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Abstract

In this study we investigate the finite-sample performance of some of the existing boot-

strap unit root tests in terms of size and power by means of an extensive Monte Carlo

study. Comparing the performance of these bootstrap tests to that of popular parametric

unit root tests, such as the Dickey–Fuller and Elliott–Rothenberg–Stock tests, we find that

the bootstrap-based unit root tests are less prone to size distortions frequently caused by

autoregressive and moving average components in the innovations of the data generating

process. Moreover, some of the bootstrap tests also seem to be more robust against forms of

conditional heteroskedasticity in the innovations. In terms of power the performance of the

bootstrap unit root tests are comparable to that of the well-established parametric tests.

Furthermore, we discuss some practical considerations valuable in the implementation of

these bootstrap unit root tests, such as an optimal method of selecting the lag parameter

required in most unit root tests. We provide the reader with a practical field guide doc-

umenting in detail the most successful bootstrap unit root testing procedures, which are

scattered across 20 years of statistical literature. In addition, we provide an informative

review of the relevant statistical literature, which includes discussions on bootstrap proce-

dures for independent and dependent data. The study is concluded with an application of

the considered unit root tests to real-world data.

Keywords: bootstrap, dependent data, Dickey–Fuller test, stationarity, unit root tests.
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Chapter 1

Introduction

Today econometrics forms an essential part of the applied statistician’s toolbox. With the

introduction of stricter regulations such as Basel III and IFRS 9 in the financial industry,

analysts are forced to increasingly rely on analytic tools offered by econometric theory and

to apply these tools responsibly. Examples of where econometric theory plays an important

role are macroeconomic modelling, forecasting of macroeconomic indicators, loss forecasting

and stress testing.

Owing to the dramatic development of econometric theory over the last few decades, it is

not surprising that many practitioners are unaware of the numerous pitfalls often encoun-

tered. One example is the problems ecountered when working with nonstationary data.

The problem with nonstationary data is that they are unpredictable and cannot be used for

forecasting. In order to obtain trustworthy results, one possibility is to transform the data

to be stationary. Examples of such transformations include differencing or detrending or a

combination of the two, and the choice thereof depends on the nature of the individual time

series model. The first objective, however, is to identify the type of nonstationarity so that

an appropriate transformation can be applied.

Following the seminal article of Granger and Newbold (1974), econometricians realised

that, in fact, most macroeconomic variables were nonstationary and that insufficient at-

tention was being paid to trending behaviour (see e.g. Davidson, Hendry, Srba and Yeo,

1978; Hendry and Mizon, 1978; Plosser and Schwert, 1978; Nelson and Plosser, 1982; Bhat-

tacharya, Gupta and Waymire, 1983; Phillips, 1986). This is also observed by Durlauf and

Phillips (1988) who make the following comment:

“Traditional analyses of economic time series frequently rely on the as-

sumption that the time series in question are stationary, ergodic processes

[...]. However, the assumptions of the traditional theory do not provide

much solace to the empirical worker. Even casual examination of such time

series as GNP reveals that these series do not possess constant means.”

Nonstationary processes is a broad class containing, for example, trend stationary and

unit root processes. Both these types of processes exhibit trending behaviour, the former
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exhibiting a deterministic trend and the latter a stochastic trend. In the context of time

series regression, Granger and Newbold (1974) show that either of these types of trending

behaviour can give rise to what is referred to as spurious or nonsense regressions. The

earliest indication of econometricians’ awareness of spurious regression dates back to the

work of Yule (1897) and Pearson (1897). Practitioners became increasingly aware that most

time series are trended and hence in most cases nonstationary. This nonstationarity has

an effect on standard ordinary least squares (OLS) regression procedures which can easily

lead to incorrect conclusions. The term spurious regression is defined in Phillips (1986) as

occurring “when a pair of independent series, but with strong temporal properties, is found

apparently to be related according to standard inference in a least squares regression” (see

also Asteriou and Hall, 2006, p. 293).

For the detection of spurious regressions, Granger and Newbold (1974) propose a “rule of

thumb”. According to them one warning sign is a very large coefficient of determination R2

accompanied by a very small Durbin-Watson (autocorrelation) statistic, which we denote

by DW . That is, if R2 > DW or if R2 ≈ 1 then the regression might be spurious. Ventosa-

Santaulària (2009) warns, however, that when long memory is present in the variables,

the regression might still be spurious even if R2 < DW and offers useful procedures of

pretesting the series in order to identify the nature of the trending mechanism and potential

difficulties that could be faced by the practitioner.

From the above discussion it is clear that the classification of a time series as being

stationary or nonstationary is paramount, and subsequent analysis relies heavily on this

classification. For the identification of stationary processes, there exists a great deal of

literature. On the testing for the presence of a unit root in model-based time series, one

of the most popular tests is due to David Dickey and Wayne Fuller (1979, 1981) and an-

other popular test is due to Peter Phillips and Pierre Perron (1988). The Dickey–Fuller and

Phillips–Perron unit root tests are used to test the null hypothesis that a time series has

a unit root against the alternative of stationarity. Many other more advanced and refined

tests have been developed in the literature, some of which we will discuss in this study.

We note that there also exist so-called stationarity tests which test the null hypothesis of

stationarity against an alternative of nonstationarity, of which the most commonly used is

the KPSS test due to Kwiatkowski, Phillips, Schmidt and Shin (1992). For other examples,

see Cappuccio and Lubian (2006). However, this type of tests will not be considered in this

study as the focus is solely on unit root tests.

It is shown in various works (see e.g. De Angelis, Fachin and Young, 1997; Park, 2003;

Palm, Smeekes and Urbain, 2008) that the bootstrap counterparts of the unit root tests

seem to be superior to the asymptotic tests in the finite-sample setting. Their empirical

sizes are closer to the nominal ones and they deliver rejection rates under the alternative

hypothesis at least as high as those obtained from the asymptotic tests. Phillips and Xiao

(1998) also note that the bootstrap Dickey–Fuller test has basically the same power as the
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asymptotic Dickey–Fuller test, except for some non-Gaussian distribution cases where the

bootstrap counterparts are slightly superior.

In this study we will investigate by means of a simulation study the exact size and power

of various bootstrap unit root tests. We will use these results to compare the bootstrap unit

root tests to each other and also to the most prominent asymptotic unit root tests. The

precise objectives are given in the next section.

Objectives

The main objectives of this study are as follows:

• review basic time series concepts which are necessary for presenting and discussing

existing asymptotic and bootstrap unit root tests;

• review the bootstrap in general and how the traditional bootstrap for independent

data extends to the context of dependent data;

• provide a review of the most popular asymptotic unit root tests as well as their most

important properties;

• study and document, in one chapter, the most successful bootstrap unit root tests,

providing the detailed procedure of each test;

• provide practical guidance for the implementation of each of the bootstrap unit root

tests considered, such as the choice of associated parameters;

• conduct a detailed Monte Carlo study to investigate and compare the finite-sample

performance of the considered asymptotic and bootstrap unit root tests in terms of

size and power;

• illustrate the application of all considered tests to real-world data.

Outline

In Chapter 2 we review the basic time series concepts which are necessary for presenting

and discussing existing asymptotic and bootstrap unit root tests. In Chapter 3 we pro-

vide a detailed literature review of the most popular asymptotic unit root tests and discuss

the most important properties associated with each of them. Chapter 4 is a review of the

bootstrap applied to the case of independent data with examples of how it is frequently em-

ployed, as well as the various procedures for applying the bootstrap to dependent data. The

implementation of the bootstrap to unit root testing is considered in Chapter 5. Chapter 6

contains a detailed Monte Carlo study where we investigate and compare the finite-sample

performance of the considered asymptotic and bootstrap unit root tests, and Chapter 7 con-

cludes our study with an empirical application of the considered tests to real-world data.
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Frequently used notation

We define the following notation, which we will use throughout the text:

• Z denotes the set of all integers.

• Z+ denotes the set of all positive integers.

• Zm = {(a1,a2, . . . ,am) : ai ∈Z}, the set of m-dimensional vectors of integers.

• 1 denotes the indicator function. For example, 1(x ∈ A) is equal to 1 if x ∈ A and 0

otherwise.

• ⌊x⌋ denotes the largest integer less than or equal to x ∈R.

• ⌈x⌉ denotes the smallest integer greater than or equal to x ∈R.
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Chapter 2

Time series analysis

A time series is a sequence of random variables (y1, y2, . . . ) observed over time, usually at

equally spaced points. In time series analysis the observations are no longer assumed to

be mutually independent and identically distributed (i.i.d.), but generated by a process

describing the joint probabilistic structure of the random variables. This complicates data

analysis as many traditional statistical methods are developed for the case of independent

data.

Fortunately, time series analysis has a rich history which dates back to over a century.

In this chapter we review some of the theoretical aspects of time series processes which

form the basis of our analysis of existing unit root testing procedures. We start by defining

some basic concepts and then move on to define autoregressive moving average processes

and associated properties of these stationary processes. In Section 2.3 we consider nonsta-

tionary processes, which leads to the introduction of so-called unit root processes, a special

class of nonstationary processes.

2.1 Mean, variance and covariance functions

For a time series process {yt : t = 0,±1,±2, . . . }, we define the mean function by

µt =E(yt) for t = 0,±1,±2, . . . .

That is, µt is the expected value of the process at time t. Generally µt can be different at

each time point t.

The autocovariance function of the process {yt} is defined as

γt,s =Cov(yt, ys) for t, s = 0,±1,±2, . . . ,

where Cov(yt, ys)=E[(yt −µt)(ys −µs)]=E(yt ys)−µtµs. Note that

γt,t =Cov(yt, yt)=Var(yt) for t = 0,±1,±2, . . . .

Similarly, the autocorrelation function (ACF) is defined as

ρt,s =Corr(yt, ys) for t, s = 0,±1,±2, . . . ,
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where

Corr(yt, ys)= Cov(yt, ys)√
Var(yt)Var(ys)

= γt,sp
γt,tγs,s

.

Both the covariance and correlation are measures of the strength of the linear relation-

ship between two random variables, but the correlation is a standardised, unitless quan-

tity which facilitates interpretation. The following are standard, yet important properties

associated with the covariance and correlation functions. Both are symmetrical in their

arguments, that is,

γt,s = γs,t and ρt,s = ρs,t,

and, furthermore,

ρt,t = 1 and |ρt,s| ≤ 1.

When |ρt,s| is close to unity it is an indication of a strong linear relationship. Values close to

zero indicate a weak linear relationship. We say yt and ys are uncorrelated if ρt,s = 0.

It is sometimes useful to consider the autocorrelation between {yt} and {yt+k} with the

linear dependence of {yt} on {yt+1}, {yt+2}, . . . , {yt+k−1} removed. This is referred to as the par-

tial autocorrelation function (PACF) which is defined in Wei (2006, p. 11) as the conditional

correlation

ϕkk =Corr(yt, yt+k|yt+1, . . . , yt+k−1),

for t = 0,±1,±2, . . . and k = 1,2, . . . . The exact expression for the PACF is derived in Wei

(2006, p. 14) and is given by

ϕkk =

∣∣∣∣∣∣∣∣∣∣∣

1 ρ1 ρ2 · · · ρk−2 ρ1

ρ1 1 ρ1 · · · ρk−3 ρ2
...

...
...

...
...

ρk−1 ρk−2 ρk−3 · · · ρ1 ρk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ρ1 ρ2 · · · ρk−2 ρk−1

ρ1 1 ρ1 · · · ρk−3 ρk−2
...

...
...

...
...

ρk−1 ρk−2 ρk−3 · · · ρ1 1

∣∣∣∣∣∣∣∣∣∣∣

,

where |A| denotes the determinant of a matrix A.

Before proceeding, we deem it necessary to provide the definition of a stationary time

series. The concept of stationarity plays a very important role in time series analysis and,

as we shall see later, influences the way time series should be analysed. Patterson (2011,

p. 8) defines a strictly stationary process as follows:

Definition 2.1. We say that a process {yt} is mth-order strictly stationary if

F(yr+t1 , yr+t2 , . . . , yr+tm )= F(ys+t1 , ys+t2 , . . . , ys+tm ),

for any vector (t1, t2, . . . , tm) ∈ Zm such that t1 < t2 < ·· · < tm, where r ̸= s and F(· ) is the

joint distribution function of (yt1 , yt2 , . . . , ytm ). That is, the joint distribution function of the
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process observed at times (r+ t1, r+ t2, . . . , r+ tm) is the same for any fixed length shift in

the time index from r to s, and hence implies that it does not matter which portion of fixed

length of the sequence we observe.

A weaker form of stationarity is weak or second-order stationarity which is defined below.

Definition 2.2. A process {yt} is weakly stationary if it satisfies the following three condi-

tions for arbitrary t ̸= s:

(i) E(yt)=E(ys)=µ,

(ii) Var(yt)=Var(ys)=σ2, and

(iii) Cov(yt, yt+k)=Cov(ys, ys+k)= γk.

That is, the mean and the variance of the process are constant over time (i.e. time-

invariant), and the kth order autocovariance is invariant to an arbitrary shift in the time

origin (i.e. depends only on the lag length k).

In practical time series analysis the conditions of weak stationarity are much easier to

verify than those of strict stationarity. Hence much of the techniques developed to analyse

time series are based on the concept of weak stationarity.

2.2 Models for stationary time series

This section presents the basic concepts of the most broad class of stationary time series

models, the autoregressive moving average models as discussed in Cryer and Chan (2008,

pp. 55-80). We first view it necessary to discuss the linear representation of weakly station-

ary processes from which the moving average process follows as a special case. We then

move on to the autoregressive process and finally discuss the mixed autoregressive moving

average model. Throughout, let {yt} denote the observed time series and {εt} an unobserved

white noise series (in the weak sense). That is, {εt} is a sequence of uncorrelated random

variables with E(εt)= 0 and Var(εt)=σ2
ε .

2.2.1 Linear process representation

An important result pertaining to weakly stationary processes is the fact that any weakly

stationary process can be written as a linear process. That is, a weakly stationary process

{yt} can be written as the sum of two time series, one deterministic and one stochastic.

Formally,

yt =µ+
∞∑
j=0

ψ jεt− j, ∀t ∈Z, (2.1)

where µ is a constant mean, {εt} is a zero-mean white noise process and ψ is the possibly

infinite vector of moving average weights which are square summable, i.e.
∑∞

j=0ψ
2
j <∞, and

ψ0 = 1 (Bühlmann, 1995b; Wei, 2006, p. 23).
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The form in (2.1) is called the moving average representation of a process or Wold’s rep-

resentation. Using the lag operator B, that is, Bkxt = xt−k and defining ẏt = yt −µ for all t,

the process in (2.1) can be written in compact form as

ẏt =ψ(B)εt,

where ψ(B)=∑∞
j=0ψ jB j.

The following results hold for the process in (2.1):

E(yt)=µ,

Var(yt)=σ2
ε

∞∑
j=0

ψ2
j ,

and

Cov(εt, yt− j)=E(εt yt− j)=
{

σ2
ε , j = 0,

0, j > 0.

Hence,

γk = E( ẏt ẏt+k)

= E(
∞∑

i=0

∞∑
j=0

ψiψ jεt−iεt+k− j)

= σ2
ε

∞∑
i=0

ψiψi+k,

and

ρk = σ2
ε

∑∞
i=0ψiψi+k√

[σ2
ε

∑∞
i=0ψ

2
i ]2

=
∑∞

i=0ψiψi+k∑∞
i=0ψ

2
i

.

What remains to be shown in order for (2.1) to be stationary, is that γk and ρk, since they

are functions of the lag k only but involve infinite sums, are finite. This is proved by Wei

(2006, p. 24) by applying the Cauchy-Schwarz inequality as follows:

|γk| = |E( ẏt ẏt+k)| ≤
√

Var( ẏt)Var( ẏt+k)=σ2
ε

∞∑
j=0

ψ2
j ,

and hence the assumption
∑∞

j=0ψ
2
j <∞ was made in order for (2.1) to be stationary.

2.2.2 Moving average processes

Considering the moving average representation discussed in the previous subsection, when

a finite number of the moving average weights ψ are nonzero, that is, when

ψk =
{

−θk, k = 1,2, . . . , q,

0, k > q,
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and assuming a process mean µ= 0, the process takes the form

yt = εt −θ1εt−1 −θ2εt−2 −·· ·−θqεt−q, (2.2)

where (θ1,θ2, . . . ,θq) are unknown parameters and {εt} is a zero-mean white noise process.

This process in (2.2) is called a moving average process of order q with the name abbreviated

to MA(q). The process is referred to as moving average since {yt} is obtained by applying the

weights (1,−θ1,−θ2, . . . ,−θq) to the variables (εt,εt−1, . . . ,εt−q) and then moving the weights

to obtain {yt+1} by applying them to (εt+1,εt,εt−1, . . . ,εt−q+1) and so forth. Using the lag

operator B the process can be written as

yt = θq(B)εt,

where

θq(B)= 1−θ1B−θ2B2 −·· ·−θqBq.

Without loss of generality a nonzero process mean may be assumed, i.e. µ ̸= 0, in which case

yt is replaced with ẏt = yt −µ for all t. We, however, continue with the specification µ= 0.

A finite MA process is always stationary since 1+θ2
1 +·· ·+θ2

q <∞. Such an MA process

is invertible if the roots of θq(B)= 0 lie outside the unit circle (i.e. if the q roots of θq(B)= 0

each exceed one in absolute value).

For the general MA(q) process in (2.2) the expressions for the autocovariance and auto-

correlation functions follow directly from those of the moving average representation and

are given by Wei (2006, p. 52) as follows:

γ0 =Var(yt)=σ2
ε

q∑
j=0

θ2
j ,

assuming θ0 = 1,

γk =
{

σ2
ε(−θk +θ1θk+1 +θ2θk+2 +·· ·+θq−kθq) for k = 1,2, . . . , q,

0 for k > q,

and, using the identity ρk = γk/γ0 which holds for stationary processes,

ρk =


−θk+θ1θk+1+θ2θk+2+···+θq−kθq

1+θ2
1+θ2

2+···+θ2
q

for k = 1,2, . . . , q,

0 for k > q.

The autocorrelation function can have any shape for lags up to q but “cuts off” after lag q.

Wei (2006, p. 54) mentions that the PACF of a general MA(q) process tails off as a mixture

of exponential decays and/or damped sine waves, which depends on the nature of the roots

of θq(B)= 0. The PACF contains damped sine waves if some of the roots are complex. These

characteristics are important in identifying a suitable model to describe a given time se-

ries. The following model, the autoregressive process, provides models for autocorrelation

patterns of alternative forms.
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2.2.3 Autoregressive processes

A pth-order autoregressive process {yt}, abbreviated as AR(p), satisfies the equation

yt =ϕ1 yt−1 +ϕ2 yt−2 +·· ·+ϕp yt−p +εt, (2.3)

where (ϕ1,ϕ2, . . . ,ϕp) are unknown parameters and {εt} is a zero-mean white noise process.

The name autoregressive process is derived from the fact that the process is expressed

as a regression on itself. The present value of {yt} is a linear combination of the p most

recent past values of itself plus an innovation term εt which contains new information on

the series at time t which was not explained by the past values. Hence, we assume that

Cov(εt, yt−k)= 0,k > 0. Using the lag operator B, the process can be written as

ϕp(B)yt = εt,

where

ϕp(B)= 1−ϕ1B−ϕ2B2 −·· ·−ϕpBp. (2.4)

Using the assumption Cov(εt, yt−k) = 0,k > 0, Wei (2006, p. 33) states that a stationary

solution to (2.4) exists if the p roots of ϕp(B) = 0 lie outside the unit circle and that the

condition for invertibility of the process is that
∑p

j=1 |ϕ j| <∞.

The expressions for the autocovariance and autocorrelation functions of the general

AR(p) process, as given by Wei (2006, p. 45), are as follows:

γk =ϕ1γk−1 +ϕ2γk−2 +·· ·+ϕpγk−p, k ≥ 1,

and

ρk =ϕ1ρk−1 +ϕ2ρk−2 +·· ·+ϕpρk−p, k ≥ 1. (2.5)

An important recursive relationship is obtained from (2.5): substituting k = 1,2, . . . , p into

(2.5) and using ρ0 = 1 and ρ−k = ρk we obtain the well-known general Yule-Walker equations

ρ1 =ϕ1 +ϕ2ρ1 +ϕ3ρ2 +·· ·+ϕpρp−1

ρ2 =ϕ1ρ1 +ϕ2 +ϕ3ρ1 +·· ·+ϕpρp−2
...

ρp =ϕ1ρp−1 +ϕ2ρp−2 +ϕ3ρp−3 +·· ·+ϕp.

Numerical values for (ρ1,ρ2, . . . ,ρp) can be obtained by solving these linear equations given

numerical values for (ϕ1,ϕ2, . . . ,ϕp). Consequently, equation (2.5) can be used to obtain nu-

merical values for ρk at any number of higher lags. This method can also be used to obtain

method of moments estimators for (ϕ1,ϕ2, . . . ,ϕp). Noting that

E(εt yt)=E[εt(ϕ1 yt−1 +ϕ2 yt−2 +·· ·+ϕp yt−p +εt)]=E(ε2
t )=σ2

ε ,

equation (2.3) can be multiplied by yt and taking expectation yields

γ0 =ϕ1γ1 +ϕ2γ2 +·· ·+ϕpγp +σ2
ε .
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Using ρk = γk/γ0, the equation above can be written as

γ0 =
σ2
ε

1−ϕ1ρ1 −ϕ2ρ2 −·· ·−ϕpρp
,

in order to express the variance γ0 in terms of the parameters (σ2
ε ,ϕ1,ϕ2, . . . ,ϕp) and the

known values of (ρ1,ρ2, . . . ,ρp). Explicit expressions for the ACF ρk are not possible in this

setting, but it is known that ρk will be a linear combination of exponentially decaying terms

and damped sine wave terms corresponding to the real and complex roots of the equation

ϕp(B)= 0, respectively (Wei, 2006, p. 47). The PACF ϕkk will fade after lag p which, together

with the possible shapes of the ACF, is a property of the AR(p) model that is useful in model

identification for a given time series (Wei, 2006, p. 47).

2.2.4 Mixed autoregressive moving average processes

A more general time series model is obtained when it is assumed that the series consists

of a partly autoregressive and partly moving average component. In general, we say {yt} is

a mixed autoregressive moving average process of orders p and q, respectively, abbreviated

as ARMA(p, q), if

ϕp(B)yt = θq(B)εt,

where

ϕp(B)= 1−ϕ1B−ϕ2B2 −·· ·−ϕpBp,

and

θq(B)= 1−θ1B−θ2B2 −·· ·−θqBq.

That is, the model satisfies the equation

yt −ϕ1 yt−1 −ϕ2 yt−2 −·· ·−ϕp yt−p = εt −θ1εt−1 −θ2εt−2 −·· ·−θqεt−q,

or, by writing the autoregressive terms on the right side of the equation,

yt =ϕ1 yt−1 +ϕ2 yt−2 +·· ·+ϕp yt−p +εt −θ1εt−1 −θ2εt−2 −·· ·−θqεt−q, (2.6)

where (ϕ1,ϕ2, . . . ,ϕp) and (θ1,θ2, . . . ,θq) are unknown parameters and {εt} is a zero-mean

white noise process.

Assuming that ϕp(B) = 0 and θq(B) = 0 share no common roots, the general ARMA(p, q)

model in (2.6) is stationary if all the roots of ϕp(B)= 0 lie outside the unit circle and (2.6) is

invertible if all the roots of θq(B)= 0 lie outside the unit circle (Wei, 2006, p. 57).

The expressions for the autocovariance and autocorrelation functions of the general

ARMA(p, q) process are derived by Wei (2006, p. 58) as follows:

Multiply (2.6) by yt−k on both sides

yt−k yt =ϕ1 yt−k yt−1 +·· ·+ϕp yt−k yt−p + yt−kεt −θ1 yt−kεt−1 −·· ·−θq yt−kεt−q,
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and take the expected value to obtain

γk =ϕ1γk−1 +·· ·+ϕpγk−p +E(yt−kεt)−θ1 E(yt−kεt−1)−·· ·−θq E(yt−kεt−q).

Noting that

E(yt−kεt−i)= 0, ∀k > i,

we have that

γk =ϕ1γk−1 +ϕ2γk−2 +·· ·+ϕpγk−p, k ≥ (q+1),

and, since ρk = γk/γ0,

ρk =ϕ1ρk−1 +ϕ2ρk−2 +·· ·+ϕpρk−p, k ≥ (q+1).

Numerical computation of the autocovariance and autocorrelation functions for this model

can be found in Cryer and Chan (2008, p. 85), but as an important special case used in the

Monte Carlo simulations we focus on the ARMA(1,1) model next. The PACF ϕkk will be a

mixture of exponential decays or damped sine waves depending on the real and complex

roots of ϕp(B)= 0 and θq(B)= 0 as before (Wei, 2006, p. 59).

The ARMA(1,1) model
The general equation for the ARMA(1,1) model is given by

yt =ϕyt−1 +εt −θεt−1, (2.7)

where the subscripts of the coefficient parameters have been omitted for simplicity. To de-

rive the Yule-Walker equations, note that

E(εt yt) = E[εt(ϕyt−1 +εt −θεt−1)]

= σ2
ε , (2.8)

and

E(εt−1 yt) = E[εt−1(ϕyt−1 +εt −θεt−1)]

= ϕσ2
ε −θσ2

ε

= (ϕ−θ)σ2
ε . (2.9)

Multiplying (2.7) by yt−k and taking the expected value yield

γk =ϕγk−1 +E(yt−kεt)−θE(yt−kεt−1). (2.10)

More specifically, when k = 0,

γ0 =ϕγ1 +E(ytεt)−θE(ytεt−1),

where expressions for the expectation terms were obtained in (2.8) and (2.9) above, so

γ0 =ϕγ1 +σ2
ε −θ(ϕ−θ)σ2

ε . (2.11)
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When k = 1 in (2.10), then

γ1 =ϕγ0 −θσ2
ε . (2.12)

Substituting (2.12) in (2.11), we obtain

γ0 =ϕ2γ0 −ϕθσ2
ε +σ2

ε −ϕθσ2
ε +θ2σ2

ε ,

so

γ0 = (1−2ϕθ+θ2)
1−ϕ2 σ2

ε , (2.13)

and, by substituting (2.13) in (2.12),

γ1 = ϕ(1−2ϕθ+θ2)
1−ϕ2 σ2

ε −θσ2
ε

= (ϕ−θ)(1−ϕθ)
1−ϕ2 σ2

ε .

When k ≥ 2 in (2.10), then

γk =ϕγk−1, k ≥ 2.

Summarising our results, we have

γk =


(1−2ϕθ+θ2)

1−ϕ2 σ2
ε , k = 0,

(ϕ−θ)(1−ϕθ)
1−ϕ2 σ2

ε , k = 1,

ϕγk−1, k ≥ 2.

By using ρk = γk/γ0, we have that

ρk =


1, k = 0,
(ϕ−θ)(1−ϕθ)
1−2ϕθ+θ2 , k = 1,

ϕρk−1, k ≥ 2,

which can be rewritten as

ρk =
{

1, k = 0,
(ϕ−θ)(1−ϕθ)
1−2ϕθ+θ2 ϕk−1, k ≥ 1.

This autocorrelation function decays exponentially as the lag k increases. The damping

factor is ϕ, but the decay starts from initial value ρ1 which is also dependent of θ. There

are several possible shapes for ρk which all depend on the sign of ϕ and the sign of ρ1.

2.3 Models for nonstationary time series

Any time series with a deterministic trend is said to be nonstationary. Such models are only

reasonable if it is believed that the deterministic trend is appropriate in the long run (Cryer

and Chan, 2008, p. 87). For example, if a series exhibits some linear trend for an observed

time window, how sure can we be that it is intrinsically part of the process and will hold
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in future? Nonstationary time series can occur in numerous ways. For example, they could

have time-varying means, time-varying second moments, or both of these properties (Wei,

2006, p. 68). Figure 2.1 illustrates examples of (a) a stationary series, (b) nonstationarity in

the mean, (c) nonstationarity in the variance, and (d) nonstationarity in both the mean and

variance. Fortunately, many stochastic trends can be modeled quite parsimoniously, as we

shall see in the following discussion.
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Figure 2.1: Examples of (a) a stationary series, (b) nonstationarity in the mean, (c) nonstationarity
in the variance, and (d) nonstationarity in both the mean and variance.

2.3.1 Nonstationarity in the mean

A time series {yt} that is nonstationary in its mean implies that the mean of the series

varies over time. Instead of writing, as for the stationary case,

E(yt)=µ for t = 0,±1,±2, . . . ,

the dependence on time is indicated with a subscript t,

E(yt)=µt for t = 0,±1,±2, . . . .

Without multiple realisations of the nonstationary time series involved, the estimation of

the time dependent mean can be troublesome (Wei, 2006, p. 69). There are, however, models

that can be constructed from a single realisation to describe such a series. We discuss two

such models next which are used to model this nonstationarity in the mean.
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Deterministic trend models and detrending

In many cases the mean function of a nonstationary time series can be modelled by a deter-

ministic function of time. That is, a standard regression model with the time-variant mean

as response and time as predictor may be employed to describe such a drift. This technique

is known as detrending the series.

In general, if µt follows a kth order polynomial trend, the kth order polynomial trend

model becomes

xt =ψ0 +ψ1t+·· ·+ψk tk + yt,

where (ψ0,ψ1, . . . ,ψk) are unknown parameters and {yt} is a zero-mean stationary process.

Assuming this specification, it is easy to detrend this series to obtain the stationary series

x̃t = xt − ψ̂0 − ψ̂1t−·· ·− ψ̂k tk,

where (ψ̂0,ψ̂1, . . . ,ψ̂k) are estimators for (ψ0,ψ1, . . . ,ψk). These estimators may be obtained

by, for example, least squares regression of yt on (1, t, t2, . . . , tk).

For example, if it is reasonable to believe that the mean function µt follows a linear drift,

then one can write

µt =ψ0 +ψ1t,

and the deterministic linear trend model becomes

xt = µt + yt

= ψ0 +ψ1t+ yt.

If µt follows a quadratic trend, µt =ψ0+ψ1t+ψ2t2, the quadratic trend model can be written

xt =ψ0 +ψ1t+ψ2t2 + yt.

The deterministic trend can also follow a trigonometric sine-cosine wave which, in gen-

eral, may be expressed as

xt = ν0 +
m∑

j=1
[η j cos(ω j t)+ψ j sin(ω j t)]+ yt,

which is called the model of hidden periodicities (see Wei (2006, p. 70) for a discussion

hereof).

All of these models are analysed using standard regression procedures. Note, however,

that one may only assume such a deterministic specification if it is reasonable to believe

that the series continues to behave this way outside the observed time window (this relates

to the same caution needed when extrapolation in standard regression analysis is applied).
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Stochastic trend models and differencing

For many nonstationary series, different parts of the series may behave very much alike

except for their difference in local mean levels. This kind of nonstationary behaviour is

coined by Box and Jenkins (1976, p. 85) as homogeneous nonstationarity. That is, different

mean levels of a process are homogeneous in behaviour. Figure 2.2 illustrates an example

of such a series with three homogeneous levels.
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Figure 2.2: An example of a homogeneous time series with three homogeneous levels.

For ARMA models, the process is nonstationary when at least one of the roots of its AR

polynomial does not lie outside the unit circle. As an example of a homogeneous nonstation-

ary series, the local behaviour thereof is independent of its mean level. Hence, by letting

Ψ(B) be the generalised AR operator describing the behaviour of the process, we may write

Ψ(B)(yt + c)=Ψ(B)yt,

for any constant c. This representation reflects the invariance of the process’ behaviour

with regards to a shift in its mean level (represented by c). Note that this equation implies

that Ψ(B) must be of the form

Ψ(B)=ϕ(B)(1−B)d, some d ∈Z+,

where ϕ(B) is the stationary AR operator and assuming that the dth difference of {yt} is

stationary, in order to ensure a process stationary in the mean (Wei, 2006, p. 71).

To understand why a time series with a dth order polynomial time trend is rendered

stationary after taking d differences we provide a proof based on a proof by Anderson (1976,

p. 111).

For some fixed d > 0, consider the process described by

xt =µt + yt := f0 + f1t+·· ·+ fd td + yt,
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where ( f0, f1, . . . , fd) are finite constants and {yt} is an unobserved error process. It is clear

that this process is stationary around the deterministic trend µt. It can be shown that the

process

(1−B)d xt = (1−B)d(µt + yt) (2.14)

is stationary. We now provide a proof for the case where {yt} is an ARIMA process, that is,

ϕ(B)(1−B)d yt = θ(B)εt,

or, equivalently,

(1−B)d yt =ϕ−1(B)θ(B)εt.

In this case (2.14) becomes

(1−B)d xt = (1−B)dµt +ϕ−1(B)θ(B)εt.

Now, since ϕ−1(B)θ(B)εt is stationary, we only need to show that (1−B)dµt is independent

of t. Indeed, one can show that

(1−B)dµt = (1−B)d( f0 + f1t+·· ·+ fd td)= fdd!, d ≥ 1,

which we do with mathematical induction. For d = 1 one has

(1−B)( f0 + f1t)

= f0 + f1t− f0 − f1(t−1)

= f1

= f11!.

Now assume the statement holds for d = k, that is

(1−B)k( f0 + f1t+·· ·+ fk tk)= fkk!, (2.15)

then we need to prove it holds for d = k+1. That is, we need to prove

(1−B)k+1( f0 + f1t+·· ·+ fk tk + fk+1tk+1)= fk+1(k+1)!.

Now
(1−B)k+1( f0 + f1t+·· ·+ fk tk + fk+1tk+1)

= (1−B)k(1−B)( f0 + f1t+·· ·+ fk tk + fk+1tk+1)

= (1−B)[(1−B)k( f0 + f1t+·· ·+ fk tk)+ (1−B)k fk+1tk+1]

= (1−B) fkk!+ (1−B)k+1 fk+1tk+1

= (1−B)k+1 fk+1tk+1

= (1−B)k(1−B)tk+1 fk+1

= (1−B)k[tk+1 − (t−1)k+1] fk+1

= (1−B)k[tk+1 −∑k+1
j=0

(k+1
j

)
t j(−1)k+1− j] fk+1

= (1−B)k ∑k
j=0

(k+1
j

)
t j(−1)k+2− j fk+1

= (k+1
k

)
(−1)2k! fk+1

= fk+1(k+1)!,
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where the second last step follows from the induction assumption in (2.15) by choosing the

constants f j as

f j =
(
k+1

j

)
(−1)k+2− j, j = 0,1, . . . ,k.

Hence

(1−B)d xt = fdd!+ϕ−1(B)θ(B)εt,

or

ϕ(B)(1−B)d xt =ϕ(B) fdd!+θ(B)εt

=ϕ(1) fdd!+θ(B)εt.

By this we have shown that by taking d differences we have removed not only the dth

degree deterministic trend µt but also the stochastic trend.

The conclusion is thus that a homogeneous nonstationary process can be reduced to a

stationary process by taking the suitable difference which yields the process stationary.

That is, the series {yt} is nonstationary but its dth difference {(1−B)d yt} is stationary for

some d ∈ Z+. In other words, the mean level of {yt} in {(1−B)d yt} changes stochastically

over time, whence we characterise the process as having a stochastic trend rather than a

deterministic trend which is purely a deterministic function of time.

For a discussion on spurious detrending and overdifferencing the reader is referred to

Patterson (2011, p. 40). Since testing for overdifferencing is equivalent to testing for a mov-

ing average unit root, and since there is a formal correspondence between testing for a

moving average unit root and testing for the null of stationarity (Zivot and Wang, 2006,

p. 113), the reader may also refer to Phillips and Xiao (1998).

2.3.2 ARIMA models

The time series {yt} is said to be an integrated autoregressive moving average process if its

dth difference {(1−B)d yt} is a stationary ARMA process for some d ∈Z+. We denote this by

writing {yt} ∼ I(d) which reads “{yt} is integrated of order d”. When {(1−B)d yt} follows an

ARMA(p, q) model, then {yt} is an ARIMA(p,d, q) process. It usually suffices to take d = 1

or d = 2 at most to render the process stationary.

More formally, if {yt} is an ARIMA(p,d, q) process, then {yt} will have the form

ϕp(B)(1−B)d yt = θq(B)εt,

where

ϕp(B)= 1−ϕ1B−ϕ2B2 −·· ·−ϕpBp,

and

θq(B)= 1−θ1B−θ2B2 −·· ·−θqBq,
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and ϕp(B) and θq(B) share no common factors (Wei, 2006, p. 72). When we write

ϕp(B)Wt = θq(B)εt,

where {Wt}= {(1−B)d yt}, then {Wt} is stationary for some d ∈Z+ if all the roots of ϕp(B)= 0

lie outside the unit circle and {Wt} is invertible if all the roots of θq(B) = 0 lie outside the

unit circle (Wei, 2006, p. 57).

For all the processes discussed we assumed that the mean of the process µ = 0, but for

the case µ ̸= 0 we may write

ϕp(B)(1−B)d yt = θ0 +θq(B)εt.

When d = 0 the original process {yt} is stationary and θ0 is related to the mean of the process

by

θ0 =µ(1−ϕ1 −·· ·−ϕp).

When d ≥ 1, then θ0 is called the deterministic trend term (Wei, 2006, p. 72).

It can happen that either p = 0 or q = 0, especially in time series that arise in business

and economics (Cryer and Chan, 2008, p. 93). When p = 0, the ARIMA(p,d, q) model is

called an IMA(d, q) model. When q = 0, the ARIMA(p,d, q) model is called an ARI(p,d)

model.

2.3.3 Nonstationarity in the variance

In the previous subsection we considered the case of homogeneous nonstationary processes.

Many time series, however, do not fall in this class and are called nonhomogeneous nonsta-

tionary processes (Wei, 2006, p. 80). The nonstationarity of this class of processes arises not

from their time-varying means but from their time-varying variances and autocovariances.

A process that is stationary in its mean is not necessarily stationary in its variance and

autocovariance, but a process that is nonstationary in its mean will definitely be nonsta-

tionary in its variance and autocovariance (since they are functions of the mean) (Wei, 2006,

p. 82). Differencing the series will not reduce this type of nonstationarity, and hence other

transformations are required. These types of transformations are called variance stabilis-

ing transformations. One method of deriving such a variance stabilising transformation for

a specific process {yt} is the δ-method which we discuss next.

The δ-method

It is a common occurrence for a nonstationary process to have a variance that changes with

its mean level. That is, the variance of the process may be written as some function of its

time-varying mean,

Var(yt)= c f (µt),

for some positive constant c and function f . We need to find some function Q such that the

series transformed under Q, that is, {Q(yt)} has a constant variance.
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To illustrate the method, we approximate the desired function by a first-order Taylor

expansion about µt as follows:

Q(yt)≈Q(µt)+Q′(µt)(yt −µt),

where Q′(µt) is the first derivative of Q(yt) evaluated at µt. Now,

Var[Q(yt)] ≈ [Q′(µt)]2 Var(yt)

= c[Q′(µt)]2 f (µt).

Consequently, in order for the variance of Q(yt) to be constant, the variance stabilising

transformation Q(yt) must be chosen such that

Q′(µt)= 1√
f (µt)

.

By integrating with regards to µt, we obtain

Q(µt)=
∫

1√
f (µt)

dµt.

As an example, consider f (µt)=µ2
t . We then have

Q(µt)=
∫

1√
µ2

t

dµt = ln(µt).

Hence, by transforming the series {yt} to {ln(yt)}, the transformed series will have constant

variance.

A discussion of this and other variance stabilising transformations can be found in Wei

(2006, p. 83) or Rice (2007, p. 161).

2.3.4 Conclusion

To summarise, we discussed models for stationary time series which included moving av-

erage processes, autoregressive processes and mixed autoregressive moving average pro-

cesses. In the discussion of models for nonstationary time series we first examined non-

stationarity in the mean which was divided into two classes namely deterministic trend

models and stochastic trend models. A transformation technique was discussed for each of

these trending behaviours; they were detrending and differencing, respectively. Stochastic

trend models and differencing led to the discussion of integrated autoregressive moving av-

erage models. Lastly, we took a glance at nonstationarity in the variance and an associated

variance stabilising transformation.
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Chapter 3

Asymptotic unit root tests

Countless unit root tests have been developed since the first tests proposed by Dickey and

Fuller (1979). Apart from these tests, the most popular tests available today are those devel-

oped by Said and Dickey (1984), Phillips and Perron (1988), Ng and Perron (1995), Elliott,

Rothenberg and Stock (1996) and Phillips and Xiao (1998). Other lesser-known tests have

been developed by Schmidt and Phillips (1992), Pantula, Gonzalez-Farias and Fuller (1994),

Leybourne (1995), and Leybourne, McCabe and Tremayne (1996), among others.

This chapter serves as a summary of the most important unit root tests and the develop-

ment thereof. As this study is mainly concerned with bootstrap-based tests, the intention of

this chapter is not to provide an exhaustive discussion of all available asymptotic tests. We

shall therefore focus on those asymptotic tests on which the bootstrap tests of Chapter 5

are based. Specifically we discuss the tests of Dickey and Fuller (1979), Phillips and Per-

ron (1988), Ng and Perron (1995) and Elliott et al. (1996). We conclude the chapter with a

discussion of the choice of the lag parameter required in most unit root tests.

Before moving on we first define some notation which we will be using throughout the

chapter. Consider the data generating process (DGP) defined by

xt = dt + yt, yt = ρyt−1 +ut, t = 0,±1,±2, . . . , (3.1)

where dt is a fixed deterministic component and {ut} is an unobserved stationary zero-mean

error process. Based on a finite sample {x0, x1, . . . , xT } generated by this DGP, our objective

is to test the hypothesis

H0 : ρ = 1 vs. HA : |ρ| < 1. (3.2)

If ρ = 1 the process in (3.1) is said to have a unit root.

In the literature it has become common practice to express the deterministic component

dt in (3.1) as

dt =ψ′zt,

where ψ= (ψ0,ψ1, . . . ,ψp)′ is a set of p+1 finite parameters and zt is a set of deterministic

components. If, for example, we set zt = (1, t, t2, . . . , tp)′, then dt is the polynomial

dt =
p∑

i=0
ψi ti =ψ0 +ψ1t+ψ2t2 +·· ·+ψp tp.
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We will consider testing the hypothesis in (3.2) for each of the following two standard spec-

ifications of the deterministic component dt:

• with p = 0 so that dt =ψ0, i.e. the process has a constant mean, and

• with p = 1 so that dt =ψ0 +ψ1t, i.e. the process follows a linear time trend.

At this point the reader should note that the process in (3.1) is often expressed in an

alternative form. Observe that

xt −dt = yt = ρyt−1 +ut,

from which it follows that

xt −dt = ρ(xt−1 −dt−1)+ut,

so that an equivalent representation of the DGP in (3.1) is given by

xt = d†
t +ρxt−1 +ut =ψ′

†zt +ρxt−1 +ut, (3.3)

where ψ′
†zt = d†

t = dt −ρdt−1 represents the drift of the process {xt}. For example, if dt =
ψ0 +ψ1t, then

d†
t =ψ0 +ψ1t−ρψ0 −ρψ1(t−1)

= (1−ρ)ψ0 +ρψ1 + (1−ρ)ψ1t.

We now move on to discuss the asymptotic tests which are important for our purposes.

3.1 The Dickey–Fuller unit root tests

Arguably the most well known tests for testing the hypothesis in (3.2) are the classical tests

developed by Dickey and Fuller (1979). They propose using either the coefficient statistic

DFρ,0 := T(β̂0 −1)

or the t-statistic

DFt,0 := β̂0 −1

ŜE(β̂0)
,

where β̂0 denotes the OLS estimator for the unknown parameter ρ in a regression of xt

on (zt, xt−1), as in (3.3). Exact expressions for β̂0 and its estimated standard error ŜE(β̂0)

depend on the specification of the deterministic component d†
t and are readily available in

standard texts such as Kutner, Nachtsheim, Neter and Li (2005) and Seber and Lee (2012).

Notice that DFt,0 is the usual t-statistic used to test for significance of the slope coeffi-

cient in a simple linear regression. However, as shown in Phillips (1987), under the null

hypothesis of a unit root the limiting distributions of DFρ,0 and DFt,0 are not normal distri-

butions. He shows that in the case where d†
t = 0, i.e. no deterministic component, and the

ut are uncorrelated, one has under H0 that

DFρ,0
D−→

∫ 1
0 W(t)dW(t)∫ 1

0 W(t)2dt
and DFt,0

D−→
∫ 1

0 W(t)dW(t)(∫ 1
0 W(t)2dt

)1/2 , (3.4)
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where W(·) denotes a standard Brownian motion process defined on the unit interval. These

limiting distributions are sometimes referred to as Dickey–Fuller distributions.

It is well known that the distributions of DFρ,0 and DFt,0 depend on the specification of

the deterministic component d†
t used in the test (see Dickey and Fuller, 1979; Said and

Dickey, 1984; Xiao and Phillips, 1998). For example, if d†
t is a linear function of time, the

limiting distributions of DFρ,0 and DFt,0 are the same as in (3.4), but with W(t) replaced by

W̃(t)=W(t)+ (6t−4)
∫ 1

0
W(s)ds− (12t−6)

∫ 1

0
sW(s)ds.

See Paparoditis and Politis (2016, p. 6).

Quantiles of these limiting distributions have been approximated by Monte Carlo simu-

lations and are available in texts such as Fuller (1996). In Table 3.1 we provide the asymp-

totic critical values as obtained using our own Monte Carlo simulations (using 3 000 000

independent iterations).

3.2 The Augmented Dickey–Fuller Unit Root Test

In addition to establishing the limiting distributions in (3.4) under the white noise assump-

tion, Phillips (1987) also shows that if the ut are serially correlated, the limiting null distri-

butions of DFρ,0 and DFt,0 depend on nuisance parameters. This causes practical difficulties

in implementation of the tests.

For the t-statistic DFt,0, Said and Dickey (1984) had already proposed a solution shortly

after the original Dickey–Fuller tests were introduced. They show that it is possible to

approximate an ARIMA(p,1, q) model by an autoregressive process with order depending

on the number of observations T. With this in mind they suggest using the t-statistic

DFt,k := β̂(k)
0 −1

ŜE
(
β̂(k)

0

) , (3.5)

where, for some integer 0< k <∞, β̂(k)
0 is the OLS estimator for β0 in the regression

xt =δ′zt +β0xt−1 +
k∑

j=1
β j∆xt− j +εt,k, (3.6)

with δ= (δ0,δ1, . . . ,δp) and β= (β0,β1, . . . ,βk) unknown parameters, ŜE(β̂(k)
0 ) the estimated

standard error of β̂(k)
0 , and εt,k unobserved error terms. Said and Dickey (1984) show that

DFt,k has the same limiting distribution as DFt,0 under the condition that k →∞ and k =
o(T1/3) as T →∞, i.e. k should increase with the sample size at a rate less than T1/3. Chang

and Park (2002) were able to establish this convergence even if this rate is relaxed to T1/2.

Although Said and Dickey (1984) proposed a remedy for the t-statistic, they assert that

even with the added lagged difference terms in the regression in (3.6) the limiting dis-

tribution of the coefficient statistic T(β̂(k)
0 −1) still depends on nuisance parameters. Xiao
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and Phillips (1998) demonstrate how a simple transformation using estimated parameters

eliminates these nuisance parameters. They propose the normalised coefficient statistic

DFρ,k := T(β̂(k)
0 −1)

1−∑k
j=1 β̂ j

, (3.7)

where the β̂ j are OLS estimators for the β j in the regression in (3.6). The limiting distri-

bution of DFρ,k is the same as that of DFρ,0 given in (3.4). Also for this statistic Chang and

Park (2002) show that the convergence is valid under the assumption that the lag length k

increases with the sample size at a rate of T1/2.

Recently Paparoditis and Politis (2016) have shown that the convergence of the ADF

t-statistic DFt,k to its limiting distribution (stated earlier) is valid under much more gen-

eral conditions that go far beyond the linear AR(∞) process assumption typically imposed.

Essentially, the only requirement is that the error process {ut} has a continuous spectral

density that is strictly positive.

An alternative solution to eliminate nuisance parameters from the asymptotic distribu-

tions of DFρ,0 and DFt,0, in the case where the errors are serially correlated, was proposed

by Phillips and Perron (1988) and is presented in the following section.

3.3 The Phillips–Perron unit root tests

The unit root tests developed by Phillips (1987) and Phillips and Perron (1988), henceforth

referred to as the Phillips–Perron tests, differ from the ADF test mainly in how they deal

with serial correlation and heteroskedasticity in the errors. Rather than using an autore-

gressive sieve, they eliminate nuisance parameters present in the limiting distributions of

the test statistics DFρ,0 and DFt,0 by transforming these statistics using consistent estima-

tors for the nuisance parameters.

The Phillips–Perron test regression is simply the regression of xt on (zt, xt−1) as in (3.3).

Define the residuals

ût = xt − β̂0xt−1 −ψ̂′
†zt,

where β̂0 and ψ̂† denote the OLS estimators for ρ and ψ† in (3.3), respectively. The trans-

formed version of the coefficient test DFρ,0 proposed by Phillips and Perron (1988) is given

by

Zρ = DFρ,0 −T2V̂ar(β̂0)
(
σ̂2 − σ̂2

u

2σ̂2
u

)
,

where σ̂2 and σ̂2
u are consistent estimates of the parameters

σ2 = lim
T→∞

1
T

E
(
S2

T
)

and σ2
u = lim

T→∞
1
T

T∑
t=1

E
(
u2

t
)
,

respectively, where ST =∑T
t=1 ut. They also propose a modified version of the DFt,0 statistic

which is defined as

Zt = σ̂u

σ̂
DFt,0 −T · ŜE(β̂0)

(
σ̂2 − σ̂2

u

2σ̂σ̂u

)
.
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As a consistent estimator for σ2
u, Phillips and Perron (1988) prefer the mean squared

residuals defined by

σ̂2
u = 1

T

T∑
t=1

û2
t .

To estimate σ2 they suggest using the long-run estimator for the variance of ut proposed by

Newey and West (1987). This estimator is defined as

σ̂2
ℓ =

1
T

T∑
t=1

û2
t +

2
T

ℓ∑
s=1

wsℓ

T∑
t=s+1

ûtût−s,

where wsℓ is the Bartlett (or triangular) window given by

wsℓ = 1− s
ℓ+1

,

for some bandwidth ℓ. Other choices of the window wsℓ have also been proposed in the

literature, such as the Parzen window. For other choices, see e.g. Newey and West (1994).

Implementation of the Phillips–Perron tests requires selecting an appropriate value for

the bandwidth parameter ℓ appearing in the Bartlett window. After the numerical studies

conducted by Schwert (1989) it has become common practice to use the fixed short trunca-

tion lag

ℓ4 =
⌊

4
(

T
100

)1/4
⌋

or the long truncation lag

ℓ12 =
⌊

12
(

T
100

)1/4
⌋

.

Numerical studies by Lee and Mossi (1996) show that, unlike with the ADF tests, using

the optimal bandwidth selection procedure of Andrews (1991) does not offer any significant

improvement over using the fixed truncation lags given above (also see Cheung and Lai,

1997). Under these considerations we will use the long truncation lag ℓ12 as our choice for

ℓ in our Monte Carlo study.

Under H0, the modified test statistics Zρ and Zt have the same asymptotic distributions

as the ADF normalised bias statistic DFρ,0 and the ADF t-statistic DFt,0, respectively, given

that the deterministic specification in the tests is the same. Hence, the distributional tables

as reported in Fuller (1996, pp. 641–642) and Wei (2006, pp. 592–593) may be used to

conduct the Phillips–Perron tests.

An advantage which makes the Phillips–Perron tests more popular than the ADF test, as

stated in Zivot and Wang (2006, p. 127), is that the Phillips–Perron tests are robust to gen-

eral forms of heteroskedasticity in the errors ut. Another advantage is that the specification

of a lag length for the test regression is not needed and, as discussed above, the choice of

the lag truncation parameter does not have a significant impact on the performance of the

tests.
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3.4 The Elliott–Rothenberg–Stock unit root tests

Elliott et al. (1996) propose a family of point-optimal tests which, under very mild conditions

on {ut}, has asymptotic power curves that lie close to the Neyman–Pearson power envelope

at 50% power. This family of tests, referred to by PT , involves local-to-unity generalised

least squares (GLS) detrending of {xt} prior to performing the usual Dickey–Fuller tests.

We now describe the testing procedure proposed by Elliott et al. (1996). Let ᾱ = 1+ c̄/T

for some chosen scalar c̄ and define the so-called local GLS detrended series version of {xt}

by

x̃t = xt −ψ̃′zt, t = 1,2, . . . ,T, (3.8)

where ψ̃ is obtained by OLS regression of xᾱt on zᾱ
t , with

xᾱt :=
x1 if t = 1,

xt − ᾱxt−1 otherwise,

and

zᾱ
t :=

z1 if t = 1,

zt − ᾱzt−1 otherwise.

Based on the GLS detrended series {x̃t}, Elliott et al. (1996) propose two test statistics:

the DFGLS
t statistic defined as the t-statistic for testing whether β0 − 1 = 0 in the OLS

regression

∆x̃t = (β0 −1)x̃t−1 +
k∑

j=1
β j∆x̃t− j +εt,k, (3.9)

where β0 and the β j are unknown parameters and {εt,k} is an unspecified error process, and

the PT statistic defined as

PT = S(ᾱ)− ᾱS(1)
ω̂2 , (3.10)

where S(a) denotes the sum of squared residuals from an OLS regression of xa
t on za

t and

ω̂2 is a consistent estimator for ω2 =∑∞
k=−∞E(utut−k).

Elliott et al. (1996) suggest choosing the value of c̄ in the above procedure such that the

asymptotic power functions of the tests are tangent to the Neyman–Pearson power envelope

(which they derive under normality assumptions on {ut}). In the constant mean case (i.e.

when p = 0) they suggest taking c̄ =−7 and in the linear trend case (i.e. when p = 1) taking

c̄ =−13.5.

As an estimator for ω2 they consider, among others, the autoregressive estimator

s2
AR = σ̂2

ε(
1−∑k

j=1 β̂ j

)2 , (3.11)

where the β̂ j are OLS estimates for the β′
j in the regression

∆xt = c+dxt−1 +
k∑

j=1
β′

j∆xt− j +εt,k,
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Table 3.2: Critical values for the tests proposed by Elliott et al. (1996).

Level (constant mean) Level (linear trend)

Test T 1% 2.5% 5% 10% 1% 2.5% 5% 10%

DFGLS
t 50 −2.62 −2.25 −1.95 −1.61 −3.77 −3.46 −3.19 −2.89

100 −2.60 −2.24 −1.95 −1.61 −3.58 −3.29 −3.03 −2.74
200 −2.58 −2.23 −1.95 −1.62 −3.46 −3.18 −2.93 −2.64
∞ −2.58 −2.23 −1.95 −1.62 −3.48 −3.15 −2.89 −2.57

PT 50 1.87 2.39 2.97 3.91 4.22 4.94 5.72 6.77
100 1.95 2.47 3.11 4.17 4.26 4.90 5.64 6.79
200 1.91 2.47 3.17 4.33 4.05 4.83 5.66 6.86
∞ 1.99 2.55 3.26 4.48 3.96 4.78 5.62 6.89

with c and d unknown parameters, {εt,k} an unspecified error process, and σ̂2
ε denoting the

mean squared residuals resulting from this regression.

Remark. Note that the autoregressive spectral density estimator s2
AR above is based on

the original series {xt} and not on the detrended series {x̃t}. Also note the presence of the

constant term c regardless of whether dt is a constant or a linear trend. Ng and Perron

(2001) study the finite-sample performance of the PT test when s2
AR is based on the GLS

detrended series {x̃t}. Despite the improvements they observe for local alternatives of the

form ρ = 1+ c̄/T, Seo (2005) shows that doing this may significantly reduce the power of

these tests for non-local alternatives. In fact, he demonstrates that the power of these tests

can even decrease as ρ moves closer to 0 (for a given sample size). Perron and Qu (2007)

provide a simple solution which we discuss in the next section.

A selection of approximate critical values of the DFGLS
t and PT tests is given in Elliott

et al. (1996) and is reproduced in Table 3.2.

3.5 M tests

A common drawback of standard unit root tests is the severe size distortions seen when

the DGP has an AR or MA error process with a root close to the unit circle (Ng and Per-

ron, 2001). To address this issue Perron and Ng (1996) propose modified versions of the

Phillips–Perron tests described in Section 3.3. These modified tests, often termed M tests,

are shown to have exact sizes much closer to the nominal size when used in conjunction

with a particular formulation of an autoregressive spectral density estimator.

For the GLS detrended series {x̃t} defined in the previous section, the M tests of Ng and

Perron (2001) are given by

MZα = T−1 x̃2
T − s2

AR

2T−2 ∑T
t=1 x̃2

t−1

, MSB =
√√√√ 1

T

T∑
t=1

x̃2
t−1

/
s2

AR , MZt = MZα ·MSB,

with s2
AR as defined in (3.11). They also define a modification of the feasible point optimal

test in (3.10), which, in the notation of Section 3.4 and, as before, p denotes the specification
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of the deterministic component, is given by

MPT =
[

c̄2T−2
T∑

t=1
x̃2

t−1 − (c̄− p)T−1 x̃2
T

]/
s2

AR .

Ng and Perron (2001) also investigate the finite-sample performance of their modified

tests when the autoregressive estimator s2
AR appearing in the tests is based on the GLS

detrended series {x̃t} instead of the original series {xt}. That is, they replace s2
AR by

s̃2
AR = σ̃2

ε′(
1−∑k

j=1 β̃ j

)2 ,

where the β̃ j are OLS estimates for the β′′
j in the regression

∆x̃t = d′ x̃t−1 +
k∑

j=1
β′′

j∆x̃t− j +ε′t,k,

with d′ an unknown parameter, {ε′t,k} an unspecified error process, and σ̃2
ε′ denoting the

mean squared residuals resulting from this regression. However, Seo (2005) advises against

this, as this may significantly reduce the power of these tests for non-local alternatives.

Notwithstanding, Perron and Qu (2007) show that one may use s̃2
AR in these tests, but that

the choice of the bandwidth parameter k should be based on OLS detrended data and not

on GLS detrended data.

Remark. Taking into account the findings by Perron and Qu (2007), we select the lag pa-

rameter k (using the modified AIC described below) based on both GLS and OLS detrended

data in our Monte Carlo study, but calculate the M test statistics and the autoregressive

spectral density estimator based on the GLS detrended series.

3.6 Lag selection

The augmented Dickey–Fuller type tests considered in this chapter rely heavily on the

choice of the lag parameter k in the ADF regression in (3.6). It is clear that when the choice

of k is too small, the test will fail to account for possible autocorrelation in the error process.

On the other hand, it has been established that an increased lag is associated with a loss

of power (see e.g. Cheung and Lai, 1995; Paparoditis and Politis, 2016; Aylar, Smeekes and

Westerlund, 2017). Also, in some cases, such as when {ut} is an MA process with a large

negative MA coefficient, a correct choice of k is crucial to improve size and power properties

of these tests (see Ng and Perron, 2001, p. 1527).

Several authors have investigated possible choices, such as the ad hoc choices given by

Schwert (1989). Data-dependent choices include using the well-known AIC and BIC crite-

ria, which will be discussed below, and a sequential t-test for the significance of the last lag

(Ng and Perron, 1995). We will also discuss the class of modified information criteria pro-

posed by Ng and Perron (2001), which has been shown to improve size and power properties

of unit root tests.
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A class of information criteria commonly found in the literature is given by

IC(k)= ln(σ̂2
k)+ CT (k+ p+1)

T −kmax
, k = 0,1, . . . ,kmax,

where σ̂2
k is the sum of the squared residuals resulting from the (ADF) regression, CT > 0

is some constant such that CT = o(T) as T →∞, the constant kmax is an arbitrary upper

bound for the considered lag parameters, and p indicates the specification of the determinis-

tic component in the test (as defined earlier, p = 0 indicates a constant mean only and p = 1

indicates a linear time trend). Setting CT = 2 one obtains the well-known Akaike informa-

tion criterion (AIC). The Bayesian (or Schwarz) information criterion (BIC) also commonly

found in the literature is obtained when setting CT = log(T −kmax).

Using one of the criteria defined above, an optimal value for k is given by the rule

kic = argmin
k=0,1,...,kmax

IC(k).

As an upper bound for the lag truncation k we will follow Schwert (1989) and use

kmax = ℓ12 =
⌊

12
(

T
100

)1/4
⌋

.

It has become standard practice in the literature to use this so-called “Schwert lag” as an

upper bound for k.

It is well known (see e.g. Schwert, 1989; Cavaliere, Phillips, Smeekes and Taylor, 2015)

that unit root tests show large size distortions in the case where the errors follow a moving

average process with a large negative coefficient. Ng and Perron (2001) show that these

size distortions can be reduced significantly with a correct choice of k. In the same spirit as

the above information criteria they propose a class of modified information criteria (MIC)

defined as

MIC(k)= ln(σ̂2
k)+ CT (τT (k)+k)

T −kmax
,

with τT (k) = (σ̂2
k)−1(β̂(k)

0 )2 ∑T
t=kmax+1 x̃2

t−1, where β̂(k)
0 is an estimator for β0 in (3.9) which is

based on the detrended data. Note that some authors suggest replacing the GLS detrended

series {x̃t} with the OLS detrended series (Perron and Qu, 2007). As above, setting CT = 2

yields a modified Akaike information criterion (MAIC) and setting CT = log(T−kmax) yields

a modified Bayesian criterion (MBIC).

Remarks.

(a) In the case where the error process {ut} follows an MA process with a large negative

coefficient, the usual AIC or BIC tends to select the lag length too small, resulting in

significant size distortions. As a practical solution to the problem, Elliott et al. (1996)

set the lower bound of allowable values of k to 3, which reduces the size distortions.

However, the modified information criteria provide a technically more satisfactory ap-

proach for choosing the lag length.
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(b) Ng and Perron (2005) suggest that the effective sample size be held fixed across the

candidate models.

(c) A more recent contribution by Cavaliere et al. (2015) is a rescaled modified Akaike

information criterion (RSMAIC) which offers power gains in the case where the error

process is unconditionally heteroskedastic. This addresses the issue that, for such

models, the lag parameter k is selected too large. As unconditionally heteroskedastic

models fall outside the scope of this study, we will employ the MAIC defined above.

(d) As mentioned earlier, in our Monte Carlo study we consider the suggestion of Perron

and Qu (2007) and, for comparison, base lag selection on the MAIC calculated from

the OLS and GLS detrended data, even if the test statistics are calculated from the

GLS detrended series.

3.7 Recent developments

Hosseinkouchack and Hassler (2016) propose a variance ratio-type unit root test that is

free of any tuning parameters, unlike the other tests discussed in this chapter. They further

show that, apart from outperforming other tests free of tuning parameters, their test has

an asymptotic power curve that lies close to that of the point optimal test by Elliott et al.

(1996). Hosseinkouchack and Hassler even claim that their test may become more powerful

than the point optimal test in finite samples.
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Chapter 4

The bootstrap

The bootstrap is an automated, computerised resampling technique that, since its intro-

duction by Bradley Efron in the 1970s, has proved to be successful in many problems of

inference too complex to address adequately by means of traditional analytical methods. In

fact, apart from being straightforward to implement, in many situations the bootstrap has

been shown to produce results that are superior to results obtained by traditional methods,

especially when the sample size is small or when underlying model assumptions cannot be

verified. Efron and Tibshirani (1993, p. 45) state that “The bootstrap [...] enjoys the advan-

tage of being completely automatic. [It] requires no theoretical calculations, and is available

no matter how mathematically complicated the estimator may be.”

To fully appreciate our discussion of the numerous bootstrap methods that have been

developed to accommodate time series data, it is worth first reviewing the bootstrap in

the context of independent data. In this chapter we describe how the bootstrap works and

highlight some of the situations of estimation and inference where it is frequently employed.

We also touch on the important property bootstrap consistency and discuss some situations

in which the traditional bootstrap has been shown to work. We then move on to discuss the

various procedures that have been developed for application of the bootstrap to dependent

data and for each of these procedures provide a detailed algorithm along with remarks on

some of their important associated properties.

4.1 Bootstrapping independent data

Let Xn = {X1,X2, . . . ,Xn} denote a random sample from an unknown d-variate distribution

function F. In this chapter we shall give an overview of how the bootstrap can be used to

draw inferences from Xn about a parameter vector θ = θ(F), for some known functional θ(·).
The plug-in estimator for θ is given by θ̂n = θ(F̂), with F̂ an appropriate estimator for F.

Typically the statistician would draw inferences about θ based on the distributional prop-

erties of θ̂n, which depend on F. Having only one sample at his disposal it might be a daunt-

ing task to uncover these properties, except in instances where assumptions can be made

about F or where specific details (such as asymptotics) of θ̂n are known or can be derived.
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The main idea behind the bootstrap is to mimic the mechanism F that generated the

original sample by resampling from F̂ to obtain what is termed a bootstrap (re)sample,

which we denote by X ∗
n = {X∗

1 ,X∗
2 , . . . ,X∗

n}. Since we have imitated the process of sampling

from F by instead sampling from F̂, the idea is that the distribution of θ̂∗n (conditional on

F̂) will be “close” to the distribution of θ̂n (conditional on F). The statistician may draw

many such samples to obtain many realisations of θ̂∗n = θ(F̂∗) which can be used to obtain

an approximate distribution of θ̂∗n. Here F̂∗ denotes the bootstrap estimator for F̂.

A popular choice for F̂ is F̂(x) = Fn(x) := n−1 ∑n
i=1 1 (Xi ≤ x), the empirical distribution

function (EDF) of Xn, which leads to the nonparametric bootstrap. Sampling from Fn is

equivalent to randomly sampling with replacement from Xn. If it is assumed that F is

known up to a set of unknown parameters λ, and to show the dependence we write F = F(λ),

we may choose, for example, F̂ = F(λ̂), where λ̂ is some estimator for λ. Using F(λ̂) to generate

X ∗
n is known as the parametric bootstrap.

A standard introductory text on the bootstrap is Efron and Tibshirani (1993). A more

advanced but still practical text is Davison and Hinkley (1997). More formal discussions of

the bootstrap, along with important theoretical results and proofs, are given in texts such

as Hall (1992) or Shao and Tu (1995).

The following subsections are devoted to illustrate how the bootstrap is employed in some

commonly occurring applications.

4.1.1 Estimation of sampling distributions

Let Rn(Xn;F) denote a random variable of interest, which may depend on both the sample

Xn and the unknown distribution function F. The sampling distribution of the random

variable Rn(Xn;F) is given by

Hn(x) :=P(Rn(Xn;F)≤ x) , ∀x ∈R, (4.1)

where P is the probability measure characterised by F. Replacing the distribution function

F by an appropriate estimator F̂, we obtain the traditional bootstrap estimator for Hn(x):

Ĥn(x) :=P
(
Rn(X ∗

n ; F̂ |Xn)≤ x
)=P* (

Rn(X ∗
n ; F̂)≤ x

)
, ∀x ∈R, (4.2)

where P∗ refers to the conditional probability law of X ∗
n given Xn. The notation P* will be

used throughout the text to denote the probability measure in the bootstrap world (Efron

and Tibshirani, 1986, p. 56).

In most practical settings, Ĥn(x) is unknown, but can be approximated by the Monte

Carlo algorithm given below.

Algorithm 4.1.

1. Generate B independent bootstrap samples X ∗
n (1),X ∗

n (2), . . . ,X ∗
n (B), each containing

n values drawn randomly with replacement from the sample data Xn.
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2. For each bootstrap replication b = 1,2, . . . ,B, calculate the corresponding statistic

θ̂∗n(b)= θ(F̂b
n),

where F̂b
n denotes the empirical distribution function of X ∗

n (b). That is,

X ∗
n (1)= {X∗

1 ,X∗
2 , . . . ,X∗

n} → θ̂∗n(1)

X ∗
n (2)= {X∗

1 ,X∗
2 , . . . ,X∗

n} → θ̂∗n(2)
...

X ∗
n (B)= {X∗

1 ,X∗
2 , . . . ,X∗

n} → θ̂∗n(B)

3. Approximate Ĥn(x) by ĤB(x) := 1
B

B∑
b=1

1
(
θ̂∗n(b)≤ x

)
.

Bootstrap consistency

Consistency is an essential requirement for any estimator, including estimators based on

the bootstrap. For the case of sampling distributions, Shao and Tu (1995) define consistency

of Ĥn as an estimator for Hn as follows:

Definition 4.1. Let ν be a metric on FRs = {all distributions on Rs}. Ĥn is (weakly) ν-

consistent if ν(Ĥn,Hn)
p→ 0 as n →∞, and strongly ν-consistent if ν(Ĥn,Hn) a.s.→ 0 as n →∞.

The metric ν in the above definition is usually chosen to be the supremum-norm ν∞(F,G)=
supx |F(x)−G(x)|, but other measures such as Mallows’ distance are also commonly used. In

fact, in a famous paper Bickel and Freedman (1981) established consistency (under some

conditions) of Ĥn in (4.2) as an estimator for Hn in (4.1) using Mallows’ distance and its

properties.

It has been shown that the traditional bootstrap is consistent (and sometimes strongly

consistent) in many cases of practical interest, such as when the statistic of interest is

a smooth function of the sample mean or when considering the empirical and quantile

processes. For an overview of the major results on bootstrap consistency that have been

established in the literature, see Section 3.2 of Shao and Tu (1995). A recent paper by

Romano and Shaikh (2012) provides strengthened conditions under which the bootstrap

can be used to construct estimators of the quantiles of the distribution of a root.

4.1.2 Estimation of standard error

Consider the problem of estimating the true standard error of the estimator θ̂n, which we

will denote by

SE(θ̂n) :=
√

Var(θ̂n). (4.3)

The (ideal) bootstrap estimate of SE(θ̂n) is given by

SE∗(θ̂∗n) :=
√

Var∗(θ̂∗n)=
√

E∗ (
θ̂∗n −E∗(θ̂∗n)

)2, (4.4)
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where E∗ and Var∗ respectively denote the expected value and variance taken with respect

to Fn. In very few cases there exist neat, explicit formulas for the ideal bootstrap estimate

of SE(θ̂n). For example, if we choose the parameter of interest as the population mean, then

our estimator is the sample mean θ̂n = θ(Fn)= X̄n = n−1 ∑n
i=1 X i and the bootstrap equiva-

lent is θ̂∗n = θ(F̂n)= X̄∗
n = n−1 ∑n

i=1 X∗
i . In this case (4.3) becomes

SE(X̄n)=
√

Var(X̄n)= σp
n

,

where σ=p
Var(X ). Also, since E∗(X∗

i )= X̄n and

σ̂2
n :=Var∗(X∗

i )=
∫

(x− X̄n)2dFn = 1
n

n∑
i=1

(X i − X̄n)2,

the bootstrap estimate in (4.4) becomes

SE∗(X̄∗
n)=

√
Var∗(X̄∗

n)= 1
n

√
n∑

i=1
Var∗(X∗

i )= σ̂np
n

.

Note that, given the sample data Xn, we can calculate the quantity σ̂n, and consequently

the ideal bootstrap standard error SE∗(X̄∗
n), exactly. In most cases, however, (4.4) cannot

be calculated explicitly from the sample data. In many such cases one can effectively ap-

proximate the ideal bootstrap estimate of standard error by the following algorithm given

in Efron and Tibshirani (1986, p. 56).

Algorithm 4.2.
Follow Algorithm 4.1, but replace step 3 by

3. Approximate the ideal bootstrap standard error SE∗(θ̂∗n) by

ŜEB :=
√√√√ 1

B−1

B∑
b=1

(
θ̂∗n(b)− θ̂∗n(·))2,

where θ̂∗n(·)= 1
B

∑B
b=1 θ̂

∗
n(b).

Note that, by the strong law of large numbers, ŜEB →SE∗(θ̂∗n) almost surely as B →∞.

4.1.3 Estimation of bias and bias reduction

The bias of an estimator θ̂n for a parameter θ is defined as

bias(θ̂n,θ)=E
(
θ̂n

)−θ.

We could use this information to construct an unbiased estimate of θ, namely

θ̂n −bias(θ̂n,θ). (4.5)

Of course, the quantity bias(θ̂n,θ) is unknown and therefore also needs to be estimated. To

this end we define the bootstrap estimator for bias by

bias∗(θ̂∗n, θ̂n)=E∗ (
θ̂∗n

)− θ̂n, (4.6)
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so that the new bias-corrected estimator for θ is given by

θ̃n = θ̂n −bias∗(θ̂∗n, θ̂n).

Note that since we have replaced the exact bias appearing in (4.5) by an estimator, the new

bias-corrected estimator θ̃n will not necessarily be unbiased. However, in regular cases an

estimator θ̂n will typically have a bias of O(n−1), in which case the bias-corrected version

θ̃n will have a reduced bias of O(n−2). See Chang and Hall (2015).

The above procedure may be repeated indefinitely on the estimator θ̃n to obtain even less

biased estimators for θ. This is known in the literature as bootstrap iteration. Typically,

each iteration of bootstrap bias reduction will reduce the bias of an estimator by an order of

n−1. The interested reader is referred to Hall and Martin (1988) and Chan and Lee (2001).

Remark. The bootstrap bias in (4.6) may be approximated by the following “obvious” esti-

mator: �biasB = 1
B

B∑
b=1

θ̂∗n(b)− θ̂n,

where θ̂∗n(b) is defined as in Algorithm 4.1. However, this estimator may be improved sig-

nificantly by a method discussed in Chapter 23 of Efron and Tibshirani (1993).

4.2 Error reduction

The avid reader would have noticed that in bootstrap estimation there are mainly two

sources of variation, namely statistical error (which constitutes errors such as model mis-

specification) and variability resulting from simulation error (see Davison and Hinkley,

1997). To be concrete, suppose we want to estimate SE(S2
n) using Algorithm 4.2 above,

where S2
n is the (unbiased) sample variance calculated from n = 50 independent observa-

tions from an N(0,1) distribution. In our example the statistical error results from estimat-

ing SE(S2
n) by its bootstrap counterpart SE∗((S∗

n)2), which usually is also unknown and has

to be approximated by ŜEB, resulting in simulation error.

A natural question that arises in the practical application of the bootstrap, is how many

bootstrap resamples are necessary for the latter approximation to be sufficient? The choice

of B, the number of bootstrap replications, ultimately depends on the nature of the underly-

ing problem. For instance, when estimating the standard error of an estimator, Efron (1987)

suggests that in many cases taking B = 25 already gives reasonable results (also see Efron

and Tibshirani, 1993, p. 55ff.). We shall see that this choice of B is insufficient, even in the

case of a simple example.

In our simple example we have by standard results that the true value of the parameter

of interest is SE(S2
n) =p

2/(n−1) ≈ 0.202. Figure 4.1 shows the effect that B has on the re-

sulting bootstrap estimate of SE(S2
n) for 10 independent experiments. The erratic behaviour

seen in the left of the figure stems from a combination of statistical and simulation error.

Moving to the right of the figure, the estimates settle down as simulation error is gradually
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Figure 4.1: Effect of B on the bootstrap estimate of SE(S2
n) for 10 independent experiments. The

dotted horizontal line indicates the true theoretical value. The dashed vertical line represents Booth
and Sarkar’s recommended minimum choice for B.

reduced. It is clear that increasing B past a certain point has only little effect on the re-

sulting estimate, i.e. larger choices of B do not continue to significantly reduce simulation

error.

From this observation it seems reasonable that the choice of B should be based only on re-

sampling variability and not on variability originating from statistical error. In agreement

with this, Booth and Sarkar (1998) argue that the choice of B should be based on the coef-

ficient of variation of SE∗(θ̂∗n), conditional on the sample Xn. This conditional coefficient of

variation may be approximated (by means of Taylor expansion) by

CV∗ (
SE∗(θ̂∗n)

)≈
√

δ̂+2
4B

,

where δ̂ denotes the kurtosis of the bootstrap distribution of θ̂∗n. Under the assumption that

the statistic θ̂n is approximately normal, they suggest using no less than approximately

800 bootstrap resamples. This recommendation is indicated by a dashed vertical line on

Figure 4.1. Beyond this point the estimates seem to be fairly stable, in accordance with

their result.

If the aim is to approximate distribution quantiles—a problem encountered when con-

ducting hypothesis testing—a slightly different result is needed. Define the β-level boot-

strap quantile of θ̂∗n by ξ̂β, i.e. P* (
θ̂∗n ≤ ξ̂β

)=β. If it is assumed that θ̂∗n is roughly normal, it
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Figure 4.2: Conditional coefficient of variation (CV∗) of ξ̂β versus resample size B for different
choices of β.

follows from standard results that the conditional coefficient of variation of ξ̂β is approxi-

mately

CV∗ (
ξ̂β

)≈ 1
zβ

√
β(1−β)
B ϕ(zβ)2 ,

as also stated in Efron (1987) and Booth and Sarkar (1998), where zβ = Φ−1(β) and

ϕ(x)=Φ′(x), with Φ denoting the distribution function of the standard normal distribution.

This relation (illustrated in Figure 4.2) shows that to obtain 95%-level quantile estimates

with a (conditional) coefficient of variation of less than 2% requires approximately 4 100

bootstrap resamples. Although we use the bootstrap in the context of dependent data, this

fact already provides a rough guide for choosing the minimum number of bootstrap replica-

tions we require in Chapter 7.

4.3 Hypothesis testing

Let Ω be the collection of all possible θ = θ(F). Consider testing

H0 : θ ∈Ω0 vs. HA : θ ∈ΩA, (4.7)

where Ω0 and ΩA are two disjoint subsets of Ω=Ω0∪ΩA. Given an appropriate test statistic

T(·), suppose the test rejects the null hypothesis whenever T(Xn) ≤ cα, where cα is some

constant such that

PH0 (T(Xn)≤ cα)=α, (4.8)

with PH0 denoting the probability measure under the null hypothesis. The p-value of a

(left-sided) test is given by

p =PH0 (T(Xn)≤ t) ,

where t = T(xn) denotes the value of the test statistic calculated from the realisation xn of

Xn.
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Hall and Wilson (1991) provide two guidelines for performing bootstrap-based hypothesis

tests: (i) resample in a way that reflects the null hypothesis (see also Hinkley, 1988), and (ii)

employ methods that are already recognised as having good features in the related problem

of confidence interval construction (such as using asymptotically pivotal statistics). The first

guideline has become common practice in the application of bootstrap hypothesis testing

and we now discuss two methods to “mimic” the null hypothesis when resampling.

Two popular methods used to enforce the null hypothesis when resampling from Xn are

the transformation method and the exponentially tilted version of the empirical distribu-

tion function (EDF) (Efron and Tibshirani, 1993; Davison and Hinkley, 1997; Allison and

Swanepoel, 2010). The transformation method involves transforming the original sample

Xn in such a way that θ̂n = θ(F̃n) ∈Ω0, where F̃n denotes the empirical distribution of the

transformed data. The exponentially tilted EDF method involves keeping Xn fixed, but as-

sociating a probability pi with each observation Xi. Denote this new probability distribution

by F̃p. It is then possible to obtain the probabilities pi by minimising some measure of dis-

tance (such as the Kullback-Leibler distance) between Fn and F̃p subject to the constraint

θ(F̃p) ∈Ω0. Resampling done from F̃p ensures that the null distribution is enforced.

Recently a general resampling plan for hypothesis testing in the k-sample problem has

been devised by Martínez-Camblor and Corral (2012).

Other standard sources on bootstrap-based hypothesis testing are Chernick (1999) and

Good (2000). Also see MacKinnon (2009).

4.4 Model-based bootstrap

The bootstrap methods discussed thus far were designed for the i.i.d. case. These meth-

ods may not work in more complex cases. Suppose we observe mutually independent pairs

{(X1,Y1), . . . , (Xn,Yn)}, with d-vectors Xi = (1, X i2, . . . , X id)′, generated by the linear regres-

sion model

Yi =β′Xi +εi, i = 1,2, . . . ,n,

where β is a d-vector of real coefficients and εi are mutually independent random error

terms, each with distribution function Fi. Also assume that E(εi) = 0 and E(ε2
i ) = σ2

i > 0.

Define the residuals resulting from the model fit by e i =Yi−Ȳ −β̂′Xi, where Ȳ = n−1 ∑n
i=1 Yi

and β̂ is the ordinary least squares estimate of β. Note that the inclusion of an intercept in

the model statement ensures that ē = n−1 ∑n
i=1 e i = 0.

In the literature there are two popular methods for using the bootstrap to draw infer-

ences about β: (i) resampling residuals and (ii) resampling cases. These two methods are

discussed in the following two subsections.

Resampling errors

Many authors (see e.g. Freedman, 1981; Davison and Hinkley, 1997) suggest using the

following bootstrap resampling scheme:
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1. For each i = 1,2, . . . ,n, generate independent random variables ε∗i from some distribu-

tion F̂i, which serves as an estimate of Fi.

2. Compute the bootstrap responses Y ∗
i = β̂′Xi +ε∗i , i = 1,2, . . . ,n.

3. Calculate the ordinary least squares estimate β̂∗ from the bootstrap data {(Xi,Y ∗
i )}n

i=1.

There have been many suggestions in the literature for the choice of F̂i. The first of these,

due to Efron (1979), suggests simply using the traditional bootstrap and resampling ran-

domly with replacement from {e i}n
i=1 to obtain {ε∗i }n

i=1. Although this procedure is reasonable

if the error terms originate from a common distribution, i.e. if Fi = F ∀i, in the case of het-

eroskedastic errors this choice has been shown to yield an inconsistent estimator for the

standard error of β̂ (Liu, 1988). She also shows how, in the case of simple linear regression,

the residuals may be modified to achieve consistency. For another related example where

the traditional bootstrap is inconsistent, see Härdle and Mammen (1993).

As an alternative to the traditional bootstrap, Wu (1986) proposed what is now known as

the wild bootstrap. The idea is to generate the bootstrap error terms according to

ε∗i = f (e i)u∗
i ,

where f (·) is some transformation and u∗
i is a random variable with mean 0, independent

of {e i}n
i=1. Some choices for f are given in Davidson and Flachaire (2008). Usually the u∗

i

are generated such that the first three moments of the bootstrap error terms correspond to

those of the original error terms. Imposing the following restrictions on u∗
i achieves this:

E∗ (
u∗

i
)= 0, E∗ (

(u∗
i )2)= 1, E∗ (

(u∗
i )3)= 1, i = 1,2, . . . ,n.

Addition of the last restriction based on the third moment was first suggested by Liu (1988),

who showed that this additional restriction improves the convergence rate of bootstrap

estimates (see also Härdle and Mammen, 1993). Probably the most popular choice for u∗
i is

the two-point-distribution

u∗
i =

−1
2
(p

5−1
)

with probability p = 1
2
p

5

(p
5+1

)
,

1
2
(p

5+1
)

with probability 1− p.

This choice was suggested by Mammen (1993), who also provides other constructions. More

constructions are given in Liu (1988) and MacKinnon (2006). Davidson and Flachaire (2008)

also study using Rademacher variables as choice for u∗
i and show that in one specific case

it is possible to draw perfect bootstrap inference.

Examples of where the wild bootstrap is applied in nonparametric regression can be

found in Härdle and Marron (1991), Cao-Abad (1991), Cao-Abad and González-Manteiga

(1993), Härdle and Mammen (1993), Stute, González-Manteiga and Quindimil (1998), Del-

gado and González-Manteiga (2001), González-Manteiga, Miranda and González (2004),

Racine, Hart and Li (2006), Ferraty, van Keilegom and Vieu (2010) and Raña, Aneiros,
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Vilar and Vieu (2016). The wild bootstrap is also frequently applied in goodness-of-fit tests

concerning the distribution of the error terms in parametric and nonparametric models (see

e.g. Dette, Kusi-Appiah and Neumeyer, 2002; Neumeyer, Dette and Nagel, 2005; Neumeyer

and Dette, 2007; Hušková and Meintanis, 2007, 2010, 2012; Jiménez Gamero, 2014).

Resampling cases

As an alternative to resampling errors, one may retain the relationship between the re-

sponse and predictor variables by resampling pairs of observations as in the following pro-

cedure:

1. Randomly sample n pairs with replacement from {(X1,Y1), . . . , (Xn,Yn)} to obtain the

bootstrap data {(X∗
1 ,Y ∗

1 ), . . . , (X∗
n,Y ∗

n )}.

2. Calculate the ordinary least squares estimate β̂∗ from the bootstrap data {(X∗
i ,Y ∗

i )}n
i=1.

Like the wild bootstrap, this procedure allows for heteroskedastic errors. Moreover, the

major advantage of this procedure is that it is not assumed that the conditional mean of Yi

given Xi is linear. However, Flachaire (2005) shows in a Monte Carlo study that one specific

version of the wild bootstrap outperforms the bootstrap based on resampling pairs.

Restricted versus unrestricted estimates

When testing hypotheses placing a restriction on β, the question arises whether the es-

timates of β used to compute the bootstrap observations should be restricted by the null

hypothesis. To be concrete, suppose that we want to test

H0 :β= 0.

Should the bootstrap scheme be based on the restricted residuals e i = Yi − Ȳ (assuming

β = 0) or on the unrestricted residuals e i = Yi − Ȳ − β̂′Xi as above? This problem has been

studied by Paparoditis and Politis (2005a), who reached the following conclusions:

• Imposing the null hypothesis when using non-pivotal statistics is valid, but leads to

a loss of power under the alternative. In this case they recommend using parameter

estimators that converge to the true parameter value under both the null and alter-

native hypotheses.

• When using Studentised statistics, consistency of the test is quite robust to whether

the null hypothesis is imposed on parameter estimates or not.

Also see Flachaire (2005) and MacKinnon (2006).
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4.5 Bootstrapping dependent data

The original idea of the bootstrap is to mimic the complete structure of the data generating

process using a single sample. When applying the bootstrap to time series data this leads to

the additional challenge of estimating the dependence structure of the process. Singh (1981)

demonstrated that, although the traditional i.i.d. bootstrap is superior in many settings,

it is inadequate for dependent data. The residual or wild bootstrap methods discussed in

the previous section may be applicable in parametric settings, but are not very useful in

situations where the statistician is unable to adequately describe the data by means of an

appropriate model. What followed was a multitude of tests designed specifically to deal with

this challenge of reproducing the dependence structure of the data.

In this section we describe how the most significant of these bootstrap methods for depen-

dent data work and for each method highlight the features that have led to its respective

success. Throughout let {X1, X2, . . . , XT } be a sample of dependent random variables with

joint distribution F depending on some unknown parameter θ. Let VT = V (X1, X2, . . . , XT )

be some statistic that may be used to draw inferences about θ. For each algorithm, assume

that when the bootstrap sample {X∗
1 , X∗

2 , . . . , X∗
T } has been drawn, we calculate the boot-

strap version of the test statistic V∗
T =V (X∗

1 , X∗
2 , . . . , X∗

T ) as a final step in order to draw our

inferences.

4.5.1 The autoregressive sieve bootstrap

The autoregressive sieve bootstrap (ASB) was first introduced by Kreiss (1988) for linear

time series of the form (2.1) but later extended by Bühlmann (1995b) for time series of a

more general form. Letting {X t, t ∈Z} be a real-valued, stationary time series with E(X t)=µ,

it is known by Wold’s Theorem that {X t−µ, t ∈Z} can be written as a one-sided infinite order

MA process

X t −µ=
∞∑
j=0

ψ jεt− j, ∀t ∈Z, (4.9)

where ψ0 = 1,
∑∞

j=0ψ
2
j <∞ and {εt} is a zero-mean white noise process. Bühlmann (1995b)

only requires invertibility of (4.9) as an additional assumption for {X t, t ∈ Z} to be repre-

sented as a one-sided infinite order AR process

∞∑
j=0

β j(X t− j −µ)= εt, ∀t ∈Z,

where β0 = 1, the β j are unknown parameters such that
∑∞

j=0β
2
j <∞ and {εt} is a zero-mean

white noise process. This infinite order representation can now be approximated by a finite

order AR process as a sieve for {X t, t ∈Z}. The AR approximation is of the form

p∑
j=0

β j(X t− j −µ)= εt, ∀t ∈Z. (4.10)
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This approximation is preferred over an MA approximation since it is faster and more

successful for general situations (cf. Berk, 1974; An, Chen and Hannan, 1982; Hannan,

1987).

We now provide the algorithm of the sieve bootstrap. Let {X1, X2, . . . , XT } denote a sample

from the process {X t, t ∈Z}.

1. Fit an AR(p) model to the sample {X1, X2, . . . , XT } with order p chosen such that p →∞
as T →∞. See remark (a) below.

2. Estimate the coefficients (β̂1, β̂2, . . . , β̂p) corresponding to (4.10). See remark (b) below.

3. Construct the residuals

ε̂t =
p∑

j=0
β̂ j(X t− j − X̄ ) for t = p+1, . . . ,T,

with β̂0 = 1.

4. Construct the centred residuals

ε̃t = ε̂t − 1
T − p

T∑
t=p+1

ε̂t for t = p+1, . . . ,T.

5. Randomly sample with replacement T−p elements from the centred residuals to form

the bootstrap errors {ε∗t }T
t=p+1.

6. Construct the second part of the bootstrap sample, i.e. {X∗
p+1, X∗

p+2, . . . , X∗
T }, by the

recursion
p∑

j=0
β̂ j(X∗

t− j − X̄ )= ε∗t for t = p+1, . . . ,T.

Initial values {X∗
1 , X∗

2 , . . . , X∗
p} can be obtained in various ways, two of which are dis-

cussed in remark (c) below.

Remarks.

(a) Shibata (1980) has shown the Akaike information criterion (AIC) to be optimal for

prediction in AR(∞) models, and hence an estimate p̂ of p can be chosen by the AIC

model selection procedure with Gaussian innovations.

(b) Bühlmann (1995b) recommends using the Yule-Walker estimates, although other es-

timates have also been used in the past.

(c) Two ways to obtain the initial values (when working with lagged variables) are as

follows.

• Due to its simplicity the most popular method to obtain initial values

{X∗
1 , X∗

2 , . . . , X∗
p} is to set them equal to the values in the original sample

{X1, X2, . . . , X p}. That is, X∗
t = X t for t = 1,2, . . . , p.

49



• A more appropriate method for the case of hypothesis testing, as recommended

by Bühlmann (1995b) and Allison and Swanepoel (2010), is to make use of a so-

called burn-in period which involves generating T+k+1 elements to construct an

original sample {X−k, X−k+1, . . . , X0, . . . , XT } instead of {X1, X2, . . . , XT }. Of course,

the value of p is unknown when this original sample is constructed, so k is usually

chosen as a fraction of the sample size, e.g. k = ⌈T/4⌉, so that k > p. The algorithm

is then performed using this sample containing T+k+1 elements to obtain an ini-

tial bootstrap sample {X∗
−k, X∗

−k+1, . . . , X∗
0 , . . . , X∗

T }. The terms X∗
−k, X∗

−k+1, . . . , X∗
0

are then discarded and one is left with a final bootstrap sample of size T, i.e.

{X∗
1 , X∗

2 , . . . , X∗
T }.

4.5.2 The moving block bootstrap

The class of block bootstraps is a set of resampling methods which involves splitting the

sample into blocks of observations and then resampling blocks instead of resampling indi-

vidual observations. Generally speaking, the blocks can be of varying (i.e. random) length

and can be overlapping (i.e. if the observations are ordered sequentially then an observation

may belong to more than one block simultaneously). This method of resampling dependent

data ensures that the dependence structure within blocks of short-range dependent obser-

vations is preserved. To ensure that the blocking procedure asymptotically reproduces the

underlying dependence structure, the block length may be chosen as an increasing function

of the sample size.

The moving block bootstrap (MBB) was independently proposed by Künsch (1989) and

Liu and Singh (1992) and splits the data into T−ℓ+1 overlapping blocks of length ℓ. Block 1

will contain the observations 1 to ℓ, block 2 will contain observations 2 to ℓ+1, and so forth.

A new bootstrap series is then formed by drawing T/ℓ blocks randomly with replacement

from the T−ℓ+1 blocks and aligning them in the order they were drawn. By principle, the

bootstrap series will be nonstationary since the bootstrap works with dependent data.

More precisely, the MBB algorithm works as follows:

1. Define blocks B j = {X j, . . . , X j+ℓ−1} for j = 1,2, . . . , N, where N = T −ℓ+1 and where

1≤ ℓ≤ T denotes the block size.

2. Let b = ⌊T/ℓ⌋. Select a random sample of blocks with replacement {B∗
1 ,B∗

2 , . . . ,B∗
b }

from {B1,B2, . . . ,BN }.

3. Concatenate B∗
1 ,B∗

2 , . . . ,B∗
b in the order they were drawn to form a sequence.

4. This yields T1 = bℓ bootstrap observations X∗
T1

= {X∗
1 , X∗

2 , . . . , X∗
T1

}. Note that T1/T → 1

as T →∞.

The distributional properties of V∗
T may now be used as a proxy for those of VT .
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The reason that b elements are used from {B1,B2, . . . ,BN } is that T elements in total are

wanted in the bootstrap sample. But when using b blocks in the bootstrap sample it does

not result in a sample of size T, but rather a sample of size T1 = bℓ. Note, however, that

since T1/T → 1 as T →∞, the bootstrap sample size approaches the true sample size as the

true sample size increases. The choice of the block length ℓ needs careful consideration as

will be discussed shortly.

Bühlmann (1995b) mentions that the MBB performs satisfactory and is robust against

misspecified models, but that the bootstrap series exhibits properties which are caused by

the concatenation of randomly selected blocks. The dependence between different blocks is

ignored in the bootstrap series and hence it is not (conditionally) stationary. A modification

to the MBB which yields a conditionally stationary bootstrap sample is the stationary block

bootstrap procedure discussed shortly.

It has been shown that the MBB is valid (i.e. produces consistent estimates) in many

cases, but it is typically required that

ℓ→∞ and T−1ℓ→ 0 as T →∞,

and that the data generating processes are only short-range dependent (Naik-Nimbalkar

and Rajarshi, 1994; Bühlmann, 1995a; Bühlmann and Künsch, 1995; Radulović, 1996a,b).

Lahiri (2003) provides rigorous proofs of the consistency of the MBB when estimating the

variance or distribution function of the centred and scaled sample mean. Second-order

correctness of the MBB for Studentised statistics has been established independently by

Goëtze and Künsch (1996) and Lahiri (1996). Radulović (2012) establishes a bootstrap cen-

tral limit theorem for the mean, along with necessary and sufficient conditions.

4.5.3 The circular block bootstrap

As a member of the class of block bootstraps, the circular block bootstrap (CBB) of Politis

and Romano (1992) is just an extension of the well-known MBB. Whereas the MBB creates

T −ℓ+1 blocks, each of length ℓ, the CBB creates T blocks, each of length ℓ, by wrapping

around the time series to form the last ℓ−1 blocks, the last block having XT as its first

observation. Put differently, if the block formation is shifted to the end of the time series

and cannot shift any further, then the block wraps around to the beginning of the series to

fill the remaining positions in the block with observations. We have the collection of blocks

{B1,B2, . . . ,BT }, i.e. there are the same number of blocks as there are observations. We

then sample b = ⌊T/ℓ⌋ blocks from this collection to obtain B∗
1 ,B∗

2 , . . . ,B∗
b and concatenate

them to obtain the bootstrap series {X∗
1 , X∗

2 , . . . , X∗
bℓ}. Seen differently, since the first and

last few observations of a series do not have equal chance of being drawn into a bootstrap

sample as the observations in the middle of the series, the observations are laid in a circle

and consecutive blocks of bootstrap data are generated from the circle. For example, if we

choose blocks of length ℓ = 3 from a series {X1, X2, . . . , XT }, then the blocks would be B1 =
{X1, X2, X3}, B2 = {X2, X3, X4}, . . . , BT = {XT , X1, X2}.
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4.5.4 Modifications and considerations of the block bootstrap procedure

Other variants of the block bootstrap exist, for example:

• the nonoverlapping block bootstrap (NBB) (Carlstein, 1986; Radulović, 2009), where

the blocks {Bk}T−ℓ+1
k=1 are chosen such that they are disjoint, i.e. that they do not over-

lap;

• the stationary block bootstrap (SBB) (Politis and Romano, 1994) where the fixed block

lengths are replaced by random block lengths (drawn from a geometric distribution)

which ensures that the resampled data again form a stationary time series (condi-

tional on F̂), which is required in some situations. Bühlmann (1995b) notes that this

procedure depends on a tuning parameter p, the probability parameter of the geomet-

ric distribution, which is difficult to control. At present there exists no data-driven

choice for this parameter and in practice only rules of thumb are employed;

• the tapered block bootstrap (TBB) (Paparoditis and Politis, 2001) which typically pro-

duces estimators with reduced bias. For certain parameter choices in the dependent

wild bootstrap of Shao (2010) the TBB is obtained (see Section 2 in Shao (2010) and

also p. 8 of Smeekes and Urbain (2014a)).

More recently Dudek, Leśkow, Paparoditis and Politis (2014) proposed a generalised block

bootstrap method for time series containing a periodic or seasonal component.

The choice of block length ℓ is crucial to the success of the block bootstrap methods.

Hall, Horowitz and Jing (1995) proposed a general method for estimating the optimal block

size in the cases of variance, bias or distribution function estimation. Their method uses

subsampling, another method of resampling, to approximate the mean squared error (MSE)

of the estimator for different choices of ℓ. The estimated block size is that value of ℓ that

minimises this MSE of the bootstrap estimator. The drawback of this method is that it

requires an explicit expression for the MSE of the estimator of interest, which they derive

for the cases of variance, bias and distribution function estimation. These expressions are

also used by Politis and White (2004) (with corrections by Patton, Politis and White, 2009)

to choose an optimal block length based on the notion of spectral estimation via flat-top

lag-windows of Politis and Romano (1995). To get around this problem, Lahiri, Furukwa

and Lee (2007) came up with a nonparametric plug-in method which does not require such

explicit expression of the MSE. This plug-in method is applicable to problems concerning

the variance, bias, distribution function and quantiles.

Another interesting choice of plug-in estimator for the block length has recently been

used by Hong, Wang and Wang (2016) in a goodness-of-fit setting where the objective is to

test whether a given time series was generated by a strictly stationary process. They employ

Lima and Xiao’s (2010) partially data-dependent estimator for lag order. Their estimator

imposes an upper bound to the frequently-used AR(1) plug-in estimator originally studied
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(in more generality) by Andrews (1991). Lima and Xiao’s motivation behind the added upper

bound is that under the alternative hypothesis the estimated lag-order may become too

large and may result in a loss of power.

Theoretical comparisons in terms of the bias and variance of estimators obtained by

means of the CBB, MBB, NBB and SBB are given in Lahiri (1999) and Nordman (2009).

The authors show that variances of NBB estimators are larger than those of CBB, MBB and

SBB estimators. The bias and variance of the latter three methods have been found to be

comparable. An excellent monograph on resampling methods for dependent data is Lahiri

(2003). Kreiss and Lahiri (2012) provide a comprehensive overview of bootstrap methods

for time series data. Subsampling has also been generalised for dependent data (see Politis,

Romano and Wolf, 1999).

4.5.5 The dependent wild bootstrap

The dependent wild bootstrap (DWB) of Shao (2010) is a resampling technique which can be

used for smooth functions of the sample mean in the case where {X1, X2, . . . , XT } is a sample

of real-valued weakly dependent random variables. Given this sample, the DWB constructs

a bootstrap sample {X∗
1 , X∗

2 , . . . , X∗
T } as follows:

X∗
t = X̄T + (X t − X̄T )ε∗t,T , t = 1,2, . . . ,T,

where X̄T = 1
T

∑T
t=1 X t and {ε∗t,T }T

t=1 is a triangular scheme of weakly dependent random

variables independent of {X1, X2, . . . , XT }. More precisely, {ε∗t,T } is a stationary process with

E(ε∗t,T )= 0, Var(ε∗t,T )= 1, Cov(ε∗s,T ,ε∗t,T )= K
(

s− t
ℓ

)
,

where K(·) is a kernel function and ℓ is a bandwidth parameter. For the kernel we require

that K(0)= 1, K(x)= 0 for x ≥ 1, and
∫ ∞
−∞ K(u)e−iuxdu ≥ 0 for all x ∈R.

In our Monte Carlo study we will investigate the performance of several unit root tests

based on the DWB, where we use the Bartlett kernel as a choice for K and generate the ε∗t,T
from a multivariate normal distribution.
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Chapter 5

Bootstrap unit root tests

The past two decades have seen an almost bewildering array of bootstrap-based unit root

tests emerging in the statistical literature. The first application of the bootstrap to unit root

testing that we are aware of is by Rayner (1990), but research in this area started gaining

momentum only somewhat later with the contributions of Nankervis and Savin (1996),

Psaradakis (2001), Chang and Park (2003), Paparoditis and Politis (2003) and Park (2003).

These applications rely on more traditional methods of bootstrapping dependent data, such

as the sieve and block bootstrap procedures (and the countless variations thereof).

Owing to some of the deficiencies of these methods, such as the invalidity in the case of

heteroskedastic time series data, alternative more modern methods for bootstrapping de-

pendent data soon saw the light. An interesting application of the traditional (independent)

wild bootstrap to unit root testing is bootstrap versions of Ng and Perron’s M tests by Cav-

aliere and Taylor (2009a). Shortly thereafter Shao developed the dependent wild bootstrap,

an extension of the traditional wild bootstrap to accommodate stationary time series data,

which paved the way for numerous variations, such as the autoregressive and the block

wild bootstrap (see e.g. Shao, 2011; Smeekes and Urbain, 2014a).

A promising recent development is the linear process bootstrap proposed by McMurry

and Politis (2010), which sprouted from a new estimator for autocovariance matrices. Al-

though little research has been done on the linear process bootstrap in the context of unit

root testing, we will discuss the linear process unit root test as recently applied in this

setting by Zou and Politis (2016).

Today there are many different unit root tests and almost as many bootstrap procedures.

These procedures and their important implementational considerations are scattered over

more than 20 years of literature, which makes it challenging for practitioners to apply

these tests responsibly. Our aim in this chapter is not to describe all bootstrap unit root

tests available in the literature, but to provide a concise but detailed selection of the most

successful unit root tests, as well as important variations of these tests and considerations

to bear in mind in implementation.

As in Chapter 3, suppose throughout that we have at our disposal a set of observations
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{x0, x1, . . . , xT } generated by the process

xt = dt + yt, yt = ρyt−1 +ut, t = 0,±1,±2, . . . , (5.1)

where dt is a fixed deterministic component and {ut} is an unobserved stationary zero-mean

error process. Our objective remains testing the hypothesis

H0 : ρ = 1 vs. HA : |ρ| < 1. (5.2)

We now move on to describe the tests.

5.1 Test 1: Difference-based ADF sieve bootstrap test

The first bootstrap test we consider is the test proposed by Chang and Park (2003) which

involves applying the sieve bootstrap to the differenced observations. The test is a gener-

alisation of a bootstrap-based test proposed by Psaradakis (2001) in that it incorporates

the use of the augmented version of the Dickey–Fuller statistics. The test is based on the

observation that the process {yt} in (5.1) may be rewritten as

∆yt = (ρ−1)yt−1 +ut,

which under H0 becomes

∆yt = ut.

Based on the observed series {x0, x1, . . . , xT }, Chang and Park (2003) propose the following

bootstrap procedure:

1. Calculate the Dickey–Fuller statistics DFρ,q and DFt,q based on the sample data. The

series may be detrended if necessary.

2. Detrend the series {xt} according to the specification of the deterministic component

dt =ψ′zt. Define the detrended series as

x̃t = xt −ψ̂′zt,

where ψ̂ is an appropriate estimate for ψ in a regression of xt on zt. See remark (a)

and (b) below.

3. For some fixed positive integer q′, fit an AR(q′) model to {ût}, where ût =∆x̃t = x̃t−x̃t−1.

This yields coefficient estimates β̂1, β̂2, . . . , β̂q′ from which we may obtain the residuals

ε̂t = ût −
q′∑

j=1
β̂ j ût− j, t = q′, . . . ,T.

See remark (c) below.
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4. (i) Draw a sample of size T − q′ randomly with replacement from the centred resid-

uals

ε̂t − 1
T − q′

T∑
t=q′+1

ε̂t

to generate the bootstrap sample {ε∗t }.

(ii) Construct bootstrap errors u∗
t using the recursion

u∗
t =

q′∑
j=1

β̂ ju∗
t− j +ε∗t . (5.3)

See remark (d) below.

(iii) Recursively generate the bootstrap series {y∗t }T
t=1 by

y∗t = y∗t−1 +u∗
t , y∗0 = 0. (5.4)

See remark (e) below.

(iv) For some fixed positive integer q∗, calculate the normalised coefficient statistic

DF∗
ρ = T(β̂∗

0 −1)

1−∑q∗
j=1 β̂

∗
j

(5.5)

and the corresponding t-statistic

DF∗
t = β̂∗

0 −1

SE(β̂∗
0 )

, (5.6)

where β̂∗
0 and β̂∗

j are the OLS estimators for ρ∗ and β∗
j in the ADF test regression

y∗t = (ψ∗)′zt +β∗
0 y∗t−1 +

q∗∑
j=1

β∗
j ∆y∗t− j +ε∗t,q∗ .

5. Repeat step 4 a large number of times, say B, to obtain the ordered replications

DF∗(1) ≤ . . . ≤ DF∗(B). Reject the null hypothesis whenever DF < DF∗(⌊Bα⌋) (assum-

ing a significance level of α). Here DF stands for either DFρ,q or DFt,q.
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Remarks.

(a) Chang and Park (2003) do not recommend a specific method to be used for detrending

the series {yt}. While Cavaliere and Taylor (2009a) suggest using local GLS detrending

in Chang and Park’s procedure, we will consider detrending the series using both OLS

and GLS in our Monte Carlo study.

(b) Smeekes (2013) shows that detrending should not only be done for the construction

of the test statistic (if required), but also in step 2 of the above bootstrap algorithm.

The two methods used for detrending need not be the same and, from a theoretical

perspective, should be treated separately.

(c) For estimation of the AR(q′) model in step 3, Psaradakis (2001) recommends making

use of Yule–Walker equations. This ensures that the generated bootstrap innovations

u∗
t admit a one-sided MA(∞) representation. A suitable value for the lag order q′

may be chosen using a complexity-penalised likelihood criterion such as Akaike’s in-

formation criterion (AIC), as recommended by Bühlmann (1997, 1998). Alternatively,

sequential tests for the significance of the coefficient on the longest lag may be used

(see e.g. Hall, 1994; Ng and Perron, 1995).

(d) Generating the bootstrapped error process {u∗
t } in (5.3) requires initialisation. Follow-

ing Chang and Park (2003), we make use of a burn-in period by generating a large

number of u∗
t and then discarding the superfluous initial observations such that we

are left with a series {u∗
t } consisting of exactly T observations.

(e) Chang and Park (2003) show that the initial value y∗0 in (5.4) does not affect the

asymptotic bootstrap distributions of the statistics DF∗, as long as it is stochasti-

cally bounded. They therefore recommend setting y∗0 = 0 when using demeaned or

detrended data.

(f) It might feel intuitive choosing q = q′ = q∗ in the above procedure. Although Chang

and Park (2003) seem to make no distinction between these three lag lengths, Smeekes

(2013) remarks that it is important to allow for lag selection of q∗ in the bootstrap

as this will improve the finite-sample properties of the test (also see Richard, 2009).

Smeekes also allows for q and q′ to be different and to be chosen independently using

information criterion.

5.2 Test 2: Residual-based ADF sieve bootstrap test

Palm et al. (2008) propose a modified test based on the difference-based sieve bootstrap test

by Chang and Park (2003). Their test is based on residuals and they construct it in the

same way as the ADF coefficient test of Paparoditis and Politis (2005b). Palm et al. (2008)

also show that the bootstrap distributions of the statistics obtained in this way converge to

the same limit distributions as the test statistics.
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The new algorithm differs from Test 1 only in step 3. For convenience we provide the

complete algorithm of Palm et al. (2008) here:

1. Calculate the Dickey–Fuller statistics DFρ and DFt based on the sample data. The

series may be detrended if necessary.

2. Detrend the series {xt} according to the specification of the deterministic component

dt =ψ′zt. Define the detrended series as

x̃t = xt −ψ̂′zt,

where ψ̂ is an appropriate estimate for ψ in a regression of xt on zt.

3. For some fixed integer q′, calculate the residuals

ε̂t = ỹt − β̂0 ỹt−1 −
q′∑

j=1
β̂ j∆ ỹt− j, t = q′, . . . ,T,

where β̂0 and the β̂ j are obtained by OLS in a q′th order ADF regression. In their

simulation study, Palm et al. (2008) use OLS estimation to obtain β̂0.

4. (i) Draw a sample of size T − q′ randomly with replacement from the centred resid-

uals

ε̂t − 1
T − q′

T∑
t=q′+1

ε̂t

to generate the bootstrap sample {ε∗t }.

(ii) Construct bootstrap errors u∗
t using the recursion

u∗
t =

q′∑
j=1

β̂ ju∗
t− j +ε∗t .

(iii) Recursively generate the bootstrap series {y∗t } by y∗t = y∗t−1 +u∗
t , y∗0 = 0.

(iv) From the ADF regression

y∗t =β∗
0 y∗t−1 +

q∗∑
j=1

β∗
j ∆y∗t− j +ε∗t,q∗ ,

calculate the statistics DF∗
ρ and DF∗

t as defined in (5.5) and (5.6).

5. Repeat step 4 a large number of times, say B, to obtain the ordered replications

DF∗(1) ≤ . . . ≤ DF∗(B). Reject the null hypothesis whenever DF < DF∗(⌊Bα⌋) (assum-

ing a significance level of α). Again, DF stands for either DFρ or DFt.

5.3 Test 3: Residual-based ADF block bootstrap test

The residual-based block bootstrap (RBB) of Paparoditis and Politis (2003) is a block boot-

strap method applied to the residuals of a regression of yt on yt−1. Regardless of the process

that generated the observations {xt}, they start by defining a new series {vt} by

vt = xt −α−ρxt−1, t = 1,2, . . . , (5.7)
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where α=E(xt −ρxt−1).

Paparoditis and Politis (2003) propose the following bootstrap testing procedure:

1. Let ρ̃ be a consistent estimator for ρ in (5.7). In the context of unit root testing, such

an estimator may be the OLS estimator β̂0 for β0 in the ADF regression

xt =α0 +β0xt−1 +
q′∑

j=1
β j∆xt− j +εt. (5.8)

Although other options exist, for our purposes we will choose ρ̃ = β̂0 throughout, as

suggested by Paparoditis and Politis (2003). Note the inclusion of the constant mean

term α0 regardless of the specification of the deterministic component of the test.

2. Obtain the centred residuals

v̂t = xt − ρ̃xt−1 − 1
T −1

T∑
s=2

(xs − ρ̃xs−1)

and the centred differences

Dt = xt − xt−1 − 1
T −1

T∑
s=2

(xs − xs−1).

3. (i) For a fixed block length b, draw k = ⌊(T−1)/b⌋ index points i0, i1, . . . , ik−1 from the

uniform distribution on the set {1,2, . . . ,T−b}. These points will serve as starting

points for the blocks of centred residuals v̂t.

(ii) Set v∗1 = D∗
1 = 0. Let T ′ = kb+1 and, for t = 2,3, . . . ,T ′, define the bootstrap series

v∗t = v̂im+t−mb−1 and D∗
t = D im+t−mb−1,

where m = ⌊(t−2)/b⌋.
(iii) Construct the bootstrap sample recursively by

x∗t =
{

x0 for t = 0,

α̃+ x∗t−1 +v∗t for t = 1,2, . . . ,T ′,

where α̃≡ 0 in the case of a constant (possibly zero) mean or, in the case of a linear

time trend, a consistent estimator for the drift parameter α in (5.7). Following

Paparoditis and Politis (2003) we will, in our Monte Carlo study, take α̃ as the

OLS estimator for α0 obtained in the regression in (5.8).

(iv) Calculate the normalised coefficient statistic

DF∗
ρ = T(β̂∗

0 −1)

1−∑q∗
j=1 β̂

∗
j

(5.9)

and the corresponding t-statistic

DF∗
t = β̂∗

0 −1

SE(β̂∗
0 )

, (5.10)
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where β̂∗
0 and the β̂∗

j are the OLS estimators for β∗
0 and the β∗

j , respectively, in

the ADF test regression

x∗t = dt +β∗
0 x∗t−1 +

q∗∑
j=1

β∗
j D∗

t− j +ε∗t,q∗ . (5.11)

4. Repeat step 3 a large number of times, say B, to obtain the ordered replications

DF∗(1) ≤ . . . ≤ DF∗(B). Reject the null hypothesis whenever DF < DF∗(⌊Bα⌋) (assum-

ing a significance level of α). Here, DF stands for either DFρ or DFt.

Remarks.

(a) In their theoretical results, Paparoditis and Politis (2003) show that their procedure

is consistent in the case where dt, the deterministic specification in the test, is a con-

stant (possibly zero) and in the case where dt is a linear time trend. However, in their

numerical study they only investigate the finite-sample performance of their proce-

dure for the case where dt is a constant. We will include both specifications in our

Monte Carlo study.

(b) Note that the lagged differences D∗
t appearing in (5.11) are differences calculated from

the original sample {xt} and not from the bootstrap sample {x∗t }. The D∗
t are defined in

step 3(ii) of the procedure.

An important feature of the block bootstrap is that the innovations ut need not belong to

the class of linear processes to be strong mixing, as opposed to the sieve bootstrap. Hence,

the block bootstrap allows for a class of possibly non-linear processes whereas the sieve

bootstrap does not. However, Palm et al. (2008) note that, in the case where both the block

and sieve bootstrap are consistent, it seems that the sieve bootstrap performs better than

the block bootstrap.

5.4 Test 4: Difference-based ADF block bootstrap test

Paparoditis and Politis (2003) also consider a difference-based version of the block bootstrap

test described in the previous section. They base their modification on differences (DBB)

instead of residuals by simply taking ρ̃ = 1 in Test 3. The asymptotic validity of this version

is established by Paparoditis and Politis (2003).

5.5 Test 5: ADF wild bootstrap test

Although already introduced in the 1980s by Wu (1986), the traditional (independent) wild

bootstrap was first applied in the context of unit root testing by Cavaliere and Taylor (2008,

2009a,b). To account for serial correlation in the innovations, they advocate the introduction

of a sieve, or a recolouring, into the wild bootstrap procedure when constructing the boot-

strap innovations. Apart from showing that the wild bootstrap is valid in terms of first-order
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asymptotics, they demonstrate that the wild bootstrap is more robust to serial correlation

in the innovation process than the test based on asymptotic critical values and the block-

based bootstrap methods. The improvements offered by the wild bootstrap is even more

prominent in the presence of conditional heteroskedasticity in the error process.

In this section we present application of several wild bootstrap procedures as applied

to the ADF unit root test by Smeekes and Urbain (2014a). As alternatives to using the

sieve advocated by Cavaliere and Taylor, they consider three other versions of the wild

bootstrap: the blockwise, dependent and autoregressive wild bootstrap. The bootstrap M

tests originally considered by Cavaliere and Taylor will be presented in the next section.

The wild bootstrap testing procedure is as follows:

1. Detrend {xt} according to the specification of the deterministic component dt to obtain

the detrended series {x̃t}.

2. For some fixed integer q′, from the ADF regression

x̃t =β0 x̃t−1 +
q′∑

j=1
β j∆x̃t− j +εt, t = q′, . . . ,T,

obtain the residuals

ε̂t = x̃t − β̂0 x̃t−1 −
q′∑

j=1
β̂ j∆x̃t− j, t = q′, . . . ,T,

where β̂0 and the β̂ j are OLS estimators for β0 and the β j, respectively.

3. (i) Let {wt}T
t=0 be a sequence of random variables generated independently of ε̂t ac-

cording to one of the wild bootstrap schemes described in the following subsec-

tions. Obtain the bootstrap errors ε∗t according to the device

ε∗t = wtε̂t.

(ii) Set u∗
t = ε∗t and recursively construct the bootstrap series {y∗t } as y∗t = y∗t−1 + u∗

t

with y∗0 = 0.

(iii) Using the same detrending method used in the calculation of the test statistic

DF, detrend the series y∗t to obtain ỹ∗t .

(iv) For some fixed integer q∗, from the ADF regression

ỹ∗t =β∗
0 ỹ∗t−1 +

q∗∑
j=1

β∗
j∆ ỹt− j +ε∗t,q∗ , t = q∗, . . . ,T,

obtain the residuals

ε̂∗t,q∗ = ỹ∗t − β̂∗
0 ỹ∗t−1 −

q∗∑
j=1

β̂∗
j ∆ ỹ∗t− j, t = q∗, . . . ,T,

where β̂∗
0 and the β̂∗

j are OLS estimators for β∗
0 and the β∗

j , respectively.
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(v) Calculate the normalised coefficient statistic

DF∗
ρ = T(β̂∗

0 −1)

1−∑q∗
j=1 β̂

∗
j

(5.12)

and the corresponding t-statistic

DF∗
t = β̂∗

0 −1

SE(β̂∗
0 )

. (5.13)

4. Repeat step 4 a large number of times, say B, to obtain the ordered replications

DF∗(1) ≤ . . . ≤ DF∗(B). Reject the null hypothesis whenever DF < DF∗(⌊Bα⌋) (assum-

ing a significance level of α). Again, DF stands for either DFρ or DFt.

The traditional wild bootstrap, originally introduced by Wu (1986), involves generating

the sequence {wt} by randomly sampling uncorrelated random variables with zero mean

and unit variance. Although many alternative suggestions exist in the literature, it is com-

mon practice to independently generate the wt from a standard normal distribution (see e.g.

Cavaliere and Taylor, 2009a; Shao, 2010). Accuracy of the wild bootstrap can be improved by

generating the wt from an asymmetric distribution with E(w3
t )= 1 (see Liu, 1988). Some ex-

amples are given in Section 4.4. However, Cavaliere and Taylor (2009a, p. 401) remark that

in their Monte Carlo studies they found no discernible differences between using the nor-

mal, the Mammen or the Rademacher distributions (also see Gonçalves and Kilian, 2004,

p. 105).

It is worth noting that, conditionally on the ε̂t, the bootstrap innovations u∗
t have zero

mean and variance ε̂2
t . The wild bootstrap therefore has the desirable property that it pre-

serves the pattern of heteroskedasticity present in the original innovations ut.

In contrast, the independent wild bootstrap fails to replicate serial correlation from the

true innovations ut. Since E∗(wt)=E(wt)= 0, notice that for all t we have

E∗(u∗
t )=E∗(wtε̂t)= ε̂t E∗(wt)= 0.

Hence, for any s ̸= t,

Cov∗(u∗
s ,u∗

t )=E∗(u∗
s u∗

t )=E∗(wsε̂swtε̂t)= ε̂sε̂t E∗(ws)E∗(wt)= 0.

This means that the generated bootstrap innovations are conditionally uncorrelated and

any serial correlation in the ut will not be accounted for. Therefore, in cases where the

true innovations ut are autocorrelated, the independent wild bootstrap will fail to replicate

the long-run covariance matrix of the innovations and consequently will be asymptotically

invalid.

One remedy of this problem involves incorporating autocorrelation into the test statistic,

such as adding lagged difference terms to the Dickey–Fuller regression. Although this ap-

proach works well for our purposes, Smeekes and Urbain (2014a) note that in multivariate

settings (panel data), for example, this approach is often infeasible.
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Other alternatives have been proposed in the literature to address this problem, some of

which we discuss in the following subsections.

5.5.1 Recolouring the wild bootstrap

Advocated by Cavaliere and Taylor (2008, 2009a,b), one can account for autocorrelation in

the errors by introducing a sieve when constructing the bootstrap errors. This is achieved

by replacing step 3(ii) by the following:

3. (ii) Recursively generate {u∗
t } according to

u∗
t =

q′∑
j=1

β̂ j∆u∗
t− j +ε∗t ,

and then generate the bootstrap sample {y∗t } by y∗t = y∗t−1 +u∗
t with y∗0 = 0.

Using the estimated coefficients of the lagged difference terms included in step 2, this mod-

ified step reintroduces serial correlation into the construction of the bootstrap innovations.

5.5.2 Dependent wild bootstrap

As an extension of the traditional wild bootstrap, Shao (2010) proposed the so-called depen-

dent wild bootstrap which allows dependence to be reintroduced into the bootstrap series

{u∗
t }. This is accomplished by generating {wt} as a stationary process with

E(wt)= 0, Var(wt)= 1, Cov(ws,wt)= K
(

s− t
ℓ

)
,

where K(·) is a kernel function and ℓ is a bandwidth parameter. For the kernel we require

that K(0)= 1, K(x)= 0 for x ≥ 1, and
∫ ∞
−∞ K(u)e−iuxdu ≥ 0 for all x ∈R.

In our Monte Carlo study we follow Smeekes and Urbain (2014a) and generate the wt

from a multivariate normal distribution with the moment properties given above. As rec-

ommended by Shao (2010), we choose

K(t)=
∫ 1
−1 w0.43(x)w0.43(x+|t|)dx∫ 1

−1 w2
0.43(x)dx

,

where

wc(x)=



t
/

c if 0≤ t < c,

1 if c ≤ t ≤ 1− c,

(1− t)
/

c if 1− c < t ≤ 1,

0 otherwise.

5.5.3 Autoregressive wild bootstrap

Another modification of the wild bootstrap considered by Smeekes and Urbain (2014a) is the

autoregressive wild bootstrap. For this type of bootstrap, the wt are generated as follows.
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For some fixed γ ∈ [0,1), independently generate ξ0,ξ1, . . . ,ξT from an N(0,1−γ2) distribu-

tion and let

wt = γwt−1 +ξt, t = 1,2, . . . ,T,

with w0 ∼ N(0,1). Following Smeekes and Urbain (2014a) we choose γ = θ1/ℓ in our Monte

Carlo study, where θ = 0.01 and ℓ is the same as the bandwidth parameter used for the

dependent wild bootstrap.

5.6 Test 6: Wild bootstrap M tests

We now present the wild bootstrap procedure proposed by Cavaliere and Taylor (2009a) for

the M tests of Ng and Perron (2001) defined in Section 3.5. Note again that the traditional

and recoloured wild bootstrap procedures presented in the previous section are based on

the procedure given here.

1. Detrend {xt} according to the specification of the deterministic component dt to obtain

the detrended series {x̃t}.

2. For some fixed integer q′, from the ADF regression

x̃t =β0 x̃t−1 +
q′∑

j=1
β j∆x̃t− j +εt, t = q′, . . . ,T,

obtain the residuals

ε̂t = x̃t − β̂0 x̃t−1 −
q′∑

j=1
β̂ j∆x̃t− j, t = q′, . . . ,T,

where β̂0 and the β̂ j are OLS estimators for β0 and the β j, respectively.

3. (i) Let {wt}T
t=0 be an i.i.d. sequence of N(0,1) random variables. Generate the boot-

strap errors ε∗t according to the device

ε∗t = wtε̂t.

(ii) Set u∗
t = ε∗t and recursively generate the bootstrap series {y∗t } by y∗t = y∗t−1 + u∗

t

with y∗0 = 0.

(iii) Using the procedure described in Section 3.4, detrend the series {y∗t } to obtain

{ ỹ∗t }.

(iv) For some fixed integer q∗, from the ADF regression

ỹ∗t =β∗
0 ỹ∗t−1 +

q∗∑
j=1

β∗
j∆ ỹt− j +ε∗t,q∗ , t = q∗, . . . ,T,

obtain the residuals

ε̂∗t,q∗ = ỹ∗t − β̂∗
0 ỹ∗t−1 −

q∗∑
j=1

β̂∗
j ∆ ỹ∗t− j, t = q∗, . . . ,T,

where β̂∗
0 and the β̂∗

j are OLS estimators for β∗
0 and the β∗

j , respectively.
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(v) Calculate the test statistics

MZ∗
α = T−1( ỹ∗T )2 − (s∗AR)2

2T−2 ∑T
t=1( ỹ∗t−1)2

, MSB∗ =
√√√√ 1

T

T∑
t=1

( ỹ∗t−1)2
/

(s∗AR)2,

and MZ∗
t = MZ∗

α ·MSB∗, where

s∗AR = σ̂∗

1−∑q∗
j=1 β̂

∗
j

,

with σ̂∗ = (T − q∗+1)−1 ∑T
j=q∗ ε̂

∗
t,q∗ .

4. Repeat step 2 a large number of times, say B, to obtain replications θ̂∗1 , θ̂∗2 , . . . , θ̂∗B. An

approximate critical value of the test (at a significance level of α) is given by θ̂∗⌊Bα⌋.

5.6.1 Recoloured wild bootstrap M tests

As was described in the previous section, this variation on the wild bootstrap is different

only in step 3(ii), which is replaced by

2. (iii) Recursively generate {u∗
t } according to

u∗
t =

q′∑
j=1

β̂ j∆u∗
t− j +ε∗t , t = q′, . . . ,T,

and then generate the bootstrap sample {y∗t } by y∗t = y∗t−1 +u∗
t with y∗0 = 0.

5.7 Test 7: Linear process bootstrap

In light of the fact that most unit root tests suffer from size distortions when moving aver-

age noise exists, Zou and Politis (2016) recently proposed a bootstrap test designed specif-

ically to address this issue. Their approach makes use of the so-called linear process boot-

strap first introduced by McMurry and Politis (2010). Jentsch, Politis et al. (2015) showed

that, for the case of the mean, the linear process bootstrap shows good asymptotic and

empirical performance.

The linear process bootstrap unit root test proposed by Zou and Politis (2016) is given

below. Note that their procedure is originally proposed only for the case where the test

contains no deterministic component. We have added step 1 to investigate whether their

procedure might also be valid in the case where a deterministic component is specified.

1. Detrend {xt} according to the specification of the deterministic component d†
t .

2. For some fixed integer q′, calculate the residuals

v̂t = ỹt − β̂0 ỹt−1 −
q′∑

j=1
β̂ j∆ ỹt− j, t = q′, . . . ,T,
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where β̂0 and the β̂ j are obtained by OLS in a q′th order ADF regression. Let v̌ =
(v̌q′+1, . . . , v̌t)′ denote the centred residuals, i.e.

v̌t = v̂t − 1
T − q′

T∑
t=q′+1

v̂t.

3. Define

ε̂= (ε̂q′+1, . . . , ε̂T )′ = Σ̂−1/2
v̂ v̌,

where Σ̂1/2
v̂ is a lower triangular matrix that satisfies the Cholesky decomposition

Σ̂1/2
v̂ (Σ̂1/2

v̂ )′ = Σ̂v̂, with Σ̂v̂ a positive definite estimator for the covariance matrix Σ =
Var(v̂). Also, define

ε̌t =
(
ε̂t − 1

T − q′
T∑

t=q′+1
v̂t

)/
σ̂ε̂,

where σ̂2
ε̂
= T−1ΣT

t=1(ε̂t − ¯̂εt)2 and ¯̂εt = T−1 ∑T
t=1 ε̂t.

4. (i) Draw a sample of size T randomly with replacement from {ε̌q′+1, . . . , ε̌T } to gener-

ate the bootstrap sample ε∗ = (ε∗q′+1, . . . ,ε∗T )′.

(ii) Calculate bootstrap innovations u∗
t as

v∗ = Σ̂1/2
v̂ ε∗.

(iii) Recursively generate the bootstrap series {y∗t } by y∗t = y∗t−1 +u∗
t with y∗0 = 0.

(iv) From the ADF regression

y∗t = (ψ̂∗)′zt +β∗
0 y∗t−1 +

q∗∑
j=1

β∗
j∆y∗t− j +ε∗t,q∗ ,

calculate the statistics DF∗
ρ and DF∗

t as defined in (5.5) and (5.6).

5. Repeat step 4 a large number of times, say B, to obtain the ordered replications

DF∗(1) ≤ . . . ≤ DF∗(B). Reject the null hypothesis whenever DF < DF∗(⌊Bα⌋) (assum-

ing a significance level of α). Again, DF stands for either DFρ or DFt.

Estimation of Σ

To estimate the autocovariance matrix Σ = Var(v̂), we follow Zou and Politis (2016) and

use an estimator recently proposed by McMurry and Politis (2010). Their estimator is a

generalisation of a banded estimator introduced by Wu and Pourahmadi (2009). Although

the estimator of McMurry and Politis has a much broader application, it paved the way for

the development of the linear process bootstrap.

Their estimation procedure is as follows. First, define the sample autocovariance function

γ̂v̂(h)= 1
T

T∑
t=|h|+1

v̂t v̂t−|h|
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and the weight function

K(x)=


1 if |x| ≤ 1,

2−|x| if 1< |x| ≤ 2,

0 if |x| > 2.

This weight function is the trapezoid kernel function of Politis and Romano (1992). Also

define the tapered covariance matrix estimator

Σ̃v̂ = [Kh(i− j)γ̂v̂(i− j)]T
i, j=1,

where Kh(x)= K(x/h). Other choices for the weight function K(·) are possible and a general

form is given in McMurry and Politis (2010).

Now suppose that Σ̃v̂ = TDT ′, where T is orthogonal and D = diag(d1,d2, . . . ,dT ) is diag-

onal. Then

Σ̂v̂ = TD̂T ′,

where D̂ = diag(d̂1, d̂2, . . . , d̂T ) is a diagonal matrix with d̂ j =max(d j,T−1γ̂v̂(0)). It is shown

by McMurry and Politis (2010) that Σ̂v̂ is a positive definite matrix.

Like some other bootstrap procedures, a major drawback encountered in the application

of the procedure is that a choice of the bandwidth parameter h is required. Although Zou

and Politis (2016) provide an algorithm for choosing h, more research is required to find an

appropriate choice for h. Some guidance based on Monte Carlo results is given in Remark 3

of McMurry and Politis (2010).
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Chapter 6

Simulation study

In this chapter we will evaluate and compare the finite-sample performance of the asymp-

totic and bootstrap unit root tests discussed in Chapter 3 and Chapter 5, respectively. We

start by describing the Monte Carlo setup in Section 6.1. In Section 6.2 we provide sim-

ulation results for the case where the innovations are generated from an i.i.d., AR or MA

process. We then extend the study in Section 6.3 by considering cases where the innovations

have conditional heteroskedastic behaviour. The latter includes the popular GARCH model

and a few of its many variations. We end the chapter with some general conclusions.

6.1 Monte Carlo setup

We compare the finite-sample size and power performance of the considered tests when

applied to a series {y0, y1, . . . , yT } generated by the process

xt = dt + yt, yt = ρT yt−1 +ut, (6.1)

where {ut} is a stationary process which will be specified later. To evaluate the exact size of

each test, we set ρT = 1 in (6.1) to reflect the null hypothesis of a unit root. We evaluate the

power properties at local alternatives of the form

ρT = 1− c
/

T,

where we choose c = 7.0 in the case where the specification of the deterministic component

in the test is a constant mean, and c = 13.5 in the case where the deterministic component

is a linear time trend. This corresponds to the choice of ρT in Ng and Perron (2001) and

Cavaliere and Taylor (2009a).

The process in (6.1) requires initialisation. Although it has been shown that the initial

value of the process can have a large impact on the size and power properties of unit root

tests (Harvey and Leybourne, 2005; Harvey, Leybourne and Taylor, 2009), this effect and

remedial measures merit a separate study and fall outside the scope of this study. To simu-

late realistic situations where little is unknown about the initial value of the process we will

simply make use of a burn-in period of length ⌈T/2⌉, which we discard before performing

the tests.
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For all tests that require a lag selection, we employed the modified Akaike information

criterion (MAIC, refer to Section 3.6) proposed by Ng and Perron (2001). For comparison,

lag selection is done on both GLS detrended data and, as recommended by Perron and

Qu (2007), on OLS detrended data. Any test that requires additional configuration, was

configured as described in Chapter 5.

All tests were performed on 50 000 independent realisations of {yT } generated according

to (6.1) for sample sizes T = 50,100,250. Bootstrap tests were performed by means of the

warp-speed method of Giacomini, Politis and White (2013).

The tests and notation

In this chapter we will refer to the various tests by making use of the notation given in

Table 6.1. We make the following remarks:

• Whenever these symbols have the superscript PQ, it indicates that lag selection was

based on OLS detrended data instead of GLS detrended data. M tests for which lag

selection is based on OLS detrended data are indicated with the suffix PQ.

• Tests marked with a bar are detrended using GLS instead of OLS as proposed by the

original authors.

• The M tests are all detrended using GLS.

Table 6.1: Notation for the various asymptotic and bootstrap tests

Notation Description

DFt Asymptotic ADF t-test
DFρ Asymptotic ADF coefficient test
Zt Phillips–Perron t-test
Zρ Phillips–Perron coefficient test
ERSt GLS detrended ADF test of Elliott et al. (1996)
PT Efficient test proposed by Elliott et al. (1996)
CPt Difference-based sieve bootstrap ADF t-test of Chang and Park (2003)
CPρ Difference-based sieve bootstrap ADF coefficient test of Chang and Park (2003)
PSt Residual-based sieve bootstrap ADF t-test of Chang and Park (2003)
PSρ Residual-based sieve bootstrap ADF coefficient test of Chang and Park (2003)
PaPt Residual-based block bootstrap ADF t-test of Paparoditis and Politis (2003)
PaPρ Residual-based block bootstrap ADF coefficient test of Paparoditis and Politis (2003)
PaPdiff

t Difference-based block bootstrap ADF t-test of Paparoditis and Politis (2003)
PaPdiff

ρ Difference-based block bootstrap ADF coefficient test of Paparoditis and Politis (2003)
RWBt Recoloured wild bootstrap ADF t-test
RWBρ Recoloured wild bootstrap ADF coefficient test
DWBt Dependent wild bootstrap ADF t-test
DWBρ Dependent wild bootstrap ADF coefficient test
AWBt Autoregressive wild bootstrap ADF t-test
AWBρ Autoregressive wild bootstrap ADF coefficient test
LPB0

t Linear process bootstrap test of Zou and Politis (2016)
LPBt Adapted linear process bootstrap ADF t-test (allows addition of lags)
MZα Asymptotic M test of Ng and Perron (2001)
MZt Asymptotic M test of Ng and Perron (2001)
MSB Asymptotic M test of Ng and Perron (2001)
MPT Asymptotic M test of Ng and Perron (2001)
Miwb Independent wild bootstrap implementation of the above M tests (Cavaliere and Taylor, 2009a)
Mrwb Recoloured wild bootstrap implementation of the above M tests (Cavaliere and Taylor, 2009a)
Mdwb Dependent wild bootstrap implementation of the above M tests
Mawb Autoregressive wild bootstrap implementation of the above M tests

69



6.2 ARMA innovations

In this section we consider the case where the innovations {ut} are generated according to

either the AR(1) process

ut =ϕut−1 +εt

or the MA(1) process

ut = εt +θεt−1,

where the εt are i.i.d. N(0,1) random variables. Following Cavaliere and Taylor (2009a) we

consider for the AR parameter ϕ the values in the set {0,±0.8} and for the MA parameter θ

the values in the set {0,±0.5,±0.8}.

6.2.1 Size properties

We now discuss the finite-sample size results obtained for the case where data were gen-

erated according to the process in (6.1) with ARMA innovations. The results for the case

where the deterministic specification of the test is a constant mean are given in Table 6.2

and the results for the case of a linear time trend are given in Table 6.3.

Independent and identically distributed innovations

In the case where the innovations ut are i.i.d., most of the tests seem to respect the nom-

inal level α = 5% quite well. For all asymptotic and bootstrap tests the convergence to the

nominal level is clear as the sample size increases.

Notice how undersized the asymptotic M tests are in the case where the deterministic

component in the test is a constant mean. This is mainly due to the fact that an asymptotic

critical value is used in a finite-sample setting (this is also seen in the results of Ng and

Perron, 2001). Indeed, the empirical sizes seem to approach the nominal level as the sample

size is increased. The bootstrap versions of the M tests have levels much closer to the

significance level for all sample sizes.

MA innovations

Some severe size distortions are seen for tests in the case where the MA parameter is −0.8

or −0.5, although the distortions are clearly less severe in the latter case. Also note that the

size distortions are much more serious in the case where the deterministic specification of

the test is a linear time trend. Whereas a significant part of the issue has disappeared for

T = 100 in the case of a constant mean, it is still prominent for this sample size in the case

of a linear trend.

Corresponding to results already available in the literature, most of the asymptotic tests

are severely affected by the large negative MA parameter and show severe size distortions.

The distortion is especially severe in the case of the Phillips–Perron tests, which incorrectly

rejected the null hypothesis almost all of the time. The tests based on GLS detrending,
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Table 6.2: Empirical size of the considered tests for p = 0

T = 50 T = 100 T = 250

ϕ 0.0 0.8 -0.8 0.0 0.0 0.0 0.0 0.0 0.8 -0.8 0.0 0.0 0.0 0.0 0.0 0.8 -0.8 0.0 0.0 0.0 0.0

θ 0.0 0.0 0.0 0.8 -0.8 0.5 -0.5 0.0 0.0 0.0 0.8 -0.8 0.5 -0.5 0.0 0.0 0.0 0.8 -0.8 0.5 -0.5

DFt 3.3 4.6 2.8 3.1 9.5 3.2 5.3 3.9 4.5 3.7 3.4 9.3 3.6 5.1 4.3 4.7 4.3 4.1 9.1 4.1 5.3

DFρ 5.4 8.6 8.2 13.4 42.0 9.5 17.1 5.1 6.3 6.3 11.3 32.0 7.3 12.1 4.7 5.2 5.3 8.5 20.6 6.0 8.5

DFPQ
t 3.7 4.8 2.9 2.6 19.7 2.5 6.8 3.9 4.5 3.4 2.8 9.3 3.4 4.9 4.1 4.5 3.9 3.5 6.1 3.6 4.6

DFPQ
ρ 4.0 7.3 6.1 6.7 38.3 4.4 14.8 4.0 5.3 4.7 6.7 25.2 5.2 10.0 4.1 4.6 4.5 6.8 15.8 4.9 7.3

Zt 5.0 4.6 81.2 2.6 99.4 2.6 56.1 5.5 3.3 79.8 2.6 99.6 2.6 56.2 5.7 2.6 74.1 3.1 99.3 3.4 50.3

Zρ 4.2 0.2 84.5 0.4 99.7 0.4 62.2 5.8 0.3 82.2 1.0 99.7 1.1 60.4 6.0 0.7 76.7 2.5 99.5 2.8 53.8

ERSt 6.8 6.9 5.5 3.8 16.0 4.9 10.2 5.7 5.5 5.1 3.6 10.2 4.9 7.6 5.3 5.1 5.1 4.5 8.5 4.7 6.3

PT 3.3 10.7 0.7 6.4 9.3 4.9 5.5 3.6 6.2 1.0 5.4 3.4 4.5 4.5 3.9 4.6 2.6 5.1 2.0 4.3 4.5

ERSPQ
t 7.6 7.6 6.3 4.2 27.6 4.9 12.7 5.8 5.8 5.3 3.7 13.3 5.0 8.0 5.3 5.0 5.1 4.4 8.2 4.6 6.2

PPQ
T 3.5 10.9 0.7 5.9 18.0 4.5 6.9 3.6 6.3 1.1 4.9 5.8 4.5 4.8 3.9 4.5 2.6 4.9 2.1 4.1 4.5

CPt 4.8 5.1 4.3 3.6 11.7 3.9 5.9 4.9 5.1 5.0 4.3 7.4 4.5 5.9 5.3 5.3 4.9 4.6 8.0 4.7 5.8

CPρ 4.1 4.3 4.0 3.6 17.7 3.7 7.4 4.5 4.5 4.2 3.6 10.6 4.1 6.6 4.8 4.8 4.7 4.4 9.8 4.4 6.1

CPt 4.8 4.9 4.2 3.3 11.5 3.9 6.2 5.1 5.0 4.7 4.0 7.5 4.5 6.2 5.0 5.3 4.9 4.6 8.5 4.8 5.9

CPρ 4.4 4.3 3.9 3.3 14.7 3.9 7.1 4.8 4.4 4.4 3.8 8.6 4.4 6.4 4.9 5.2 4.8 4.5 8.6 4.7 5.8

PSt 4.4 5.3 4.4 4.2 8.5 4.5 3.7 4.7 5.1 5.3 4.8 7.9 5.1 5.4 5.1 5.1 5.3 5.0 8.8 5.2 6.0

PSρ 3.6 3.7 2.9 4.1 13.4 4.2 4.5 4.1 3.9 4.1 3.7 9.5 4.3 5.4 4.6 4.5 5.0 4.2 9.5 4.5 5.8

PSt 3.7 4.1 3.3 2.9 7.6 3.7 3.2 4.7 4.4 4.6 3.7 7.6 4.4 5.6 5.0 5.1 4.8 4.9 8.8 4.9 5.8

PSρ 3.6 3.2 2.8 3.3 10.4 3.9 3.9 4.4 3.7 4.3 3.5 8.2 4.0 5.4 4.8 4.7 4.5 4.3 8.6 4.5 5.5

PaPt 5.3 6.2 3.0 3.4 25.7 4.3 7.6 5.3 6.2 4.9 3.8 17.0 5.4 5.1 5.4 5.8 5.2 4.3 12.1 4.7 4.7

PaPρ 5.2 8.3 2.7 7.4 41.7 6.1 12.0 5.0 3.1 2.5 7.5 31.2 5.6 6.9 5.1 3.1 2.6 6.6 18.4 3.5 4.1

PaPt 5.2 11.1 1.9 3.9 25.2 5.1 6.7 5.3 6.1 4.5 4.5 13.3 6.3 4.4 5.4 5.9 4.9 5.3 8.6 4.8 4.8

PaPρ 5.0 9.4 2.0 6.8 31.1 6.1 9.3 5.1 4.0 3.1 6.5 17.5 6.1 5.4 5.2 4.5 3.6 6.1 10.0 4.1 4.4

PaPdiff
t 5.0 5.8 4.5 4.9 19.4 4.9 6.0 5.2 4.9 5.4 4.5 9.6 5.0 5.5 5.1 4.9 5.1 4.7 6.5 4.7 5.4

PaPdiff
ρ 3.8 4.5 3.9 6.9 32.1 5.5 7.6 4.3 3.7 4.5 5.8 19.3 4.6 6.4 4.5 4.0 4.6 6.2 11.3 4.6 5.5

PaPdiff
t 3.9 4.1 3.4 3.8 20.6 4.4 5.8 4.5 3.9 4.3 3.7 9.8 4.5 5.3 4.8 4.2 4.4 4.5 6.5 4.8 5.1

PaPdiff
ρ 3.7 5.3 3.2 5.7 25.7 5.4 6.8 4.2 4.1 4.1 5.1 12.7 4.7 5.5 4.5 4.1 4.3 5.2 7.6 4.8 5.2

RWBt 4.7 5.1 4.2 4.3 12.0 4.3 5.4 5.1 5.2 5.0 4.9 6.7 4.6 5.7 5.0 5.2 5.1 4.9 8.0 4.9 5.6

RWBρ 4.4 4.2 3.9 3.9 19.2 4.2 7.5 4.7 4.7 4.4 3.9 9.9 4.1 6.4 4.6 4.6 4.9 4.6 9.7 4.5 5.9

DWBt 4.6 4.3 3.6 2.1 21.2 2.6 7.7 5.0 4.8 4.5 2.8 10.3 4.0 5.8 5.1 4.8 4.6 3.6 7.0 4.3 5.4

DWBρ 4.9 9.4 7.0 8.1 39.9 5.3 16.2 5.4 6.7 6.0 8.3 27.7 6.3 11.6 5.1 5.4 5.4 7.8 17.5 5.8 8.3

AWBt 5.0 4.3 3.9 2.2 21.0 3.0 8.0 5.4 4.9 4.7 2.8 10.4 4.1 6.2 5.2 5.1 4.9 3.8 6.9 4.5 5.6

AWBρ 5.4 9.1 7.5 8.2 39.4 5.9 16.3 5.5 6.7 6.3 8.5 27.9 6.7 11.6 5.2 5.7 5.6 7.9 17.4 6.0 8.4

LPB0
t 3.0 4.3 2.6 2.8 3.4 2.8 2.6 4.4 4.5 4.3 4.1 5.6 4.1 4.3 5.1 5.0 5.1 5.5 6.3 5.2 5.0

LPB0
t 1.7 2.8 1.7 1.7 2.0 1.8 1.5 1.9 1.9 1.8 1.7 2.6 1.9 1.8 2.0 2.2 2.1 2.2 2.7 2.1 2.0

LPBt 4.7 4.4 3.7 2.6 22.3 2.9 8.7 4.9 4.7 4.5 3.2 11.1 4.1 6.3 4.6 4.8 4.4 3.8 7.2 4.0 5.4

LPBt 2.6 2.4 1.8 0.8 19.2 1.0 6.0 2.5 2.1 1.9 1.0 7.5 1.7 3.2 2.3 2.4 2.1 1.5 3.8 1.8 3.0

however, are affected to a lesser extent. Also, notice how using MAIC for lag length selection

reduces the severity of the size distortions for the augmented Dickey–Fuller tests. On the

other hand, despite the suggestion of Perron and Qu (2007) to base lag selection on OLS

detrended data instead of GLS detrended data, the distortion seems to be aggravated when

following their suggestion.

The difference-based sieve bootstrap tests of Chang and Park (2003) and its residual-

based modification by Palm et al. (2008) seem to lessen the size distortion seen with the

asymptotic tests. As we shall see later, this comes without a sacrifice in power. In contrast,

the difference-based and residual-based tests proposed by Paparoditis and Politis (2003) do

not alleviate this size distortion problem and in many of the cases considered even exacer-

bated the problem quite significantly. Although Paparoditis and Politis (2003) argue against

enforcing the null hypothesis when obtaining the residuals used for resampling, in this case

the difference-based tests fare better in preserving the nominal level of the tests.

Out of all the asymptotic tests, the M tests of Ng and Perron (2001) seem to be least

affected by a large negative MA parameter. This is not surprising, as these tests were de-
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Table 6.2 (continued): Empirical size of the considered tests for p = 0

T = 50 T = 100 T = 250

ϕ 0.0 0.8 -0.8 0.0 0.0 0.0 0.0 0.0 0.8 -0.8 0.0 0.0 0.0 0.0 0.0 0.8 -0.8 0.0 0.0 0.0 0.0

θ 0.0 0.0 0.0 0.8 -0.8 0.5 -0.5 0.0 0.0 0.0 0.8 -0.8 0.5 -0.5 0.0 0.0 0.0 0.8 -0.8 0.5 -0.5

MZα 4.7 15.2 0.8 8.7 9.9 7.0 7.0 4.8 8.5 1.3 6.9 3.8 6.0 5.7 4.9 5.8 3.2 6.2 2.3 5.3 5.5

MZt 4.9 14.6 0.9 8.6 10.2 7.0 7.2 5.0 8.3 1.5 7.0 4.0 6.1 6.0 5.1 5.8 3.4 6.2 2.5 5.4 5.8

MSB 4.5 15.3 0.7 8.5 9.3 6.8 6.3 4.4 8.5 1.0 6.6 3.3 5.6 5.0 4.4 5.6 2.6 5.8 1.8 4.7 5.0

MPT 4.3 13.3 0.8 7.8 9.8 6.1 6.5 4.4 7.3 1.3 6.3 3.7 5.4 5.3 4.5 5.2 3.0 5.7 2.2 4.8 5.1

PQMZα 5.0 15.4 0.8 7.9 20.1 6.4 9.0 4.9 8.7 1.4 6.3 6.5 5.9 6.1 4.9 5.7 3.2 5.9 2.4 5.1 5.5

PQMZt 5.2 14.9 0.9 7.9 20.4 6.4 9.2 5.0 8.4 1.6 6.4 6.8 6.0 6.3 5.0 5.7 3.4 6.0 2.6 5.2 5.7

PQMSB 4.7 15.4 0.7 7.7 19.0 6.1 8.1 4.4 8.5 1.0 6.0 5.9 5.6 5.4 4.4 5.5 2.6 5.6 2.0 4.6 4.9

PQMPT 4.5 13.6 0.8 7.1 19.8 5.6 8.4 4.4 7.5 1.3 5.7 6.4 5.3 5.7 4.5 5.1 3.0 5.4 2.3 4.6 5.1

MZiwb
α 4.2 15.0 0.8 9.2 10.3 7.1 7.2 4.1 8.2 1.1 7.1 3.9 5.9 5.5 4.6 5.7 3.1 6.4 2.3 5.2 5.7

MZiwb
t 4.2 14.3 0.9 8.8 10.4 6.9 7.3 4.1 7.8 1.3 7.0 4.0 5.8 5.6 4.6 5.5 3.3 6.3 2.4 5.3 5.7

MSBiwb 4.2 15.7 0.8 9.1 9.7 7.3 6.8 3.9 8.5 1.0 7.2 3.6 5.9 5.3 4.5 5.8 2.8 6.5 2.1 5.1 5.6

MPiwb
T 4.2 13.9 0.9 8.7 10.5 6.9 7.3 4.0 7.6 1.3 6.9 4.1 5.6 5.6 4.6 5.4 3.3 6.3 2.4 5.2 5.7

MZrwb
α 3.4 2.2 1.7 2.9 5.1 3.4 4.6 3.8 3.3 2.5 2.9 4.7 3.4 4.6 4.2 4.2 4.1 4.2 5.3 4.1 5.1

MZrwb
t 3.5 2.2 1.7 2.8 5.2 3.4 4.6 3.8 3.3 2.6 3.0 4.7 3.4 4.6 4.3 4.2 4.2 4.2 5.5 4.1 5.1

MSBrwb 3.5 2.3 1.6 2.8 5.0 3.3 4.5 3.8 3.2 2.4 2.9 4.6 3.4 4.5 4.1 4.1 4.1 4.2 5.3 4.1 5.0

MPrwb
T 3.5 2.2 1.7 2.8 5.2 3.5 4.6 3.8 3.3 2.6 3.1 4.7 3.5 4.6 4.3 4.2 4.2 4.2 5.5 4.2 5.1

MZdwb
α 4.2 15.2 0.8 9.2 10.3 6.9 7.0 4.2 7.9 1.2 7.1 3.9 5.9 5.5 4.8 5.5 2.9 6.3 2.4 5.2 5.5

MZdwb
t 4.2 14.6 0.9 8.9 10.5 6.7 7.1 4.2 7.6 1.3 7.0 4.0 5.8 5.6 4.8 5.5 3.0 6.3 2.5 5.2 5.6

MSBdwb 4.3 15.7 0.8 9.3 9.8 7.1 6.6 4.1 8.3 1.0 7.2 3.6 5.8 5.2 4.7 5.7 2.7 6.4 2.1 5.0 5.4

MPdwb
T 4.2 14.2 0.9 8.8 10.6 6.6 7.1 4.1 7.4 1.3 6.9 4.1 5.7 5.7 4.9 5.4 3.1 6.3 2.6 5.1 5.6

MZawb
α 4.4 15.0 0.8 9.4 10.3 7.5 7.0 4.2 8.3 1.3 7.5 3.8 6.2 5.3 4.5 5.6 3.0 6.4 2.2 5.3 5.3

MZawb
t 4.5 14.2 0.9 9.2 10.5 7.3 7.1 4.2 7.9 1.4 7.4 4.0 6.1 5.3 4.6 5.6 3.2 6.4 2.3 5.3 5.4

MSBawb 4.5 15.5 0.8 9.4 9.7 7.5 6.5 4.1 8.5 1.0 7.6 3.5 6.1 5.1 4.5 5.8 2.8 6.5 1.9 5.1 5.1

MPawb
T 4.5 13.8 0.9 9.1 10.6 7.2 7.1 4.1 7.6 1.5 7.4 4.0 6.0 5.4 4.6 5.5 3.2 6.3 2.4 5.3 5.4

PQMZiwb
α 4.4 15.3 0.8 8.2 20.6 6.4 9.2 4.3 8.1 1.2 6.3 6.6 5.9 5.9 4.5 5.6 2.9 6.0 2.5 5.1 5.7

PQMZiwb
t 4.4 14.6 0.9 8.0 20.8 6.2 9.2 4.3 7.8 1.4 6.2 6.8 5.7 6.0 4.6 5.5 3.2 6.0 2.7 5.1 5.7

PQMSBiwb 4.4 15.8 0.8 8.2 19.7 6.5 8.7 4.1 8.5 1.0 6.4 6.2 5.9 5.7 4.4 5.8 2.8 6.1 2.2 5.1 5.5

PQMPiwb
T 4.4 14.2 0.9 7.9 20.8 6.1 9.2 4.2 7.6 1.4 6.2 6.8 5.6 6.0 4.6 5.4 3.2 6.0 2.7 5.1 5.8

PQMZrwb
α 3.6 2.4 1.7 2.7 12.9 3.1 6.2 3.9 3.4 2.8 3.1 4.7 3.4 4.8 4.5 4.0 4.1 3.9 5.4 4.0 5.1

PQMZrwb
t 3.5 2.4 1.7 2.6 13.0 3.1 6.2 4.0 3.4 2.9 3.1 4.7 3.5 4.8 4.6 4.1 4.1 4.0 5.4 4.0 5.0

PQMSBrwb 3.6 2.4 1.6 2.8 12.8 3.2 6.0 3.8 3.3 2.7 3.1 4.6 3.4 4.7 4.4 4.1 4.0 3.9 5.3 4.0 5.2

PQMPrwb
T 3.6 2.4 1.8 2.7 13.1 3.1 6.2 3.9 3.4 2.9 3.2 4.8 3.5 4.7 4.6 4.1 4.1 4.0 5.4 4.0 5.0

PQMZdwb
α 4.4 15.3 0.8 8.5 20.4 6.3 9.3 4.3 8.0 1.3 6.3 6.7 5.7 5.9 4.5 5.6 3.2 6.0 2.5 5.0 5.6

PQMZdwb
t 4.4 14.6 0.9 8.3 20.6 6.2 9.3 4.3 7.7 1.4 6.3 6.8 5.5 6.0 4.6 5.6 3.4 5.9 2.6 5.0 5.7

PQMSBdwb 4.3 15.8 0.8 8.4 19.6 6.5 8.7 4.2 8.4 1.1 6.4 6.3 5.7 5.6 4.5 5.8 2.9 6.1 2.2 4.9 5.5

PQMPdwb
T 4.5 14.2 0.9 8.1 20.7 6.1 9.3 4.3 7.4 1.4 6.2 6.8 5.5 6.0 4.6 5.5 3.5 6.0 2.7 5.0 5.7

PQMZawb
α 4.7 15.1 0.9 8.5 20.5 6.7 9.2 4.3 8.1 1.4 6.7 6.6 5.8 5.8 4.6 5.5 3.0 6.0 2.3 5.3 5.3

PQMZawb
t 4.8 14.5 1.0 8.3 20.7 6.7 9.2 4.4 7.8 1.5 6.6 6.8 5.6 5.9 4.7 5.3 3.2 6.1 2.5 5.2 5.4

PQMSBawb 4.7 15.5 0.8 8.5 19.5 6.9 8.6 4.2 8.5 1.2 6.9 6.3 5.7 5.5 4.6 5.6 2.7 6.2 2.1 5.1 5.3

PQMPawb
T 4.8 14.2 1.0 8.1 20.7 6.6 9.2 4.4 7.6 1.6 6.5 6.8 5.6 5.9 4.6 5.2 3.3 6.1 2.5 5.2 5.4

signed specifically for these situations. However, as the sample size increases, it seems that

the size of the tests drops significantly below the nominal level (the sizes being approxi-

mately 2% and 1.3% for T = 250 in the constant mean and linear trend cases, respectively).

Similar behaviour is seen for the (independent) wild bootstrap M tests of Cavaliere and Tay-

lor (2009a). Notice that the sizes of the bootstrap tests are marginally, albeit consistently,

greater than those of the asymptotic tests. In cases where the test is already oversized, this

is surely undesirable. However, the recoloured versions of the bootstrap M tests of Cavaliere

and Taylor (2009a) do not exhibit this strange behaviour and seem to respect the nominal

level very well. In addition to being oversized to a less serious degree for small samples, the

exact sizes of these tests are very close to the nominal level for T = 100,250 both in the case

of a constant mean and a linear trend.

Our dependent and autoregressive wild bootstrap implementations of the M tests exhibit

very similar behaviour to that seen for the non-recoloured versions of the M tests. This
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Table 6.3: Empirical size of the considered tests for p = 1

T = 50 T = 100 T = 250

ϕ 0.0 0.8 -0.8 0.0 0.0 0.0 0.0 0.0 0.8 -0.8 0.0 0.0 0.0 0.0 0.0 0.8 -0.8 0.0 0.0 0.0 0.0

θ 0.0 0.0 0.0 0.8 -0.8 0.5 -0.5 0.0 0.0 0.0 0.8 -0.8 0.5 -0.5 0.0 0.0 0.0 0.8 -0.8 0.5 -0.5

DFt 3.4 4.8 3.1 3.7 9.4 3.9 7.3 3.6 4.3 3.4 3.4 11.4 3.6 6.6 4.2 4.6 4.1 3.8 12.9 4.1 6.4

DFρ 8.4 15.6 14.9 26.9 56.6 18.9 30.3 6.5 9.9 9.5 22.8 52.2 13.5 20.7 5.3 6.4 6.4 14.3 35.1 8.4 12.6

DFPQ
t 3.4 3.8 2.5 1.3 35.1 1.2 10.9 3.2 3.8 2.7 1.6 17.6 2.2 5.9 3.7 3.9 3.3 2.4 7.6 2.8 4.9

DFPQ
ρ 4.6 10.7 9.9 7.4 62.4 3.8 25.9 3.8 6.4 5.7 7.3 44.0 6.0 15.5 3.9 4.7 4.4 7.7 24.9 4.7 9.6

Zt 3.6 2.1 95.7 1.0 99.9 1.1 73.9 4.6 1.2 97.1 0.8 100.0 0.9 82.8 6.1 1.0 96.0 1.4 100.0 1.5 79.9

Zρ 2.5 0.0 96.9 0.1 99.8 0.1 77.2 4.6 0.0 97.7 0.1 100.0 0.2 85.3 6.6 0.1 96.5 0.7 100.0 1.0 81.7

ERSt 4.2 4.0 2.7 0.7 25.8 0.8 10.3 2.7 2.8 2.1 0.8 9.5 1.7 4.6 2.5 2.4 2.2 1.3 4.4 1.8 3.3

PT 1.2 16.2 0.2 5.4 20.6 2.7 6.7 2.1 7.5 0.1 5.8 6.9 4.1 4.0 3.2 4.9 0.7 5.9 1.5 3.9 3.9

ERSPQ
t 4.7 4.5 3.3 0.8 38.9 0.8 13.6 3.1 3.0 2.5 0.9 17.4 1.8 6.0 2.6 2.5 2.3 1.3 5.6 1.8 3.5

PPQ
T 1.3 16.8 0.2 4.5 30.7 2.3 8.4 2.3 7.9 0.1 5.0 13.1 4.0 4.9 3.2 5.0 0.7 5.4 2.1 3.7 4.1

CPt 4.7 5.1 3.3 2.3 25.8 2.3 7.5 4.7 4.7 4.2 2.9 7.8 3.8 5.3 5.2 5.2 4.9 4.2 8.4 4.3 6.0

CPρ 4.3 4.6 3.7 3.5 40.6 3.1 11.7 4.1 4.2 3.8 2.6 15.3 3.7 6.8 4.6 4.4 4.3 3.6 10.4 3.7 6.2

CPt 4.3 4.9 3.2 2.1 25.4 2.1 7.7 4.8 5.0 4.1 2.8 7.1 4.0 5.5 4.9 4.9 4.9 4.2 7.7 4.0 6.3

CPρ 4.1 4.6 3.3 2.8 35.5 3.1 10.7 4.4 4.6 3.9 2.7 11.4 3.9 6.4 4.5 4.6 4.6 4.0 8.4 4.0 6.3

PSt 4.0 6.2 3.3 3.7 10.9 3.4 3.4 4.6 4.7 4.7 3.5 4.8 5.5 4.8 5.1 5.4 5.4 5.3 10.3 4.7 6.9

PSρ 3.6 4.0 2.4 5.3 21.8 5.1 6.0 4.1 3.3 3.6 3.0 8.9 5.0 4.8 4.7 4.4 4.6 3.8 10.0 3.7 6.2

PSt 3.3 5.6 2.6 3.1 10.0 3.0 3.0 4.7 4.1 4.1 3.0 4.3 5.0 4.9 5.0 5.1 5.3 4.8 9.2 4.5 6.9

PSρ 3.3 4.0 2.2 4.2 18.6 4.6 5.0 4.3 3.4 3.6 3.0 6.8 4.7 4.8 4.6 4.5 4.8 3.9 8.9 4.0 6.4

PaPt 4.2 7.1 1.3 1.3 38.2 2.0 9.8 4.7 7.1 3.6 2.2 23.5 5.1 4.4 5.1 5.9 5.1 3.7 14.7 4.7 4.8

PaPρ 4.8 14.7 3.3 6.5 64.7 4.6 21.4 4.6 3.4 1.8 8.0 50.9 6.9 10.1 5.0 2.1 1.9 7.7 29.5 3.0 4.6

PaPt 5.4 19.7 1.0 2.1 42.4 2.8 11.3 5.4 9.8 3.2 3.8 23.9 7.9 4.9 5.6 6.4 5.3 5.4 11.5 4.9 4.6

PaPρ 5.3 17.5 2.2 7.3 56.7 5.3 18.4 5.2 4.4 2.0 8.1 37.0 7.6 8.9 5.2 3.2 2.7 7.9 18.1 3.6 4.3

PaPdiff
t 3.8 4.7 3.6 3.5 32.3 3.4 7.3 4.4 3.8 5.0 3.1 17.2 4.7 6.0 4.8 4.1 5.0 4.3 7.7 4.2 5.8

PaPdiff
ρ 3.2 5.1 3.6 7.6 49.8 5.2 10.0 3.6 3.2 4.3 5.2 31.6 5.4 7.0 4.2 3.3 4.4 6.6 16.0 4.1 6.2

PaPdiff
t 3.5 5.6 2.8 3.1 32.5 3.5 7.3 4.3 3.7 4.1 2.7 16.1 4.6 5.5 4.9 4.0 4.3 4.0 6.9 4.2 5.5

PaPdiff
ρ 3.2 7.4 2.8 6.7 43.6 5.7 9.4 3.9 4.0 3.8 4.7 22.9 5.2 6.3 4.4 3.8 4.2 5.9 10.4 4.4 5.8

RWBt 4.4 5.5 3.5 2.6 26.9 2.3 7.7 4.6 5.0 4.2 3.3 7.6 4.3 5.3 5.0 5.0 5.0 4.3 8.3 4.2 6.3

RWBρ 4.4 3.9 3.7 3.7 44.1 3.4 12.5 4.2 4.1 3.8 3.0 16.1 4.1 6.8 4.6 4.3 4.5 3.5 9.8 3.6 6.3

DWBt 4.7 4.0 3.4 0.8 37.3 1.0 12.8 5.2 4.5 4.1 1.4 19.6 3.0 7.5 5.0 5.0 4.7 2.8 8.9 3.6 6.2

DWBρ 5.1 14.9 10.4 8.4 62.6 4.5 27.4 5.4 8.9 7.7 9.5 46.6 7.9 18.0 5.2 6.5 5.8 9.8 27.6 6.1 11.4

AWBt 5.7 3.8 3.8 0.9 37.4 1.3 13.1 5.7 4.4 4.5 1.5 19.6 3.2 7.7 5.7 4.9 5.0 2.9 9.1 4.0 6.6

AWBρ 6.1 14.0 11.3 9.1 62.4 5.3 27.5 6.0 8.5 8.0 9.7 46.7 8.1 18.1 5.7 6.0 6.1 9.8 27.9 6.6 11.8

LPB0
t 2.6 3.8 2.4 2.3 3.1 2.7 2.2 5.6 6.0 5.5 5.3 7.7 5.6 5.5 8.6 8.6 8.5 9.3 11.1 8.5 8.6

LPB0
t 4.3 5.9 3.9 3.9 4.1 4.5 3.8 7.6 8.4 7.1 7.5 8.1 7.5 7.3 8.7 9.2 8.6 8.9 9.7 8.5 8.8

LPBt 6.9 7.2 5.9 1.9 41.8 2.3 16.9 7.3 7.4 6.4 3.3 24.0 5.6 11.3 7.4 7.5 7.1 5.5 14.3 6.4 9.9

LPBt 6.0 6.8 5.2 1.6 42.6 1.6 17.3 5.9 6.3 4.9 2.9 24.0 4.7 10.6 5.8 5.8 5.3 4.6 12.3 4.8 8.1

suggests that there is more to be gained by recolouring the bootstrap sample by means

of a sieve than by reintroducing autocorrelation by means of these alternative bootstrap

methods.

In contrast to the case where the MA parameter is close to −1, in the case where the MA

parameter of the generated innovations is close to +1, the asymptotic tests are undersized

or close to the nominal level, except for the Dickey–Fuller coefficient test DFρ. Also note that

the M tests, designed specifically to address the issue of a large negative MA parameter,

are somewhat oversized in this case. The excess size, however, is small when compared to

the excess seen in some tests in the case of a large negative MA parameter.

AR innovations

Although not as severe as the size distortions seen with a large negative MA parameter,

when the innovations follow an AR process with a parameter close to 1, some of the asymp-

totic tests seem to be somewhat oversized. Of all the asymptotic tests, this size distortion

is most prominent in the case of the M tests. On the other hand, when the AR parameter
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Table 6.3 (continued): Empirical size of the considered tests for p = 1

T = 50 T = 100 T = 250

ϕ 0.0 0.8 -0.8 0.0 0.0 0.0 0.0 0.0 0.8 -0.8 0.0 0.0 0.0 0.0 0.0 0.8 -0.8 0.0 0.0 0.0 0.0

θ 0.0 0.0 0.0 0.8 -0.8 0.5 -0.5 0.0 0.0 0.0 0.8 -0.8 0.5 -0.5 0.0 0.0 0.0 0.8 -0.8 0.5 -0.5

MZα 0.9 17.6 0.2 5.3 19.4 2.7 5.8 1.8 8.1 0.1 5.7 6.3 3.8 3.5 2.9 4.7 0.5 5.5 1.2 3.5 3.4

MZt 0.9 16.6 0.2 5.1 19.5 2.4 5.8 1.8 7.6 0.1 5.5 6.4 3.8 3.6 2.9 4.5 0.5 5.4 1.3 3.5 3.4

MSB 0.9 18.9 0.2 5.8 19.2 2.9 5.8 1.9 8.9 0.1 6.0 6.2 4.1 3.5 2.9 4.9 0.5 5.7 1.2 3.6 3.4

MPT 0.9 16.0 0.2 5.0 19.7 2.3 6.0 1.9 7.3 0.1 5.4 6.5 3.8 3.6 2.9 4.5 0.6 5.5 1.3 3.6 3.5

PQMZα 0.9 18.2 0.1 4.4 29.9 2.2 7.7 2.0 8.5 0.1 4.7 12.6 3.7 4.5 2.9 4.8 0.5 5.0 1.8 3.4 3.6

PQMZt 0.9 17.2 0.1 4.2 30.0 2.1 7.7 2.0 8.0 0.1 4.6 12.6 3.6 4.5 2.9 4.6 0.6 4.9 1.9 3.4 3.6

PQMSB 1.0 19.4 0.1 4.7 29.8 2.5 7.8 2.0 9.2 0.1 5.0 12.5 3.9 4.5 2.9 5.0 0.5 5.2 1.8 3.5 3.6

PQMPT 1.0 16.6 0.1 4.1 30.1 2.0 7.8 2.1 7.7 0.1 4.6 12.7 3.6 4.6 2.9 4.6 0.6 5.0 1.9 3.4 3.7

MZiwb
α 4.2 29.7 0.5 12.1 26.2 6.9 13.2 3.6 12.9 0.3 10.3 8.5 7.5 6.7 3.8 6.6 1.0 8.4 2.0 5.7 5.5

MZiwb
t 4.2 28.5 0.5 11.8 26.4 6.6 13.3 3.7 12.2 0.3 10.0 8.6 7.5 6.7 3.9 6.5 1.1 8.4 2.0 5.6 5.5

MSBiwb 4.1 30.5 0.4 12.3 25.8 7.0 12.7 3.5 13.5 0.2 10.4 8.2 7.6 6.6 3.8 6.8 1.0 8.5 1.9 5.7 5.4

MPiwb
T 4.2 28.3 0.5 11.7 26.4 6.6 13.4 3.7 12.0 0.3 9.9 8.6 7.4 6.7 3.9 6.5 1.1 8.3 2.1 5.6 5.6

MZrwb
α 3.6 3.1 0.6 2.9 16.8 3.2 6.5 3.0 2.6 1.1 1.8 3.2 2.5 3.6 3.6 3.1 2.5 2.7 3.4 3.0 4.5

MZrwb
t 3.6 3.1 0.6 2.9 16.8 3.2 6.5 3.0 2.5 1.1 1.8 3.2 2.6 3.6 3.6 3.2 2.6 2.7 3.4 3.1 4.4

MSBrwb 3.3 3.1 0.6 2.9 16.8 3.2 6.4 2.9 2.7 1.0 1.9 3.2 2.5 3.6 3.6 3.1 2.4 2.7 3.3 3.0 4.5

MPrwb
T 3.6 2.9 0.6 2.9 16.8 3.1 6.5 3.0 2.4 1.1 1.8 3.3 2.6 3.7 3.6 3.1 2.6 2.7 3.4 3.1 4.4

MZdwb
α 4.1 29.6 0.5 12.1 26.2 7.0 13.1 4.0 12.4 0.3 9.9 8.5 7.3 7.0 4.0 6.5 1.1 8.2 1.9 5.5 5.6

MZdwb
t 4.2 28.3 0.5 11.8 26.3 6.7 13.3 4.0 11.8 0.3 9.7 8.7 7.3 7.1 4.0 6.4 1.2 8.2 2.0 5.4 5.7

MSBdwb 3.9 30.2 0.4 12.1 25.7 7.2 12.7 3.9 13.1 0.3 10.0 8.2 7.4 6.8 4.0 6.6 1.1 8.3 1.8 5.5 5.5

MPdwb
T 4.2 28.1 0.5 11.8 26.3 6.7 13.3 4.0 11.6 0.3 9.6 8.7 7.2 7.1 4.0 6.3 1.2 8.1 2.1 5.4 5.7

MZawb
α 4.9 28.0 0.5 12.6 26.4 8.2 13.2 4.3 12.2 0.3 10.3 8.6 7.7 6.8 4.4 6.4 1.3 8.8 2.0 5.8 5.5

MZawb
t 5.0 26.9 0.5 12.3 26.5 8.0 13.3 4.4 11.7 0.3 10.1 8.7 7.7 6.9 4.5 6.3 1.3 8.7 2.0 5.8 5.6

MSBawb 4.8 28.5 0.5 12.6 25.9 8.2 12.7 4.2 12.7 0.3 10.4 8.3 7.8 6.6 4.4 6.6 1.2 8.8 1.8 5.8 5.3

MPawb
T 5.0 26.6 0.5 12.3 26.5 8.0 13.4 4.4 11.4 0.4 10.1 8.7 7.6 6.9 4.4 6.2 1.3 8.7 2.1 5.8 5.6

PQMZiwb
α 4.4 30.2 0.5 10.4 37.9 6.0 15.8 3.9 13.2 0.2 8.4 15.4 7.2 7.7 4.1 6.8 1.1 7.6 2.6 5.3 5.7

PQMZiwb
t 4.4 29.0 0.5 10.1 38.0 5.7 15.9 4.0 12.6 0.3 8.3 15.6 7.1 7.7 4.1 6.7 1.1 7.5 2.7 5.2 5.8

PQMSBiwb 4.2 30.8 0.4 10.5 37.4 6.1 15.3 3.9 13.9 0.2 8.4 15.2 7.3 7.5 4.0 7.0 1.0 7.7 2.5 5.2 5.6

PQMPiwb
T 4.5 28.8 0.5 10.0 38.1 5.6 15.9 4.0 12.3 0.3 8.2 15.6 7.0 7.8 4.1 6.6 1.1 7.5 2.8 5.2 5.8

PQMZrwb
α 3.5 3.1 0.6 2.4 27.0 2.7 8.5 3.2 2.8 1.1 2.2 5.1 2.9 3.8 3.7 3.2 2.6 2.4 4.6 3.1 4.4

PQMZrwb
t 3.6 3.1 0.6 2.5 26.9 2.7 8.5 3.2 2.9 1.1 2.2 5.1 2.9 3.8 3.7 3.3 2.6 2.5 4.6 3.1 4.5

PQMSBrwb 3.4 3.1 0.6 2.5 27.0 2.8 8.5 3.1 2.9 1.1 2.2 5.1 2.9 3.7 3.7 3.2 2.5 2.4 4.5 3.0 4.5

PQMPrwb
T 3.6 3.0 0.6 2.5 26.7 2.7 8.5 3.3 2.8 1.1 2.2 5.2 3.0 3.8 3.8 3.3 2.6 2.5 4.6 3.1 4.5

PQMZdwb
α 4.5 30.0 0.4 10.4 38.0 6.1 16.0 4.1 12.8 0.3 8.1 15.3 7.1 8.0 4.3 6.5 1.1 7.5 2.7 5.5 6.0

PQMZdwb
t 4.5 28.9 0.5 10.1 38.2 5.9 16.2 4.2 12.2 0.3 8.0 15.4 7.0 8.0 4.3 6.4 1.2 7.3 2.8 5.4 6.0

PQMSBdwb 4.2 30.6 0.4 10.4 37.6 6.3 15.5 4.1 13.4 0.3 8.2 15.1 7.1 7.9 4.2 6.7 1.0 7.5 2.6 5.4 5.9

PQMPdwb
T 4.4 28.7 0.5 10.1 38.2 5.8 16.2 4.2 11.9 0.3 8.0 15.4 6.9 8.0 4.3 6.2 1.2 7.3 2.8 5.4 6.0

PQMZawb
α 5.3 29.0 0.5 11.2 38.0 7.3 16.4 4.4 12.3 0.3 8.8 15.5 7.5 8.0 4.4 6.5 1.3 7.9 2.8 5.8 5.7

PQMZawb
t 5.4 28.1 0.6 10.9 38.2 7.1 16.6 4.4 11.7 0.4 8.7 15.7 7.5 8.0 4.4 6.3 1.4 7.8 2.8 5.8 5.7

PQMSBawb 5.1 29.2 0.5 11.3 37.5 7.5 15.8 4.2 12.8 0.3 8.9 15.3 7.5 7.8 4.4 6.5 1.2 7.8 2.7 5.7 5.6

PQMPawb
T 5.4 27.8 0.6 10.9 38.2 7.1 16.6 4.4 11.4 0.4 8.7 15.8 7.5 8.0 4.4 6.3 1.4 7.8 2.9 5.8 5.7

of the DGP is close to −1, the tests seem to be severely undersized. Again, the M tests show

the greatest size distortion in this case. However, the distortion disappears quickly as the

sample size increases and it is clear that the problem is less severe than in the case where

the DGP has MA innovations with a large negative parameter.

Looking at the sieve and block bootstrap tests we see that there is some size distortion

which seems to occur predominantly when using the coefficient-based tests when the AR

parameter is close to 1 or −1. However, the largest size distortions are seen when using the

residual-based tests of Paparoditis and Politis (2003), i.e. the tests denoted by PaP. Again,

although the problem is very prominent for the small sample size T = 50, the exact size

comes closer to the nominal size very rapidly as the sample size increases.

As with the asymptotic tests, the bootstrap versions of the M tests suffer serious size dis-

tortions, being oversized in most cases and undersized when using the recoloured versions

of the bootstrap M tests.
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6.2.2 Power properties

In this section we report on the finite-sample power properties of the considered tests. Each

value reported in Table 6.4 and Table 6.5 represents the size-adjusted power of the associ-

ated test, which was calculated as

β̂adj =Φ
(
Φ−1(α)+ δ̂

)
, δ̂=Φ−1(β̂)−Φ−1(α̂),

where Φ denotes the standard normal distribution function, α is the nominal size of the test,

α̂ is the empirical (exact) size of the corresponding test and configuration (given in Table 6.2

and Table 6.3), and β̂ is the (unadjusted) empirical power obtained from the simulation. See

Lloyd (2005) for a discussion on other simple methods of estimating test power adjusted for

empirical size.

Table 6.4: Size-adjusted power of the considered tests for p = 0

T = 50 T = 100 T = 250

ϕ 0.0 0.8 -0.8 0.0 0.0 0.0 0.0 0.0 0.8 -0.8 0.0 0.0 0.0 0.0 0.0 0.8 -0.8 0.0 0.0 0.0 0.0

θ 0.0 0.0 0.0 0.8 -0.8 0.5 -0.5 0.0 0.0 0.0 0.8 -0.8 0.5 -0.5 0.0 0.0 0.0 0.8 -0.8 0.5 -0.5

DFt 12.0 6.3 9.2 4.6 22.6 5.4 12.3 13.5 9.2 10.9 7.0 12.1 9.8 12.5 15.9 12.8 14.5 11.1 12.0 12.9 15.5

DFρ 19.4 12.4 18.7 10.1 17.6 11.3 19.9 20.7 16.3 19.9 14.3 20.3 18.0 21.7 23.6 20.6 22.8 20.0 23.0 21.0 24.5

DFPQ
t 14.4 7.2 13.3 5.7 20.9 6.3 16.0 15.2 10.2 13.4 8.1 18.6 11.2 15.6 16.7 13.4 15.5 11.8 16.5 13.6 17.0

DFPQ
ρ 23.5 13.5 23.5 13.8 25.0 13.7 23.9 23.9 18.1 23.6 18.1 27.1 21.3 24.6 25.1 21.7 24.7 21.8 27.4 22.8 26.0

ERSt 28.2 16.0 20.8 16.6 11.3 18.4 18.8 27.7 20.3 23.3 19.7 13.6 23.0 21.8 27.5 24.6 26.1 22.3 19.6 24.9 26.0

PT 23.7 11.0 12.7 11.6 12.7 13.8 17.8 25.0 17.5 17.7 17.3 13.8 21.5 19.7 26.3 23.5 22.2 21.9 15.9 23.9 23.9

ERSPQ
t 30.1 16.4 23.0 17.6 19.8 18.8 22.0 28.8 20.8 24.5 20.4 18.2 23.7 23.4 27.6 24.8 26.0 22.4 20.0 24.9 26.0

PPQ
T 24.9 11.5 14.3 12.2 19.8 13.8 20.5 25.7 18.0 18.3 17.9 18.0 21.9 21.0 26.4 23.7 22.4 21.8 16.7 24.0 23.9

CPt 14.4 10.0 12.1 8.3 22.8 7.7 12.7 15.4 11.7 13.1 9.5 14.5 12.1 13.9 16.2 14.0 15.6 13.4 15.7 14.4 16.7

CPρ 19.7 12.9 16.6 12.0 28.6 13.0 17.8 21.9 16.4 19.6 14.5 21.3 18.0 18.5 23.7 20.0 23.0 19.2 21.7 21.6 23.0

CPt 22.1 15.1 16.6 14.7 22.0 14.4 14.5 25.2 19.2 22.3 17.9 13.8 21.1 19.7 26.9 22.7 26.0 21.4 17.5 23.8 25.0

CPρ 21.9 14.5 17.1 14.8 24.5 14.6 16.9 25.0 18.9 22.1 18.3 16.7 20.8 20.3 26.2 22.6 25.4 21.7 18.1 23.2 25.1

PSt 12.9 10.4 14.1 8.7 17.3 8.0 12.3 15.8 11.8 13.7 9.6 16.2 13.0 16.8 16.7 14.9 16.4 13.9 17.5 14.2 17.1

PSρ 17.2 13.3 16.8 12.0 20.3 11.8 15.3 22.3 16.3 21.0 14.7 18.6 19.0 20.2 25.5 21.1 24.0 20.2 24.2 21.2 23.5

PSt 19.5 16.2 19.5 14.8 16.2 14.4 13.8 24.6 19.4 22.7 18.2 15.7 22.1 21.2 26.9 23.1 26.7 22.7 18.5 25.2 25.1

PSρ 18.9 14.3 18.9 14.6 18.0 14.0 15.1 24.1 18.8 22.4 16.8 17.0 21.6 21.3 26.5 22.6 26.6 22.2 19.5 24.6 25.0

PaPt 16.2 9.8 15.0 7.7 19.3 8.1 18.6 17.3 11.5 15.0 9.5 18.9 12.7 17.9 16.6 14.5 17.5 12.6 21.3 13.9 18.6

PaPρ 25.1 15.4 25.5 14.6 24.9 14.5 29.2 26.5 18.6 25.3 17.4 29.7 21.8 27.9 25.3 21.3 26.3 20.5 34.0 21.1 26.8

PaPt 28.7 17.2 21.7 16.5 20.0 18.4 24.4 28.8 21.2 22.3 19.0 19.8 22.6 23.8 27.6 23.5 27.7 21.4 22.9 25.1 25.1

PaPρ 28.7 15.6 23.7 15.5 21.6 17.3 27.1 28.6 19.6 23.5 19.0 21.0 22.3 26.2 27.5 22.2 26.3 21.9 23.8 24.2 25.7

PaPdiff
t 12.6 8.3 11.3 6.8 22.0 7.3 17.0 14.0 10.8 13.3 8.8 19.0 11.6 15.9 15.5 13.2 15.3 12.7 16.3 13.6 16.3

PaPdiff
ρ 17.2 15.0 18.4 13.3 28.3 13.5 25.1 19.3 18.2 21.0 16.6 30.0 20.0 22.4 22.0 20.7 23.0 21.4 27.4 21.5 24.1

PaPdiff
t 20.5 17.9 19.5 16.2 22.0 16.6 20.8 21.9 20.5 23.6 18.8 20.2 21.1 20.9 25.3 22.8 25.0 22.3 19.9 23.7 23.4

PaPdiff
ρ 20.4 14.8 19.8 15.0 23.8 15.0 23.4 21.3 19.4 22.5 18.4 22.9 20.9 22.1 25.2 22.7 24.6 22.6 21.4 23.3 23.1

RWBt 14.2 10.4 12.5 8.5 23.2 7.1 14.2 14.9 11.5 13.2 9.3 15.1 12.5 14.3 16.7 14.3 15.8 13.0 16.5 13.6 17.3

RWBρ 20.1 13.5 17.2 13.1 28.8 12.2 19.0 22.1 16.3 19.8 15.0 21.8 18.5 19.1 24.4 21.0 23.1 19.0 21.3 20.8 23.7

DWBt 15.8 9.9 15.0 8.3 21.2 8.3 17.0 15.9 12.0 14.3 10.2 18.6 12.0 16.4 17.3 14.1 16.7 13.4 16.9 14.0 17.9

DWBρ 23.6 12.7 23.7 13.0 24.8 13.9 24.2 24.6 18.4 25.0 17.6 27.2 21.8 25.2 25.9 21.8 25.5 23.0 27.5 23.2 27.4

AWBt 15.2 9.5 14.1 8.2 21.1 8.4 16.4 15.5 11.9 14.4 10.3 18.8 12.5 15.5 16.8 14.3 16.4 12.9 17.5 14.4 17.4

AWBρ 24.2 12.9 23.3 14.4 24.9 14.5 24.3 25.1 18.4 24.5 18.8 27.3 21.7 25.0 25.6 21.6 25.4 22.2 28.0 23.6 27.2

LPB0
t 9.4 6.9 10.0 8.7 12.8 9.6 10.5 12.2 11.0 12.3 12.3 15.9 13.2 13.0 15.7 14.0 15.6 14.5 17.6 15.0 16.1

LPB0
t 10.2 7.0 9.3 9.5 8.7 9.7 10.4 14.3 12.4 13.9 13.9 12.9 14.0 14.4 19.9 17.0 18.4 18.8 17.5 19.0 19.5

LPBt 16.4 10.6 15.5 8.8 20.9 9.0 16.9 15.9 12.9 14.6 10.6 19.0 13.1 16.5 16.6 14.5 16.2 13.3 18.5 14.4 17.7

LPBt 24.7 13.9 20.8 15.0 21.1 15.8 20.3 24.3 19.4 22.1 18.0 18.6 21.2 21.4 25.3 21.5 23.5 20.8 18.2 23.2 22.0

Independent and identically distributed innovations

The first striking observation from the power results is the low power of the unit root tests,

especially in cases where the innovations are not i.i.d. This might not be surprising, as unit
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Table 6.4 (continued): Size-adjusted power of the considered tests for p = 0

T = 50 T = 100 T = 250

ϕ 0.0 0.8 -0.8 0.0 0.0 0.0 0.0 0.0 0.8 -0.8 0.0 0.0 0.0 0.0 0.0 0.8 -0.8 0.0 0.0 0.0 0.0

θ 0.0 0.0 0.0 0.8 -0.8 0.5 -0.5 0.0 0.0 0.0 0.8 -0.8 0.5 -0.5 0.0 0.0 0.0 0.8 -0.8 0.5 -0.5

MZα 24.7 10.5 12.3 11.3 12.5 13.5 17.4 26.2 17.5 17.8 17.5 13.5 22.0 19.9 27.2 23.9 23.0 22.7 15.9 24.7 24.7

MZt 25.1 11.1 12.8 11.9 12.4 14.3 17.7 26.7 18.4 18.1 18.0 13.5 22.7 20.3 27.5 24.5 23.5 23.2 16.0 25.0 24.8

MSB 21.7 9.3 10.4 9.6 12.6 11.7 16.5 24.3 15.7 16.5 15.8 13.6 20.2 18.7 25.6 22.0 21.7 21.0 15.3 23.4 23.1

MPT 24.8 11.1 12.4 11.7 12.5 14.2 17.7 26.2 18.3 17.9 17.9 13.7 22.5 20.2 27.1 24.3 23.0 22.8 15.9 24.6 24.6

PQMZα 26.7 11.2 14.3 12.1 19.8 13.7 20.4 27.3 18.0 18.9 18.2 18.0 22.6 21.5 27.3 24.1 23.0 22.5 16.6 24.5 24.6

PQMZt 27.2 11.9 14.9 12.8 19.8 14.5 20.8 27.7 18.9 19.1 18.7 17.9 23.3 21.9 27.6 24.7 23.5 23.0 16.8 24.9 24.8

PQMSB 23.7 10.0 12.7 10.3 19.8 11.9 19.6 25.4 16.3 17.6 16.4 18.1 20.7 20.3 25.8 22.2 21.8 20.7 16.1 23.3 23.1

PQMPT 26.8 11.8 14.6 12.6 19.8 14.3 20.8 27.2 18.8 18.9 18.5 18.0 23.0 21.7 27.2 24.5 23.0 22.5 16.8 24.6 24.6

MZiwb
α 24.6 10.7 12.8 11.6 12.2 13.2 17.8 26.0 17.8 18.3 17.7 13.4 22.4 20.3 27.3 23.6 22.9 22.5 16.3 23.9 24.2

MZiwb
t 25.0 11.2 13.2 12.4 12.2 14.1 18.1 26.5 18.5 18.6 18.2 13.4 23.0 20.8 27.4 24.1 23.5 23.4 16.5 24.3 24.5

MSBiwb 22.0 9.6 10.9 10.5 12.3 11.6 16.8 24.9 16.0 17.1 16.1 13.3 20.6 18.8 26.3 21.6 22.5 20.8 15.7 23.4 22.9

MPiwb
T 25.1 11.4 13.5 12.4 12.1 14.3 18.1 26.8 18.7 18.9 18.4 13.4 23.4 21.0 27.4 24.3 23.4 23.4 16.7 24.6 24.5

MZrwb
α 19.5 12.7 9.9 10.7 12.3 14.1 12.3 23.8 15.5 17.5 16.6 10.9 19.5 18.5 26.9 22.1 23.2 20.1 15.8 23.5 23.7

MZrwb
t 20.2 13.3 10.2 11.2 12.3 14.8 12.6 24.1 16.2 18.0 16.9 11.0 20.1 18.9 27.3 22.5 23.2 20.5 15.8 23.8 24.1

MSBrwb 17.4 11.6 9.2 9.9 12.4 12.6 12.1 22.5 14.6 16.5 15.6 10.7 18.3 17.5 26.1 21.2 21.8 19.4 15.2 22.2 22.9

MPrwb
T 20.4 14.6 10.2 11.7 12.0 14.7 12.9 24.4 17.0 18.1 17.1 11.0 20.1 19.0 27.3 22.5 23.3 20.8 15.8 23.8 24.3

MZdwb
α 24.1 10.5 12.7 11.3 12.2 13.9 17.6 26.2 17.6 18.7 17.7 13.4 22.6 20.8 26.8 24.0 24.4 23.1 15.6 24.7 25.2

MZdwb
t 24.8 10.9 13.1 12.1 12.1 14.6 17.9 26.9 18.1 18.9 18.4 13.3 23.2 20.9 27.2 24.5 24.8 23.5 15.6 24.8 25.2

MSBdwb 21.5 9.5 10.8 10.2 12.3 12.0 16.7 25.0 16.1 17.4 16.2 13.3 21.1 19.7 25.7 22.1 23.5 21.4 15.1 23.5 24.0

MPdwb
T 24.9 11.1 13.4 12.2 12.1 14.9 17.9 27.2 18.3 18.9 18.4 13.3 23.6 21.0 27.0 24.5 24.7 23.5 15.8 25.1 25.4

MZawb
α 24.8 10.4 13.1 11.4 12.3 15.0 18.1 26.4 16.3 18.0 17.3 13.6 21.6 21.0 27.6 24.0 22.9 23.2 16.6 24.6 25.2

MZawb
t 25.0 11.1 13.6 12.1 12.2 16.0 18.4 27.3 17.2 17.9 17.5 13.5 22.2 21.7 27.7 24.0 23.4 23.7 16.5 25.3 25.1

MSBawb 21.9 9.4 11.0 10.4 12.4 13.3 17.3 25.1 15.1 17.1 15.5 13.5 20.0 19.5 26.3 22.0 22.3 21.5 16.2 23.8 24.2

MPawb
T 25.3 11.2 14.0 12.3 12.2 16.2 18.4 27.7 17.5 18.1 17.6 13.5 22.5 21.7 27.7 24.3 23.4 23.7 16.4 25.6 25.1

PQMZiwb
α 25.5 11.3 14.4 12.4 19.4 13.2 20.6 25.7 18.0 18.3 18.6 17.9 21.7 21.8 26.8 24.1 23.3 22.6 16.8 24.3 23.9

PQMZiwb
t 26.3 11.8 14.9 13.0 19.4 14.3 21.0 26.4 18.5 18.7 19.1 17.8 22.4 21.9 27.1 24.2 23.6 23.2 16.7 24.8 23.9

PQMSBiwb 23.1 10.2 12.9 10.9 19.4 11.7 19.4 24.7 16.2 17.9 17.1 18.0 20.4 20.5 25.3 22.5 22.3 21.4 16.4 23.1 22.9

PQMPiwb
T 26.4 12.0 15.4 13.3 19.4 14.5 21.0 26.8 18.8 18.9 19.1 18.0 22.6 22.1 26.9 24.3 23.7 23.2 16.8 24.9 23.9

PQMZrwb
α 23.0 13.5 12.0 11.9 20.9 13.9 17.0 23.4 16.6 16.4 16.0 13.8 19.9 18.2 25.4 22.9 23.6 20.3 16.8 23.4 23.4

PQMZrwb
t 23.5 14.2 12.4 12.9 21.0 14.5 17.2 23.9 17.1 16.7 16.5 13.8 20.2 18.5 25.6 23.5 23.8 20.5 16.6 23.7 24.0

PQMSBrwb 21.2 12.3 11.2 10.7 20.7 12.3 16.3 22.4 15.7 15.0 15.3 13.7 19.1 17.6 24.7 21.6 22.3 19.5 16.2 22.0 21.6

PQMPrwb
T 23.6 15.2 12.4 13.3 20.9 14.8 17.4 24.1 17.7 16.8 16.6 13.9 20.5 18.6 25.8 23.6 23.9 20.7 16.6 23.7 24.1

PQMZdwb
α 26.5 11.3 15.0 11.8 19.6 12.9 20.3 27.1 17.7 19.4 18.3 17.8 23.0 22.6 27.4 23.4 22.2 23.0 16.9 24.5 24.5

PQMZdwb
t 27.1 11.8 15.4 12.5 19.5 13.6 20.7 28.0 18.4 19.8 18.7 17.7 23.7 22.7 27.5 24.2 22.6 23.6 16.7 24.7 24.6

PQMSBdwb 23.7 10.2 13.2 10.5 19.5 11.5 19.3 26.3 16.3 18.8 16.6 17.7 21.3 21.8 25.8 21.8 21.5 21.4 16.8 23.9 23.0

PQMPdwb
T 27.1 12.1 15.6 12.7 19.4 13.8 20.7 28.1 18.8 20.0 18.8 17.9 23.8 22.6 27.5 24.3 22.6 23.5 16.8 24.9 24.6

PQMZawb
α 26.7 11.3 14.9 13.2 19.5 16.0 20.8 27.9 17.9 18.6 18.6 17.8 23.8 22.6 27.4 23.8 23.8 23.2 17.5 25.3 25.2

PQMZawb
t 27.1 11.9 15.2 14.0 19.5 16.7 21.3 28.5 18.6 19.2 19.0 17.8 24.7 22.7 27.6 24.3 24.0 23.4 17.4 25.6 25.4

PQMSBawb 23.5 10.2 13.4 11.4 19.7 13.7 19.9 26.5 16.3 17.9 16.5 17.7 21.9 21.5 26.1 22.5 23.2 21.8 16.9 24.3 23.6

PQMPawb
T 27.4 12.0 15.4 14.3 19.4 16.8 21.4 28.5 19.0 19.0 19.2 17.8 24.9 22.7 27.9 24.7 24.0 23.5 17.6 25.9 25.6

root tests are known to have “notoriously low power” (Cochrane, 1991). As expected, the

power of the tests increases with the sample size and one notices that the power becomes

comparable across the different choices of the process generating {ut}.

It is interesting to note that the unit root tests exhibit higher power in cases where the

deterministic specification in the test is a linear time trend when compared to the case of

a constant mean. This corresponds to results already available in the literature (see e.g.

Cavaliere and Taylor, 2009a; Smeekes, 2013).

In the case of i.i.d. innovations it seems like the tests that yield the highest power are

the tests PaP t and PaPρ, the GLS versions of the residual-based block bootstrap tests of

Paparoditis and Politis (2003), and our autoregressive wild bootstrap adaptations (denoted

by PQMawb) of the bootstrap M tests of Cavaliere and Taylor (2009a), using OLS detrending

for lag selection as suggested by Perron and Qu (2007). Note that the recoloured versions of

the bootstrap M tests have slightly lower power than the non-recoloured versions, especially
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Table 6.5: Size-adjusted power of the considered tests for p = 1

T = 50 T = 100 T = 250

ϕ 0.0 0.8 -0.8 0.0 0.0 0.0 0.0 0.0 0.8 -0.8 0.0 0.0 0.0 0.0 0.0 0.8 -0.8 0.0 0.0 0.0 0.0

θ 0.0 0.0 0.0 0.8 -0.8 0.5 -0.5 0.0 0.0 0.0 0.8 -0.8 0.5 -0.5 0.0 0.0 0.0 0.8 -0.8 0.5 -0.5

DFt 15.0 3.4 9.5 2.0 45.5 2.4 14.1 17.5 7.3 12.2 4.4 18.3 7.8 10.9 22.1 14.6 19.5 11.3 10.4 14.6 16.5

DFρ 21.5 6.8 19.8 4.5 20.3 4.6 18.7 23.9 11.6 22.9 8.9 18.8 14.0 22.8 28.6 19.9 27.9 18.4 24.9 21.6 27.6

DFPQ
t 26.1 4.5 24.0 5.5 29.8 9.0 23.8 26.2 11.4 23.7 12.1 26.7 12.9 21.9 26.5 18.0 24.9 16.1 22.0 20.0 22.7

DFPQ
ρ 34.1 7.1 34.0 9.4 31.0 9.1 31.4 34.1 16.6 33.8 20.0 32.8 21.0 31.4 34.1 24.4 34.0 25.8 35.3 29.5 32.8

ERSt 34.2 7.8 25.3 12.8 16.7 18.4 21.7 33.9 16.9 27.1 20.9 15.3 21.9 22.8 33.4 24.6 30.2 24.7 19.0 27.8 27.7

PT 28.6 4.1 11.4 4.4 17.5 4.4 22.0 32.9 14.0 17.6 14.0 16.1 20.1 22.2 34.5 25.3 25.9 23.6 18.1 29.1 26.9

ERSPQ
t 36.4 7.3 28.9 13.2 29.2 20.0 25.6 35.4 17.5 29.6 21.9 26.1 21.4 25.9 34.5 25.1 31.4 25.5 22.5 28.5 28.9

PPQ
T 30.1 3.9 13.8 4.5 27.5 4.3 25.8 34.2 14.6 19.1 15.4 25.5 20.0 24.9 35.3 25.7 27.0 24.3 20.9 29.9 28.0

CPt 24.9 7.7 18.8 9.1 37.0 10.9 24.2 24.6 12.9 22.2 14.5 30.3 15.1 16.3 26.0 18.4 25.3 17.2 19.0 20.0 22.6

CPρ 28.9 9.3 24.7 10.4 44.4 9.7 32.5 29.3 14.4 26.6 17.5 39.3 19.7 23.4 31.3 22.6 30.8 21.8 27.4 25.3 27.9

CPt 31.4 9.6 19.3 11.9 37.0 14.1 24.0 31.8 16.0 25.4 18.4 29.6 19.9 17.5 35.2 25.3 31.4 22.9 19.0 29.6 26.2

CPρ 32.5 10.2 23.4 13.2 40.3 11.6 30.4 32.3 15.9 25.8 18.9 33.0 21.1 22.3 35.2 25.2 31.6 23.3 22.5 29.0 27.6

PSt 11.1 10.0 11.8 5.8 16.2 6.5 14.0 17.9 12.7 18.8 13.0 18.8 13.2 11.9 25.4 18.2 25.4 16.4 20.7 20.5 22.8

PSρ 14.0 12.6 13.1 9.7 26.5 6.1 18.2 19.9 13.3 20.2 13.7 23.9 17.1 14.5 29.8 21.0 29.3 18.8 24.0 24.3 24.8

PSt 12.2 13.3 13.3 6.5 16.5 6.8 14.7 20.2 14.7 21.7 15.1 19.0 17.0 11.4 33.5 24.0 31.0 22.8 20.5 28.0 26.9

PSρ 14.9 12.9 13.7 11.2 24.7 6.7 18.4 20.6 14.1 21.3 15.2 22.0 18.4 13.2 33.0 22.9 31.2 22.2 21.7 25.7 27.1

PaPt 31.3 7.3 34.2 9.6 29.9 13.4 31.1 28.9 13.6 25.0 15.0 27.1 15.2 31.5 28.9 20.0 30.8 17.0 33.2 20.4 26.2

PaPρ 37.2 8.9 41.9 10.3 29.6 10.6 38.9 36.9 18.6 39.1 18.5 33.3 22.4 41.4 35.9 25.0 38.8 22.3 46.7 26.1 37.5

PaPt 37.2 6.6 34.7 11.2 26.8 17.2 30.7 36.6 18.9 26.7 18.3 24.7 19.6 31.3 37.4 27.9 36.1 20.7 28.1 29.4 30.0

PaPρ 38.8 7.9 38.2 9.7 26.7 11.2 36.1 37.9 18.8 33.2 18.7 24.5 22.8 35.9 38.6 26.6 36.9 21.6 29.4 28.8 36.0

PaPdiff
t 16.6 9.2 19.3 6.4 32.1 7.4 28.3 17.6 12.1 19.4 12.7 28.6 12.9 20.3 20.8 17.7 22.9 15.9 23.2 18.6 20.6

PaPdiff
ρ 16.7 13.5 25.4 8.6 37.0 6.7 41.0 19.7 15.8 23.8 15.9 42.2 16.8 28.4 24.5 23.0 29.2 23.2 38.6 24.0 26.7

PaPdiff
t 19.6 13.4 22.0 9.6 32.4 9.3 29.5 20.8 17.8 25.8 18.4 29.0 18.4 23.2 27.6 25.0 31.8 24.0 23.4 27.4 25.9

PaPdiff
ρ 19.7 11.7 25.0 10.0 33.8 7.0 38.1 20.6 16.3 25.1 17.4 33.2 19.0 27.3 28.2 24.9 31.1 24.7 28.4 26.9 27.7

RWBt 26.9 7.6 18.5 8.9 36.5 10.7 24.6 25.3 12.9 23.6 13.9 31.0 14.5 17.6 26.4 18.7 24.7 18.2 19.6 21.2 22.0

RWBρ 31.0 10.7 25.2 11.2 42.3 10.0 33.9 29.8 15.0 27.6 16.2 39.1 19.3 25.7 31.6 22.7 30.6 22.7 28.9 27.2 27.1

DWBt 28.3 5.7 26.5 10.4 29.9 14.8 24.2 27.4 13.4 25.4 17.3 26.7 15.8 22.3 28.3 18.5 25.6 18.5 22.8 22.2 24.6

DWBρ 35.1 5.8 34.9 8.8 30.0 8.8 30.8 34.6 15.7 34.7 19.4 33.0 21.7 31.6 35.4 23.3 35.2 26.1 35.8 30.1 34.6

AWBt 27.7 6.6 26.5 11.8 29.6 15.6 24.0 27.1 14.1 25.1 19.0 26.4 16.9 23.0 28.4 20.0 26.8 18.5 23.1 22.8 23.8

AWBρ 34.7 6.7 34.7 10.3 29.9 10.9 30.9 34.4 16.5 34.4 20.2 32.3 22.5 32.2 35.6 25.3 36.1 26.5 36.5 30.5 33.6

LPB0
t 7.3 4.3 7.7 6.8 10.1 7.1 9.5 12.3 8.2 13.0 11.6 18.0 11.9 14.3 19.4 15.3 19.7 18.3 25.8 18.4 20.0

LPB0
t 8.0 5.0 7.1 7.2 7.2 7.4 7.9 13.1 9.2 12.5 12.1 12.4 13.6 13.6 22.1 17.2 20.8 21.8 20.5 22.1 22.3

LPBt 30.5 6.2 27.8 11.8 28.7 14.0 23.6 29.6 15.1 27.6 17.7 25.6 18.2 23.7 29.9 21.5 28.5 20.7 23.5 23.6 26.3

LPBt 38.3 7.7 29.5 14.1 27.5 18.7 24.7 37.4 18.2 31.7 22.5 23.8 22.6 25.9 36.5 25.8 34.8 26.4 22.6 31.7 31.0

for smaller sample sizes.

The wild bootstrap tests RWBρ, DWBρ and AWBρ also yielded relatively high power

with the recoloured wild bootstrap having the lowest power of the three, as was the case for

the M tests. Note that the implementations based on the ADF t-statistic do not perform as

well as the implementations based on the ADF normalised coefficient statistic.

Notice also the good performance of the ADF LPB test that makes use of GLS detrending

rather than OLS detrending. Keep in mind that the LPB requires a choice of a kernel

function and a bandwidth and although some guidance is given by McMurry and Politis

(2010), more research needs to be done on this relatively new bootstrap procedure. Also,

the original implementation of the LPB by Zou and Politis (2016) was proposed only for the

case where the test contains no deterministic component. As described in Section 5.7 we

have adapted the procedure to allow for specification of a deterministic component.

MA innovations

In the case of a large positive MA parameter, most bootstrap tests seem to have comparable

power, with the sieve-based procedures CP and PS and the block-based procedures PaP

77



Table 6.5 (continued): Size-adjusted power of the considered tests for p = 1

T = 50 T = 100 T = 250

ϕ 0.0 0.8 -0.8 0.0 0.0 0.0 0.0 0.0 0.8 -0.8 0.0 0.0 0.0 0.0 0.0 0.8 -0.8 0.0 0.0 0.0 0.0

θ 0.0 0.0 0.0 0.8 -0.8 0.5 -0.5 0.0 0.0 0.0 0.8 -0.8 0.5 -0.5 0.0 0.0 0.0 0.8 -0.8 0.5 -0.5

MZα 26.6 3.4 9.3 3.6 17.9 3.2 22.2 32.8 12.8 14.9 12.8 16.5 19.3 22.2 33.9 24.3 25.6 23.3 18.1 28.4 26.8

MZt 27.0 3.6 9.8 3.8 17.9 3.5 22.4 32.8 13.3 15.0 13.2 16.5 19.5 22.2 34.1 24.8 25.7 23.6 18.1 28.7 26.8

MSB 26.1 3.2 9.1 3.3 17.9 3.0 22.1 32.1 12.0 13.2 12.2 16.6 18.4 22.0 33.6 23.7 25.5 22.8 18.2 27.9 26.3

MPT 27.4 3.8 10.2 3.9 17.8 3.9 22.4 33.0 13.8 16.6 13.6 16.4 19.9 22.2 34.4 25.1 25.5 23.6 18.0 28.7 26.9

PQMZα 28.4 3.3 12.0 3.5 27.7 3.1 25.8 34.2 13.4 17.7 14.4 25.9 19.3 24.9 34.9 24.8 26.8 24.0 20.8 29.2 27.9

PQMZt 28.9 3.5 12.1 3.7 27.7 3.4 26.0 34.1 13.9 18.3 14.8 25.8 19.6 24.9 35.1 25.3 26.9 24.3 20.8 29.4 27.9

PQMSB 27.6 3.1 11.3 3.2 27.7 2.9 25.6 33.6 12.6 16.8 13.8 25.9 18.3 24.6 34.5 24.3 26.7 23.5 20.8 28.7 27.4

PQMPT 29.1 3.6 12.0 3.9 27.8 3.8 26.1 34.1 14.3 18.1 15.2 25.8 19.8 25.0 35.3 25.6 26.6 24.4 20.6 29.6 28.0

MZiwb
α 34.6 4.2 14.3 5.4 15.5 5.7 19.4 35.3 14.4 19.6 14.4 15.2 21.1 22.0 36.0 25.2 26.3 23.9 17.3 29.4 27.6

MZiwb
t 35.2 4.4 14.7 5.6 15.5 6.2 19.5 35.4 15.0 19.6 14.8 15.2 21.3 22.3 36.1 25.6 26.7 24.1 17.4 30.0 27.6

MSBiwb 33.2 3.9 13.8 4.8 15.7 5.0 19.4 34.8 13.4 18.4 13.9 15.3 20.4 21.6 35.3 24.5 26.3 23.1 17.3 28.6 27.0

MPiwb
T 35.2 4.5 14.7 5.7 15.5 6.3 19.5 35.3 15.2 20.0 14.9 15.2 21.6 22.4 36.0 25.6 26.8 24.3 17.3 30.1 27.7

MZrwb
α 28.3 8.7 7.4 8.8 18.9 8.8 19.7 29.2 14.5 13.0 14.4 15.1 20.1 15.4 33.0 24.8 26.1 22.1 14.3 26.4 23.8

MZrwb
t 28.8 9.1 7.6 9.1 18.9 9.3 19.8 29.4 15.2 13.3 14.7 15.1 20.3 15.5 33.0 24.9 26.1 22.2 14.3 26.4 24.0

MSBrwb 28.1 8.2 7.0 8.1 18.8 8.1 19.8 29.2 13.7 13.0 13.8 15.2 19.3 15.4 32.7 24.1 26.4 22.0 14.5 26.2 23.3

MPrwb
T 28.7 10.0 7.7 9.2 18.9 9.5 19.7 29.7 15.9 13.4 15.0 15.1 20.6 15.6 33.0 25.3 26.3 22.7 14.4 26.5 24.1

MZdwb
α 34.9 4.2 13.8 5.5 15.6 5.7 19.6 36.0 13.5 20.3 15.0 15.1 21.6 21.6 37.2 26.1 26.1 24.5 18.2 30.4 27.4

MZdwb
t 35.0 4.5 14.2 5.7 15.5 6.4 19.5 35.9 14.1 21.0 15.3 15.0 21.9 21.6 37.4 26.6 26.7 24.8 17.8 30.7 27.7

MSBdwb 33.7 3.9 13.4 5.0 15.8 5.0 19.5 35.8 12.6 19.3 14.3 15.3 20.8 21.4 36.7 25.1 26.4 23.8 18.2 29.7 26.8

MPdwb
T 35.0 4.5 14.3 5.8 15.5 6.6 19.5 36.1 14.4 21.1 15.5 15.0 22.1 21.6 37.5 26.8 26.7 25.1 17.8 30.6 27.8

MZawb
α 34.5 4.7 14.2 6.8 15.2 8.8 19.6 35.2 14.1 20.0 15.1 15.1 22.4 22.1 36.5 25.5 28.0 24.2 17.9 30.9 28.1

MZawb
t 34.5 4.9 14.6 7.1 15.2 9.4 19.5 35.2 14.7 20.5 15.5 15.0 22.8 22.2 36.9 25.7 28.1 24.7 17.7 31.2 28.3

MSBawb 33.4 4.4 13.4 6.2 15.4 8.0 19.6 34.7 13.3 19.2 14.4 15.2 21.5 21.9 35.8 24.8 27.4 23.8 18.1 30.2 27.8

MPawb
T 34.5 5.0 14.5 7.2 15.2 9.5 19.5 35.3 15.1 20.5 15.6 15.0 22.9 22.3 37.2 26.1 28.1 24.8 17.6 31.3 28.4

PQMZiwb
α 37.3 4.0 15.7 5.4 26.7 6.1 23.8 36.1 14.5 21.7 15.9 24.9 20.1 25.3 36.5 26.4 28.1 25.4 20.7 31.0 28.7

PQMZiwb
t 37.2 4.3 15.9 5.9 26.7 6.8 23.8 36.4 15.1 22.2 16.3 24.8 20.5 25.4 36.8 26.9 28.2 25.7 20.6 31.5 28.8

PQMSBiwb 35.8 3.7 15.6 5.0 26.8 5.4 23.5 35.1 13.5 20.5 15.4 25.0 19.2 25.0 36.1 25.4 27.9 24.8 20.8 30.3 28.3

PQMPiwb
T 37.1 4.3 15.9 5.9 26.7 6.9 23.8 36.5 15.4 22.2 16.6 24.8 20.8 25.4 37.0 27.0 28.4 25.9 20.6 31.3 28.8

PQMZrwb
α 32.2 9.1 9.2 9.3 31.8 9.5 24.1 30.9 14.6 14.0 15.0 27.4 20.3 17.7 33.9 24.7 27.8 24.2 17.2 27.3 27.0

PQMZrwb
t 32.2 9.7 9.3 9.7 31.8 10.0 24.1 31.5 15.0 14.1 15.4 27.4 20.3 17.8 33.9 24.8 27.4 24.3 17.2 27.6 26.8

PQMSBrwb 31.3 8.5 9.0 8.5 31.6 8.6 23.9 31.0 13.8 13.5 14.2 27.4 19.6 17.7 33.0 23.6 27.0 23.8 17.3 26.6 26.4

PQMPrwb
T 32.0 10.5 9.4 9.9 32.1 10.2 24.1 31.5 15.9 14.2 15.9 27.3 20.5 18.0 34.0 25.2 27.5 24.4 17.1 27.8 27.1

PQMZdwb
α 36.7 4.0 15.8 5.5 26.6 5.9 23.5 37.2 14.4 21.7 16.6 25.1 21.8 24.9 37.2 25.7 29.4 24.9 20.9 28.8 27.6

PQMZdwb
t 37.1 4.2 15.8 5.8 26.6 6.5 23.6 37.6 15.1 22.2 17.0 25.0 22.2 25.1 37.6 26.3 30.3 25.5 20.8 29.5 28.1

PQMSBdwb 35.8 3.7 15.2 5.1 26.7 5.1 23.5 36.8 13.4 20.6 16.1 25.2 21.1 24.5 36.7 24.7 29.1 24.4 21.0 28.0 27.2

PQMPdwb
T 37.3 4.2 15.8 5.8 26.6 6.6 23.5 37.7 15.4 22.6 17.1 25.0 22.5 25.1 37.7 26.5 30.3 25.7 20.7 29.5 28.2

PQMZawb
α 36.1 4.6 15.2 7.2 26.3 9.4 23.1 36.7 15.0 21.5 16.9 24.8 22.3 25.3 37.0 25.9 27.9 25.8 20.4 31.3 29.9

PQMZawb
t 35.8 4.7 15.5 7.7 26.2 9.9 23.2 37.1 15.7 21.9 17.3 24.7 22.8 25.3 37.4 26.4 28.2 26.0 20.3 31.6 30.3

PQMSBawb 35.5 4.4 14.8 6.5 26.4 8.2 23.3 36.6 14.0 20.4 16.4 24.9 21.8 25.0 36.7 25.3 27.4 25.4 20.3 30.8 29.5

PQMPawb
T 35.9 4.8 15.5 7.7 26.2 9.9 23.2 36.9 16.0 21.6 17.3 24.6 22.9 25.5 37.3 26.5 28.4 26.2 20.4 31.6 30.3

having somewhat better power in some cases. This difference disappears as the sample size

increases. The same is true in the case of a large negative MA parameter.

Notice the exceptionally low power of the M tests in the case of a large negative MA

parameter, even for large sample sizes. The power of these tests is improved slightly if lag

selection is based on OLS detrended data. In these cases it is interesting to note that the

performance of the M tests closely resembles that of the efficient ADF test of Elliott et al.

(1996).

AR innovations

As was the case for MA innovations with a large positive or negative parameter, in the case

of AR innovations with a large positive or negative parameter the M tests have rather low

power for small samples. The power of the tests seems to increase quite substantially as the

sample size increases, unlike in the case of innovations with a large positive or negative MA
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parameter.

6.3 Conditionally heteroskedastic innovations

We now move on to the case where the error process {ut} exhibits some form of conditional

heteroskedasticity. The models we consider in this section are the same models as those

considered by Gonçalves and Kilian (2004) and Cavaliere and Taylor (2009a), which are as

follows:

Model A. A standard GARCH(1,1) process defined by

ut =
√

htvt, t = 1,2, . . . ,T,

where vt are i.i.d. N(0,1) random variables and

ht =µ+αu2
t−1 +βht−1.

For all simulations we took µ = 1 and considered the parameter configurations

(α,β) ∈ {(0.5,0.0), (0.3,0.65), (0.2,0.79), (0.05,0.94)}, which we refer to as Model A1

to A4.

Model B. As in Model A, but with vt i.i.d. t5 random variables (standardised to have unit

variance). We refer to these models as Model B1 to B4.

Model C. EGARCH(1,1) or exponential GARCH of Nelson (1991) with

ut =
√

htvt, t = 1,2, . . . ,T,

where ln(ht) = −0.23+0.9ln(ht−1)+0.25(v2
t−1 −0.3vt−1), with vt i.i.d. N(0,1) random

variables.

Model D. AGARCH(1,1) or asymmetric GARCH of Engle (1990) with

ut =
√

htvt, t = 1,2, . . . ,T,

where ht = 0.0216+0.6896ht−1 +0.3174(ut−1 −0.1108)2, with vt i.i.d. N(0,1) random

variables.

Model E. GJR–GARCH(1,1) of Glosten, Jaganathan and Runkle (1993) with

ut =
√

htvt, t = 1,2, . . . ,T,

where ht = 0.005+0.7ht−1+0.28(|ut−1|−0.23ut−1)2, with vt i.i.d. N(0,1) random vari-

ables.

Remark. For all the above models the processes {ht} and {vt} were initialised by means of a

burn-in period of length T/4.

We now move on to make a few comments on the Monte Carlo results based on these

DGPs. Throughout, for tests based on the M tests we only report results for tests based on

MZα as the results for all M tests are very similar.
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6.3.1 Size properties

First observe that in most cases the asymptotic and bootstrap tests seem to preserve the

nominal level of the test fairly well, with some mild distortions for some of the models for

some parameter configurations. The size distortions are certainly much more severe than

those seen in the case of very persistent AR processes or MA processes with a parameter

close to 1 or −1. Not surprisingly, the most prominent size distortions are seen with the

asymptotic tests, and especially when the data are generated by Model B to E, with Model B

causing the largest size distortions.

Clearly the sieve bootstrap tests CP and PS and the block bootstrap tests PaP are mildly

oversized for some of the models. This suggests that the sieve and block bootstrap proce-

dures do not replicate the pattern of conditional heteroskedasticity seen in the data very

well. In contrast, the tests based on the wild bootstrap seem to do much better in preserving

the level, attesting to the wild bootstrap’s ability to cope with conditional heteroskedastic-

ity. These aspects are especially visible in the case where the deterministic component of

the test is a constant mean.

Note that the linear process bootstrap of Zou and Politis (2016) is also mildly oversized for

some models. However, when allowing lag selection in the test (i.e. not the standard Dickey–

Fuller test proposed by Zou and Politis), the test is not really distorted by the presence of

conditional heteroskedasticity.

6.3.2 Power properties

In terms of power, most tests do fairly well and are comparable in power. The sieve, block

and wild bootstrap tests based on the ADF t-statistic have lower power than those based

on the coefficient statistic in the case of a constant mean. However, the power of these tests

is comparable in the case where the deterministic component is a linear time trend.

It is worth noting that our implementation of the LPB of Zou and Politis (2016) which

makes use of GLS detrending outperforms the bootstrap-based M tests in the linear trend

case. In the constant case the LPB test that makes use of OLS detrending has power com-

parable to that of the M tests.

6.4 Conclusions

We conclude the chapter with the following remarks:

• We have seen that, in the case of small samples, following the suggestion of Perron

and Qu (2007) to base lag selection on OLS detrended data instead of GLS detrended

data might aggravate size distortions in the presence of innovations which follow an

MA process with a parameter close to −1.

• It is clear from the Monte Carlo study that most of the procedures based on any of the

variations of the wild bootstrap cope very well when there is conditional heteroskedas-
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ticity present in the innovations. In contrast, some size distortions are seen for some

parameter configurations when using the sieve and block bootstrap tests.

• The Monte Carlo results suggest that recolouring the bootstrap sample (generated

by the independent wild bootstrap) by means of a sieve contributes more towards

respecting the nominal size of the test than reintroducing autocorrelation by means

of the autoregressive or dependent wild bootstrap procedures.

• We have seen that the linear process bootstrap delivered promising results in some

cases. We note again that this bootstrap method is fairly new and more research is

necessary to determine how it can be optimally implemented for unit root testing.

Table 6.6: Size of the considered tests for p = 0 (conditional heteroskedastic DGPs)

T = 100 T = 250

Model A1 A2 A3 A4 B1 B2 B3 B4 C D E A1 A2 A3 A4 B1 B2 B3 B4 C D E

DFt 4.4 5.0 3.7 2.1 5.4 5.0 2.1 1.5 5.5 4.5 4.7 4.5 5.6 5.7 3.4 5.5 8.2 4.2 2.3 5.6 6.7 6.5

DFρ 5.6 7.2 6.2 4.4 6.6 9.3 8.1 5.4 7.6 7.6 7.6 5.1 7.0 7.6 4.7 5.8 13.5 14.4 8.0 6.9 9.4 9.4

DFPQ
t 4.3 5.0 3.7 2.2 5.3 5.1 2.3 1.8 5.4 4.6 4.6 4.2 5.1 5.2 3.2 5.1 7.5 3.9 2.1 5.2 6.1 6.1

DFPQ
ρ 4.3 5.3 4.5 3.5 5.4 7.0 6.0 4.1 5.6 5.4 5.5 4.4 5.6 6.1 4.1 5.0 11.7 12.9 6.7 5.6 7.6 7.6

Zt 6.8 7.7 5.9 3.5 9.6 10.0 7.0 3.5 8.8 7.5 7.6 6.5 8.1 8.2 5.0 8.7 15.2 13.6 5.7 8.1 10.3 9.7

Zρ 7.1 7.8 6.8 5.2 9.7 11.2 10.4 6.1 8.8 8.3 8.3 6.8 8.2 8.6 6.1 8.6 16.4 19.1 9.4 8.3 10.6 10.3

ERSt 5.3 5.8 5.7 5.7 5.4 6.2 6.9 6.4 5.6 5.9 6.1 5.0 5.2 5.6 5.5 4.7 7.7 11.8 7.8 5.0 5.7 5.8

PT 3.5 4.4 4.5 3.8 3.8 6.8 9.0 5.6 4.1 5.1 5.1 4.0 4.5 5.1 4.3 3.8 8.8 15.9 9.2 4.3 5.8 5.6

ERSPQ
t 5.5 6.1 6.1 6.1 5.7 6.8 7.5 6.9 5.9 6.4 6.5 5.0 5.1 5.6 5.5 4.7 7.6 11.5 7.8 5.0 5.7 5.7

PPQ
T 3.6 4.4 4.5 3.9 3.9 6.8 8.9 5.6 4.2 5.1 5.1 4.0 4.4 5.0 4.3 3.8 8.4 15.1 8.7 4.2 5.5 5.4

CPt 5.6 6.1 4.6 3.0 6.3 5.5 3.0 2.4 6.4 5.4 5.7 5.2 6.1 5.9 4.0 5.9 7.9 3.8 2.7 6.3 6.8 6.9

CPρ 4.9 5.2 4.5 3.7 5.4 5.6 4.5 3.8 5.4 4.9 5.1 4.8 5.1 5.4 4.4 5.1 8.2 8.0 5.3 5.3 6.2 6.3

CPt 5.0 5.2 5.5 5.4 5.0 5.7 6.0 5.7 5.7 5.5 5.8 4.9 5.0 5.6 5.7 4.6 7.5 9.1 8.2 5.0 6.0 5.8

CPρ 4.7 5.2 5.4 5.1 4.8 6.2 7.3 5.9 5.4 5.4 5.6 4.8 4.8 5.6 5.5 4.5 8.4 12.6 9.5 5.1 6.0 5.8

PSt 5.2 5.6 4.3 3.0 6.2 5.4 2.8 2.3 6.0 5.1 5.3 5.3 6.2 6.3 4.0 5.9 8.7 5.1 2.8 6.2 7.3 7.4

PSρ 4.5 4.8 4.2 3.8 5.4 5.8 5.3 4.0 5.2 4.8 5.1 4.9 5.4 5.9 4.5 5.1 9.1 10.6 6.1 5.6 6.6 7.0

PSt 5.0 4.5 4.9 4.9 4.7 5.1 5.4 5.2 4.8 5.0 4.9 4.8 5.0 5.7 5.4 4.7 8.1 11.9 8.3 5.1 6.2 6.1

PSρ 4.7 4.5 5.0 4.7 4.5 5.9 7.5 5.7 4.6 5.1 4.9 4.6 4.8 5.7 5.3 4.5 8.8 16.0 9.8 5.1 6.1 6.0

PaPt 5.7 6.3 5.5 4.1 6.4 6.8 5.0 4.2 6.5 6.4 6.1 5.5 6.1 6.4 4.7 5.9 8.7 7.0 4.3 6.2 7.0 6.9

PaPρ 5.3 6.1 5.9 4.9 5.7 7.7 7.9 5.9 6.3 6.4 6.3 5.0 5.9 6.6 5.1 5.0 11.2 14.3 8.2 5.9 7.6 7.7

PaPt 5.5 5.4 5.8 5.7 5.2 6.0 6.7 6.1 5.7 5.8 5.9 5.1 5.1 5.9 5.7 4.7 7.8 11.9 8.4 5.2 6.1 5.9

PaPρ 5.3 5.6 6.0 5.7 5.1 7.4 9.4 6.7 5.7 6.2 6.2 5.0 5.3 6.1 5.6 4.6 9.9 17.7 10.7 5.4 6.9 6.5

PaPdiff
t 5.3 6.0 5.2 4.0 6.2 6.7 4.5 3.7 6.2 6.1 5.8 5.2 5.9 6.2 4.6 5.8 8.5 5.7 3.7 5.8 6.9 6.7

PaPdiff
ρ 4.5 5.1 4.9 4.1 5.2 6.9 6.8 5.0 5.4 5.6 5.5 4.8 5.5 6.1 4.6 5.1 11.0 13.3 7.5 5.5 7.3 7.2

PaPdiff
t 4.7 4.6 5.1 5.0 4.8 5.6 6.2 5.3 4.9 5.2 5.3 4.6 4.8 5.6 5.3 4.7 8.0 12.1 8.1 5.0 6.0 5.6

PaPdiff
ρ 4.4 4.8 5.1 4.8 4.9 6.8 8.7 5.8 4.8 5.6 5.4 4.5 5.0 5.9 5.2 4.7 9.9 17.6 10.2 5.1 6.6 6.0

RWBt 5.3 5.3 5.1 4.8 5.5 5.6 5.0 5.1 5.5 5.0 5.2 5.0 5.2 5.3 5.1 5.3 5.2 4.9 5.1 5.3 5.4 5.5

RWBρ 4.8 4.5 4.3 4.3 5.1 4.7 4.2 4.3 4.6 4.2 4.6 4.8 4.2 4.3 4.7 4.8 4.5 4.2 3.8 4.5 4.3 4.6

DWBt 5.0 5.0 4.9 4.9 5.2 5.2 4.9 5.1 5.2 4.8 4.8 4.8 4.8 5.0 5.2 4.9 5.4 5.4 5.1 5.1 4.9 5.2

DWBρ 5.3 5.2 5.4 5.5 5.7 6.5 6.8 5.8 5.6 5.6 5.6 5.1 5.1 5.5 5.2 5.1 6.8 7.7 6.2 5.3 5.7 6.0

AWBt 5.4 5.4 5.0 5.0 5.5 5.4 4.8 5.3 5.4 5.1 5.5 5.2 5.3 5.2 5.4 5.4 5.7 5.8 5.2 5.4 5.2 5.3

AWBρ 5.4 5.9 5.7 5.6 5.8 6.8 6.7 6.1 5.8 5.8 6.2 5.2 5.6 5.7 5.4 5.4 7.2 7.9 6.4 5.5 6.1 6.5

LPB0
t 4.3 4.7 4.5 3.5 4.7 6.0 5.1 3.7 4.9 4.9 4.9 5.1 6.0 6.7 4.6 5.6 10.4 10.5 5.6 5.9 7.6 7.3

LPB0
t 1.8 1.8 2.1 2.0 1.6 3.1 5.0 2.9 1.8 2.3 2.1 1.9 2.1 2.9 2.3 1.8 5.5 11.5 5.6 2.0 3.0 2.7

LPBt 5.2 5.7 4.6 2.8 6.3 5.6 3.1 2.5 6.1 5.4 5.3 4.8 5.6 5.7 3.7 5.8 8.0 4.5 2.6 5.6 6.5 6.5

LPBt 2.5 2.5 2.7 2.5 2.5 2.9 3.3 2.9 2.7 2.9 2.9 2.4 2.3 2.7 2.7 2.1 4.1 6.9 4.1 2.4 2.8 2.7

MZα 4.7 5.8 6.0 5.3 5.1 8.9 11.7 7.7 5.6 6.7 6.6 4.9 5.7 6.2 5.4 4.8 10.8 20.0 11.9 5.3 7.0 6.8

PQMZα 4.8 5.9 6.0 5.5 5.3 8.9 11.6 7.7 5.6 6.8 6.7 4.9 5.4 6.1 5.3 4.7 10.3 19.0 11.3 5.2 6.8 6.5

MZiwb
α 3.9 4.3 4.0 3.8 3.7 5.3 6.9 5.0 4.0 4.6 4.6 4.4 4.4 4.7 4.5 4.2 5.7 8.3 6.2 4.2 5.0 4.8

MZrwb
α 3.3 3.4 3.3 3.4 3.2 3.9 4.6 3.9 3.2 3.4 3.6 4.2 3.8 3.8 4.2 4.0 4.4 5.9 4.4 3.6 4.0 4.0

MZdwb
α 3.9 4.3 4.3 4.0 3.9 5.6 7.0 5.2 4.0 4.6 4.8 4.6 4.5 4.6 4.6 4.2 5.8 8.5 6.5 4.3 5.0 4.9

MZawb
α 4.0 4.5 4.4 4.0 4.1 5.5 7.1 5.4 4.1 4.8 4.9 4.6 4.6 4.8 4.6 4.3 6.1 8.5 6.4 4.3 5.0 5.1

PQMZiwb
α 4.0 4.3 4.3 4.0 4.1 5.3 6.6 5.0 4.0 4.7 4.7 4.2 4.3 4.5 4.5 4.1 5.6 7.7 6.0 4.2 4.7 4.7

PQMZrwb
α 3.4 3.4 3.4 3.5 3.6 3.8 4.5 3.9 3.3 3.6 3.6 4.2 3.8 3.8 4.1 3.8 4.1 5.6 4.1 3.6 3.8 3.8

PQMZdwb
α 3.9 4.4 4.4 4.0 4.0 5.5 6.8 5.3 4.0 4.7 4.8 4.2 4.2 4.3 4.5 4.2 5.5 8.0 6.1 4.2 4.8 4.8

PQMZawb
α 4.1 4.5 4.6 4.3 4.5 5.6 7.0 5.4 4.4 4.9 4.9 4.4 4.3 4.5 4.6 4.2 5.7 8.1 6.1 4.4 4.8 4.9
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Table 6.7: Size of the considered tests for p = 1 (conditional heteroskedastic DGPs)

T = 100 T = 250

Model A1 A2 A3 A4 B1 B2 B3 B4 C D E A1 A2 A3 A4 B1 B2 B3 B4 C D E

DFt 4.3 4.8 3.5 2.4 5.2 4.3 2.3 2.0 5.3 4.3 4.5 4.5 5.6 5.4 3.5 5.2 6.9 3.9 2.7 5.6 6.3 6.7

DFρ 7.7 10.8 9.5 6.5 9.2 13.6 12.3 8.6 11.4 11.5 11.6 6.0 9.8 10.1 5.8 7.0 17.2 17.3 10.9 9.2 13.0 12.8

DFPQ
t 3.8 4.4 3.4 2.2 4.9 4.4 2.6 2.0 4.9 4.0 4.1 3.8 4.6 4.3 3.0 4.4 5.9 3.1 2.1 4.5 5.2 5.5

DFPQ
ρ 4.5 5.3 4.4 3.4 5.8 6.3 5.5 3.8 5.7 5.2 5.3 4.1 5.6 5.4 3.8 4.9 10.9 11.5 5.9 5.4 7.4 7.5

Zt 7.2 7.6 5.6 3.3 11.2 10.0 7.3 3.8 9.0 7.6 7.7 7.4 9.4 8.8 5.5 10.9 16.0 14.1 6.6 9.8 11.4 11.4

Zρ 7.2 7.5 6.1 4.0 11.3 10.7 9.2 5.1 8.7 7.8 7.9 7.9 9.9 9.4 6.5 11.0 17.2 18.6 9.4 10.1 11.7 12.1

ERSt 2.8 3.0 3.0 2.9 2.9 3.1 3.0 2.9 3.1 2.9 3.2 2.4 2.5 2.6 2.6 2.2 3.3 4.0 3.0 2.3 2.7 3.0

PT 2.5 3.0 3.0 2.4 2.9 5.4 6.9 3.5 3.1 3.5 3.7 3.2 4.3 4.7 3.5 3.3 9.5 15.7 7.9 3.9 5.7 5.7

ERSPQ
t 3.2 3.5 3.5 3.3 3.4 3.9 3.8 3.4 3.6 3.4 3.7 2.4 2.7 2.9 2.7 2.4 3.7 4.3 3.3 2.6 3.0 3.3

PPQ
T 2.7 3.2 3.1 2.6 3.0 5.3 6.5 3.5 3.2 3.5 3.8 3.2 4.2 4.5 3.5 3.4 8.7 13.8 7.2 4.0 5.5 5.5

CPt 4.8 5.5 4.4 3.4 6.1 4.9 3.3 3.0 5.8 4.9 5.1 5.2 5.7 5.6 4.1 5.5 6.9 4.1 3.1 5.9 6.3 6.9

CPρ 4.5 4.8 4.1 3.5 5.5 4.6 3.9 3.6 5.3 4.5 4.7 4.5 4.7 4.6 4.2 4.9 6.1 6.0 4.1 5.0 5.2 5.6

CPt 4.5 5.0 4.9 4.7 5.0 5.0 5.0 5.0 5.1 4.8 5.0 5.2 5.2 5.4 5.2 4.5 6.6 7.0 6.1 4.9 5.5 5.9

CPρ 4.4 4.7 4.6 4.4 4.9 5.1 5.2 4.9 4.9 4.6 4.7 4.8 5.0 5.0 5.0 4.4 6.5 8.0 6.5 4.7 5.3 5.5

PSt 4.9 5.3 4.3 3.3 5.9 4.3 2.9 2.7 5.6 4.4 4.7 5.2 6.0 5.6 4.2 6.1 7.1 4.2 3.1 6.2 6.7 6.7

PSρ 4.3 4.7 4.1 3.5 5.4 4.7 4.6 3.5 4.9 4.2 4.3 4.6 5.1 4.7 4.3 5.3 7.1 8.5 5.1 5.3 5.7 5.7

PSt 4.5 4.2 4.3 4.5 4.5 4.0 4.1 4.5 4.2 4.2 4.3 5.0 5.3 5.2 5.5 4.7 6.7 7.4 6.0 5.1 5.6 5.7

PSρ 4.4 4.2 4.3 4.2 4.5 4.6 5.6 4.7 4.2 4.2 4.3 4.8 5.1 4.9 5.3 4.6 7.1 10.1 7.1 4.7 5.6 5.8

PaPt 4.8 5.2 5.0 4.4 5.5 5.2 4.6 4.6 5.6 5.0 5.1 5.2 5.3 5.5 4.8 5.5 6.2 5.6 4.5 5.5 5.7 6.0

PaPρ 5.1 5.6 5.4 4.8 5.5 6.3 6.7 5.5 5.9 5.6 5.7 4.7 5.9 6.0 5.0 4.9 9.5 11.7 7.2 5.5 6.9 7.2

PaPt 5.5 6.1 6.0 5.7 5.2 5.8 6.2 6.2 6.0 5.8 6.1 5.7 5.8 5.9 5.7 5.1 6.8 7.4 6.0 5.5 5.9 6.1

PaPρ 5.4 6.1 6.1 5.5 5.2 6.9 7.9 6.6 5.9 6.1 6.3 5.3 6.4 6.3 5.5 4.7 9.6 12.8 8.3 5.8 7.2 7.2

PaPdiff
t 4.4 5.0 4.6 4.0 4.8 5.0 4.1 3.9 5.1 4.7 4.7 5.0 5.2 5.5 4.5 5.2 6.6 4.5 4.0 5.4 6.0 6.1

PaPdiff
ρ 4.1 4.4 4.1 3.6 4.3 4.9 5.0 4.1 4.5 4.4 4.3 4.5 5.2 5.5 4.3 4.8 8.9 10.4 6.3 5.2 6.5 6.4

PaPdiff
t 4.2 4.5 4.6 4.2 4.3 4.7 4.5 4.5 4.6 4.4 4.6 4.9 5.3 5.4 5.0 4.7 6.5 7.0 5.6 4.9 5.5 5.7

PaPdiff
ρ 3.8 4.3 4.4 3.9 4.2 5.3 5.9 4.6 4.6 4.5 4.5 4.6 5.4 5.5 4.7 4.6 8.7 11.8 7.6 5.0 6.1 6.4

RWBt 4.7 5.3 5.0 4.6 5.2 5.1 4.7 4.5 5.2 4.9 5.2 4.9 5.3 5.3 4.9 5.1 5.5 5.2 5.2 5.3 5.6 5.9

RWBρ 4.4 4.4 4.2 4.1 4.6 4.1 3.9 4.1 4.4 4.0 4.2 4.3 4.0 3.6 4.2 4.4 3.6 3.6 3.2 3.9 3.6 3.9

DWBt 5.2 5.4 5.3 5.2 5.6 5.2 5.2 5.2 5.5 5.1 5.1 5.1 4.8 4.9 5.2 5.1 5.3 5.2 5.0 5.1 5.2 5.3

DWBρ 5.8 5.9 5.6 5.5 6.4 6.4 7.0 5.9 6.3 6.0 5.9 5.3 5.5 5.4 5.2 5.4 7.0 7.8 6.4 5.5 6.2 6.5

AWBt 5.7 5.7 5.9 5.9 6.1 5.8 5.4 5.7 5.7 5.4 5.8 5.5 5.6 5.6 5.8 5.7 5.7 5.6 5.5 5.5 5.7 6.0

AWBρ 6.3 6.2 6.2 6.1 6.6 6.8 7.1 6.3 6.4 6.2 6.6 5.5 6.2 5.9 5.7 5.8 7.3 8.0 6.9 5.8 6.6 7.1

LPB0
t 5.2 5.5 5.7 5.3 4.9 5.5 6.6 6.1 5.1 5.4 5.8 8.7 9.1 9.9 8.2 8.1 12.6 14.0 9.8 9.1 10.3 10.4

LPB0
t 7.3 7.5 7.6 7.7 6.4 7.7 9.1 8.2 7.2 7.4 7.7 9.0 9.3 10.0 9.3 7.7 11.8 16.6 13.0 8.3 9.9 10.2

LPBt 7.3 8.1 6.9 5.2 8.9 7.1 5.2 4.8 8.8 7.4 7.9 7.8 8.3 8.0 6.4 8.1 9.0 5.7 4.8 8.2 8.4 9.2

LPBt 5.9 6.2 6.3 6.0 6.2 6.8 6.8 6.4 6.6 6.5 6.8 5.9 6.2 6.1 5.9 5.6 7.8 8.7 6.9 5.7 6.4 6.9

MZα 2.2 2.8 2.7 2.1 2.6 5.3 7.2 3.4 2.9 3.3 3.4 2.9 3.9 4.3 3.1 3.0 9.3 16.8 8.3 3.5 5.3 5.3

PQMZα 2.4 3.0 2.9 2.3 2.8 5.3 6.8 3.4 3.0 3.3 3.5 2.9 3.9 4.2 3.1 3.0 8.6 15.0 7.5 3.6 5.2 5.1

MZiwb
α 3.4 3.9 3.8 3.5 3.5 5.6 7.1 4.4 3.9 4.2 4.3 3.9 4.2 4.5 3.7 3.5 6.2 9.6 6.7 3.9 4.9 5.0

MZrwb
α 2.8 2.6 2.6 2.8 2.6 3.2 4.1 2.9 2.5 2.5 2.9 3.2 2.7 2.7 3.3 3.0 3.3 5.1 3.5 2.5 2.7 3.1

MZdwb
α 3.8 4.2 4.1 4.0 3.8 6.0 7.6 4.7 4.2 4.6 4.7 3.8 4.5 4.6 4.1 3.5 6.4 10.1 6.9 4.0 5.0 5.2

MZawb
α 4.2 4.7 4.7 4.4 4.5 6.4 7.8 5.0 4.7 4.9 5.1 4.2 4.8 5.1 4.3 3.9 7.0 10.4 7.3 4.4 5.3 5.3

PQMZiwb
α 3.9 3.9 4.0 3.7 3.5 5.2 6.5 4.3 3.9 4.1 4.4 3.8 4.1 4.3 3.9 3.6 5.6 8.0 6.0 3.7 4.5 4.7

PQMZrwb
α 3.0 2.9 2.8 3.1 2.8 3.2 4.0 3.1 2.9 2.8 2.9 3.2 2.8 2.5 3.2 2.8 2.8 4.2 3.0 2.6 2.6 2.7

PQMZdwb
α 4.1 4.4 4.5 4.1 4.1 5.8 7.1 4.9 4.3 4.6 4.8 3.9 4.3 4.3 3.9 3.6 5.7 8.3 6.1 3.8 4.6 4.9

PQMZawb
α 4.6 4.9 5.0 4.6 4.5 6.3 7.4 5.4 4.8 5.0 5.2 4.3 4.6 4.6 4.5 3.9 6.0 8.8 6.4 4.3 5.1 5.5
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Table 6.8: Size-adjusted power of the considered tests for p = 0 (conditional heteroskedastic DGPs)

T = 100 T = 250

Model A1 A2 A3 A4 B1 B2 B3 B4 C D E A1 A2 A3 A4 B1 B2 B3 B4 C D E

DFt 12.0 9.9 11.9 16.8 10.5 8.3 13.3 17.4 10.0 10.0 10.5 14.1 11.8 11.1 16.5 12.2 7.7 11.0 16.6 11.9 10.0 10.9

DFρ 19.4 16.6 18.6 22.4 17.8 13.8 14.4 18.9 16.5 16.5 16.9 22.3 19.4 18.7 23.8 20.3 14.4 13.6 18.5 19.2 17.3 17.8

DFPQ
t 13.6 11.5 13.9 18.7 11.8 10.0 14.9 19.2 11.7 12.0 12.5 14.9 12.9 12.1 17.5 12.9 8.6 11.8 17.9 12.8 10.9 11.7

DFPQ
ρ 22.3 19.8 22.3 25.5 19.6 16.1 17.0 22.3 19.5 20.0 20.4 23.6 21.4 20.6 25.3 21.5 15.1 14.0 20.0 20.9 19.1 19.5

ERSt 26.0 25.7 27.6 30.2 22.8 23.0 24.0 29.3 24.3 26.1 26.9 26.8 26.2 25.8 29.2 24.8 20.2 19.4 27.0 25.9 24.4 25.6

PT 18.7 17.5 19.4 23.6 17.3 16.7 19.5 24.1 17.4 18.5 18.8 19.3 19.1 18.6 21.9 18.7 15.6 16.9 23.5 19.3 17.9 19.0

ERSPQ
t 27.8 26.1 28.4 32.6 27.8 24.7 23.1 29.6 25.2 26.4 26.9 27.8 26.0 26.5 31.9 29.2 23.0 17.8 26.9 26.6 25.9 26.5

PPQ
T 25.3 23.3 25.0 29.7 25.3 20.2 16.7 24.9 23.1 22.6 23.3 25.9 24.7 25.2 30.1 27.7 21.9 15.2 22.8 25.1 24.3 25.0

CPt 28.6 27.3 29.5 33.5 28.2 25.5 23.7 30.7 26.3 27.2 28.0 27.7 26.2 26.7 32.1 29.1 23.1 17.9 27.2 26.6 26.1 26.8

CPρ 26.0 24.3 25.8 30.4 25.6 21.2 17.9 26.2 24.1 23.7 24.4 26.0 24.9 25.5 30.2 27.6 21.9 15.3 23.4 25.3 24.5 25.2

CPt 13.2 11.6 13.8 18.6 12.0 10.5 13.3 18.7 11.9 12.1 12.5 15.0 13.5 13.0 17.6 13.6 9.4 11.7 17.9 13.3 11.8 12.3

CPρ 19.5 17.6 19.7 23.7 18.0 13.6 13.4 19.4 17.3 17.5 18.2 22.3 19.9 19.8 24.3 20.3 12.7 11.5 18.2 19.9 17.2 18.0

PSt 24.0 23.6 25.5 29.5 25.6 21.5 19.8 27.1 20.9 23.5 23.8 27.7 25.7 25.1 29.9 28.0 21.6 16.3 24.9 25.2 24.4 25.6

PSρ 23.7 23.2 25.0 29.5 24.8 19.9 18.2 26.9 20.9 22.8 23.9 27.0 26.0 24.5 29.6 27.0 20.5 14.9 24.2 24.3 24.2 24.9

PSt 13.9 12.1 14.0 17.3 12.3 9.7 13.2 17.1 11.9 11.9 12.2 15.5 13.3 12.9 18.0 13.9 9.4 11.9 17.6 13.3 11.5 11.8

PSρ 20.1 17.7 18.5 21.0 17.3 11.9 11.9 17.7 16.2 16.0 16.3 22.6 19.8 18.4 24.6 20.6 12.6 11.3 17.1 18.6 16.3 16.3

PaPt 22.8 22.7 23.4 28.2 24.8 19.9 18.8 25.0 21.2 21.8 22.2 28.1 25.8 25.3 31.3 27.9 22.2 17.7 24.7 24.7 23.4 24.1

PaPρ 22.1 21.7 22.1 27.9 23.8 18.1 15.9 23.5 20.6 20.6 21.5 27.4 25.6 24.1 30.7 27.1 20.5 15.9 23.8 23.5 22.5 23.1

PaPt 14.8 13.4 15.9 21.6 12.9 11.5 16.3 21.8 13.0 13.6 13.8 15.9 13.5 13.2 18.4 14.0 9.2 12.8 19.5 13.5 11.7 12.5

PaPρ 23.6 21.6 23.5 28.4 20.5 17.4 18.8 25.1 20.6 21.5 21.6 24.7 22.1 22.0 26.4 22.2 14.9 14.3 21.3 21.6 19.1 19.5

PaPdiff
t 27.2 26.7 29.3 32.8 28.8 25.7 23.6 30.6 24.9 26.6 28.4 28.0 27.4 26.4 32.0 28.5 23.3 17.9 26.2 26.5 25.1 26.3

PaPdiff
ρ 26.6 26.2 28.7 33.0 28.5 24.0 21.4 30.6 24.9 26.4 27.7 27.5 26.8 26.4 31.8 27.6 22.8 16.8 25.8 25.6 24.4 25.9

PaPdiff
t 13.1 11.1 13.5 17.8 10.9 9.6 13.9 17.7 11.0 11.0 12.1 13.9 12.9 12.2 17.1 13.4 8.3 11.6 17.0 13.2 10.9 11.9

PaPdiff
ρ 18.4 17.0 18.6 21.2 16.1 13.7 14.7 18.8 15.9 16.2 17.0 21.3 20.4 19.1 22.7 20.2 13.3 13.0 18.6 19.6 17.4 18.1

RWBt 21.9 23.5 23.5 25.6 22.8 21.5 20.3 24.8 21.3 22.7 21.8 25.8 24.8 24.8 29.0 25.3 22.3 17.8 24.9 24.2 23.3 25.0

RWBρ 21.3 22.3 22.8 25.5 21.7 19.2 17.7 23.5 21.3 21.3 21.8 24.8 24.7 24.4 28.7 24.8 21.4 16.8 24.3 23.9 22.8 24.2

DWBt 12.7 11.3 13.7 18.6 11.4 9.7 13.9 17.8 10.9 11.8 12.0 14.4 12.7 12.1 17.9 13.5 7.9 11.7 18.6 12.5 10.9 11.4

DWBρ 19.3 17.5 19.3 24.2 17.2 12.7 13.0 19.7 16.2 17.0 17.0 22.1 18.4 18.0 25.1 21.2 10.5 8.8 17.6 18.8 15.9 16.3

AWBt 14.2 12.2 15.8 20.4 12.3 11.3 16.5 20.0 11.7 13.3 13.7 15.6 13.5 12.5 18.5 13.8 8.1 13.2 20.5 13.2 11.5 11.7

AWBρ 23.0 20.6 22.6 26.4 20.1 15.5 16.4 23.8 18.7 19.6 20.5 24.5 21.3 19.5 26.6 22.0 11.8 9.9 19.8 21.2 17.6 18.5

LPB0
t 13.7 12.3 15.0 19.8 12.2 11.7 16.1 20.0 12.0 13.0 12.4 15.2 13.1 12.0 18.6 13.3 8.5 12.8 20.2 12.9 10.9 11.7

LPB0
t 22.8 19.3 21.8 26.6 20.0 15.5 16.4 22.9 19.4 19.3 19.2 24.8 20.7 20.0 27.1 22.2 12.2 10.4 20.0 20.8 16.8 17.9

LPBt 12.1 11.5 12.3 13.8 10.3 9.5 11.7 13.2 11.2 11.1 11.5 15.0 13.8 13.4 15.9 13.1 11.0 11.6 15.8 13.9 12.7 12.7

LPBt 14.5 15.9 15.4 16.2 15.7 14.5 12.4 15.1 15.8 15.1 16.0 19.8 21.3 19.8 21.6 21.3 18.7 14.2 19.4 20.4 19.7 20.6

MZα 14.9 13.3 15.0 19.9 13.2 11.7 15.7 19.5 13.2 13.6 14.2 15.7 13.5 13.3 17.6 13.9 9.6 12.6 18.0 13.8 11.9 12.9

PQMZα 23.9 21.4 23.1 28.4 22.9 17.1 15.5 23.6 21.1 20.6 21.3 25.0 23.0 23.4 28.8 25.8 18.8 14.5 22.9 23.6 22.0 22.9

MZiwb
α 24.7 22.6 24.2 29.3 23.3 18.1 16.8 25.2 22.3 21.8 22.4 25.1 23.2 23.7 29.0 25.8 18.8 14.8 23.6 23.8 22.3 23.2

MZrwb
α 23.9 20.8 23.3 26.8 22.2 14.1 10.4 20.8 19.8 19.1 19.7 25.8 22.2 22.1 28.1 24.8 13.1 7.8 16.5 23.2 19.7 21.9

MZdwb
α 22.2 19.0 20.2 25.2 21.0 12.5 9.4 18.7 18.7 16.5 18.3 24.1 21.2 21.3 27.2 24.3 12.7 7.4 14.6 22.2 18.9 20.8

MZawb
α 24.7 20.9 22.6 28.7 22.9 13.9 11.4 21.3 21.0 19.4 20.3 24.7 22.8 22.3 28.3 25.0 13.1 7.9 17.4 23.6 20.1 22.2

PQMZiwb
α 24.7 21.5 22.8 28.0 23.7 15.2 11.4 22.6 21.2 19.8 21.0 26.3 22.8 23.1 30.3 26.7 13.6 8.1 17.3 24.3 21.1 22.3

PQMZrwb
α 23.7 20.8 22.9 28.5 22.0 14.6 11.3 21.8 21.1 19.4 20.6 25.0 22.2 21.8 29.0 26.1 12.7 7.8 17.1 22.3 20.0 21.7

PQMZdwb
α 23.0 20.8 21.0 26.3 20.2 13.3 10.2 20.4 19.9 18.8 19.5 24.4 21.5 20.8 27.5 24.7 13.0 7.4 16.6 22.9 19.1 21.4

PQMZawb
α 25.5 22.5 23.8 29.5 24.6 15.3 12.1 23.3 21.7 20.1 21.8 26.6 22.4 23.1 28.8 25.9 13.3 8.1 17.3 23.3 20.3 22.1
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Table 6.9: Size-adjusted power of the considered tests for p = 1 (conditional heteroskedastic DGPs)

T = 100 T = 250

Model A1 A2 A3 A4 B1 B2 B3 B4 C D E A1 A2 A3 A4 B1 B2 B3 B4 C D E

DFt 14.8 12.8 14.7 18.6 13.0 11.8 14.8 18.2 12.3 12.9 13.0 19.6 14.7 14.8 21.9 16.9 10.0 12.6 18.6 14.6 12.1 13.1

DFρ 21.4 16.7 17.2 22.2 19.4 13.1 13.0 17.8 16.1 15.1 15.6 26.3 19.3 19.0 26.4 24.6 14.7 13.6 18.3 20.4 16.5 17.7

DFPQ
t 22.7 20.1 22.9 29.1 18.7 17.9 22.7 28.6 18.9 20.6 21.0 24.0 19.4 20.3 27.4 20.4 13.2 17.3 26.2 19.5 16.7 17.7

DFPQ
ρ 30.9 27.9 29.6 34.3 26.7 23.3 23.9 31.6 26.8 26.9 28.0 32.0 26.7 27.6 33.9 29.3 18.9 16.8 26.4 27.5 23.3 24.6

Zt 27.9 26.8 29.3 33.9 23.7 23.9 26.9 33.0 25.3 26.6 26.8 31.7 29.3 29.8 34.5 27.8 23.7 24.4 34.2 29.0 27.5 28.7

Zρ 32.1 31.3 33.6 38.4 26.5 26.9 29.4 36.4 29.8 30.8 31.3 36.9 34.2 34.9 39.7 32.2 27.1 27.1 37.9 34.3 32.7 33.5

ERSt 30.7 28.9 30.7 35.4 29.4 26.3 27.5 34.4 27.5 29.3 28.7 32.4 28.0 28.0 35.4 31.5 21.9 19.8 30.5 28.6 25.6 26.2

PT 29.2 26.3 28.5 34.5 28.6 18.8 16.7 29.2 25.5 25.3 24.7 33.5 27.4 26.8 36.2 33.5 18.9 13.3 24.0 28.7 23.8 25.1

ERSPQ
t 32.1 30.3 32.1 36.9 30.2 27.1 28.4 35.6 29.0 31.0 30.4 33.3 28.8 29.0 36.4 31.9 22.4 20.8 31.6 29.3 26.6 27.2

PPQ
T 30.4 28.1 30.4 36.3 29.6 21.2 19.4 31.7 27.5 27.7 27.0 34.4 28.6 28.3 37.2 33.7 19.9 14.5 25.9 29.4 25.0 26.5

CPt 23.1 19.4 21.3 26.0 18.6 17.1 19.8 25.1 19.1 19.2 20.4 23.7 20.0 20.6 26.7 21.1 14.0 17.1 25.1 19.2 17.3 18.6

CPρ 27.5 24.2 25.7 28.9 23.3 19.7 18.9 26.2 23.1 23.2 23.8 29.4 25.0 25.0 30.2 26.7 16.4 13.8 22.7 24.5 20.3 22.7

CPt 30.1 26.5 27.5 32.3 26.9 23.6 22.4 29.9 25.2 26.2 26.6 31.9 28.7 28.4 35.9 34.1 21.6 19.7 29.4 29.3 26.3 27.0

CPρ 30.1 27.5 28.6 33.0 28.4 23.4 22.1 30.0 26.3 26.6 27.3 32.7 28.3 28.5 35.7 33.8 21.9 18.2 27.8 29.0 26.1 27.2

PSt 16.2 12.3 13.4 17.6 14.3 10.8 13.0 16.0 12.1 12.3 12.9 23.5 17.4 18.3 25.8 20.4 11.9 14.7 21.3 17.8 15.0 16.3

PSρ 18.9 14.0 14.9 18.1 16.3 11.1 10.7 15.5 14.1 13.7 14.1 27.7 19.9 20.7 27.9 24.1 13.1 11.0 17.6 20.8 16.6 17.8

PSt 19.7 17.1 17.3 20.1 21.0 14.0 13.2 17.8 15.4 15.5 15.8 32.2 24.2 25.5 33.1 32.1 17.9 16.1 24.9 25.5 22.2 24.2

PSρ 20.0 17.1 17.8 21.1 21.0 14.0 11.7 18.1 16.0 16.2 16.3 31.7 22.5 24.7 31.9 30.8 17.4 14.4 22.4 25.2 20.7 22.1

PaPt 26.3 23.5 25.9 32.1 20.2 21.1 25.5 31.7 21.2 23.8 24.3 26.0 22.3 23.1 31.0 22.4 15.1 18.0 27.9 21.3 19.1 20.3

PaPρ 33.1 29.6 31.0 36.8 27.7 24.1 25.0 34.2 28.3 28.6 29.4 33.8 27.6 29.4 36.6 30.1 18.7 16.6 28.2 28.1 23.9 25.3

PaPt 33.3 30.2 33.1 38.2 32.9 27.4 27.1 34.1 28.6 30.3 30.5 35.1 28.7 30.4 38.3 34.8 22.0 20.5 32.6 30.6 26.4 28.8

PaPρ 34.6 31.3 34.3 40.7 34.2 26.5 25.3 35.3 30.3 30.8 31.5 35.6 28.3 30.4 39.3 35.3 21.5 18.0 31.0 30.4 26.2 28.1

PaPdiff
t 16.6 14.9 16.9 19.3 14.5 13.7 17.0 20.3 13.8 15.6 15.6 20.1 17.0 18.0 23.5 17.2 11.9 16.0 22.9 17.2 15.0 15.6

PaPdiff
ρ 18.0 17.3 18.3 20.2 17.2 15.2 15.7 19.6 16.5 17.0 17.3 24.4 21.2 21.6 26.0 22.3 14.9 13.9 21.5 22.0 18.7 20.0

PaPdiff
t 21.2 20.3 20.1 22.3 20.1 18.7 19.0 22.1 19.2 20.4 20.5 27.7 24.8 25.0 29.7 27.8 19.3 18.2 27.0 25.8 23.1 23.8

PaPdiff
ρ 21.2 20.0 20.1 22.7 20.2 17.3 15.7 21.1 18.7 19.7 19.7 27.3 24.0 24.6 29.4 27.4 18.9 15.7 24.2 25.2 22.8 23.3

RWBt 22.4 18.6 21.6 25.3 18.3 17.1 19.1 25.5 18.6 19.5 19.8 25.6 19.0 20.0 28.3 21.3 13.9 16.7 24.2 19.7 16.5 18.0

RWBρ 26.1 23.2 25.6 29.7 23.1 18.2 17.9 26.9 22.4 23.5 23.2 30.6 23.2 24.5 32.4 26.5 14.1 10.6 22.3 25.2 19.3 21.1

DWBt 24.8 21.8 25.5 30.6 19.7 21.0 24.2 30.8 21.4 22.9 23.5 25.7 21.8 21.9 29.5 23.2 15.0 19.0 27.6 20.8 18.7 20.0

DWBρ 31.9 27.4 31.3 36.4 25.7 22.3 21.6 34.1 26.0 26.4 27.5 33.2 26.7 27.2 36.0 30.4 16.2 12.4 25.6 27.3 21.9 23.6

AWBt 23.6 22.9 25.6 29.1 20.7 20.4 24.8 30.0 21.8 23.0 23.2 25.8 21.0 21.9 28.7 22.9 14.9 19.2 26.6 21.7 18.6 19.7

AWBρ 29.9 29.1 30.7 34.7 27.2 21.8 22.4 32.9 27.1 26.4 27.8 32.8 26.4 27.5 35.3 31.3 16.3 12.8 25.0 28.5 22.9 23.3

LPB0
t 12.8 12.2 12.6 12.4 12.4 12.6 11.9 11.9 13.5 13.2 12.2 18.5 18.9 18.8 19.7 19.5 16.4 15.3 18.5 18.4 19.2 18.9

LPB0
t 13.7 13.5 14.0 13.2 14.9 14.8 12.7 13.7 14.4 14.4 13.5 21.7 22.0 22.0 23.8 23.8 22.0 17.3 21.9 23.4 22.4 22.7

LPBt 27.5 24.2 26.3 31.7 22.5 21.4 24.2 30.8 22.4 23.6 24.3 26.9 21.8 22.8 29.8 25.5 16.2 18.8 26.4 22.5 20.6 21.3

LPBt 34.6 32.9 34.0 39.8 32.6 28.8 28.7 36.2 30.8 31.7 31.8 35.4 30.4 31.7 39.8 35.5 23.3 22.1 33.1 32.2 28.6 29.6

MZα 28.5 25.0 27.4 33.8 27.3 17.4 15.2 27.8 24.1 23.7 23.5 33.0 26.7 25.8 36.0 32.3 17.8 12.5 23.3 28.1 22.8 24.3

PQMZα 29.9 27.0 29.5 35.6 28.4 19.9 18.2 30.5 26.4 26.4 26.3 33.7 27.9 27.5 37.1 32.6 18.8 13.6 25.3 28.8 24.1 25.7

MZiwb
α 31.5 26.6 28.9 37.0 28.1 17.1 15.1 29.9 25.2 24.7 24.9 32.9 26.3 25.5 38.2 33.1 14.7 7.2 20.4 28.3 21.1 23.2

MZrwb
α 26.5 23.7 25.4 30.0 24.8 14.9 12.4 24.7 22.7 22.0 21.8 31.4 25.9 24.4 33.5 30.1 12.5 6.3 17.8 27.1 20.5 20.9

MZdwb
α 32.2 27.4 30.2 37.7 29.7 18.2 15.8 30.9 26.7 25.6 26.3 35.3 26.4 26.5 37.2 34.8 14.9 7.4 21.7 28.0 22.8 24.1

MZawb
α 31.9 27.2 29.2 37.0 28.8 17.8 16.1 31.9 27.2 26.2 26.5 35.5 26.9 26.8 37.7 34.5 15.2 8.1 22.1 28.6 22.6 26.3

PQMZiwb
α 31.5 29.2 31.6 38.8 29.3 19.6 17.2 32.5 27.5 27.5 27.0 34.0 26.9 26.5 38.2 33.1 14.5 8.0 22.7 28.8 22.7 25.4

PQMZrwb
α 29.0 26.0 28.6 33.1 26.3 17.9 15.0 28.6 24.8 24.8 26.0 33.0 26.7 27.8 36.1 30.0 14.8 6.9 21.9 28.0 21.9 23.9

PQMZdwb
α 32.9 29.8 32.2 39.6 30.9 19.7 18.2 33.8 28.5 28.3 28.7 35.1 28.5 27.7 39.3 34.2 15.2 8.2 23.2 29.8 23.2 25.3

PQMZawb
α 32.9 28.2 31.3 38.2 30.5 20.6 18.4 32.5 28.5 27.3 29.2 36.7 28.6 28.6 38.7 35.3 16.8 9.4 24.9 29.9 24.3 24.9
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Chapter 7

Empirical study: is there a unit root in the
inflation rate?

In this chapter we revisit a question that has enjoyed much attention in the literature in

recent years: is the inflation rate stationary or is it integrated of order one? The answer

to this question has far-reaching implications, as it affects the validity of many macroe-

conomic models. Some examples are the Phillips curves of Calvo (1983) and Ball (1993),

which are based on the premise that the inflation rate is stationary (also see Dornbusch,

1976; Taylor, 1979). Recent work on the subject of stationarity of the inflation rate includes

Holmes (2002), Henry and Shields (2004), Österholm (2004), Charemza, Hristova and Bur-

ridge (2005), Cook (2005), Narayan and Popp (2011) and Lee and Tsong (2013).

Empirical results from different authors are rather mixed, but it has been shown that

the logarithm of prices is I(2) and consequently that the inflation rate is I(1), i.e. integrated

of order one (see e.g. Nelson and Schwert, 1977; Baillie, 1989; Ball, Cecchetti and Gordon,

1990; Johansen, 1992). In contrast, confirming the findings of Culver and Papell (1997),

Basher and Westerlund (2008) find strong evidence for the stationarity of inflation by ap-

plying an array of panel unit root tests.

We applied all bootstrap unit root test procedures considered in the simulation study of

the previous chapter to the inflation rate of the G7 countries, Australia and South Africa.

Quarterly data for the consumer price indices (CPI) of these countries spanning the pe-

riod from the first quarter of 1957 until the second quarter of 2017 were obtained from the

International Monetary Fund’s International Financial Statistics database1. In agreement

with the fact that price levels are I(2), each inflation index series was converted to an an-

nualised quarterly inflation rate series xt as 400 times the difference of the log-ratio of two

consecutive quarters:

xt = 400∆ lnCt = 400ln
(

Ct

Ct−1

)
,

where Ct represents the consumer price inflation index. Here, ln stands for the natural

logarithm. This transformation is common practice in the literature (see e.g. Culver and

1Data for Germany and the United Kingdom are only available from 1991 onward and 1988 onward, respectively.
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Papell, 1997; Ng and Perron, 2001).

We now move on to the results obtained when applying the considered unit root tests to

these real-world data. Note that the configurations of all tests were exactly as specified in

Chapter 5 and therefore correspond to the Monte Carlo results of the previous chapter. To

be consistent with a long-run positive but non-accelerating inflation, we follow Culver and

Papell (1997) and do not include a time trend in the model specification, but only a constant

mean component.

The bootstrapped p-values for all series and all tests are given in Table 7.1. Clearly,

at the 5% level of significance, the only two series showing any signs of not containing

a unit root are the inflation rate series of Australia and Germany. Initially this suggests

that most of the considered inflation rate series each contains at least one unit root, i.e. is

nonstationary. This is not surprising and is supported by numerous results published in the

literature, such as the examples given in the introduction.

From the Monte Carlo results in the previous chapter, it is clear that highly persistent

AR processes or processes with strong MA components tend to distort the sizes of these

unit root tests. Looking at the estimated AR and MA parameters supplied in Table 7.1,

one sees that some of these processes exhibit both a strong AR component and a strong

MA component. This prompts a more cautious interpretation of the results. Although we

have not investigated the combined effects of a strong AR and a strong MA component, we

have seen that, especially for large sample sizes, the bootstrap tests seem to preserve the

nominal size well, which gives some comfort in the interpretation of the results.

For completeness, approximate critical values of the tests are provided in Table 7.2.

Future research

Although ample research has already been done to establish the nature of the inflation rate

in terms of stationarity, recent advances in the bootstrap for dependent data and specifi-

cally its application to unit root testing have not been applied to this problem. These de-

velopments may be employed to help address some of the concerns raised by Basher and

Westerlund (2008):

1. Cross-sectional inflation rates are likely not independent of each other and should

rather be analysed jointly as panel data. Recently proposed procedures such as the

modified wild bootstrap procedure of Smeekes and Urbain (2014a) can take depen-

dence between multiple series into account. Also see Palm, Smeekes and Urbain

(2011), Smeekes (2011) and Smeekes and Urbain (2014b).

2. Inflation rates are prone to structural change if observed over long time periods and

the standard unit root tests do not allow for the possibility of such change.

3. Standard unit root tests are not applicable in the presence of unconditional het-

eroskedasticity. The bootstrap tests proposed by Cavaliere and Taylor (2008, 2009b)
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Table 7.1: Estimated ARMA(1,1) parameters for all series and p-values for the tests.

Australia Canada Germany France Italy Japan S. Africa UK USA

T 246 302 168 302 302 302 302 178 302

AR 0.96 0.98 0.99 0.98 0.97 0.98 -0.38 -0.99 0.97
MA -0.64 -0.85 -0.92 -0.70 -0.55 -0.84 0.23 0.95 -0.81

DFt .199 .521 .005 .718 .349 .360 .361 .146 .499
DFρ .076 .327 .007 .643 .210 .142 .229 .098 .301

DFPQ
t .199 .521 .014 .718 .525 .360 .532 .187 .499

DFPQ
ρ .076 .327 .007 .643 .377 .142 .379 .155 .301

ERSt .037 .124 .270 .294 .217 .142 .250 .636 .123

ERSPQ
t .037 .124 .465 .294 .273 .142 .250 .636 .123

CPt .188 .529 .026 .749 .514 .313 .514 .132 .483
CPρ .119 .446 .048 .737 .451 .234 .454 .207 .409
CP t .037 .159 .567 .343 .299 .149 .267 .690 .150
CPρ .035 .144 .569 .459 .340 .130 .255 .699 .137
PSt .176 .492 .015 .702 .434 .269 .466 .130 .468
PSρ .120 .345 .034 .664 .390 .191 .394 .214 .308
PSt .043 .127 .526 .333 .260 .134 .250 .701 .126
PSρ .045 .100 .508 .447 .313 .116 .226 .710 .096
PaPt .192 .389 .000 .631 .539 .386 .454 .109 .341
PaPρ .098 .206 .002 .547 .403 .138 .316 .128 .181
PaP t .051 .096 .460 .225 .333 .095 .266 .694 .083
PaPρ .038 .072 .454 .299 .362 .073 .280 .703 .068
PaPdiff

t .198 .384 .001 .636 .537 .366 .435 .112 .351
PaPdiff

ρ .104 .207 .003 .546 .413 .135 .297 .136 .184

PaPdiff
t .047 .096 .463 .216 .336 .089 .265 .714 .084

PaPdiff
ρ .035 .073 .455 .295 .368 .065 .278 .723 .071

RWBt .102 .447 .017 .765 .704 .404 .351 .118 .434
RWBρ .080 .393 .047 .775 .569 .256 .382 .215 .405
DWBt .138 .472 .009 .831 .728 .482 .367 .250 .422
DWBρ .056 .264 .006 .736 .502 .192 .325 .233 .238
AWBt .148 .556 .005 .854 .756 .554 .406 .289 .516
AWBρ .061 .298 .003 .749 .498 .189 .334 .253 .272
LPB0

t .456 .738 .050 .973 .591 .453 .760 .001 .691

LPB0
t .213 .336 1.000 .789 .625 .383 .682 1.000 .322

LPBt .223 .736 .012 .978 .746 .467 .769 .208 .700
LPBt .086 .321 .999 .793 .732 .380 .684 1.000 .334
MZα .053 .100 .100 .100 .100 .100 .100 .100 .100
PQMZα .053 .100 .100 .100 .100 .100 .100 .100 .100
MZiwb

α .065 .310 .580 .504 .251 .221 .624 .656 .358
MZrwb

α .057 .221 .403 .403 .236 .144 .300 .602 .268
MZdwb

α .065 .297 .616 .460 .270 .207 .605 .683 .339
MZawb

α .060 .289 .583 .448 .253 .204 .606 .677 .329
PQMZiwb

α .060 .305 .657 .507 .353 .216 .613 .662 .357
PQMZrwb

α .055 .227 .546 .416 .320 .145 .313 .617 .278
PQMZdwb

α .067 .289 .689 .469 .343 .218 .598 .680 .340
PQMZawb

α .067 .286 .677 .454 .339 .205 .619 .678 .321
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Table 7.2: Approximate critical values of the tests obtained for each series.

Australia Canada Germany France Italy Japan S. Africa UK USA

T 246 302 168 302 302 302 302 178 302

DFt -2.87 -2.87 -2.88 -2.87 -2.87 -2.87 -2.87 -2.88 -2.87
DFρ -13.84 -13.90 -13.73 -13.90 -13.90 -13.90 -13.90 -13.75 -13.90

DFPQ
t -2.87 -2.87 -2.88 -2.87 -2.87 -2.87 -2.87 -2.88 -2.87

DFPQ
ρ -13.84 -13.90 -13.73 -13.90 -13.90 -13.90 -13.90 -13.75 -13.90

ERSt -1.94 -1.94 -1.94 -1.94 -1.94 -1.94 -1.94 -1.94 -1.94

ERSPQ
t -1.94 -1.94 -1.94 -1.94 -1.94 -1.94 -1.94 -1.94 -1.94

CPt -2.81 -2.80 -2.84 -2.83 -2.69 -2.69 -2.73 -2.65 -2.92
CPρ -16.01 -18.39 -19.67 -20.65 -16.37 -18.69 -17.84 -17.39 -22.75
CP t -1.95 -2.05 -2.10 -2.02 -1.95 -1.92 -1.93 -1.90 -2.07
CPρ -9.10 -10.38 -10.89 -10.85 -9.57 -9.87 -8.32 -8.46 -11.42
PSt -2.82 -2.73 -2.61 -2.64 -2.55 -2.58 -2.66 -2.63 -2.70
PSρ -17.56 -14.69 -17.24 -15.16 -14.82 -17.26 -15.65 -18.77 -13.89
PSt -1.99 -1.89 -1.93 -1.88 -1.75 -1.85 -1.92 -1.98 -1.90
PSρ -9.86 -7.92 -8.66 -8.92 -8.11 -8.80 -7.79 -9.23 -8.18
PaPt -2.75 -2.36 -2.37 -2.52 -2.65 -2.76 -2.43 -2.55 -2.27
PaPρ -14.81 -10.79 -10.58 -11.91 -13.52 -13.60 -11.99 -12.92 -10.43
PaP t -2.08 -1.74 -1.68 -1.77 -1.96 -1.70 -1.88 -1.89 -1.70
PaPρ -9.63 -7.00 -6.85 -6.75 -8.79 -6.92 -8.35 -8.52 -7.10
PaPdiff

t -2.79 -2.34 -2.35 -2.57 -2.74 -2.78 -2.40 -2.53 -2.30
PaPdiff

ρ -15.47 -10.35 -10.37 -12.46 -14.38 -13.49 -11.37 -12.88 -10.84

PaPdiff
t -2.05 -1.77 -1.71 -1.78 -2.02 -1.65 -1.89 -1.93 -1.74

PaPdiff
ρ -9.37 -7.10 -6.99 -6.82 -9.21 -6.63 -8.52 -8.82 -7.26

RWBt -2.48 -2.55 -2.59 -2.76 -2.95 -2.73 -2.52 -2.72 -2.73
RWBρ -14.30 -16.96 -19.38 -20.56 -20.69 -19.43 -19.03 -20.42 -22.22
DWBt -2.64 -2.50 -2.52 -2.94 -2.99 -3.20 -2.40 -3.44 -2.43
DWBρ -12.64 -12.19 -12.17 -14.23 -16.43 -15.74 -13.24 -16.77 -12.13
AWBt -2.69 -2.53 -2.51 -2.90 -3.04 -3.12 -2.42 -3.68 -2.53
AWBρ -12.89 -12.54 -11.86 -13.59 -16.29 -15.47 -13.24 -17.53 -12.78
LPB0

t -2.72 -2.76 -2.70 -2.75 -2.78 -2.76 -2.77 -2.74 -2.73

LPB0
t -2.30 -2.29 -2.35 -2.26 -2.31 -2.32 -2.26 -2.33 -2.32

LPBt -2.79 -2.76 -2.72 -2.76 -2.79 -2.77 -2.76 -2.78 -2.74
LPBt -2.27 -2.29 -2.35 -2.32 -2.26 -2.31 -2.30 -2.35 -2.31
MZα -8.10 -8.10 -8.10 -8.10 -8.10 -8.10 -8.10 -8.10 -8.10
PQMZα -8.10 -8.10 -8.10 -8.10 -8.10 -8.10 -8.10 -8.10 -8.10
MZiwb

α -8.82 -10.90 -8.94 -7.70 -9.04 -8.42 -25.18 -8.06 -12.46
MZrwb

α -8.48 -7.15 -3.05 -4.74 -8.18 -5.68 -2.86 -2.22 -9.44
MZdwb

α -8.80 -10.09 -9.34 -7.39 -9.16 -7.93 -22.23 -8.15 -10.90
MZawb

α -8.54 -9.45 -9.25 -7.41 -9.03 -7.79 -20.77 -8.40 -10.58
PQMZiwb

α -8.53 -10.82 -8.67 -7.80 -9.17 -8.61 -23.95 -8.13 -12.61
PQMZrwb

α -8.27 -7.10 -2.68 -5.28 -8.56 -5.75 -2.96 -2.15 -9.40
PQMZdwb

α -8.73 -10.09 -8.79 -7.37 -9.28 -7.88 -20.34 -8.22 -11.39
PQMZawb

α -9.19 -9.64 -8.51 -7.18 -9.33 -8.30 -19.65 -8.45 -10.74
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are designed to allow for the presence of nonstationary volatility. Cavaliere et al.

(2015) also propose a rescaled modified information criterion (RSMIC) which is shown

to avoid significant power losses seen when using standard lag selection methods.

Other possibilities are given by Smeekes and Taylor (2012), Smeekes and Urbain

(2014a) and Westerlund (2014)

These points, however, fall outside the scope of this study and are possible avenues for

future research.
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