 2010).

- **Step 2: Define criteria**

The interviewer asks the participant to make a personal judgement about issues of importance, when evaluating the relative merits of the options. These issues are then developed into a set of criteria (e.g. money, human resources, time) against which the options will be appraised.

- **Step 3: Assess scores and explore uncertainty**

The participant assigns numerical scores (range of 0 to 10) to represent the performance of each option under each of the chosen appraisal criteria.

- **Step 4: Assign a weight to each criterion**

The participant ranks each criterion according to what he/she considers the least, to the most important on a scale of 0-100. This is an approach designed to help specialists and members of the public weigh up evidence to reach a joint decision on the relative importance of complex policy issues, where there is no obvious way forward (Deliberative mapping, 2004).
Phase 3: Focus group discussions were performed with Langa residents, who were PURE study participants, to determine:

- what they perceived to be barriers to intervention programmes that address the four major CNCDs in their community;
- their views on what they considered appropriate methods of addressing the four major CNCDs in their community; and
- how, or in what form, they would prefer their health messages to be disseminated (including preferred illustrations and language).

The focus group discussion was used to obtain data regarding the participants’ perceptions about health message dissemination and reasons for not wanting to participate in existing CNCD intervention programmes in their community. During the recruitment phase, the purpose of the focus group discussion was explained.

The researcher prepared a focus group discussion guide beforehand (Appendix L). At the start of the focus group discussions, the purpose of the discussion was once again revisited. The purpose of the voice recorder was also explained. The researcher facilitated the discussion and a trained fieldworker acted as the recorder. For the focus group discussions, the fieldworker signed a group confidentiality binding form, as did the participants. In fact, it was highlighted in the fieldworker employment contracts that they would be required to maintain confidentiality.

All focus group discussions were conducted primarily in English, with some questions translated into isiXhosa, when required, by the trained fieldworker. At the end of each group discussion, which was recorded, the main issues that were raised were summarised and the participants were asked to verify the summaries. The focus group discussions lasted between 25-50 minutes. Focus group discussions continued up to the point of data saturation.

3.4.5 Pilot study

A pilot study was conducted using the Challenges to Intervention Programmes questionnaire on a subsample of Langa residents who was not included in this study for the first phase of the study.
3.4.6 Staff training

Phase 1: The fieldworkers were trained to complete the Challenges to Intervention Programmes Questionnaire by the researcher.

Phase 2: The researcher was trained to conduct interviews using the MCM method.

Phase 3: The researcher also conducted the focus group discussions according to standard published methods (Krueger, 2008).

3.4.7 Integration of quantitative and qualitative methods

A literature study was carried out to investigate current/existing CNCDs intervention programmes in other countries. Recommendations were made using information from existing literature, as well as the results of this study on how gaps between government and communities could possibly be breached regarding the implementation of and adherence to nutrition interventions for CNCDs.

3.5 Ethical consideration

Ethical clearance for the Western Cape PURE study was obtained from the Research and Higher Degrees committee from the University of the Western Cape (Project number 13/3/5). Informed, written consent was obtained from each participant and confidentiality and anonymity were maintained by using participant numbers and no names on the study material.

The proposal for this study was submitted to the Higher Degrees Committee of the Faculty of Community and Health Sciences at the University of the Western Cape. Permission to interview the healthcare facility managers was obtained from the DoH. Additional informed, written consent was obtained from each participant for participation in focus group discussions and MCM interviews.

The study did not harm the participants in any way and participants were free to refuse to participate, whether or not they continued to participate in the broader PURE study. The participants were free to refuse to answer any particular question(s) and were not cajoled to answer them, if they did so. The participants were free to withdraw at any stage, without the need for an
explanation.

3.6 Validity and reliability

Phase 1: Only one fieldworker was employed for data collection. The questions were posed to all participants in the same manner. There were thus no inter-interviewee differences present which ensured that the data collected was reliable.

Phase 2: The focus group discussions were conducted by the researcher. All questions were posed in a standardised manner. There were thus no inter-interviewee differences present which ensured that the data collected was reliable.

Phase 3: The MCM interviews were conducted by the researcher. All questions were posed in a standardised manner. There were thus no inter-interviewee differences present which ensured that the data collected was reliable.

3.7 Statistical analysis

The researcher captured and analysed the data collected for this part of the study using Microsoft Excel 2009 and SPPS.

Phase 1: The socio-demographic data, anthropometric status, CNCD risk factor data (blood pressure), physical activity and dietary intake are presented as descriptive data. This data was also analysed according to the willingness to participate in intervention programmes.

Quantitative data was analysed using the Statistical Package for Social Sciences (SPSS) vs 24 software. Correlations were determined between BMI, CNCD risk factors (blood pressure) and physical activity level. Cross-tabulations with chi-square tests were used to assess associations between categorical variables (obese/non-obese, smoking status, willingness/not willing to participate in an intervention programme and adherence/non-adherence with existing programmes). Odds ratios and 95% confidence intervals were calculated to measure the strength of the associations.
Phase 2: The MCM method data was analysed using the MCM ANALYST software tool. The qualitative data (options which include the core and discretionary options; transcripts of audio recordings and notes made during the interviews) and quantitative data (scores, weights and ranks) were automatically loaded into the MCM-Analyst package.

Phase 3: Data was analysed using content analysis. After each focus group discussion, the researcher and recorder discussed the session and a full narrative report of the discussion was prepared that reflected the discussion as comprehensively as possible, taking verbal and non-verbal responses into account, as well as using participants’ own words. After data had been transcribed, statements were coded by two independent coders. Codes were allocated to capture the essence of what was discussed. Inductive coding was done to interpret and understand the content of the discussions. After the first round of coding, the two coders met to discuss differences between their preliminary codes and to reach consensus about final codes. After each FGD was coded, the different groups were compared to assess, when no new codes emerged. This point is defined as the stage of data saturation. Codes were grouped together to combine similar responses and identify patterns in the discussions as different categories. Trends and main themes were identified from the patterns, issues, problems and questions that arose. Key statements, ideas and perceptions were highlighted for each topic discussed. Data was summarised as narrative. The most valuable themes/quotations were identified by counting the number of times the theme emerged and these were used to illustrate the main ideas of the focus group discussions (NOAA Coastal Services Center (online); Health and Safety Executive (online); Krueger, 1988).
REFERENCE LIST

Date of access: 12 Apr. 2012.

Addendum A: Letter of confirmation for ethical approval

19 April 2013

To Whom It May Concern

I hereby certify that the Senate Research Committee of the University of the Western Cape has approved the methodology and ethics of the following research project by: Prof T Puone (School of Public Health)

Research Project: Prospective Urban and rural Epidemiology Study (PURE) to track changing lifestyles and risk factors for Chronic Diseases.

Registration no: 13/3/5

Any amendments, extension or other modifications to the protocol must be submitted to the Ethics Committee for approval.

The Committee must be informed of any serious adverse event and/or termination of the study.

Ms Patricia Josias
Research Ethics Committee Officer
University of the Western Cape
Addendum B: Methodology for blood pressure and physical measurements (Kruger, 2005)

5.0 Instructions for physical measurements

5.1 General instructions

Ensure that written consent has been obtained from the subject prior to taking measurements

- Give concise and clear instructions
- Take your time
- Do not deviate from the standard instructions given in the manual
- Ensure all instruments are set to “0” (zero) prior to each measurement (weighing scales, dynamometer)

5.3 Sitting right arm blood pressure and heart rate

- Both measurements are done on the right arm, using the Omron automatic digital blood pressure monitor (Omron HEM-757)
- Make sure the batteries are charged. There is a Low Battery Indicator which appears on the display screen if the batteries need to be replaced
- Keep spare-charged batteries
- Ensure all necessary cuff sizes are present
- Subject must be resting and calm for at least 5 minutes, should not have smoked, exercised or eaten in the last 30 minutes, and should not have climbed the stairs in the last 15-30 minutes before taking this measurement
- Subject should be seated upright and relaxed with his/her right arm supported at heart level

Take the measurement using the brachial artery

- Record the readings for systolic and diastolic pressures and heart rate (read exact values, avoid “rounding”) on page 12 of the Adult Questionnaire
5.5 Anthropometrical assessment

5.5.1 Waist circumference

- The subject stands erect with the abdomen relaxed and arms at the sides
- The measurement is taken over the minimally-clothed/unclothed abdomen at the smallest diameter between the costal margin and the iliac crest (the hip)
- This is best done with the measurer facing the subject and identifying the natural waist (i.e. the point of narrowing)
- The measurement is taken to the nearest 0.1 cm at the end of a normal expiration, using a nonstretchable standard tape measure attached to a spring balance exerting a force of 750 gm
- The tape must be kept horizontal
- Record the value on page 12 of the Adult Questionnaire

5.5.2 Hip circumference

- The measurement is taken over minimal/no clothing at the level of the greater trochanters (usually the widest diameter around the buttocks)
- The measurer squats by the side of the patient so that the level of maximum extension of the buttocks is seen ▶️ ▶️ The measurement is taken to the nearest 0.1 cm using a nonstretchable standard tape measure attached to a spring balance exerting a force of 750 gm
- The tape must be kept horizontal
- Record the value on page 12 of the Adult Questionnaire

5.5.3 Weight

- The subject is measured in minimal/no clothing. The subject must be barefoot with arms hanging freely at the side
- Take care to ensure that the scale is ‘zeroed’ before taking any weight
- Weighing scales should be calibrated prior to each clinic using standard weights. Maintain a registry of these calibrations.
- Record the value on page 12 of the Adult Questionnaire (AQ)

5.5.4 Height (refer Figure 1a and 1b)

- Measure against a convenient, flat wall at the clinic site
- The subject must be barefoot with arms hanging freely at the side
- The heels of the feet must be together with the medial (inner) borders of the feet at an angle of 60 degrees
- The shoulder blades, buttocks and heels must be in contact with the measuring wall
- The head is held in the Frankfort plane (represented by a line between the margin of the orbit of the eye and the tragion)
- Height is recorded to the nearest 0.1 cm after the subject inhales fully and maintains the erect position without altering the load on the heels
- In this position, make a mark on the wall and record with a measuring tape. Enter the value on page 12 of the AQ.
Length and stature are measured with the head in the Frankfort horizontal plane. This plane is represented by a line between the lowest point on the margin of the orbit (the bony socket of the eye) and the tragion (the notch above the tragus, the cartilaginous projection just anterior to the external opening of the ear).

5.5.5 Mid upper arm circumference (refer Figure 2a and 2b)

- Record at the mid-point of the right arm with the subject standing erect, arms hanging freely at the side and right elbow flexed 90 degrees
- Ensure that the subject's right palm is face down, with forearm held across the body, horizontally to the floor
- The mid-point of the arm is identified as the point between the lateral border of the acromion and the inferior border of the olecranon, with the elbow flexed to 90 degrees
- Record the circumference to the nearest 0.1 cm on page 12 of the Adult Questionnaire
Measurements should be made using a flexible, nonstretch tape made of fibreglass.
Prospective Urban and Rural study

Phepha Mvume Lomthathi nxaxheba/ Consent form

Igama lomthathi nxaxheba: ..
Tyikitya: ... Usuku: ..
Igama omntu owenze udlwano-ndlebe: ..

I have been informed about the purpose and the nature of the study. I understand that all information will be confidential. I understand that taking part in this study is voluntary. I can withdraw from participating in this study at anytime without giving any reasons and my doing so will have no negative repercussions. I also have the right to refuse answering questions when I feel uncomfortable.

Name of the participant: ..
Signature: .. Date: ..
Interviewer: ..
We are very grateful to you for your participation in this study. All information given by you will be held in strict confidence, and will be used for the purpose of this study only after removing any personal identifying information.

Adult Questionnaire

INSTRUCTIONS

Please answer EACH question by marking an X in ONE BOX on each line: (unless otherwise instructed)

X

OR

By writing number(s) in the spaces provided:

1 8

OR

By specifying the answer on the line(s) provided

March, 2010
Adult Questionnaire

8. Occupation

Group 1: Legislators, senior officials and managers
- Legislators and senior officials
- Corporate managers
- General managers
- Businessman

Group 2: Professionals
- Physical, mathematical and engineering science professionals
- Life science and health professionals
- Teaching professionals
- Other professionals

Group 3: Technicians and associate professionals
- Physical, mathematical and engineering science associate professionals/technicians
- Life science and health associate professionals/technicians
- Teaching associate professionals/technicians
- Other associate professionals/technicians

Group 4: Clerks
- Clerks
- Customer service clerks

Group 5: Service workers and shop and market sales workers
- Personal and protective services workers
- Models, salespersons and demonstrators

Group 6: Skilled agricultural and fishery workers
- Market-oriented skilled agricultural and fishery workers
- Subsistence agricultural and fishery workers

Group 7: Craft and related trade workers
- Extraction and building trade workers
- Metal, machinery and related trades workers
- Precision, handicraft, printing and related trades workers
- Other craft and related trades workers

Group 8: Plant and machine operators and assemblers
- Stationary plant and related operators
- Machine operators and assemblers
- Drivers and mobile plant operators

Group 9: Elementary occupations
- Sales and services elementary occupations
- Agricultural, fishery and related labourers
- Labourers in mining, construction, manufacturing and transport

Group 10: Armed forces
- Armed forces

Group 11: Homemaker
- Housewife/Househusband
1. Name: ____________________________
 Given name ____________ Surname ____________

2. National identity # or equivalent: ____________________________
 N/A □

3. DOB: [year] □ [month] □ [day] □
 OR Age □ yrs

4. Sex: □ Female □ Male

5. Marital status: (check one only)
 □ Never married □ Currently married □ Common law/Living with partner
 □ Widowed □ Separated □ Divorced

6. What level of formal education have you completed? (check highest level only):
 □ None □ Primary □ Secondary/highschool/higher secondary
 □ Trade School □ College/University □ Unknown

7. Please indicate which group best describes your main occupation.
 (Please refer to facing page for definitions of groups and instruction manual for detailed definitions)
 □ Group 1 □ Group 2 □ Group 3 □ Group 4
 □ Group 5 □ Group 6 □ Group 7 □ Group 8
 □ Group 9 □ Group 10 □ Group 11

a) What is your main source of income?

If occupation is group 11 (homemaker) go to question 10
8. Are you currently employed?
☐ No → answer 8a - 8d ☑ Yes → Go to #9

Are you not working due to (check one only)

a) Retirement/ Old age ☐

b) Illness ☐

c) Unemployed ☐

d) Housewife ☐

9. Current Habits

a) Are you currently smoking tobacco products regularly (at least once/day) for the last 6 months? (Smoked tobacco = Cigarettes, Beedies, Cigars)

☐ No ☐ Yes

b) Are you currently chewing tobacco regularly (at least once/day) for the last 6 months? (Chewing tobacco also includes tobacco added to pan)

☐ No ☐ Yes

c) Are you currently consuming one drink of alcohol (at least once/month) for the last 6 months?

☐ No ☐ Yes

10. Are you taking medications regularly to lower your blood pressure?

☐ No ☐ Yes

11. Are you taking medications regularly to lower your cholesterol?

☐ No ☐ Yes

12. Are you taking aspirin regularly to thin your blood?

☐ No ☐ Yes

13. Are you taking medications regularly for diabetes?

☐ No ☐ Yes

14. List all the medications you are currently consuming:

i) ___________________________ (Code) ___________________________ (Code)

ii) ___________________________ (Code) ___________________________ (Code)

vi) ___________________________ (Code) ___________________________ (Code)

vii) ___________________________ (Code) ___________________________ (Code)

x) ___________________________ (Code) ___________________________ (Code)
15. Do you have hypertension/high blood pressure? □ No □ Yes

16. Do you have diabetes? □ No □ Yes
 a) If Yes, was it diagnosed in the last year □ No □ Yes → Complete Diabetes Report, CRF 85, only for New diagnoses

17. Did any of the following events/new diagnoses occur since the last visit?

 - a) MI/Heart Attack □ □ → Complete MI Report, CRF 50
 - b) Stroke □ □ → Complete Stroke Report, CRF 53
 - c) Angina □ □ → Complete Hospitalization Report, CRF 80
 - d) Heart Failure □ □ → Complete Heart Failure Report, CRF 56
 - e) Other Heart Disease □ □ →

 - f) Cancer □ □ → Complete Cancer Report, CRF 68
 - g) TB □ □ → Complete TB Report, CRF 59
 - h) HIV/AIDS □ □ Not Answered → Complete HIV/AIDS Report, CRF 62, only for New diagnoses
 - i) Malaria □ □ → Complete Malaria Report, CRF 65
 - j) COPD □ □ → Complete COPD Report, CRF 77, only for New diagnoses
 - k) Asthma □ □ → Complete Asthma Report, CRF 74, only for New diagnoses
 - l) Pneumonia □ □ → Complete Pneumonia Report, CRF 71
 - m) Other Lung Disease □ □ →

 Please Specify
18. During the past 12 months, have you had any injuries that were serious enough to limit your normal activities? (check all that apply)

☐ No → Go to #19 ☐ Yes → answer 18a – 18s

If yes, please provide details:

Cause of injury

a) Motor vehicle accident (as a passenger)
 ☐ No ☐ Yes → Location Type

b) Motor vehicle accident (as a pedestrian)
 ☐ No ☐ Yes → Location Type

c) Struck by an object
 ☐ No ☐ Yes → Location Type

d) Explosion
 ☐ No ☐ Yes → Location Type

e) Natural/environmental factors (gales/cyclones/lightning, etc.)
 ☐ No ☐ Yes → Location Type

f) Suffocation
 ☐ No ☐ Yes → Location Type

g) Poisoning
 ☐ No ☐ Yes → Location Type

h) Snake/scorpion bite
 ☐ No ☐ Yes → Location Type

i) Fall
 ☐ No ☐ Yes → Location Type

j) Fire/flames, resultant fumes
 ☐ No ☐ Yes → Location Type

k) Physical assault (gun, kidnapping, etc.)/violent crime
 ☐ No ☐ Yes → Location Type

l) Domestic violence (beaten by a family member)
 ☐ No ☐ Yes → Location Type

m) Drowning/submersion
 ☐ No ☐ Yes → Location Type

n) Hot or corrosive liquids/floods/substances
 ☐ No ☐ Yes → Location Type

o) Crush injuries (boulders, building materials, etc.)
 ☐ No ☐ Yes → Location Type

p) Accident caused by machinery
 ☐ No ☐ Yes → Location Type

q) Attempted suicide
 ☐ No ☐ Yes → Location Type

r) Armed conflict
 ☐ No ☐ Yes → Location Type

s) Other (specify) __________________________
 ☐ No ☐ Yes → Location Type

Please refer to facing page for Location and Type Codes

Absence from work or usual activities (Days)
19. Have you been hospitalized for any other reason aside from the events/diagnoses listed in Q17 and 18?

No ☐ Yes ☐ Complete Hospitalization Report CRF 10

20. Have you ever fractured a bone?

☐ No → go to #21 ☐ Yes → answer a, b and c

a) Number of fractures ☐

b) Years since last fracture ☐

(ys)

c) Bone(s) broken in the most recent fracture (if more than 3, list most severe sites)

Please refer to facing page for fracture locations

If other, specify

For Women Only (Questions 21 - 24)

21. Are you currently pregnant?

☐ No ☐ Yes → Go to #22

22. Do you still have periods?

☐ No → answer 22a ☐ Yes → Go to #23

a) How many years since you stopped menstruating?

☐ years

23. Have you ever used an oral/injectable contraceptive?

☐ No ☐ Yes

24. a) How many live children have you given birth to?

☐ Boys ☐ Girls

b) Did you breastfeed any of your children?

☐ No ☐ Yes
PURE Adult Questionnaire Page 6

Subject ID
Centre # Community# Household # Subject # Subject Initials F M L

Tobacco
25. Which best describes your history of tobacco use?
 a) Formerly used tobacco products Currently use tobacco products Never used tobacco products Go to #26
 b) At what age did you start? yrs
 c) Have you ever regularly used any of the following tobacco products? (check all that apply)

<table>
<thead>
<tr>
<th>Average amount/day</th>
<th>Duration (years)</th>
<th>When Stopped (years ago)</th>
<th>If less than 1 yr (months ago)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Cigarettes (all kinds)</td>
<td>number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ii) Beedies</td>
<td>number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iii) Cigars</td>
<td>number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iv) Pipes</td>
<td>number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(v) Sheesha/water pipe Hookah</td>
<td># of times</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(vi) Chewing tobacco</td>
<td># of times</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(vii) Snuff</td>
<td># of times</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x) Other Specify</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Question 26 to be answered by non-smokers and former smokers only

26. During the past 12 months, have you been regularly (at least once per week) exposed to other people’s tobacco smoke?
 (“Exposed” is defined as a minimum of 5 consecutive minutes, during which you inhale other people’s smoke.)
 [] No Go to #27 [] Yes Please answer questions 26a

 a) Over the past 12 months, what has been your typical exposure to other peoples smoke?
 (“Exposed” is defined as a minimum of 5 consecutive minutes, during which you inhale other peoples smoke)
 Select ONE only
 [] 1-2 times/week [] 3-6 times/week [] at least once a day [] 2-3 times/day [] 4 or more times/day
27. Are you a member of any of the following:
(i) Self-help group, Co-operative, Social club, Sports club, □ No □ Yes
(ii) Religious Group (e.g. church group, etc.) □ No □ Yes
(iii) Other □ Specify

28. Please answer the following: (choose only one option for each)

(i) People are generally honest and want to help others. □ Strongly Disagree □ Somewhat Disagree □ Somewhat Agree □ Strongly Agree
(ii) If I do nice things for someone, I can anticipate that they will respect me and treat me just as well as I treat them. □

29. a) The television, radio, newspaper or magazine advertisements help me decide to buy the type of:
(choose only one option or each) □
(i) Cooking oil
(ii) Flour
(iii) Rice/ Maize meal

b) The television, radio, newspaper or magazine advertisements influence whether I buy: (choose only one option for each) □
(i) Soft drinks
(ii) Snacks
(iii) Cigarettes
(iv) Alcohol

29. Not applicable

30. In a difficult situation, whose help can you count on from? (Please see facing page for definitions)

(i) Civic organizations: specify □ none □ little □ moderate/average □ a great deal
(ii) Religious organizations: specify □ none □ little □ moderate/average □ a great deal
31. Have you experienced any of the following events during the last 12 months?

<table>
<thead>
<tr>
<th>Event</th>
<th>No response</th>
<th>No</th>
<th>Yes</th>
<th>Please specify</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Loss of job</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ii) Retirement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iii) Loss of crop/business failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iv) Household break in</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(v) Marital separation/divorce</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(vi) Other major intra-family conflict</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(vii) Major personal injury or illness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(viii) Violence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ix) Armed conflict/war</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x) Death of a spouse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(xi) Death/major illness of another close family member</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(xii) Other major stress</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(xiii) Wedding of family member</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(xiv) New job</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(xv) Birth in the family</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(xvi) Separation from family</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(xvii) Unavailability of food/food insecurity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
32. Please answer the following: (Choose only one option for each)

For the following question, stress is defined as feeling irritable or filled with anxiety, or as having sleeping difficulties as a result of conditions at work or at home.

<table>
<thead>
<tr>
<th>No response</th>
<th>Never Experienced Stress</th>
<th>Some Period of Stress</th>
<th>Several Periods of Stress</th>
<th>Permanent Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) How often have you felt stress at work in the last 12 months?
(Mark here if not applicable: i.e. no longer working □)

b) How often have you felt stress at home in the last 12 months?

33. What level of financial stress have you felt in the last 12 months?

☐ No response ☐ Little/none ☐ Moderate ☐ High/severe

34. During the past twelve months, was there ever a time when you felt sad, blue, or depressed for two weeks or more in a row?

☐ No ☐ Yes → If yes, during those times, did you:

a) Lose interest in most things like hobbies, work or activities that usually give you pleasure?

b) Feel tired or low on energy?

c) Gain or lose weight?

d) Have more trouble falling asleep than you usually do?

e) Have more trouble concentrating than usual?

f) Think a lot about death (either your own, someone else's, or death in general)

g) Feel down on yourself, no good or worthless?
35. **Please answer the following:** (Choose only one option for each)

<table>
<thead>
<tr>
<th></th>
<th>Strongly Disagree</th>
<th>Somewhat Disagree</th>
<th>Somewhat Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) I can do most of my regular shopping (food, household necessities, etc.) at stores within easy walking distance (less than 15 minutes) of my home.</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>b) Walking or bicycling in my neighbourhood is difficult because of the speed and/or amount of traffic.</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>c) My neighbourhood is generally free from pollution (litter, air pollution and noise pollution).</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>d) My neighbourhood streets are well lit at night.</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>e) I can see other people when I am walking in my neighbourhood.</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>f) I can speak to other people when I am walking in my neighbourhood.</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>g) There is a high crime rate in my neighbourhood.</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>h) There is a problem with unattended dogs in my neighbourhood.</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>
36. Please answer the following: (Please check all that apply)

i) Has your household been a victim of the following crime(s) in the last 12 months?

<table>
<thead>
<tr>
<th>Crime Description</th>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armed robbery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Violent attacks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Murder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle hijacking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>House breaking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rape</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women abuse eg. (beat, swear-words, sexual)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child abuse eg. (burn, swear-words, rejection)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child sexual abuse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other, please specify</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ii) Do you think that crime in your area has increased in the past 5 years? | No | Yes

if yes, which of the following crime(s)?

<table>
<thead>
<tr>
<th>Crime Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armed robbery</td>
</tr>
<tr>
<td>Violent attacks</td>
</tr>
<tr>
<td>Murder</td>
</tr>
<tr>
<td>Vehicle hijacking</td>
</tr>
<tr>
<td>House breaking</td>
</tr>
<tr>
<td>Theft</td>
</tr>
<tr>
<td>Rape</td>
</tr>
<tr>
<td>Women abuse</td>
</tr>
<tr>
<td>Child abuse</td>
</tr>
<tr>
<td>Child sexual abuse</td>
</tr>
</tbody>
</table>
37. Questions on HIV:

(i) Do you know people who have HIV/AIDS? □ No □ Yes

 if yes, which of these people: (please mark all that apply)
 □ Your children
 □ Your grandchildren
 □ Your spouse
 □ Your family members
 □ Your friends
 □ People in the community

(ii) What would you consider the mean age of the people who are ill have died of HIV/AIDS? Tick only one block.
 □ Younger than 10 years □ Between 11-20 years □ Between 21-30 years
 □ Between 31-40 years □ Between 41-50 years □ Over 50 years

(iii) If someone in your household is HIV positive, who is the primary caregiver? Tick only one block.
 □ Spouse
 □ Parents
 □ Family member
 □ Child/children
 □ Friends
 □ Volunteer

38. Do you care for any orphans in your family? □ No □ Yes
Attitudes on HIV/AIDS

39. Mark each answer with a X

<table>
<thead>
<tr>
<th>J.1</th>
<th>Imagine that a hospital has only one free bed left, and two people with pneumonia need it. The one person is infected with HIV; the other is not infected with HIV. Who should get the bed?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 The HIV positive person</td>
</tr>
<tr>
<td></td>
<td>2 The HIV negative person</td>
</tr>
<tr>
<td></td>
<td>3 It depends / other</td>
</tr>
<tr>
<td></td>
<td>9 Don't know</td>
</tr>
</tbody>
</table>

Please respond to the following questions by answering “Yes” or “No”.

If you are not sure, chose the “Probably Yes” or “Probably No” response.

If you are quite sure, Choose the “Definitely Yes” or “Definitely No” response.

<table>
<thead>
<tr>
<th>J.2</th>
<th>Do you think the government should provide free healthcare for people who need it?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Definitely yes 1</td>
</tr>
<tr>
<td></td>
<td>Probably yes 2</td>
</tr>
<tr>
<td></td>
<td>Probably no 3</td>
</tr>
<tr>
<td></td>
<td>Definitely no 4</td>
</tr>
<tr>
<td></td>
<td>Don't Know 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J.3</th>
<th>Do you think the government should provide free healthcare for people with AIDS?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Definitely yes 1</td>
</tr>
<tr>
<td></td>
<td>Probably yes 2</td>
</tr>
<tr>
<td></td>
<td>Probably no 3</td>
</tr>
<tr>
<td></td>
<td>Definitely no 4</td>
</tr>
<tr>
<td></td>
<td>Don't Know 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J.4</th>
<th>Would it be a good idea for the government to give job training to unemployed young people?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Definitely yes 1</td>
</tr>
<tr>
<td></td>
<td>Probably yes 2</td>
</tr>
<tr>
<td></td>
<td>Probably no 3</td>
</tr>
<tr>
<td></td>
<td>Definitely no 4</td>
</tr>
<tr>
<td></td>
<td>Don't Know 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J.5</th>
<th>Should youth who are infected with HIV get this job training?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Definitely yes 1</td>
</tr>
<tr>
<td></td>
<td>Probably yes 2</td>
</tr>
<tr>
<td></td>
<td>Probably no 3</td>
</tr>
<tr>
<td></td>
<td>Definitely no 4</td>
</tr>
<tr>
<td></td>
<td>Don't Know 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J.6</th>
<th>Should all people who are too sick to work get a welfare grant from the government?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Definitely yes 1</td>
</tr>
<tr>
<td></td>
<td>Probably yes 2</td>
</tr>
<tr>
<td></td>
<td>Probably no 3</td>
</tr>
<tr>
<td></td>
<td>Definitely no 4</td>
</tr>
<tr>
<td></td>
<td>Don't Know 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J.7</th>
<th>Should someone with AIDS who is too sick to work get a welfare grant from the government?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Definitely yes 1</td>
</tr>
<tr>
<td></td>
<td>Probably yes 2</td>
</tr>
<tr>
<td></td>
<td>Probably no 3</td>
</tr>
<tr>
<td></td>
<td>Definitely no 4</td>
</tr>
<tr>
<td></td>
<td>Don't Know 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J.8</th>
<th>Should a woman who got AIDS from sleeping around with many men get this welfare grant from the government?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Definitely yes 1</td>
</tr>
<tr>
<td></td>
<td>Probably yes 2</td>
</tr>
<tr>
<td></td>
<td>Probably no 3</td>
</tr>
<tr>
<td></td>
<td>Definitely no 4</td>
</tr>
<tr>
<td></td>
<td>Don't Know 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J.9</th>
<th>Would you be willing to look after a close family member with AIDS?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Definitely yes 1</td>
</tr>
<tr>
<td></td>
<td>Probably yes 2</td>
</tr>
<tr>
<td></td>
<td>Probably no 3</td>
</tr>
<tr>
<td></td>
<td>Definitely no 4</td>
</tr>
<tr>
<td></td>
<td>Don't Know 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J.10</th>
<th>Imagine that you find out that one of your friends is HIV infected. Would you still be friends with them?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Definitely yes 1</td>
</tr>
<tr>
<td></td>
<td>Probably yes 2</td>
</tr>
<tr>
<td></td>
<td>Probably no 3</td>
</tr>
<tr>
<td></td>
<td>Definitely no 4</td>
</tr>
<tr>
<td></td>
<td>Don't Know 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J.11</th>
<th>Would you drink from the same bottle of water as an HIV infected friend?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Definitely yes 1</td>
</tr>
<tr>
<td></td>
<td>Probably yes 2</td>
</tr>
<tr>
<td></td>
<td>Probably no 3</td>
</tr>
<tr>
<td></td>
<td>Definitely no 4</td>
</tr>
<tr>
<td></td>
<td>Don't Know 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J.12</th>
<th>If you knew that a shopkeeper had HIV/AIDS, would you buy fresh vegetables from him or her?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Definitely yes 1</td>
</tr>
<tr>
<td></td>
<td>Probably yes 2</td>
</tr>
<tr>
<td></td>
<td>Probably no 3</td>
</tr>
<tr>
<td></td>
<td>Definitely no 4</td>
</tr>
<tr>
<td></td>
<td>Don't Know 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J.13</th>
<th>Do you think it should be illegal for people with HIV/AIDS to put others at risk of infection through unprotected sex?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Definitely yes 1</td>
</tr>
<tr>
<td></td>
<td>Probably yes 2</td>
</tr>
<tr>
<td></td>
<td>Probably no 3</td>
</tr>
<tr>
<td></td>
<td>Definitely no 4</td>
</tr>
<tr>
<td></td>
<td>Don't Know 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J.14</th>
<th>Do you think people with HIV/AIDS should have to disclose their HIV status to the person they are going to have sex with even if they use a condom?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Definitely yes 1</td>
</tr>
<tr>
<td></td>
<td>Probably yes 2</td>
</tr>
<tr>
<td></td>
<td>Probably no 3</td>
</tr>
<tr>
<td></td>
<td>Definitely no 4</td>
</tr>
<tr>
<td></td>
<td>Don't Know 9</td>
</tr>
</tbody>
</table>

179
<table>
<thead>
<tr>
<th>J.15</th>
<th>Imagine you meet someone you really like and he/she tells you that he/she is HIV positive, would you still go out on a “date” with him/her?</th>
</tr>
</thead>
<tbody>
<tr>
<td>J.16</td>
<td>If you loved an HIV positive person, would you have sex with them using a condom?</td>
</tr>
<tr>
<td>J.17</td>
<td>Would you prefer to know who has HIV/AIDS in your community so that you can be careful not to get infected by them?</td>
</tr>
<tr>
<td>J.18</td>
<td>Do you worry that HIV is much easier to catch than we are told?</td>
</tr>
<tr>
<td>J.19</td>
<td>Would you rather not touch someone with HIV/AIDS because you are scared of infection?</td>
</tr>
<tr>
<td>J.20</td>
<td>Do you think the names of people with HIV/AIDS should be made public?</td>
</tr>
<tr>
<td>J.21</td>
<td>Do you think HIV/AIDS is a punishment for sleeping around?</td>
</tr>
<tr>
<td>J.22</td>
<td>Do you think that a school pupil with HIV puts other pupils in their class at risk of infection?</td>
</tr>
<tr>
<td>J.23</td>
<td>Do you think a school pupil with HIV should be allowed to attend school?</td>
</tr>
<tr>
<td>J.24</td>
<td>Do you think that many people who get HIV infected through sex have only themselves to blame?</td>
</tr>
<tr>
<td>J.25</td>
<td>Do you think that some people with HIV/AIDS want to infect other people with the virus?</td>
</tr>
<tr>
<td>J.26</td>
<td>When you hear the word “AIDS” what community or group of people first comes to mind</td>
</tr>
</tbody>
</table>

Tick only one

- **J.27** Between a rich and a poor person: Who is more likely to get HIV/AIDS?
 1. A rich person
 2. A poor person
 3. Neither / the same
 9. Don’t know

- **J.28** Between a black and a white person: Who is more likely to get HIV/AIDS?
 1. A black person
 2. A white person
 3. Neither / the same / both
 9. Don’t know

- **J.29** Between a man and a woman: Who is more likely to get HIV/AIDS?
 1. A man
 2. A woman
 3. Neither / the same / both
 9. Don’t know
<table>
<thead>
<tr>
<th>Question</th>
<th>Options</th>
</tr>
</thead>
</table>
| J.30 I am not going to ask you to tell me your result but: Have you ever had an HIV test? | 1 Yes
2 No
8 Refuse
9 Don't know |
| J.31 Have you heard of any HIV positive people in this area? | 1 Yes
2 No
9 Don't know |
| J.32 Do you think people with HIV/AIDS often get treated unfairly or badly by others? | 1 Yes
2 No
9 Don't know |
| J.33 Have you met any HIV positive people yourself? | 1 Yes
2 No
9 Don't know |
| J.34 If yes: What is your relationship with this person or people? | 1 Partner (Husband/wife, boyfriend, girlfriend)
2 Sister/brother
3 Parent
4 Other relative
5 Friend
6 Neighbour
7 Classmate
8 Colleague at work/
9 Other / none of the above
10 Refuse to answer |
| J.35 If you knew you were infected with the HIV virus, would you keep it a secret from most people? | 1 Yes
2 No
9 Don't know |
| J.36 If you told someone, who would you tell? | 1 Partner (Husband/wife, boyfriend, girlfriend)
2 Sister/brother
3 Parent
4 Other relative
5 Friend
6 Neighbour
7 Priest / someone in my church
8 School teacher
10 Anyone
11 Other
99 Don't know |
| J.37 In your opinion, how at risk are you of HIV infection? | 1 No risk
2 Very small risk
3 Some risk
4 Great risk
9 Don't know |
| J.38 | Imagine you had unprotected sex yesterday. Would you be more afraid of pregnancy or of infection with HIV?
Interviewer: do not read list
Tick only one |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>More afraid of pregnancy</td>
</tr>
<tr>
<td>2</td>
<td>More afraid of HIV infection</td>
</tr>
<tr>
<td>3</td>
<td>Afraid of both pregnancy and infection</td>
</tr>
<tr>
<td>4</td>
<td>Afraid of neither</td>
</tr>
<tr>
<td>9</td>
<td>Don't know</td>
</tr>
</tbody>
</table>
| J.39 | Who do you think is more likely to get HIV: someone with one sexual partner who does not use condoms or someone with many partners who always uses condoms?
Interviewer: Tick only one |
| 1 | A person with one partner who does not use condoms. |
| 2 | A person with many partners who always uses condoms. |
| 3 | They are at equal risk |
| 9 | Don't Know |
40. Details on all members (enumerated at baseline) in the household:

Member # Name

Is this member alive? No → Complete details below Yes → Go to Next Member #

If No, indicate cause of death:

If Cause of death = 4, please indicate site

If Cause of death = 7, please specify,

Member # Name

Is this member alive? No → Complete details below Yes → Go to Next Member #

If No, indicate cause of death:

If Cause of death = 4, please indicate site

If Cause of death = 7, please specify,

Member # Name

Is this member alive? No → Complete details below Yes → Go to Next Member #

If No, indicate cause of death:

If Cause of death = 4, please indicate site

If Cause of death = 7, please specify,

183
40. Details on all members (enumerated at baseline) in the household:

Member # Name

Is this member a participant? □ No □ Yes
Complete details below

Is this member alive? □ No □ Yes
Complete details below

If No, indicate cause of death:

If Cause of death = 4, please indicate site

If Cause of death = 7, please specify:

Name of interviewer: ________________________
(Please print) Last Name First Initial

Date □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

Page 18
Addendum E: Physical activity questionnaire

PURE/South Africa

We are very grateful to you for your participation in this study. All information given by you will be held in strict confidence, and will be used for the purpose of this study only after removing any personal identifying information.

Physical Activity Questionnaire

INSTRUCTIONS

Please answer EACH question by marking an X in ONE BOX on each line:
(unless otherwise instructed)

X

OR

By writing number(s) in the spaces provided:

1 8

OR

By specifying the answer on the line(s) provided

July, 2007
1. During your working life, what has been or what was your main occupation?

Part 1: Job-related physical activity
(paid or unpaid jobs outside of the home) Do not include house or yard work

2. Do you currently have a job or do any unpaid work outside your home?
 □ No → If no, Go to PART 2 □ Yes → If yes, Go to question #2

3. During the last 7 days, on how many days did you do heavy physical activities for at least 10 min (eg. heavy lifting, digging, heavy construction) as part of your work?
 □ Days per week → Usual time spent on one of those days doing heavy physical activities at work
 □ No vigorous activity at work

4. During the last 7 days, on how many days did you do moderate physical activities for at least 10 min (eg. carrying light loads) as part of your work? Please do not include walking
 □ Days per week → Usual time spent on one of those days doing moderate physical activities at work
 □ No moderate activity at work

5. During the last 7 days, on how many days did you walk for at least 10 min at a time as part of your work? Please do not count any walking you did to travel to or from work
 □ Days per week → Usual time spent on one of those days walking at work
 □ No walking at work
Part 2: Transportation related physical activity

6. During the last 7 days, on how many days did you travel in a motor vehicle to places like work, stores, movies, and so on?

☐ Days per week
Usual time spent on one of those days traveling in a motor vehicle:
☐ hrs. ☐ min.

☐ No traveling in a motor vehicle

7. During the last 7 days, on how many days did you bicycle for at least 10 minutes at a time to go from place to place?

☐ Days per week
Usual time spent on one of those days bicycling from place to place:
☐ hrs. ☐ min.

☐ No bicycling from place to place

8. During the last 7 days, on how many days did you walk for at least 10 min at a time to go from place to place?

☐ Days per week
Usual time spent on one of those days walking from place to place:
☐ hrs. ☐ min.

☐ No walking from place to place
Part 3: Housework, house maintenance, and caring for family

9. During the last 7 days, on how many days did you do vigorous physical activities for at least 10 min (e.g. heavy lifting, chopping wood, shoveling snow or digging in the garden) in the garden or yard?

☐ Days per week
Usual time spent on one of those days doing vigorous physical activities in the garden or yard
☐ hrs. ☐ min.

☐ No vigorous activity

10. During the last 7 days, on how many days did you do moderate activities (e.g. carrying light loads, sweeping, washing windows, and raking in the yard) in the garden or yard?

☐ Days per week
Usual time spent on one of those days doing moderate physical activities in the garden or yard
☐ hrs. ☐ min.

☐ No moderate activity

11. During the last 7 days, on how many days did you do moderate physical activities for at least 10 min (e.g. carrying light loads, washing windows, scrubbing floors and sweeping) inside your home?

☐ Days per week
Usual time spent on one of those days doing moderate physical activities inside the home
☐ hrs. ☐ min.

☐ No moderate activity inside the home
Part 4: Recreation, sport, and leisure-time physical activity

12. Not counting any walking you have already mentioned, during the last 7 days, on how many days did you walk for at least 10 minutes during in your leisure time?

☐ Days per week Usual time spent on one of those days walking in leisure time
☐ No walking in leisure time

13. During the last 7 days, on how many days did you do vigorous physical activities (eg. aerobics, running, fast bicycling, or fast swimming) in your leisure time?

☐ Days per week Usual time spent on one of those days doing vigorous physical activities in leisure time
☐ No vigorous activity in leisure time

14. During the last 7 days, on how many days did you do moderate physical activities for at least 10 min (eg. bicycling at a regular pace, swimming at a regular pace) in your leisure time?

☐ Days per week Usual time spent on one of those days doing moderate physical activities in leisure time
☐ No moderate activity in leisure time

Part 5: Time spent sitting

15. During the last 7 days, how much time did you usually spend sitting on a weekday?
 hrs. min.

16. During the last 7 days, how much time did you usually spend sitting on a weekend day?
 hrs. min.

17. Name of Interviewer:
 (please print)
 First Initial Last Name
 Interviewer code:
Addendum F: Quantitative food frequency questionnaire

PURE/South Africa 2010 Quantitative Food Frequency Questionnaire

Subject Code

Name of fieldworker: __

Subject ID

Centre # Community # Household # Subject # Subject Initials

F M L

Today’s date: 2 0 1 0 year month day Day of the week: __________________________

1. Name of the PARTICIPANT: __

2. Not applicable in South Africa

3. National identity # or equivalent __________________________ N/A

4. DOB: _______ _______ _______ AND Age _______ years

5. Sex: Female Male

Please think carefully about the food and drink you have consumed during the PAST MONTH (four weeks). We have divided the foods into different groups for example all the porridges and cereals together. I will go through a list of food groups and drinks with you and I would like you to tell me:
• Which foods you eat in each of the different food groups
• How the food is prepared
• How much of the food you eat at a time
• How many times a day you eat it and if you do not eat it everyday, how many times a week or a month you eat it.

To help you to describe the amount of a food you eat, I will show you pictures of different amounts of the food as well as other food models, containers, etc.

There are no right or wrong answers.

Everything you tell me is confidential. Only your subject number appears on the form.

Is there anything you want to ask now?

Are you willing to go on with the questions?
Before we start I would like to find out what type of margarine, oil and milk you **USUALLY** use in your home.

1. What type of **MARGARINE** do you **USUALLY** use in your home? Give brand name if possible
 - [] Tub/Soft margarine (brand name) ____________________________
 - [] Brick/Hard margarine (brand name) ____________________________
 - [] Do not use margarine in home

2. What type of **OIL** do you **USUALLY** use in the preparation of food in your home?
 - [] Sunflower oil (give brand name) ____________________________
 - [] Canola oil (give brand name) ____________________________
 - [] Olive oil (give brand name) ____________________________
 - [] Other (give brand name) ____________________________
 - [] Oil previously used ____________________________
 - [] Do not use OIL ever in the home

3. What type of **MILK** do you **USUALLY** use in your home? Mark only ONE
 - [] Full cream milk / Fresh cow’s milk / Box milk full cream
 - [] Low fat milk / 2% milk / Box low fat or 2% milk
 - [] Fat free milk / Skim milk / Box fat free or skim milk
 - [] Powder milk (eg Elite; give brand name) ____________________________
 - [] Do not use milk

4. What type of **CREAMER** do you **USUALLY** use in your home?
 - [] Cremora, Ellis Brown, Coffee Mate, Tea Mate etc
 - [] Cremora Lite
 - [] Do not use creamer
QUANTIFIED FOOD FREQUENCY QUESTIONNAIRE 2010

INSTRUCTIONS: Circle the subject’s answer. Fill in the amount and times eaten in the appropriate columns.

I shall now ask you about the type and the amount of food you have been eating in the **LAST MONTH**. Please tell if you eat the food, how much you eat and how often you eat it. We shall start with maize meal porridge.

PORRIDGE AND BREAKFAST CEREALS

<table>
<thead>
<tr>
<th>FOOD</th>
<th>DESCRIPTION</th>
<th>AMOUNT</th>
<th>TIMES EATEN</th>
<th>CODE</th>
<th>AMOUNT / WEEK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Per day</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Per week</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Per month</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Seldom/Never</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maize-meal porridge</td>
<td>Stiff (pap)</td>
<td></td>
<td></td>
<td>4401</td>
<td></td>
</tr>
<tr>
<td>Maize-meal porridge</td>
<td>Soft (sliappap)</td>
<td></td>
<td></td>
<td>4400</td>
<td></td>
</tr>
<tr>
<td>Maize-meal porridge</td>
<td>Crumbly (phutu)</td>
<td></td>
<td></td>
<td>4402</td>
<td></td>
</tr>
<tr>
<td>Ting</td>
<td>Maize meal</td>
<td></td>
<td></td>
<td>4429</td>
<td></td>
</tr>
<tr>
<td>Ting</td>
<td>Mabelia</td>
<td></td>
<td></td>
<td>4427</td>
<td></td>
</tr>
<tr>
<td>Ting</td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mabelia</td>
<td>Stiff</td>
<td></td>
<td></td>
<td>3437</td>
<td></td>
</tr>
<tr>
<td>Mabelia</td>
<td>Soft</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morvite</td>
<td>Soft</td>
<td></td>
<td></td>
<td>4404</td>
<td></td>
</tr>
<tr>
<td>Oats</td>
<td></td>
<td></td>
<td></td>
<td>3239</td>
<td></td>
</tr>
<tr>
<td>Tastee wheat</td>
<td>Soft</td>
<td></td>
<td></td>
<td>3240</td>
<td></td>
</tr>
<tr>
<td>Other cooked</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>porridge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breakfast cereals</td>
<td>All bran flakes</td>
<td></td>
<td></td>
<td>3242</td>
<td></td>
</tr>
<tr>
<td>Breakfast cereals</td>
<td>Corn flakes plain</td>
<td></td>
<td></td>
<td>3243</td>
<td></td>
</tr>
<tr>
<td>Breakfast cereals</td>
<td>Wheatlax</td>
<td></td>
<td></td>
<td>3244</td>
<td></td>
</tr>
<tr>
<td>Breakfast cereals</td>
<td>Rice crispies plain</td>
<td></td>
<td></td>
<td>3252</td>
<td></td>
</tr>
<tr>
<td>Breakfast cereals</td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Do you pour milk on your porridge or cereal?

<table>
<thead>
<tr>
<th>FOOD</th>
<th>DESCRIPTION</th>
<th>AMOUNT</th>
<th>TIMES EATEN</th>
<th>CODE</th>
<th>AMOUNT / WEEK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Per day</td>
<td>Per week</td>
<td>Per month</td>
</tr>
<tr>
<td>If yes, how much milk</td>
<td>Whole milk/full cream milk/ fresh cow's milk</td>
<td></td>
<td></td>
<td></td>
<td>2718</td>
</tr>
<tr>
<td></td>
<td>Maas/sour milk</td>
<td></td>
<td></td>
<td></td>
<td>2767</td>
</tr>
<tr>
<td></td>
<td>Low fat / 2% milk</td>
<td></td>
<td></td>
<td></td>
<td>2772</td>
</tr>
<tr>
<td></td>
<td>Fat free / skim milk</td>
<td></td>
<td></td>
<td></td>
<td>2775</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Do you put sugar on your porridge or cereal?

<table>
<thead>
<tr>
<th>FOOD</th>
<th>DESCRIPTION</th>
<th>AMOUNT</th>
<th>TIMES EATEN</th>
<th>CODE</th>
<th>AMOUNT / WEEK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Per day</td>
<td>Per week</td>
<td>Per month</td>
</tr>
<tr>
<td>If yes, how much sugar WHITE or BROWN</td>
<td>Cooked porridge</td>
<td></td>
<td></td>
<td></td>
<td>3989</td>
</tr>
<tr>
<td></td>
<td>Cereal</td>
<td></td>
<td></td>
<td></td>
<td>3989</td>
</tr>
<tr>
<td></td>
<td>Other porridge / cereal</td>
<td></td>
<td></td>
<td></td>
<td>3989</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHICKEN, MEAT, FISH

How many times do you eat meat (beef, mutton, pork, chicken, fish) per week?

<table>
<thead>
<tr>
<th>FOOD</th>
<th>DESCRIPTION</th>
<th>AMOUNT</th>
<th>TIMES EATEN</th>
<th>CODE</th>
<th>AMOUNT / WEEK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Per day</td>
<td>Per week</td>
<td>Per month</td>
</tr>
<tr>
<td>Chicken</td>
<td>Meat & skin, boiled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meat & skin, roasted/grilled/fried in chicken fat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meat ONLY, boiled (no skin)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meat ONLY, roasted (no skin)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>White meat only, cooked (NO Skin)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kentucky / Chicken Licken (Fried in batter/crumbs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nando's</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do you eat chicken skin?</td>
<td></td>
<td>Always</td>
<td>1</td>
<td>Sometimes</td>
<td>2</td>
</tr>
<tr>
<td>Chicken stew</td>
<td>With potato and onion WITH skin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>With tomato and onion WITH skin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>With vegetables WITH skin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>With tomato and onion NO skin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>With vegetables NO skin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicken BONE stew</td>
<td>With potato and onion and tomato</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicken feet</td>
<td>Nothing added</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stew with potato, onion and tomato</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicken head</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicken offal</td>
<td>Stew with tomato and onion and sunflower oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Liver, cooked</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOOD</td>
<td>DESCRIPTION</td>
<td>AMOUNT</td>
<td>TIMES EATEN</td>
<td>CODE</td>
<td>AMOUNT / WEEK</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------------------------</td>
<td>--------</td>
<td>-------------------</td>
<td>------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Per day</td>
<td>Per week</td>
<td>Per month</td>
</tr>
<tr>
<td>Samp</td>
<td>Bought</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Self ground</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samp and beans</td>
<td>Give ratio of samp:beans</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samp and</td>
<td>Give ratio of samp:peanuts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>peanuts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rice</td>
<td>White</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brown</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maize Rice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any fat added?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pasta</td>
<td>Macaroni, plain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spaghetti, plain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spaghetti, canned in tomato sauce</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Macaroni & cheese</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Milk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other specify</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pizza</td>
<td>Home made: Specify topping</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bought: Specify topping</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOOD</td>
<td>DESCRIPTION</td>
<td>AMOUNT</td>
<td>TIMES EATEN</td>
<td>CODE</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--------</td>
<td>-------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Per day</td>
<td>Per</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>week</td>
<td>month</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Seldom</td>
<td>Never</td>
</tr>
<tr>
<td>RED MEAT</td>
<td>How do you like your meat? With fat OR Fat trimmed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red meat</td>
<td>BEEF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRISKET, boiled/fried without added fat</td>
<td></td>
<td></td>
<td>4363</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHUCK, boiled/fried without added fat</td>
<td></td>
<td></td>
<td>2945</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRISKET, fried in added fat</td>
<td></td>
<td></td>
<td>4363</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type of fat:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHUCK, fried in added fat</td>
<td></td>
<td></td>
<td>2945</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type of fat:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beef, stewed with cabbage</td>
<td></td>
<td></td>
<td>3006</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beef, stewed with potato and onion and tomato</td>
<td></td>
<td></td>
<td>4417</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beef, stewed with vegetables</td>
<td></td>
<td></td>
<td>3020</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mince, nothing added</td>
<td></td>
<td></td>
<td>2921</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mince, tomato & onion added</td>
<td></td>
<td></td>
<td>2907</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beef BONE stew with potato and onion and oil</td>
<td></td>
<td></td>
<td>4419</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUTTON</td>
<td>Meat, with fat, cooked</td>
<td></td>
<td></td>
<td>2947</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mutton, no fat, cooked</td>
<td></td>
<td></td>
<td>3036</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mutton, chop, grilled</td>
<td></td>
<td></td>
<td>2927</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mutton, stewed with vegetables</td>
<td></td>
<td></td>
<td>2916</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BRISKET: more fat and cheaper
CHUCK: less fat than the brisket, but more expensive
<table>
<thead>
<tr>
<th>FOOD</th>
<th>DESCRIPTION</th>
<th>AMOUNT</th>
<th>TIMES EATEN</th>
<th>CODE</th>
<th>AMOUNT / WEEK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 columns to be completed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Per day</td>
<td>Per week</td>
<td>Per month</td>
<td>Seldom</td>
</tr>
<tr>
<td>Beef/mutton Offal</td>
<td>Offal, cooked</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stewed with vegetables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Liver, beef, fried/cooked</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Liver, sheep, fried/cooked</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kidney, beef, cooked</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kidney, sheep, cooked</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brain, sheep, cooked</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lung, beef, cooked</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lung, sheep, cooked</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>"Gemalides" (lung & fat)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heart, beef, cooked</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heart, sheep, cooked</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goat meat</td>
<td>Grilled/roasted/cooked</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stewed with vegetables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venison/Wild buck</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horse/Donkey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabbit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other type of meat</td>
<td>Specify</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What type of vegetables is usually put into meat stews?
<table>
<thead>
<tr>
<th>FOOD</th>
<th>DESCRIPTION</th>
<th>AMOUNT</th>
<th>TIMES EATEN</th>
<th>CODE</th>
<th>AMOUNT / WEEK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Per day</td>
<td>Per week</td>
<td>Per month</td>
</tr>
<tr>
<td>Wors / Sausage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patties</td>
<td>Beef, fried</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chicken, fried</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold meats AND Processed meats</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polony</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ham</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vienna</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frankfurter, beef & pork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frankfurter/Sausage, chicken</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russian/Salami</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canned meat</td>
<td>Bully beef, plain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bully beef with potato & onion & oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat pie BOUGHT Or HOMEMADE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steak and kidney</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sausage roll</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cornish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicken</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamburger</td>
<td>Bought</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biltong</td>
<td>Beef</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(with fat OR without fat)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dried wors Dried sausage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOOD</td>
<td>DESCRIPTION</td>
<td>AMOUNT</td>
<td>TIMES EATEN</td>
<td>CODE</td>
<td>AMOUNT / WEEK</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>--------</td>
<td>-------------</td>
<td>------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Per day</td>
<td>Per week</td>
<td>Per month</td>
<td>Seldom / Never</td>
</tr>
<tr>
<td>Dried beans</td>
<td>Baked beans in tomato sauce</td>
<td></td>
<td></td>
<td></td>
<td>3176</td>
</tr>
<tr>
<td></td>
<td>Bean salad / Sousbone</td>
<td></td>
<td></td>
<td></td>
<td>3174</td>
</tr>
<tr>
<td></td>
<td>Soup with dried beans, beef and vegetables</td>
<td></td>
<td></td>
<td></td>
<td>3145</td>
</tr>
<tr>
<td></td>
<td>Sugar beans, cooked</td>
<td></td>
<td></td>
<td></td>
<td>3205</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lentils</td>
<td>Whole, cooked</td>
<td></td>
<td></td>
<td></td>
<td>3203</td>
</tr>
<tr>
<td></td>
<td>Lentil soup with beef and vegetables</td>
<td></td>
<td></td>
<td></td>
<td>3153</td>
</tr>
<tr>
<td>Soya products eg. Imana, Knorr, Jileleke, Toppers</td>
<td>Cooked</td>
<td></td>
<td></td>
<td></td>
<td>3196</td>
</tr>
<tr>
<td></td>
<td>Soup/Gravy</td>
<td></td>
<td></td>
<td></td>
<td>4431</td>
</tr>
<tr>
<td></td>
<td>Stewed with extra potato, onion and tomato</td>
<td></td>
<td></td>
<td></td>
<td>4430</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOOD</td>
<td>DESCRIPTION</td>
<td>AMOUNT</td>
<td>TIMES EATEN</td>
<td>CODE</td>
<td>AMOUNT/WEEK</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>--------</td>
<td>------------------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Per day</td>
<td>Per week</td>
<td>Per month</td>
</tr>
<tr>
<td>Pilchards in</td>
<td>Whole</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tomato sauce</td>
<td>Mashed with fried onion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>or chilli or</td>
<td>With tomato and onion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>brine</td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish</td>
<td>Hake, fried with batter/crumbs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hake, fried in oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hake, steamed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moddervis / Yellow fish fried in oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moddervis / Yellow fish baked with onion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(NO oil added)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other canned</td>
<td>Tuna in oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fish</td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish cakes</td>
<td>Bought; Fried</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Home made with potato</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish fingers</td>
<td>Bought</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs</td>
<td>Boiled/poached</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scrambled (full cream milk & oil)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scrambled (NO milk, ONLY oil added)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scrambled (NO oil, ONLY full cream milk)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fried in oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fried in brick margarine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOOD</td>
<td>DESCRIPTION</td>
<td>AMOUNT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------------------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CODE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMOUNT / WEEK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Per day</td>
<td>Per week</td>
<td>Per month</td>
<td>Seldom</td>
</tr>
<tr>
<td>Cabbage</td>
<td>How do you cook cabbage?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiled, nothing added</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiled with potato and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>onion and oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiled with potato and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>onion and brick margarine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fried in oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fried in brick margarine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiled with potato, onion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and tomato and oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw with nothing added</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spinach or moro or beetroot leaves or other green leafy</td>
<td>How do you cook spinach?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiled, nothing added</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiled with oil added</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiled with brick</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>margarine added</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiled with tub</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>margarine added</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiled with potato, onion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and tomato and oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomato and onion gravy</td>
<td>With oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without fat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canned</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thickened with packet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>soup powder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOOD: Pumpkin (yellow) Butternut Hubbard squash Table Queen Etc</td>
<td>DESCRIPTION</td>
<td>AMOUNT</td>
<td>TIMES EATEN</td>
<td>CODE</td>
<td>AMOUNT / WEEK</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Boiled, nothing added</td>
<td></td>
<td></td>
<td>4164</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boiled with sugar only (NO fat)</td>
<td></td>
<td></td>
<td>3728</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boiled with brick margarine & sugar</td>
<td></td>
<td></td>
<td>3893</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boiled with tub margarine and sugar</td>
<td></td>
<td></td>
<td>4433</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boiled with oil and sugar</td>
<td></td>
<td></td>
<td>4428</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carrots</td>
<td>Boiled, nothing added</td>
<td></td>
<td></td>
<td>3757</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boiled with oil added</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boiled with brick margarine added</td>
<td></td>
<td></td>
<td>3816</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boiled with tub margarine added</td>
<td></td>
<td></td>
<td>3817</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boiled with sugar only</td>
<td></td>
<td></td>
<td>3818</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boiled with oil and sugar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boiled with brick margarine and sugar</td>
<td></td>
<td></td>
<td>3819</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boiled with tub margarine and sugar</td>
<td></td>
<td></td>
<td>3820</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boiled with potato, onion and oil</td>
<td></td>
<td></td>
<td>3824</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boiled with potato, onion and brick margarine</td>
<td></td>
<td></td>
<td>3822</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boiled with potato, onion and tub margarine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chakalaka</td>
<td></td>
<td></td>
<td>4412</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Raw, nothing added</td>
<td></td>
<td></td>
<td>3709</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mealies/Sweet corn</td>
<td>On cob – fat added</td>
<td></td>
<td></td>
<td>3725</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>On cob – no fat added</td>
<td></td>
<td></td>
<td>3726</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Creamed sweet corn / canned</td>
<td></td>
<td></td>
<td>3726</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Whole kernel/canned</td>
<td></td>
<td></td>
<td>3642</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Whole kernel, frozen, boiled</td>
<td></td>
<td></td>
<td>4132</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOOD</td>
<td>DESCRIPTION</td>
<td>AMOUNT</td>
<td>TIMES EATEN</td>
<td>CODE</td>
<td>AMOUNT / WEEK</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------------</td>
<td>--------</td>
<td>-----------------------------------</td>
<td>------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beetroot</td>
<td>Salad</td>
<td></td>
<td>Per day</td>
<td>3699</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boiled, nothing added</td>
<td></td>
<td>Per week</td>
<td>3698</td>
<td></td>
</tr>
</tbody>
</table>

How do you cook potatoes?

Potatoes	Boiled/baked with skin		Per day	4155	
	Boiled/baked without skin		Per week	3737	
	Boiled with oil added		Per month	3873	
	Boiled with brick margarine		Seldom/never	3867	
	Boiled with tub margarine			3868	
	Mashed with whole milk and brick margarine			3876	
	Mashed with whole milk and oil			3878	
	Roasted in beef fat			3879	
	Roasted in oil			3740	
	French fries (chips)/Fried potatoes				
	Other				

Sweet potatoes

Sweet potatoes	How do you cook sweet potatoes?		Per day	3748	
	Boiled/baked with skin		Per week	3903	
	Boiled/baked without skin		Per month	4434	
	Boiled with sugar and oil added		Seldom/never	3749	
	Boiled with sugar and brick margarine added				
	Other				

203
<table>
<thead>
<tr>
<th>FOOD</th>
<th>DESCRIPTION</th>
<th>AMOUNT</th>
<th>TIMES EATEN</th>
<th>CODE</th>
<th>AMOUNT / WEEK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Per day</td>
<td>Per week</td>
<td>Per month</td>
</tr>
<tr>
<td>Broccoli</td>
<td>Boiled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Raw</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cauliflower</td>
<td>Boiled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green beans</td>
<td>Boiled, nothing added</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cooked with potato, onion and oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cooked with potato, onion and brick margarine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed vegetables</td>
<td>Canned</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frozen, boiled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salad vegetables</td>
<td>Mixed salad: tomato, lettuce and cucumber</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Raw tomato</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cucumber, raw</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coleslaw (cabbage) (mayonnaise)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coleslaw (cabbage) (commercial)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Potato salad (mayonnaise)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baked bean salad</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other salad vegetables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayonnaise / salad dressing</td>
<td>Mayonnaise</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinegar, oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other: Specify</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other vegetables, specify + preparation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Now we come to fruit

FRUIT

Do you like fruit? Yes 1 No 2

<table>
<thead>
<tr>
<th>FOOD</th>
<th>DESCRIPTION</th>
<th>AMOUNT</th>
<th>TIMES EATEN</th>
<th>CODE</th>
<th>AMOUNT / WEEK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Per day</td>
<td>Per week</td>
<td>Per month</td>
</tr>
<tr>
<td>Apples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pears</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naartjie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grapes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peaches</td>
<td>Fresh</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Canned</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apricots</td>
<td>Fresh</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Canned</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mangoes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guavas</td>
<td>Fresh</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Canned</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watermelon</td>
<td>Fresh</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruit salad</td>
<td>Fresh</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Canned</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig (Vye)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avocado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wild fruit/berries</td>
<td>Specify type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOOD</td>
<td>DESCRIPTION</td>
<td>AMOUNT</td>
<td>TIMES EATEN 2 columns to be completed</td>
<td>CODE</td>
<td>AMOUNT / WEEK</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>--------</td>
<td>--------------------------------------</td>
<td>------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Per day</td>
<td>Per week</td>
<td>Per month</td>
</tr>
<tr>
<td>Dried fruit</td>
<td>Apple, dried, raw</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peach, dried, raw</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mixed fruit, dried, raw</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mixed fruit, dried and cooked with sugar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fruit roll, dried (all types)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other fruit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If subject eats canned fruit: Do you have custard with the canned fruit or fresh fruit salad?

Yes 1 No 2

<table>
<thead>
<tr>
<th>FOOD</th>
<th>DESCRIPTION</th>
<th>AMOUNT</th>
<th>TIMES EATEN 2 columns to be completed</th>
<th>CODE</th>
<th>AMOUNT / WEEK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Per day</td>
<td>Per week</td>
<td>Per month</td>
</tr>
<tr>
<td>Custard</td>
<td>Homemade, full cream milk or fresh cow’s milk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Homemade, lowfat milk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Homemade, skim milk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Commercial eg Ultramel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BREAD AND BREAD SPREADS

<table>
<thead>
<tr>
<th>FOOD</th>
<th>DESCRIPTION</th>
<th>AMOUNT</th>
<th>TIMES EATEN</th>
<th>CODE</th>
<th>AMOUNT / WEEK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bread / Bread</td>
<td>White</td>
<td></td>
<td></td>
<td>3210</td>
<td></td>
</tr>
<tr>
<td>rolls</td>
<td>Brown</td>
<td></td>
<td></td>
<td>3211</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Whole wheat</td>
<td></td>
<td></td>
<td>3212</td>
<td></td>
</tr>
</tbody>
</table>

Do you spread anything on the bread?
Always 1 Sometimes 2 Never 3

<table>
<thead>
<tr>
<th>FOOD</th>
<th>What brand do you have at home now?</th>
<th>AMOUNT</th>
<th>TIMES EATEN</th>
<th>CODE</th>
<th>AMOUNT / WEEK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Margarine</td>
<td>Tub, regular</td>
<td></td>
<td></td>
<td>3496</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tub, medium fat</td>
<td></td>
<td></td>
<td>4406</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tub, light/low fat</td>
<td></td>
<td></td>
<td>3524</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brick, regular</td>
<td></td>
<td></td>
<td>3484</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brick, medium fat</td>
<td></td>
<td></td>
<td>4405</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brick, lite/low fat</td>
<td></td>
<td></td>
<td>3528</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peanut butter</td>
<td></td>
<td></td>
<td></td>
<td>3485</td>
<td></td>
</tr>
<tr>
<td>Jam/syrup/</td>
<td></td>
<td></td>
<td></td>
<td>3985</td>
<td></td>
</tr>
<tr>
<td>honey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marmite / Fray</td>
<td></td>
<td></td>
<td></td>
<td>4058</td>
<td></td>
</tr>
<tr>
<td>bento s / Oxo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish/meat paste</td>
<td></td>
<td></td>
<td></td>
<td>3109</td>
<td></td>
</tr>
<tr>
<td>Cheese</td>
<td>Cheddar</td>
<td></td>
<td></td>
<td>2722</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gouda</td>
<td></td>
<td></td>
<td>2723</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandwich</td>
<td></td>
<td></td>
<td></td>
<td>3522</td>
<td></td>
</tr>
<tr>
<td>spread</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achaar</td>
<td></td>
<td></td>
<td></td>
<td>3117</td>
<td></td>
</tr>
<tr>
<td>Other spreads</td>
<td>Specify</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOOD</td>
<td>DESCRIPTION</td>
<td>AMOUNT</td>
<td>TIMES EATEN</td>
<td>CODE</td>
<td>AMOUNT / WEEK</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--------</td>
<td>-------------</td>
<td>------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Per day</td>
<td>Per week</td>
<td>Per</td>
<td>Seldom / Never</td>
</tr>
<tr>
<td>Dumpling</td>
<td>White flour</td>
<td></td>
<td></td>
<td></td>
<td>3210</td>
</tr>
<tr>
<td></td>
<td>Whole wheat flour</td>
<td></td>
<td></td>
<td></td>
<td>3212</td>
</tr>
<tr>
<td>Vetkoek</td>
<td>White flour</td>
<td></td>
<td></td>
<td></td>
<td>3257</td>
</tr>
<tr>
<td></td>
<td>Whole wheat flour</td>
<td></td>
<td></td>
<td></td>
<td>3324</td>
</tr>
<tr>
<td>Provita,</td>
<td>Provita</td>
<td></td>
<td></td>
<td></td>
<td>3235</td>
</tr>
<tr>
<td>crackers,</td>
<td>Cream crackers</td>
<td></td>
<td></td>
<td></td>
<td>3230</td>
</tr>
<tr>
<td>etc</td>
<td>Other savoury biscuits like Bacon kips,</td>
<td></td>
<td></td>
<td></td>
<td>3331</td>
</tr>
<tr>
<td></td>
<td>wheat crackers, etc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOOD</td>
<td>DESCRIPTION</td>
<td>AMOUNT</td>
<td>TIMES EATEN</td>
<td>CODE</td>
<td>AMOUNT / Week</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------</td>
<td>--------</td>
<td>-------------</td>
<td>------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Per day</td>
<td>Per week</td>
<td>Per month</td>
<td>Seldom / Never</td>
</tr>
<tr>
<td>Tea</td>
<td>English (normal)</td>
<td></td>
<td></td>
<td></td>
<td>4038</td>
</tr>
<tr>
<td></td>
<td>Rooibos</td>
<td></td>
<td></td>
<td></td>
<td>4054</td>
</tr>
<tr>
<td>Coffee</td>
<td></td>
<td>4037</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White sugar</td>
<td>Tea</td>
<td>3989</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coffee</td>
<td>3989</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown sugar</td>
<td>Tea</td>
<td>4005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coffee</td>
<td>4005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk per cup of TEA</td>
<td>Do you use milk in your TEA?</td>
<td>Yes</td>
<td>No</td>
<td>If YES, What type of milk do you use in TEA?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fresh / long life</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>whole/full cream</td>
<td></td>
<td></td>
<td></td>
<td>2718</td>
</tr>
<tr>
<td></td>
<td>Fresh/long life: 2%/low fat</td>
<td></td>
<td></td>
<td></td>
<td>2772</td>
</tr>
<tr>
<td></td>
<td>Fresh/long life: fat free / skim milk</td>
<td></td>
<td></td>
<td></td>
<td>2775</td>
</tr>
<tr>
<td></td>
<td>Creamer/whitener like Ellis Brown / Cremora</td>
<td></td>
<td></td>
<td></td>
<td>2751</td>
</tr>
<tr>
<td></td>
<td>Cremora Lite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Condensed milk</td>
<td>2714</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evaporated milk</td>
<td>2715</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk per cup of COFFEE</td>
<td>Do you use milk in your COFFEE?</td>
<td>Yes</td>
<td>No</td>
<td>If YES, What type of milk do you use in COFFEE?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fresh/long life:</td>
<td></td>
<td></td>
<td></td>
<td>2718</td>
</tr>
<tr>
<td></td>
<td>whole/full</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fresh/long life: 2%/low fat</td>
<td></td>
<td></td>
<td></td>
<td>2772</td>
</tr>
<tr>
<td></td>
<td>Fresh/long life: fat free</td>
<td></td>
<td></td>
<td></td>
<td>2775</td>
</tr>
<tr>
<td></td>
<td>Creamer/whitener like Ellis Brown</td>
<td></td>
<td></td>
<td></td>
<td>2751</td>
</tr>
<tr>
<td></td>
<td>Cremora Lite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Condensed milk</td>
<td>2714</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evaporated milk</td>
<td>2715</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOOD</td>
<td>DESCRIPTION</td>
<td>AMOUNT</td>
<td>TIMES EATEN</td>
<td>CODE</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>--------</td>
<td>-------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Per day</td>
<td>Per week</td>
<td>Per month</td>
</tr>
<tr>
<td>Milk as such</td>
<td>What type of milk do you drink milk as such?</td>
<td></td>
<td>2718</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fresh/vlong life: whole / full cream milk</td>
<td></td>
<td>2772</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fresh/vlong life: 2% milk / low fat milk</td>
<td></td>
<td>2775</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fresh/vlong life: fat free / skim milk</td>
<td></td>
<td>2714</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Condensed milk</td>
<td></td>
<td>2787</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sour/maas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk drinks</td>
<td>Flavoured milk</td>
<td></td>
<td>2774</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Milo made with full cream milk</td>
<td></td>
<td>2735</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Milo made with skim milk</td>
<td></td>
<td>2747</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drinking chocolate made with water</td>
<td></td>
<td>4287</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yoghurt</td>
<td>Drinking yoghurt low fat</td>
<td></td>
<td>2756</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plain low fat</td>
<td></td>
<td>2734</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low fat sweetened with fruit</td>
<td></td>
<td>2732</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Squash</td>
<td>Sweet O</td>
<td></td>
<td>4027</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Six O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oros/Lecol – with sugar or other</td>
<td></td>
<td>3982</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- artificially sweetened</td>
<td></td>
<td>3990</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KoolAid</td>
<td></td>
<td>4027</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fizzy drinks</td>
<td>Sweetened Coke, fanta, etc</td>
<td></td>
<td>3981</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOOD</td>
<td>DESCRIPTION</td>
<td>AMOUNT</td>
<td>TIMES EATEN</td>
<td>CODE</td>
<td>AMOUNT / WEEK</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------------------</td>
<td>--------</td>
<td>----------------------------------</td>
<td>------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 columns to be completed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Per day</td>
<td>Per week</td>
<td>Per month</td>
</tr>
<tr>
<td>Fruit juice</td>
<td>Fresh/Liquifruit/Ceres</td>
<td></td>
<td></td>
<td></td>
<td>2866</td>
</tr>
<tr>
<td></td>
<td>Tropica (Dairy –fruit juice mix)</td>
<td></td>
<td></td>
<td></td>
<td>2791</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mageu/Motogo</td>
<td></td>
<td></td>
<td></td>
<td>4056</td>
<td></td>
</tr>
<tr>
<td>Home brew</td>
<td></td>
<td></td>
<td></td>
<td>4039</td>
<td></td>
</tr>
<tr>
<td>Tlkwae</td>
<td></td>
<td></td>
<td></td>
<td>4039</td>
<td></td>
</tr>
<tr>
<td>Beer</td>
<td></td>
<td></td>
<td></td>
<td>4031</td>
<td></td>
</tr>
<tr>
<td>Cider</td>
<td>Sweet</td>
<td></td>
<td></td>
<td>4057</td>
<td></td>
</tr>
<tr>
<td>Spirits</td>
<td></td>
<td></td>
<td></td>
<td>4035</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eg Brandy, gin, vodka, whisky, cane, etc</td>
<td></td>
<td></td>
<td></td>
<td>4033</td>
</tr>
<tr>
<td>Wine red</td>
<td></td>
<td></td>
<td></td>
<td>4033</td>
<td></td>
</tr>
<tr>
<td>Wine White</td>
<td></td>
<td></td>
<td></td>
<td>4033</td>
<td></td>
</tr>
<tr>
<td>Other specify</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WATER</td>
<td>Tap, borehole, dam, river, etc</td>
<td></td>
<td></td>
<td>4042</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bottled</td>
<td></td>
<td></td>
<td>4042</td>
<td></td>
</tr>
<tr>
<td>FOOD</td>
<td>DESCRIPTION</td>
<td>AMOUNT</td>
<td>TIMES EATEN</td>
<td>CODE</td>
<td>AMOUNT / WEEK</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>--------</td>
<td>--------------</td>
<td>------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 columns to be completed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Per day</td>
<td>Per week</td>
<td>Per month</td>
<td>Seldom / Never</td>
</tr>
<tr>
<td>Potato crisps</td>
<td></td>
<td></td>
<td></td>
<td>3417</td>
<td></td>
</tr>
<tr>
<td>Peanuts</td>
<td>Raw</td>
<td></td>
<td></td>
<td>4285</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Roasted</td>
<td></td>
<td></td>
<td>3458</td>
<td></td>
</tr>
<tr>
<td>Cheese curls, Niknaks, etc</td>
<td></td>
<td></td>
<td></td>
<td>3267</td>
<td></td>
</tr>
<tr>
<td>Raisins</td>
<td></td>
<td></td>
<td></td>
<td>3552</td>
<td></td>
</tr>
<tr>
<td>Peanuts and raisins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chocolates</td>
<td>Milk chocolate, plain</td>
<td></td>
<td></td>
<td>3987</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kit Kat etc</td>
<td></td>
<td></td>
<td>4024</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chocolate coated bars like Bar One, TV bar, etc</td>
<td></td>
<td></td>
<td>3997</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candies/Sweets</td>
<td>Sugus, gums, hard sweets, etc</td>
<td></td>
<td></td>
<td>4000</td>
<td></td>
</tr>
<tr>
<td>Toffees / Fudge / caramels</td>
<td></td>
<td></td>
<td></td>
<td>3991</td>
<td></td>
</tr>
<tr>
<td>Biscuits/cookies</td>
<td>Potch cookies</td>
<td></td>
<td></td>
<td>4426</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Homemade, plain</td>
<td></td>
<td></td>
<td>3233</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Commercial, plain</td>
<td></td>
<td></td>
<td>3216</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Commercial, with filling</td>
<td></td>
<td></td>
<td>3217</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cakes</td>
<td>Butter cake, homemade with whole milk and brick margarine NO icing</td>
<td></td>
<td></td>
<td>3288</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chocolate cake, homemade with whole milk and brick margarine NO icing</td>
<td></td>
<td></td>
<td>3289</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Icing for cake made with brick margarine</td>
<td></td>
<td></td>
<td>4014</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOOD</td>
<td>DESCRIPTION</td>
<td>AMOUNT</td>
<td>TIMES EATEN</td>
<td>CODE</td>
<td>AMOUNT / WEEK</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 columns to be completed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Per day</td>
<td>Per week</td>
<td>Per month</td>
</tr>
<tr>
<td>Tarts</td>
<td>Apple tart with a batter made with whole milk and brick margarine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scones</td>
<td>Plain made with whole milk and brick margarine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muffin</td>
<td>Bran</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rusks</td>
<td>Buttermilk, commercial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Homemade, white</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Savouries</td>
<td>Sausage rolls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Samoosas: Meat filling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Samoosas: Vegetable filling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biscuits eg bacon kips</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOOD</td>
<td>DESCRIPTION</td>
<td>AMOUNT</td>
<td>TIMES EATEN</td>
<td>CODE</td>
<td>AMOUNT / WEEK</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------------------</td>
<td>--------</td>
<td>-------------</td>
<td>------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Per day</td>
<td>Per</td>
<td>Per month</td>
</tr>
<tr>
<td>Jelly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Custard added made with whole milk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baked pudding</td>
<td>Baked in a syrup</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baked without a syrup</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Custard added made with whole milk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instant pudding</td>
<td>Made with whole milk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Made with low fat milk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ice cream</td>
<td>Regular</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soft serve</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorbet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other specify</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SAUCES, GRAVIES AND CONDIMENTS

<table>
<thead>
<tr>
<th>FOOD</th>
<th>DESCRIPTION</th>
<th>AMOUNT</th>
<th>TIMES EATEN</th>
<th>CODE</th>
<th>AMOUNT/WEEK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Per day</td>
<td>Per week</td>
<td>Per month</td>
</tr>
<tr>
<td>Tomato sauce</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worcester sauce</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chutney</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pickles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White sauce</td>
<td>Made with whole milk and brick margarine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packet soups</td>
<td>Dry powder (all types)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Made with water (all types)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravy</td>
<td>Made from meat and thickened</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WILD FRUITS, WILD BIRDS, ANIMALS OR INSECTS (hunted in rural areas or on farms)

<table>
<thead>
<tr>
<th>FOOD</th>
<th>DESCRIPTION</th>
<th>AMOUNT</th>
<th>TIMES EATEN</th>
<th>CODE</th>
<th>AMOUNT/WEEK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Per day</td>
<td>Per week</td>
<td>Per month</td>
</tr>
</tbody>
</table>

MISCELLANEOUS: Please mention ANY OTHER FOODS used more than once/two times a week which we have NOT talked about

INDIGENOUS/TRADITIONAL FOODS/PLANTS/ANIMALS

Please tell me if you use any indigenous plants OR other indigenous foods like mopani worms, locusts etc to eat

PLEASE GIVE DETAILS
Addendum G: Information sheet for PURE participants

Information sheet

Challenges with implementation of nutrition interventions aimed at non-communicable diseases among black urban South Africans

Dear Participant

I am a student registered for a Doctoral degree at the University of the Western, and I would like to invite you to participate in my study. This study will help researchers identify the best manner in which to address the chronic non-communicable diseases (CNCDs) epidemic in South Africa.

What is this study about?

This research forms part of the Prospective Urban Rural Epidemiologic (PURE) study. The PURE study is a 15 year research study to understand the way in which environmental/societal factors influence the development of cardiovascular disease. The South African study is part of an international project being carried out in 15 countries. The research will be carried out in 2 urban sites and 2 rural sites in South Africa, involving 2,000 participants. The research will look at a number of factors to understand whether, and how, they influence the development of cardiovascular disease.

My study will focus on why persons do not participate in health programmes that are available in their community, and will also attempt to identify how community members would like health messages to be communicated to them.
Who can participate in this research?

All current PURE study participants

What will be expected from the participants?

Participants will be required to answer a questionnaire as well as participate in focus group discussions to obtain information regarding perceptions about health message dissemination and reasons for not wanting to participate in existing CNCD intervention programmes in Langa. All participants in the study will remain anonymous and all information will remain strictly confidential to the best of the researcher’s ability. This means that your names will not be written on the questionnaire, only numbers will be used.

What are the risks of this research?

There are no risks associated with participating in this research project. You will not be harmed in any way.

What are the benefits of this research?

This research will not benefit you personally, however the findings of this research can be used to help prevent, treat and manage chronic non-communicable in South African people.

Can I withdraw from the study?

Your participation in this research is voluntary. You may choose to not take part at all. Should you decide to participate in this research, you may stop participating at any time without experiencing any repercussions. You may refuse to answer any questions and will not be cajoled to answer it.

Do you have any further questions?

More information may be obtained from Nasheetah Solomons (021) 959-2457.

If you would like to take part in this study, please read and sign the consent form.
Should you have any questions regarding this study and your rights as a research participant or if you wish to report any problems you have experienced related to the study, please contact:

Dean of the Faculty of Community and Health Sciences
University of the Western Cape
Private Bag X17
Bellville 7535

This research has been approved by the University of the Western Cape’s Senate research Committee and Ethics Committee.

Thank you very much.
CONSENT FORM

I have been informed about the purpose and the nature of the study and I understand that all information will be confidential. I understand that taking part in this study is voluntary and that I can withdraw from participating in this study at anytime without giving any reasons and my doing so will have no negative repercussions. I also have the right to refuse answering questions when I feel uncomfortable.

Name of the participant: ……

Signature: …………………………….. Date: ………………………………………

Interviewer: ………
Addendum I: Challenges to intervention programmes individual questionnaire

CHALLENGES TO INTERVENTION PROGRAMMES INDIVIDUAL QUESTIONNAIRE
1. Are you happy with your weight? Y N

2. Would you like to lose weight Y N

a. If yes, why? (tick only 1 relevant box)

1. I want to be healthy
2. My clothes are too tight
3. My family and friends want me to lose weight
4. My doctor told me to lose weight
5. I am embarrassed by my weight
6. I am diabetic
7. I have high blood pressure
8. I have heart disease
9. I want to be a good example to my family
10. Other, please specify

b. If no, why not? (tick only 1 relevant box)

1. I do not need to lose weight
2. I am healthy
3. I am happy the way I am
4. My weight will not cause me to get diseases
5. Other, please specify
3. Would you join a weight loss programme if it was offered in your community? Y □ N □ □
 a. If yes, why? (tick only 1 relevant box)
 1. It will encourage me to lose weight
 2. They will teach me how to lose weight
 3. I will not feel alone
 4. They can teach me how to cook food in a healthy way
 5. They can teach me what food and drinks to buy
 6. Other, please specify

 b. If no, why not? (tick only 1 relevant box)
 1. It will not help me to lose weight
 2. I joined a group before and I did not lose any weight
 3. I do not eat the food they tell us to eat
 4. I cannot afford to buy the food they want us to eat
 5. The food they tell us to eat is not available at the shops here
 6. I am embarrassed
 7. Other, please specify
4. What would you want from a weight loss program? (tick all that apply)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. To be taught why I gain weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. How to lose weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. How to cook food to help me lose weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Recipes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. What food and drinks to buy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Other, please specify</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. The benefits of being a healthy weight are:

<table>
<thead>
<tr>
<th></th>
<th>Yes (1)</th>
<th>No (2)</th>
<th>Don’t know (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. It might help to prevent the development of high blood pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. It can help to control high blood pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. It might prevent the development of diabetes (sugar sickness)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. It can help to control blood glucose levels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. It might prevent the development of heart attacks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. It can help to control cholesterol levels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. It might help to prevent one from suffering a stroke</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. It might help to prevent certain types of cancers</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Do you smoke? Yes [] No []
7. Would you like to stop smoking?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>

a. If yes, why? (tick only 1 relevant box)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Smoking is expensive</td>
<td></td>
</tr>
<tr>
<td>2. Smoking is bad for my health</td>
<td></td>
</tr>
<tr>
<td>3. My family wants me to stop</td>
<td></td>
</tr>
<tr>
<td>4. My doctor told me to stop</td>
<td></td>
</tr>
<tr>
<td>5. Other, please specify</td>
<td></td>
</tr>
</tbody>
</table>

b. If no, why not? (tick only 1 relevant box)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. I enjoy smoking</td>
<td></td>
</tr>
<tr>
<td>2. Smoking makes me happy</td>
<td></td>
</tr>
<tr>
<td>3. Smoking is good for me</td>
<td></td>
</tr>
<tr>
<td>4. Smoking does not make me ill</td>
<td></td>
</tr>
<tr>
<td>5. Other, please specify</td>
<td></td>
</tr>
</tbody>
</table>
8. Have you tried to stop smoking before? Yes □ □ □ No □ □ □
 a. If yes, why did you not succeed? (tick only 1 relevant box)
 1. It was too difficult
 2. I had no support
 3. It made me gain weight
 4. Everyone I socialise with smokes
 5. Other, specify

9. Would you join a group to help you to stop smoking? Yes □ □ □ No □ □ □
 a. If yes why? (tick only 1 relevant box)
 1. There will be support
 2. I will not feel like I am the only one trying to stop smoking
 3. Other, please specify

 b. If no, why not? (tick only 1 relevant box)
 1. I am not interested in support groups
 2. I am to embarrassed
 3. It will not help me to stop smoking
 4. Other, please specify
c. What would you want/expect from a “stop smoking” program to ensure you stop smoking?

__
__
__
__
__
__

10. The benefits of not smoking are:

<table>
<thead>
<tr>
<th>Benefit</th>
<th>Yes (1)</th>
<th>No (2)</th>
<th>Don’t know (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>It might prevent the development of lung disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>It might prevent the development of certain types of cancers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>It might prevent the development of high blood pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>It will help to control high blood pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>It might prevent one from suffering a stroke or heart attack</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>It might prevent the development of diabetes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. Are you aware if any of following programs/clubs is available in your community?

<table>
<thead>
<tr>
<th>Program</th>
<th>Yes (1)</th>
<th>No (2)</th>
<th>Don’t know (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight loss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exercise</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stop smoking</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stop drinking alcohol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High blood pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other, please specify</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
12. Would you join an exercise/diabetic/high blood pressure/heart disease programme if it was offered in your community?

1. **Y**
2. **N**

a. If yes, why? (tick only 1 relevant box)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. It will help me to understand what is wrong with me</td>
<td></td>
</tr>
<tr>
<td>2. It will teach me how to control my condition</td>
<td></td>
</tr>
<tr>
<td>3. I will not feel I am the only one with problem</td>
<td></td>
</tr>
<tr>
<td>4. An exercise program will help me to control my condition</td>
<td></td>
</tr>
<tr>
<td>5. It will help to share my problems/worries with others</td>
<td></td>
</tr>
<tr>
<td>6. Other, please specify</td>
<td></td>
</tr>
</tbody>
</table>

b. If no, why not? (tick only 1 relevant box)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. It will not help me to understand my condition</td>
<td></td>
</tr>
<tr>
<td>2. It is not acceptable to share my problems with others</td>
<td></td>
</tr>
<tr>
<td>3. I do not like to exercise</td>
<td></td>
</tr>
<tr>
<td>4. Other, please specify</td>
<td></td>
</tr>
</tbody>
</table>
13. What would make you decide to join/ attend any of the above-mentioned programmes should it be offered in your community? (Tick all relevant boxes)

<table>
<thead>
<tr>
<th></th>
<th>Yes (1)</th>
<th>No (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is socially acceptable to me</td>
<td></td>
<td></td>
</tr>
<tr>
<td>It respects my cultural beliefs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>It will help me with my health problem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>It is offered by someone who lives in the community</td>
<td></td>
<td></td>
</tr>
<tr>
<td>It is close to my house</td>
<td></td>
<td></td>
</tr>
<tr>
<td>It is safe to go there</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If the time during which these programmes are offered is suitable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other, please specify</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

14. Do you do any of the following? (Tick the relevant box for each option)

<table>
<thead>
<tr>
<th></th>
<th>Never (1)</th>
<th>1-2 days a week (2)</th>
<th>3-4 times per week (3)</th>
<th>5-7 days a week (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Do some form physical activity for at least 30 minutes, which leaves you slightly out of breath?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Do any type of physical activity that leaves you slightly out of breath that adds up to 30 minutes during the normal course of your day?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(for example: walk at a moderately fast pace for at least 10 minutes three times a day as part of your usual daily activities?)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Participate in sport for 30 minutes?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Participate in sport for 60 minutes?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Participate in exercise for 30 minutes?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Participate in exercise for 60 minutes?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15. How do you want to receive health messages? (Tick the relevant box for each option)

<table>
<thead>
<tr>
<th></th>
<th>Yes (1)</th>
<th>No (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>I prefer that my doctor explain health messages to me.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>I prefer that the nurse at the clinic explain health messages to me.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>I prefer to read a poster.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>I prefer to read a pamphlet.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>I prefer to watch a video which discusses health messages.</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>I prefer that a friend explain health messages to me.</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>I prefer a poster/pamphlet with colourful illustrations.</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>I prefer health messages to be spread in my home language.</td>
<td></td>
</tr>
</tbody>
</table>

THANK YOU FOR YOUR TIME
Challenges with implementation of nutrition interventions aimed at non-communicable diseases among black urban South Africans

BACKGROUND INFORMATION

The PURE study is a worldwide study which is aimed at identifying social and environmental factors which contribute to the increased risk of individuals and population as a whole, developing the four major chronic non-communicable diseases (CNCDs) (cardiovascular diseases, cancer, diabetes and chronic respiratory diseases). The PURE study aims to use data gathered to develop an intervention programme which will address all risk factors which contribute to the development of non-communicable diseases in on a social, individual and community level.

In South Africa, the University of the Western Cape’s School of Public Health has committed itself to gathering data for the PURE Study in Langa and Mount Frere. As part of the PURE study the researcher would like to determine what barriers exist to the successful implementation of intervention programmes aimed at addressing non-communicable diseases in the two study sites.

PURPOSE OF THIS STUDY

In order to implement effective, cost-effective and sustainable CNCDs, the researcher would like to ascertain:

1. Whether there are any existing policies in place to address the problem of increasing chronic non-communicable diseases.
2. How often these policies are evaluated and reviewed.
3. What the challenges are regarding the implementation of these policies.
4. To explore options to address the CNCDs epidemic
EXPECTATIONS FROM YOU

Should you agree to participate, I will set up an appointment to interview you at a time that is convenient for you. I will interview you according to a structured questionnaire that will take approximately 30 minutes to complete. The questionnaire will include questions about existing policies for chronic non-communicable diseases, their implementation, revision and monitoring, as well as challenges with regard to implementing these policies.

I will also require you to participate in an interview using the multicriteria mapping method, where best options to address the CNCDs epidemic will be explored. This interview will take approximately two hours will be audio-taped. I will provide you with a list of options prior to the interview date, so that you can choose at least four options which will be assessed for performance by you during the MCM method interview.

Your participation in the study is completely voluntary. You will not be harmed in any way whilst participating in this study. You can freely refuse to answer any particular questions and will not be cajoled to answer them if you do so. You can freely withdraw at any stage without the need for an explanation.

INFORMED CONSENT

You will be required to sign an informed consent form prior to being interviewed.

CONFIDENTIALITY AND ANONYMITY

Your identity will be kept anonymous, and confidentiality will be maintained to the best of the researcher’s ability.

QUERIES

Should you have any questions or need more information regarding this study, my contact details are:

Nasheetah Solomons
Telephone (office hours): 021-959 2457

This research has been approved by the University of the Western Cape’s Senate Research Committee and Ethics Committee.

THANK YOU!
Addendum K: Consent form DoH

UNIVERSITY OF THE WESTERN CAPE

Private Bag X17, Bellville 7535, South Africa
Tel : +27 21- 959 2457, Fax : +27 21-959 3686
E-mail : nsolomons@uwc.ac.za

CONSENT FORM (Department of Health, CHC)

I am a Doctorate student who as part of the Prospective Urban Rural Epidemiology (PURE) study would like to establish:

- What policies are currently available to address the four major non-communicable diseases (NCDs) (cardiovascular diseases, diabetes, cancer and chronic respiratory diseases) epidemic in South Africa, specifically in Langa in the Western Cape Province and Mount Frere, in Eastern Cape Province.
- What intervention programmes are currently being implemented in the Western Cape and Eastern Cape Provinces which is targeted at the four major non-communicable diseases.
- How frequently these intervention programmes are being monitored and evaluated.
- What the challenges are regarding the implementation of these policies.
- To explore options to address the CNCDs epidemic

All information will be treated confidentially and anonymity will be maintained to the best of the researcher’s ability. In order for me to obtain the above-mentioned information, I would like to schedule an interview with you.

I __________________________ hereby grant permission to be interviewed for the above-mentioned study. I fully understand what will be expected of me. I agree to be audio-taped during my participation in the study and I understand that I can withdraw from the study, at any time.

Signed: ______________________ on the _______ day of _____________20___.

Witness: ____________________ Date: __________________

232
Addendum L: Department of Health information package for MCM interview

ADDITIONAL INFORMATION REGARDING THE MULTICRITERIA MAPPING PROCESS

Thank you for taking the time to consider participating in my research project. The Interview will make use of the multicriteria mapping (MCM) process, which is a four-step process as described below:

1. Develop a set of 'options' (see below)

These distinguish a number of alternative ways to achieve a particular aim. Although some options may be specified for the purposes of comparison, participants are also free to define their own options in any way they choose.

2. Characterise a range of 'criteria'

These represent any issues that are seen to be relevant in appraising the options. They can reflect aspects that can be 'traded off' against each other. They can also reflect issues of principle, which cannot be traded off. Each participant is free to include whatever criteria and define these as they wish.

3. 'Score' each option under each criterion

These numbers address the relatively technical business of assessing options under criteria. The scale is flexible, allowing easy reflection of different datasets. The higher the score, the better the performance. Crucially, MCM allows specification of minimum and maximum scores, so key uncertainties can be taken into account.

4. Assign a 'weight' to each criterion

These reflect different ways of prioritising criteria, depending on the context or viewpoint. The higher the weight, the higher the priority. Assigning weights takes into account the relative importance of the difference between best and worst performance under individual criteria.
One end product of these four steps is the calculation of an overall 'rank', expressing - for the viewpoint in question - the relative performance of each option under all the criteria taken together. Here, MCM follows the well-established linear additive weighting procedure, in which the rank simply represents the weighted sum of normalized scores. Participants are free to cycle through the four steps as much as necessary, to arrive at a final picture with which they are satisfied.

MULTICRITERIA MAPPING (MCM) INTERVIEW OPTIONS González-Zapata, et al. 2008

OPTIONS: Best way to address the CNCDs epidemic in SA

<table>
<thead>
<tr>
<th>Core options</th>
<th>Discretionary options</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Legislation and regulation for CNCDs (policies)</td>
<td>1. Improved health education of citizens</td>
</tr>
<tr>
<td>2. Control of food and drink advertisements</td>
<td>2. Improve training of health professionals in CNCDs</td>
</tr>
<tr>
<td>3. Control of food sales at public institutions and places</td>
<td>3. Integrated health service delivery</td>
</tr>
<tr>
<td>4. Compulsory food labelling</td>
<td>4. Skill-shifting among health professionals</td>
</tr>
<tr>
<td>5. Fatty food tax ("sin tax") and healthy food subsidies</td>
<td>5. Improve health information systems</td>
</tr>
<tr>
<td>6. Cheaper prices of healthy foods</td>
<td>6. Improve school curriculum: include more health and nutrition education</td>
</tr>
<tr>
<td>7. Improving intersectoral partnerships</td>
<td>7. Improve workplace health initiatives</td>
</tr>
<tr>
<td>8. Community participation</td>
<td>8. Compulsory free annual medical check-up</td>
</tr>
<tr>
<td></td>
<td>9. Increase use of sugar and fat substitutes</td>
</tr>
<tr>
<td></td>
<td>10. Growing healthier foods, such as genetically-modified (GM) foods</td>
</tr>
<tr>
<td></td>
<td>11. Control marketing terminology on food labels (such as “lite”)</td>
</tr>
<tr>
<td></td>
<td>12. Healthier restaurant menus</td>
</tr>
<tr>
<td></td>
<td>13. Nutrient analysis of catering menus to show energy, sugar, salt and fat content</td>
</tr>
</tbody>
</table>
Option clusters

Cluster 1: CNCDs prevention and management oriented

- Legislation and regulation for CNCDs

Cluster 2: Food supply control

- Control of food sales at public institutions and places
- Fatty food tax (“sin tax”) and healthy food subsidies
- Cheaper prices of healthy foods
- Healthier restaurant menus

Cluster 3: Food information

- Control of food and drink advertisements
- Compulsory food labelling
- Control marketing terminology on food labels (such as “lite”)
- Food analysis of catering menus

Cluster 4: Educational

- Improved health education of citizens
- Improve training of health professionals in CNCDs.
- Improve school curriculum: include more health and nutrition education

Cluster 5: Health care reform

- Integrated health service delivery
- Skill-shifting among health professionals
- Improve health information systems

Cluster 6: Innovative preventive initiatives

- Improve workplace health initiatives
- Compulsory free annual medical check-up

Cluster 7: Technological advances

- Increase use of sugar and fat substitutes
Growing healthier foods such as genetically-modified (GM) foods

Cluster 8: Partnerships and collaboration

- Improving intersectoral partnerships.
- Community participation

Description of options

1. Legislation and regulation for CNCDs (policies).

The development and implementation of policies to address tobacco use (existing) and alcohol use could aid in decreasing the use of alcohol and tobacco products. The development and implementation of environmental planning policies will aid in the improvement of community facilities so that it is safe and conducive to physical activity. Policies to control the composition of processed foods in terms of fat (type and amount), salt content and kilocalories will aid in the control of overweight and obesity as well as other CNCDs.

2. Control of food and drink advertisements

This will entail the banning of food advertisements aired during children programmes as well as in cinemas. This will also include the banning of advertisements of tobacco products, alcohol and unhealthy foodstuff aimed at adults on television, billboards, and magazines and in cinemas.

3. Control of food sales at public institutions and places.

This entails controlling food and drink items sold at schools, colleges, technikons and universities. Young children are easily influenced, so only offering healthy food choices at school tuck shops for example, could lay the foundation for them to continue making healthy food choices into adulthood.

4. Compulsory food labelling

Compulsory food labelling would aid in the public making better food choices. The food labels should be easy to understand and standardised for all products, so that consumers can easily make better food choices.
5. **Fatty food tax (“sin tax”) and healthy food subsidies**

Taxing food manufacturing companies for the production of food items which contain fat and salt above the recommended levels, could encourage these companies to reformulate their recipes and thus influence consumers’ intake. On the other hand, the simultaneous decrease in healthy food prices (by means of subsidies) could encourage the purchasing of these healthier food items.

6. **Cheaper prices of healthy foods**

Providing healthier foods at lower prices would encourage citizens to purchase these food items. This could be done by subsidising healthier food options.

7. **Improving intersectoral partnerships**

Joining forces with other government departments, the food industry, community associations and non-governmental organisations (NGOs) could aid in the pooling of resources and thus result in a holistic approach to tackling the CNCDs epidemic.

8. **Community participation**

The community members know what their needs are. In order for an intervention to be successful, it must address the community’s self-identified needs.

9. **Improved health education of citizens**

Citizens will be provided with more information and a better understanding of CNCDs, including their risk factors, prevention and management, and in this way they will be aided in decreasing their risk for developing CNCDs. Teaching them how to make healthier food choices (teaching them how to read food labels) would play a role in combating CNCDs.

10. **Improve training of health professionals in CNCDs.**

Providing health professionals with the skills and knowledge to identify, counsel and care for persons with CNCDs could aid in reversing the CNCDs epidemic.
11. Integrated health service delivery

Integrating services where individuals who are for example HIV-positive, and who is also suffering from a CNCD would result in this person getting the necessary care for both conditions in one place at the same time.

12. Skill-shifting among health professionals

Training more assistant health professionals (e.g. nursing assistants) and community health workers to assist with the care of individuals with CNCDs could play a role in alleviating the workload of existing health professionals and also address the current health human resource problems.

13. Improve health information systems

Improved health information systems will aid in identifying and monitoring individuals at risk of, or diagnosed with CNCDs. In this way better care can be provided to these individuals and aid in decreasing the CNCDs epidemic.

14. Improve school curriculum: include more health and nutrition education

Including health and nutrition education in the school curriculum will equip young children to make better food choices and will lay the foundation for their future health.

15. Improve workplace health initiatives

By providing incentives to their workforce, companies can encourage their employees to maintain better health. This may include the provision of health education workshops, annual health checks, or even installing a gym at the workplace, and the work cafeteria only providing healthy foods.

16. Compulsory free annual medical check-up

Making it compulsory for all individuals regardless of age, to go for an annual medical check-up could aid in identifying individuals at risk of, or who suffers from CNCDs as well as provide the opportunity to impart information on the prevention of CNCDs.
17. Increase use of sugar and fat substitutes

Companies are developing new products regularly. The use of sugar and fat substitutes could assist individuals with their weight control.

18. Growing healthier foods, such as genetically-modified (GM) foods

Agriculture could find ways in which to produce healthier foods for the general public.

19. Control marketing terminology on food labels (such as “lite”)

Policies can control what items fulfil the criteria to be labelled “lite”, etcetera. In this way the consumer is assured that he/she is making better food choices without being misled.

20. Healthier restaurant menus

Restaurants can be provided with incentives to reformulate their recipes so that they can offer healthier food to their patrons.

21. Nutrient analysis of catering menus to show energy, sugar, salt and fat content

All public eating places are to provide their patrons with nutritional information of all food items prepared on the premises. This will aid patrons to order the healthier food items.
Addendum M: DOH questionnaire

PURE

CODE

Date:

DEPARTMENT OF HEALTH QUESTIONNAIRE
1. Do you have policies in place to address the growing problem of CNCDs (Chronic non-communicable disease) (Cardiovascular Diseases [CVD], Diabetes type 2 [DM], Cancer and chronic respiratory disease)?

<table>
<thead>
<tr>
<th></th>
<th>Brief description of policy/ attach a copy</th>
<th>Yes (1)</th>
<th>No (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic respiratory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>disease</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. When were these policies developed and implemented? (indicate the month and year)

<table>
<thead>
<tr>
<th></th>
<th>Developed</th>
<th>Implemented</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic respiratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>disease</td>
<td></td>
</tr>
</tbody>
</table>

3. How often are these policies reviewed?

<table>
<thead>
<tr>
<th></th>
<th>Twice a year (1)</th>
<th>Annually (2)</th>
<th>Never been reviewed (3)</th>
<th>Other (please indicate) (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic respiratory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>disease</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. What do you perceive to be the major problems/obstacles pertaining to addressing the CNCDs epidemic in South Africa?

Government level:

__

__

__
Municipal level:

Community level:

5. What do you think would be the best way to address the CNCDs epidemic?

6. Who do you think should all be involved in addressing the CNCDs epidemic in South Africa?

THANK YOU FOR YOUR TIME AND INPUT.
FOCUS GROUP CONFIDENTIALITY BINDING FORM

Title of Research Project: Challenges with implementation of nutrition interventions aimed at non-communicable diseases among black urban South Africans

The study has been described to me in language that I understand and I freely and voluntarily agree to participate. My questions about the study have been answered. I understand that my identity will not be disclosed and that I may withdraw from the study without giving a reason at any time and this will not negatively affect me in any way. I understand that I may refuse to answer particular question and that I will not be cajoled to answer. I agree to be audio-taped during my participation in the study. I also agree not to disclose any information that was discussed during the group discussion.

Participant’s name

Participant’s signature

Witness’s name

Witness’s signature

Date
Addendum O: Focus group discussion Guide

Focus group discussion guide: Challenges with implementation of nutrition interventions aimed at non-communicable diseases among black urban South Africans

Introduction

Good Morning, I am Nasheetah and this is Kholiswa who will be helping me today. Thank you for coming on this cold and rainy morning.

Purpose of the focus group discussion

We have asked you to participate in this discussion because as PURE study participants your participation will be valuable in helping us to try to find the best way to help you to improve your health. You are the ones who can best provide us with information regarding the strengths and weaknesses of current health intervention programmes. We hope to use the information you provide us with to address shortcomings of current health intervention programmes. During this discussion, we learn from you – we are gathering information. Please remember there is no right or wrong answers!

Consent Process

- The information you give us is completely confidential, and we will not link your name with anything you say during the discussion.
- We would like to record the discussion, so that we can make sure to capture the thoughts, opinions and ideas we hear from the group. No names will be attached to the group and the recordings will be deleted as soon as they are transcribed.
- You may refuse to answer any question or withdraw from the study at any time.
- We understand that confidentiality is important and that this information is kept private and confidential. We thus ask that you respect each other’s confidentiality.
- Please complete the consent sheet which shows you agree to participate in this discussion as well as your willingness to be tape recorded.

GROUND RULES

- Everyone must please participate
- One person speaks at a time – please do not interrupt anyone
- Please do not have side conversations
- Turn off your cellphone, if possible
These rules were written on a flip chart

I will be ensuring that we have a productive discussion. I will be asking the questions and moving us along so that we can discuss all the key questions. Should the discussion get side-tracked or I feel we are spending too much time on one point; I will step in to keep the discussion moving. Kholiswa will be helping me to take notes, in case I miss anything. She will also translate for me should you have a problem with language.

Let’s begin by introducing ourselves to each other.

Ice breaker: “Tell us your name and which animal you think you are most like and why.”
QUESTIONS

<table>
<thead>
<tr>
<th>Questions and transcript</th>
<th>Themes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. If a health programme or club is started in your area would you be willing to participate in/joining it?</td>
<td></td>
</tr>
<tr>
<td>2. Health messages are everywhere in magazines, posters, pamphlets and even on radio, what are the reasons for not following/implementing health messages?</td>
<td></td>
</tr>
<tr>
<td>3. Why do you not follow health advice?</td>
<td></td>
</tr>
<tr>
<td>4. If you were to come to/join a health group/programme if it was to be offered in your area, what would you want from a health program/group? In other words what would make you go to the group meetings regularly?</td>
<td></td>
</tr>
<tr>
<td>5. Are you happy with how you are currently receiving your health messages?</td>
<td></td>
</tr>
<tr>
<td>6. What can be done to assist you to follow the health messages?</td>
<td></td>
</tr>
<tr>
<td>7. Do you know if there is a health group in your area?</td>
<td></td>
</tr>
<tr>
<td>8. Where would you want to receive your health messages?</td>
<td></td>
</tr>
<tr>
<td>9. Who do you want to receive your health messages from?</td>
<td></td>
</tr>
</tbody>
</table>
Addendum P: Language editing certificate: Clarina Vorster

DECLARATION

I, C Vorster (ID: 710924 0034 084), Language editor and Translator and member of the South African Translators’ Institute (SATI member number 1003172), herewith declare that I did the language and technical editing of a thesis written by Ms N Solomons from the North-West University (student number 20683006).

Title of the thesis: Challenges with implementation of nutrition interventions aimed at non-communicable diseases among black urban South Africans

16 November 2017

________________________ __________________________
C Vorster Date
CHAPTER 4: MANUSCRIPT 1

Association between dietary adherence, anthropometric measurements and blood pressure in an urban lack population, South Africa
Association between dietary adherence, anthropometric measurements and blood pressure in an urban Black population, South Africa

Nasheetah Solomons\(^a\), H Salome Kruger\(^b\), Thandi Puoane\(^c\)

\(^a\)Faculty of Community and Health Sciences, Department of Dietetics and Nutrition, University of the Western Cape, Cape Town, South Africa
\(^b\)Faculty of Health Sciences, Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
\(^c\)Faculty of Health Sciences, MRC Extra Mural Unit: Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa

\(^*\)Corresponding author, email: nsolomons@uwc.ac.za

4.1 ABSTRACT

Objectives: To determine participants’ dietary adherence by calculating a diet adherence score based on the Dietary Approaches to Stop Hypertension (DASH)-style diet; (2) to determine if there was an association between dietary adherence score, anthropometric measurements (waist circumference, body mass index (BMI), waist-hip ratio, waist-to-height-ratio) and blood pressure (BP) in a South African urban black population.

Design: Secondary analysis of cross-sectional data collected for the PURE study.

Setting: Langa, the urban PURE Study site in the Western Cape Province, South Africa

Subjects: PURE study Western Cape urban cohort, 454 participants, aged 32-81 years.

Outcome measures: Dietary adherence scores were calculated and the BP and anthropometric measurements, respectively, of participants in the lowest and highest tertiles of dietary adherence scores were compared.

Results: Positive correlations were found between age, for both men and women and systolic and diastolic BP. A significant positive correlation between added sugar intake and systolic blood pressure (SBP) was only present in the women. A significant positive correlation was found between BMI, diastolic BP and SBP in men only. No significant differences existed between BP of men or women in the lowest and top tertile groups according to dietary adherence score, but a significant inverse correlation between the dietary adherence score and...
SBP was found in women.

Conclusions: BMI was positively correlated with BP in men, while dietary adherence score was negatively correlated with SBP in women.

Strong message: Non-adherence to dietary guidelines presenting overconsumption of unhealthy foods may be associated with high blood pressure.

Keywords: dietary adherence, blood pressure, body mass index
4.2 Introduction

Chronic non-communicable diseases (CNCDs) which include cardiovascular disease, type 2 diabetes, certain cancers and respiratory diseases will be responsible for 69% of all global deaths by 2030 with greatest increases in low-income and middle-income countries.1,2 Risk factors for CNCDs include alcohol and tobacco use, as well as an increased energy intake coupled with a decrease in physical activity.1

Guidelines such as the Dietary Approaches to Stop Hypertension (DASH) diet, Mediterranean diet and Dietary Guidelines for Americans have been proven to decrease risk for CNCDs when adhered to.2,3 The South African Food-Based Dietary Guidelines (SAFBDG) were developed and first published in 2001 in an attempt to address malnutrition and diet-related diseases.4 These guidelines, specifically developed for the South African population, were recently revised to include the latest scientific evidence and to address feedback received from users to reduce the risk of guidelines being misinterpreted.5

Over the years, researchers have developed and used various indices such as the Healthy Eating Index (HEI), Alternate Healthy Eating Index (AHEI), the Mediterranean-style pattern (MedDietScore), alternate Mediterranean score (aMed) and the DASH score to measure dietary guideline adherence in subjects.6 Compliance with food-based dietary guidelines, Mediterranean and a DASH-style diet has also been shown to have a blood pressure lowering effect.7, 8 Participants who had lower BP, WC and BMI tended to have higher dietary adherence scores.8

Various anthropometric measures, such as body mass index (BMI), waist circumference (WC), waist-to-height ratio (WHtR) and waist-hip ratio (WHR) are used to identify persons at risk for CNCDs.9 The World Health Organisation (WHO) proposed cut-off points to categorise adults according to underweight, normal weight and obese categories.9 Waist circumference, WHtR and WHR are used to determine central obesity, a known risk factor for CNCDs.10,11 International recommendations propose two WC cut-off values, namely $>88 \text{cm}$ and $>102 \text{cm}$ for substantially increased risk, for Sub-Saharan Africa women and men respectively.10,12 A WHtR <0.5 has been
associated with minimal risk for CNCDs, while a WHR measurements ≥ 0.85 in women and 0.90 in men are indicative of central obesity.

The purpose of this study was two-fold, namely (1) to determine participants’ adherence to dietary guidelines by calculating a dietary adherence score using an adapted version of the methodology developed by Fung and colleagues and (2) to determine if there was an association between dietary adherence, anthropometric measurements (WC, BMI, WHtR, WHR) and blood pressure in a South African urban dwelling black population.

4.3 Methods

Study population and sampling

Secondary analysis of cross-sectional data collected for the Prospective Urban and Rural Epidemiological (PURE) study was performed. The PURE study aimed to recruit approximately 150,000 participants aged between 35 and 70 years living in more than 600 communities in 17 low-, middle-, and high-income countries around the world. The participating countries’ selection was based on representativeness of different socioeconomic status (SES). The study sites included were based on commitment of investigators to collecting good quality data over the planned 10-year period. The University of the Western Cape’s (UWC) School of Public Health (SoPH) collected data in Langa (urban community) in the Western Cape Province and a rural community in the Eastern Cape Province. Data obtained for 1000 males and female participants recruited from the urban community site were available for this study. Dietary data was obtained for 968 participants by means of a quantified food frequency questionnaire. Physical activity data was available for 1023 participants and anthropometric measurements were available for 454 participants. Complete data was available for 454 participants which equates to a 45% response rate. Three development areas in Langa mirror the socioeconomic status (SES) of residents. A street map obtained from the City of Cape Town was used to select streets randomly in each of the three areas. Every second household was then approached for possible inclusion in the study.
Data collection

Data was collected during 2010. Demographic and smoking data were obtained by means of the PURE adult questionnaire during face-to-face interviews. Trained fieldworkers also took participants’ physical measurements (weight, height, waist and hip circumference and blood pressure). Weight was measured to the nearest 0.1kg, with subjects wearing minimal clothing, using a digital scale (UC-321 Precision scale, A&D Instruments, Oxford, UK). Height was measured using a stadiometer (3PHTROD, Detecto, Webb City, MO USA) with the participant standing with normal posture and barefoot. Measurements were read to the nearest 0.1cm with the subjects’ head in Frankfort plane. Body mass index was calculated by taking the weight (kg) and dividing it by the height (m) squared and presented by BMI category. Waist circumference was measured over minimal clothing at the narrowest part of the body between the ribcage and iliac crest to the nearest 0.1cm using a non-stretchable measuring tape (Dean, Cloth & Notions, London, UK). Hip circumference was measured over minimal clothing at the widest part of the body over the buttocks, with the same measuring tape. Two readings for all anthropometric measurements were taken and the mean calculated. Waist-hip-ratio and WHtR were calculated. Blood pressure was measured on the left arm with the participant sitting relaxed, with the arm at heart level using a digital blood pressure monitor (Omron, Kyoto, Japan).

Trained fieldworkers conducted the interviews with the participants and completed the validated quantified food frequency questionnaires. Participants estimated portion sizes by using a food-portion photograph book and other suitable tools (MRC Dietary Assessment and Education Kit [DAEK]). Portion sizes were converted to weights using standard tables and nutrient and food intakes were calculated by using the South African food-composition database. Food items were then divided into subgroups, namely dairy, fish, legumes, nuts and seeds, fruits and vegetables, fats and fibre. The dietary data was analysed using the MRC Foodfinder III software. A dietary adherence score was calculated based on nutrient and food group intakes as described under data analysis.
Ethics approval

Ethical approval for the Western Cape PURE study was obtained from the Research and Higher Degrees committee from the University of the Western Cape (project number 13/3/5). Informed, written consent was obtained from each participant.

Data analysis

Due to the low response rate (45%), the age, QFFQ data and physical activity data from the available 454 participants were compared with the same data of those of whom physical measurements were not taken, to determine bias introduced by missing data. Data analysis indicated no significant differences in the participants’ characteristics (age, gender, education level, and smoking status) between the study sample included for this paper and the rest of the cohort which was excluded due to missing data. Most data deviated from the normal distribution. Therefore, medians and interquartile range were calculated for continuous demographic, anthropometric, dietary and blood pressure data of men and women. Percentage and frequencies were calculated for categorical data.

Dietary adherence scores were calculated by dividing food intakes into quintiles. Intakes of foods (dairy, fish, legumes, nuts and seeds, and fruit and vegetables), fats (MUFA, PUFA, saturated fats) and fibre as recommended by the SAFBG\(^5\) and DASH guidelines\(^2\) were scored as follows: Q1 was allocated 1 point and quintile 5 equalled 5 points\(^3\). Thus participants who had intakes that fell into lowest quintile had the lowest intakes of the recommended foods. Total fat, saturated fat, meat, added sugar, alcohol and sodium were categorised as foods that need to be consumed in limited amount and was assigned a reverse score so that participants in Q1 for these foods were assigned 5 points and those in Q5 were assigned 1 point. A maximum score of 65 points could thus be attained if participants consumed the identified foods as per the recommendations. Food group scores were then summed to calculate an overall score for each participant. A lower score indicated poorer dietary adherence. In addition those whose adherence scores were in the first
tertile group were classified as non-adherent. Those whose adherence scores was in the third tertile were classified as being adherent to the dietary guidelines. In addition those whose adherence scores were in the first tertile group were classified as non-adherent. Those whose adherent scores were in the third tertile were classified as being adherent to the dietary guidelines.

Spearman correlations were calculated between continuous variables (dietary intake variables, anthropometric variables and BP) for men and women. Differences between anthropometric variables and BP of men and women were determined using the Mann-Whitney test. The Kruskal-Wallis test was used to compare the same variables across the three tertile groups of dietary adherence score. The presence of associations between dietary adherence vs non-adherence and BMI (overweight/obese [BMI≥25kg/m²] vs normal weight [BMI<25kg/m²]), WHtR (≤0.5 and > 0.5), WHR (≤0.85 and ≥0.85 for females and ≤0.90 and ≥ 0.90 for males) and WC (<102 and ≥102cm for males, <88cm and ≥ 88cm for females) were determined by means of chi square tests.

Participants were classified as normotensive if their SBP was <140mmHg and their DBP was <90mmHg. They were classified as hypertensive if their SBP was ≥140mmHg or DBP was ≥90mmHg, or if they were taking antihypertensive drugs.

Logistic regression and odds ratios were used to determine associations between BP as the dependent variable (hypertensive vs. normotensive) and diet adherence score, age, smoking and physical activity as covariates. Data analysis was done using the Statistical Package for Social Studies (SPSS) version 23 (SPSS Inc., Chicago, IL, USA).
4.4 Results

Demographic characteristics

Table 4.1 depicts the demographic profile of the participants. Approximately 67% (n=306) of the participants had obtained secondary and six percent (n=19) obtained a tertiary education. The majority (n=338; 74%) of the participants were unemployed. Almost 22% (n=69) of the women and 20% (n=22) of the men currently used alcohol. More than half (53%, n=237) were moderately active.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Women n (%)</th>
<th>Men n (%)</th>
<th>Total n (%)</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>341 (75.1%)</td>
<td>113 (25.2%)</td>
<td>454</td>
<td>0.38</td>
</tr>
<tr>
<td>Median age and interquartile range (years)</td>
<td>50.00 (45.2-57.5)</td>
<td>52 (41.5-58.0)</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Never married</td>
<td>184 (54)</td>
<td>45 (39.8)</td>
<td>229 (50.44)</td>
<td></td>
</tr>
<tr>
<td>• Currently married</td>
<td>94 (27.6)</td>
<td>43 (31.1)</td>
<td>137 (30.18)</td>
<td></td>
</tr>
<tr>
<td>• Common law/living with partner</td>
<td>10 (2.9)</td>
<td>8 (7.1)</td>
<td>18 (3.96)</td>
<td></td>
</tr>
<tr>
<td>• Widowed</td>
<td>35 (10.3)</td>
<td>6 (5.3)</td>
<td>41 (9.03)</td>
<td></td>
</tr>
<tr>
<td>• Separated</td>
<td>8 (2.3)</td>
<td>7 (6.2)</td>
<td>15 (3.3)</td>
<td></td>
</tr>
<tr>
<td>• Divorced</td>
<td>9 (2.6)</td>
<td>2 (1.8)</td>
<td>11 (2.4)</td>
<td></td>
</tr>
<tr>
<td>• Missing</td>
<td>1 (0.3)</td>
<td>2 (1.8)</td>
<td>3 (0.7)</td>
<td></td>
</tr>
<tr>
<td>Education level</td>
<td></td>
<td></td>
<td></td>
<td>0.19</td>
</tr>
<tr>
<td>• No school education</td>
<td>8 (2.3)</td>
<td>5 (4.4)</td>
<td>13 (2.86)</td>
<td></td>
</tr>
<tr>
<td>• Primary school</td>
<td>81 (23.8)</td>
<td>30 (26.5)</td>
<td>111 (24.4)</td>
<td></td>
</tr>
<tr>
<td>• High school/secondary school</td>
<td>238 (69.8)</td>
<td>68 (60.2)</td>
<td>306 (67.4)</td>
<td></td>
</tr>
<tr>
<td>• Trade school</td>
<td>1 (0.3)</td>
<td>2 (1.8)</td>
<td>3 (0.7)</td>
<td></td>
</tr>
<tr>
<td>• College/university</td>
<td>12 (3.5)</td>
<td>7 (6.2)</td>
<td>19 (4.6)</td>
<td></td>
</tr>
<tr>
<td>• Unknown</td>
<td>1 (0.3)</td>
<td>1 (0.9)</td>
<td>2 (0.4)</td>
<td></td>
</tr>
<tr>
<td>Employment</td>
<td></td>
<td></td>
<td></td>
<td>0.96</td>
</tr>
<tr>
<td>• Currently Employed</td>
<td>59 (18.4)</td>
<td>20 (17.7)</td>
<td>79 (17.4)</td>
<td></td>
</tr>
<tr>
<td>• Unemployed</td>
<td>253 (79.1)</td>
<td>85 (75.2)</td>
<td>338 (74.4)</td>
<td></td>
</tr>
<tr>
<td>• Retired</td>
<td>8 (2.5)</td>
<td>8 (7.1)</td>
<td>36 (7.9)</td>
<td></td>
</tr>
<tr>
<td>• Missing</td>
<td></td>
<td></td>
<td>38 (8.4)</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.1: Sociodemographic, BMI and lifestyle profile of participants continued

<table>
<thead>
<tr>
<th>Type of Employment</th>
<th>Men</th>
<th>Women</th>
<th>Total</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legislators, senior officials and managers</td>
<td>0</td>
<td>1 (0.9)</td>
<td>1 (0.2)</td>
<td>0.43</td>
</tr>
<tr>
<td>Professionals</td>
<td>4 (1.2)</td>
<td>2 (1.8)</td>
<td>6 (1.3)</td>
<td></td>
</tr>
<tr>
<td>Technicians and associate professionals</td>
<td>3 (0.9)</td>
<td>1 (0.9)</td>
<td>4 (0.9)</td>
<td></td>
</tr>
<tr>
<td>Clerks</td>
<td>4 (1.2)</td>
<td>3 (2.7)</td>
<td>7 (1.5)</td>
<td></td>
</tr>
<tr>
<td>Service, shop and market sales workers</td>
<td>11 (3.4)</td>
<td>1 (0.9)</td>
<td>12 (2.6)</td>
<td></td>
</tr>
<tr>
<td>Craft and related trade workers</td>
<td>4 (1.2)</td>
<td>3 (2.7)</td>
<td>7 (1.5)</td>
<td></td>
</tr>
<tr>
<td>Plant and machine operators and assemblers</td>
<td>2 (0.6)</td>
<td>2 (1.8)</td>
<td>4 (0.9)</td>
<td></td>
</tr>
<tr>
<td>Elementary occupations</td>
<td>21 (6.6)</td>
<td>9 (8.3)</td>
<td>30 (6.6)</td>
<td></td>
</tr>
<tr>
<td>Armed forces</td>
<td>4 (1.2)</td>
<td>1 (0.9)</td>
<td>5 (1.1)</td>
<td></td>
</tr>
<tr>
<td>Homemaker</td>
<td>266 (83.4)</td>
<td>85 (78.7)</td>
<td>351 (77.3)</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alcohol use history</th>
<th></th>
<th></th>
<th></th>
<th>0.03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formerly used alcohol products</td>
<td>6 (1.93)</td>
<td>8 (7.4)</td>
<td>14 (3.1)</td>
<td></td>
</tr>
<tr>
<td>Currently use alcohol products</td>
<td>69 (22.2)</td>
<td>22 (20.4)</td>
<td>91 (20.0)</td>
<td></td>
</tr>
<tr>
<td>Never used alcohol products</td>
<td>235 (75.8)</td>
<td>78 (72.2)</td>
<td>313 (68.9)</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tobacco use history</th>
<th></th>
<th></th>
<th></th>
<th>0.90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formerly used tobacco products</td>
<td>7 (2.2)</td>
<td>3 (2.8)</td>
<td>10 (2.2)</td>
<td></td>
</tr>
<tr>
<td>Currently use tobacco products</td>
<td>62 (20.0)</td>
<td>20 (18.5)</td>
<td>82 (10.1)</td>
<td></td>
</tr>
<tr>
<td>Never used tobacco products</td>
<td>241 (77.7)</td>
<td>85 (78.7)</td>
<td>326 (71.8)</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical activity</th>
<th></th>
<th></th>
<th></th>
<th>0.40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>59 (17.3)</td>
<td>18 (15.9)</td>
<td>77 (16.9)</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>183 (53.7)</td>
<td>54 (47.8)</td>
<td>237 (52.2)</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>60 (17.6)</td>
<td>25 (22.1)</td>
<td>85 (18.7)</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hypertension treatment</th>
<th></th>
<th></th>
<th></th>
<th>0.39</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>162 (48.5)</td>
<td>52 (46.4)</td>
<td>214 (47.1)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>172 (51.5)</td>
<td>60 (53.1)</td>
<td>232 (51.1)</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data are number (%) or median (interquartile range)
Difference between men and women by chi square test for categorical variables and Mann-Whitney test for age
Anthropometric measurements, dietary intakes and blood pressure of participants

The women had a significantly higher median weight, WC and BMI measurements than the men. A significant difference in WHR (p=0.0001) and in DBP (p=0.013) between the two groups was also found. The median dietary intakes from the different food groups were very similar for the men and women (Table 4.2).

Most (85.6%; n=292) of the women were classified as overweight/obese in comparison to 45% (n=51) of the men (Table 4.2.). Almost 52% (n=172) of the women and 53% (n=60) of the men were classified as hypertensive (Table 4.1).

Table 4.2: Anthropometric measurements, blood pressure and mean dietary intakes of study population

<table>
<thead>
<tr>
<th></th>
<th>Women</th>
<th></th>
<th></th>
<th>Men</th>
<th></th>
<th></th>
<th>P#</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median</td>
<td>25th</td>
<td>75th</td>
<td>Median</td>
<td>25th</td>
<td>75th</td>
<td><0.0001</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>84.0</td>
<td>69.5</td>
<td>100.0</td>
<td>70.0</td>
<td>59.0</td>
<td>84.0</td>
<td></td>
</tr>
<tr>
<td>Height (cm)</td>
<td>157.0</td>
<td>153.00</td>
<td>161.0</td>
<td>169.0</td>
<td>163.0</td>
<td>174.0</td>
<td><0.0001</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>34.2</td>
<td>28.2</td>
<td>40.2</td>
<td>24.3</td>
<td>20.7</td>
<td>30.5</td>
<td><0.0001</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>100</td>
<td>89</td>
<td>110</td>
<td>86</td>
<td>79</td>
<td>100.5</td>
<td><0.0001</td>
</tr>
<tr>
<td>Waist-hip ratio (WHR)</td>
<td>0.86</td>
<td>0.79</td>
<td>0.91</td>
<td>0.88</td>
<td>0.83</td>
<td>0.94</td>
<td><0.001</td>
</tr>
<tr>
<td>Waist-height ratio (WHtR)</td>
<td>0.63</td>
<td>0.57</td>
<td>0.70</td>
<td>0.52</td>
<td>0.47</td>
<td>0.60</td>
<td><0.0001</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>137.0</td>
<td>122.5</td>
<td>151.0</td>
<td>137.0</td>
<td>120.0</td>
<td>153.5</td>
<td>0.744</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>89.0</td>
<td>80.0</td>
<td>97.0</td>
<td>85.0</td>
<td>76.0</td>
<td>94.5</td>
<td>0.013</td>
</tr>
<tr>
<td>Diet score</td>
<td>41</td>
<td>37</td>
<td>44</td>
<td>42</td>
<td>36</td>
<td>46</td>
<td></td>
</tr>
</tbody>
</table>

Comparison of variables of men and women by Mann-Whitney test
MUFA: monounsaturated fat PUFA: polyunsaturated fat Satfat: saturated fat CHO: carbohydrates
The dietary adherence scores assigned to the different food categories are depicted in Table 4.3. After the component score was computed the study sample had a total dietary adherence score which ranged from 21-58 out of a possible maximum of 65. The upper cut-point for the lower tertile group defined as non-adherent was a score of 31. Those whose adherence score was in the third tertile were classified as being adherent to the dietary guidelines, with a lower cut-point score of 40.

Significant differences between sodium (p=0.001), alcohol (p=0.006), total energy (p=0.01), saturated fat (p=0.001), and MUFA intakes (p=0.005) were present between tertile 1 and tertile 3 of the dietary adherence score groups. There were no differences in protein, fibre and carbohydrate intakes between tertile 1 and tertile 3 of the dietary adherence score groups. No significant differences were present between tertile groups for anthropometric measurements and blood pressure (Table 4.4).
Table 4.3: Scoring criteria for dietary recommendations and intake for quintiles 1 to 5

<table>
<thead>
<tr>
<th></th>
<th>Q1 (1 point)</th>
<th>Q2 (2 points)</th>
<th>Q3 (3 points)</th>
<th>Q4 (4 points)</th>
<th>Q5 (5 points)</th>
<th>DASH or SAFBDG Recommendation per day</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUFA (%TE)</td>
<td>Median</td>
<td>Range</td>
<td>Median</td>
<td>Range</td>
<td>Median</td>
<td>Range</td>
</tr>
<tr>
<td></td>
<td>4.36</td>
<td>2.97-4.89</td>
<td>5.30</td>
<td>4.93-5.76</td>
<td>6.41</td>
<td>5.78-7.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.31</td>
<td>7.2-9.28</td>
<td>11.8</td>
<td>9.3-12.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAFBGD Recommendation</td>
<td>10-12% of total energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUFA (%TE)</td>
<td>3.39</td>
<td>1.22-3.67</td>
<td>4.65</td>
<td>3.67-5.33</td>
<td>6.18</td>
<td>5.36-6.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.53</td>
<td>6.94-8.10</td>
<td>8.92</td>
<td>8.09-10.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAFBGD Recommendation</td>
<td>6 to <10% of total energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibre (g)</td>
<td>10.6</td>
<td>2.12-13.7</td>
<td>15.4</td>
<td>13.7-17.7</td>
<td>19.5</td>
<td>17.8-21.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>23.4</td>
<td>21.6-26.0</td>
<td>28.9</td>
<td>26.0-47.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAFBGD Recommendation</td>
<td>20-35g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy (g)</td>
<td>0</td>
<td>0-12.6</td>
<td>35.3</td>
<td>12.6-51.4</td>
<td>71.4</td>
<td>51.4-90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>105.6</td>
<td>90-135.7</td>
<td>179.2</td>
<td>139-468</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAFBGD Recommendation</td>
<td>400-500ml per day</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish (g)</td>
<td>0</td>
<td>0-0</td>
<td>0</td>
<td>0-6</td>
<td>12</td>
<td>6-16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21.8</td>
<td>16.4-30</td>
<td>44.3</td>
<td>30-120</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAFBGD Recommendation</td>
<td>30g per day (2-3 portions (80-90g per week)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legumes, nuts & seeds (g)</td>
<td>0</td>
<td>0-0</td>
<td>0</td>
<td>0-0</td>
<td>2</td>
<td>0-8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>8.33-35.7</td>
<td>60</td>
<td>35.7-252</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAFBGD Recommendation</td>
<td>100-200g per week (4-5 servings per week)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruit & vegetables (g)</td>
<td>103.9</td>
<td>0-160.3</td>
<td>213</td>
<td>161-260</td>
<td>298.5</td>
<td>261-336.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>390.1</td>
<td>337-452.8</td>
<td>560.4</td>
<td>458.7-886.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAFBGD Recommendation</td>
<td>400g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REVERSE SCORE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total fat (%TE)</td>
<td>Median</td>
<td>Range</td>
<td>Median</td>
<td>Range</td>
<td>Median</td>
<td>Range</td>
</tr>
<tr>
<td></td>
<td>17.9</td>
<td>6.7-19.5</td>
<td>20.0</td>
<td>19.7-20.1</td>
<td>22.9</td>
<td>20.2-28.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30.7</td>
<td>28.8-32.4</td>
<td>35.4</td>
<td>32.5-45.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAFBGD Recommendation</td>
<td>20-30% of total energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Satfat (%TE)</td>
<td>4.52</td>
<td>1.08-5.29</td>
<td>6.21</td>
<td>5.34-6.83</td>
<td>7.39</td>
<td>6.85-7.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.81</td>
<td>7.95-9.69</td>
<td>11.0</td>
<td>9.72-15.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAFBGD Recommendation</td>
<td>7-10% of total energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat (g)</td>
<td>21.6</td>
<td>0-41</td>
<td>55.0</td>
<td>41-67.6</td>
<td>81.0</td>
<td>67.8-98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>115.4</td>
<td>98.7-140</td>
<td>182.8</td>
<td>140.5-569.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAFBGD Recommendation</td>
<td>80-90g per day</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Added sugar (%TE)</td>
<td>3.04</td>
<td>0-4.55</td>
<td>5.79</td>
<td>4.57-6.8</td>
<td>7.97</td>
<td>6.81-9.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10.7</td>
<td>9.33-12.8</td>
<td>17.0</td>
<td>12.9-33.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAFBGD Recommendation</td>
<td>≤10% of total energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohol (g)</td>
<td>0</td>
<td>0-0</td>
<td>0</td>
<td>0-0</td>
<td>0</td>
<td>0-0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14.9</td>
<td>0-60</td>
<td>142.9</td>
<td>61.2-33.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAFBGD Recommendation</td>
<td>≤24g (F) & ≤45g (M)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium (mg)</td>
<td>2467.3</td>
<td>597.2-2941.7</td>
<td>3288.9</td>
<td>2982.3-3496.7</td>
<td>3650.4</td>
<td>3497.4-3776.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3999.8</td>
<td>3784.6-4268.8</td>
<td>4652.3</td>
<td>4269.4-5966.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAFBGD Recommendation</td>
<td><2300mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MUFA: Mono-unsaturated fatty acids

PUFA: Poly-unsaturated fatty acids

TE: total energy

Satfat: Saturated fat
A significant positive correlation was found between age and both DBP and SBP, in both men (0.422 and 0.312 respectively) and women (0.399 and 0.160, respectively). Significant negative correlations were found between dietary adherence score ($r=-0.108$), sodium intake ($r=-0.124$) and total energy intake ($r=-0.11$) and SBP in women only. A significant positive correlation was found between MUFA intake ($r=0.154$) and added sugar ($r=0.116$), respectively and SBP for
women only. Significant positive correlations were observed between WC, WHR and WHtR and both SBP and DBP in the men, as well as with DBP in the women (Table 4.5).

Logistic regression and odds ratios were used to determine associations between BP as the dependent variable (hypertensive vs. non-hypertensive) and dietary adherence score with age, current smoking, current alcohol use and physical activity as covariates. In the logistic regression model, only age was significantly associated with being hypertensive. Those with the highest level of physical activity tended to have lower odds of being hypertensive (OR = 0.49, 95% CI, 0.22 – 1.07, p=0.07). Dietary adherence score was not significantly associated with being hypertensive (OR=0.97, 95% CI, 0.91-1.04, p=0.38, Table 4.6).

| Table 4.5: Correlation of anthropometric parameters and dietary intake with blood pressure |
|-----------------------------------|--------|--------|--------|--------|
| | Women | | Men | |
| | SBP | DBP | SBP | DBP |
| Age | 0.399**| 0.160**| 0.422**| 0.312**|
| Total energy (kJ) | -0.11**| -0.075 | -0.102 | -0.115 |
| %TE protein | 0.023 | -0.06 | 0.026 | -0.025 |
| %TE fat | -0.083 | -0.61 | 0.088 | 0.012 |
| % TE Saturated fat | -0.071 | -0.059 | 0.083 | 0.022 |
| % TE MUFA | 0.154**| 0.075 | 0.102 | 0.115 |
| % TE PUFA | -0.106 | -0.07 | -0.049 | -0.118 |
| %TE Carbohydrate | 0.048 | 0.066 | -0.031 | 0.048 |
| % TE Added sugar | 0.116* | 0.089 | 0.005 | 0.079 |
| Total fibre intake | -0.107 | -0.029 | -0.156 | -0.173 |
| Sodium intake | -0.124*| -0.074 | -0.053 | -0.018 |
| Dietary adherence score | -0.108*| -0.029 | -0.065 | -0.107 |
| Tertile rank of dietary adherence score | -0.093 | -0.070 | -0.057 | -0.069 |
| Physical activity | -0.100 | -0.85 | -0.084 | -0.134 |
| Weight | 0.009 | 0.079 | 0.210* | 0.221* |
| Body mass index | 0.037 | 0.085 | 0.219* | 0.225* |
| Waist circumference | 0.058 | 0.122* | 0.340**| 0.335**|
| Waist-hip ratio | 0.077 | 0.126* | 0.327**| 0.234* |
| Waist-to-height ratio | 0.089 | 0.151**| 0.330**| 0.313**|

**Significant at 0.01 level (2-tailed test) *Significant at 0.05 level (2-tailed test)

%TE: percentage of total energy %TE MUFA: percentage of total energy from monounsaturated fatty acids %TE PUFA: percentage of total energy from polyunsaturated fatty acids
Table 4.6: Variables associated with hypertension in the logistic regression model*

<table>
<thead>
<tr>
<th>Variable</th>
<th>Odds ratio (OR)</th>
<th>95% confidence intervals (CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.21</td>
<td></td>
<td>0.22</td>
</tr>
<tr>
<td>Age</td>
<td>1.06</td>
<td>1.03</td>
<td>1.09</td>
</tr>
<tr>
<td>Dietary adherence score</td>
<td>0.97</td>
<td>0.91</td>
<td>1.04</td>
</tr>
<tr>
<td>Physical activity:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inactive</td>
<td>Reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderately active</td>
<td>0.95</td>
<td>0.50</td>
<td>1.81</td>
</tr>
<tr>
<td>Highest activity</td>
<td>0.49</td>
<td>0.22</td>
<td>1.07</td>
</tr>
</tbody>
</table>

*Model with best fit, Hosmer and Lemeshow test, p=0.826

4.5 Discussion

The main aim of this study was to assess whether diet quality as depicted by a dietary adherence score based on a combination of the DASH diet\(^2\) and the SAFBGD\(^5\) and anthropometric measurements was associated with blood pressure in an urban black population.

There was no significant difference in the distribution of the diet adherence scores between the men and women (Table 4.2.).

Participants with lowest adherence scores had significantly lower intakes of dairy products, fruit and vegetables, legumes and fish, and higher intakes of meat and meat products and sodium in comparison to those in the highest diet adherence group. Intakes of total fat, SFA, MUFA and PUFA did not differ significantly between the lowest and highest adherence groups.

A significant inverse association between the dietary adherence score and SBP in women was found. Studies support our finding that a low dietary adherence score (indicating an unhealthier dietary intake) was associated with higher blood pressure.\(^8\)

Although sodium intake could not be quantified accurately in this study, participants categorised in the lowest tertile of dietary adherence scores had significantly higher sodium and saturated fat intakes than those in the top tertile of dietary adherence score. A high sodium intake has been
associated with hypertension, a risk factor for cardiovascular disease. Consequently a public health call by various health professionals and organisations for reducing salt consumption has been made. This advisory for reduced salt intake is supported by the findings of a systematic review by Lala and colleagues which concluded that even though they could not find a dose response link, a decrease in salt intake resulted in lower systolic and diastolic blood pressure. Another unexpected finding was a weak, but significant negative correlation between sodium intake and SBP in the women. However, since we did not assess 24-hour urinary sodium excretion or added salt intakes, we did not have an accurate measure of dietary sodium intakes and cannot draw conclusions from this negative correlation.

Saturated fat intake has been linked to SBP and DBP. The DASH diet guidelines, recommend a low saturated fat intake, which has been proven to reduce BP in a systematic review and meta-analysis. Low intakes of polyunsaturated fatty acids (PUFA) have been associated with elevated blood pressure levels. In our study even though the majority of participants had PUFA intakes below the SAFBDG recommendation of 6-10% of total energy, no association between intake of PUFA and SBP and DBP was found. In a recent study oily fish consumption of up to 5 servings per week resulted in a sustained decrease in SBP. This led the authors to conclude that the current recommendation for fish intake might be insufficient; they also found intakes of ≥6 servings per week did not have any additional benefits. In the current study a positive correlation was observed between MUFA intake and SBP in the women’s group. This finding is difficult to explain and different from the study of Rasmussen and colleagues, who found that an increase in MUFA intake and a decrease in saturated fat intake resulted in a decrease in DBP. Furthermore, they also found that the beneficial effect of MUFA was lost in the presence of a total fat intake >37%.

In our study added sugar intake was positively correlated with SBP in the women. It has been suggested that an excessive intake of added sugar can result in increased blood pressure. In addition an increased risk of stroke mortality has been associated with high carbohydrate intakes and high glycaemic index (GI) diets. These findings resulted in recommendation from the American Heart Associations (AHA) of a reduction in added sugar and high GI carbohydrates
consumption. The role of diet (high salt, high fat, low fibre, low fruit and vegetables intake) in the development of hypertension is well-documented. This has led to a variety of dietary patterns such as the Mediterranean diet and DASH diet being developed in an attempt to prevent and treat hypertension. Adherence to food based-dietary guidelines and diets in general is affected by many factors including globalisation, cultural beliefs, acceptability of recommended foods, socio-economic status and level of education. The indications of low adherence to dietary guidelines found in this study could be due to the fact that the majority of the participants were unemployed and of low SES which influences food purchasing behaviour. Healthy food options are also perceived as being more costly in comparison to the less healthy options and often affordable healthier food options are not readily available in the community. Lack of adherence to guidelines presents as overconsumption of unhealthy food leading to poor health outcomes. Adherence to guidelines has been shown to be effective in promoting general health reducing all-cause mortality.

Significant differences were observed between the gender groups in terms of their DBP and most anthropometric measurements. In this study WC, WHR and WHtR measurement was positively correlated with SBP and DBP in men and with DBP in women. In their study, Sharaye and colleagues found significant associations between WHtR and SBP and DBP in both men and women, and with WC and SBP in men only.

Fifty-one percent of the study sample was classified as being hypertensive (BP ≥140/90mmHg). These findings corroborate a statement issued by the Heart and Stroke Foundation of South Africa (HSFSA) of a high prevalence of hypertension in South Africa. The risk factors for the development of hypertension include obesity, especially central obesity, low levels of physical activity, a diet that is high in calories, fat, salt and refined carbohydrates, and low in fibre and fruit and vegetables, excessive alcohol use and tobacco use.

In this study measures of abdominal obesity were positively correlated with SBP and DBP in men and with DBP in women. We used a WC cut-off value of 88cm and 102cm for females and males respectively, indicating substantially increased risk. Recent studies in black South African
populations have shown that the International Diabetes Federation (IDF) recommendations of WC cut-off values for abdominal obesity of ≥80cm and ≥94cm for females and males respectively, overestimates prevalence of metabolic syndrome in Black populations. Almost 85% of our study sample had a WC above the IDF cut-off values for women and men, 64% had WHR values above sex-specific cut-points and 48% had WHtR above the cut-off value of 0.5.

Seventy-six percent (n=343) of the study sample was classified as overweight/obese (BMI ≥25 kg/m²). The link between hypertension and BMI has been established including in a recent four-country cross-sectional study which investigated the burden of hypertension in sub-Saharan Africa. Recently it has been suggested that WHtR is superior to BMI as an indicator of obesity and cardiometabolic risk. Sugasri and colleagues found that as WHR, BMI, waist and hip circumference, and WHtR increased, the level of hypertension increased in their study participants. Bombelli and colleagues found that an increase in both BMI and WC indices was associated with increases in SBP and DBP.

Black South African females associate being overweight with self-esteem, contentment, good health and wealth and consider obesity acceptable and desirable. This perception presents a major challenge since it influences willingness to lose weight and possibly adherence to dietary guidelines. Healthier food options are also perceived as being more expensive in comparison to the less healthy options and often affordable healthier food options are not readily available in the community. Langa, the community where this study was conducted has a high unemployment rate. Only 17% of the study sample were employed which influenced the type of foods being purchased for consumption.

According to the SANHANCES-1 report, the Western Cape Province has the highest prevalence of smoking in South Africa. Approximately 10% of the participants smoked in this study. Men were more likely than women to be current smokers. Smoking has been positively linked with increased blood pressure.
Current recommendations for PA is moderate-intensity physical activity of 30 minutes daily which is equivalent to an energy expenditure of 3-6 metabolic equivalents (METs). In the current study 52% of the participants reported that they were moderately active and approximately 19% reported having high levels of PA. Self-reported physical activity is considered not to be very accurate compared to direct physical activity measurement, although the IPAQ questionnaire used in this study is considered to be a reliable instrument to test self-reported PA. Physical activity has been associated with lower blood pressure.

A number of reasons could explain the lack of association between dietary adherence score, adiposity variables and blood pressure in the present study. Dietary adherence score was based on quintiles of the participants’ actual self-reported intakes. This is not the ideal situation to assess the best adherence to the dietary guidelines. Therefore, even those with the highest scores could probably not be described as “adherent” to dietary guidelines. It is difficult to determine adherence, because adherence measures depend on self-report. We used a validated QFFQ and fieldworkers were trained on how to complete the QFFQ and determine portions sizes consumed with the highest accuracy possible in this setting. Self-reported intakes were then compared with dietary guidelines, modelled on methods proposed by Fung and colleagues. Despite these carefully planned methods, it is still possible that participants with the highest adherence scores would not necessarily be the most adherent to dietary guidelines. Furthermore, a large proportion of the participants were on antihypertensive drugs, however, no information regarding their adherence to drug treatment was available. Non-adherence to antihypertensive drugs could have a more profound effect on their BP than adherence to a diet in line with the DASH guidelines. Obesity develops over time, thus recent adherence to dietary guidelines may not necessarily be associated with a more optimal body composition.

4.6 Limitations

The following limitations need to be considered. The high percentage of participants with missing values for physical measurements and the small number of male respondents might have influenced the results. The dietary adherence score was based on self-reported dietary intakes, which is considered to be relatively inaccurate. As the budget of this study was insufficient to
include biochemical measurements, we were unable to determine the levels of blood glucose or lipids. Finally, as this was a cross-sectional study no causal relationship can be inferred between any of the factors and hypertension.

4.7 Conclusion

This study revealed that even though the anthropometric measurements (BMI, WC, WHR and WHtR) of participants in the different adherence score tertile groups, BMI was positively associated with BP in men only. A significant negative correlation between the dietary adherence score and SBP was found in women.

4.8 Acknowledgements

The authors would like to thank all supporting staff and the participants of the PURE study and in particular: **PURE-South Africa:** The PURE-WC-SA research team, field workers and office staff in the SoPH, University of the Western Cape, Bellville, South Africa. **PURE International:** Dr S Yusuf and the PURE project office staff at the Population Health Research Institute (PHRI), Hamilton Health Sciences and McMaster University. ON, Canada.

4.9 Conflict of Interest

The authors declare that there is no conflict of interest.
REFERENCES

ADDENDUM Q: Author Guidelines for SAJCN

Author Guidelines

Copyright
Material submitted for publication in the South African Journal of Clinical Nutrition (SAJCN) is accepted provided it has not been published elsewhere. Copyright forms will be sent with acknowledgement of receipt and the SAJCN reserves copyright of the material published.
The SAJCN does not hold itself responsible for statements made by the authors.

Authorship
All named authors must give consent to publication. Authorship should be based only on substantial contribution to: (i) conception, design, analysis and interpretation of data; (ii) drafting the article or revising it critically for important intellectual content; (iii) final approval of the version to be published. All three of these conditions must be met (Uniform requirements for manuscripts submitted to biomedical journals; www.icmje.org/index.html).

Conflict of interest
Authors must declare all sources of support for the research and any association with the product or subject that may constitute conflict of interest.

Protection of patient's rights to privacy
Identifying information should not be published in written descriptions, photographs, and pedigrees unless the information is essential for scientific purposes and the patient (or parent or guardian) gives informed written consent for publication. Informed consent for this purpose requires that the patient be shown the manuscript to be published. (www.icmje.org)

Ethnic classification
Work that is based on or contains reference to ethnic classification must indicate the rationale for this.

Manuscripts
Short items are more likely to appeal to our readers and therefore to be accepted for publication. Manuscript should not exceed 4000 words in total all contents inclusive.

Original articles of 4 000 words or less, with up to 6 tables or illustrations, should normally report observations or research of relevance to the field of nutrition. References should preferably be limited to no more than 25.

Short reports or scientific letters, which include case reports, side effects of nutrient supplements/drugs and
brief or negative research findings should be 1000 words or less, with 1 table or illustration and no more than 6 references.

Editorials, Opinions, Issues in the field of nutrition. should be about 1000 words and are welcome, but unless invited, will be subjected to the SAJCN peer review process.

Review articles are rarely accepted unless invited.

Letters to the editor, if intended for the correspondence column, should be marked ‘for publication’, signed by all authors and presented in triple spacing. Letters should be no longer than 400 words with only one illustration or table.

Obituaries should not exceed 400 words and may be accompanied by a photograph.

Manuscript preparation

- Please submit your manuscript electronically at www.sajcn.co.za
- Research articles should have a structured abstract not exceeding 250 words (50 for short reports) comprising: Objectives, Design, Setting, Subjects, Outcome measures, Results and Conclusions.
- A second abstract should be written in simple and clear spoken language highlighting the reason(s) that the research work was undertaken, the key findings and the key recommendations **WITHOUT,** overtly or covertly implying or containing any claims of whatsoever nature, but rather explaining how the work will help scientists (and/or lay persons) better understand and address the topic of investigation. The abstract should not exceed an absolute maximum of 75 words. In addition, please also include a < 140 character, "strong" message that can be used for social media.
- Refer to articles in recent issues for guidance on the presentation of headings and subheadings.
- Abbreviations should be spelled out when first used in the text and thereafter used consistently.
- Scientific measurements should be expressed in SI units except: blood pressure should be given in mmHg and haemoglobin values in g/dl.

If in doubt, refer to www.icmje.org/index.html

Illustrations

1. Figures consist of all material that cannot be set in type, such as photographs and line drawings.
2. Tables and legends for illustrations should appear on separate sheets and should be clearly identified.
3. Line drawings should be arranged to conserve vertical space. Note that reduction to 80 mm for a single column or 170 mm for double columns should not render lettering illegible. Explanations should be included in the legend and not on the figure itself.
4. Figure numbers should be clearly marked on the back of prints and the top of illustrations should be indicated.

5. If any tables or illustrations submitted have been published elsewhere, written consent to republication should be obtained by the author from the copyright holder and the author(s).

6. A limited number of illustrations are free at the discretion of the editor. Colour illustrations are encouraged but are charged to the author.

A quote will be provided on request. Consider sponsorship.

References
References should be inserted in the text as superior numbers and should be listed at the end of the article in numerical and not in alphabetical order.

Authors are responsible for verification of references from the original sources.

References should be set out in the Vancouver style and approved abbreviations of journal titles used; consult the List of Journals in Index Medicus for these details.

Names and initials of all authors should be given unless there are more than six, in which case the first three names should be given followed by et al. First and last page numbers should be given.

Journal references should appear thus:

Book references should be set out as follows:

Manuscripts accepted but not yet published can be included as references followed by (in press).

Unpublished observations and personal communications may be cited in the text, but not in the reference list.

Manuscript revisions

In the event of a manuscript needing revision following the peer review process, all revision changes to the original manuscript should be made using the "track changes" function in Microsoft Word, or in any other such similar format so as to facilitate the speedy completion of the review process. In the event of an "author-reviewer" difference of opinion, the author(s) should state their opinion in writing in the text, which should be bracketed. Revised manuscripts which do not conform to this revision format will be returned to the authors for
Revised manuscript should be resubmitted electronically within 3 weeks of receipt thereof.

Galley proofs
Galley proofs will be forwarded to the author before publication and if not returned within 2 weeks will be regarded as approved. Please note that alterations to typeset articles are costly and will be charged to the authors.

Changes of address
Please notify the Editorial Department of any address changes so that proofs and invoices may be mailed without delay.

Reprints
An order form for reprints, with a price list, will be sent to the author as soon as an article has been placed.

CPD points
Authors can earn up to 15 CPD points for published articles. Certificates will be provided on request after the article has been published.

Submission Preparation Checklist
As part of the submission process, authors are required to check off their submission’s compliance with all of the following items, and submissions may be returned to authors that do not adhere to these guidelines.

1. The submission has not been previously published, nor is it before another journal for consideration (or an explanation has been provided in Comments to the Editor).
2. The submission file is in Microsoft Word, or RTF file format
3. When available, the URLs to access references online are provided, including those for open access versions of the reference. The URLs are ready to click (e.g., http://pkp.sfu.ca).
4. The text is single-spaced; uses a 12-point font; employs italics, rather than underlining (except with URL addresses); and all illustrations, figures, and tables are placed within the text at the appropriate points, rather than at the end.
5. The text adheres to the stylistic and bibliographic requirements outlined in the Author Guidelines, which is found in About the Journal.
6. If submitting to a peer-reviewed section of the journal, the instructions in Ensuring a Blind Review have been followed.
7. The manuscript has an abstract.

Copyright Notice
Material submitted for publication in the South African Journal of Clinical Nutrition (SAJCN) is accepted provided it has not been published elsewhere. Copyright forms will be sent with acknowledgement of receipt and the SAJCN reserves copyright of the material published.

The SAJCN does not hold itself responsible for statements made by the authors.

Privacy Statement

The names and email addresses entered in this journal site will be used exclusively for the stated purposes of this journal and will not be made available for any other purpose or to any other party.

S Afr J Clin Nutr: ISSN (Print): 1607-0658, ISSN (Web): 2221-126
CHAPTER 5: MANUSCRIPT 2

Adherence challenges encountered in an intervention programme to combat chronic non-communicable diseases in an urban black community, Cape Town
Adherence challenges encountered in an intervention programme to combat chronic non-communicable diseases in an urban black community, Cape Town

Nasheetah Solomons a,*, Herculina Salomé Kruger b, Thandi Rose Puoane c

a Department of Dietetics and Nutrition, University of the Western Cape, South Africa
b Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
c School of Public Health, University of the Western Cape, South Africa

ABSTRACT

Background: Chronic non-communicable diseases (CNCD) have become the greatest contributor to the mortality rate worldwide. Despite attempts by Governments and various non-governmental organisations to prevent and control the epidemic with various intervention strategies, the number of people suffering from CNCD is increasing at an alarming rate in South Africa and worldwide.

Objectives: Study's objectives were to explore perceived challenges with implementation of, and adherence to health messages disseminated as part of a CNCD intervention programme; to gain an understanding of participants' expectations of CNCD intervention programmes; and to explore the acceptability and preference of health message dissemination methods. In addition, participants' awareness of, and willingness to participate in CNCDs intervention programmes in their community was explored.

Methods: Participants were recruited from the existing urban Prospective Urban Rural Epidemiology study site in Langa, Cape Town. Focus group discussions were conducted with 47 participants using a question guide. Summative content analysis was used to analyse the data.

Results: Four themes emerged from the data analysis: practical aspects of implementation and adherence to intervention programmes; participants' expectations of intervention programmes; aspects influencing participants' acceptance of interventions; and their preferences for health message dissemination. The results of this study will be used to inform CNCDs intervention programmes.

Conclusions: Our findings revealed that although participants found current methods of health message dissemination in CNCDs intervention acceptable, they faced real challenges with implementing and adhering to CNCDs to these messages.

Copyright © 2016, The Authors. Publishing services by Elsevier B.V. on behalf of Johannesburg University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Chronic non-communicable diseases (CNCD) – diseases that are non-transmissible and non-infectious – have been proven conclusively to be the main causes of adult morbidity and mortality, worldwide (Oli, Vaidya, & Thapa, 2013; Whiteside, 2014). These diseases include diabetes, cardiovascular diseases, certain cancers and chronic respiratory diseases (Ezzati & Riboli, 2012; Herrera-Cuenca, Castro, Mangia, & Correa, 2014; Li, 2013). Currently, CNCD are responsible for more than 50% of the global disease burden, with an estimated 80% of associated deaths (Hunter & Reddy, 2013; Isaacs et al., 2014; Levitt, Steyn, Dave, & Bradshaw, 2011; Rossier, Souri, Duthe, & Findlay, 2014).

The rapid increase of CNCD in low- and middle-income countries is well documented. South Africa, however, is also experiencing this trend yet it is classified as an upper-middle-income country by the World Bank (2015) income classification (Alwan & MacLean, 2009; Teo, Chow, Vaz, Rangarajan, & Yusuf, 2009). According to Dalal et al. (2011), CNCD will be responsible for 46% of deaths in sub-Saharan Africa, with higher age-standardised death rates in four of these countries (CRC, Ethiopia, Nigeria and South Africa) compared to those in high-income countries.

Chronic non-communicable diseases which are attributable to modifiable risk factors including overweight, smoking, physical inactivity, high-fat energy-dense diets and alcohol use, hold serious consequences for national economic, socio-economic and developmental growth. Because of their chronicity, these diseases place an increased demand on the healthcare sector, with an increasing number of persons requiring specialised care. In addition, the fact that many of those affected by CNCD are of working-age, affects the country’s economic growth through productivity losses and prolonged disability (Ezzati & Riboli, 2012; Muka et al., 2015).

The findings of the recent South African National Health and Nutrition Examination Survey (SANHANES-1) indicates that the South Africans surveyed, who had self-reported histories of CNCD, matched the CNCD profile – they were overweight or obese, consumed a high fat and refined carbohydrate diet, consumed excessive amounts of alcohol, smoked tobacco and were physically less active. The rates of self-reported history of CNCD were also the highest in formal urban areas (Shishana et al., 2013).

In 2006, the National Department of Health in South Africa developed national guidelines for the management and control of non-communicable diseases, comparable to international standards (Department of Health, 2006; Mayosi et al., 2009). However, these guidelines were not effectively implemented – they were not circulated widely enough, while the management of chronic diseases was not monitored, or reviewed (Mayosi et al., 2009). In addition, the efficacy of a number of community-based CNCD interventions that exist in South Africa is also unknown.

At a national Summit on Non-Communicable Diseases, organised by the South African Ministry of Health in September 2011, targets aimed at reducing CNCD in South Africa by the year 2020 were set (Mayosi et al., 2012). Despite the existence of various CNCD intervention strategies, implemented by government, or non-governmental organisations, to address the CNCD epidemic, the number of people becoming afflicted by CNCD is increasing (Mayosi et al., 2012).

Evidence in the literature reveals the success of interventions, such as weight control, dietary intake modification, increased physical activity and decreased use of, or cessation of the use of, alcohol and tobacco products, in combating the development and management of CNCD (Drozek et al., 2014; Gortmaker et al., 2011; Merrill, Aldana, Greenlaw, Salberg, & Englert, 2008). However, many adults still struggle to implement and adhere to healthy lifestyle behaviours (Murray et al., 2013).

The present study is embedded in the ongoing Prospective Urban Rural Epidemiological (PURE) study of the Western Cape cohort. The PURE study is a global longitudinal study involving 25 high-, low-, and middle-income countries seeking to identify the population level factors that drive the development of known risk factors for CNCD in adults (Teo et al., 2009). Langa, the site of the Western Cape urban cohort is a suburb near the city of Cape Town, with an estimated population of 25,867 of which 99% is black African. This community has an unemployment rate of 40% while 72% of the household has an average monthly income of R3 200 (Census, 2011).

1.1. Research problem statement and objectives

The increase in CNCD in South Africa has been attributed to the country being in a “nutrition transition” which is characterised by a diet high in saturated fat, sugar and refined foods, together with decreased levels of physical activity (Lategan, van den Berg, & Walsh, 2014). The South African Government and non-governmental organisations are all striving to curb the spread of the CNCD epidemic by developing intervention programmes and creating awareness of these conditions. Information on how to prevent the development of CNCD is being disseminated by means of posters, pamphlets and various media [radio, television] (Puuane, Tsokeile, Sanders, & Parker, 2008).

Despite these various attempts, statistics indicate that the prevalence of CNCD is continuing to increase (Statistics South Africa, 2014). Possible reasons for this may be socio-cultural, environmental (space), language barriers, modes of health message dissemination or lack of knowledge (Ibrahim, de Villiers, & Ahmed, 2014; Ganiyu, Mabuza, Malete, Govender, & Ogunbanjo, 2013). Context-based challenges to the implementation of and adherence to CNCD intervention programmes’ health messages, awareness of community-based CNCD intervention programmes and the acceptability of these health messages have not been explored in South African black populations.

The objectives of this study, therefore, were to explore perceived challenges with implementation of and adherence to health messages disseminated as part of a CNCD intervention programme; to gain an understanding of participants’ expectations of CNCD intervention programmes, and explore the acceptability and preference of health message dissemination methods in CNCD intervention programmes. Additionally, participants’ awareness of existing CNCD intervention programmes in their community and their
willingness to participate in these intervention programmes were also investigated. Results from this study will be presented at conferences and will serve to raise awareness for the need of health messages which are tailored to meet communities’ context-based challenges.

2. Method and materials

2.1. Study design and context

This was a cross-sectional study which made use qualitative data collection methods. The focus group discussion (FGD) method was chosen for data collection, since this method encourages participants to express their personal views freely when conducted by a trained facilitator. In addition, a FGD is an efficient technique used for gaining a large amount of data regarding opinions and attitudes in the shortest amount of time (Masadeh, 2012).

This study was conducted in Langa. In the post-apartheid years Langa experienced a rapid population growth as a result of migration of people chiefly from the rural Eastern Cape (Census, 2011). The role of urbanisation and its consequent nutrition transition in the ONCD epidemic is well-documented and since Langa is considered to be a community in transition it was considered an ideal site for the study (Lategan et al., 2014).

2.2. Recruitment of study population

Participants were purposively sampled from the ongoing PURE study. Inclusion criteria were being a male or female Langa resident, aged 35–70 years. A research assistant (RA) approached potential participants during the PURE study follow-up interviews that were conducted in 2015 for possible participation in the study. During the recruitment phase (1–30 April 2015) the RA explained the purpose of the study as well as what would be expected from them during the FGDs. At this stage confidentiality was explained and the potential participants were also made aware of their right to decline to participate in the study at any time.

2.3. Data collection

Discussions were conducted over a period of three months (May–July 2015) at the community hall in Langa. This location was chosen, first, because it was easily accessible to the participants and, second, to ensure that the sessions would not be interrupted because of noise.

The Research team consisted of the principal researcher (PR) and a bilingual (English/isiXhosa) RA, who acted as an observer and recorded the verbal and non-verbal responses of the participants. The focus group sessions were conducted primarily in English, with some questions being asked in isiXhosa by the bilingual RA, when required.

At the start of each focus group session the PR, once again, explained the purpose of the focus group, confidentiality and the right to leave at any stage during the study. To ensure free and open discussion the PR also pointed out that there were no right or wrong answers. Thereafter, those who agreed to participate were requested to sign consent and group-binding confidentiality forms. The RA was also required to sign the group-binding confidentiality form at the start of each FGD session.

Four focus groups included ten (10) persons each, while the fifth group started out with eight (8) participants. However, 10 min into the discussion, one participant asked to be excused, leaving this fifth group with seven (7) persons. The PR developed a focus group guide to ensure consistency across all groups (Krueger, 2002). The questions included in the focus group guide are presented in Table 1.

Each session, which lasted between 45 min and 1 h, was audiotaped. The FGDs continued until data saturation was reached, and this was judged to have been reached after five sessions that included a total of 47 participants. At completion of each FGD session the PR and RA met for debriefing to compare and collate notes taken by the RA, consequently developing additional field notes (Krueger, 2002). Each participant received an amount of R20.00 for transport as compensation.

Ethical approval for the Western Cape PURE and this study was obtained from the Research and Higher Degrees committee of the University of the Western Cape (project number 13/3/5). Informed, written consent was obtained from each participant. Confidentiality and anonymity was maintained

<table>
<thead>
<tr>
<th>Table 1 – Focus group discussion guide.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ice breaker</td>
</tr>
<tr>
<td>Tell us your name and which animal you think you are most like, and why</td>
</tr>
<tr>
<td>Key questions</td>
</tr>
<tr>
<td>Health messages are everywhere in magazines, posters, pamphlets and even on radio, what are the reasons for not following/implementing health messages?</td>
</tr>
<tr>
<td>Why do you not follow health advice/messages?</td>
</tr>
<tr>
<td>If you were to join a health group in your area, what would you want from the health group/programme? In other words, what would make you go to group meetings regularly?</td>
</tr>
<tr>
<td>What are the different ways through which you currently receive your health messages, and what are your feelings about the messages?</td>
</tr>
<tr>
<td>What can be done to assist you to follow the health message?</td>
</tr>
<tr>
<td>What health clubs/groups are available in your area?</td>
</tr>
<tr>
<td>Where would you want to receive your health messages?</td>
</tr>
<tr>
<td>Who do you want to receive your health messages from?</td>
</tr>
</tbody>
</table>

283
by using participant numbers, instead of participant names on all study material.

2.4. Trustworthiness

After completion of each FGD, the summary of the discussions was read to the participants to ensure the researcher had an accurate account and understanding of their views. The transcripts were reviewed by two trained research assistants who compared the transcripts with the respective audiotaped recordings to ensure accuracy in the translations. The field notes also assisted in augmenting the accuracy of the transcripts. The PR and the study supervisor (SS) independently reviewed the transcripts, data analysis process and the emerging themes. This was done to reduce the possibility of bias and to obtain additional insights into themes and interpretations. Once the PR and SS reached an agreement on the final codes and themes, these were reviewed by the study’s co-supervisor to ensure that there were no inconsistencies between the PR and SS.

2.5. Data analysis

The data were transcribed verbatim and translated into English, where required. The data were analysed using the summative content analysis approach. Atlas ti software [ATLAS. ti 7 for Windows, Berlin, Germany] was used to facilitate the coding and organisation of themes for analysis (Krueger & Casey, 2000). The PR and SS independently read the transcripts and identified codes based on keywords and recurrent issues that emerged from the data. Then the PR and SS discussed any differences until consensus was reached on the codes. In total, 80 codes were identified. The codes were grouped into nine categories, and finally into four themes.

3. Results

The FGD participants ranged in age from 35 to 70 years, and were grouped according to their age and gender, to encourage free discussion. The groups predominantly comprised women. The four major themes identified were: practical aspects of implementation and adherence to intervention programmes; participants’ expectations of intervention programmes; aspects influencing participants’ acceptance of interventions; and participants’ preferences for health message dissemination (Table 2).

3.1. Practical aspects of implementation and adherence to intervention programmes

3.1.1. Challenges

Healthy food was perceived to be expensive and since majority of the participants were unemployed, they lacked the financial means to purchase the recommended food and beverages:

Okay sisi... the problem is, it is because there is poverty in other houses, one cannot eat a special diet... when there is a pot that is cooked, one cannot have another pot aside... as Black people we eat as a family.

We are poor... many people in the house... all must eat... [it is] not right [that] only some eat and others don’t have to eat... healthy food is expensive.

Access to facilities where intervention programmes were being offered was limited, and personal safety was threatened:

Clinic is far and you have to walk over a field in the dark... [one can] get robbed and even raped... here are more hospitals whereby [so] they can come closer, we talk about the distance...

Peer pressure and the lifestyle modifications were considered to be too difficult:

It is difficult to do those things... stop smoking, drinking...

You decide on your own if you want to stop smoking and drinking, you do not need a club for that...

If you don’t drink or smoke with your friends, then they will not let you join them

A lack of education, food preferences and preferences by family members guided food intake:

You cannot read how are you going to see it?

We are not used to the taste of whole-wheat breads and cottage cheese

We like the junk foods... fatty food is mos [indeed] nice

I sometimes cook with oil and water but then my family (sic) don’t eat

3.1.2. Personal feelings

Participants had a negative attitude towards making lifestyle changes, and questioned whether health messages were really beneficial to their health:

No, it’s because we like to disagree to what the doctor says. (This remark was made when participants were asked for their reasons for not following health messages imparted by doctors).

I was saying, if a person cannot follow those pamphlets s/he wants to experience what is going to happen if s/he eats what s/he is advised not to eat, understand?

You get... you’ve got too much fruit and veggies at home... instead of eating that [those] fruit and veggies where does it (sic) go?... in the bin because you cannot see veggies and fruit as something that is nutritious. (This remark was made when participants were asked why do not follow health messages specifically related to food intake).
<table>
<thead>
<tr>
<th>Themes</th>
<th>Categories</th>
<th>Subcategories (codes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical aspects of implementation and adherence to intervention programmes</td>
<td>Challenges</td>
<td>• Access</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Financial constraints</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Time constraints</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Lack of knowledge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Family preferences</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Social belonging</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Food preferences</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Crime</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Awareness of programmes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Food cost</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Peer pressure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Literacy (low)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Entitlement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Helplessness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hopelessness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Negative attitude toward health</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Own responsibility</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Lifestyle & behaviour modification</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Not conforming/dissatisfied/distrust</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Lack of motivation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Credibility</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Unrealistic expectations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Too much effort</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• False perception</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Perceptions of healthy food</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Culture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Practices</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Eating habits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cravings</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hunger</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Acceptable taste</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Want desire for food (greed)</td>
</tr>
<tr>
<td></td>
<td>(Personal)Feelings</td>
<td>• Good health</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Blood pressure control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Blood sugar control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Incentives</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Value health</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Weight control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Food garden</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Seeds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Skills training for income generation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Health concern</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Medication</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Peer support</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Healthy eating</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Exercise</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Health education</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Advice/guidance/information</td>
</tr>
<tr>
<td></td>
<td>Perceived needs</td>
<td>• Nutrition education</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Empowerment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Group activities</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Workshops</td>
</tr>
<tr>
<td>Participants’ expectations of intervention programmes</td>
<td>Resources and aids</td>
<td>• Cooking lessons</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Shopping lists</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Recipes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Video</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Audio messages</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Books</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Health club</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Health service</td>
</tr>
</tbody>
</table>
Table 2 — (continued)

<table>
<thead>
<tr>
<th>Themes</th>
<th>Categories</th>
<th>Subcategories (codes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspects impacting participants'</td>
<td>Acceptability</td>
<td>• Health professional (doctor, nurse, dietitian)</td>
</tr>
<tr>
<td>acceptance of intervention</td>
<td></td>
<td>• Home language</td>
</tr>
<tr>
<td>programmes</td>
<td></td>
<td>• Trained community member</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Pamphlets from credible source</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Spoken, face-to-face by a trained person</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Peer support</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Sharing of problems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Resolution of problems</td>
</tr>
<tr>
<td></td>
<td>Mode of message</td>
<td>• Oral explanation of poster</td>
</tr>
<tr>
<td>participant preferences for</td>
<td>dissemination</td>
<td>• Community newspaper</td>
</tr>
<tr>
<td>health message dissemination</td>
<td></td>
<td>• Magazine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Television</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Radio</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Internet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cellphone applications</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Public places</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Public transport</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Supermarkets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Schools</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Clinics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Health facilities</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Health club</td>
</tr>
</tbody>
</table>

I grew up eating the meats, why must I stop now because they tell me to to at the clinic? How can the doctor know me better than myself?

It is like vegetables are sometimes very cheap, but we don’t want to eat vegetables...we are ignorant...just want to eat fries because that is nice...

Yes it is what the heart wants...greed, yes, it is greed

3.1.3. Motivators
A concern for their health was expressed by participants’ receptiveness to having community-based CNCD health clubs:

It will help me with my weight...blood pressure

Actually, it’s unwise not to go there, not to do that...it’s sort of guidance now, [not so (?)] they are guiding you to do that for your health

Peer support was a great lure for attending a community-based CNCD health clubs, however, some expressed the desire for incentives to ensure their attendance/participation:

...and as a matter of fact, when you are at a club...share information...each shares advice with the other...you not the only one with the problem.

Most of us come from disadvantaged backgrounds...good if they bring soap and it’s for free...cannot see why I would stay at home and not come to health club;

They can give us stuff to make us come, like food or maybe money

We can start a food garden...as long as you provide the seeds.”

3.2. Participants’ expectations of intervention programmes

3.2.1. Perceived needs
A great need for information, resources and aids, and exercise classes was expressed:

Information which is going to help you and help others

Exercise and information how to be healthy.

We want recipes and lists of food and drinks to buy

Show us how to cook the healthy food.

3.3. Aspects influencing participants’ acceptance of interventions

3.3.1. Acceptability
A preference was indicated for CNCD intervention health messages to be disseminated face-to-face by health professionals, preferably in their home language:

Cause why, its eh...you can’t see something on TV and you believe that. You must go to someone like...like you...

There are many jokes now, why must I believe? I must believe when I see like this face-to-face”

I need it to be explained to me that it goes like this and this...another person will speak in English, I do not understand
3.4. Participants’ preferences for health message dissemination

3.4.1. Mode of message dissemination

Even though some participants found all modes of health message dissemination in CNCD intervention acceptable, a preference for the oral/spoken format (one-on-one or group counselling, sessions and demonstrations) was expressed. The younger participants were keen to receive health messages via their cell phones:

No, if you think we are going to follow posters, to me it will be wrong you see, it will be wrong to me under [sic, for] the reasons I have already mentioned.

How will I believe that the person is a [for] real or s/he is a fake?

It will be better if someone show[s] us than a poster.

Posters are okay, but it is at the clinic and when you go home, you forget what it said and “Pamphlets are better... take it home and read it again.”

We can get videos of health on our phone

Someone should make APPs for phones; I would like to get health messages on my phone

3.4.2. Place of message dissemination

There was consensus that CNCD intervention health messages be disseminated ubiquitously:

Everywhere, bus, train, supermarket, schools... anywhere as long as you are going to get the message loud and clear.

Findings unique to this study were that some participants did not acknowledge health as their responsibility and expected incentives for attending health club meetings. A sense of entitlement and unrealistic expectations also featured strongly during the FGDS, with the participants expecting to be provided with food parcels, food and even money to encourage them to regularly participate in health club meetings. In addition, the participants’ distrust of health messages disseminated via mass media (radio, television), questioning the sources credibility, because of a lack of proof of the health message disseminator’s qualification, was also in stark contrast to other studies’ findings.

4. Discussion

This study revealed that peer pressure, personal and family preferences and the perception that lifestyle changes are difficult resulted in participants being resistant to change their current diet and lifestyle habits. Similarly, previous research showed that the implementation of, and adherence to lifestyle changes are influenced by people’s social environment and personal characteristics (Levesque, Li, & Pahal, 2012; Mayega, Etsjek, Rutebemberwa, Tomson, & Kiguli, 2014; Muchiri, Gericke, & Rheeder, 2012; Steyl & Phillips, 2014). Participants also questioned the benefits of health interventions probably because of clearly visible consequences of not conforming to recommended actions not being disseminated. Similar findings were reported in a recent study by Murray et al. (2013) where participants did not conform to health interventions because of their disbelief in health messages. Financial constraints, fear for personal safety, lack of transport and access to facilities where CNCD intervention programmes were offered also detracted from participants ability to implement and adhere to CNCD intervention health messages.

Cultural and eating traditions were a challenge to participants because of the culturally-insensitive health messages which often recommend foods that they do not traditionally consume and also perceived as costly and not readily available in their community. These findings are in line with those reported in previous studies that healthy food is perceived to be costly and that readily available foods in an area influence eating behaviour (Farhand, Tehrani, Amiri, & Azizi, 2012; Mayega et al., 2014; Muziga & Puone, 2014; Verstraeten et al., 2014).

Besides information about CNCD, participants also expected resources (recipes), cooking lessons and exercise classes, to be part of a CNCD intervention programme. The participants were more likely to believe a health message, if this was delivered face-to-face by a health professional, or any other person they knew to be trained as a health professional. Their preferred health message disseminator was, in order of preference, a doctor, nurse, other health professional and trained community members (community health care workers). This may be as a result of the fact that these health professionals are regarded as having expertise in health matters confirming the findings of Parker, Steyn, Levitt, and Lombard (2012), Parajuli, Saleh, Thapa, and Ali (2014) and Levesque et al. (2012). These authors found that adherence to interventions worked better when the doctor is the source of the information as this allowed patients to build a relationship with the person disseminating the health messages and facilitated discussing their problems.

Although traditional modes of message dissemination (poster, pamphlets and billboards) were acceptable to most participants, they still expected a health professional to explain the content of these materials in their home language. This might be driven by the fact that many of the older participants, in particular, were illiterate and/or unable to communicate in or understand English. Previous studies reinforce this finding that language barriers impact on people’s adherence to health interventions (Hu, Amirehsani, Wallace, & Letvak, 2013; Mumu, Saleh, Ara, Afnan, & Ali, 2014; Sentell & Braun, 2012).

The dissemination of health messages via television, radio, magazines and community newspapers were acceptable to many of the participants because of a lack of proof of the health message disseminator’s qualification. This strongly influenced their preference for receiving their health
messages from a health professional (doctor, nurse) in their home language. Despite evidence in literature that mass media is regarded as an effective tool for health education, this mode for health message dissemination appears not to be effective in this particular study sample (Grill, Ramsay, & Minozzi, 2008; Martin, 2014).

Interestingly, only the younger participants viewed receiving health messages via a cell phone as acceptable. This finding concurs with the finding of a recent study in Canada but is in sharp contrast with those of a recent South African study where most participants regarded receiving health messages via cell phones (SMS-text messages) quite acceptable, with some even crediting these messages for their adherence (Afshar et al., 2012; Leon, Surender, Bobrow, Muller, & Farmer, 2015).

5. Limitations and recommendations

Focus groups predominantly comprised females, which might have influenced the data collected. The researcher had difficulty recruiting men to participate in the focus group sessions, which might have been because they were at work when the FGDs were conducted. Meetings at night were not advised, because of the unsafe neighbourhood, and the men arriving home late from work. The study sample was isiXhosa-speaking participants, with many being unable to speak English. However, this issue was addressed by having a bilingual (English/isiXhosa) RA present.

Our study results cannot be generalised to other communities in the country since the research design possibly caused the study sample not to be representative of the entire Langa community, and focussed only on one community. However, since each community is unique with its own contextual challenges, conducting similar studies in other communities could provide valuable information. These findings could inform interventions for CNCD.

Based on the findings of this study that resource-limited communities need education, access to culturally-sensitive recipes, shopping advice and instruction on healthy food preparation, future research could address the development of resources. Not only will this need be fulfilled, but its impact on implementation and adherence to CNCD intervention programme health messages will need to be evaluated.

6. Conclusions

This study revealed that although the participants found the methods and modes used to disseminate CNCD intervention programme health messages acceptable, they had difficulty with implementing and adhering to these messages for various reasons. New findings were that this study population had unrealistic expectations and showed distrust of health messages not disseminated face-to-face. Even though general guidelines are needed, community-based research should be done to design context-based intervention programmes with health messages tailored for the relevant population.

References

HEALTH SA GESONDHEID
Journal of Interdisciplinary Health Sciences

TABLE OF CONTENTS

- Description p.1
- Editorial Board p.2
- Guide for Authors p.4

DESCRIPTION

Health SA Gesondheid - Journal of Interdisciplinary Health Sciences is an open access, peer-reviewed interdisciplinary and interprofessional scholarly journal that aims to promote communication, collaboration and teamwork between professions and disciplines within the health sciences to address problems that cross and affect disciplinary boundaries.

Health SA Gesondheid - Journal of Interdisciplinary Health Sciences publishes original articles on issues related to public health, including implications for practical applications and service delivery that are of concern and relevance to Africa and other developing countries. It facilitates the gathering and critical testing of insights and viewpoints on knowledge from different disciplines involved in health service delivery.

The journal offers the breadth of outlook required to promote health science education, research and professional practice.

Unique features distinguishing this journal:

Health SA Gesondheid - Journal of Interdisciplinary Health Sciences explores issues and posits solutions to current challenges existing in health care from an interdisciplinary perspective within Africa and other developing countries, including but not limited to:

- improvement of health safety and service delivery
- management and measurement of health services
- evaluation and assessment of health care needs
- prevention of ill health and health-affecting behaviours
- promotion of healthy lifestyles
- health security, economics, policy and regulations.

The journal has a strong regional focus (South Africa) with abstracts published in English. It offers a nurturing environment for young and novice researchers to showcase their work whilst upholding the standards of health science education, research and professional practice.

Health SA Gesondheid with its interdisciplinary scope attracts interest from a wide audience of scientists and health professionals working in the areas of health care management, health care economics, policy making, nursing, psychology, sociology, ethics and education.
After publication in Health SA Gesondheid, the complete text of each article is deposited immediately and permanently archived in major bibliographic databases:

- Sabinet
- African Journals Online
- African Index Medicus
- Open J-Gate
- GALE, CENGAGE Learning
- ProQuest
- Google Scholar
- Elsevier SJR Scopus
- Directory of Open Access Journals
- EBSCO Host
- ScienceDirect

Submissions in English (full article) will be accepted.

EDITORIAL BOARD

Editor-in-Chief
Marie Poggenpoel, Professor, Nursing, Nursing Science, University of Johannesburg, Johannesburg, South Africa

Managing Editor
Lizell Smit, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa

Associate Section Editors
Petra Brysiewicz, Professor, Nursing, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
Yolanda Havenga, Doctor, Nursing, Nursing, University of Limpopo, North West, South Africa
Sarie Human, Professor, Health Studies, Health Studies, University of South Africa, Pretoria, South Africa
Karien Jooste, Professor, Nursing, Nursing, University of the Western Cape, Bellville, South Africa
Heather A. Lawrence, Doctor, Radiography, Department of Radiography, University of Johannesburg, Johannesburg, South Africa
Martie Lubbe, Professor, Medicine usage in SA, Pharmacy Practice, North West University, Potchefstroom, South Africa
Jeanette Maritz, Professor, Psychiatry, Health Studies, University of South Africa, Pretoria, South Africa
Chris Myburgh, Professor, Education, Educational Psychology, University of Johannesburg, Johannesburg, South Africa
Anna Nolte, Professor, Midwifery, Nursing Science, University of Johannesburg, Johannesburg, South Africa
Peter T. Sandy, Doctor, Public Health, Department of Health, University of South Africa, Pretoria, South Africa
Jhalukpreya Surujial, Prof., Research Director, Faculty of Management Sciences, North West University, Vanderbijlpark, South Africa
Else Janse Van Rensburg, Doctor in Psychiatric and Mental Health Nursing, School of Public Health, UNISA, Pretoria, South Africa
Gisela van Rensburg, Professor, Health Sciences Education, Health Studies, University of South Africa, Pretoria, South Africa
Bernard J. van Rensburg, Prof., Psychiatry, Psychiatry, University of the Witwatersrand, Johannesburg, South Africa
Dalena van Rooyen, Prof., Nursing, School of Clinical Care Sciences, Nelson Mandela Metropolitan University, Johannesburg, South Africa
Neltjie van Wyk, Professor, Health Sciences Education, Health Studies, University of South Africa, Pretoria, South Africa

International Advisory Board
Barbara J. Brown, Doctor, Environmental Psychology, Family and Consumer Studies, Nursing Administrative Quarterly, Arizona, USA
John Cresswell, Professor, Educational Psychology, Department of Environmental Psychology, University of Nebraska-Lincoln, Nebraska, USA
Cenwen Cumming, Doctor, Palliative Care Medicine, Department of Psychosocial and Spiritual Resources, University of Alberta, Alberta, Canada
Willem Fourie, Doctor, Nursing Education, Faculty of Nursing and Health studies, Manukau Institute of Technology, Auckland, New Zealand
Jean Gray, United Kingdom

AUTHOR INFORMATION PACK 1 Apr 2016 www.elsevier.com/locate/hsag

291
Sarah Hean, Doctor, Education, Health, School of Health and Social Care, Bournemouth, United Kingdom
Darrin Hodgetts, Professor, Psychology (Social issues), Department of Psychology, University of Waikato, Hamilton, New Zealand
Shulamith Kreitler, Professor, Brain Disorder (Cognitive neuroscience), School of Psychological Sciences, Social Sciences Faculty, Tel Aviv, Israel
Diana Mason, Dr, Nursing, Hunter-Bellevue School of Nursing, Joint United Nations Programme on HIV/AIDS, New York, USA
Kathleen Moore, Doctor, Deakin University, Australia, Victoria, Australia
Janice Morse, Professor, Nursing, College of Nursing, University of Utah, Salt Lake City, USA
Marita Naudé, Professor, Organisational change, Curtin Graduate School of Business, Curtin University, Perth, Australia
Mandy Towell, Doctor, Internal Medicine, School of Nursing and Midwifery, Edith Cowan University, Massachusetts, USA

Statistical Consultant
Anneli Hardy, Statistical Consultant, Psychology, Independent statistical consultant, Independent Research/Statistical Consultant
GUIDE FOR AUTHORS

INTRODUCTION

Open Access

Health SA Gesondheid is an open access journal: all articles will be immediately and permanently free for everyone to read and download. University of Johannesburg charges a publication fee of R 1050 (South African Rand) per published page (PDF format) inclusive of taxes (also known as an article publishing charge APC) which needs to be paid by the authors or on their behalf e.g. by their research funder or institution. If accepted for publication in the journal following peer-review, authors will be notified of this decision and requested to pay the article processing charge in due time. Following payment of this charge, the article will be published by University of Johannesburg in Health SA Gesondheid which is made freely available at no further charge through ScienceDirect (Open Access). No article will be published until page fees are paid in full and proof of payment has been received by the Editorial Office.

A CC user license manages the reuse of the article (see http://www.elsevier.com/openaccesslicenses). All articles will be published under the following license: Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND).

For non-commercial purposes, let others distribute and copy the article, and to include in a collective work (such as an anthology), as long as they credit the author(s) and provided they do not alter or modify the article.

BEFORE YOU BEGIN

Ethics in publishing

For information on Ethics in publishing and Ethical guidelines for journal publication see https://www.elsevier.com/publishingethics and https://www.elsevier.com/journal-authors/ethics.

Human and animal rights

If the work involves the use of human subjects, the author should ensure that the work described has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans, http://www.wma.net/en/30publications/10policies/b3/index.html; Uniform Requirements for manuscripts submitted to Biomedical journals, http://www.icmje.org. Authors should include a statement in the manuscript that informed consent was obtained for experimentation with human subjects. The privacy rights of human subjects must always be observed.

All animal experiments should be carried out in accordance with the U.K. Animals (Scientific Procedures) Act, 1986 and associated guidelines, EU Directive 2010/63/EU for animal experiments, or the National Institutes of Health guide for the care and use of Laboratory animals (NIH Publications No. 8023, revised 1978) and the authors should clearly indicate in the manuscript that such guidelines have been followed. All animal studies need to ensure they comply with the ARRIVE guidelines. More information can be found at http://www.nc3rs.org.uk/page.asp?id=1357.

Conflict of interest

All authors must disclose any financial and personal relationships with other people or organizations that could inappropriately influence (bias) their work. Examples of potential conflicts of interest include employment, consultancies, stock ownership, honoraria, paid expert testimony, patent applications/registrations, and grants or other funding. If there are no conflicts of interest then please state this: 'Conflicts of interest: none'. See also https://www.elsevier.com/conflictsofinterest. Further information and an example of a Conflict of Interest form can be found at: http://service.elsevier.com/app/answers/detail/a_id/286/supporthub/publishing.

Submission declaration

Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see https://www.elsevier.com/sharingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the
responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere including electronically in the same form, in English or in any other language, without the written consent of the copyright-holder.

Authorship

All authors should have made substantial contributions to all of the following: (1) the conception and design of the study, or acquisition of data, or analysis and interpretation of data, (2) drafting the article or revising it critically for important intellectual content, (3) final approval of the version to be submitted.

Changes to authorship

Authors are expected to consider carefully the list and order of authors before submitting their manuscript and provide the definitive list of authors at the time of the original submission. Any addition, deletion or rearrangement of author names in the authorship list should be made only before the manuscript has been accepted and only if approved by the journal Editor. To request such a change, the Editor must receive the following from the corresponding author: (a) the reason for the change in author list and (b) written confirmation (e-mail, letter) from all authors that they agree with the addition, removal or rearrangement. In the case of addition or removal of authors, this includes confirmation from the author being added or removed. Only in exceptional circumstances will the Editor consider the addition, deletion or rearrangement of authors after the manuscript has been accepted. While the Editor considers the request, publication of the manuscript will be suspended. If the manuscript has already been published in an online issue, any requests approved by the Editor will result in a corrigendum.

Role of the funding source

You are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. If the funding source(s) had no such involvement then this should be stated.

Funding body agreements and policies

Elsevier has established a number of agreements with funding bodies which allow authors to comply with their funder’s open access policies. Some authors may also be reimbursed for associated publication fees. To learn more about existing agreements please visit https://www.elsevier.com/fundingbodies.

Language (usage and editing services)

Please write your text in good English (American or British usage is accepted, but not a mixture of these). Authors who feel their English language manuscript may require editing to eliminate possible grammatical or spelling errors and to conform to correct scientific English may wish to use the English Language Editing service available from Elsevier’s WebShop (http://webshop.elsevier.com/languagediting/) or visit our customer support site (http://support.elsevier.com) for more information.

It is essential to language edit the manuscript before submission and the editing should have been performed by a professional language editor. A certificate confirming language editing is one of the mandatory submission elements.

Informed consent and patient details

Studies on patients or volunteers require ethics committee approval and informed consent, which should be documented in the paper. Appropriate consents, permissions and releases must be obtained where an author wishes to include case details or other personal information or images of patients and any other individuals in an Elsevier publication. Written consents must be retained by the author and copies of the consents or evidence that such consents have been obtained must be provided to Elsevier on request. For more information, please review the Elsevier Policy on the Use of Images or Personal Information of Patients or other Individuals, https://www.elsevier.com/patient-consent-policy. Unless you have written permission from the patient (or, where applicable, the next of kin), the personal details of any patient included in any part of the article and in any supplementary materials (including all illustrations and videos) must be removed before submission.
Submission
Submission to this journal proceeds totally online. Use the following guidelines to prepare your article. Via the homepage of this journal (http://ees.elsevier.com/hsag) you will be guided stepwise through the creation and uploading of the various files. The system automatically converts source files to a single Adobe Acrobat PDF version of the article, which is used in the peer-review process. Please note that even though manuscript source files are converted to PDF at submission for the review process, these source files are needed for further processing after acceptance. All correspondence, including notification of the Editor’s decision and requests for revision, takes place by e-mail and via the author’s homepage, removing the need for a hard-copy paper trail. If you are unable to provide an electronic version or have any other queries, please contact the editorial office prior to submission [e-mail: healthsa@uj.ac.za].

Referees
Please submit the names and institutional e-mail addresses of several potential referees. For more details, visit our Support site. Note that the editor retains the sole right to decide whether or not the suggested reviewers are used.

PREPARATION

Peer review
This journal operates a double blind review process. All contributions will be initially assessed by the editor for suitability for the journal. Papers deemed suitable are then sent to a minimum of two independent expert reviewers to assess the scientific quality of the paper. The Editor is responsible for the final decision regarding acceptance or rejection of articles. The Editor’s decision is final. For more information on the types of peer review, please visit: https://www.elsevier.com/reviewers/peer-review.

Use of wordprocessing software
It is important that the file be saved in the native format of the wordprocessor used. The text should be in single-column format. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. In particular, do not use the wordprocessor’s options to justify text or to hyphenate words. However, do use bold face, italics, subscripts, superscripts etc. When preparing tables, if you are using a table grid, use only one grid for each individual table and not a grid for each row. If no grid is used, use tabs, not spaces, to align columns. The electronic text should be prepared in a way very similar to that of conventional manuscripts (see also the Guide to Publishing with Elsevier: http://www.elsevier.com/guidepublication). Note that source files of figures, tables and text graphics will be required whether or not you embed your figures in the text. See also the section on Electronic artwork.

To avoid unnecessary errors you are strongly advised to use the 'spell-check' and 'grammar-check' functions of your wordprocessor. The article must be accompanied by a letter from the language editor indicating the completion of language editing for the current article.

Article Types
Health SA Gesondheid publishes:

A. Original Articles
Should report relevant original research not published before, in the following format:
• Word limit: 5000 words (excluding the abstract and references).
• Abstract: structured up to 250 words to include a Background, Methods, Results and Conclusions.
• References: 40 or less.
• Tables and figures: no more than 7 Tables/Figure

B. Review Articles
Review topics should be related to clinical aspects interdisciplinary health sciences and should reflect trends and progress or a synthesis of data in the following format:
• Word limit: 4000 words (excluding the abstract and references).
• References: 40 or less.
• Abstract: Up to 150 words, unstructured.
• Tables/Figures: Data in the text should not be repeated extensively in tables or figures.

C. Editorials
Editorials are solicited by the HSAG EIC or editorial board members in the following format:
• Word limit: 1200 words.
• Tables/Figures: A maximum of 1 figure or table.
• References: 10 or less.
• Ensure that there is a clear message in the conclusion.

Article structure
Subdivision - numbered sections
Divide your article into clearly defined and numbered sections. Subsections should be numbered 1.1 (then 1.1.1, 1.1.2, ...), 1.2, etc. (the abstract is not included in section numbering). Use this numbering also for internal cross-referencing: do not just refer to 'the text'. Any subsection may be given a brief heading. Each heading should appear on its own separate line.

Introduction
State the objectives of the work and provide an adequate background, avoiding a detailed literature survey or a summary of the results. The introduction should include the following:

• Research problem statement
• Purpose (aims) and objectives
• Definitions of key concepts

Material and methods
Provide sufficient detail to allow the work to be reproduced. Methods already published should be indicated by a reference: only relevant modifications should be described.

Theory/calculation
A Theory section should extend, not repeat, the background to the article already dealt with in the Introduction and lay the foundation for further work. In contrast, a Calculation section represents a practical development from a theoretical basis.

Results and Findings
Results should be clear and concise.

Discussion
This should explore the significance of the results of the work, not repeat them. A combined Results and Discussion section is often appropriate. Avoid extensive citations and discussion of published literature.

Conclusions, Limitations & Recommendations for Future Research
The main conclusions of the study may be presented in a short Conclusions section, which may stand alone or form a subsection of a Discussion or Results and Discussion section.

Appendices
If there is more than one appendix, they should be identified as A, B, etc. Formulae and equations in appendices should be given separate numbering: Eq. (A.1), Eq. (A.2), etc.; in a subsequent appendix, Eq. (B.1) and so on. Similarly for tables and figures: Table A.1; Fig. A.1, etc.

Essential title page information
• Title. Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible.
• Author names and affiliations. Please clearly indicate the given name(s) and family name(s) of each author and check that all names are accurately spelled. Present the authors’ affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lower-case superscript letter immediately after the author’s name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name and, if available, the e-mail address of each author.
• Corresponding author. Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. Ensure that the e-mail address is given and that contact details are kept up to date by the corresponding author.
• Present/permanent address. If an author has moved since the work described in the article was done, or was visiting at the time, a 'Present address' (or 'Permanent address') may be indicated as a footnote to that author’s name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes.
Abstract
A concise and factual abstract of no more than 250 words is required. The abstract should state briefly the background, purpose of the research, methodology, the principal results and major conclusions. An abstract is often presented separately from the article, so it must be able to stand alone. For this reason, References should be avoided, but if essential, then cite the author(s) and year(s). Also, non-standard or uncommon abbreviations should be avoided, but if essential they must be defined at their first mention in the abstract itself.

Keywords
Immediately after the abstract, provide a maximum of 6 keywords, using American spelling and avoiding general and plural terms and multiple concepts (avoid, for example, ‘and’, ‘of’). Be sparing with abbreviations: only abbreviations firmly established in the field may be eligible. These keywords will be used for indexing purposes.

Abbreviations
Define abbreviations that are not standard in this field in a footnote to be placed on the first page of the article. Such abbreviations that are unavoidable in the abstract must be defined at their first mention there, as well as in the footnote. Ensure consistency of abbreviations throughout the article.

Acknowledgements
Collate acknowledgements in a separate section at the end of the article before the references and do not, therefore, include them on the title page, as a footnote to the title or otherwise. List here those individuals who provided help during the research (e.g., providing language help, writing assistance or proof reading the article, etc.).

Units
Follow internationally accepted rules and conventions: use the international system of units (SI). If other units are mentioned, please give their equivalent in SI.

Math formulae
Please submit math equations as editable text and not as images. Present simple formulae in line with normal text where possible and use the solidus (/) instead of a horizontal line for small fractional terms, e.g., X/Y. In principle, variables are to be presented in italics. Powers of e are often more conveniently denoted by exp. Number consecutively any equations that have to be displayed separately from the text (if referred to explicitly in the text).

Footnotes
Footnotes should be used sparingly. Number them consecutively throughout the article. Many word processors can build footnotes into the text, and this feature may be used. Otherwise, please indicate the position of footnotes in the text and list the footnotes themselves separately at the end of the article. Do not include footnotes in the Reference list.

Artwork
Electronic artwork
General points
• Make sure you use uniform lettering and sizing of your original artwork.
• Embed the used fonts if the application provides that option.
• Aim to use the following fonts in your illustrations: Arial, Courier, Times New Roman, Symbol, or use fonts that look similar.
• Number the illustrations according to their sequence in the text.
• Use a logical naming convention for your artwork files.
• Provide captions to illustrations separately.
• Size the illustrations close to the desired dimensions of the published version.
• Submit each illustration as a separate file.
A detailed guide on electronic artwork is available on our website: https://www.elsevier.com/artworkinstructions.

You are urged to visit this site; some excerpts from the detailed information are given here.

Formats
If your electronic artwork is created in a Microsoft Office application (Word, PowerPoint, Excel) then please supply ‘as is’ in the native document format. Regardless of the application used other than Microsoft Office, when your electronic artwork is finalized, please ‘Save as’ or convert the images to one of the following formats (note the resolution requirements for line drawings, halftones, and line/halftone combinations given below):
EPS (or PDF): Vector drawings, embed all used fonts.
TIFF (or JPEG): Color or grayscale photographs (halftones), keep to a minimum of 300 dpi.
TIFF (or JPEG): Bitmapped (pure black & white pixels) line drawings, keep to a minimum of 1000 dpi.
TIFF (or JPEG): Combinations bitmapped line/half-tone (color or grayscale), keep to a minimum of 500 dpi.

Please do not:
• Supply files that are optimized for screen use (e.g., GIF, BMP, PICT, WPG); these typically have a low number of pixels and limited set of colors;
• Supply files that are too low in resolution;
• Submit graphics that are disproportionately large for the content.

Color artwork
Please make sure that artwork files are in an acceptable format (TIFF (or JPEG), EPS (or PDF), or MS Office files) and with the correct resolution. If, together with your accepted article, you submit usable color figures then Elsevier will ensure, at no additional charge, that these figures will appear in color online (e.g., ScienceDirect and other sites) regardless of whether or not these illustrations are reproduced in color in the printed version. For color reproduction in print, you will receive information regarding the costs from Elsevier after receipt of your accepted article. Please indicate your preference for color: in print or online only. For further information on the preparation of electronic artwork, please see https://www.elsevier.com/artworkinstructions.

Illustration services
Elsevier’s WebShop (http://webshop.elsevier.com/illustrationservices) offers Illustration Services to authors preparing to submit a manuscript but concerned about the quality of the images accompanying their article. Elsevier’s expert illustrators can produce scientific, technical and medical-style images, as well as a full range of charts, tables and graphs. Image ‘polishing’ is also available, where our illustrators take your image(s) and improve them to a professional standard. Please visit the website to find out more.

Figure captions
Ensure that each illustration has a caption. Supply captions separately, not attached to the figure. A caption should comprise a brief title (not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used.

Tables
Please submit tables as editable text and not as images. Tables can be placed either next to the relevant text in the article, or on separate page(s) at the end. Number tables consecutively in accordance with their appearance in the text and place any table notes below the table body. Be sparing in the use of tables and ensure that the data presented in them do not duplicate results described elsewhere in the article. Please avoid using vertical rules.

References
Citation in text
Please ensure that every reference cited in the text is also present in the reference list (and vice versa). Any references cited in the abstract must be given in full. Unpublished results and personal communications are not recommended in the reference list, but may be mentioned in the text. If these references are included in the reference list they should follow the standard reference style of the journal and should include a substitution of the publication date with either 'Unpublished results' or 'Personal communication'. Citation of a reference as 'in press' implies that the item has been accepted for publication.

Reference links
Increased discoverability of research and high quality peer review are ensured by online links to the sources cited. In order to allow us to create links to abstracting and indexing services, such as Scopus, CrossRef and PubMed, please ensure that data provided in the references are correct. Please note that incorrect surnames, journal/book titles, publication year and pagination may prevent link creation. When copying references, please be careful as they may already contain errors. Use of the DOI is encouraged.

Web references
As a minimum, the full URL should be given and the date when the reference was last accessed. Any further information, if known (DOI, author names, dates, reference to a source publication, etc.), should also be given. Web references can be listed separately (e.g., after the reference list) under a different heading if desired, or can be included in the reference list.
References in a special issue
Please ensure that the words 'this issue' are added to any references in the list (and any citations in the text) to other articles in the same Special Issue.

Reference style
List: references should be arranged first alphabetically and then further sorted chronologically if necessary. More than one reference from the same author(s) in the same year must be identified by the letters 'a', 'b', 'c', etc., placed after the year of publication.
Examples:
Reference to a journal publication:
Reference to a book:
Reference to a chapter in an edited book:
Reference to a website:
Journal abbreviations source
Journal names should be abbreviated according to the List of Title Word Abbreviations: http://www.isn.org/services/online-services/access-to-the-itwa/.

Video data
Elsevier accepts video material and animation sequences to support and enhance your scientific research. Authors who have video or animation files that they wish to submit with their article are strongly encouraged to include links to these within the body of the article. This can be done in the same way as a figure or table by referring to the video or animation content and noting in the body text where it should be placed. All submitted files should be properly labeled so that they directly relate to the video file's content. In order to ensure that your video or animation material is directly usable, please provide the files in one of our recommended file formats with a preferred maximum size of 150 MB. Video and animation files supplied will be published online in the electronic version of your article in Elsevier Web products, including ScienceDirect: http://www.sciencedirect.com. Please supply 'stills' with your files: you can choose any frame from the video or animation or make a separate image. These will be used instead of standard icons and will personalize the link to your video data. For more detailed instructions please visit our video instruction pages at https://www.elsevier.com/artworkinstructions. Note: since video and animation cannot be embedded in the print version of the journal, please provide text for both the electronic and the print version for the portions of the article that refer to this content.

Supplementary material
Supplementary material can support and enhance your scientific research. Supplementary files offer the author additional possibilities to publish supporting applications, high-resolution images, background datasets, sound clips and more. Please note that such items are published online exactly as they are submitted; there is no typesetting involved (supplementary data supplied as an Excel file or as a PowerPoint slide will appear as such online). Please submit the material together with the article and supply a concise and descriptive caption for each file. If you wish to make any changes to supplementary data during any stage of the process, then please make sure to provide an updated file, and do not annotate any corrections on a previous version. Please also make sure to switch off the 'Track Changes' option in any Microsoft Office files as these will appear in the published supplementary file(s). For more detailed instructions please visit our artwork instruction pages at https://www.elsevier.com/artworkinstructions.
Submission checklist
The following list will be useful during the final checking of an article prior to sending it to the journal for review. Please consult this Guide for Authors for further details of any item.

Ensure that the following items are present:
One author has been designated as the corresponding author with contact details:
- E-mail address
- Full postal address
All necessary files have been uploaded, and contain:
- Keywords
- All figure captions
- All tables (including title, description, footnotes)
Further considerations
- Manuscript has been ‘spell-checked’ and ‘grammar-checked’
- References are in the correct format for this journal
- All references mentioned in the Reference list are cited in the text, and vice versa
- Permission has been obtained for use of copyrighted material from other sources (including the Internet)
Printed version of figures (if applicable) in color or black-and-white
- Indicate clearly whether or not color or black-and-white in print is required.
For any further information please visit our customer support site at http://support.elsevier.com.

AFTER ACCEPTANCE
Use of the Digital Object Identifier
The Digital Object Identifier (DOI) may be used to cite and link to electronic documents. The DOI consists of a unique alpha-numeric character string which is assigned to a document by the publisher upon the initial electronic publication. The assigned DOI never changes. Therefore, it is an ideal medium for citing a document, particularly ‘Articles in press’ because they have not yet received their full bibliographic information. Example of a correctly given DOI (in URL format; here an article in the journal Physics Letters B):
http://dx.doi.org/10.1016/j.physletb.2010.09.059
When you use a DOI to create links to documents on the web, the DOIs are guaranteed never to change.

Proofs
One set of page proofs (as PDF files) will be sent by e-mail to the corresponding author (if we do not have an e-mail address then paper proofs will be sent by post) or, a link will be provided in the e-mail so that authors can download the files themselves. Elsevier now provides authors with PDF proofs which can be annotated; for this you will need to download Adobe Reader version 9 (or higher) available free from http://get.adobe.com/reader. Instructions on how to annotate PDF files will accompany the proofs (also given online). The exact system requirements are given at the Adobe site: http://www.adobe.com/products/reader/tech-specs.html.
If you do not wish to use the PDF annotations function, you may list the corrections (including replies to the Query Form) and return them to Elsevier in an e-mail. Please list your corrections quoting line number. If, for any reason, this is not possible, then mark the corrections and any other comments (including replies to the Query Form) on a printout of your proof and scan the pages and return via e-mail. Please use this proof only for checking the typesetting, editing, completeness and correctness of the text, tables and figures. Significant changes to the article as accepted for publication will only be considered at this stage with permission from the Editor. We will do everything possible to get your article published quickly and accurately. It is important to ensure that all corrections are sent back to us in one communication: please check carefully before replying, as inclusion of any subsequent corrections cannot be guaranteed. Proofreading is solely your responsibility.

Offprints
The corresponding author, at no cost, will be provided with a PDF file of the article via e-mail (the PDF file is a watermarked version of the published article and includes a cover sheet with the journal cover image and a disclaimer outlining the terms and conditions of use). For an extra charge, paper offprints can be ordered via the offprint order form which is sent once the article is accepted for publication. Both corresponding and co-authors may order offprints at any time via Elsevier’s WebShop (http://webshop.elsevier.com/myarticleservices/offprints). Authors requiring printed copies of multiple articles may use Elsevier WebShop’s ‘Create Your Own Book’ service to collate multiple articles within a single cover (http://webshop.elsevier.com/myarticleservices/booklets).
AUTHOR INQUIRIES
You can track your submitted article at https://www.elsevier.com/track-submission. You can track your accepted article at https://www.elsevier.com/trackarticle. You are also welcome to contact Customer Support via http://support.elsevier.com.
CHAPTER 6: MANUSCRIPT 3

Tackling the chronic non-communicable diseases epidemic in the Western Cape: Are health professionals on track?
Tackling the chronic non-communicable diseases epidemic in the Western Cape: Are health professionals on track?

Ms Nasheetah Solomons1, Prof H. Salome Kruger2 & Prof Thandi R. Pouane3
1Faculty of Community of Health Sciences, Department of Dietetics and Nutrition, University of the Western Cape, Cape Town, South Africa
2Faculty of Health Sciences, Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
3Faculty of Health Sciences, MRC Extra Mural Unit: Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa

Acknowledgements

The authors would like to thank all supporting staff and the participants of the PURE study and in particular PURE-South Africa: The PURE-WC-SA research team, field workers and office staff in the SoPH, University of the Western Cape, Bellville, South Africa and PURE International: Dr S Yusuf and the PURE project office staff at the Population Health Research Institute (PHRI), Hamilton Health Sciences and McMaster University. ON, Canada. A special thank you also to the Department of Health officials who participated in this study.

Corresponding author

Nasheetah Solomons
Faculty of Community Health Sciences
Department of Dietetics and Nutrition
University of the Western Cape
Robert Sobukwe Road/Private Bag X17
Bellville, 7530/7535
South Africa
Tel: (021) 959-2760
Fax no: (021) 959-3686
E-mail: nsolomons@uwc.ac.za
Keywords
Chronic non-communicable diseases, intervention programmes, multicriteria mapping

Authors’ contributions
Ms Nasheetah Solomons was responsible for the research management, conception and design, acquisition, analysis and interpretation of data, drafting the work and critically revising the work for important intellectual content. Prof HS Kruger and Prof TR Pouane analysed and interpreted the data and critically revised the work for important intellectual content.

Conflict of interest: the authors declare no potential conflict of interest.

Significance for public health
There is general agreement that the chronic non-communicable disease (CNCD) epidemic should be addressed as a matter of urgency. Many organisations in the private and public sectors have responded by developing and implementing CNCD intervention programmes. Despite this, the number of persons being diagnosed with a CNCD continues to rise annually. This raises the question as to why existing CNCD nutrition-related messages currently being disseminated to address the CNCD epidemic are not achieving the desired effect. It could be that current health messages are not reaching the target populations, the health messages are being misunderstood or the health messages are not addressing the target populations’ needs. A first step should be to determine what people with/or at risk of CNCDs require from CNCD intervention programmes and to determine what the Department of Health officials consider to be the best nutrition-related strategies to address the CNCD epidemic. This information may help to bridge the gap between what are viewed as effective strategies by officials in the DoH and what is needed from a community’s perspective.
6.1 Abstract

Background

Chronic non-communicable diseases (CNCDs) are on the rise and are having grave consequences on mortality and morbidity as well as countries’ socio-economic development. Different approaches have been employed to address this growing problem but it appears that existing interventions are not having the desired outcome. The purpose of this study was four-fold. Firstly, the study aimed to determine challenges that the community participants faced regarding CNCD interventions. The second aim was to determine community participants’ willingness to join a CNCD intervention programme and to ascertain what they required from a CNCD intervention programme. Thirdly, the researchers explored what courses of action the Department of Health (DoH) officials involved in the prevention of the CNCD epidemic considered most effective. Fourthly, the study aimed to determine DoH officials’ awareness of existing CNCD policies and to identify the factors that they perceived as obstacles to addressing the CNCD epidemic.

Design and methods

A subsample of 300 community participants from the Prospective Urban and Rural Epidemiological (PURE) study’s Western Cape urban cohort and six key officers from the DoH were recruited to participate in this cross-sectional study. An open- and close-ended questionnaire was used in face-to-face interviews with the urban cohort to explore challenges with the implementation of CNCD interventions, willingness to participate in CNCD strategies and to investigate the cohort’s expectations of CNCD interventions. A questionnaire was used to determine the DoH officials’ awareness of existing CNCD policies. The multi-criteria mapper (MCM) interviewing method was used to explore the opinions of the DoH officials regarding the best strategies to address the CNCD epidemic. Data collection took place during July 2014 – July 2016.

Results

The community participants reported that they required education on foods associated with weight gain, the type of food and drinks to purchase, how to prepare healthy food and recipes from CNCD intervention programmes. Challenges that the community participants faced regarding CNCD interventions included access to facilities, cost and availability of recommended foodstuffs, family
responsibilities and peer pressure. Community participants were willing to join a CNCD intervention programme. The Department of Health officials regarded the integration of health services, community participation, improved inter-sectoral partnerships and food taxation as the most favourable options to address the CNCD epidemic. All of the DoH officials interviewed were aware of the existing policies for CNCDs.

Conclusion

At community level, both the challenges and needs focussed on practical aspects, such as education, shopping lists, cost of food items and healthy recipes. The need for education is being addressed by the DoH, but access to facilities, cost and availability of recommended foodstuffs, family responsibilities and peer pressure contribute to a lack of impact of the education. The DoH officials focussed on organisational and regulatory aspects, such as the integration of health services, community participation, food taxation and improving inter-sectoral partnerships as the most feasible options to address the CNCD epidemic. Current CNCD interventions should be adapted to include the context-based practical needs of communities.
6.2 Introduction

Chronic non-communicable diseases (CNCDs) which include cardiovascular disease, diabetes, certain cancers and chronic lung disease were responsible for more than two thirds of global deaths in 2010.\(^1,2\) According to the Western Cape Government (2015), 40% of all deaths in South Africa are due to CNCDs whilst in the Western Cape Province, 17-25% of the disease burden can be attributed to CNCDs.\(^3\) It has been estimated that approximately 950 000 people have hypertension and 330 000 have been diagnosed with diabetes in the Western Cape Province\(^4\). In addition, the number of deaths due to diabetes in 2014, was found to be higher in the Western Cape compared to those in developed countries.\(^4\)

Modifiable risk factors for CNCDs include excessive alcohol use, long-term use of tobacco products, physical inactivity, consumption of foods high in sugar, salt, fat and low in fibre, as well as low fruit and vegetable intakes.\(^4,5,6\)

The South African National Department of Health (DoH) developed its Strategic Plan for the Prevention and Control of Non-Communicable Diseases 2013-17 based on targets set at the South African Summit on the Prevention and Control of Non-communicable diseases held in September 2011. This document serves as a commitment to address the CNCDs epidemic in South Africa.\(^7\) On 30 March 2015, the DoH launched its Western Cape on Wellness (WoW!) initiative which was enabled through a transversal Working Group comprised of the University of Cape Town, University of the Western Cape, Stellenbosch University, Biokinetics Association of South Africa (BASA), 44ten MEDIA, the Heart and Stroke Foundation of South Africa (HSFSA), Pharma Dynamics, SiyaGyma-Sa, Discovery Health and Eskom with Virgin Active and Ubuntu Trust as additional sponsors. This initiative aims to promote a culture of wellness at and across the workplace, community and school levels by means of health-related physical activities and healthy eating.\(^3\)

It has been stated that, not only can mortality in South Africa be decreased by 20% by addressing harmful alcohol use, tobacco use, salt intake, high blood pressure, increased blood glucose and
diabetes and obesity, but an added benefit would be a decrease in early disability. Strategies which have been implemented in an attempt to address CNCDs in South Africa include the Tobacco Products Control Act of 1993 which bans advertising and protects non-smokers from exposure to cigarette smoke and the Liquor Act (Act 59 of 2003) which bans advertising of alcoholic products to children and restricts trading hours. In addition “sin tax”, i.e. tax on tobacco and alcoholic products is increased annually. The reduction of industrial trans-fat content of all oils or fats in foods to a maximum of 2% of total calories which was legislated in 2011 and the step-wise reduction of the salt content of a range of highly salted foods were legislated in 2013 with the first phase of salt reduction coming into effect on the 30th of June 2016. In 2016, the Finance minister proposed a sugar tax on sugar-sweetened beverages which the state planned to implement on 1 April 2017, but this has been delayed for further consultation. The Policy Paper and Proposals on the Taxation of Sugar-sweetened beverages was opened for public comment until 22 August 2016.

The purpose of this study was four-fold. Firstly, the study aimed to determine challenges that the community participants faced regarding CNCD interventions. The second aim was to determine community participants’ willingness to join a CNCD intervention programme and to ascertain what they required from a CNCD intervention programme. Thirdly, the researchers explored what courses of action the Department of Health (DoH) officials involved in the prevention of the CNCD epidemic considered most effective. Fourthly, this study aimed to determine the DoH officials’ awareness of existing CNCD policies and to identify the factors that they perceived as obstacles to addressing the CNCD epidemic.

6.3 Design and methods

Research design

A cross-sectional observational study design was implemented in which both quantitative and qualitative data were collected.
Sampling and setting

The current study was conducted on a subsample of an existing cohort that was recruited for the The Prospective Urban and Rural Epidemiological (PURE) study.

The PURE study aimed to recruit approximately 150,000 participants aged between 35 and 70 years living in more than 600 communities in 17 low-, middle- and high-income countries around the world. The participating countries’ selection was based on the representativeness of different economic levels and the study sites included are based on the commitment of investigators to collecting good quality data over the planned 10-year period. The University of the Western Cape’s (UWC) School of Public Health (SoPH) committed itself to carry out data collection in Langa (urban community) in the Western Cape Province and Mount Frere (rural community) in the Eastern Cape Province. The sample size of the University of the Western Cape’s PURE urban study site consisted of 1000 males and females. For the purpose of this study, a sub-sample of 300 participants as determined by the sample size of similar studies was randomly selected from the three areas (old Langa, the Zones and the Hostels) in the Western Cape urban cohort in Langa to complete the questionnaire on challenges to CNCD intervention programmes. Baseline demographic and anthropometric data (height, weight, waist and hip circumference, BMI) obtained for participants in 2010 were used.

Ten key officers from the DoH, who are involved in the prevention and treatment of CNCDs, were invited to participate in the study by means of snowball sampling. These potential interviewees were contacted by means of electronic mail in order to set up an initial meeting during which the purpose of the study was explained and information about the Multicriteria Mapping (MCM) interviewing method (by means of a demonstration) was provided. In addition, anonymity was discussed, informed consent was obtained and a date was then set for the actual interview with those who agreed to participate in the study. In total, six of the ten officers identified, agreed to participate in the study.
Assessment instruments and multi-criteria mapping

Two questionnaires consisting of open-and-closed-ended questions were developed based on published information on challenges faced by study participants regarding CNCD interventions and expectations from CNCD intervention programmes. The Challenges to intervention programmes questionnaire was used to assess challenges faced by community participants in intervention programmes. In addition, this questionnaire was also used to ascertain satisfaction with current CNCD intervention programmes and to determine what is desired from a CNCD intervention programme. The DoH questionnaire was used to assess DoH officials’ awareness of existing CNCD policies and what factors they perceived to be obstacles in addressing the CNCD epidemic.

To explore what courses of action DoH officials believed would perform best in CNCDs intervention programmes, a list of courses of action employed to address CNCDs identified from literature was drawn up prior to the initial meeting with potential interviewees. These were grouped into “core options”- criteria that all participants were required to assess and “discretionary options”- from which interviewees could select three or more criteria if they felt the core options did not address all the criteria they deemed necessary to address the CNCD epidemic in South Africa (Table 6.1).
Table 6.1: Clusters, options and definitions of options to address nutrition-related CNCD

<table>
<thead>
<tr>
<th>Clusters</th>
<th>Options</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNCD prevention and management oriented</td>
<td>Legislation and regulation for CNCD (policies).</td>
<td>The development and implementation of policies to salt reduction and alcohol use could aid in decreasing the use of alcohol and salt. The development and implementation of environmental planning policies will aid in the improvement of community facilities so that it is safe and conducive to physical activity. Policies to control the composition of processed foods in terms of fat (type and amount), salt content and kilocalories will aid in the control of overweight and obesity as well as other CNCDs. 20,21</td>
</tr>
<tr>
<td>Food information</td>
<td>Control of food and drink advertisements.</td>
<td>This will entail the banning of food advertisements aired during children’s programmes as well as in cinemas. This will also include the banning of advertisements of tobacco products, alcohol and unhealthy foodstuff aimed at adults on television, billboards, and magazines and in cinemas. 21,22</td>
</tr>
<tr>
<td>Food supply and control</td>
<td>Control of food sales at public institutions and places</td>
<td>This entails controlling food and drink items sold at schools, colleges, technikons and universities. Young children are easily influenced, so only offering healthy food choices at school tuck shops for example, could lay the foundation for them to continue making healthy food choices into adulthood. 20,21,22</td>
</tr>
<tr>
<td>Food information</td>
<td>Compulsory food labelling</td>
<td>Compulsory food labelling would aid in the public making better food choices. The food labels should be easy to understand and standardised for all products, so that consumers can easily make better food choices. 21-24</td>
</tr>
<tr>
<td>Food supply and control</td>
<td>Fatty and sugar-sweetened food tax (“sin tax”) and healthy food subsidies.</td>
<td>Taxing food manufacturing companies for the production of food items which contain fat, sugar and salt above the recommended levels, could encourage these companies to reformulate their recipes and thus influence consumers’ intake. On the other hand, the simultaneous decrease in healthy food prices (by means of subsidies) could encourage the purchasing of these healthier food items. 21,24</td>
</tr>
<tr>
<td>Food supply and control</td>
<td>Cheaper prices of healthy foods</td>
<td>Providing healthier foods at lower prices would encourage citizens to purchase these food items. This could be done by subsidising healthier food options. 21,22,24</td>
</tr>
<tr>
<td>Partnerships and collaboration</td>
<td>Community participation</td>
<td>Joining forces with other government departments, the food industry, community associations and non-governmental organisations (NGOs) could aid in the pooling of resources and thus result in a holistic approach to tackling the CNCDs epidemic. 27</td>
</tr>
<tr>
<td>Partnerships and collaboration</td>
<td>Improving inter-sectoral partnerships.</td>
<td>The community members know what their needs are. In order for an intervention to be successful, it must address the community’s self-identified needs. 26,27</td>
</tr>
</tbody>
</table>
Table 6.1: Clusters, options and definitions of options to address nutrition-related CNCD (continued)

<table>
<thead>
<tr>
<th>DISCRETIONARY OPTIONS</th>
<th>Options</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Educational</td>
<td>Improved health education of citizens</td>
<td>Citizens will be provided with more information and a better understanding of CNCDs, including their risk factors, prevention and management, and in this way they will be aided in decreasing their risk for developing CNCDs. Teaching them how to make healthier food choices (teaching them how to read food labels) would play a role in combating CNCDs.21, 24</td>
</tr>
<tr>
<td>Educational</td>
<td>Improve training of health professionals in CNCD.</td>
<td>Providing health professionals with the skills and knowledge to identify, counsel and care for persons with CNCDs could aid in reversing the CNCDs epidemic.21, 28</td>
</tr>
<tr>
<td>Health care reform</td>
<td>Integrated health service delivery</td>
<td>Integrating services where individuals who are for example HIV-positive, and who are also suffering from a CNCD would result in this person getting the necessary care for both conditions in one place at the same time.29</td>
</tr>
<tr>
<td>Health care reform</td>
<td>Skill-shifting among health professionals.</td>
<td>Training more assistant health professionals (e.g. nursing assistants) and community health workers to assist with the care of individuals with CNCDs could play a role in alleviating the workload of existing health professionals and also address the current health human resource problems.28, 30</td>
</tr>
<tr>
<td>Health care reform</td>
<td>Improve health information systems</td>
<td>Improved health information systems will aid in identifying and monitoring individuals at risk of, or diagnosed with CNCDs. In this way better care can be provided to these individuals and aid in decreasing the CNCDs epidemic.31</td>
</tr>
<tr>
<td>Educational</td>
<td>Improve the school curriculum by including more health and nutrition education.</td>
<td>Including health and nutrition education in the school curriculum will equip young children to make better food choices and will lay the foundation for their future health.21</td>
</tr>
<tr>
<td>Innovative preventive initiatives</td>
<td>Improve workplace health initiatives</td>
<td>By providing incentives to their workforce, companies can encourage their employees to maintain better health. This may include the provision of health education workshops, annual health checks, or even installing a gym at the workplace, and the work cafeteria only providing healthy foods.21</td>
</tr>
<tr>
<td>Innovative preventive initiatives</td>
<td>Compulsory free annual medical check-up.</td>
<td>Making it compulsory for all individuals regardless of age, to go for an annual medical check-up could aid in identifying individuals at risk of, or who suffer from CNCDs as well as provide the opportunity to impart information on the prevention of CNCDs.21</td>
</tr>
<tr>
<td>Technological advances</td>
<td>Increased use of sugar and fat substitutes</td>
<td>Companies are developing new products regularly. The use of sugar and fat substitutes could assist individuals with their weight control.21, 22, 34, 36</td>
</tr>
<tr>
<td>Technological advances</td>
<td>Growing healthier foods such genetically-modified (GM) foods</td>
<td>Agriculture could find ways in which to produce healthier foods for the general public.24, 23</td>
</tr>
<tr>
<td>Food information</td>
<td>Control marketing terminology on food labels (e.g. use of “lite”)</td>
<td>Policies can control what items fulfill the criteria to be labelled “lite”, etcetera. In this way the consumer is assured that he/she is making better food choices without being misled.24, 24</td>
</tr>
<tr>
<td>Food supply and control</td>
<td>Healthier restaurant menus</td>
<td>Restaurants can be provided with incentives to reformulate their recipes so that they can offer healthier food to their patrons.28</td>
</tr>
<tr>
<td>Food information</td>
<td>Nutrient analysis of catering menus to show energy, sugar, salt and fat content</td>
<td>All public eating places are to provide their patrons with nutritional information of all food items prepared on the premises. This will aid patrons to order the healthier food items.37, 39</td>
</tr>
</tbody>
</table>
The Multicriteria Mapping (MCM) interviewing method, a decision analysis tool16 was used to collect data during face-to-face interviews which were audiotaped. This method makes use of a four-step approach: (1) interviewees choose the options they want to assess from the list disseminated during the initial meeting; (2) criteria are defined by each interviewee to assess the chosen options; (3) interviewees assign a score to each option against their defined criteria and (4) lastly, they assign a weight to each criterion according to importance. 21, 40

Data collection

Secondary data analysis was done on demographic and anthropometric data collected in 2010 for the 300 PURE study community participants. Demographic data was obtained by means of the standardised PURE adult questionnaire14, 41, 42 during face-to-face interviews by trained fieldworkers. Weight was measured with the subject wearing minimal clothing (and after subjects were asked to empty their pockets) to the nearest 0.1kg, using a digital scale (UC 321 Precision scale, A&D Medical, Oxford, UK). Height was measured to the nearest 0.1cm using a stadiometer (Detecto 3PHTROD, Detecto, Webb City, MO USA) with the participant standing with normal posture and barefoot. Measurements were read after ensuring the subject’s head was in the Frankfort plane. Body mass index (BMI) was calculated by dividing the weight (kg) by the height (m) squared and presented by BMI category. Waist circumference was measured over minimal clothing at the narrowest part between the rib cage and iliac crest using a non-stretchable measuring tape (Dean, Cloth & Notions, London, UK). Hip circumference was measured over minimal clothing at the widest part of the body over the buttocks, with the same measuring tape (Dean, Cloth & Notions, London, UK). Two readings were taken and recorded to the nearest 0.1cm and the mean calculated. Waist-hip ratio (WHR) was calculated by taking the waist circumference (cm) and dividing it by the hip circumference (cm). Waist to height ratio (WHtR) was calculated by taking the waist measurement (cm) and dividing it by the height (cm).

One trained fieldworker conducted face-to-face interviews with study participants and completed the “Challenges to intervention programmes” questionnaire during the period 10 July 2015 to 25 November 2015.
The researcher used the MCM interviewing method as a decision analysis tool16 to collect data during face-to-face interviews from DoH officials. Interviews took place over the period of 10 December 2015 to 1 July 2016. Interviews lasted between one and a half to two hours.

Ethics approval

Ethics approval for the Western Cape PURE study was obtained from the Research and Higher Degrees committee from the University of the Western Cape (project number 13/3/5). Informed, written consent was obtained from each participant and confidentiality and anonymity were maintained by using participant numbers and no names on all study material.

Data analysis

Most data deviated from the normal distribution as assessed by the Kolmogorov-Smirnov test. Therefore, medians and interquartile ranges were calculated for continuous demographic and anthropometric data of men and women. Percentages and frequencies were calculated for categorical demographic and anthropometric data. Participants were categorised as overweight/obese (BMI≥ 25kg/m2) vs underweight/normal weight (BMI≤ 24.9kg/m2). Participants were also categorised according to their willingness to join a CNCD intervention programme (willing vs not willing). The associations between willingness to join an intervention programme and BMI category were determined by means of the chi square test. Differences between BMI, WC, WHR, WHtR of the two groups according to willingness to join an intervention programme were determined by the Mann-Whitney test. Frequencies and percentages were calculated for quantitative data collected using the ‘Challenges to intervention programmes’ questionnaire. The results are depicted by means of charts. Data analysis was done using the Statistical Package for Social studies (SPSS) version 23 (SPSS Inc., Chicago, IL, USA) software programme.

The data obtained by means of the MCM interviewing method was prepared for analysis as described in the MCM manual Version 1.2.43 For analysis, the predefined options were grouped into clusters (Table 2) and criteria identified by interviewees were categorised into groups termed
“issues” in MCM. Five sets of issues were identified and used to analyse the assessment of the performance of the predefined options (Table 3). The interviewees were categorised into two perspectives, i.e. management and implementers. Quantitative data is represented by means of bar charts generated by MC Mapper. Qualitative data was obtained from the transcripts of each interview and organised according to themes (Figures 6.1 and 6.2, Table 6.4) together with the textual data entered into MC Mapper during the interviews which provided information on the reasons for the scores given. The data was then analysed using the MCM analysis 2016 (University of Sussex, UK) software.

<table>
<thead>
<tr>
<th>Issue group</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Resources</td>
<td>Human resources, funding, money, equipment, tools, internet, checklists</td>
</tr>
<tr>
<td>2. Collaboration</td>
<td>Relationships, community participation, communitly-based participation, capacitation</td>
</tr>
<tr>
<td>3. Awareness creation</td>
<td>Health promotion, knowledge</td>
</tr>
<tr>
<td>4. Accountability</td>
<td>Policy and legislation, information, monitoring and governance</td>
</tr>
<tr>
<td>5. Commitment</td>
<td>Policy and legislation, mental commitment</td>
</tr>
</tbody>
</table>

6.4 Results

The majority of the study sample was comprised of women (77.6%). Two-thirds (66.6%; n=200) of the study sample had a high school education and the majority (80.9%; n=243) was unemployed. Hypertension and type-2 diabetes were the CNCDs commonly reported by the study sample at 32.4% and 13.7%, respectively (Table 6.3). The majority (73.6%; n=221) of the study population were classified as overweight/obese (BMI ≥25kg/m²). Concern for their health and their clothes being too tight were the reasons provided for wanting to lose weight (Figure 6.1). Interestingly, approximately 82% (n=245) of the participants, including those who stated that
they were happy with their weight, indicated that they were willing to join a weight loss programme, should one be offered in their community. Education on healthy food preparation and “not feeling alone” were some of the reasons for wanting to join a weight loss programme (Figure 6.2).
Table 6.3: Characteristics of the study sample (n, % or median, interquartile range)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Women n(%)</th>
<th>Men n(%)</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of participants#</td>
<td>225</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>51 (42.57)</td>
<td>50 (40.5-57)</td>
<td>0.678</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td></td>
<td></td>
<td>0.191</td>
</tr>
<tr>
<td>• Normal weight/underweight</td>
<td>26 (23.3)</td>
<td>13 (36.10)</td>
<td></td>
</tr>
<tr>
<td>• Overweight/obese</td>
<td>89 (76.8)</td>
<td>23 (63.9)</td>
<td></td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
<td>0.725</td>
</tr>
<tr>
<td>• Never married</td>
<td>110 (49.8)</td>
<td>32 (43.2)</td>
<td></td>
</tr>
<tr>
<td>• Currently married</td>
<td>60 (27.1)</td>
<td>29 (39.2)</td>
<td></td>
</tr>
<tr>
<td>• Common law/living with partner</td>
<td>10 (4.5)</td>
<td>4 (5.4)</td>
<td></td>
</tr>
<tr>
<td>• Widowed</td>
<td>26 (11.8)</td>
<td>8 (10.8)</td>
<td></td>
</tr>
<tr>
<td>• Separated</td>
<td>12 (5.4)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>• Divorced</td>
<td>3 (1.4)</td>
<td>1 (1.4)</td>
<td></td>
</tr>
<tr>
<td>Education level</td>
<td></td>
<td></td>
<td>0.539</td>
</tr>
<tr>
<td>• No school education</td>
<td>5 (2.3)</td>
<td>2 (3.2)</td>
<td></td>
</tr>
<tr>
<td>• Primary school</td>
<td>45 (20.3)</td>
<td>11 (17.5)</td>
<td></td>
</tr>
<tr>
<td>• High school/secondary school</td>
<td>151 (68.0)</td>
<td>42 (66.7)</td>
<td></td>
</tr>
<tr>
<td>• Trade school</td>
<td>6 (2.7)</td>
<td>1 (1.6)</td>
<td></td>
</tr>
<tr>
<td>• College/university</td>
<td>14 (6.3)</td>
<td>6 (9.5)</td>
<td></td>
</tr>
<tr>
<td>• Unknown</td>
<td>1 (0.5)</td>
<td>1 (1.6)</td>
<td></td>
</tr>
<tr>
<td>Employment</td>
<td></td>
<td></td>
<td>0.715</td>
</tr>
<tr>
<td>• Currently Employed</td>
<td>55 (26.5)</td>
<td>11 (17.2)</td>
<td></td>
</tr>
<tr>
<td>• Unemployed</td>
<td>138 (66.7)</td>
<td>44 (68.8)</td>
<td></td>
</tr>
<tr>
<td>• Retired</td>
<td>14 (6.8)</td>
<td>9 (14.1)</td>
<td></td>
</tr>
<tr>
<td>Type of Employment</td>
<td></td>
<td></td>
<td>0.209</td>
</tr>
<tr>
<td>• Legislators, senior officials and managers</td>
<td>1 (0.5)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>• Professionals</td>
<td>7 (3.4)</td>
<td>1 (1.6)</td>
<td></td>
</tr>
<tr>
<td>• Technicians and associate professionals</td>
<td>2 (1.0)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>• Clerks</td>
<td>3 (1.4)</td>
<td>5 (8.1)</td>
<td></td>
</tr>
<tr>
<td>• Service, shop and market sales workers</td>
<td>8 (3.9)</td>
<td>1 (1.6)</td>
<td></td>
</tr>
<tr>
<td>• Craft and related trade workers</td>
<td>2 (1.0)</td>
<td>2 (3.2)</td>
<td></td>
</tr>
<tr>
<td>• Plant and machine operators and assemblers</td>
<td>4 (1.9)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>• Elementary occupations</td>
<td>22 (10.6)</td>
<td>4 (6.5)</td>
<td></td>
</tr>
<tr>
<td>• Armed forces</td>
<td>4 (1.9)</td>
<td>1 (1.6)</td>
<td></td>
</tr>
<tr>
<td>• Homemaker</td>
<td>154 (74.4)</td>
<td>48 (77.4)</td>
<td></td>
</tr>
<tr>
<td>Alcohol use history</td>
<td></td>
<td></td>
<td>0.765</td>
</tr>
<tr>
<td>• Formerly used alcohol products</td>
<td>16 (7.7)</td>
<td>3 (4.9)</td>
<td></td>
</tr>
<tr>
<td>• Currently use alcohol products</td>
<td>39 (18.8)</td>
<td>15 (24.6)</td>
<td></td>
</tr>
<tr>
<td>• Never used alcohol products</td>
<td>152 (73.4)</td>
<td>43 (70.5)</td>
<td></td>
</tr>
<tr>
<td>Tobacco use history</td>
<td></td>
<td></td>
<td>0.159</td>
</tr>
<tr>
<td>• Formerly used tobacco products</td>
<td>9 (4.3)</td>
<td>3 (5.0)</td>
<td></td>
</tr>
<tr>
<td>• Currently use tobacco products</td>
<td>38 (18.4)</td>
<td>16 (26.7)</td>
<td></td>
</tr>
<tr>
<td>• Never used tobacco products</td>
<td>162 (78.3)</td>
<td>41 (68.3)</td>
<td></td>
</tr>
<tr>
<td>Physical activity</td>
<td></td>
<td></td>
<td>0.397</td>
</tr>
<tr>
<td>• Low</td>
<td>37 (19.9)</td>
<td>14 (25.9)</td>
<td></td>
</tr>
<tr>
<td>• Moderate</td>
<td>114 (61.3)</td>
<td>31 (57.4)</td>
<td></td>
</tr>
<tr>
<td>• High</td>
<td>35 (18.9)</td>
<td>9 (16.7)</td>
<td></td>
</tr>
<tr>
<td>Diagnosed with hypertension</td>
<td></td>
<td></td>
<td>0.935</td>
</tr>
<tr>
<td>• No</td>
<td>139 (65.6)</td>
<td>41 (66.1)</td>
<td></td>
</tr>
<tr>
<td>• Yes</td>
<td>73 (34.4)</td>
<td>21 (33.9)</td>
<td></td>
</tr>
<tr>
<td>Diagnosed with diabetes</td>
<td></td>
<td></td>
<td>0.624</td>
</tr>
<tr>
<td>• No</td>
<td>189 (89.2)</td>
<td>53 (86.9)</td>
<td></td>
</tr>
<tr>
<td>• Yes</td>
<td>23 (10.8)</td>
<td>8 (13.1)</td>
<td></td>
</tr>
<tr>
<td>Diagnosed with cancer</td>
<td></td>
<td></td>
<td>0.915</td>
</tr>
<tr>
<td>• No</td>
<td>208 (98.1)</td>
<td>60 (96.8)</td>
<td></td>
</tr>
<tr>
<td>• Yes</td>
<td>4 (1.9)</td>
<td>2 (3.2)</td>
<td></td>
</tr>
<tr>
<td>Diagnosed with coronary heart disease</td>
<td></td>
<td></td>
<td>0.275</td>
</tr>
<tr>
<td>• No</td>
<td>202 (95.3)</td>
<td>61 (98.4)</td>
<td></td>
</tr>
<tr>
<td>• Yes</td>
<td>10 (4.7)</td>
<td>1 (1.6)</td>
<td></td>
</tr>
<tr>
<td>Suffered a stroke</td>
<td></td>
<td></td>
<td>0.350</td>
</tr>
<tr>
<td>• No</td>
<td>209 (98.6)</td>
<td>60 (96.8)</td>
<td></td>
</tr>
<tr>
<td>• Yes</td>
<td>3 (1.4)</td>
<td>2 (3.2)</td>
<td></td>
</tr>
</tbody>
</table>
*Comparison using Mann-U Whitney test for continuous data and chi-square test for categorical data

#Numbers varied due to missing data for some variables

![Reasons for wanting to lose weight](image1)

Figure 6.1: Reasons for wanting to lose weight

![Reasons for willingness to join a weight loss programme](image2)

Figure 6.2: Reasons for willingness to join a weight loss programme

Education on what foodstuffs to purchase, reasons for weight gain and recipes were what community participants expected to gain from CNCD interventions (Figure 3).
Challenges experienced by community participants with the implementation of and adherence with CNCD interventions included lack of access to facilities, high cost and availability of recommended foodstuffs, family responsibilities and peer pressure (Table 6.4).

Table 6.4: Challenges with implementation and adherence to CNCD interventions

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Number of respondents (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lack of money to purchase foodstuffs recommended</td>
<td>255 (85)</td>
</tr>
<tr>
<td>Family responsibilities competing with adherence</td>
<td>220 (73)</td>
</tr>
<tr>
<td>Not liking the taste of recommended foodstuffs</td>
<td>216 (72)</td>
</tr>
<tr>
<td>Access to facilities where interventions are offered</td>
<td>189 (63)</td>
</tr>
<tr>
<td>Lack of availability of foods recommended by health workers in the community</td>
<td>155 (52)</td>
</tr>
<tr>
<td>Peer pressure to behaviour change</td>
<td>135 (45)</td>
</tr>
<tr>
<td>The perception that it is hard to quit smoking (smoker)</td>
<td>42 (72)</td>
</tr>
</tbody>
</table>

There was a significant association between willingness to join a weight loss programme and BMI classification (p=<0.0001), with overweight/obese participants less likely to join a weight loss programme. No differences were found between BMI (p=0.573), WC (p=0.282), WHR (p=0.822) and WHtR (p=0.434) in the group who wanted to lose weight and the group who did not want to lose weight (Mann-Whitney test).
As depicted in Figures 6.3-6.5, there was consensus among all DoH officials (both managers and implementers) that community participation and improving inter-sectoral relationships and collaboration were the two core options deemed the most important by all MCM interviewees. Community involvement was considered the most important for all MCM interviewees. Two interviewees in particular felt very strongly that interventions would not be successful unless the community was empowered and involved in all processes from start to finish.

Policy and legislation were also regarded as important by both groups since this was viewed as the “control” and accountability, but their effectiveness was viewed being dependent on the availability of human resources and budgetary constraints.

Food supply and control of food sales and advertisements were seen as less favourable options, since interviewees considered their efficacy to be reliant on the organisations’ “policies” and industry. Although food taxes on high salt, sugar-sweetened and fatty foods were reported to be feasible options, it was felt that home industries and cheaper food items being imported would not be monitored effectively due to constraints on resources (human, laboratories and monetary). The efficacy of cheaper prices of healthy foods and healthy food subsidies were not considered feasible options.

Improving health information systems and the integration of health service delivery were ranked very highly by all, even though health service integration was considered to be a formidable task.

Improving the school curriculum was the one option implementers also regarded as important, however this was heavily dependent on the Department of Education and not within the scope of practice of the DoH officials.

The use of genetically-modified food, sugar and fat substitutes did not find favour with any of the interviewees.
Community participation [C]
Inter-sectoral partnerships [C]
Policies and legislation [C]
Control of food and drink advertising [C]
Control of food sales at public institutions and places [C]
Food taxes [C]
Cheaper prices of healthy foods [C]
Compulsory food labelling [C]
Integrated health service delivery [D]
Improve health information systems [D]
Improve the school curriculum by including more health and nutrition education [D]
Improve training of health professionals in CNCD [D]
Skill-shifting among health professionals [D]
Healthier restaurant menus [D]
Improve workplace health initiatives [D]

Figure 6.4: Range of ranks of options assessed by the total group of DoH officials (n=6)

[C]: core option [D]: Discretionary option

Figure 6.5: Range of ranks of issues assessed by DoH managers (n=3)
Policies are available for DM, CVD, cancer and chronic respiratory diseases and all the DoH officials were aware of these policies.

Table 5 depicts obstacles that the DoH officials perceived to impact the CNCD epidemic. These obstacles include a lack of inter-sectoral collaboration at governmental level. Limited access to recreational resources in communities and a lack of community ownership were perceived to be obstacles at community level. Similarly, the community participants identified accessibility to facilities where CNCD intervention programmes are offered. In addition, community participants wanting incentive to attend CNCD intervention programmes could be interpreted as not taking ownership for their health.
Table 6.5: Obstacles to addressing the CNCD epidemic identified by DoH officials

<table>
<thead>
<tr>
<th>Government level</th>
<th>Community level</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Lack of inter-sectoral collaboration with governmental departments</td>
<td>• Community not taking ownership of their health</td>
</tr>
<tr>
<td>• Not obtaining buy-in from business sector prior to drafting policy or legislation</td>
<td>• Urbanisation; change in dietary intake, decreased physical activity due to easy access to different modes of transport</td>
</tr>
<tr>
<td>• Difficulty in finding a balance between developed countries’ investment (e.g. Kentucky Fried Foods, McDonald’s) and health</td>
<td>• Limited access to recreational facilities in especially townships</td>
</tr>
<tr>
<td>• Poor literacy in majority of the population</td>
<td>• Easy access to fast food in communities</td>
</tr>
<tr>
<td>• Poor recreational resources in living environments</td>
<td>• Crime; unsafe communities for walking and outdoor activities</td>
</tr>
<tr>
<td>• Poor control of crime</td>
<td></td>
</tr>
</tbody>
</table>

6.5 Discussion

The community participants’ challenges and needs focussed on practical aspects, such as education on foods associated with weight gain, what foods and drinks to purchase, how to prepare food and recipes, while the DoH officials stated that integration of health services, community participation, improving inter-sectoral partnerships and food taxation would perform best to prevent the CNCD epidemic. The DOH officials also mentioned lack of community participation and low literacy as challenges, while the community participants identified lack of access to facilities and a need for information to be provided in their home language.

Even though the majority of the participants were classified as overweight/obese, less than 25% expressed a desire to lose weight, nor were they willing to join a weight loss programme. This could be due to cultural influences since black women often associate being overweight with social standing, health and beauty. Another possible reason could be a lack of knowledge regarding the risk of CNCD associated with obesity. This could be inferred from participants’ requirements from CNCD intervention programmes, amongst others, education on causes of weight gain and how to prepare healthy food. Overweight and obesity are known risk factors for the development of CNCDs. Increased rates of overweight and obesity which are now on par with those seen in high-income countries, have been observed in low-and middle-income
countries and in SA50. This is a result of globalisation and urbanisation which lead changes in lifestyle and food consumption.51-54

More than half (60.7\%) of the participants were unemployed. It has been previously reported that adherence to health messages and dietary guidelines is often poorer in persons of lower socio-economic status.55 Additionally, cultural influences, costs, food availability and personal taste affects acceptability of foodstuffs recommended for a healthy lifestyle.2,49,56-58 The majority of the community members interviewed expressed a need for education (cooking lessons, what foods to purchase). This could indicate that, even though there are health and nutrition education programmes, it does not reach everyone, or that the messages are not properly understood. It is known that health and nutrition education are crucial components of any health intervention.59, 60 Low literacy was identified as a challenge by DoH officials, which was corroborated by the community participants’ desire to receive health messages and health education in their home language.

Policy and legislation were considered by DoH officials to be very important to address the CNCD epidemic. Some “best buy” interventions suggested by the literature to address the CNCD epidemic are to reduce tobacco and alcohol use, reducing the \textit{trans}-fat and salt content of foodstuffs, banning advertisements of “unhealthy” foods to children” and the promotion of physical activity.61,62 South Africa has responded by setting specific targets in its strategic plan for the prevention and control of non-communicable diseases 2013-2017 and the implementation of the Tobacco Products Controls Act of 1993, the Regulations Relating to Trans fats in Foodstuffs No. R.249 (2010), the amendment to Foodstuffs, Cosmetics and Disinfectants (54/1972): Regulations relating to the reduction of sodium in certain foodstuffs and related matters No.3 35509 R. 533.11,63,64

Regarding the control of the food supply cluster (regulation of food sales at schools, food taxes, cheaper prices of healthy foods and food subsidies and healthier restaurant menus), food taxes received the most optimistic response. Taxes on alcoholic beverages and tobacco products have been in existence since 2002 and since the early 1990s respectively.65-66 The South African
National treasury released a policy paper on taxation of sugar sweetened beverages in July 2016 for comment with the view to implement it in 2017. Evidence to support a reduction in the consumption of sugar sweetened foods as a result of sugar tax exists. In Mexico for example, sugar tax resulted in a change in purchasing behaviour with a reduction in the purchasing of sugar taxed food items seen across all socio-economic levels.

The majority of the DoH interviewees regarded food labelling (food information cluster) to be important. They however agreed that the labelling used is not user-friendly, especially to those who are illiterate. The South African government passed an amendment to the Foodstuffs, Cosmetics and Disinfectants Act relating to the labelling and advertising of foodstuffs No. R.429. A recent review supports the opinion of the DoH officials that food labels are complex and do not always have the desired effect.

The integration of health services was also considered favourable by the DoH interviewees, even though it was acknowledged that it would be a momentous task. A recent study investigating the integration of NCD, HIV/AIDS and mental health care by empowering chronically ill patients to take care of their own health, found that this option would be beneficial in improving the quality of health service delivery.

Community participation was viewed overall as the best option to tackling the CNCD epidemic. The North Karelia project in Finland and the CORIS study in South Africa are two examples of projects where community participation was proven to be successful. In the current study, participants were faced with difficulty in accessing facilities where CNCD programmes were offered and this impacted their ability to implement and adhere to the interventions.

Despite the general view that industry is money driven, strengthening inter-sectoral partnerships was seen as a favourable option. As part of their social responsibility, many of the big retailers have implemented some form of health intervention programme. The big South African supermarkets such as Pick’n Pay and Woolworths employ a dietitian and have nutrition education initiatives. In addition, some of these retailers have partnered with medical aid
companies to offer cashback when healthier food items are purchased at these retailers’ stores. These retailers are however not usually located in poorer communities.

The most important results of this study are that gaps were identified between the needs of the community participants and options deemed the most important by DoH officials for successful CNCD interventions and prevention programmes. Whilst community members viewed practical context-based advice necessary to aid them in the management of CNCD, the DoH officials considered policies and legislation, community participation and inter-sectoral partnerships as the best options to address the CNCD crisis. It appears that, even though the DoH has a holistic approach to address the CNCD epidemic, a gap exists in that their efforts (advice/ health messages) do not seem to be practical enough or acceptable for the community participants to implement them.

6.6 Limitations

The following limitations need to be considered. The small number of male respondents and DoH officials interviewed might have influenced the results. Finally, as this was a cross-sectional study, no causal relationship could be inferred. The small number of DoH officials was the only available ones, if there were more, the responses may have been more varied. A small number of men in South Africa have been encountered in several other studies, this could be due to men being less interested in participating or are unable to get time off from work. The results may thus not be generalised to SA men.

6.7 Recommendations

The communities at which the CNCD programmes are aimed should be involved from the onset in the development of CNCD interventions. The DoH officials realised the importance of community participation, but the community participants mentioned a lack of access to health facilities and programmes as a challenge to participation. Improved access to health facilities where CNCD programmes are offered should thus be addressed. Contextual-based health
education should be provided in the language of the communities targeted. The provision of recipes for healthier versions of foods/dishes traditionally consumed should form part of CNCD intervention programmes. This study should be repeated with larger samples and preferably across all provinces of South Africa.

Buy-in should also be fostered from the food sector for the provision of affordable food that is low in salt, saturated fat, trans-fatty acids and high complex carbohydrates. Communities, community organisations and other stakeholders in communities where CNCD intervention programmes are to be implemented should be involved from the onset in the development of these CNCD interventions. Contextual-based health education should be provided in the language of the communities where it is to be offered. The provision of recipes or education on how traditional recipes can be made healthier should be provided as part of CNCD intervention programmes.

6.8 Conclusion
Integration of health service, community participation, food taxation and improving inter-sectoral partnerships were viewed by DoH officials as the most feasible options to address the CNCD epidemic. At community level, the needs for education, shopping lists and healthy recipes in their home language were expressed. Even though the need for education as identified at community level, is being addressed by the DoH as evidenced by the available education material (posters and pamphlets), these do not seem to have the desired effect. Current CNCD interventions should be adapted to include the context-based needs of communities.
REFERENCES

40. Yusuf S, Teo K, Anand S, et al. Prospective Urban and Rural Epidemiological Study (PURE) protocol: a prospective cohort study to track changing lifestyles, risk factors and chronic disease in Urban and Rural areas of Argentina, Bangladesh, Brazil, Canada, Chile, China, Colombia, India, Iran, Malaysia, Pakistan, Poland, South Africa, Sweden, Tanzania, Turkey,

71. Van Deventer C. Integration of non-communicable chronic diseases (NCDs) and HIV/AIDS and mental health care through the involvement of chronically ill patients using empowerment evaluation. S Afr Fam Pract 2015; 57(6):337-346.

Addendum S: JPHRES Author Guidelines

http://jphres.org/index.php/jphres/about/submissions#authorGuidelines

Home > About the Journal > Submissions

Submissions

- Online Submissions
- Author Guidelines
- Copyright Notice
- Privacy Statement

Online Submissions

Already have a Username/Password for Journal of Public Health Research?
Go to Login

Need a Username/Password?
Go to Registration

Registration and login are required to submit items online and to check the status of current submissions.

Author Guidelines

To submit a paper to our journal:

- **Register** as an Author; we encourage you to register also as a reader and a reviewer at the same time.
- Follows the Instructions to authors below.
- Read our Editorial Policies and our Competing Interest policies
To submit a revised version

- **Log in**
- Click on your role as Author
- Click on QUEUED FOR REVIEW on the page displayed
- Under the heading EDITOR DECISION, upload your revised paper as AUTHOR VERSION using Browse and Upload buttons
- Use the NOTIFY EDITOR email to inform editors that the revised version has been submitted

Instructions to Authors

Papers submitted to the Journal of Public Health Research that don’t comply with the following instructions will be returned to authors without peer-review.

Manuscripts must be written in English and should conform to standard rules of British English grammar and style. Authors whose native language is not English are strongly advised to have their manuscript checked by a language editing service, or by an English mother-tongue colleague prior to submission.

As an option, PAGEPress offers its own professional copyediting service. Professional copyediting can help authors improve the presentation of their work and increase its chances of being taken on by a publisher. In case you feel that your manuscript needs a professional English language copyediting checking language grammar and style, PAGEPress offers a chargeable revision service in a few days. This service is available as well to authors who do not submit their manuscript to our journals. Please contact us to get more detailed information on this service.

All papers submitted to our journal must contain a section named *Significance for public health,* not exceeding 150 words. In this section authors are to describe the significance of the research reported in the article for, and/or its impact on, public health.
Style

The first page must contain: (a) title, name and surname of the authors; (b) names of the institution(s) where the research was carried out; (c) a running title of no more than 50 letters; (d) acknowledgments; (e) the name and full postal address of the author to whom correspondence regarding the manuscript as well as requests for abstracts should be sent; (f) three to five key words. To accelerate communication, phone, fax number and e-mail address of the corresponding author should also be included.

The second page should contain: (a) authors' contributions, i.e., information about the contributions of each person named as having participated in the study (http://www.icmje.org/#author); disclosures about potential conflict of interest.

Authors are kindly required to suggest at least two potential reviewers (name, affiliation and e-mail) for their manuscript in the "Comments to the Editor" field (Step 1. Submission Process).

Perspectives and Debates: articles should present new interesting or emerging public health topics that, starting from data based on practical research, can debate on all aspects of the subject, including perspectives about sociological impacts, economical evaluation, communication strategies, policy issues and ethical considerations. Requirements. Unstructured abstract, max. 250 words. Text must have a max. of 4000 words, 3 tables/figures in total and 30 references.

Original Articles should normally be divided into an abstract, introduction, design and methods, results, discussion and references. The abstract should contain about 250 words and must be structured as follows: background, design and methods, results, conclusions. In the “design and methods” section, authors must clearly indicate the date, when their study was carried out. Papers that do not fulfill this requirement, will not be considered for publication. A maximum of 20 authors is permitted, and additional authors should be listed in an ad hoc appendix. Requirements. Structured abstract, max. 250 words. Text must have a max. of 6000 words, 6 tables/figures in total and 40 references.
Brief Reports must provide conclusive findings: preliminary observations or incomplete findings cannot be considered for publication. They should be signed by no more than 10 authors. Brief reports should have a short abstract of no more than 150 words, a text of about 2000 words, a maximum of 3 tables and/or figures (total), and up to 20 references. **Requirements.** Unstructured abstract, max. 150 words. Text must have a max. of 2000 words, 3 tables/figures in total and 20 references.

Systematic Reviews and Meta-Analyses: no particular format is required for these articles. However, they should have an informative, unstructured abstract of about 250 words. **Requirements.** Unstructured abstract, max. 250 words. Text must have a max. of 8000 words; 6 tables/figures.

Letters should address specific scientific issues raised by Perspective and Debate, Original Articles, Brief reports, Reviews and Meta-Analyses, Public Health Case reports and Stakeholders corners published by *JPHRes* within the previous 6 months. Authors of papers cited in the Letters will be given the opportunity to respond. Letters that are highly polemic will not be published. Letters are not peer reviewed and are published at the discretion of the *JPHRes* editors. Conclusions and opinions expressed by the authors do not necessarily reflect the policies of *JPHRes*. **Requirements.** No abstract is needed. Text must have a max. of 1000 words, and 3 references.

Editorials are usually invited or addressed by editors about emerging or important issues in the field of public health.

Study protocols should provide a detailed description of the hypothesis, rationale and methodology of the study. They will usually be considered for publication without peer review if the study has received ethics approval and a grant or a formal approval from an official funding body. *Proof of both ethics and funding will be required and we recommend that authors provide the relevant documentation on submission as supplementary files. Protocols of randomized controlled trials should follow the CONSORT guidelines and must have a trial registration number included in the text.* Study protocols without these features will be peer reviewed. Study
protocols without ethics approval will not be considered. Abstract must be structured in sections: Background, Design and methods, and Expected Impact of the study for Public Health. **Requirements.** Short abstract of no more than 250 words, text of about 3000 words, a maximum of 2 tables and/or figures (total), and up to 15 references.

Meta-synthesis similar to quantitative systematic reviews and statistical meta-analyses, qualitative synthesis - relying on a diverse set of techniques (e.g. meta-ethnography, meta-study, thematic synthesis), have the potential to overcome the limitations of small-scale qualitative studies and promote a greater understanding in a particular area. **Requirements.** Unstructured abstract, max. 250 words. Text must have a max. of 8000 words and 6 tables/figures.

References should be prepared strictly according to the Vancouver style, which is present in EndNote); for details see the URL: http://www.nlm.nih.gov/bsd/uniform_requirements.html. Where available, URLs for the references should be provided directly within the Word document. References must be numbered consecutively in the order in which they are first cited in the text, and they must be identified in the text by arabic numerals. References to personal communications and unpublished data should be incorporated in the text and not placed under the numbered References.

Manuscript acceptance

Manuscripts are accepted for publication according to their scientific interest and their relevance to a Public Health journal. They are accepted on unquestionable Editor's opinion supported by a written evaluation by at least two anonymous referees.

Manuscripts that require revisions are returned by the journal to the corresponding author for improvement.

The revised manuscript, edited in .DOC format, should be resubmitted electronically to the Editor-in-Chief (on jphres.org) within 4 weeks from the date of receipt by the author. If the revised manuscript is returned to the journal after the allotted time, it will be considered a new submission.
Peer-review policy

All manuscripts submitted to our journal are critically assessed by external and/or in-house experts in accordance with the principles of peer review (http://www.icmje.org/#peer), which is fundamental to the scientific publication process and the dissemination of sound science. Each paper is first assigned by the Editors to an appropriate Associate Editor who has knowledge of the field discussed in the manuscript. The first step of manuscript selection takes place entirely in-house and has two major objectives: i) to establish the article’s appropriateness for our journals’ readership; ii) to define the manuscript’s priority ranking relative to other manuscripts under consideration, since the number of papers that the journal receives is much greater than it can publish. If a manuscript does not receive a sufficiently high priority score to warrant publication, the editors will proceed to a quick rejection. The remaining articles are reviewed by at least two different external referees (second step or classical peer review). Manuscripts should be prepared according to the Uniform Requirements established by the International Committee of Medical Journal Editors (ICMJE) (http://www.icmje.org/#prepare).

Authorship: all persons designated as authors should qualify for authorship according to the ICMJE criteria (http://www.icmje.org/ethical_1author.html). Each author should have participated sufficiently in the work to take public responsibility for the content. Authorship credit should only be based on substantial contributions to i) conception and design, or analysis and interpretation of data; and to ii) drafting the article or revising it critically for important intellectual content; and on iii) final approval of the version to be published. These three conditions must all be met. Participation solely in the acquisition of funding or the collection of data does not justify authorship. General supervision of the research group is not sufficient for authorship. Any part of an article critical to its main conclusions must be the responsibility of at least one author. Authors should provide a brief description of their individual contributions.

Obligation to Register Clinical Trials (http://www.icmje.org/#clin_trials): the ICMJE believes that it is important to foster a comprehensive, publicly available database of clinical trials. The ICMJE defines a clinical trial as any research project that prospectively assigns human subjects to
intervention or concurrent comparison or control groups to study the cause-and-effect relationship between a medical intervention and a health outcome. Medical interventions include drugs, surgical procedures, devices, behavioral treatments, process-of-care changes, etc. Our journals require, as a condition of consideration for publication, registration in a public trials registry. The journal considers a trial for publication only if it has been registered before the enrollment of the first patient. The journal does not advocate one particular registry, but requires authors to register their trial in a registry that meets several criteria. The registry must be accessible to the public at no charge. It must be open to all prospective registrants and managed by a non-profit organization. There must be a mechanism to ensure the validity of the registration data, and the registry should be electronically searchable. An acceptable registry must include a minimum of data elements (http://www.icmje.org/#clin_trials). For example, ClinicalTrials.gov (http://www.clinicaltrials.gov), sponsored by the United States National Library of Medicine, meets these requirements.

Protection of Human Subjects and Animals in Research: when reporting experiments on human subjects, authors should indicate whether the procedures followed were in accordance with the ethical standards of the committee responsible for human experimentation (institutional and national) and with the Helsinki Declaration of 1975 (as revised in 2008). In particular, PAGEPress adopts the WAME policy on Ethics in Research (http://www.wame.org). Documented review and approval from a formally constituted review board (Institutional Review Board - IRB - or Ethics committee) is required for all studies (prospective or retrospective) involving people, medical records, and human tissues. When reporting experiments on animals, authors will be asked to indicate whether the institutional and national guide for the care and use of laboratory animals was followed.

Submission Preparation Checklist

As part of the submission process, authors are required to check off their submission's compliance with all of the following items, and submissions may be returned to authors that do not adhere to these guidelines.
1. The submission has not been previously published, nor is it before another journal for consideration.
2. The submission file is in Microsoft Word, RTF, or PDF document file format.
3. We fight plagiarism: please understand that your article will be checked with available tools for discovering plagiarism.
4. The text adheres to the stylistic and bibliographic requirements outlined in the Author Guidelines, which is found in About the Journal.
5. All papers submitted to our journal must contain a section "Significance for public health," not exceeding 150 words. In this section authors are required to describe the significance of the research reported in the article for, and/or its impact on, public health.
6. I understand that this journal charge a publication fee for publication. I confirm that I will pay the amount due whether my manuscript will be accepted for publication.

Copyright Notice

PAGEPress has chosen to apply the Creative Commons Attribution NonCommercial 4.0 License (CC BY-NC 4.0) to all manuscripts to be published.

An Open Access Publication is one that meets the following two conditions:

1. The author(s) and copyright holder(s) grant(s) to all users a free, irrevocable, worldwide, perpetual right of access to, and a license to copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship, as well as the right to make small numbers of printed copies for their personal use.
2. A complete version of the work and all supplemental materials, including a copy of the permission as stated above, in a suitable standard electronic format is deposited immediately upon initial publication in at least one online repository that is supported by an academic institution, scholarly society, government agency, or other well-established organization that seeks to enable open access, unrestricted distribution, interoperability, and long-term archiving.
Authors who publish with this journal agree to the following terms: 1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. 2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. 3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS

7.1 Introduction

This chapter presents the summary of the thesis, the implications of the findings, the recommendations and the conclusions.

7.2 Objectives of the study and methods used

The goal of this study was to investigate challenges to the implementation of intervention programmes aimed at non-communicable diseases at government, community and individual levels in the Langa PURE study site in Cape Town, South Africa.

The study participants were part of the ongoing Prospective Urban and Rural Epidemiology (PURE) study which aims to identify social, individual and community factors that lead to populations developing risk factors for CNCDs, with the view to develop societal interventions and policies to address the CNCD epidemic worldwide. The cohort from the University of the Western Cape’s urban study site Langa, participated in this study.

The study was undertaken in three phases to meet the objectives. The first phase determined if a relationship existed between dietary adherence score and blood pressure and body composition respectively. A cross-sectional secondary analysis of quantitative data collected for the Prospective Urban Rural Epidemiological (PURE) study was performed.

The second phase was undertaken to identify community members’ needs from intervention programmes, to explore strategies that the Department of Health (DoH) officials viewed as best options to address the CNCD epidemic as well as to determine DoH officials’ knowledge regarding existing policies for CNCD. Questionnaires and the multicriteria mapping (MCM) interviewing method were used to obtain data.

During the third phase of the study, the challenges to the implementation of and adherence to CNCD intervention programmes’ nutrition messages were explored. This cross-sectional study made use of the focus group discussion method to obtain qualitative data.

The following objectives were formulated for the three phases of the study:
a) To determine participants’ dietary adherence by calculating a diet adherence score according to a Dietary Approaches to Stop Hypertension (DASH)-style diet.
b) To determine if there was an association between dietary adherence score, anthropometric measurements (waist circumference, body mass index, waist-hip ratio, waist-to-height ratio) and blood pressure in a South African urban dwelling black population.
c) To investigate participants’ awareness of existing CNCDs intervention programmes in their community and their willingness to participate in nutrition intervention programmes.
d) To determine challenges that the target groups faced regarding CNCD interventions and what they required from a CNCD nutrition intervention programme.
e) To explore what courses of action the Department of Health (DoH) officials involved in the prevention of the CNCD epidemic thought would perform best.
f) To determine DoH officials’ awareness of existing CNCD policies and what factors they perceived as obstacles in addressing the CNCD epidemic.
g) To explore perceived challenges with the implementation of and adherence to health messages disseminated as part of a CNCD intervention programme.
h) To gain an understanding of participants’ expectations of CNCD intervention programmes.
i) To explore the acceptability and preferences of health message dissemination methods in CNCD intervention programmes.

7.3 Summary of findings

7.3.1 Association between dietary adherence, anthropometric measurements and blood pressure in an urban black population, South Africa

The main findings of the first phase which are presented in a published manuscript format in Chapter 4, are as follows:

The first phase determined if a relationship existed between dietary adherence score and blood pressure and body composition respectively. There are no correlations between adherence and anthropometry, but correlations were made between adherence and BP and anthropometry
and BP. No significant differences were found between anthropometric measurements or blood pressure of men and women in the lowest and top tertile groups according to dietary adherence score. A significant inverse correlation between dietary adherence score and systolic blood pressure (SBP) was found in women only. A significant positive relationship between added sugar intake and SBP was only present in the women. This is an indication that women with better adherence to dietary guidelines had lower SBP. A significant positive relationship was found between SBP, DBP and body mass index for men only. The logistic regression model showed a significant association between hypertension and age only.

7.3.2 Adherence challenges encountered in an intervention programme to combat chronic non-communicable diseases in an urban black community, Cape Town

The main findings of the second phase are presented in a published manuscript format in Chapter 5 are as follows:

The challenges to the implementation of CNCD interventions identified in this study can be categorised as socio-cultural, environmental, personal and individual factors, resources and motivators and how and by whom health messages are disseminated. The socio-cultural factors are peer pressure, culturally-insensitive food recommendation, language barriers and family responsibilities. The environmental factors include a lack of recreational facilities, accessibility to healthcare facilities, long waiting times at healthcare facilities, safety concerns and having to contend with unfriendly staff at healthcare facilities. The personal factors are unrealistic expectations (wanting incentives), unemployment resulting in poverty, peer pressure, family responsibilities and taste preferences. The individual factors are personal taste, health status, motivation – wanting to be healthy, self-discipline/willpower since implementation and adherence to health messages were “hard to do”, lack of family support, financial stress, lack of education (illiteracy), health illiteracy, language barriers and distrust of health message source. The resources category include poverty, unemployment, the cost of recommended foods, availability of recommended foods, large household size, transport costs and long waiting time at healthcare facilities. The motivators to improve adherence were incentives, being educated on their health/disease condition, support received from the healthcare professionals and others with similar health conditions, concern for their health, being taught how to cook healthy dishes (cooking lessons), recipes for healthy dishes and
shopping lists of what foods and beverages to purchase.

Regarding health message dissemination, a distrust of health message credibility, language barriers and health illiteracy resulted in traditional methods of health message dissemination (posters, pamphlets, billboards, and mass media) used, not to have the desired impact. Participants indicated that, even though they found posters and pamphlets acceptable, a need for oral explanations of posters and pamphlets bearing health messages was expressed. In addition, they also faced real challenges with the implementation of and adherence to these health messages. In this study population, only the younger participants indicated a preference for receiving health messages via electronic devices. This might be due to many of the older participants not owning a cell phone, not having money available to purchase airtime or being unable to read the messages due to poor eyesight. Health messages were perceived to be credible when it was disseminated by a health professional, such as a doctor or nurse.

7.3.3 Tackling the chronic non-communicable diseases epidemic in the Western Cape: Are health professionals on track?

The main findings of the third phase which are presented in a manuscript format in Chapter 6 are as follows:

At community level, unemployment, peer pressure, family responsibility, accessibility to facilities, taste preferences and availability of recommended foods and beverages were identified as barriers to the implementation of and adherence to CNCD programmes. Community participants also expressed a need for practical advice on what foods are associated with weight gain, healthy recipes and purchasing hints. Community participants were all aware of CNCD programmes (diabetes club, exercise class) offered in their community.

At government level, all the DoH officials interviewed were aware of and knowledgeable about the policies which have been developed for DM, CVD, cancer and chronic respiratory diseases. The DoH officials perceived amongst others, a lack of inter-sectoral collaboration, difficulty in finding a balance between health and developed countries’ investments (e.g. Kentucky Fried Chicken, Burger King and McDonald’s opening enterprises in the country) and not obtaining buy-in from the business sector prior to the drafting of policy and
legislation to be obstacles to addressing the CNCD epidemic. In addition, DoH officials perceived a lack of ownership by communities, crime and urbanisation to be obstacles in addressing the CNCD epidemic.

Community participation, improving inter-sectoral partnerships, integration of health services, food taxes and subsidies of healthy foods were viewed as the best options to address the CNCD epidemic by DoH officials.

7.4 Research hypotheses acceptance / rejection

Illiteracy, accessibility and lack of community ownership were perceived as barriers to CNCD interventions by both the community and government participants. Community participants expressed the need for recipes, health education and shopping lists for the prevention and/or management of CNCDs. In contrast, DoH officials indicated that community participation, improving inter-sectoral partnerships, integration of health services and food taxes were the best courses of action to address the CNCD epidemic. The subsidisation of healthy foods was also a course of action identified by DoH officials to best address the CNCD epidemic. Community participants however indicated that foods recommended by CNCD programmes were not readily available to them, not to their taste and they perceived these to be more expensive. Based on the findings, there was a difference in the perceptions between the DoH officials and the community members regarding what is required from an intervention programme. Community participants were aware of CNCD programmes available in their community. Those individuals who indicated a willingness to participate in CNCD intervention programmes cited concern for their health and the fact that there was support as reasons. In addition, the participants indicated that dietary health messages at the time were not culturally acceptable to them. The following hypotheses were thus accepted:

- Government and community participants have different perceptions of what is needed in intervention programmes.
- Individuals will be more willing to participate and adhere to advice provided by intervention programmes, if they perceive it to meet their needs.
- Individuals will be more willing to participate and adhere to advice provided by intervention programmes, if they find it to be culturally acceptable.
Community participants were aware of CNCD intervention programmes, although they faced challenges accessing these programmes. The following hypothesis is thus rejected:

- Individuals suffering from CNCDs are not aware of intervention programmes offered in their community.

7.5 Discussion and conclusion

The key study findings are that participants are faced with multifaceted challenges with the implementation of and adherence to CNCD intervention health messages. These were social, economic, personal (taste preferences), environmental and cultural factors. Participants in this study were also concerned about safety, peer pressure, family responsibility and accessibility to health facilities where CNCD interventions are offered. Despite these challenges, participants indicated that the support they would receive from peers and health professionals when participating in a CNCD intervention programme would motivate them and make them feel that they are not the only ones with this disease. This finding is supported by Bonilla and colleagues (2016), who identified that CNCD intervention programmes do not take into account the impact that socio-economic status, loneliness and poverty have on adherence to and management of CNCDs. In addition, the culturally-insensitive food recommendations, the cost and lack of availability of the recommended foods in the community also contributed to non-adherence. There is evidence showing that CNCDs are affecting more persons of lower socio-economic status than before (Verstraeten, et al., 2014). This could be attributed to, amongst others, urbanisation and the adoption of a non-traditional diet high in “unhealthy” foods which are cheaper than “healthy” foods and decreased physical activity (Verstraeten, et al., 2014; Muzigaba, et al., 2011; Pretorius, et al., 2011; Winham, 2009). The need expressed for education is an indication that the health messages are either not reaching the target population, that these messages are misunderstood, or are that they had insufficient impact since they are not culturally-sensitive and not in the home language of the community. Results from two studies which investigated the role of culturally-acceptable education and adherence to hypertension treatment and another which investigated the link between health literacy and diet adherence in hypertensive persons, showed that culturally-adapted education aided in improved adherence to hypertension treatment (medical and lifestyle) recommendations (Meinema et al., 2015; Hutchinson, et al., 2014).
Studies conducted on the acceptability of health message dissemination via cell phones found this mode of message dissemination to be acceptable to their study populations in Bolivia and India (Kamis, et al., 2015; Hall, et al., 2015; De Souza, et al. 2014). Regarding health message dissemination in the current study, only the younger participants indicated a preference for receiving health messages via their cell phones. This could indicate that modern technology (e.g. smartphones, internet) which notably makes the dissemination of health messages easier, might not be accessible to all, especially the older generations. Participants of this study indicated that they still preferred individual counselling by health professionals.

It has been reported that, in South Africa, black adult women tend to be more overweight compared to other South African race groups (Gitau et al., 2014). In this study, 36% of the participants were categorised as overweight/obese, however, most of them indicated that they were satisfied with their weight and were not interested in enlisting with a weight loss group. This finding is supported by other studies (Okop, et al., 2016; Gitau, et al., 2014; Puoane, et al., 2010). Readiness of overweight and obese individuals to participate in CNCD intervention programmes remains a major challenge globally (Swinburn & Arrol, 2016).

The integration of health services was one of the options viewed as favourable to address the CNCD epidemic by most of the DoH officials. They were of the opinion that the integration of health services would enable better health care and decrease stress on health personnel. The most recent General Household Survey undertaken by the Census and Statistics Department (CSD) found that the majority of people surveyed were not satisfied with healthcare service provision (STATSSA, 2016). Much has been written regarding current health systems and their inability to address or cope with the CNCD epidemic (Bonilla, et al., 2016; Kengne, et al., 2014). Currently the main health priority for South Africa is the HIV/AIDS epidemic, but as pointed out by Mayosi, et al, (2009) the CNCDs problem is increasing. However, as spelled out in the South African declaration on the prevention and control of non-communicable diseases (2011), HIV/AIDS–afflicted persons tend to develop CNCDs either due to their pharmacological treatment or with their increased life expectancy. Research into the integration of HIV/AIDS and CNCD care has shown promise (Van Deventer, 2015; Van Olmen, et al., 2012; Reid, et al., 2012). Lithuania is an example of a resource-poor country which has successfully integrated its healthcare services resulting in a decreased mortality rate.
due to stroke and heart attacks. In addition, this integration of healthcare services has resulted in greater outpatient services and improved management of hypertension and diabetes mellitus (WHO, 2016).

Another strategy viewed as favourable to address the CNCD epidemic by DoH officials was food taxation. Food taxation has been explored in literature as a viable option to reduce obesity (Niebylski, et al., 2015; Lin, et al, 2011; González-Gapata, et al., 2010). Excessive consumption of sugar and sugar-sweetened beverages and high fat intakes have been implicated with weight gain which consequently increases the risk for the development of CNCD (Mchiza, et al., 2016, Vorster, et al., 2014). Mexico implemented a sugar tax in January 2014 as a strategy to reduce its prevalence rate for diabetes, overweight and obesity which has resulted in a decrease in sales of and thus consumption of sugar-sweetened beverages (Colchero, et al., 2016). The South African government is aiming to introduce a sugar tax in 2017 in a strategy to address the obesity epidemic (Donnelly, 2016; National Treasury, 2016).

Diet quality has been shown to play a role in the development and prevention of CNCD (Phillips, et al., 2013; Harrington, et al., 2013; Fung, et al., 2010; Fung, et al., 2008). In the current study, no significant differences were found between the blood pressure, or adiposity variables of participants who had the lowest and highest dietary adherence score, but a significant inverse correlation between the dietary adherence score and SBP in women was found.

Education is very important as evidenced by the community indicating that they had a need for it and by the various materials (posters and pamphlets) developed and made available by the DoH. It has been shown that primary healthcare (PHC) facilities, where the majority of people with CNCDs receive medical care, can play a crucial role in educating the population on lifestyle modification needed to assist them in the prevention and management of CNCDs. Healthcare staff based at PHC facilities are, however, often not knowledgeable about lifestyle modification and too little staff with expertise in lifestyle modification are based at PHC facilities (Swinburn, & Arroll, 2016; Parker, et al., 2010).
The community participants identified accessibility to facilities where CNCD interventions are offered as a challenge, and the DoH officials identified a lack of recreational facilities as an obstacle to addressing the CNCD epidemic. Illiteracy was also identified as an obstacle in addressing the CNCD epidemic and this is evidenced by the community participants identifying the need for health education to be offered in their home language. Concern for safety was another challenge to the implementation and adherence to CNCD interventions identified by community participants. Likewise, DoH officials identified crime which resulted in communities being unsafe for walking and outdoor activities as an obstacle to addressing the CNCD epidemic. Community participants also expected to receive incentives to attend CNCD intervention programmes. This could be seen as not taking ownership of their health, which was also identified as an obstacle by DoH officials.

This study has succeeded in identifying context-based challenges associated with the implementation of and adherence to CNCD health messages. In addition, context-based expectations of CNCD intervention programmes were identified and acceptability of the different modes and location of health message dissemination were ascertained. The study also found that at community level there were a combination of reasonable (health education, recipes, shopping lists) and unrealistic (expecting incentives) expectations. At DoH level, some of the expectations expressed by the community have already been met in the government’s WoW! and other programmes aimed at CNCDs, for example recipes for healthy dishes. Strategies that members of the DoH perceived to be best to combat the CNCD epidemic were identified, as well as the needs that community members had from CNCD intervention programmes. Integrating the health services could assist the community members in terms of accessibility and travelling costs. Food taxation could discourage the community from spending money on sugar-sweetened drinks with low nutrient density. This could thus result in decreasing their intake of sugar. Similarly, the community’s salt intake can be reduced, if the levels of salt are decreased in the foodstuffs that they regularly consume.

In conclusion, the current study’s findings have shown that the implementation of and adherence to CNCD interventions are complex and multifactorial and even though there is a place for generic CNCD health messages, these messages need to be adapted so that they are practical and context-based.
New contributions from this PhD study are that CNCD intervention programmes should be context-based. Additionally, although traditional methods of health message dissemination were found to be acceptable, there is a need for an oral explanation of the content. This could be due to low health literacy levels, illiteracy, language barriers and/or poor eyesight. In addition, the study population questioned the credibility of health messages disseminated by means of media (magazines, television, videos) since they did not have a personal interaction with the person imparting the advice. Health professionals might not have been aware that the credibility of the health message source was being questioned and this might have been the reason for the low adherence rates to CNCD interventions. Thus, a survey should preferably be done to determine the acceptability of these modes of message dissemination in communities prior to employing these modes of health message dissemination.

7.6 Recommendations

Based on the findings of this study, the following are recommended:

- Chronic non-communicable disease intervention programmes should be context-based.
- Culturally–adapted education on the role of nutrition in weight gain and loss and how to adapt recipes for food traditionally consumed to make them healthier, should be incorporated in CNCD intervention programmes.
- Support groups should be formed in communities to encourage adherence and provide motivation. This is evidenced by the finding that participants were willing to join a CNCD intervention group since they felt they will be provided with support and won’t feel alone.
- The sociocultural perceptions of body image need to be addressed in a sensitive manner. This is evidenced by the finding that, even though more than half the community participants were overweight or obese, they indicated that they were happy with their weight and did not need to lose weight.
- Health message dissemination should occur via various modes and languages in order to reach as many people as possible.
- Future research should be carried out on the barriers to and acceptability of health message dissemination via cell phone in the older black community members.
REFERENCE LIST

