Anthropometric profile, selected physical parameters, technical skills and match demands of university-level female soccer players

A Strauss

orcid.org/0000-0001-5492-1858

Thesis submitted for the degree *Doctor of Philosophy* in Human Movement Science at the North-West University

Promotor: Dr M Sparks
Co-promotor: Prof C Pienaar

Graduation: October 2018
Student number: 25904183
DECLARATION

I, Anita Strauss, hereby declare that this thesis submitted for the degree Doctor of Philosophy in Human Movement Science is my own original work and has not previously been submitted to any other institution of higher education. All materials from published sources contained herein have been duly acknowledged.

This thesis serves as fulfilment of the requirements for the degree Doctor of Philosophy in Human Movement Science within the Research Entity Physical Activity, Sport and Recreation in the Faculty of Health Sciences at the North-West University (Potchefstroom Campus). The co-authors of the three articles, which form part of this thesis, Dr Martinique Sparks (Promotor) and Prof Cindy Pienaar (Co-promotor), hereby give permission to the candidate, Mrs Anita Strauss to include the three articles as part of the PhD thesis. The contribution (advisory and supportive) of the co-authors was kept within reasonable limits, thereby enabling the candidate to submit this thesis for examination purposes.

__ __
Dr Martinique Sparks Prof Cindy Pienaar
Promotor and co-author Co-promotor and co-author
ACKNOWLEDGEMENTS

First and foremost, I give all the glory to the Heavenly Father for providing me with this opportunity and giving me the strength and commitment to complete this thesis.

I wish to express my sincere appreciation to the following people for their assistance, guidance, support and encouragement throughout the completion of this thesis:

- Dr Martinique Sparks and Prof Cindy Pienaar, for your guidance, support and encouragement. Your passion and enthusiasm for research is an inspiration. Thank you for always being willing to assist, provide advice and sharing your expertise.
- The support staff during the data collection process, for your dedication and commitment while offering your assistance.
- The teams and coaching staff who participated in the study, for your time, effort and commitment to the study.
- Tshwane University of Technology (TUT), for providing financial support for running costs incurred, through the DHET Research Development Grant.
- The research entity PhASRec, for providing training opportunities to empower me to complete this study.
- The statistical support services of the North-West University, for assistance with statistical analysis.
- Ms Lydia Searle and Ms Jomone Muller, for the professional language editing services provided and for always attending to my work in the quickest possible time.
- The school principal of Pretoria West High School for allowing the research group to utilise some of the school’s equipment.
- Lastly, thank you to my family for your unconditional love, support and motivation throughout this journey and everything I do.
ABSTRACT

Anthropometric profile, selected physical parameters, technical skills and match demands of university-level female soccer players

Female soccer has increased in popularity in recent years. No research exist on the physical and match performance of female soccer players in South Africa, while limited information discussing these components on sub-elite level across the world is available. Certain morphological characteristics seem to be a distinguishing factor between playing positions. Although morphological characteristics are important for sport performance, physical fitness and technical skills are factors that can distinguish players of different standard. More emphasis is placed on high-intensity training programmes of female players to enhance match performance. Sport coaches and conditioning specialist need an understanding of the physical traits of players and the match demands players face to plan training programmes for enhancing match performance.

Consequently, the main objectives of this study were firstly to examine if there are position-specific differences in the morphological characteristics of South African sub-elite female soccer players. Secondly, to evaluate the effect of aerobic and anaerobic fatigue on the technical skills performance of sub-elite female soccer players. Thirdly, to assess the internal and external match demands of sub-elite female soccer players within and between matches during a tournament.

Selected groups of university-level female soccer players were recruited to complete the physical assessments within a two-week period either before or after a tournament. The global positioning system (GPS) and heart rate (HR) data of the players were recorded during an official soccer tournament.

The first objective of the study was achieved by using a quantitative research method through a descriptive design. The players were purposefully selected and representative of players competing on sub-elite level. Data from 101 female players (age: 21.8 ± 2.7 years, standing height: 160 ± 6.8 cm, body mass: 57.1 ± 9.1 kg) were collected with a demographics questionnaire and anthropometric datasheet. Twenty anthropometric sites were measured to determine body composition and somatotype. Body fat percentage (BF%) was 20.8 ± 5.7% and the somatotype indicated a balanced endomorph (4.0–2.4–2.1) body type. Significant (p<0.05) differences between goalkeepers and the outfield playing positions were noted in morphological features. The outfield playing positions did not differ significantly (p>0.05) from one another.
Abstract

Goalkeepers were taller, heavier, possessed the highest BF% and showed higher values for all skinfold, breadth, girth and length measurements. Defenders showed the second-highest breadth and girth measurements. Midfielders were the shortest and lightest players, with the lowest BF% and the lowest values in most measurements. Positional groups did not differ significantly ($p \leq 0.05$) in somatotype characteristics. Morphological differences therefore exist between different playing positions.

In order to fulfil the second objective, a demographic questionnaire and a physical performance and technical skill datasheet were used. Data from 48 South African sub-elite female soccer players (age: 22.0 ± 2.7 years; standing height: 158.9 ± 5.8 cm; body mass: 55.5 ± 8.1 kg) were used for analysis. Players completed the Loughborough Soccer Passing Test before and directly following the execution of an anaerobic repeated sprint ability (RSA) test and an aerobic Yo-Yo Intermittent Recovery Level 1 (Yo-Yo IR1) test on two consecutive days. Penalty time (32.6%) and total performance time (10.1%) increased significantly ($p < 0.001$) following the Yo-Yo IR1. Penalty time (20.4%) and total performance time (8.5%) also increased following the RSA test. Peak heart rate values of 190 bpm and 186 bpm were recorded following the aerobic and anaerobic fitness tests, respectively. Although aerobic fatigue will influence technical skill performance more than anaerobic fatigue, both forms of fatigue would affect performance negatively.

The third objective was achieved through an observational study. Data from 30 sub-elite female soccer players (age: 22.8 ± 2.4 years; standing height: 158.6 ± 4.5 cm; body mass: 54.1 ± 6.1 kg) representing two university teams during a tournament were collected through GPS units sampling at 10 Hz, and equipped with 100 Hz accelerometer. The activity profiles of the starting line-up were recorded during all matches, providing 84 individual match files. Data of players who completed full matches were analysed. Players were categorised according to playing position, namely forwards, midfielders and defenders. Goalkeepers were excluded from the analysis. Each team was monitored for five matches during the course of a week-long tournament. The matches were played on a standardised soccer field and consisted of two 35 minute halves. Comparisons were made based on different GPS-derived variables, including total distance, distances covered in different velocity zones, low-intensity activities (LIA), moderate-intensity activity, high-intensity activities (HIA) and corresponding heart rates, work rate and player load (PL). Differences in match demands within and between matches were assessed using percent difference, effect size and 90% confidence intervals. Midfielders covered the greatest absolute and relative total distances, and achieved the highest LIA and PL per minute of play. Defenders covered significantly ($p \leq 0.05$) less relative distance and LIA per minute of play compared to midfielders. Forwards covered the greatest distance at high-intensity (HI), while the
greatest percentage of time at high-intensity heart rate was measured among the defenders. Within match comparisons showed that player load decreased significantly ($p<0.05$) in the second half (ES: 0.4). Relative distance, LIA and HIA also decreased in the second half with possibly trivial to likely small changes. Small to large differences in variables were observed throughout the tournament. The biggest magnitude of change was seen with a large decrease (ES: -1.2) in relative distance covered between Match 2 and 5. Evidence suggests that accumulated fatigue throughout a multi-day tournament would affect performance negatively.

Keywords: aerobic fitness, anaerobic fitness, fatigue, high-intensity activity, Loughborough Soccer Passing Test, match analysis, morphology, technical skills
OPSOMMING

Antropometriese profiel, bepaalde fisiese beperkings, tegniese vaardighede en wedstrydeise van universiteitsvlak vroue sokkerspelers

Vroue sokker het toenemend populêr geword die afgelope paar jaar. Geen navorsing bestaan oor die fisiese en wedstrydprestasie van vroue sokkerspelers in Suid-Afrika nie, alhoewel daar is beperkte inligting wêreldwyd beskikbaar wat hierdie komponente van subelitevlak bespreek. Sekere morfologiese eienskappe blyk om ’n bepalende faktor tussen speler posisies te wees. Alhoewel morfologiese eienskappe belangrik vir sportprestasie is, is fisiese fiksheid en tegniese vaardighede faktore wat spelers van verskillende standaarde onderskei. Al meer klem word geplaas op hoë-intensiteit oefenprogramme vir vrouespelers om wedstrydprestasie te bevorder. Sportafrigers en kondisioneringspesialiste het ’n begrip van die fisiese kenmerke van spelers en die wedstrydeise wat spelers in die gesig staar nodig om oefenprogramme te beplan om prestasie te handhaaf.

Gevolglik was die hoofdoelwitte vir hierdie studie om eerstens te bepaal of daar posisie-spesifieke verskille in die morfologiese eienskappe van Suid-Afrikaanse subelite vroue sokkerspelers is. Tweedens, om die uitwerking van aërobiese en anaërobiese uitputting op die tegniese vaardigheidsprestasie van subelite vroue sokkerspelers te evalueer. Derdens, om die interne en eksterne wedstrydeise van subelitevlak vroue sokkerspelers gedurende ’n toernooi te evalueer.

Gekeurde groepe universiteitsvlak vroue sokkerspelers is genader om die fisiese asseserings binne ’n twee weke lange tydperk te voltooi, voor of na ’n toernooi. Die globale posisioneringstelsel (GPS) en harttempo (HT) gegewens van die spelers was opgeneem gedurende ’n amptelike sokkertoernooi.

Die eerste doelwit van die studie is bereik deur ’n kwantitatiewe studie met ’n beskrywende navorsingsontwerp. Die spelers is doelbewus gekeur en is verteenwoordigend van spelers wat op subelite vlak meeding. Data van 101 vrouespelers (ouderdom: 21.8 ± 2.7 jaar, lengte: 160 ± 6.8 cm, liggaamsmassa: 57.1 ± 9.1 kg) is versamel met ’n demografiese vraelys en antropometriese datablad. Twintig antropometriese punte is gemeet om liggaamsamestelling en liggaamstipe te bepaal. Die persentasie liggaamsvet was 20.8 ± 5.7% en die liggaamstipe het ’n gebalanceerde endomorfiese (4.0–2.4–2.1) liggaamstipe gedui. Merkwaardige (p≤0.05) verskille tussen doelwagters en die buiteveldposisies is in die morfologiese ge bruiksfunksies opgemer. Die buiteveldposisies het nie geweldig (p≤0.05) van mekaar verskil nie.
Doelwagters is langer, swaarder en het die hoogste persentasie liggaamsvet en het hoër waardes vir alle velddikte, breedte, omtrekke en lengte afmetings getoon. Verdedigers het die tweede hoogste breedte- en omtrekmaatafmetings getoon. Binneveldspelers is die kortste en ligste spelers met die laagste liggaamsvet en die laagste waardes in die meeste afmetings. Posisionele groepe verskil nie merkwaardig (p≤0.05) in liggaamstile eienskappe nie. Morfologiese verskille tussen spelers in verskillende spelposities bestaan dus.

Om sodoende die tweede doelwit te bereik was ’n demografiese vraelys en ’n fisiese prestasie- en tegniese vaardigheidsdatablad gebruik. Data van 48 Suid-Afrikaanse subelite vroue sokkerspelers (ouderdom: 22.0 ± 2.7 jaar; lengte: 158.9 ± 5.8 cm; liggaamsmassa: 55.5 ± 8.1 kg) is gebruik vir ontleiding. Spelers voltooi die Loughborough Sokkerpas Toets voor en direk na die uitvoering van ’n anaërobiese herhaaldelike naelvermoë (HNV) toets en ’n aërobiese Yo-Yo Intermittent Recovery Level 1 (Yo-Yo IR1-bepaalde) toets op twee opeenvolgende dae. Straftyd (32.6%) en totale prestasietyd (10.1%) het merkwaardig toegeneem (p<0.001) na die voltooiing van die Yo-Yo IR1-bepaalde toets. Straftyd (20.4%) en totale prestasietyd (8.5%) het ook toegeneem na die HNV toets. Piek hartklopspoedwaardes van 190 slae per minuut en 186 slae per minuut is opgeneem na die aërobiese en anaërobiese fiksheidstoets, onderskeidelik. Alhoewel aërobiese uitputting tegniese vaardigheidsprestasie meer as anaërobiese uitputting sal beïnvloed, sal beide vorme van uitputting’n negatiewe uitwerking hê.

Die derde doelwit was bereik deur ’n waarnemingstudie. Data van 48 Suid-Afrikaanse subelite vroue sokkerspelers (ouderdom: 22.8 ± 2.4 jaar; lengte: 158.6 ± 4.5 cm; liggaamsmassa: 54.1 ± 6.1 kg) verteenwoordigend van twee universiteitspanne gedurende ’n toernooi is ingesamel deur GPS-steekproefeenhede teen 10 Hz en toegeur met 100 Hz versnellingsmeters. Die aktiwiteitsprofiële van die beginspan is opgeneem gedurende al die wedstryde, gegeewe 84 individuele wedstrydlêers. Data van spelers wat volledige wedstryde voltoo het, is ontleed. Spelers is gekategoriseer volgens die spelposisie, naamlik voorspelers, binneveldspeler en verdedigers. Doelwagters was uitgesluit van die ontleiding. Elke span was vir 5 wedstryde gemonitor gedurende die duur van ’n week lange toernooi. Die wedstryde is op ’n standaard sokkerveld gespeel en het uit twee 35 minute helftes bestaan. Vergelykings is gemaak gebaseer op verschillende GPS verkryde veranderlikes, insluitende totale afstand, totale afstande in verskillende snelheidsones, lae-intensiteit aktiwiteite (LIA), matige-intensiteit aktiwiteite, en hoë-intensiteit aktiwiteite (HIA) en ooreenkomstige HT, werkkoers en spelerlading (SL). Verskille in wedstrydvereistes gedurende en tussen wedstryde was geassesseer met persentasieverskille, effekgrootte en 90% vertrouensintervalle. Binneveldspelers het die grootste totale en relatiewe afstande afgelê en het die hoogste LIA en SL per minuut van die spel. Verdedigers het merkwaardig (p≤0.05) minder relatiewe afstande afgelê en LIA per minuut van die spel in
vergelyking met binneveldspelers. Voorspelers dek die grootste afstande teen hoë-intensiteit, terwyl die grootste persentasie van tyd teen hoë-intensiteit harttempo gemeet is onder die verdedigers. Gedurende wedstrydvergelykings dui dat spelerlading merkwaardig ($p \leq 0.05$) afneem in die tweede helfte (EG: 0.4). Relatiewe afstand, LIA en HIA het ook afgeneem in die tweede helfte met moontlik onbeduidende tot klein veranderinge. Klein tot groot verskille in veranderlikes is opgemerk regdeur die toernooi. Die grootste aantal verandering is opgemerk met ’n groot afname (EG: -1.2) in relatiewe afstand afgelê tussen wedstryd 2 en 5. Bewyse dui dat opgeboude uitputting regdeur ’n toernooi oor verskeie dae prestasie negatief sal beïnvloed.

Sleutelwoorde: aërobiese fiksheid, anaërobiese fiksheid, uitputting, hoë-intensiteit aktiwiteit, Loughborough Sokkerpas Toets, wedstrydontleding, morfologie, tegniese vaardighede
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>OPSOMMING</td>
<td>vii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION, PROBLEM STATEMENT AND PURPOSE OF THE STUDY

1.1 Introduction 2

1.2 Problem statement 2

1.3 Objectives 7

1.4 Hypotheses 7

1.5 Structure of the thesis 9

References 10

CHAPTER 2: LITERATURE OVERVIEW: MATCH PLAY ANALYSIS, ANTHROPOMETRIC MEASUREMENTS AND PHYSICAL PROFILES OF FEMALE SOCCER PLAYERS

2.1 Introduction 19

2.2 Morphological profile of female soccer players 20

2.2.1 Stature and body mass 21

2.2.2 Skeletal length and breadth measurements 26
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.3</td>
<td>Skinfold measurements and body fat percentage</td>
<td>28</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Somatotype characteristics</td>
<td>30</td>
</tr>
<tr>
<td>2.3</td>
<td>Performance variables associated with successful participation in female soccer</td>
<td>33</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Importance of aerobic fitness and means of measurement in soccer</td>
<td>33</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Importance of anaerobic fitness variables and means of measurement in soccer</td>
<td>38</td>
</tr>
<tr>
<td>2.3.2.1</td>
<td>Repeated sprint ability of female soccer players</td>
<td>39</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Relationship between aerobic and anaerobic fitness components</td>
<td>41</td>
</tr>
<tr>
<td>2.4</td>
<td>Technical skill characteristics of female soccer players</td>
<td>44</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Technical skill assessment using multifaceted methods</td>
<td>45</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Effects of aerobic fatigue on technical skill performance</td>
<td>51</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Effects of anaerobic fatigue on technical skill performance</td>
<td>55</td>
</tr>
<tr>
<td>2.5</td>
<td>External and internal match demands placed on female soccer players</td>
<td>57</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Quantifying external movement demands by means of global positioning system technology</td>
<td>57</td>
</tr>
<tr>
<td>2.5.1.1</td>
<td>Validity and reliability of GPS devices for use in soccer</td>
<td>58</td>
</tr>
<tr>
<td>2.5.1.2</td>
<td>Categorisation of locomotor activities in soccer match play</td>
<td>59</td>
</tr>
<tr>
<td>2.5.1.3</td>
<td>Motion analysis of female soccer matches</td>
<td>63</td>
</tr>
<tr>
<td>2.5.1.4</td>
<td>Player load imposed on soccer players and analysis of accelerations and decelerations during matches</td>
<td>69</td>
</tr>
<tr>
<td>2.5.1.5</td>
<td>Fatigue indicators during match play and utilization of pacing strategies</td>
<td>72</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Quantifying internal demands of match play</td>
<td>78</td>
</tr>
<tr>
<td>2.5.2.1</td>
<td>Determining internal match demands through heart rate monitoring</td>
<td>78</td>
</tr>
<tr>
<td>Section</td>
<td>Heading</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>2.5.2.2</td>
<td>Blood lactate concentration</td>
<td>79</td>
</tr>
<tr>
<td>2.5.2.3</td>
<td>Rating of perceived exertion</td>
<td>80</td>
</tr>
<tr>
<td>2.6</td>
<td>Conclusion</td>
<td>81</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>85</td>
</tr>
</tbody>
</table>

CHAPTER 3: COMPARISON OF THE MORPHOLOGICAL CHARACTERISTICS OF SUB-ELITE FEMALE SOCCER PLAYERS ACCORDING TO PLAYING POSITION | 104 |
Title page		106
ABSTRACT		107
INTRODUCTION		108
METHODS		110
Study design		110
Participants		110
Procedures		110
Demographics questionnaire		110
Anthropometric measurements		111
Statistical analysis		112
RESULTS		112
DISCUSSION		118
PRACTICAL APPLICATIONS AND LIMITATIONS		122
ACKNOWLEDGEMENTS		122
REFERENCES		123
CHAPTER 4: THE EFFECT OF EXERCISE-INDUCED FATIGUE ON THE TECHNICAL
SKILL PERFORMANCE OF SUB-ELITE FEMALE SOCCER PLAYERS...... 126

Title page .. 128
Abstract .. 129
Introduction ... 130
Methods .. 131
Subjects ... 131
Study design .. 131
Methodology ... 132

Aerobic capacity: Yo-Yo IR1 ... 132

Anaerobic capacity: RSA test .. 132

Heart rate and blood lactate monitoring .. 133

Loughborough Soccer Passing Test ... 133

Procedures ... 134
Statistical analysis .. 135

Results .. 135

Physiological measurements ... 135
Passing accuracy .. 136

Discussion .. 137

Conclusion ... 141

Acknowledgements .. 141
References ... 142
Table of Contents

CHAPTER 5: THE USE OF GPS ANALYSIS TO QUANTIFY THE INTERNAL AND EXTERNAL MATCH DEMANDS OF SUB-ELITE FEMALE SOCCER PLAYERS DURING A TOURNAMENT

<table>
<thead>
<tr>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title page</td>
<td>149</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>150</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>151</td>
</tr>
<tr>
<td>METHODS</td>
<td>153</td>
</tr>
<tr>
<td>Experimental approach to the problem</td>
<td>153</td>
</tr>
<tr>
<td>Subjects</td>
<td>153</td>
</tr>
<tr>
<td>Procedures</td>
<td>153</td>
</tr>
<tr>
<td>Match analysis</td>
<td>153</td>
</tr>
<tr>
<td>Heart rate monitoring</td>
<td>154</td>
</tr>
<tr>
<td>Statistical analysis</td>
<td>154</td>
</tr>
<tr>
<td>RESULTS</td>
<td>155</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>161</td>
</tr>
<tr>
<td>PRACTICAL APPLICATIONS</td>
<td>166</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>167</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>167</td>
</tr>
</tbody>
</table>

CHAPTER 6: SUMMARY, CONCLUSIONS, LIMITATIONS AND RECOMMENDATIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Summary</td>
<td>173</td>
</tr>
<tr>
<td>6.2 Conclusions</td>
<td>179</td>
</tr>
<tr>
<td>6.3 Limitations and Recommendations</td>
<td>182</td>
</tr>
<tr>
<td>6.4 Future research</td>
<td>183</td>
</tr>
</tbody>
</table>
Table of Contents

ANNEXURES .. 184

ANNEXURE A: Certificate of Ethics Approval .. 185

ANNEXURE B: Informed consent form .. 187

ANNEXURE C: Demographic and general information questionnaire ... 196

ANNEXURE D: Forms for the collection of data regarding anthropometric, physical fitness and technical skills .. 197

ANNEXURE E: Instructions for authors from the Women in Sport and Physical Activity Journal, the Journal of Sports Science and Medicine, and the Journal of Strength and Conditioning Research .. 202

ANNEXURE F: Authorization letter for reproduction of Loughborough Soccer Passing Test figure .. 221

ANNEXURE G: Proof of language editing ... 222

ANNEXURE H: Description of testing procedures ... 224
LIST OF TABLES

CHAPTER 2

Table 1: Physical characteristics of female soccer players 22
Table 2: Somatotype of female soccer players ... 31
Table 3: Distances obtained during the Yo-Yo intermittent recovery tests among female soccer players .. 37
Table 4: Movement threshold (km/h) categories for female and male soccer players 62

CHAPTER 3

Table 1: Age, stature and body mass of sub-elite female soccer players by playing position (mean ± SD) ... 114
Table 2: Descriptive morphology of sub-elite female soccer players by playing position (mean ± SD) ... 115
Table 3: Body composition characteristics of sub-elite female soccer players by positional group (mean ± SD) ... 117

CHAPTER 4

Table 1: Descriptive statistics (mean ± SD) for the Yo-Yo IR and RSA tests 136
Table 2: Results of the LSPT preceding (pre-test) and following (post-test) the Yo-Yo IR1 (n=43) and RSA test (n=48) (mean ± SD) ... 136
CHAPTER 5

Table 1: Match demands according to positional groups. Data are displayed as mean ± SD (and 90% CI) ... 156

Table 2: Difference in match demands between first and second half (mean ± SD) .. 158

Table 3: Magnitude of change (mean ± 90% CI) and effect sizes (90% CI) of match demands over the course of a soccer tournament. Chance that magnitude of change between two games is higher/no difference/lower (100/0/0). 159
LIST OF FIGURES

CHAPTER 1

Figure 1: Conceptualised framework of the larger project and interlinking sub-sections of different studies involved. * Indicates facets investigated in present study ... 8

CHAPTER 2

Figure 1: Schematic representation of the Loughborough Soccer Passing Test (Ali et al., 2008) (used by permission) ... 49

CHAPTER 3

Figure 1: Somatotype distribution of sub-elite female soccer players by playing position. An average balanced-endomorph somatotype is evident among all the playing positions. ... 116

CHAPTER 4

Figure 1: Schematic representation of the Loughborough Soccer Passing Test (Ali et al., 2008) (used by permission) ... 134

CHAPTER 5

Figure 1: Percentage of time spent at the intensity zones of HRpeak during match play .. 157
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>ABBREVIATION</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>BF%</td>
<td>Body fat percentage</td>
</tr>
<tr>
<td>bpm</td>
<td>Beats per minute</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of variance</td>
</tr>
<tr>
<td>DF</td>
<td>Defenders</td>
</tr>
<tr>
<td>ES</td>
<td>Effect size</td>
</tr>
<tr>
<td>FI</td>
<td>Fatigue index</td>
</tr>
<tr>
<td>FIFA</td>
<td>Fédération Internationale de Football Association</td>
</tr>
<tr>
<td>FW</td>
<td>Forwards</td>
</tr>
<tr>
<td>HDOP</td>
<td>Horizontal Dilution of Position</td>
</tr>
<tr>
<td>GK</td>
<td>Goalkeepers</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>H_{ACC.}</td>
<td>High acceleration</td>
</tr>
<tr>
<td>H_{DEC.}</td>
<td>High deceleration</td>
</tr>
<tr>
<td>HI</td>
<td>High-intensity</td>
</tr>
<tr>
<td>HIA</td>
<td>High-intensity activity</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>HIHR</td>
<td>High-intensity heart rate</td>
</tr>
<tr>
<td>HIR</td>
<td>High-intensity running</td>
</tr>
<tr>
<td>HR</td>
<td>Heart rate</td>
</tr>
<tr>
<td>HR\textsubscript{max}</td>
<td>Maximum heart rate</td>
</tr>
<tr>
<td>HR\textsubscript{mean}</td>
<td>Mean heart rate</td>
</tr>
<tr>
<td>HR\textsubscript{peak}</td>
<td>Peak heart rate</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>ISAK</td>
<td>International Society for the Advancement of Kinanthropometry</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>km</td>
<td>Kilometers</td>
</tr>
<tr>
<td>km/h</td>
<td>kilometres per hour</td>
</tr>
<tr>
<td>L/min</td>
<td>Litres per minute</td>
</tr>
<tr>
<td>L\textsubscript{ACC.}</td>
<td>Low acceleration</td>
</tr>
<tr>
<td>L\textsubscript{DEC.}</td>
<td>Low deceleration</td>
</tr>
<tr>
<td>LI</td>
<td>Low-intensity</td>
</tr>
<tr>
<td>LIA</td>
<td>Low-intensity activity</td>
</tr>
<tr>
<td>LIR</td>
<td>Low-intensity running</td>
</tr>
<tr>
<td>LIST</td>
<td>Loughborough Intermittent Shuttle Test</td>
</tr>
<tr>
<td>LSPT</td>
<td>Loughborough Soccer Passing Test</td>
</tr>
<tr>
<td>LSST</td>
<td>Loughborough Soccer Shooting Test</td>
</tr>
<tr>
<td>m</td>
<td>Meters</td>
</tr>
<tr>
<td>m/min</td>
<td>Meter per minute</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>m/s</td>
<td>Meter per second</td>
</tr>
<tr>
<td>m/s²</td>
<td>Meter per second squared</td>
</tr>
<tr>
<td>M\textsubscript{ACC.}</td>
<td>Moderate acceleration</td>
</tr>
<tr>
<td>M\textsubscript{DEC.}</td>
<td>Moderate deceleration</td>
</tr>
<tr>
<td>MF</td>
<td>Midfielders</td>
</tr>
<tr>
<td>min</td>
<td>Minutes</td>
</tr>
<tr>
<td>ml/kg/min</td>
<td>Millilitres per kilogram per minute</td>
</tr>
<tr>
<td>mLSPT</td>
<td>Modified version of the Loughborough Soccer Passing Test</td>
</tr>
<tr>
<td>n</td>
<td>Number of subjects</td>
</tr>
<tr>
<td>NCAA</td>
<td>National Collegiate Athletic Association</td>
</tr>
<tr>
<td>NWU</td>
<td>North-West University</td>
</tr>
<tr>
<td>p</td>
<td>Statistical significance</td>
</tr>
<tr>
<td>PhASRec</td>
<td>Physical Activity, Sport and Recreation Focus Area</td>
</tr>
<tr>
<td>r</td>
<td>Correlation coefficient</td>
</tr>
<tr>
<td>RPE</td>
<td>Rating of perceived exertion</td>
</tr>
<tr>
<td>RSA</td>
<td>Repeated sprint ability</td>
</tr>
<tr>
<td>s</td>
<td>Seconds</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SEE</td>
<td>Standard error of estimate</td>
</tr>
<tr>
<td>T\textsubscript{DEC.}</td>
<td>Total deceleration</td>
</tr>
<tr>
<td>TEM</td>
<td>Technical Error of Measurement</td>
</tr>
<tr>
<td>TMA</td>
<td>Time-motion analysis</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>US</td>
<td>Unites States</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>VO$_2$</td>
<td>Oxygen uptake</td>
</tr>
<tr>
<td>VO$_{2\text{max}}$</td>
<td>Maximum oxygen uptake</td>
</tr>
<tr>
<td>Yo-Yo IE2</td>
<td>Yo-Yo intermittent endurance test level 2</td>
</tr>
<tr>
<td>Yo-Yo IR</td>
<td>Yo-Yo intermittent recovery test</td>
</tr>
<tr>
<td>Yo-Yo IR1</td>
<td>Yo-Yo intermittent recovery test level 1</td>
</tr>
<tr>
<td>Yo-Yo IR2</td>
<td>Yo-Yo intermittent recovery test level 2</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION, PROBLEM STATEMENT AND PURPOSE OF THE STUDY
1.1 Introduction

Soccer is the world’s most popular sport, with many females also taking an interest in becoming professional athletes in this sport (Stølen et al., 2005:502; Milanovic et al., 2012:68). Female soccer is regarded as one of the most popular female sports worldwide (Haugen et al., 2012:340). According to the Fédération Internationale de Football Association (FIFA) Women’s Football Survey of 2014, around 30 million females across all ages play soccer (FIFA, 2014). A recent report showed that there are 1 270 481 registered Union of European Football Associations (UEFA) female players in Europe (UEFA, 2017). The South African Football Association (SAFA) is the national association of football in South Africa with the SAFA Sasol Women’s League being the premier football league for females with over 2800 female players competing on a regular basis (SAFA, 2018). However, despite the high participation rates, more research is required on female soccer (Haugen et al., 2012:340). The increase in the different levels of competition for female players has resulted in a large number of players now have the opportunity to participate professionally (Martínez-Lagunas et al., 2014:258). In order to earn a position in a professional or national team, female players are engaging in high-intensity (HI) training programmes to enable them to compete at their peak fitness levels (Vescovi et al., 2006:221). The improvement of match performance in female soccer, therefore, requires studies on the physical aspects, such as morphological characteristics and fitness requirements, over a wide range of competitive levels, including junior, youth and university levels (Hasegawa & Kuzuhara, 2015:51).

1.2 Problem statement

Soccer, classified as an intermittent team sport, is characterised by intermittent bursts of HI exercise while simultaneously requiring the execution of complex, sport-specific technical skills over a prolonged period of time (Baker et al., 2015:5734). A variety of different actions are performed during a soccer match, including walking, running, tackling, jumping, accelerating and turning (Gravina et al., 2011:1345). Consequently, soccer players have to adapt to the multi-factorial physical demands of a match (Gil et al., 2007a:25). The physical match demands placed on elite soccer players have increased over the years, and this has resulted in the player profiles of elite performers becoming an area of interest among researchers in this particular field (Bradley et al., 2009:167; Dillern et al., 2012:43). The fundamental aim of training is to improve competitive performance, making the quantification of training of utmost importance when programming tasks and loads that allow optimum preparation for competition (Barbero Álvarez et al., 2008:2). Body composition in soccer players is one aspect of this formula that has proved to be an important factor in identifying a successful player (Sporis et al., 2007:94), since body composition is
regarded as an important indicator of the physical fitness and health of athletes (Mala et al., 2015:207).

According to Can et al. (2004:482), morphological factors are essential for successful performance in sports. Goalkeepers and defenders are often taller and heavier compared to midfielders and forwards (Dillern et al., 2012:45; Milanovic et al., 2012:70). Standing height values ranging between 161.3 cm and 171.9 cm have been recorded for elite female soccer players (Sedano et al., 2009:390; Bendiksen et al., 2013:1432; Mara et al., 2017), while ranges between 159.1 cm and 164.3 cm have been reported for sub-elite female players (Nikolaidis, 2014:43; Hasegawa & Kuzuhara, 2015:52). Similar average heights for elite female soccer players in Brazil, Croatia and Denmark were reported by Nakamura et al. (2016), Sporis et al. (2007:93) and Krstrup et al. (2005:1243) respectively. Milanovic et al. (2012:70) and Sporis et al. (2011:34) reported the greatest average standing height to be among goalkeepers, followed by defenders, and noted that midfielders and forwards were among the shortest players.

Average body mass values ranging between 56.8 kg and 65.3 kg have also been reported (Mujika et al., 2009:109; Manson et al., 2014:311; Mala et al., 2015:210; Mara et al., 2017) for elite female soccer players, with goalkeepers being heavier than players in other positions (Sporis et al., 2011:34; Dillern et al., 2012:45). The body mass of sub-elite players is reportedly lower (54.7–60.5 kg) than elite players (Nikolaidis, 2014:43; Hasegawa & Kuzuhara, 2015:52). Furthermore, body fat percentage (BF%) values ranging between 15.5% and 24.7% were found among elite and sub-elite female soccer players (Gravina et al., 2011:1346; Hasegawa & Kuzuhara, 2015:52). Evidence suggests that goalkeepers have the highest BF% (Sedano et al., 2009:390; Hasegawa & Kuzuhara, 2015:52). According to Milanovic et al. (2012:68), body mass and BF% form part of the physiological makeup of soccer players. Evidence was provided that a high negative correlation exists between BF% and performance in activities such as jumping and sprinting (Can et al., 2004:483). In classifying somatotype characteristics, mesomorphy is usually the most predominant somatotype component in soccer players (Gil et al., 2007b:438). Studies show that female soccer players tend to have an endomorphic mesomorph somatotype (Can et al., 2004:482; Adhikari & Nugent, 2014:15).

Although a series of studies was conducted regarding the anthropometric characteristics of soccer players, studies on the physical capacities further provide a better understanding of the important factors behind soccer performance (Kulkarni et al., 2013; Nikolaidis, 2014; Popović et al., 2014; Hasegawa & Kuzuhara, 2015; Nakamura et al., 2016). According to Bangsbo et al. (2008:38), the aerobic and anaerobic capacity of an athlete may determine the outcome of a competition. Previous studies making use of physiological data (internal match demands) such as heart rate
(HR) recordings and metabolic measurements of muscle and blood samples collected during competition have reported that in many sports, the aerobic loading and anaerobic energy turnover is high throughout periods of competition (Bangsbo, 1993; McInnes et al., 1995; Krustup et al., 2006). Bangsbo et al. (2008:38) acknowledged that it is, therefore, imperative to evaluate the players’ abilities within these areas. Female soccer players have a maximum oxygen uptake \(\dot{V}O_{2\max} \) value ranging between 43.4 ml/kg/min and 56.6 ml/kg/min (Krupstrup et al., 2005:1245; Haugen et al., 2014:517). Continuous exercise tests used to assess the aerobic capacity of an athlete include a multistage 20 metre shuttle run test, a 12-minute running test, and a \(\dot{V}O_{2\max} \) test (Leger & Lambert, 1982:2; Bangsbo et al., 2008:38). The relevance of these tests to intermittent sports has, however, been questioned (O’Reilly & Wong, 2012:1033; Deprez et al., 2014:903). Thus, the Yo-Yo intermittent recovery (Yo-Yo IR) tests were developed (Bangsbo, 1993). Due to specificity and practicality, the Yo-Yo IR tests have been used in many team sports to assess the players’ abilities to perform HI exercise repeatedly (Bangsbo et al., 2008:38; Krustup et al., 2010:438; Hasegawa & Kuzuhara, 2015:53). The Yo-Yo intermittent recovery test level 1 (Yo-Yo IR1) is a good predictor of an elite female soccer player’s ability to perform HI running throughout competitive matches and can be used as an indicator of physical match performance (Krupstrup et al., 2005:1248). Elite female soccer players typically achieve Yo-Yo IR1 distances of 889.5–1379.0 m (Krupstrup et al., 2005:1245; Milanovic et al., 2012:70; Hasegawa & Kuzuhara, 2015:53), with goalkeepers achieving the lowest scores (Hasegawa & Kuzuhara, 2015:53).

Various studies have used time-motion analysis (TMA) to determine the movement and physical demands of soccer (Andersson et al., 2010; Bradley et al., 2013; Bush et al., 2015; Dalen et al., 2016). Although commonly used, TMA methods have limitations with regard to categorisation of locomotor activities, subjectivity involvement when interpreting the data (Cunniffe et al., 2009:1195) and measurement error (Duthie et al., 2003:983). Recent developments in global positioning systems (GPS) technology have provided the means to overcome the logistical problems and limitations of TMA methods that quantify athlete locomotion (Portas et al., 2010:448). It was also established by Varley et al. (2012:125) that the 10 Hz GPS devices are two to three times more accurate in detecting velocity changes and up to six times more reliable than the 5 Hz GPS devices. The use of GPS technology simultaneously captured with HR monitoring is now routinely used in team sports to assess the physiological and movement demands of athletes (Barbero Álvarez et al., 2008; Cunniffe et al., 2009; Inglis & Bird, 2017; Ramos et al., 2017; Trewin et al., 2018). Other methods that are used together with HR monitoring for the assessment of internal match demands include the assessment of blood lactate concentration (Baumgart et al., 2014:228) and the rating of perceived exertion (RPE) (Sjokvist et al., 2011:1728).
A study conducted by Hewitt et al. (2014:1876) using GPS technology found that elite female soccer players covered a mean total distance of 9.6 km during a match. A total of 2,407 m was covered at high-intensity running (HIR) and 338 m while sprinting (Hewitt et al., 2014:1876). Hewitt et al. (2014:1876) also noted that midfielders covered the greatest average distance, followed by forwards and defenders. The development of GPS technology purposely designed for team sports such as soccer could supply the necessary tools to gain a greater understanding of the female players’ activity profiles of these intermittent, HI activities (Barbero Álvarez et al., 2008:3). According to Reilly et al. (2000:670), competitive match play requires an all-out sprint once every 90 s on average and HI efforts every 30 s. Sprinting and HIR constitutes 8–12% of the total distance covered during a match (Krustrup et al., 2005:1244; Gabbett & Mulvey, 2008:548; Mohr et al., 2008:345; Bradley et al., 2009:162; Andersson et al., 2010:915). The ability to perform repeated sprints with minimal recovery between sprint bouts, termed repeated sprint ability (RSA), is thus an important capacity for team sports athletes (Barbero-Álvarez et al., 2010:232). The total amount of HIR distance covered during a match has further been identified as an important indicator of match performance (Mohr et al., 2003:527). The length of HIR during a soccer match in elite female players has been reported to vary between 0.7 km and 1.7 km (Krustrup et al., 2005:1242).

A study of the match activities of elite (top-level and high-level) female soccer players using TMA reported a change in activity every four seconds, accounting for more than 1,300 activity changes throughout the match (Mohr et al., 2008:345). The players spent 19.4% of the total time during the match standing, 42.8% walking and 27.7% performing low-intensity running (LIR) (Mohr et al., 2008:345). The times spent at HIR and sprinting varied among the top-class and high-level players, with values of 6.0% vs 4.4% and 1.2% vs 0.9% respectively (Mohr et al., 2008:345). According to Krstrup et al. (2005:1246), the amount of HIR by female players during a match is related to the training status of the players. In addition, the frequency of HI bouts is influenced by fatigue and is believed to vary among playing positions (Bradley et al., 2009:167; Andersson et al., 2010:919). Match analysis is, therefore, regarded as important in providing essential information to design specific conditioning programmes and thus adjust physical preparation to the precise requirements of each position (Barbero Álvarez et al., 2008:9).

Elite soccer is regarded as a complex sport in which performance is dependent upon numerous factors such as physical fitness, technical skills and team tactics (Rampinini et al., 2009:231; O’Reilly & Wong, 2012:1030). A scarcity exists in published literature regarding the influence of exercise on technical skill performance, which is attributed to a shortage of exercise simulations that replicate the movement demands and technical skills of soccer (Russell & Kingsley,
2011:524). The variability inherent in a match makes it difficult to translate findings from one match to the next (Stone & Oliver, 2009:164). Therefore, the Loughborough Soccer Passing Test (LSPT) was developed, and validity and reliability was established for use in the assessment of the multi-faceted aspects of soccer skills (Ali et al., 2007:1470). This particular test is effective in assessing technical tasks such as dribbling, controlling and passing of the soccer ball (O’Reilly & Wong, 2012:1036). According to Ali et al. (2007:1470), players who are more technically skilled will be able to perform the LSPT quicker without compromising their ability to pass accurately and control the ball. The characteristics of soccer together with the required functional activities place great demands on the technical skills of players (Twizere, 2004:1). Players with a higher level of aerobic fitness recover quicker following acute bouts of maximal effort, tend to cover greater distances during a match, carry out more sprints during a match and are able to maintain their technical skills and mental concentration more efficiently towards the latter part of a match (Aziz et al., 2007:10). Players who are fatigued are prone to errors in terms of technical skill performance (Njororai, 2014:62). A study by Rampinini et al. (2008:937) found that skill technique, kicking accuracy and dribbling activities measured through the LSPT tend to deteriorate following fatiguing exercise. The decrease in technical skill performance during a match has been attributed to the development of fatigue (Rampinini et al., 2009:232).

Most of the available research relating to the physical profile and match demands of soccer players has been conducted on senior male players (Dey et al., 2010; Randers et al., 2010; Jones et al., 2013; Molinos Domene, 2013; Dalen et al., 2016). However, Sporis et al. (2007:92) pointed out that female players are not as well understood or studied as male players. The primary aim of this study was to examine the morphological, fitness and technical skill characteristics of sub-elite female soccer players and assess the match demands placed on players throughout a soccer tournament. The secondary aim was to determine positional differences within these variables assessed. This research could lead to a broadening of specialist sport science knowledge with regard to female soccer and could be significant to others who are interested in exploring the technical skills, the aerobic and anaerobic fitness characteristics and the match activities and demands of sub-elite female soccer players. In particular, the results derived from this study could be used for future comparisons on this level. The use of GPS technology and other methods explained in this study could augment the scarce information dealing with sub-elite female soccer players. In order to design improved training programmes, understanding the physical qualities that best correlate with soccer-related performance could be advantageous. With special reference to the requirements for different playing positions in the team, this research could also enable coaches and sport scientists to compile specific and efficient conditioning programmes in order to prepare players for the demands of the match more effectively. Consequently, this would
result in an improvement in performance and the alignment of the teams’ performance with international standards. To the researcher’s knowledge, no information exists for sub-elite female soccer players in South Africa that describes both physical and performance characteristics. A clarification on these characteristics and comparison with players from other countries competing on a similar level can enhance knowledge of South African sub-elite players and further encourage similar studies on the national team players, with the aim of enhancing performance and contend against other national level teams.

In view of the literature background, the following research questions were proposed:

- **Research question 1:** Are there position-specific differences in the morphological characteristics of South African sub-elite female soccer players?
- **Research question 2:** What is the effect of aerobic and anaerobic fatigue on the technical skill performance of sub-elite female soccer players?
- **Research question 3:** What are the internal and external match demands of sub-elite female soccer players during a tournament?

1.3 Objectives

The objectives of this study were:

- **Objective 1:** To examine if there are position-specific differences in the morphological characteristics of South African sub-elite female soccer players.
- **Objective 2:** To evaluate the effect of aerobic and anaerobic fatigue on the technical skill performance of sub-elite female soccer players.
- **Objective 3:** To assess the internal and external match demands of sub-elite female soccer players within and between matches during a tournament.

1.4 Hypotheses

This study was based on the following hypotheses:

- **Hypothesis 1:** There will be significant (p≤0.05) position-specific differences in the morphological profile of South African sub-elite female soccer players.
- **Hypothesis 2**: Aerobic and anaerobic fatigue will have a significant \((p\leq0.05)\) negative effect on the technical skill performance of sub-elite female soccer players.

- **Hypothesis 3**: The internal and external match demands of sub-elite female soccer players will differ significantly \((p\leq0.05)\) within and between matches in a tournament.

Figure 1 provides a conceptualised framework of the larger project entitled: “Investigating performance indicators and injury risk factors for the development and performance of female soccer players”. An indication of areas where the current study forms part of the larger project is provided by using an “*”.

Figure 1: Conceptualised framework of the larger project and interlinking subsections of different studies involved. * Indicates facets investigated in present study
1.5 Structure of the thesis

The thesis is to be submitted in article format as approved by the Senate of the North-West University and is structured as follows:

Chapter 1 Introduction, Problem statement and Purpose of the study. A reference list is provided at the end of the chapter in accordance with the guidelines of the North-West University.

Chapter 2 Literature overview: Match play analysis, anthropometric measurements and physical profiles of female soccer players. A reference list is provided at the end of the chapter in accordance with the guidelines of the North-West University.

Chapter 3 Article 1: “Comparison of the morphological characteristics of sub-elite female soccer players according to playing position”. This article is submitted to the Women in Sport and Physical Activity Journal. The article and the reference list at the end of the article are compiled in accordance with the guidelines of the journal.

Chapter 4 Article 2: “The effect of exercise-induced fatigue on the technical skill performance of sub-elite female soccer players”. This article is submitted to the Journal of Sports Science and Medicine. The article and the reference list at the end of the article are compiled in accordance with the guidelines of the journal. Although not according to the guidelines of the journal, tables and figures are included within the text so as to make the article easier to read and understand.

Chapter 5 Article 3: “The use of GPS analysis to quantify the internal and external match demands of sub-elite female soccer players during a tournament”. This article is to be submitted to the Journal of Strength and Conditioning Research. The article and the reference list at the end of the article are compiled in accordance with the guidelines of the journal. Although not according to the guidelines of the journal, tables and figures will be included within the text so as to make the article easier to read and understand.

Chapter 6 Summary, conclusions, limitations and recommendations

Annexure A: Certificate of Ethics Approval

Annexure B: Informed consent form
Chapter 1: Introduction, Problem statement and Purpose of the study

Annexure C: Demographic and general information questionnaire

Annexure D: Forms for the collection of data regarding anthropometric, physical fitness and technical skills

Annexure F: Authorization letter for reproduction of Loughborough Soccer Passing Test figure

Annexure G: Proof of language editing

Annexure H: Description of testing procedures

References

Chapter 1: Introduction, Problem statement and Purpose of the study

Chapter 1: Introduction, Problem statement and Purpose of the study

CHAPTER 2

LITERATURE OVERVIEW: MATCH PLAY ANALYSIS, ANTHROPOMETRIC MEASUREMENTS AND PHYSICAL PROFILES OF FEMALE SOCCER PLAYERS
2.1 Introduction

Soccer is currently recognised as the most popular sport discipline in the world, with men, women and children competing on different levels (Reilly et al., 2000:669; Stølen et al., 2005:503; Grygorowicz et al., 2013:1). Competitive female soccer has existed since the second half of the 1960s and is played in countries such as Sweden, Denmark, the United States of America (USA), Canada, West Germany, Czechoslovakia, Italy and New Zealand (Hjelm, 2011:156). The mass media started to portray female soccer positively between 1968 and 1971, supporting females who were encroaching on areas previously dominated by men (Hjelm & Olofsson, 2003:187). During the last two decades, female’s involvement in soccer has increased considerably, and soccer has become one of the most popular female sports worldwide (La Torre et al., 2008:80; Haugen et al., 2012:340). Female soccer participation has grown in the past years and now boasts over 30 million players worldwide (FIFA, 2015). A total of 24 teams participated in the 2015 FIFA Women’s World Cup held in Canada, double the number that participated at the first FIFA Women’s World Cup in 1991 (FIFA, 2015). For 2015-2018, FIFA has doubled its funding for female football-specific programmes (FIFA, 2015). In 2015 alone, FIFA is implementing more than 400 activities worldwide in at least 120 countries (FIFA, 2015).

China hosted the first Women’s World Cup in 1991, and in 1996, women’s soccer became an Olympic discipline at the Summer Olympic Games in Atlanta (Pfister, 2003:135). International competitions and professional and recreational leagues have seen a considerable increase in the number of female players in recent years (Martínez-Lagunas et al., 2014:258). This has given numerous female players the opportunity to train and compete in professional environments, which has simultaneously resulted in an increase in the performance expectations placed upon the players and an increase in the consequent need for specific scientific research that can assist in improving the players’ performance (Martínez-Lagunas et al., 2014:259). Despite the increased popularity and professionalisation of female soccer worldwide, scientific research is limited with regard to female players’ physical and physiological characteristics and the demands placed on them during matches (Martínez-Lagunas et al., 2014:259). Furthermore, there is an absence of scientific information available regarding the physiological profiles and performance qualities of elite and sub-elite African and South African female players. The identification of the physiological and performance requirements of female soccer players may provide a more objective basis on which coaches can evaluate prospective talent, formulate training programmes and plan team strategies (Can et al., 2004:480). Due to the dearth of related studies, normative data for female players should be established rather than merely implementing extensions of the training programmes currently developed for male players (Sedano et al., 2009:388).
In view of the above-mentioned background, the aim of this literature review is to discuss the current literature pertaining to the anthropometric profiles, the aerobic and anaerobic fitness components and the technical skill characteristics of female soccer players. Furthermore, the author describes both the internal and external match demands placed on female soccer players and investigates the role that fatigue plays during the execution of technical skills and during match play. Even though the main focus of this literature review is on female soccer, due to the scarcity of research articles on female soccer players, articles pertaining to their male counterparts were also considered. Most of the English literature reviewed was confined to the last decade (2008–2018), although older sources were also considered and included due to the scarcity of research available on female soccer. Literature relating to players older than 18 years who competed on club, national and international levels was included.

The review comprises four main sections. The subsequent section focuses on identifying the morphological characteristics of female soccer players and describing positional profiles. Thereafter, the performance variables of female soccer players are discussed, and this is followed by technical skill characteristics. The final section describes the external and internal match demands that are placed on female soccer players.

2.2 Morphological profile of female soccer players

In order to compete at an elite level, soccer players are expected to possess the morphological and physiological characteristics that are applicable both to the specific sporting code and their playing positions (Hazir, 2010:83). Anthropometry provides information regarding major body components such as fat, muscle and bone and makes use of non-invasive, affordable and portable devices to determine skinfolds, body mass, height and body circumferences and diameters (Garrido-Chamorro et al., 2012:803). Recent advances in sport physiology have led to an interest in the development of physiological profiles to describe the qualities and characteristics of athletes in their respective sports (Can et al., 2004:480). Body composition is an essential indicator of the physical fitness and health of athletes and is an important factor in determining the success of soccer players (Rienzi et al., 2000). Mala et al. (2015:208) further claim that studies of body composition often focus on relative fatness due to the possible negative influence that excessive fat can have on performance. Morphological characteristics are also important features in the selection process for team positions, especially with regard to goalkeepers (Sporis et al., 2007:94).

Can et al. (2004:480) further claim that the morphological characteristics of female soccer players and their performance levels have not been clearly defined in literature. It is, however, challenging...
to formulate accurate conclusions on the physical characteristics of soccer players according to playing level and position due to the inconsistency between studies in terms of playing level and playing position (Hazir, 2010:84).

2.2.1 Stature and body mass

Standing height is considered a crucial factor for soccer players (Sporis et al., 2007:94). Average standing height values in the range of 161–172 cm have been reported for elite female soccer players in recent studies (Mujika et al., 2009:109; Sedano et al., 2009:390; Krstrup et al., 2010:438; Vescovi, 2012b:475; Bendiksen et al., 2013:1432; Nikolaidis, 2014:43; Mala et al., 2015:210; Mara et al., 2017). For female players participating at sub-elite level, comparable average standing height values have been reported by Vescovi and McGuigan (2008:98), Colak (2012:16) and Adhikari and Nugent (2014:15). Table 1 below indicates the results of these and other studies conducted on female soccer players. A clear distinction between elite and non-elite athletes is not defined in literature. For the purpose of this review, elite players are regarded as players competing on national level and higher divisions, while sub-elite level generally refer to players competing on club, college or university level.

According to Reilly et al. (2000:671), there are certain anthropometric predispositions for positional roles, with taller players being more suitable for central defensive positions. A greater standing height in a defender could be favourable in actions in which the ball is received or fought for by the head, both when jumping or standing on the ground (Matković et al., 2003:171). Sporis et al. (2007:94) explained that increased standing height is favourable for goalkeepers when defending a goal and found elite female Croatian goalkeepers to be the tallest (174 cm) players in the team. Greater height in goalkeepers is advantageous for match activities that require jumping and reaching for the ball when defending the goal area (Hazir, 2010:91). Standing height values were also reported for forwards (165 cm), midfielders (164 cm) and defenders (166 cm); however, no differences (p=0.47) were observed among the playing positions (Sporis et al., 2007:93). Reports by Vescovi et al. (2006:223) for sub-elite female players also indicated that goalkeepers were the tallest players (170 cm), followed by defenders (170 cm) and forwards (168 cm).

Similar to the reports of Sporis et al. (2007:93), Vescovi et al. (2006:223) noted that the shortest players were the midfielders (166 cm). Milanovic et al. (2012:70) also found goalkeepers (173 cm) and defenders (170 cm) to be among the tallest players in a group of elite female players, but in contrast to the two sources quoted above, this particular study found forwards (165 cm) to be shorter than midfielders (169 cm). Krstrup et al. (2005:1243) did not report on the standing height
values for the elite Danish goalkeepers in their study, although their findings were similar in that defenders (168 cm) were taller than forwards (166 cm) and midfielders (165 cm).

Table 1: Physical characteristics of female soccer players

<table>
<thead>
<tr>
<th>Author</th>
<th>Country & competition level</th>
<th>n</th>
<th>Age (years)</th>
<th>Height (cm)</th>
<th>Body mass (kg)</th>
<th>Body fat (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mara et al (2017)</td>
<td>Australian elite senior players</td>
<td>12</td>
<td>24.3±4.2</td>
<td>171.9±5.1</td>
<td>65.3±5.1</td>
<td></td>
</tr>
<tr>
<td>Nakamura et al (2016)</td>
<td>Brazilian elite level</td>
<td>11</td>
<td>21.0±3.0</td>
<td>163.8±4.5</td>
<td>59.7±8.0</td>
<td></td>
</tr>
<tr>
<td>Hasegawa and Kuzuhara (2015:52)</td>
<td>Japanese Aichi College 1st Division</td>
<td>21</td>
<td>19.4±0.9</td>
<td>159.1±4.7</td>
<td>54.7±5.1</td>
<td>24.7±3.1</td>
</tr>
<tr>
<td>Mala et al. (2015:210)</td>
<td>Czech Republic National level</td>
<td>18</td>
<td>23.2±4.2</td>
<td>167.3±6.8</td>
<td>61.3±5.5</td>
<td></td>
</tr>
<tr>
<td>Manson et al. (2014:311)</td>
<td>New Zealand international senior players</td>
<td>15</td>
<td>23.3±4.9</td>
<td>168±7.8</td>
<td>64.1±5.4</td>
<td></td>
</tr>
<tr>
<td>Nikolaidis (2014:43)</td>
<td>Greek Amateur club level</td>
<td>54</td>
<td>21.7±4</td>
<td>164.3±4.7</td>
<td>60.5±7</td>
<td>23±4.1</td>
</tr>
<tr>
<td>Shalfawi et al. (2014:19)</td>
<td>Norwegian 2nd highest division</td>
<td>30</td>
<td>19.0±4</td>
<td>167±4</td>
<td>57.5±6.9</td>
<td></td>
</tr>
<tr>
<td>Bendiksen et al. (2013:1432)</td>
<td>Norwegian 1st Division</td>
<td>11</td>
<td>21.0±4.5</td>
<td>169.3±5.5</td>
<td>58.7±6</td>
<td>20.6±2.7</td>
</tr>
<tr>
<td>Castagna and Castellini (2013:1157)</td>
<td>Italian National Team</td>
<td>21</td>
<td>25.8±3.9</td>
<td>167.3±3.8</td>
<td>59.9±3.8</td>
<td></td>
</tr>
<tr>
<td>Shalfawi et al. (2013:31)</td>
<td>Upper Norwegian league</td>
<td>17</td>
<td>21.2±2.6</td>
<td>168.8±4.6</td>
<td>64.5±9</td>
<td></td>
</tr>
<tr>
<td>Colak (2012:16)</td>
<td>Turkish sub-elite</td>
<td>15</td>
<td>22.1±2.7</td>
<td>164.5±7.6</td>
<td>57.8±7.9</td>
<td></td>
</tr>
<tr>
<td>Haugen et al. (2012:341)(10-year study)</td>
<td>Norwegian National Team</td>
<td>85</td>
<td>23.5±3.6</td>
<td>168.7±8.7</td>
<td>63.7±5.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Norwegian 1st Division</td>
<td>46</td>
<td>21.2±3.6</td>
<td>168.7±8.7</td>
<td>63.7±5.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total group</td>
<td></td>
<td>21.9±3.8 (FW)</td>
<td>64.1±6.7 (FW)</td>
<td>25.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>55</td>
<td>21.6±4.3 (MF)</td>
<td>61.5±4.6 (MF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>21.6±4.1 (DF)</td>
<td>61.9±5.7 (DF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>21.4±4.7 (GK)</td>
<td>64.1±6 (GK)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milanovic et al. (2012:70)</td>
<td>Serbian A-National Team</td>
<td>22</td>
<td>23.9±4.5</td>
<td>168.7±8.7 (FW)</td>
<td>61.4±6</td>
<td>25.9</td>
</tr>
</tbody>
</table>
Chapter 2: Literature overview: Match play analysis, anthropometric measurements and physical profiles of female soccer players

<table>
<thead>
<tr>
<th>Author</th>
<th>Country & competition level</th>
<th>n</th>
<th>Age (years)</th>
<th>Height (cm)</th>
<th>Body mass (kg)</th>
<th>Body fat (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vescovi (2012b:475)</td>
<td>USA high level</td>
<td>140</td>
<td>23.9±2.8</td>
<td>167.6±6.1</td>
<td>62.5±6.7</td>
<td></td>
</tr>
<tr>
<td>Gravina et al. (2011:1346)</td>
<td>Spanish 1st Division</td>
<td>14</td>
<td>25.5±5</td>
<td>61±7.4</td>
<td>15.5±2.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spanish 2nd Division</td>
<td>14</td>
<td>8.3±1.5</td>
<td>61.9±9.8</td>
<td>18.4±3.3</td>
<td></td>
</tr>
<tr>
<td>Ingebrigtsen et al. (2011:3353)</td>
<td>Norwegian 1st and 2nd divisions</td>
<td>29</td>
<td>20.8±3.7</td>
<td>166±5</td>
<td>60.7±6.6</td>
<td></td>
</tr>
<tr>
<td>Sjokvist et al. (2011:1729)</td>
<td>US NCAA 1st Division</td>
<td>14</td>
<td>20.3±2.3</td>
<td>168.1±4.7</td>
<td>61.9±6.5</td>
<td>20.9±3.4</td>
</tr>
<tr>
<td>Sporis et al. (2011:34)</td>
<td>Croatian elite level total group</td>
<td>24</td>
<td>18.3±0.6</td>
<td>165.6±4.2</td>
<td>58.3±4.6</td>
<td>21.3±1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>17.4±0.4 (FW)</td>
<td>165±4.2 (FW)</td>
<td>63.6±4.1 (FW)</td>
<td>20.3±1.7 (FW)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>18.3±0.7 (MF)</td>
<td>164±4.3 (MF)</td>
<td>56±4.8 (MF)</td>
<td>21.6±1.8 (MF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>18.5±0.6 (DF)</td>
<td>165±3.9 (DF)</td>
<td>56.3±4.9 (DF)</td>
<td>21.8±0.9 (DF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>19.1±0.5 (GK)</td>
<td>172.5±4.6 (GK)</td>
<td>64.4±4.2 (GK)</td>
<td>20.7±1.2 (GK)</td>
</tr>
<tr>
<td>Andersson et al. (2010a:601)</td>
<td>Scandinavian highest division</td>
<td>16</td>
<td>22.0±3</td>
<td>167±5</td>
<td>64±2</td>
<td></td>
</tr>
<tr>
<td>Andersson et al. (2010b:913)</td>
<td>Sweden and Denmark national team players</td>
<td>17</td>
<td>27.0±1</td>
<td>168.2±1.5</td>
<td>61±1.4</td>
<td></td>
</tr>
<tr>
<td>Benvenuti et al. (2010:416)</td>
<td>Not specified</td>
<td>18</td>
<td>20.9±3.1</td>
<td>162±7.5</td>
<td>55.2±5.5</td>
<td></td>
</tr>
<tr>
<td>Krustrup et al. (2010:438)</td>
<td>Danish highest division</td>
<td>23</td>
<td>23.0</td>
<td>169</td>
<td>60.1</td>
<td>18.5</td>
</tr>
<tr>
<td>Mujika et al. (2009:109)</td>
<td>Spanish 1st Division</td>
<td>17</td>
<td>23.1±2.9</td>
<td>165±0.04</td>
<td>56.8±5.7</td>
<td></td>
</tr>
<tr>
<td>Nesser and Lee (2009:24)</td>
<td>USA NCAA 1st Division</td>
<td>16</td>
<td>163.6±5.2</td>
<td>60.7±7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sedano et al. (2009:390)</td>
<td>Spanish National Women’s 1st Division</td>
<td>100</td>
<td>22.1±1.1</td>
<td>161.3±0.1</td>
<td>57.7±7.5</td>
<td>20.1±5.5</td>
</tr>
<tr>
<td></td>
<td>Spanish Regional 1st Division</td>
<td>90</td>
<td>19.1±0.7</td>
<td>161.8±7.1</td>
<td>61.2±10.8</td>
<td>24.6±4.1</td>
</tr>
<tr>
<td></td>
<td>Total group</td>
<td>190</td>
<td>158.1±6.8 (FW)</td>
<td>55.8±7.2 (FW)</td>
<td>21.3±2.7 (FW)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>161.6±4.1 (WM)</td>
<td>58.2±5.4 (WM)</td>
<td>20.9±3.1 (WM)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>162.5±5.7 (MF)</td>
<td>56.5±5.7 (MF)</td>
<td>20.2±2.5 (MF)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>165.7±6.1 (CB)</td>
<td>62.3±7.9 (CB)</td>
<td>25.3±6.3 (CB)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>158.8±6.3 (FB)</td>
<td>56.1±8.8 (FB)</td>
<td>18.1±2.2 (FB)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>160.5±3.1 (GK)</td>
<td>60.1±5.8 (GK)</td>
<td>26.5±3.2 (GK)</td>
<td></td>
</tr>
<tr>
<td>Author</td>
<td>Country & competition level</td>
<td>n</td>
<td>Age (years)</td>
<td>Height (cm)</td>
<td>Body mass (kg)</td>
<td>Body fat (%)</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------------------</td>
<td>----</td>
<td>-------------</td>
<td>-------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Ali et al. (2008:918)</td>
<td>New Zealand Premier Division</td>
<td>19</td>
<td>20.9±4.9</td>
<td>166±5</td>
<td>60.8±6.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>New Zealand 1st Division</td>
<td>16</td>
<td>23.3±8.3</td>
<td>166±5</td>
<td>61.9±6.5</td>
<td></td>
</tr>
<tr>
<td>Hewitt et al. (2008:225)</td>
<td>Australian National Team players</td>
<td>15</td>
<td>23.5±2.5</td>
<td>170±5</td>
<td>64.9±4.6</td>
<td></td>
</tr>
<tr>
<td>Vescovi and McGuigan (2008:98)</td>
<td>USA Sub-elite 1st Division</td>
<td>51</td>
<td>19.9±0.9</td>
<td>168±0.06</td>
<td>64.8±5.9</td>
<td></td>
</tr>
<tr>
<td>Gerbino et al. (2007:503)</td>
<td>USA Sub-elite level</td>
<td>32</td>
<td>19.7±1.7</td>
<td>165±5.8</td>
<td>61.2±5.8</td>
<td></td>
</tr>
<tr>
<td>La Torre et al. (2008:81)</td>
<td>Italian Non-professional</td>
<td>13</td>
<td>22.0±3.7</td>
<td>166±6</td>
<td>59.5±5.5</td>
<td></td>
</tr>
<tr>
<td>Smith et al. (2007:471)</td>
<td>USA Sub-elite level 1st Division</td>
<td>19</td>
<td>166.7±5.4</td>
<td>63.3±7.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>USA Sub-elite level 3rd Division</td>
<td>15</td>
<td>162.6±5.9</td>
<td>62.9±10.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vescovi et al. (2006:223)</td>
<td>USA Sub-elite 1st Division</td>
<td>64</td>
<td>19.8±1.2</td>
<td>168.4±5.9</td>
<td>64.8±5.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>168.3±6.6 (FW)</td>
<td>64.5±5.8 (FW)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>165.9±6.3 (MF)</td>
<td>61.3±4.7 (MF)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>169.9±4.3 (DF)</td>
<td>67±6.7 (DF)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>170.3±5.7 (GK)</td>
<td>66.4±1.9 (GK)</td>
<td></td>
</tr>
<tr>
<td>Krstrup et al. (2005:1243)</td>
<td>Danish highest division</td>
<td>14</td>
<td>24</td>
<td>167</td>
<td>58.5</td>
<td>14.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>166.0±4 (FW)</td>
<td>58.7±3.8 (FW)</td>
<td>16.1±2.4 (FW)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>165.0±4 (MF)</td>
<td>56.0±5.9 (MF)</td>
<td>12.5±2.2 (MF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>168.0±7 (DF)</td>
<td>60.7±6.3 (DF)</td>
<td>15.4±3.7 (DF)</td>
</tr>
<tr>
<td>Can et al. (2004:481)</td>
<td>Turkish highest division</td>
<td>17</td>
<td>20.7±2.1</td>
<td>162±0.1</td>
<td>56.6±5.0</td>
<td>19.8±0.7</td>
</tr>
<tr>
<td>Todd et al. (2002:376)</td>
<td>English international</td>
<td>25</td>
<td>22.3±4.3</td>
<td>162.8±5.9</td>
<td>61.2±5.2</td>
<td>22.9±3.4</td>
</tr>
<tr>
<td>English Premier League</td>
<td></td>
<td>44</td>
<td>23.4±5.9</td>
<td>163.3±5.5</td>
<td>62.1±6.4</td>
<td>23.9±4.2</td>
</tr>
<tr>
<td>English Regional League</td>
<td></td>
<td>51</td>
<td>21.3±6.6</td>
<td>163.9±6.3</td>
<td>61.6±7.1</td>
<td>25.5±3.5</td>
</tr>
<tr>
<td>Total group</td>
<td></td>
<td>120</td>
<td></td>
<td>162.5±6.8 (FW)</td>
<td>60.9±7.3 (FW)</td>
<td>24.3±4.1 (FW)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>161.6±5 (MF)</td>
<td>59.5±5 (MF)</td>
<td>24.0±3.5 (MF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>165.2±5.6 (DF)</td>
<td>62.7±6.6 (DF)</td>
<td>24.2±3.9 (DF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>168.5±4.3 (GK)</td>
<td>68.9±5.5 (GK)</td>
<td>26.3±4.3 (GK)</td>
</tr>
</tbody>
</table>

Source: Adapted from Datson et al. (2014:1230). Data are expressed as mean ± standard deviation. Abbreviations: FW: Forwards; MF: Midfielders; WM: Wide Midfielders; DF: Defenders; CB: Centre-Back; FB: Full-Back; GK: Goalkeepers
In addition to standing height, body mass also forms part of the physical makeup of soccer players (Milanovic et al., 2012:68). Table 1 indicates a reported average body mass range of 56–67 kg for elite female soccer players (Dillern et al., 2012:45; Haugen et al., 2012:341; Bendiksen et al., 2013:1432; Mala et al., 2015:210; Nakamura et al., 2016). When considering playing positions, Sporis et al. (2011:34) noted that the goalkeepers (64.4 kg) were the heaviest players in the team, followed by the forwards (63.6 kg), the defenders (56.3 kg) and the midfielders (56.0 kg). It was also noted by Dillern et al. (2012:45) that goalkeepers had the highest body mass value (65.6 kg), which was slightly higher than reported by Sporis et al. (2007:93). In addition, Dillern et al. (2012:45) reported the second-highest values in defenders (61.5 kg), followed by forwards (58 kg) and midfielders (56.6 kg). Differences were, however, reported by Haugen et al. (2012:341) following a 10-year study on elite female players, with goalkeepers (67.3 kg) being heavier than midfielders (61.5 kg; \(p=0.008\)) and defenders (61.9 kg; \(p=0.013\)). The forward players (64.1 kg) were also found to weigh more than the midfielders and defenders (Haugen et al., 2012:341).

In addition to these reports, a range of 54.7–67 kg was reported for sub-elite level female soccer players (Vescovi et al., 2006:223; Benvenuti et al., 2010:416; Hasegawa & Kuzuhara, 2015:52). The study by Vescovi et al. (2006:223), however, found that defenders (67 kg) had higher body mass values than goalkeepers (66.4 kg) and that midfielders (61.3 kg) had the lowest body mass values. This heavier body mass among defenders could be an advantage in defensive actions (Silvestre et al., 2006:179) since slightly elevated levels in lean mass could be beneficial for power activities such as jumping and accelerating and for injury prevention (Vescovi et al., 2006:224). Even though the results of Vescovi et al. (2006:224) were not significant, the authors found that the defending players were on average slightly taller and heavier in comparison with the forward and midfield players, and midfielders were on average, the shortest in relation to all the other playing positions. This is in line with studies performed on male players (Reilly et al., 2000:671; Matković et al., 2003:169).

In summary, it is evident from several studies that goalkeepers and defending players tend to be the tallest and heaviest players in teams compared with midfielders and forwards (Sedano et al., 2009:390; Sporis et al., 2011:34; Dillern et al., 2012:45; Milanovic et al., 2012:70). It is further believed that the physical traits observed in midfielders enable them to move more efficiently and to cover longer distances during a match (Hazir, 2010:91). A study by Rienzi et al. (2000:167) also noted that the total distance covered among international male soccer players was influenced by body mass (\(p<0.05\)).
2.2.2 Skeletal length and breadth measurements

The morphological characteristics of female soccer players and their performance levels have not been clearly described in literature (Can et al., 2004:480). A limited number of studies have previously focused on the morphological characteristics and differences among female soccer players (Withers et al., 1987; Can et al., 2004; Sporis et al., 2007; Mujika et al., 2009; Adhikari & Nugent, 2014; Nikolaidis, 2014). The players represented different levels of play, including junior club (Adhikari & Nugent, 2014), second division (Mujika et al., 2009), senior club (Nikolaidis, 2014) and senior elite or first division (Withers et al., 1987; Can et al., 2004; Sporis et al., 2007; Mujika et al., 2009).

An average leg length of 81 cm have been reported for senior female soccer players participating on national and regional levels respectively (Sedano et al., 2009:390) and 100 cm (Jelaska et al., 2015:70), 94 cm (Sporis et al., 2007:93) and 84 cm (Can et al., 2004:481) for elite players. Sporis et al. (2007:93) found goalkeepers to have the longest leg lengths (100 cm) compared with the other playing positions, which is not surprising since they were the tallest among all the players in the study. The shortest leg lengths were reported for midfielders (93 cm), who were also found to be the shortest players among the group assessed, with slightly longer leg lengths being reported for forwards (93 cm) and defenders (94 cm) (Sporis et al., 2007:93). However, none of these results showed any differences among playing positions (p=0.359) (Sporis et al., 2007:93). In contrast to the results reported by Sporis et al. (2007:93), Sedano et al. (2009:391) measured the second-shortest average leg length in goalkeepers (79 cm) and the shortest in the forwards (78 cm). Even though goalkeepers tend to be taller than other players (Vescovi et al., 2006:223; Sporis et al., 2007:93; Milanovic et al., 2012:70), the goalkeepers in this particular group were representative of the shorter players, being only slightly taller than the forward and full-back players, thereby explaining the shorter leg lengths measured (Sedano et al., 2009:390). However, the highest average leg-length measurements were demonstrated among the centre-back players (84 cm), the players strategically placed in front of the goalkeepers to assist in defending the goal area (Sedano et al., 2009:391). Arm lengths did not differ among the goalkeepers (75 cm), forwards (71 cm), midfielders (71 cm) and defenders (71 cm) in the study conducted by Sporis et al. (2007:93). Similar arm lengths of 70 cm and 73 cm were reported by Can et al. (2004:481) and Jelaska et al (2015:70) respectively for elite players. Owing to the height of the goalkeepers, it is expected that they would have longer leg and arm lengths in comparison with players in other positions (Sporis et al., 2007:94). Nonetheless, higher body mass, taller stature and longer leg and arm lengths among goalkeepers are considered to contribute to their self-confidence when trying to cover and defend the broad area between the goalposts (Matković et al., 2003:171).
A study conducted by Can et al. (2004:481) compared females participating in a top-class Turkish team with sedentary female students and found that the circumferential measurements for muscle girths of the soccer players compared with the sedentary females’ chest measurements (85 cm compared with 82 cm) and thigh measurements (51 cm compared with 49 cm) were higher (p<0.05). Abdomen, relaxed arm, flexed arm, forearm and calf measurements of 75 cm, 25 cm, 27 cm, 22 cm and 35 cm were recorded for the Turkish elite female soccer players respectively (Can et al., 2004:481). The soccer players also had larger biacromial (35 cm compared with 34 cm), knee (9 cm compared with 8 cm) and ankle (6.4 cm compared with 6 cm) circumferential measurements than the sedentary females (Can et al., 2004:481). Similar measurements of the biacromial (36 cm) and knee (9 cm) circumferences were also noted among elite Croatian female players (Sporis et al., 2007:93). Elbow circumferences of 6 cm were reported by Can et al. (2004:481), Sporis et al. (2007:93) and Jelaska et al. (2015:70) respectively, as well as wrist measurements of 5 cm reported by Can et al. (2004:481) and Jelaska et al. (2015:70) respectively. Can et al. (2004:483) explained that it was anticipated that the knee and ankle circumferences of the soccer players would be greater than those of the sedentary females because soccer demands a greater stabilisation in lower-limb articulation and requires a large bone diameter. Sporis et al. (2007:94) also mentioned that the higher circumferential measurements in the thighs of soccer players are possibly due to greater muscle mass versus less fat.

Sporis et al. (2007:93) further classified the players according to positions and found that upper arm, forearm and thigh circumferential measurements were highest in goalkeepers (28 cm, 23 cm, 59 cm), followed by forwards (28 cm, 23 cm, 57 cm). Similar values, including the lowest values, were found among midfielders (25 cm, 23 cm, 56 cm) and defenders (26 cm, 23 cm, 55 cm) (Sporis et al., 2007:93). None of these results showed any differences in terms of the playing positions (Sporis et al., 2007:93). Sporis et al. (2007:93) also reported the highest calf measurements in midfielders, forwards and defenders (36 cm), while goalkeepers (34 cm) were found to have the lowest calf measurements. Biacromial and knee circumferences were also higher in goalkeepers (39 cm and 9 cm) (Sporis et al., 2007:93). This was followed by forwards (37 cm and 9 cm), with the lowest values recorded for midfielders (35 cm and 9 cm) and defenders (36 cm and 9 cm) (Sporis et al., 2007:93). Elbow girth measurements of 7 cm and 6 cm were also reported for goalkeepers and outfield playing positions respectively (Sporis et al., 2007:93). Sporis et al. (2007:94) concluded that the larger thigh-girth measurement in goalkeepers could be due to their specific role of defending the goal. In this particular study, the lower measurements consistently found among midfield players could be related to their
positional role since these players were demonstrated to be shorter, to weigh less and to have the lowest body fat percentage (BF%) (Sporis et al., 2007:93).

2.2.3 Skinfold measurements and body fat percentage

A low relative BF% is desirable for successful competition in almost any sport (Can et al., 2004:483). A certain amount of fat is required for the maintenance of body metabolism; however, excess adiposity has a negative influence on soccer performance (Anwar & Noohu, 2016:142; Slimani et al., 2017). Milanovic et al. (2012:71) highlighted the importance of body mass for female soccer players since an increase in body fat appears to result in a proportional loss in muscle mass. This appears to result in insufficient development of explosive strength, which is important in the performance of actions such as movement direction changes, jumps and sprints (Milanovic et al., 2012:71). In agreement, Anwar and Noohu (2016:141) argued that a negative correlation exists between BF% and vertical jump height, and that a positive correlation exists between BF% and sprint performance.

Sum of skinfolds provides an index to determine adiposity, with particular skinfold determinations supplying information concerning local fat depots and fat distribution in the body (Garrido-Chamorro et al., 2012:804). Differences exist among studies on female soccer players in terms of number of skinfold sites and circumferential measurements taken in order to determine BF%. Five skinfolds (triceps, subscapular, biceps, supraspinale, calf) and four girths (arm, calf, humerus, femur) have been used for Canadian sub-elite players (Adhikari & Nugent, 2014:15), whereas six skinfolds (triceps, subscapular, suprailliac, abdomen, front thigh, medial calf) and two diameters (wrist, femur) have been used for Spanish elite players (Sedano et al., 2009:388). In a study conducted by Can et al. (2004:481), seven skinfolds (triceps, biceps, subscapular, chest, midaxillar, abdominal, suprailliac, anterior thigh, medial calf) and seven diameters (biacromial, biiliac, bitrochanteric, wrist, elbow, knee, ankle) were used. Nikolaidis (2014:43) made use of ten skinfolds (cheek, wattle, chest I, triceps, subscapular, abdominal, chest II, suprailliac, thigh, calf). Mujika et al. (2009:109) reported a difference (p<0.001) in the sum of six skinfolds (triceps, subscapular, suprailliac, abdominal, front thigh, medial calf) between senior first-division (74.4 mm) and junior second-division (95.1 mm) female players. A total of 100 mm (sum of six skinfolds) was reported for elite female soccer players by Garrido-Chamorro et al. (2012:807). Five skinfold thicknesses at different sites reported for Canadian female soccer players at junior sub-elite level demonstrated values for triceps (9.4 mm), subscapular (8.9 mm), biceps (9.1 mm), supraspinale (10.0 mm) and the calf (10.9 mm) (Adhikari & Nugent, 2014:15). Jelaska et al
(2015:70) alternatively reported values for triceps (16.9 mm), the back (11.3 mm), abdominal (20.5 mm) and calf (13.1 mm) skinfold sites.

Values for average BF% in the range of 18.5–20.6% have been reported for elite female soccer players (Can et al., 2004:481; Sedano et al., 2009:390; Krustrup et al., 2010:438; Bendiksen et al., 2013:1432), with an average range of 12.7–27.6% reported in the study by Krustrup et al. (2010:438) (See Table 1). Higher BF% values of 23% (Nikolaidis, 2014:43), 22.1% (Adhikari & Nugent, 2014:15) and 24.7% (Hasegawa & Kuzuhara, 2015:52) were reported for sub-elite female players. In a study conducted by Todd et al. (2002:376), comparisons were made among female players participating on different levels, and it was found that the international players had a lower BF% value (22.9%) compared with the Premier League (23.9%) and Regional League players (25.5%). In addition, BF% values of 15.5% and 18.4% were reported by Gravina et al. (2011:1346) for two groups of players participating on different elite levels (Spanish First Division and Spanish Second Division respectively). In relation to these results, Spanish national-level players also had a lower BF% value (20.1%) compared with first-division players (24.6%) (Sedano et al., 2009:390). Evidence, therefore, indicates that players participating on a higher level possess a lower BF% (Sedano et al., 2009:390; Gravina et al., 2011:1346).

Sedano et al. (2009:391) grouped the players in their sample into a wider classification in terms of playing positions and reported a large variety of BF% values: goalkeepers (26.5%); full-backs (18.1%); centre-backs (25.3%); midfielders (20.2%); wide midfielders (20.9%); and forwards (21.3%). Much lower BF% values than those noted in the study by Sedano et al. (2009:391) were reported by Sporis et al. (2007:93), with the lowest values measured in midfielders (12.6%) and slightly higher values reported for goalkeepers (13.7%), forwards (14.3%) and defenders (16.8%). Similar to the studies of Sporis et al. (2007:93) and Sedano et al. (2009:391), Todd et al. (2002:377) found that midfielders had the lowest BF% (24.0%). This was closely followed by defenders (24.2%) and forwards (24.3%), with the highest values measured among goalkeepers (26.3%) (Todd et al., 2002:377). Sporis et al. (2007:94) and Silvestre et al. (2006:179) explained that the low BF% value presented by midfielders could be due to the position-specific task of connecting two lines of play that midfielders must accomplish in a soccer match consisting of defence and attack. The higher BF% usually reported for goalkeepers was previously explained as being due to a lower aerobic demand specific to the position (Todd et al., 2002:379) and a decrease in energy expenditure during training and matches (Silvestre et al., 2006:179). According to Datson et al. (2014:1229), it can be speculated that the positional differences demonstrated in recent studies are a result of increased training specificity for playing positions
or that players with particular anthropometric characteristics are assigned to certain playing positions.

It is apparent from the sources cited in the above discussion that BF% values vary considerably across studies. However, it is important to note that the type of measurement method used for body fat may account for discrepancies among the reported values (Martínez-Lagunas et al., 2014:259).

2.2.4 Somatotype characteristics

Somatotype is the basic classification of physical characteristics and body type (Hazir, 2010:84). Somatotype has become a noteworthy field of interest for many exercise and sport scientists and is considered one of the factors that predisposes an individual to potential high performance achievement (Can et al., 2004:482). Body shape can be defined in terms of three somatotype components, namely endomorphy, mesomorphy and ectomorphy (Gil et al., 2007:438), and is expressed by a three-number rating (Withers et al., 1987:575). These three components are identified in the classical Heath-Carter anthropometric somatotype method as relative fatness (endomorphy), musculoskeletal (mesomorphy) and linearity (ectomorphy) (Hazir, 2010:84). Somatotyping has also been used by dieticians and nutritionists in the past few years for diet preparation according to the endomorphic, mesomorphic and ectomorphic components (Adhikari & Nugent, 2014:14).

Mesomorphy is usually the most predominant somatotype component in soccer players (Can et al., 2004:484). A greater mesomorphic rating or fat-free mass suggests a larger relative muscle mass with which to initiate and sustain movement (Withers et al., 1987:580). Can et al. (2004:484) also explained that a general increase in the mesomorphic component can be the product of regular training and can result in a decrease of the endomorphic component, thus increasing the level of performance. The mesomorphic component is an important factor in soccer for strength, with a prevalence of ectomorphic components (Adhikari & Nugent, 2014:17). Adhikari and Nugent (2014:17) further explained that an ectomorphic mesomorph body type is more desirable for speed and endurance and strong muscle power. A lower endomorphic component indicates that the fat mass is lower, thus enhancing acceleration in activities such as running and jumping (Withers et al., 1987:579). Thus, body types in which a high muscle content is prevalent can be advantageous to soccer players due to the high intensity and the repetitive and intermittent type of activity required in matches (Hazir, 2010:90). An inclination in the endomorphic component may be viewed as an indicator of under-training and therefore, regular somatotype assessment is recommended to monitor and control body fat content (Hazir, 2010:92).
Can et al. (2004:481) reported somatotype values of 3.0 (endomorphy), 3.5 (mesomorphy) and 2.4 (ectomorphy) for a group of professional female soccer players in the Turkish highest division. The players were compared to sedentary females, and a somatotype of 3.5–3.3–2.9 was reported for the sedentary group, indicating that the soccer players showed more mesomorphic and less endomorphic and ectomorphic components than the sedentary group, who were also primarily classified as endomorphs (Can et al., 2004:481). Furthermore, the study found that the players who achieved the best scores in the strength and power assessments were in the endomorphic mesomorph group (Can et al., 2004:484). Adhikari and Nugent (2014:17) reported a balanced mesomorph (3.0–3.9–2.6) somatotype among their group of female Canadian soccer players; however, the group comprised junior players. These values were lower than those previously reported by Withers et al. (1987:578) for elite Australian female soccer players (4.2–4.6–2.2), who displayed and endomorphic mesomorph somatotype (Table 2). A study by Nikolaidis (2014:43), however, reported a mesomorphic endomorph somatotype (5.2–4.6–2.0) for sub-elite Greek female players, thus indicating the highest value in the endomorphic component. The higher mesomorphic values recently displayed by male defenders, midfielders and forwards are explained as possibly being the result of intensive training, exhaustive running and frequent movement during game situations since goalkeepers demonstrated higher endomorphic values (Saha et al., 2014:39).

Table 2: Somatotype of female soccer players

<table>
<thead>
<tr>
<th>Author</th>
<th>Country & competition level</th>
<th>n</th>
<th>Endomorphy</th>
<th>Mesomorphy</th>
<th>Ectomorphy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhikari and Nugent (2014:15)</td>
<td>Canadian club level</td>
<td>18</td>
<td>3.0±0.8</td>
<td>3.9±0.8</td>
<td>2.6±1.0</td>
</tr>
<tr>
<td>Nikolaidis (2014:43)</td>
<td>Greek Amateur club level</td>
<td>54</td>
<td>5.2±1.5</td>
<td>4.6±1.3</td>
<td>2.0±1.2</td>
</tr>
<tr>
<td>Can et al. (2004:482)</td>
<td>Turkish highest division</td>
<td>17</td>
<td>3.0±0.8</td>
<td>3.5±0.9</td>
<td>2.4±0.9</td>
</tr>
<tr>
<td>Withers et al. (1987:578)</td>
<td>South Australian team</td>
<td>11</td>
<td>4.2±1.3</td>
<td>4.6±1.0</td>
<td>2.2±1.2</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± standard deviation

Morphological factors make an important contribution to successful sports performance (Nikolaidis & Karydis, 2011:80). Even though Sporis et al. (2007:94) reported no differences in the morphological variables of female soccer players according to their playing positions, the
study concluded that morphological characteristics are important factors to consider for playing positions, particularly with regard to goalkeepers. However, Sporis et al. (2007:94) also emphasised the importance of motor and physiological abilities and their influence in the selection process. The study by Mujika et al. (2009:111) combined their analyses for male and female players and noted that the Yo-Yo intermittent recovery level 1 (Yo-Yo IR1) performance was negatively related to the sum of skinfolds for the pooled data. However, it was positively related to body mass and height (Mujika et al., 2009:111), thereby suggesting that body composition plays a role in intermittent, high-intensity, aerobic activity. Therefore, it can be concluded that lean body mass seems to affect the distance covered in the Yo-Yo IR1, lending an anthropometric-based explanation to the lower performance in the female groups (Mujika et al., 2009:111). It appears that players with a somatotype displaying a combination of high muscularity and low adiposity have the advantage in a match of being more movable when competing for ball possession (Strudwick et al., 2002:241). If a relationship exists between somatotype and performance, a need exists for more information regarding the somatotype of female soccer players and the enhancement of performance levels (Can et al., 2004:480).

In conclusion, several authors have found positional differences in the anthropometric profiles of female players, indicating a trend for goalkeepers and defenders to be taller and heavier than forwards and midfielders and to possess the highest BF%, with midfielders being distinctly shorter and lighter with the lowest BF% values (Vescovi et al., 2006:223; Sedano et al., 2009:391; Sporis et al., 2011:34; Dillrn et al., 2012:45; Haugen et al., 2012:341; Milanovic et al., 2012:70). The smaller stature of midfielders is not viewed as a hindrance to success since it may play a central part in the tactical role allocated to these players (Strudwick et al., 2002:241). Also, despite the fact that the demands of goalkeepers are different to other positions, this should not be used as an excuse for paying less attention to their aerobic capacity due to the fact that excessive body fat is seen as a critical negative factor related to performance (Gil et al., 2007:444).

Morphological characteristics are, therefore, apparent for specific positions in the team, especially with regard to goalkeepers (Sporis et al., 2007:94). Martinez-Lagunas et al. (2014:263) nonetheless suggest that future studies consisting of larger sample sizes should explore the extent to which players’ anthropometrical characteristics influence role selection in female soccer. Strudwick et al. (2002:247), however, claim that both anthropometric and performance variables are related to the positional role of individual players and therefore, the establishment of fitness profiles should also form part of the holistic approach to prepare players for elite match play. It is, therefore, suggested that not only morphological characteristics but also physiological characteristics applicable to the sport and playing position are critical in order to compete at an
Chapter 2: Literature overview: Match play analysis, anthropometric measurements and physical profiles of female soccer players

It is believed that a link exists between the anthropometric characteristics and performance in soccer (Dillern et al., 2012:47) and therefore, an understanding of a range of performance variables is important.

2.3 Performance variables associated with successful participation in female soccer

The profiles of players and their development towards becoming elite performers have emerged as topics of decisive interest in the soccer milieu (Dillern et al., 2012:43). Soccer places diverse physical demands on players during a match (Clark, 2007b:453), and players accordingly require good physical condition to perform multidirectional movement patterns and phases involving rapid stops (Grygorowicz et al., 2013:5). The sport is characterised by its participants executing short bursts of maximal or near-maximal actions interspersed with brief periods of low-intensity activities (LIA) that rely mainly on aerobic energy metabolism (Miller et al., 2007:48). Explosive power is also often required in winning critical moments of a match (Clark, 2007b:453). Individual differences exist in regard to the physical demands placed on players during matches, which are believed to be partly related to the players’ positions in the team (Bangsbo et al., 2006:666). Sport scientists and trainers are often tasked with maximising physical performance, with the ultimate aim of obtaining higher success in competitions (Clark, 2007a:41). For this reason, the evaluation of a player’s aerobic and anaerobic capacity is important because these variables may determine the outcome of a match (Bangsbo et al., 2008:38). However, due to time constraints and restricted resources available in female soccer, physical conditioning is often conducted in team sessions, with coaches attempting to optimise group conditioning in the limited time available (Polman et al., 2004:192). The following section investigates the aerobic and anaerobic performance variables of female soccer players according to playing positions and examines the relationships between these individual components.

2.3.1 Importance of aerobic fitness and means of measurement in soccer

Optimal aerobic fitness is a prerequisite for elite soccer players (McMillan et al., 2005:273). Soccer is mainly dependent upon aerobic metabolism due to the duration of a match being 90 minutes of play (Casajus, 2001:463; Stølen et al., 2005:503). Elite female players cover an average of 8–11 km during a match (Krustrup et al., 2005; Mara et al., 2017; Ramos et al., 2017; Trewin et al., 2018). This is similar to or slightly lower than the distances reported for elite male players, which range between 10 km and 12 km on average (Stølen et al., 2005:503; Di Salvo et al., 2007:223; Bradley et al., 2010:2345). The distance covered during a match thus indicates that aerobic metabolism is the most important source of energy for soccer players (Shalfawi et al., 2014:19). Soccer players consequently require a high level of aerobic fitness to cope with the
demands of the game and to allow for their technical and tactical skills to be used to their full potential throughout the match (Polman et al., 2004:191). Teams with a higher aerobic endurance capacity are more likely to exert their dominance and as a result, be more successful (Clark, 2007a:44). Players with a higher aerobic fitness also showed a 20% increase in total distance covered during competitive match play, a 23% increase in involvement with the ball and a 100% increase in the number of sprints performed by each player following an intervention (Helgerud et al., 2001:1928).

Maximal oxygen uptake ($\dot{V}O_{2\text{max}}$) is defined as the maximum volume of oxygen that the body consumes per minute during endurance exercise (Coutts & Abt, 2005:2). These $\dot{V}O_{2\text{max}}$ values can be expressed absolutely as litres per minute (L/min) when total power output is an important factor or relative to the body mass per minute (mL/kg/min) for activities when body mass should be considered (Duthie et al., 2003:978). In addition, $\dot{V}O_{2\text{max}}$ is an indirect indicator of soccer match performance since an increase in $\dot{V}O_{2\text{max}}$ will typically result in an increase in the anaerobic threshold (Miller et al., 2007:48). Miller et al. (2007:48) further pointed out that the ability to sustain high-intensity (HI) aerobic activity at or near the lactate threshold should be a primary consideration when designing strength and conditioning training programmes for soccer players.

A range of field and laboratory tests are used to evaluate aerobic fitness (Metaxas et al., 2005:79). These tests, which are used in the assessment of both male and female soccer players, include a laboratory incremental treadmill running test (Krustrup et al., 2005; Miller et al., 2007; Rampinini et al., 2010; Sporis et al., 2011), a 20-m continuous multistage shuttle run test (Vescovi et al., 2006; Shalfawi et al., 2014), and the Yo-Yo intermittent recovery (Yo-Yo IR) tests (Krustrup et al., 2005; Mujika et al., 2009; Chaouachi et al., 2010; Rampinini et al., 2010; Milanovic et al., 2012; Bradley et al., 2013). It is important to note that most tests are continuous, whereas many sports, including soccer, involve intermittent exercise, and performance is related to the player’s ability to perform intense exercise repeatedly (Krustrup et al., 2003:697).

Stølen et al. (2005:529) explained that a standardised laboratory treadmill test performed by running on a motor-driven treadmill is used for soccer players and involves direct measurements to determine accurate VO_2 using advanced equipment for gas and ventilator analysis (Chamari et al., 2005:24). While the results gained from laboratory testing are considered to be the best for aerobic assessment, trained personnel and expensive equipment are required to conduct these time-consuming assessments (Castagna et al., 2006:320), making them inaccessible for regular use, even for clubs with strong financial support (Turner et al., 2011:31). It is further mentioned that athletes are sometimes reluctant to be assessed in a laboratory (Impellizzeri et al., 2005:584).
In addition, these tests are not very sport-specific (Deprez et al., 2014:903) since in all team sports involving the use of a ball, it is difficult to propose physical tasks in a laboratory context that could be relevant to real action (Casajus, 2001:464). The majority of professional soccer matches and training sessions take place on a natural grass field and hence, it is important to obtain specific performance results relative to the surface on which the players participate (O’Reilly & Wong, 2012:1035).

The exclusion of direct $\dot{V}O_{2\text{max}}$ measurement dictates that the next best alternative for assessment is based on the closeness of the relationship between the test and $\dot{V}O_{2\text{max}}$, the specificity of the test to performance and the ease of assessing large subject populations (Pearson et al., 2006:281). This led to the design of valid and reliable field tests that have become popular among coaches and players due to their simplicity, time efficiency and minimal equipment requirements (Turner et al., 2011:31). A range of beep tests are available (Turner et al., 2011:31), with the 20-m shuttle run test of Léger and Lambert (1982:2) being the most renowned to estimate maximum aerobic power with an indirect method from which $\dot{V}O_{2\text{max}}$ can be predicted. However, O’Reilly and Wong (2012:1033) claim that this particular test does not closely represent the activity profile of a soccer match and may not be ideally suited for the assessment of elite-level players.

The more applicable and soccer-specific 20-m shuttle run tests known as the Yo-Yo IR tests, which are representative of the match activities of soccer players, are often advised for teams without access to laboratory tests for $\dot{V}O_{2\text{max}}$ (Stølen et al., 2005:529). Due to the specificity and practicality of the Yo-Yo IR tests, they have been widely applied in many team sports and have rapidly become some of the most intensively studied fitness tests in sport science (Bangsbo et al., 2008:38). Two levels of the Yo-Yo IR test have been developed: the Yo-Yo intermittent recovery test level 1 (Yo-Yo IR1) and the Yo-Yo intermittent recovery test level 2 (Yo-Yo IR2) (Bangsbo et al., 2008:38). The Yo-Yo IR1 starts at a lower speed and involves a more moderate increase in speed than the Yo-Yo IR2 (Bangsbo et al., 2008:38). According to Bangsbo et al. (2008:38), the Yo-Yo IR1 test lasts between 10 min and 20 min for a trained individual and mainly focuses on endurance capacity. The Yo-Yo IR2 test lasts between 5 min and 15 min and evaluates a trained individual’s ability to perform a repeated intense exercise bout with a high anaerobic energy contribution (Bangsbo et al., 2008:38). An earlier study found that the maximal heart rate (HR_{max}) reached during the Yo-Yo IR1 test was $99 \pm 1\%$ of the HR_{max} reached during a graded treadmill test (Krstrup et al., 2003:700). Thus, the Yo-Yo IR1 test is also useful in
establishing a player’s HR_{max} since it stimulates the aerobic system maximally (Bangsbo et al., 2008:39).

Based on the results of different studies, a \(\dot{V}O_{2\text{max}} \) in the range of 48.7–56.8 ml/kg/min can be expected for female soccer players, depending on competitive level (Krustrup et al., 2005:1729; Krustrup et al., 2010:438; Ingebrigtsen et al., 2011:3354; Dillern et al., 2012:45; Haugen et al., 2014:517). In considering different playing positions, neither Vescovi et al. (2006:225) (estimated \(\dot{V}O_{2\text{max}} \) values) nor Ingebrigtsen et al. (2011:3355) (direct \(\dot{V}O_{2\text{max}} \) measurement) nor Dillern et al. (2012:45) (direct \(\dot{V}O_{2\text{max}} \) measurement) found any significant differences (p≤0.05) in \(\dot{V}O_{2\text{max}} \) among the different positions. Even though not significant, these studies did find that midfielders achieved the highest \(\dot{V}O_{2\text{max}} \) scores, ranging between 50.5 ml/kg/min (Vescovi et al., 2006:224), 55.3 ml/kg/min (Ingebrigtsen et al., 2011:3354) and 53.8 ml/kg/min (Dillern et al., 2012:45). It is also evident that the players competing on a higher level (Ingebrigtsen et al., 2011:3354; Dillern et al., 2012:45) achieved a higher \(\dot{V}O_{2\text{max}} \) than the players on a lower level (Vescovi et al., 2006:224). Reports by Haugen et al. (2014:519), however, noted that midfielders (57.7 ml/kg/min) had a higher (p=0.48) \(\dot{V}O_{2\text{max}} \) in comparison with goalkeepers (52.3 ml/kg/min) in a study conducted over an 18-year period using direct \(\dot{V}O_{2\text{max}} \) measurements. Further result analysis of elite Norwegian first- and second-division female players in the study by Ingebrigtsen et al. (2011:3354) revealed that forwards (52.9 ml/kg/min) had the second-highest \(\dot{V}O_{2\text{max}} \) values, with the lowest values measured among the defenders (51.9 ml/kg/min) and goalkeepers (50.7 ml/kg/min). A similar trend was reported for Norwegian third-division players, with the forwards (53 ml/kg/min) achieving higher values than the defenders (52.1 ml/kg/min) and goalkeepers (48.7 ml/kg/min) (Dillern et al., 2012). This trend was also evident among sub-elite female players, with results of 49.4 ml/kg/min, 47.6 ml/kg/min and 47.1 ml/kg/min being reported for forwards, defenders and goalkeepers respectively (Vescovi et al., 2006:224). It is, therefore, evident that midfield and forward players tend to possess a higher level of aerobic fitness that may be linked to their positional demands on the field (Haugen et al., 2014:519).

The Yo-Yo IR1 test has high reproducibility (r=0.98) and is associated with match-related demands (r=0.53–0.71) of male soccer players (Krustrup et al., 2003:703). The Yo-Yo IR1 test is frequently used to evaluate a player’s ability to perform repeatedly during intervals over a prolonged period of time (Metaxas et al., 2005:80). According to Castagna et al. (2009:1958), the Yo-Yo IR1 is also a valid test for assessing match-related physical fitness in young male soccer players. Performance in the Yo-Yo IR1 was demonstrated to be related to high-intensity activity (HIA) (r=0.77; p<0.00001), high-intensity running (HIR) (r=0.71; p=0.00003) and total distance
covered \((r=0.65; \ p=0.002)\) during a match (Castagna et al., 2009:1957). Among elite female soccer players, Yo-Yo IR1 performance correlated positively with HIR \((r=0.76; \ p=0.002)\) and total distance covered \((r=0.56; \ p=0.038)\) during a match (Krustrup et al., 2005:1245). The study concluded that the Yo-Yo IR1 test is a good predictor of the ability of elite female soccer players to perform HIR throughout matches (Krustrup et al., 2005:1245). It is suggested that an average distance of 1 200 m may be considered the reference standard for classifying elite female soccer players (Mujika, Santisteban et al., 2009:111) (Table 3).

Table 3: Distances obtained during the Yo-Yo intermittent recovery tests among female soccer players

<table>
<thead>
<tr>
<th>Author</th>
<th>Country & competition level</th>
<th>Test method</th>
<th>Distance (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hasegawa and Kuzuhara (2015:53)</td>
<td>Japanese Aichi sub-elite 1(^\text{st}) Division</td>
<td>Yo-Yo IR1</td>
<td>889.5±321.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>760±215.4 (FW)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>820±316.7 (MF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1095±324.2 (DF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>600±169.7 (GK)</td>
</tr>
<tr>
<td>Bendiksen et al. (2013:1432)</td>
<td>Norwegian 1(^\text{st}) Division</td>
<td>Yo-Yo IR1</td>
<td>1232±244</td>
</tr>
<tr>
<td>Milanovic et al. (2012:70)</td>
<td>Serbian A-National Team</td>
<td>Yo-Yo IR1</td>
<td>Range 880–930</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>780±84.8 (GK)</td>
</tr>
<tr>
<td>Krustrup et al. (2010:438)</td>
<td>Danish top league</td>
<td>Yo-Yo IE2</td>
<td>1213±90</td>
</tr>
<tr>
<td>Mujika et al. (2009:110)</td>
<td>Spanish 1(^\text{st}) Division</td>
<td>Yo-Yo IR1</td>
<td>1224±255 (outfield players)</td>
</tr>
<tr>
<td>Mujika et al. (2009:110)</td>
<td>Spanish 2(^\text{nd}) Division</td>
<td>Yo-Yo IR1</td>
<td>826±160 (outfield players)</td>
</tr>
<tr>
<td>Krustrup et al. (2005:1245)</td>
<td>Danish highest division</td>
<td>Yo-Yo IR1</td>
<td>1379 (range 600–1960)</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± standard deviation. Abbreviations: FW: Forwards; MF: Midfielders; DF: Defenders; GK: Goalkeepers; Yo-Yo IR1: Yo-Yo Intermittent Recovery level 1 test; Yo-Yo IE2: Yo-Yo Intermittent Endurance level 2 test.

The aerobic capacity of soccer players is dependent upon the level of competition (Dillern et al., 2012:47). Average distances of 1 379 m, 1 232 m and 889 m for the Yo-Yo IR1 test have been reported by Krustrup et al. (2005:1245), Bendiksen et al. (2013:1432) and Hasegawa and Kuzuhara (2015:53) respectively for Danish elite, Norwegian elite and Japanese sub-elite female players, indicating that players competing on a higher level are capable of producing a better
result in the Yo-Yo IR1 test. Distances recorded for Japanese sub-elite female players indicated that defenders and midfielders ran the longest distances (1 095 m and 820 m respectively) and that the forwards and goalkeepers ran the shortest distances (760 m and 600 m respectively), although the results did not show a statistically significant difference (p<0.05) between any playing positions (Hasegawa & Kuzuhara, 2015:53). Mujika et al. (2009:110) also used the Yo-Yo IR1 test and compared two groups of outfield players participating on different levels, namely first and second division. They found that the results obtained for the first-division players (average 1 224 m) differed (p<0.001) from those obtained for the second-division players (average 826 m) (Mujika et al., 2009:110) (See Table 3). Furthermore, it was reported that the results for the Yo-Yo IR1 test for Japanese female sub-elite players were 22% lower than the results for the Under-19 Japanese team players and 25% lower than the results for the Japanese national team players, thus confirming the correlation between the Yo-Yo IR1 test and the competitive level of the players (Hasegawa & Kuzuhara, 2015:55). These results indicate the need to possess a high level of endurance to compete professionally (Mujika et al., 2009:110).

2.3.2 Importance of anaerobic fitness variables and means of measurement in soccer

Due to the nature of a soccer match consisting of stop-and-go activities coupled with infrequent stoppages in play, it is important that not only the aerobic but also the anaerobic energy system be well trained in order to maximise HI performance and ensure optimal recovery between bursts of anaerobic activity (Miller et al., 2007:48). Stølen et al. (2005:503) maintain that strength and power are equally important for endurance in soccer. In order to perform short sprints, jumps, tackles and dual play, anaerobic energy release is essential with regard to who is sprinting fastest and jumping the highest (Stølen et al., 2005:509). Body movements are further determined by situations within a match, including players from the opposing team with and without the ball, movement of the ball and movement of team players (Kapidžić et al., 2011:29).

Even though assessment protocols typically include laboratory and field tests for the assessment of anaerobic performance characteristics, the use of field tests requires little equipment and involves common movement skills, thereby requiring minimal instruction on proper performance (Vescovi & McGuigan, 2008:97). Laboratory assessments commonly necessitate familiarisation since individuals often lack experience to perform the movements with the correct techniques, thus compromising safety and the accuracy of these particular testing methods (Vescovi & McGuigan, 2008:97). Field tests are, therefore, more sport specific due to their simplicity and the lack of equipment required (Walker & Turner, 2009:53).
Explosive-type actions such as sprinting and jumping are viewed as essential elements for soccer performance (Sedano et al., 2009:388). Sprint bouts during elite male soccer matches have been reported to last 2 s to 4 s on average (Vigne et al., 2010:305). Elite female players have been reported to perform 125 (range: 72–159) HI runs with an average duration of 2.3 s (range: 2–2.4 s) (Krstrup et al., 2005:1244). Previous studies proved that elite players routinely achieve higher scores compared with sub-elite or non-selected players in terms of sprinting and jumping performance of both female (Hoare & War, 2000:756; Mujika et al., 2009:110; Sedano et al., 2009:390) and male players (Reilly et al., 2000:698; Cometti et al., 2001:48; Gissis et al., 2006:210). The training of elite players should thus focus on improving their ability to perform intense exercise and to recover rapidly from HI efforts (Bangsbo et al., 2006:670).

2.3.2.1 Repeated sprint ability of female soccer players

Sprinting during a soccer match fluctuates in its intensity in a stochastic manner, thereby requiring a player to perform repeated sprints in any direction (Wragg et al., 2000:77). Repeated-sprint ability (RSA) is described as the ability to perform short-duration sprints (<10 s) with a short recovery time (<30 s) (Bishop & Edge, 2006:373; Mujika et al., 2009:1581) and is broadly accepted as a vital component of HI intermittent sports such as soccer (Gabbett, 2010:1191). Soccer requires players to perform a number of short sprints, interspersed with periods of low-to-moderate activity or passive rest (Bishop & Edge, 2006:373; Mujika et al., 2009:1581). Spencer et al. (2004:846) define an RSA bout as a minimum of three sprints, with an average recovery duration of less than 21 s between sprints. A review by Spencer et al. (2005:1028) on sprinting during field-based team sports concluded that the mean duration of HI movements is 2.7–4.4 s with a recovery duration of 40–70 s. The review also confirmed that even though it is difficult to compare studies due to the differences in methodologies used, the mean distance (10–20 m) and duration (2–3 s) of sprints during field-based team sports are relatively consistent (Spencer et al., 2005:1031).

With reference to the criteria for RSA provided by Spencer et al. (2004:846), a study on Australian female soccer players participating in international matches showed a number of 4.8 sprint bouts per player during a match (Gabbett & Mulvey, 2008:549). A mean number of 3.4 sprints (ranging between 3 and 6 sprints) were performed within a repeated-sprint bout, and recordings of 5 sprints on four occasions and 6 sprints on two occasions were also reported (Gabbett & Mulvey, 2008:549). An average sprint duration of 2.1 s and an average maximal sprint duration of 2.9 s were recorded, as well as an average recovery time of 5.8 s between sprints, with most recovery time being active in nature (Gabbett & Mulvey, 2008:549). Due to the unpredictable nature of
team sports, short phases of repeated-sprint activity may be required on numerous occasions throughout a match, and even though it is probable that this type of activity only contributes a small proportion to the overall motion activity during competition, it may be critical to the end result of a match (Spencer et al., 2005:1030).

The RSA field test is believed to represent a valid measure of anaerobic soccer performance (Sporis et al., 2008:559) due to its high reliability and validity (Wragg et al., 2000:80). A wide range of testing protocols exist for determining the RSA of team sport athletes (Bishop & Spencer, 2004:2; Polman et al., 2004:196; Clark, 2007a:42; Sporis et al., 2008:561; Mujika et al., 2009:1583; Gabbett, 2010:1192; Krstrup et al., 2010:438; Jones et al., 2013:2; Shalfawi et al., 2014:20). Comparisons between studies are difficult due to variations in mode of exercise, duration of sprints, number of sprint repetitions, recovery type and training status of the players (Spencer et al., 2005:1039). Spencer et al. (2005:1039) analysed different studies that assessed RSA and concluded that a protocol involving six to seven sprints may best represent an intense bout of RSA specific to field-based team sports during competition. In a RSA test that consisted of seven 30-m sprints (with 30 s recovery), elite Norwegian female players achieved an average time of 5.0 s, an average fastest time of 4.9 s and an average total time of 35.2 s (Shalfawi et al., 2014:21).

Krupstrup et al. (2010:438) examined the effect of fatigue on elite Danish female players by conducting a RSA test consisting of three 30-m sprints (with 25 s active recovery) before and after a match. An average sprint time of 4.9 ± 0.1 s was reported for the RSA test conducted before the match, and a slower time (p<0.05) of 5.1 ± 0.1 s was reported for the RSA test conducted after the match, consequently establishing that fatigue has a negative influence on sprinting performance (Krupstrup et al., 2010:439). Gabbett (2010:1193) developed a game-specific test for RSA of elite female soccer players involving maximal effort accelerations, decelerations and active recovery in an attempt to reflect the most extreme demands of international competition. The study results confirmed that the developed test for RSA is a valid and reliable test (ICC = 0.91; TEM = 1.5%) to assess RSA in elite female players (Gabbett, 2010:1193). The reported results also indicated that players participating at national level (20.9 s) performed the RSA test faster (p<0.05) than elite players at a lower level (23.3 s) with regard to total time (Gabbett, 2010:1192). A limitation is recognised, however, where fixed recovery periods are imposed between repeated sprints since the patterns of exercise and recovery in team sports are described as random and are influenced by tactical factors and players’ ability to select the intensity of their efforts (Girard et al., 2011:678).
A study conducted by Gharbi et al. (2015:209) on team-sport male athletes that included soccer players reported a fatigue index (FI) of 3.5% on an RSA test. A similar method was used by Dardouri et al. (2014:142), and a FI of 4.1% was reported. Furthermore, an inverse correlation \(r=-0.57; p<0.05 \) was found between the RSA FI and the \(\dot{V}O_{2\text{max}} \) measured, thereby confirming the important role of \(\dot{V}O_{2\text{max}} \) in influencing recovery during RSA (Gharbi et al., 2015:210). In addition, an inverse correlation \(p<0.05 \) was found between the Yo-Yo IE2 performance and the RSA FI among elite female soccer players \((r=-0.66; p<0.05) \), although no correlation was found between \(\dot{V}O_{2\text{max}} \) and RSA FI (Krstrup et al., 2010:439). It can, therefore, be concluded that the players with the highest Yo-Yo IE2 test scores also had the lowest RSA FI scores, indicating a relationship between training status and fatigue resistance (Krstrup et al., 2010:440).

Goalkeepers are known to perform highly explosive movements such as jumping, diving and catching with short bursts of forward, backward and lateral movements in order to position themselves in an optimal defensive position to protect the goal area (Aziz et al., 2008:835). A study conducted on male players found that goalkeepers (26.0 s) had a slower \((p<0.01) \) total sprint time in a RSA test \((8 \times 20\text{-m sprints}; 20\text{ s recovery}) \) compared to outfield players (25.3 s) (Aziz et al., 2008:835). Further analysis among outfield players showed that forwards (24.8 s) produced the fastest RSA total sprint time, which was faster \((p<0.05) \) compared with both midfielders (25.5 s) and forwards (24.8 s) (Aziz et al., 2008:835). This is not an unexpected outcome and indicates that RSA is more relevant for outfield players than goalkeepers (Aziz et al., 2008:835).

2.3.3 Relationship between aerobic and anaerobic fitness components

Maximal or near-maximal short-duration sprints \((1–7\text{ s}) \) combined with brief periods of recovery (rest or low-to-moderate intensity activity) over extensive time periods \((60–90\text{ min}) \) are characteristics of most team sports (Bishop & Spencer, 2004:1; Bishop & Edge, 2006:373). Often, the sprints are separated by recovery periods, which are long enough \((>1\text{ min}) \) to allow complete or near-complete recovery, thus not influencing sprint performance negatively (Bishop & Edge, 2006:373). Soccer involves repeated sprinting and jogging, which are categorised as HIR (Hasegawa & Kuzuhara, 2015:55). Gabbett (2010:1193) suggested that RSA tests should be conducted in combination with traditional speed tests \((e.g. 40\text{-m sprint with splits at 10\text{-m intervals})} \) and maximal aerobic power tests \((e.g. \text{multistage fitness test}) \) since RSA is likely to be affected by both speed and maximal aerobic power. A belief exists that a high level of aerobic fitness is important for RSA (Bishop & Edge, 2006:374). However, to date, only a limited number
of studies have reported on the relationship between $\dot{V}O_2\text{max}$ and RSA (Krstrup et al., 2010; Jones et al., 2013; Gharbi et al., 2015).

A clearer understanding of factors contributing to fatigue during RSA is the first step in designing training programmes that could delay the onset of fatigue, improve RSA and as a consequence, improve physical match performance (Girard et al., 2011:676). Shalfawi et al. (2014:19) highlighted the importance of developing both aerobic capacity and RSA in an attempt to improve overall performance among Norwegian female players and explained that aerobic capacity could play an important role in the recovery between HI sprints during a match. The study found a moderate correlation ($r=-0.483$; $p\leq0.01$) between the multistage fitness test and the RSA fastest time and also found a large correlation with the RSA mean time ($r=-0.552$; $p\leq0.01$) and the RSA total time ($r=-0.552$; $p\leq0.01$) (Shalfawi et al., 2014:22). A study on elite male soccer players also supports the theory that aerobic capacity is a key factor in influencing recovery from RSA (Jones et al., 2013:3). Moderate correlations were found between $\dot{V}O_2\text{max}$ and RSA mean time ($r=-0.655$; $p<0.01$) and between $\dot{V}O_2\text{max}$ and RSA total time ($r=-0.591$; $p<0.01$) (Jones et al., 2013:3).

Substantial improvements in Yo-Yo IR1 performance have been noted as a result of repeated-sprint training (Shalfawi et al., 2013:36). Evidence provided by Tomlin and Wenger (2002:199) also indicated a relationship between aerobic and anaerobic fitness by proving that players with a higher level of aerobic fitness were better able to maintain their performance over repeated sprints and demonstrated that more oxygen was consumed throughout nine of the ten sprint-recovery bouts. Similarly, a study on junior elite male players reported a higher number of sprints performed during a match by players who possessed a higher $\dot{V}O_2\text{max}$, indicating that improved levels of aerobic fitness enhance the ability to cover a longer running distance at a higher intensity (Helgerud et al., 2001:1930).

Despite the correlations discussed above, conflicting outcomes also exist concerning the relationship between aerobic fitness and RSA (Da Silva et al., 2010:2115). The relationship between aerobic fitness and RSA differs due to the type of study (Da Silva et al., 2010:2116). It was mentioned previously that a correlation does not necessarily indicate cause and effect since there may be other training adaptations associated with an increase in $V_2\text{max}$ that can affect RSA (Bishop & Spencer, 2004:1). Da Silva et al. (2010:2116) suggested that one of the aerobic variables known as the velocity at the onset of blood lactate accumulation (vOBLA) may be better associated with RSA than $\dot{V}O_2\text{max}$. A relationship was found between vOBLA and RSA mean time ($r=-0.49$; $p<0.01$) (Da Silva et al., 2010:2119). The minimum velocity needed to reach $\dot{V}O_2\text{max}$ also
showed a moderate correlation with RSA mean time \((r=-0.38; \ p<0.01)\) (Da Silva et al., 2010:2119). The study, however, reported that no association could be found between any of the aerobic variables and RSA fastest time (Da Silva et al., 2010:2119). According to Jones et al. (2013:4), studies should not utilise an indirect method of determining \(\dot{V}O_{2\max}\) such as a multistage fitness test to determine the relationship between \(\dot{V}O_{2\max}\) and RSA because these tests are likely to have a 10–15% inaccuracy. Furthermore, Da Silva et al. (2010:2119) are of the opinion that \(\dot{V}O_{2\max}\) is a poor indicator of RSA \((r=0.08)\). The authors add that the relationship between these two variables may be influenced by the length of sprints performed since there are no reports that indicate \(\dot{V}O_{2\max}\) is related to RSA when sprints of less than 40 m or 6 s have been used (Da Silva et al., 2010:2119). It is additionally suggested that anaerobic power (such as the fastest individual sprint time) proves to be the strongest predictor of RSA (Da Silva et al., 2010:2120). According to Da Silva et al. (2010:2116), the age and experience level of players should also be considered when making comparisons as these factors may influence the results. In line with these reports, Chaouachi et al. (2010:2667) suggested that intermittent HI endurance (Yo-Yo IR1 performance) and RSA performance should be regarded as semi-independent performance variables since only a moderate relationship \((r=-0.44)\) could be found between these two variables when measured in elite male soccer players.

Shalfawi et al. (2014:22) recently found large correlations between aerobic fitness (multistage fitness test) and both 40-m linear sprint times \((r=-0.51; \ p\leq0.01)\) and 20–40-m sprint times \((r=-0.595; \ p\leq0.01)\) among female players. The study did not find a relationship between aerobic fitness and sprint acceleration time over 0–20 m (Shalfawi et al., 2014:23) although the authors explained that such a relationship was probable because a soccer match involves many high-intensity actions. The addition of HI aerobic interval training can elevate \(\dot{V}O_{2\max}\) levels with no negative effect on sprinting performance (McMillan et al., 2005:277). The discrepancies between the results of different studies may be related to differences in the testing protocols used to assess the aerobic and anaerobic fitness components (McMillan et al., 2005:274; Mujika et al., 2009:109; Shalfawi et al., 2014:20). The training status of the players may have also influenced the results of specific conditioning programmes (Shalfawi et al., 2013:39). Furthermore, untrained individuals tend to respond positively to training interventions, thus making the evaluation of training outcomes more complex (Shalfawi, Young et al., 2013:39). The timing of a study in regard to the season of training or competition may also have an influence on the results observed, depending on whether a study is conducted at the beginning of a season, or during the middle or end of a season when players are challenged with a higher competition demand (Shalfawi et al., 2013:40).
The use of aerobic training to improve RSA performance may yield only marginal benefits (Aziz et al., 2000:199). It is suggested that in order to improve RSA, specific training programmes that focus on both aerobic and anaerobic components should be utilised (Da Silva et al., 2010:2120). Player selection and testing together with physical conditioning should reflect the balance between aerobic endurance and anaerobic power and capacity required (Haugen et al., 2014:520).

2.4 Technical skill characteristics of female soccer players

Team sports are characterised not only by intermittent HI exercise but also by the contribution of a variety of technical skills (McGregor et al., 1999:895; Russell et al., 2010:1399). Soccer is categorised as a free-flowing game requiring the execution of many aspects of skill in a dynamic context (Ali, 2011:170). Skills such as passing, dribbling and controlling and shooting a ball are essential in a soccer match (Ali, 2011:175), with dribbling and short passes being the most frequently performed skills observed in matches (Bloomfield et al., 2007:69). During high-level matches, there are usually 900–1000 actions performed with the ball and approximately 350 passes with one touch and 150 passes with two touches (Shephard, 1999:758). High levels of technical and tactical skills are, therefore, required for success in a match (Clark, 2007b:454; Impellizzeri et al., 2008:1193; Rampinini et al., 2009:228) although skill assessment is seldom included during fitness evaluations of soccer players (Ali, 2011:170).

A dearth of studies on skill performance in female soccer players exists within published literature, which is remarkable since it is readily acknowledged that the most important component in soccer play is successful skill execution (Ali, 2011:170). O’Reilly and Wong (2012:1030) explained that the assessment of skill plays a large part in conducting player and team evaluations due to the highly competitive nature of elite-level soccer. Russell and Kingsley (2011:525) explained that it is not unexpected that players allocate a large percentage of their training time to improving their skills due to the technical demands of the game and the importance of skilled actions in defining success. However, coaches do not regularly monitor the efficacy of training on technical performance using means other than empirical observations (Russell & Kingsley, 2011:525). O’Reilly and Wong (2012:1030) further suggested that coaches and trainers could greatly benefit from more precise and objective testing procedures, thus positively contributing to the selection of teams in order to gain a competitive edge over opponents.

According to Ali (2011:171), a difference exists between ‘technique’ and ‘skill’ in that the assessment of a movement involving the isolation of one component of the game such as shooting or passing from a static and often rested position is an assessment of technique rather
than skill. Ali (2011:171) further explains that skill refers to a player’s ability to select and execute the most appropriate technique as determined by the demands of the particular situation. In addition, Ali (2011:171) claims that the ability to make decisions is a fundamental element of skill. Due to the highly competitive character of elite-level sport in general and particularly in soccer, the determination of skill level plays a large role during player assessments (O’Reilly & Wong, 2012:1030). Pedersen et al. (2014:962) state that the importance of technical skills in soccer is evident when examining the technical report that is released together with the published statistics regarding tournaments after every FIFA competition.

According to the statistics published by FIFA following the 2015 FIFA Women’s World Cup held in Canada, a total of 146 goals were scored during the tournament with an average of 2.8 goals per match compared with 2.6 goals per match in the 2011 FIFA Women’s World Cup (FIFA, 2015). The analysis also revealed that an average of 374.3 short passes were performed per match compared with 332.2 short passes in 2011 (FIFA, 2015). In addition, Team USA beat the previous record set in 2011 for the highest-scoring final in the history of the tournament and also surpassed Germany as the top-scoring team in the history of the tournament with 112 goals scored (FIFA, 2015). Following every FIFA tournament, a technical report is published to analyse the progress of the game (FIFA, 2015). The 2015 technical report on the Women’s World Cup disclosed that over 70% of goals were scored during transition phases (FIFA, 2015). The report also revealed that more than 80% of goals were scored in front of the goal inside the penalty area and mostly with one touch (FIFA, 2015). The goals were scored after a through-ball from the centre of the field, from a cut-back or from a square ball inside the penalty area (FIFA, 2015).

Recently, studies have focused on skill assessment and its relevance to soccer performance (Lyons et al., 2006; Vaeyens et al., 2006). According to Ali (2011:175), the motor tasks of passing, controlling, dribbling and shooting the ball are essential aspects in soccer. Rampinini et al. (2009:232) also identified certain skill parameters that seem to be more relevant for success in top-level professional soccer and include involvements with the ball, short passes, successful short passes, tackles, dribbling, shots and shots on target. Speed, precision and success are also regarded as independent outcome measures in assessing the proficiency of technical skills (Russell et al., 2010:1399).

2.4.1 Technical skill assessment using multifaceted methods

Soccer players are often required to perform a sequence of skilful actions in a match (Ali, 2011:11). A skilled movement is regarded as a learned ability by a player to select and perform the correct technique depending on the particular situation (Ali et al., 2007:1462). The value of
Chapter 2: Literature overview: Match play analysis, anthropometric measurements and physical profiles of female soccer players

technical skill assessment should not be underestimated because it could provide important information for talent identification and the design of interventions with the aim of maintaining technical skill performance during a match (Ali, 2011:171). According to Wallace and Norton (2014:223), a large variety of motor skills is required by elite players, allied with rapid information processing and decision-making as the game shifts between attacking and defending activities. A player must thus be able to receive and control a ball and dribble past an opponent before shooting at the goal (Ali, 2011:11). This ability to control the ball is regarded as an important skill (Russell & Kingsley, 2011:525).

Even though a large variety of soccer skill tests are popular and used by coaches, many of these tests have not been validated, which leads to hindered research into soccer skill performance (Ali et al., 2007:1462; Russell et al., 2010:1399). This is related to the difficulty of replicating the complex nature of soccer skills in a way that can be controlled in a laboratory setting (Ali, 2011:171). O'Reilly and Wong (2012:1034) explained that researchers often seek new and enhanced assessment methods to evaluate the ability of players in a more authentic and game-like situation. Thus, as further explained by O'Reilly and Wong (2012:1034), some assessment procedures including elements of both skill and physical ability have been developed. Pedersen et al. (2014:963), however, stated that it is not possible to evaluate technical skills in a completely valid manner outside performance in an actual match situation.

According to published literature, various tests have been used in male and female soccer to assess technical skills such as heading (Rösch et al., 2000:34; Pedersen et al., 2014:965), dribbling (Hoare & Warr, 2000:754; Rösch et al., 2000:32), passing (Hoare & Warr, 2000:754; Rostgaard et al., 2008:285; Pedersen et al., 2014:964), shooting (Rösch et al., 2000:33; Starosta et al., 2011:867; Pedersen et al., 2014:965) and juggling (Hoare & Warr, 2000:754; Rösch et al., 2000; Pedersen et al., 2014:964). There is, however, a lack of valid and reliable technical skill tests, thus limiting the amount of research on soccer skill performance (Ali et al., 2007:1462).

A review by Ali (2011:171) reporting on assessment methods for diverse technical skills explained the importance of the different types of validity of these tests. Construct validity means that for a test score to have real meaning, the person believed to have a higher level of the specific characteristic being researched should receive the higher score and thus, it is important to discriminate between different levels of players (Ali, 2011:171). In order to maintain ecological validity, soccer skill tests should attempt to include reactive or perceptual components with technical and physical tasks (Bullock et al., 2012:431). Technical skill tests measuring ecological validity should be focused on skills typically performed during an actual match (Ali, 2011:171).
Chapter 2: Literature overview: Match play analysis, anthropometric measurements and physical profiles of female soccer players

However, this type of method lacks experimental control as a result of the intricate interactions among players during a match as well as different playing positions (Bullock et al., 2012:431).

A crucial skill that is often measured in technical skill-assessment protocols is dribbling (McGregor et al., 1999:896; Hoare & Warr, 2000:754; Reilly et al., 2000:697; Rösch et al., 2000:32; Stone & Oliver, 2009:165). These tests often involve the traditional techniques of dribbling around cones and conducting the tests in the fastest possible time (McGregor et al., 1999:896; Mujika et al., 2009:1009; Stone & Oliver, 2009:165). Russell et al. (2010:1400), however, stated that a shorter time may not necessarily represent a more skilled action and explained that dribbling tests using speed as the sole indicator of success limits ecological validity of technical performance where possession can be won or lost due to a lack of ball control. Passing the soccer ball accurately to a team player is also considered a critical ability required by soccer players (Ali, 2011:179). Passes are either assessed as short passes (Rösch et al., 2000:33) or long passes (Rösch et al., 2000:33; Pedersen et al., 2014:964). This type of assessment method is considered to be subject to the coaches’ opinions and the availability of the same coaches over repeated testing sessions (Ali, 2011:179). These types of assessments over short and long distances are also regarded as too simplistic (Ali, 2011:180). It is suggested that the players should rather demonstrate the ability to pass under time constraints and opposing defenders as well as make the decision with regard to whom they should pass, and by this means, be assessed for accuracy and passing under time pressure (Ali, 2011:180).

In addition to technical skills, players also need to possess a sufficient cognitive skill level (Ali, 2011:171) since they are confronted with a complex and rapidly changing environment during a match (Williams, 2000:737). The players need to gather information from the ball, team players and opponents before choosing a suitable response based upon current objectives such as strategy and tactics as well as action constraints such as technical ability and physical capacity (Williams, 2000:737). Proficient skill performance is thus also affected by decision-making (Russell et al., 2011:231). Soccer players, therefore, need to be in possession of diverse technical skills in order to carry out actions such as receiving and controlling a ball, dribbling past an offensive player and shooting in an attempt to score a goal (Ali, 2011:180). The majority of skills performed in a soccer match are open skills, with the exception of certain closed skills such as free kicks and corner kicks (Ali et al., 2007:1470). Even though a vast variety of technical skill-assessment methods exist, a review by Ali (2011) explained that many of these tests have not been validated or tested for reliability; they lack ecological validity and are rather evaluations of the players’ ‘technique’ than evaluations of the players’ ‘skill’.

47
Until recently, the lack of a validated soccer passing test has considerably delayed research into soccer skill performance (O’Reilly & Wong, 2012:1035). The recently developed Loughborough Soccer Passing Test (LSPT) now provides an opportunity for researchers to assess the multi-faceted aspects of soccer within a dynamic context that includes passing, dribbling, controlling, shooting and decision-making within match play (Ali et al., 2007:1462). Four wooden rebound boards are placed in a rectangle on four lines, marking a 12.0 m x 9.5 m grid to the inside of the boards (Ali et al., 2008:918). A coloured target area (red, blue, white and green; dimensions: 0.6 m x 0.3 m) is painted or taped in the middle of each wooden board beforehand, and an aluminium strip (0.1 m x 0.15 m) is attached vertically in the middle of each target area (Ali et al., 2008:918). Yellow lines are used to mark the inner (1 m x 2.5 m) and outer (2.5 m x 4.0 m) rectangles to indicate the passing zone, with coloured cones indicating the different zones (Ali et al., 2008:918) (See Figure 1). Players are required to perform 16 passes against the coloured target areas in the fastest possible time, and penalty time for inaccurate passes or poor ball control is imposed (Ali, 2011:180). One examiner calls out the order of passes, based on the coloured target areas and consisting of eight short and eight long passes, while another examiner records the time taken from the start of the test (first pass) to the last completed pass (Ali et al., 2008:918). The ball is played from within the passing area, and penalty time is awarded for the following errors: missing the bench completely or passing to the wrong bench (5 s); missing the target area (3 s); handling the ball (3 s); passing from outside the designated area (2 s); causing the ball to touch a cone (2 s); and exceeding the allocated 43 seconds to complete the test (1 s awarded for each additional second) (Ali et al., 2008:918). However, if the ball hits the aluminium strip, one second is deducted from the total time (Ali et al., 2008:918). The LSPT thus requires players to decide constantly how best to control the ball, how to position themselves for the subsequent pass and how to determine the location of the next target (Ali, 2011:180). Results of the LSPT are typically reported as: time taken to complete the test; penalty time accrued; and total time (Ali et al., 2008:919).
Chapter 2: Literature overview: Match play analysis, anthropometric measurements and physical profiles of female soccer players

Ali *et al.* (2008:918) conducted a study on elite and non-elite female soccer players in order to validate the use of the LSPT for female soccer players. The study reported faster times for the elite players compared with the non-elite players regarding time taken to complete the test (54.6 s vs 61.6 s; \(p=0.002\)), penalty time (22.8 s vs 35.9 s; \(p<0.001\)) and total overall performance time (77.4 s vs 97.5 s; \(p<0.001\)) (Ali *et al.*, 2008:919). For the two groups combined, average time taken to complete the test was 57.8 s, penalty time reported was 28.8 s and the average total time was 86.5 s (Ali *et al.*, 2008:919). According to Ali *et al.* (2008:920), there was a good degree of reliability between trial A and trial B (average time: \(r = 0.81\); penalty time: \(r = 0.63\); total time: \(r = 0.73\)) for the whole group assessed; however, the elite players produced more consistent results with regard to components measured, took 13\% less time to complete the test and accrued 57\% less penalty time compared with the non-elite players.

In a different study conducted to examine the validity and reliability of the LSPT, Ali *et al.* (2007:1468) found that first- and second-team (classified as elite) university male players performed better than third- and fourth-team (classified as non-elite) players did. The reported mean times for time taken to complete the test, penalty time and total performance time for the elite players were 40.2 s, 3.3 s and 43.6 s respectively, whereas the mean times reported for the non-elite players were 42.2 s, 10.3 s and 52.5 s respectively (Ali *et al.*, 2007:1466). The elite players completed the test in a faster time \((p<0.05)\) than the non-elite players, received a lower penalty time \((p<0.01)\) and scored a lower total performance time \((p<0.01)\) (Ali *et al.*, 2007:1466).

Figure 1: Schematic representation of the Loughborough Soccer Passing Test (Ali *et al.*, 2008) (used by permission)
It is evident that the added penalty time accounts for the largest difference between the elite and non-elite group (Ali et al., 2007:1466). This difference may be the result of better passing accuracy and control of the ball (fine motor skill) by the elite players rather than the speed of completing the test (gross motor skill), although both aspects are regarded as important for skilled soccer movements (Ali et al., 2007:1469). The LSPT can thus distinguish players of different competitive levels in terms of short-passing ability (Ali et al., 2007:1468; Ali et al., 2008:920).

In a further study by Ali et al. (2008) among female soccer players, elite players performed the second trial (54.4 s) faster (0.2% difference) than the first trial (54.7 s), while non-elite players performed the first trial (61.2 s) faster (1.3% difference) than the second trial (62.0 s) (Ali et al., 2008:919). In considering the male players in the study of Ali et al. (2007:1466), the second trial was performed faster than the first trial by both the elite players (first trial: 40.9 s; second trial: 39.6 s; p<0.01) and non-elite players (first trial: 43.3 s; second trial: 41.0 s; p<0.01). Regarding both female groups in the study of Ali et al. (2008:919), more penalty time was accrued during the first trial (elite: 24.7 s; non-elite: 36.0 s) compared with the second trial (elite: 20.9 s; non-elite 35.8 s). This resulted in the elite players producing an overall better performance in the second trial (first trial: 79.3 s; second trial: 75.4 s), and the non-elite players achieving the best overall performance in the first trial (first trial: 97.3 s; second trial: 97.8 s) (Ali et al., 2008:919). Similar tendencies were reported by Ali et al. (2007:1466) whereby the male elite and non-elite players accumulated less penalty time in the second trial (elite: 2.7 s; non-elite: 8.6 s) compared with the first trial (elite: 3.9 s; non-elite: 12.0 s), with the results being different (p<0.05) between the two trials for the non-elite players. The total performance time, however, improved for both the elite group (first trial: 44.9 s; second trial: 42.3 s; p<0.05) and non-elite group (first trial: 55.2 s; second trial: 49.9 s; p<0.01) (Ali et al., 2007:1466). The male group in the study of Ali et al. (2007:1466) as a whole performed the second trial (40.3 s) faster (p<0.01) than the first trial (42.1 s), accumulated less (p<0.01) penalty time in the second trial (5.6 s) than the first trial (7.9 s) and achieved a better (p<0.01) total performance time in the second trial (46.0 s) compared with the first trial (49.9 s). When the female groups were combined in the study of Ali et al. (2008:919), the first trial (57.6 s) was performed faster than the second trial (58.0 s); however, more penalty time was accrued in the first trial compared with the second trial (29.9 s vs 27.7 s), which resulted in a slower overall first trial in comparison with the second trial (87.5 s vs 85.6 s). Ali et al. (2007:1469) reported a trial-order effect in which performance showed improvement from the first to the second trial and explained that more attempts to familiarise the players with the test would reduce this learning effect. Ali et al. (2008:920) also recommended that players attend at least one familiarisation session, preferably two.
In summary, the LSPT has the ability to distinguish various components of skill performance between grades (Ali et al., 2008:921). The LSPT includes a dynamic element in which the player needs to respond to the investigator’s call, needs to make use of memory and perception to identify the next pass in the sequence and needs to perform the motor tasks of controlling, dribbling and passing against a specific target (Ali & Williams, 2009:1500). The study by Ali et al. (2008:920) confirmed that the LSPT is a valid and reliable method for examining soccer skill performance in female soccer players. However, the authors recommend that future studies utilising the LSPT should focus on the highest level of soccer players at their disposal because their study found more consistent performance among the elite players due to lower random error (Ali et al., 2008:920). The study conducted on male players also reported a higher repeatability of the LSPT for elite players and specified that the most reliable aspect of the test was the time taken to complete the test since it had the lowest standard error of measurement (Ali et al., 2007:1466). The test was also found to be more reliable among the elite male players when compared with the non-elite players (Ali et al., 2007:1469). Players of a higher skill level were able to perform the test faster without compromising their ability to make accurate passes and control the ball (Ali et al., 2007:1470).

2.4.2 Effects of aerobic fatigue on technical skill performance

A vital component of a sport in which the aim is to score more goals than the opponent is the ability to maintain good technical performance throughout the exercise (Russell et al., 2010:1399). However, the physiology of intermittent exercise, the technical responses such as skill performance that includes passing, shooting and dribbling and the physical demands of team sports are not well understood (Russell & Kingsley, 2011:524). In addition, limited information exists regarding the effects of fatigue on the performance of soccer skills (Ali & Williams, 2009:1499). Due to the fact that many sport skills are performed in a fatigued state, there is a need to assess skill acquisition and performance in this condition (Lyons et al., 2006:200). According to Lyons et al. (2006:197), soccer players are likely to suffer temporarily from fatigue, specifically towards the end of a match. It has also been proved that the critical period for scoring and conceding goals is between the 76th and 90th minute of the match (Njororai, 2014:62). Furthermore, Njororai (2014:61) claimed that players who are tired are prone to errors in judgement in terms of the timing of passes, marking, meeting crosses, timing of tackles, passing back to the goalkeeper and defensive clearance. Rampinini et al. (2008:939) suggested that the decrement in short-passing ability during a match is very similar to that found for physical performance.
Studies by Rampinini et al. (2008), Mujika et al. (2009), and Stone and Oliver (2009) focused on the impact of fitness level on soccer skill performance. The study by Stone and Oliver (2009:164) on male soccer players assessed the effect of a 45-minute Loughborough Intermittent Shuttle Test (LIST) on the ability to dribble a ball (measured through a slalom dribbling test). The dribbling test was initially performed in isolation and was followed by the LIST on a subsequent day (Stone & Oliver, 2009:165). The slalom dribbling time increased by 4.5% (ranging between 1.5% and 11.4%) (p<0.05) after implementation of the 45-minute LIST (Stone & Oliver, 2009:169). This increase in dribbling time supports the notion that fatigue results in a reduced speed of skill execution, which is attributed to reduced motor control when in control of the ball (Stone & Oliver, 2009:173).

Short-passing ability measured through the modified version of the LSPT (mLSPT) was influenced negatively when total performance time was measured from pre-match (65.5 s) to after the first half (75.3 s) and the second half (78.1 s) of the match (p<0.001) (Rampininiis et al., 2008:937). Passing precision calculated by means of penalties decreased (p<0.001) from the start (16.9 s) to the end of the first half (24.1 s; 43.0%) and the second half (27.3 s; 62%) of the match (Rampinini et al., 2008:937). The time taken to complete the mLSPT also increased by 4.0% and 5.0% after the first half and the second half of the match respectively, suggesting a decrease in dribbling performance (Rampinini et al., 2008:937). Assessments conducted at different time intervals throughout the match indicated that penalty time (accrued due to number of mistakes made during performance of the mLSPT) increased by 17% during the first half, increased by 41% after the first half and during the second half and increased by as much as 60% after the second half (p<0.01) (Rampinini et al., 2008:937). This resulted in a total performance time for the mLSPT deteriorating by 13% after the first half and 18% after the second half (Rampinini et al., 2008:938). In conclusion, match-related fatigue has a detrimental effect on short-passing ability (Rampinini et al., 2008:940). The mLSPT time is influenced by the player’s ability to control the ball as well as time lost to bring the ball under control due to imprecise passes (Rampinini et al., 2008:940). Since the accuracy of passes performed decreased by 40–60%, it is likely that physical fatigue influences passing accuracy more than dribbling ability (Rampinini et al., 2008:940).

A different study protocol used by Impellizzeri et al. (2008:1193) investigated the effect of aerobic training on the decline in short-passing ability induced by a five-minute simulation. Impellizzeri et al. (2008:1196) claimed that although physical training permits fitter players to perform more physical activities during games, a reduction in short-passing ability similar to that in less fit players is still experienced. Following an eight-week, HI aerobic training intervention, it was
reported that junior male elite players performed more successful passes during matches from pre-training (19.4) to post-training (23.5) and less unsuccessful passes during matches from pre-training (9.1) to post-training (7.2) (Helgerud et al., 2001:1928). Impellizzeri et al. (2008:1196) further reported that exercise-induced fatigue influences passing accuracy more than it influences the ability to control and move with the ball. The study found that the enhancement of aerobic power and soccer-specific endurance can decrease the deterioration in technical skill proficiency due to fatigue (Impellizzeri et al., 2008:1196).

A soccer-skill test battery making use of video analysis was used to access passing, shooting, dribbling and decision-making (Russell et al., 2010:1400; Russell et al., 2011:223). Attempts were also made to determine if 90 minutes of soccer-specific exercise would have an influence on the quality of skill performance when assessed using the particular test battery (Russell et al., 2011:222). Russell et al. (2011:223) used a protocol consisting of 90 minutes of intermittent activity that was completed in two 45-minute halves and separated by a 15-minute recovery period (regarded as half time). The exercise periods were divided into 4.5-minute blocks, consisting of different types of intermittent exercise (Russell et al., 2011:224). Seven of these block exercises (followed by skill testing) were completed during each half, resulting in a total distance of 10.1 km being covered by players with 56 passes, 16 shots at target and 21 dribbles (Russell et al., 2011:224). Shooting accuracy declined by 25% from before exercise to after exercise, while passing success and dribbling precision remained similar throughout the exercise period (Russell et al., 2011:227, 228, 230). The protocol allowed for the assessment of ball speed during skill execution and found that shots performed in the second half of the exercise were slower than shots performed in the first half and that passing speed was reduced (p=0.011) over the 90 minutes (Russell et al., 2011:227, 228). Dribbling success and ball speed were similar between halves (Russell et al., 2011:230). The study concluded that passing and shooting performance declined as a result of fatigue caused by simulated match play (Russell et al., 2011:230).

Stone and Oliver (2009:164) used a different method to assess the effect of a 45-minute LIST on the ability of male players to shoot at the goal area, which was measured through the Loughborough Soccer Shooting Test (LSST). The study reported a reduction in points scored in the LSST (-7.6; p=0.012) after the implementation of the LIST, with some players showing a change in score of more than 25% (Stone & Oliver, 2009:169). A further reduction of 47% in the number of shots achieving the maximum of five points and an 85% increase in the number of shots achieving the minimum of zero points, were also recorded (Stone & Oliver, 2009:169). It was added that players may sacrifice speed of movement to maintain accuracy when in a fatigued state; however, players were unable to sacrifice speed during the LSST due to the time limits
imposed and as a result, accuracy declined (Stone & Oliver, 2009:173). It is evident through the changes in the distribution of points scored that shooting accuracy is reduced when players are fatigued, which would have obvious consequences in regard to the match outcome (Stone & Oliver, 2009:173).

Two studies focused on the influence of prolonged intermittent exercise (measured through the LIST) on the soccer skill performance (measured through the LSPT) of sub-elite male soccer players (Ali et al., 2007:1970; Ali & Williams, 2009:1500). Regarding the study of Ali et al. (2007:1971), the results reported for the LSPT total performance time pre-LIST and post-LIST were 51.2 s and 54.0 s respectively. A tendency was noticed for the group to accrue more penalty time post-LIST than pre-LIST (11.5 s to 9.1 s) (Ali et al., 2007:1972). This increase in penalty time suggests a deterioration in fine motor control (passing and ball control) and/or cognitive functioning (decision-making and perceptual awareness) (Ali et al., 2007:1974). Ali and Williams (2009:1501) also utilised a 90-minute LIST but conducted the LSPT at 15-minute intervals. The results indicated that penalty time increased towards the end of the exercise (Ali & Williams, 2009:1502). A 14% reduction in performance was observed (Ali & Williams, 2009:1505). Total performance time deteriorated mostly at 75 minutes (45 s) of exercise and at 90 minutes (44 s) of exercise (Ali & Williams, 2009:1503).

The distance covered by male soccer players in a 45-minute LIST was 6 000 m, which was suggested to be comparable with distances covered in the first half of a soccer match (Stone & Oliver, 2009:171). Consequently, it was explained that skill was reduced following 45 minutes of exercise, which explains the deterioration of skill by the end of the first half of a soccer match (Stone & Oliver, 2009:171). In addition, the decline in soccer skill performance during the last 15 minutes of exercise in a 90-minute intermittent running test reported by Ali and Williams (2009:1507) supports the notion that the most goals in a match are scored during this period for various reasons such as changes in arousal level that lead to lapses in concentration or ball control by players towards the end of a match. It is thus evident that superior technical ability can only be consistently demonstrated throughout a 90-minute match by players who possess a high level of endurance capacity (Stolen et al., 2005:503).

The players' aerobic capacity plays a major part in modern soccer and can influence technical performance considerably (Chamari et al., 2005:24). It was further suggested that players with a higher level of aerobic fitness play at a higher tempo, possibly creating more scoring opportunities than players with a lower level of aerobic fitness (Aziz et al., 2007:10). When viewed in terms of league positional ranking, it could thus be postulated that the clubs consisting of players who
Chapter 2: Literature overview: Match play analysis, anthropometric measurements and physical profiles of female soccer players

possess a higher fitness level would score more and/or concede less goals, winning a greater number of matches (Aziz et al., 2007:11). Endurance training in soccer should ideally be conducted using a soccer ball, and players may then additionally develop technical and tactical skills similar to situations experienced during the match (Helgerud et al., 2001:1930).

2.4.3 Effects of anaerobic fatigue on technical skill performance

Soccer performance is greatly influenced by anaerobic actions such as those involved in the execution of technical skills (Russell et al., 2011:511). The contribution of anaerobic metabolism to energy provision is essential during a soccer match as skilful actions are dependent on quick and powerful movements (Ali & Williams, 2009:1500). It is, however, unclear to what extent intense exercise affects a player’s technical skills (Rostgaard et al., 2008:283). Both sprinting and jumping are involved in ball possession and reposssession, defence play, corner kicks and goal attacks (Haugen et al., 2012:340). It is evident that soccer performance at a high level is characterised by a significant amount of HI exercise performed during a match (Rostgaard et al., 2008:283). Russell et al. (2010:1399) claim that soccer requires the concurrent performance of technical skills throughout HI intermittent exercise. According to Njororai (2014:61), the exertions while chasing to regain ball possession can be physically draining if a team resorts to launching an attack immediately after acquiring possession.

A study investigating the effects of moderate- and high-intensity localised muscle fatigue (fatiguing of the quadriceps and hamstring muscle groups) on the performance of a mLSPT conducted by Lyons et al. (2006:200) found that HI localised muscle fatigue had a detrimental effect on certain components of the mLSPT such as performance scores, passing errors and total errors. Lyons et al. (2006:201) proposed that the results obtained suggest that the decreased performance of the mLSPT could be a direct or indirect result of the inability of the specific muscle groups to cope with the demands of the task in terms of speed and/or accuracy. Players produced their best performance in the mLSPT at 70% of maximal fatigue and their worst performance at 90% of maximal fatigue, with the least number of passing penalties accrued at 70% and most penalties accrued at 90% (Lyons et al., 2006:199). The study consequently proved that fatigue at 90% has a detrimental effect on passing accuracy and total performance scores (Lyons et al., 2006:200).

Another study conducted on junior male professional soccer players claimed that the diminished performance in executing the mLSPT induced by the completion of short bouts of HI activities is correlated to the physical fitness of the player (Rampinini et al., 2008:939). The study made use of a HI simulation to determine the effect of high-intensity activity HIA on the short-passing ability
of players when measured through the mLSPT (Rampinini et al., 2008:936). The main findings included a decrease in passing accuracy after the HI simulation, as measured through the increase (p<0.05) in penalty time accumulated, thus indicating that fatigue as a result of HIA of short duration could result in a deterioration of short-passing skills (Rampinini et al., 2008:938,939).

A different study conducted by Rostgaard et al. (2008:283) examined the effect of intense soccer activities on the technical performance of male soccer players. The test battery consisted of HIR and dribbling actions alternated by active recovery as well as 10 long passes towards a “goal zone” (Rostgaard et al., 2008:285). The findings showed that the kicking performance from the last five kicks was reduced compared with the first five kicks, suggesting that the particular physical activity influenced the players’ kicking ability (Rostgaard et al., 2008:289). Also, a difference (p<0.05) was found in the performance of youth elite and sub-elite players, with the best performances being observed among the youth elite players (Rostgaard et al., 2008:289). This was not surprising since the youth elite players engaged in more training sessions per week (Rostgaard et al., 2008:284).

Elite soccer players need to possess a large range of motor skills in addition to the ability to process information and make decisions rapidly because play alternates between attacking and defending activities (Wallace & Norton, 2014:223). These physical and motor attributes occur within a tactical framework consisting of set plays and different playing styles and team strategies, which may require adaptations depending on the opposition, environmental conditions and score line (Wallace & Norton, 2014:223). Stone and Oliver (2009:172) suggest that technical training should be conducted under conditions of fatigue to ensure players can maintain skill execution when fatigued. It is also suggested that players may differ physiologically in their ability to tolerate fatigue; some players’ performance is not impaired with regard to speed or accuracy, some players’ performance is impaired with regard to speed or accuracy and other players experience impairment in both speed and accuracy (Stone & Oliver, 2009:173). As indicated by Rampinini et al. (2008:941), the decline in performance in a technical skill-assessment battery as a result of match-related fatigue is indirectly associated with the physical fitness level of the player. Thus, the higher the fitness level, the lower is the physical fatigue experienced by the player, ultimately resulting in less deterioration in technical proficiency (Rampinini et al., 2008:941).

Dribbling is more resilient than other technical skills to the effects of match-related fatigue (Russell et al., 2011:231). It is, however, clear that physical stress experienced during a match can influence the technical performance of soccer players (Rostgaard et al., 2008:291). Thus, the
Chapter 2: Literature overview: Match play analysis, anthropometric measurements and physical profiles of female soccer players

The challenge confronting coaches is to develop the team all round in terms of physical capacity, technique, tactics and mental concentration in order for players to endure the various situations encountered during a match (Njororai, 2014:62). The development of more sensitive and ecologically valid outcome measures for determining the effect of fatigue on technical performance will also lessen the degree of disagreement among researchers (Russell et al., 2011:231).

2.5 External and internal match demands placed on female soccer players

The successful evaluation of the physical demands on players requires the accurate assessment of both external and internal demands (Gaudino et al., 2015:860).

2.5.1 Quantifying external movement demands by means of global positioning system technology

It is especially important to understand the energy demands of sports and their specific positions in order to develop optimal training drills and match simulations (Edgecomb & Norton, 2006:25). Several methods have previously been used to determine the movement demands during soccer matches and consist mainly of semi-automated video systems such as ProZone and AMISCO (Mohr et al., 2003; Burgess et al., 2006; Di Salvo et al., 2010; Randers et al., 2010) and global positioning system (GPS) analysis (Edgecomb & Norton, 2006; Casamichana & Castellano, 2010; Molinos Domene, 2013; Randers et al., 2010). Unfortunately, certain limitations exist with regard to the use of semi-automated video tracking systems such as not being able to function in real time, being subject to possible errors due to gait changes during movements performed and being extremely labour-intensive since direct observation of players is required by trained specialists (Edgecomb & Norton, 2006:26). The cameras also need to be installed at the top of a stadium, restricting assessments of matches played at that particular stadium (Di Salvo et al., 2010:1490).

A valuable tool for enhancing physical-activity assessment utilises GPS technology (Maddison & Ni Mhurchu, 2009:73). The use of GPS devices allows a more comprehensive study of locomotion patterns in soccer since GPS devices have greater objectivity and higher time-resolution, which is more beneficial in comparison with the time-consuming video-based time-motion analysis (TMA) (Randers et al., 2010:172). Global positioning systems also allow for real-time data evaluation (Edgecomb & Norton, 2006:26; Aughey & Falloon, 2010:348). This technology provides quantitative information pertaining to the position, displacement, velocity and acceleration of players (Dwyer & Gabbett, 2012:818). The position of a GPS device is determined through measuring the distance between the device and three or more GPS satellites, which is
achieved by constantly receiving and analysing radio signals from the satellites and calculating the precise distance to each satellite (Maddison & Ni Mhurchu, 2009:73). Once the location is known, displacement over a specified period can be used to calculate velocity of movement (Aughey, 2011:296). However, the GPS device can only be used on outdoor fields (Aughey, 2011:306), and the signal is affected by environmental conditions such as heavy tree cover, dense urban areas or the device being inside a building (Maddison & Ni Mhurchu, 2009:73). These devices are suitable for many team sports since they are small, lightweight and can store a few hours of data (Aughey, 2011:300). Another benefit of GPS technology is its reasonable cost and its portability, which allows for easy data collection in any competition venue (Schutz & Chambaz, 1997:339; Aughey, 2011:303). Aughey (2011:303) describes this as a major advantage when compared with sports where the norm is to fit stadiums rather than the players with instrumentation. The use of GPS devices and semi-automated camera systems is now relatively commonplace in men’s soccer (Datson et al., 2014:1226).

However, Datson et al. (2014:1226) acknowledged that despite advancements in the understanding of match play of male players, published research on elite female players is lacking. The first study to describe the sprint profile of professional female soccer players during matches was conducted by Vescovi (2012a). Datson et al. (2014:1226) attributes this to stadium access and financial considerations. This makes it particularly difficult to make comparisons and, therefore, the researcher makes use of trends found in male soccer as well as TMA studies on female players as part of this discussion.

2.5.1.1 Validity and reliability of GPS devices for use in soccer

Coutts and Duffield (2010:134) reported a good accuracy level (coefficient of variation (CV) <5%) for the actual measured distance using GPS devices sampling at 1 Hz. The study also made reference to the fact that newer GPS devices sampling at a greater frequency in general appear to be more accurate and reliable than older devices (Coutts & Duffield, 2010:135). Another study examined the validity and reliability of GPS units, sampling at 1 Hz and 5 Hz in order to establish which is more valid and reliable during linear, multidirectional and soccer-specific movement (Portas et al., 2010:449). For multidirectional movement, both 1 Hz and 5 Hz devices were found to be valid (standard error of the estimate (SEE) 1.8–4.2% and 2.2–4.4% respectively), except for 180° turns using 1 Hz devices (SEE 3.0–6.8%) (Portas et al., 2010:453). Reliability of the linear and soccer-specific movements was also within 5% for both the 1 Hz and 5 Hz devices (Portas et al., 2010:455). It was further noted that sampling with GPS devices at 1 Hz may not be sufficient in detecting important changes in running distance at speeds of greater than 20 km/h (Coutts &
Duffield, 2010:135) and that reliability decreases with increasing course complexity (Portas et al., 2010:456). Portas et al. (2010:455) recognised a limitation in the use of a GPS device in that the device underestimates distance in confined spaces although a 5 Hz device is more accurate at higher speed than a 1 Hz device in small spaces. They also suggested that the results from different GPS devices should not be used interchangeably in the analysis of HIR due to differences in reported distance measurements when using devices that are sampling at different frequencies (Coutts & Duffield, 2010:135).

Direct comparison across studies is difficult if the aim is a general statement on the validity and reliability of using GPS devices in team sports due to the variety of exercise tasks, GPS devices, sampling rates and statistical methods used (Aughey, 2011:297). Recent advancements in this technology have led to the increase in the sampling rate of GPS devices from 5 Hz to 10 Hz and 15 Hz (Johnston et al., 2014:1650). Sampling by GPS devices at a higher rate seems to be more valid in measuring HIR distance (Aughey, 2011:297). A recent study proved that a 10 Hz GPS is two to three times more accurate than a 5 Hz GPS and up to six times more reliable (Varley et al., 2012:125). The 10 Hz GPS can also accurately determine whether an acceleration or deceleration has occurred (Varley et al., 2012:125). Unlike GPS devices that sample at a slower rate, the 10 Hz GPS is able to detect the smallest worthwhile change in performance relating to constant velocity, acceleration and deceleration (Varley et al., 2012:123).

It is also suggested that the longer the duration of the task being measured, the more valid the GPS measured distance becomes (Aughey, 2011:299). However, in a comparison with 10 Hz devices, sampling by GPS devices at a greater rate such as 15 Hz was found to display lower levels of inter-unit reliability for all movement demands assessed in a study by Johnston et al. (2014:1653). Thus, not only do the 10 Hz devices demonstrate an improved ability to measure team sport movement demands when compared with the 1 Hz and 5 Hz devices, but they also prove to be more valid and reliable than the 15 Hz devices (Johnston et al., 2014:1654). Global positioning system technology is, therefore, labelled as valid and reliable enough for detecting altered running movements across a match and between matches, as well as between different competition levels (Aughey, 2011:303).

2.5.1.2 Categorisation of locomotor activities in soccer match play

In soccer, movement activities are generally classified according to intensity, which is determined by the speed of the action (Carling et al., 2008:852). The main categories used to analyse work rate are standing, walking, jogging, cruising (striding) and sprinting (Carling et al., 2008:852). Sprinting is regarded as the highest intensity effort performed during a match (Vescovi,
Activities classified as low-intensity (LI) such as walking and jogging tend to be more dominant in soccer (Carling et al., 2008:852), while the distance covered at HIR is considered an important indicator of match performance (Mohr et al., 2003:527). Vescovi (2012a:1259) claims that the quantification of this measure requires consistent implementation of speed thresholds that accurately reflect the ability of the players.

In the study of Randers et al. (2010:173), various movement categories for male soccer players were used in order to compare the different match-analysis systems of video-based TMA, a semi-automated camera system and two GPS devices sampling at 1 Hz and 5 Hz. The movement categories were standing (0–2 km/h), walking (2–7 km/h), jogging (7–9 km/h), low-speed running (9–13 km/h), moderate-speed running (13–16 km/h), high-speed running (16–22 km/h) and sprinting (>22 km/h) (Randers et al., 2010:173). Using a pre-designed team-sport running circuit, Coutts and Duffield (2010:134) made use of three movement categories: low-intensity activity (LIA) (<14.4 km/h), HIR (>14.4 km/h) and increased HIR (>20 km/h). The AMISCO Pro camera system was utilised by Di Salvo et al. (2007:223), and movement intensity was divided into the categories of: standing, walking and jogging (1–11 km/h); low-speed running (11.1–14 km/h); moderate-speed running (14.1–19 km/h); high-speed running (19.1–23 km/h); and sprinting (>23 km/h). A more recent study that made use of GPS devices sampling at 10 Hz applied different movement categories than those previously employed, and these included stationary-walking (0–3.9 km/h), jogging (4–6.9 km/h), quick running (7–12.9 km/h), HIR (13–17.9 km/h) and sprinting (>18 km/h) (Molinos Domene, 2013:1019).

In elite female soccer matches, Krustrup et al. (2005:1243) and Mohr et al. (2008:342) employed video-based TMA and used somewhat different classifications than those applied in matches of male players, and these consisted of standing (0 km/h), walking (6 km/h), jogging (8 km/h), low-speed running (12 km/h), moderate-speed running (15 km/h), high-speed running (18 km/h), sprinting (25 km/h) and backward running (10 km/h). These classifications were later divided into four locomotor categories: standing, walking, low-intensity running (LIR) (consisting of jogging, low-speed running and backward running) and HIR (consisting of moderate-speed running, high-speed running and sprinting) (Krustrup et al., 2005:1243; Mohr et al., 2008:342). A different approach by Bradley et al. (2014:161) did not categorise movement into speed categories such as jogging, running or sprinting but made reference to the different speed zones of 0–12 km/hr, 12–15 km/hr, 15–18 km/hr, 18–21 km/hr, 21–23 km/hr, 23–25 km/hr and 25–27 km/h. Through the use of a multi-camera system, this study focused on gender differences with regard to time spent in different speed zones during matches and explained that movement was not classified into different categories since peak-speed characteristics and anaerobic-threshold indices of
female players are substantially lower than their male counterparts (Bradley et al., 2014:161). Using 5 Hz GPS devices, movement categories of standing (0–0.4 km/h), walking (0.5–6 km/h), jogging (6–12 km/h), running (12–19 km/h) and sprinting (>19 km/h) were incorporated in 13 international female matches through the assessment of 15 Australian female national team players, resulting in a total of 58 game files (Hewitt et al., 2014:1875).

Somewhat similar classifications were used by Barbero Álvarez et al. (2008:3) in measurements with 1 Hz GPS devices (Table 4). However, this study assessed young female players, using lower movement categories due to differences in age, training hours, physical condition, competitive experience, game time and competitive level (Barbero Álvarez et al., 2008:7). The movement categories of strolling (0–5 km/h), walking (5–8 km/h), low-speed running (8–12 km/h), moderate-speed running (12–16 km/h), high-speed running (16–20 km/h) and sprinting (>20 km/h) that were reported in a study of national-level female players employing GPS devices (Hewitt et al., 2009:225), used classifications comparable with the low movement categories of previous studies that employed video analysis (Krstrup et al., 2005:1243; Mohr et al., 2008:342; Andersson et al., 2010b:914).
Table 4: Movement threshold (km/h) categories for female and male soccer players

<table>
<thead>
<tr>
<th>Author</th>
<th>Assessment method</th>
<th>Standing</th>
<th>Walking</th>
<th>Jogging</th>
<th>Low-speed running</th>
<th>Moderate-speed running</th>
<th>High-speed running</th>
<th>Sprinting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female players</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hewitt et al. (2014:1875)</td>
<td>5 Hz GPS</td>
<td>0–0.4</td>
<td>0.5–6</td>
<td>6–12</td>
<td>12–19</td>
<td></td>
<td>>19</td>
<td></td>
</tr>
<tr>
<td>Vescovi and Favero (2014:406)</td>
<td>5 Hz GPS</td>
<td>0–6</td>
<td>6.1–8</td>
<td>8.1–12</td>
<td>12.1–15.5</td>
<td>15.6–20</td>
<td>>20</td>
<td></td>
</tr>
<tr>
<td>Andersson et al. (2010b:914)</td>
<td>Video</td>
<td>0</td>
<td>6</td>
<td>8</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>25</td>
</tr>
<tr>
<td>Hewitt et al. (2009:225)</td>
<td>GPS</td>
<td>0–5</td>
<td>5–8</td>
<td>8–12</td>
<td>12–16</td>
<td>16–20</td>
<td>>20</td>
<td></td>
</tr>
<tr>
<td>Barbero et al. (2010:1243)</td>
<td>1 Hz GPS (strolling)</td>
<td>0–0.4</td>
<td>0.5–3</td>
<td>3.1–8</td>
<td>8.1–13</td>
<td>13.1–18</td>
<td>>18.1</td>
<td></td>
</tr>
<tr>
<td>Mohr et al. (2008:342)</td>
<td>Video</td>
<td>0</td>
<td>6</td>
<td>8</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>25</td>
</tr>
<tr>
<td>Krustrup et al. (2010:173)</td>
<td>Video</td>
<td>0</td>
<td>6</td>
<td>8</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>25</td>
</tr>
<tr>
<td>Male players</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molinos Domene (2013:1019)</td>
<td>10 Hz GPS</td>
<td>0–3.9</td>
<td>4–6.9</td>
<td>7–12.9</td>
<td>13–17.9</td>
<td>>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coutts and Duffield (2010:134)</td>
<td>1 Hz GPS</td>
<td></td>
<td></td>
<td></td>
<td>7–12.9 (LIA)</td>
<td>>14.4 (HIR)</td>
<td>>20 (increased HIR)</td>
<td></td>
</tr>
<tr>
<td>Randers et al. (2010:173)</td>
<td>Video; semi-automated camera; GPS</td>
<td>0–2</td>
<td>2–7</td>
<td>7–9</td>
<td>9–13</td>
<td>13–16</td>
<td>16–22</td>
<td>>22</td>
</tr>
<tr>
<td>Vigne et al. (2010:305)</td>
<td>SICS multi-cameras</td>
<td><5</td>
<td>5–13</td>
<td></td>
<td>13–16 (below anaerobic threshold)</td>
<td>16–19 (above anaerobic threshold)</td>
<td>>19</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: GPS: Global Positioning System; HIR: High-intensity running; LIA: Low-intensity activity

Other studies also made reference to speed intensity by categorising the movements into metres per second (m/s) (Roberts et al., 2006:391; Dwyer & Gabbett, 2012:820; Varley et al., 2014:1860). Roberts et al. (2006:391) utilised video cameras and divided the speed intensities into six velocity bands that consisted of standing or non-purposeful movement (0–0.5 m/s), walking (0.5–1.7 m/s), jogging (1.7–3.6 m/s), medium-intensity running (3.6–5 m/s), HIR (5–6.7 m/s) and maximal speed running (>6.7 m/s). Varley et al. (2014:1860) employed 5 Hz GPS devices with velocity-band classifications of LIA (0–5.4 m/s), high-velocity running (>5.5–10 m/s) and sprinting (>7–10 m/s).
Alternatively, Dwyer and Gabbett (2012:820) made use of 1 Hz GPS devices and five velocity bands for female soccer, namely standing (0.0–0.1 m/s), walking (0.2–1.6 m/s), jogging (1.7–3.3 m/s), running (3.4–5.3 m/s) and sprinting (5.4 m/s). Locomotor activities also defined for female soccer players include: standing and walking (0.0–1.6 m/s), jogging (1.7–2.2 m/s), low-intensity running (2.3–3.3 m/s), moderate-intensity running (3.4–4.3 m/s), high-intensity running (4.4–5.6 m/s) and sprinting (>5.6 m/s) (Vescovi, 2014:111; Vescovi & Favero, 2014:406). According to Bradley and Vescovi (2015:112), no methodological standardisation of velocity threshold currently exists to quantify accurately locomotor activities during female matches, making it difficult to compare studies and develop cohesive views about locomotor characteristics of female soccer. However, based on a review of different studies, Bradley and Vescovi (2015:114) suggest velocity thresholds of 15 km/h to 16 km/h for high-speed running and 20 km/h for sprinting in female soccer.

2.5.1.3 Motion analysis of female soccer matches

A review published by Martínez-Lagunas et al. (2014:265) focused on the physical demands encountered by female players during games and from a large range of studies, summarised that the mean values for total distance covered (4–13 km) and distance covered at different speeds vary according to the players’ nationality, competitive level and position, as well as according to the measuring method used within the study. A study conducted by Krstrup et al. (2005:1244) assessed the activity patterns of elite female Danish players during a 90-minute match using TMA and found that the players covered a total distance of 10.3 km during the match. Similar distances were published for the United States (US) national team players (10.3 km) and elite Danish and Swedish players (10.4 km) (Mohr et al., 2008:344). Another study that used TMA reported total distances of 9.9 km and 9.7 km for elite female players who participated in international matches and the domestic league respectively (Andersson et al., 2010b:914). Global positioning system analysis also revealed distances of 9.1 km (Hewitt et al., 2009:226), 9.6 km (Hewitt et al., 2014:1876), 10.1 km (Vescovi, 2015) and 10 km (Mara et al., 2016) for female players. A recent study on sub-elite female players reported an average of 5.5 km, although this was based on the playing time of all the players, including the substituted players (Gentles et al., 2018:6). The study reported a range of 1.1-13.9 km for total distance covered (Gentles et al., 2018:6).

An evaluation of the demands of different playing positions is vital to ensure specificity of training of players; however, there is also a shortage of information in this area (Datson et al., 2014:1226). Results of Gabbett and Mulvey (2008:546) regarding elite female soccer players indicated that the greatest total distance was covered by midfielders (10.6 km), followed by defenders (9.6 km).
Chapter 2: Literature overview: Match play analysis, anthropometric measurements and physical profiles of female soccer players

and forwards (9.6 km). In a different study, female midfielders participating on an international level also covered a greater (p<0.05) distance (10.6 km) in comparison with defenders (9.5 km) (Andersson et al., 2010b:916). A difference (p=0.001) in distance covered was also found in more recent studies by Hewitt et al. (2014:1877) and Mara et al. (2016) between midfielders (10.1-10.6 km) and defenders (8.7-9.2 km). Forward players covered a total of 9.8 km (Andersson et al., 2010b:918; Ramos et al., 2017) and 9.4 km (Hewitt et al., 2014:1877) in three respective studies. The distances reported for the female midfielders in international matches were also higher (p<0.05) in comparison with the defenders (9.5 km), the midfielders (10.1 km) and the forwards (9.5 km) of domestic league matches (Andersson et al., 2010b:916). Similar results were found by Hewitt et al. (2009:226) in that midfielders covered more distance (9.6 km) during international matches in comparison with defenders (9.0 km) and attackers (8.5 km). The differences reported for distance covered during matches may be due to different playing styles, differences in methods of analysis, styles of play of opposition players and the players’ physical capacities (Hewitt et al., 2009:226). Despite these differences, a high level of aerobic endurance is required by female players due to the characteristics and demands of soccer matches (Milanovic et al., 2012:68).

A number of studies reported on the time that female soccer players spent in different movement categories or speed zones, which were identified by means of video analysis (Gabbett & Mulvey, 2008; Mohr et al., 2008; Andersson et al., 2010b) or GPS analysis (Hewitt et al., 2009; Vescovi, 2012a; Hewitt et al., 2014; Vescovi & Favero, 2014; Nakamura et al., 2016). However, comparisons between studies are difficult due to different assessment methods, movement categories and levels of participation. During a 90-minute match, Krustrup et al. (2005:1244) noted a total number of 1 459 activity changes, which corresponded to an activity change every four seconds. A total number of 1 379 and 1 326 activity changes have also been reported for professional and top-level female players respectively (Mohr et al., 2008:344). In another study that tracked the same players in domestic and international matches, the number of activity changes (1 593 vs 1 641) was reported to be the same, regardless of the level of participation (Andersson et al., 2010b:915).

In terms of different movement categories, Krustrup et al. (2005:1244) indicated through video analysis that female players completed 9 km at LIR. Players spent 16% of the total time standing, 44% walking and 34% running at LI (Krustrup et al., 2005:1244). An analysis of the movements performed by national-level female players showed that the players spent 19% of the total time standing, 42% walking and 27% performing LIR (Mohr et al., 2008:345). In agreement with these results, Gabbett and Mulvey (2008:547) noted that players in elite female matches spent 15% of
the total time standing, 50% walking and 26% jogging. These results confirm that the majority of
the time in soccer match play is spent in LIA (Gabbett & Mulvey, 2008:550). Using GPS analysis,
percentage values of 30% walking, 12% jogging and 32% LIR have also been reported for
sub-elite female players (Vescovi & Favero, 2014:408). Female Australian national team players
at elite level spent 26% of the total time (2 400 m) at slow-paced walking, 23% (2 100 m) walking,
26% (2 330 m) low-speed running and 15% (1 410 m) moderate-speed running (Hewitt et al.,
2009:226). Video analysis of different playing positions revealed that in international competitions,
forwards covered more distance in terms of walking compared with midfielders and defenders
(3 432 m, 35% vs 3 104 m, 29% vs 3 104 m, 32%) (Gabbett & Mulvey, 2008:546). Again,
midfielders covered a further distance by jogging (4 646 m, 43%) than defenders (4 366 m, 45%)
and forwards (3 813 m, 39%) (Gabbett & Mulvey, 2008:546). When measured in terms of time
spent in LI movement categories, forwards spent 16%, 52% and 23% standing, walking and
jogging respectively, while midfielders spent 14%, 49% and 27% and defenders spent 16%, 49%
and 27% in these three specific movement categories (Gabbett & Mulvey, 2008:546).

Vescovi and Favero (2014:407) compared the first- and second-half match performance of
players in different positions and made use of GPS devices, sampling at 5 Hz for the analysis.
Forwards covered the least distance by means of walking during the first and the second half
(1 482 m and 1 540 m) in comparison with the midfielders (1 516 m and 1 647 m) and the
defenders (1 540 m and 1 586 m) (Vescovi & Favero, 2014:407). Results show that the defenders
covered less distance jogging (607 m and 567 m) during both halves than the forwards (667 m
and 570 m), and the midfielders (677 m and 639 m) covered the furthest distance among the
three groups (Vescovi & Favero, 2014:407). The defenders also covered less (p<0.05) distance
than the midfielders in terms of LIR during the first half (1 442 m vs 1 675 m), while the forwards
completed 1 655 m at LIR (Vescovi & Favero, 2014:407). Distances of 1 483 m, 1 446 m and
1 292 m were reported for LIR during the second half for forwards, midfielders and defenders
respectively (Vescovi & Favero, 2014:407).

Since a large proportion of female matches consists of LI movement such as walking and jogging,
it is important to identify the patterns of HIA during matches (Hewitt et al., 2014:1874). The study
by Krustrup et al. (2005:1244) revealed a total of 125 HI runs performed with an average duration
of 2.3 s and a total number of 26 sprints, accounting for 4% of the total match time. This amounted
to a total of 1.3 km performed at HIR and 0.2 km sprinting (Krustrup et al., 2005:1244). Further
HIR and sprinting distances of 2 407 m and 338 m respectively were reported in a more recent
study (Hewitt et al., 2014:1876). Shorter distances of 620 m (7%) and 280 m (3%) were reported
in another study for HIR and sprinting respectively (Hewitt et al., 2009:226). An average of 18
sprints with a mean duration of 2.5 s and total sprint distance of 285 m have also been reported recently (Nakamura et al., 2016). These variances reported in results may be due to differences in competitive levels (league team vs national team), measurement methods used (video analysis vs GPS analysis) or velocity zone classification in the studies by Krstrup et al. (2005:1243), Hewitt et al. (2014:1875) and Nakamura et al. (2016). It is important to emphasise the differences reported in distance covered when measured using different methods since a study conducted by Randers et al. (2010:175) proved that GPS analysis measured a 13% longer total distance covered and a 23% longer HIR distance than video analysis.

A study comparing the performance of professional female soccer players, employed in the US league but being representative of 9 different national teams from 5 different continents, with Danish elite players (participating in the Danish league) found that the national team players (professional players) performed a higher (p<0.05) number of HIR and sprinting bouts (154 HIR; 30 sprints) than the elite players participating on a lower level (125 HIR; 26 sprints) (Mohr et al., 2008:345). The professional players thus completed 6% and 1% of the total match time performing HIR and sprinting respectively, whereas the elite players completed 4% and 1% of the total time at HIR and sprinting (Mohr et al., 2008:345). It was, therefore, concluded that the professional players performed 28% more HIR and 24% more sprinting than the elite Danish players (Mohr et al., 2008:346).

Using video analysis, Gabbett and Mulvey (2008:546) found that the central defenders performed less HIR (1.2 km) than the midfielders (1.6 km) and forwards (1.6 km) and that the forwards accomplished more sprinting (>25 km/h) (0.5 km) than both the midfielders (0.4 km) and the defenders (0.3 km). Similar results were reported by Mohr et al. (2008:347) in that defenders performed less (p<0.05) HIR (1.1 km) compared with both the midfielders (1.6 km) and the forwards (1.6 km). In agreement with these findings, Australian national-level defenders completed less (p=0.001) distance at HIR (1 744 m) than midfielders (2 792 m) who in turn, covered more distance than forwards (2 272 m) when measured by GPS analysis (Hewitt et al., 2014:1877). In contrast to these findings, forwards covered the greatest distance by means of HIR in a study by Vescovi and Favero (2014:407) in both the first half (475 m) and the second half (454 m) of matches when compared with midfielders (384 m and 378 m) and defenders (384 m and 364 m) who produced similar results. The study by Vescovi and Favero (2014) was, however, conducted on sub-elite players, which could possibly explain the differences in the results obtained per position.
Further, Mohr et al. (2008:347) claimed that elite defenders sprinted shorter (p<0.05) distances (0.3 km) than forwards (0.5 km), whereas midfielders sprinted a distance of 0.4 km when measured using video analysis. Even though the defenders in the study by Hewitt et al. (2014:1877) also covered a shorter distance (188 m) by means of sprinting than both the midfielders (392 m; p=0.001) and forwards (388 m; p=0.006), the midfielders achieved the highest total sprinting distance. This is in contrast to the studies of Gabbett and Mulvey (2008:546) and Mohr et al. (2008:347), in which the forwards completed the greatest sprinting distance. Among sub-elite female players, forwards also sprinted the furthest distances during both the first half (146 m) and the second half (193 m), which was followed by defenders producing the second-best results (first half: 131 m; second half: 135 m) (Vescovi & Favero, 2014:407). Sub-elite midfielders sprinted the shortest distances in both the first half (87 m) and the second half (110 m), resulting in a difference in sprinting performance in the first half when comparing midfielders with both forwards and defenders (Vescovi & Favero, 2014:407). Vescovi and Favero (2014:412) claim that the differences observed when comparing results with other studies may be due to their sample being small in number in terms of players completing an entire match, which is a result of the substitution rule of the US NCAA in which unlimited substitutions are permitted in the second half. It is also important to note that a possible explanation for these contrasting findings may be differences in playing formations, which have an impact on the movement profile of players (Hewitt et al., 2014:1878). Although there are several contextual factors that could influence match demands, the biggest factor for differences between studies are the various velocity thresholds used for sprinting across the studies cited.

Hewitt et al. (2014:1879) acknowledged that the distances players cover at different intensities may be influenced by player density because this can influence and reduce the amount of space available for running since there are more players in a smaller part of the playing field. A team that dominates possession and forces the opposition towards their own goal line causes more players to be in one half of the field, thereby decreasing the space available for running, whereas playing against an opponent of relatively equal strength results in an increase in the opportunities to move from the offensive to the defensive half, decreasing player density and increasing running space (Hewitt et al., 2014:1879).

Vescovi et al. (2011:674) proved that in female soccer players, the sprint ability of the players differs across a wide age range. The study further noted that sprint ability stabilized by 16 years in female soccer players and therefore a generic velocity threshold for motion analysis could be used from this age onward (Vescovi et al., 2011:674). Thus, the speed zones used to classify sprints for different standards have implications for motion-analysis studies (Vescovi,
2012a:1259). Vescovi (2012a:1260) is of the meaning that previously published reports by Krustrup et al. (2005), Mohr et al. (2008) and Andersson et al. (2010b) indicate irregular assessment of high-speed running distance in female soccer, which is surprising because identical methods such as video recording, computerised coding and speed thresholds were reported in each paper. It was noted that the velocity threshold used for classifying sprinting (25 km/h) was similar to that used for male soccer players (Bradley et al., 2009:160). This led to Vescovi (2012a:1260) researching more specific sprint characteristics of female soccer players during competitive games using 5 Hz GPS devices. Vescovi (2012a:1261) classified four sprinting zones: Zone 1 (18–20.9 km/h); Zone 2 (21–22.9 km/h); Zone 3 (23–24.9 km/h); and Zone 4 (>25 km/h). The main findings of the study demonstrated that midfielders had shorter mean sprint duration, lower sprint distance and lower maximum speed than forwards and defenders (Vescovi, 2012a:1261). The forwards also performed more sprints per game (43) than midfielders (31) and defenders (36) (Vescovi, 2012a:1261). Nakamura et al. (2016) also reported more sprints (23) among the forwards compared to the other playing positions. In addition, the study reported a total distance of 9.9 km covered during matches, which is similar to results previously reported by other authors (Krustrup et al., 2005; Mohr et al., 2008; Andersson et al., 2010b). Vescovi (2012a:1262) also reported a total mean distance covered above 18 km/h during a match for forwards (657 m), midfielders (447 m) and defenders (545 m). These were in accordance with the results previously published by Mohr et al. (2008) but greater than those published by Krustrup et al. (2005) and Andersson et al. (2010b). In conclusion, the study by Vescovi (2012a:1263) claims that when using 18 km/h and 25 km/h as the lower and upper limits of sprint performance, 11% of the sprint distance is eliminated. The authors also state that the use of 25 km/h as the lower threshold is possibly too high, given that many players may not surpass this speed even though they are sprinting, which can lead to the incorrect observation of little or even no sprinting during a game (Vescovi, 2012a:1263).

Elite-level female soccer matches are characterised by work rates in the range of 108–119 m/min (Mohr et al., 2008:346; Andersson et al., 2010b:914; Bradley et al., 2014:163) although a maximum of 126 m/min was observed by Krustrup et al. (2005:1245). A study on sub-elite female soccer players reported a work rate in the range of 96–107 m/min, with individual players achieving 120 m/min to 130 m/min (Vescovi & Favero, 2014:408). Positional distinctions are also evident, with the highest work rate observed among the central midfielders (124 m/min), wide midfielders (121 m/min) and forwards (120 m/min), and the lowest work rate noted among the fullbacks (119 m/min) and central defenders (114 m/min) (Bradley et al., 2014:163). Once again, the higher work rate performed by midfielders can be justified by the linking role that these players fulfil during a match (Di Salvo et al., 2007:225).
Since elite female soccer consists of multiple brief and intense activities separated by LI exercise, good and poor physical performance can be differentiated in terms of the amount of HIR performed during matches (Krstrup et al., 2005:1246). Since the physical requirements of a match are influenced by the styles of play and formations of both teams, it should be emphasised that the type and amount of running required during a match will be influenced accordingly (Hewitt et al., 2009:226). It was also mentioned that the technical and tactical abilities of players influence the running requirements during a match, that is, a team having control over the ball for long periods during a match and maintaining possession may not be required to cover as much distance as the team without the ball (Hewitt et al., 2009:227). Other contributing factors include match importance, score line, location and recovery days between matches (Paul et al., 2015:516).

2.5.1.4 Player load imposed on soccer players and analysis of accelerations and decelerations during matches

According to Dalen et al. (2016:351), there are important limiting factors to consider when evaluating the physiological profile of players on the basis of two-dimensional (2-D) analysis, which is characteristic of most of the match-analysis tools in elite soccer. With 2-D systems, expended energy is only computed when a player travels from one location to another (Dalen et al., 2016:352). Due to this, many of the typical soccer activities have been neglected because although these soccer-specific movements can result in considerable physical stress, the distance covered or speed has been classified as low (Dalen et al., 2016:352). Dalen et al. (2016:357) further explain that HI bouts such as jumping, tackling, colliding, accelerating and decelerating, passing, shooting and movements such as sideways and backward running may be classified as low-speed movements despite the high physical strain these activities place on the player.

Player load is a representation of total body load and is expressed in arbitrary units (Barron et al., 2014:735). Barron et al. (2014:736) assessed the player load of youth male soccer players through the use of 5 Hz GPS devices equipped with a 100 Hz accelerometer located securely between the scapulae in a custom-made harness. This GPS and accelerometer technology was also used by Scott et al. (2013:196) to determine player load of professional male soccer players. Scott et al. (2013:197) used Logan Plus software and calculated player load through the use of the following equation: \((a_y1-a_y)^2 + (a_x1-a_x)^2 + (a_z1-a_z)^2 \), where \(a_y \)=anteroposterior acceleration, \(a_x \)=mediolateral acceleration and \(a_y \)=vertical acceleration. An important consideration when using
this method is that the harness must be sufficiently secured to prevent the collection of erroneous data (Barron et al., 2014:740).

Dalen et al. (2016:353) assessed player load through the use of TMA and triaxial accelerometer sensors mounted in a specially designed belt wrapped around the player’s waist. Triaxial accelerometers are highly responsive motion sensors that record acceleration of body movement in three dimensions (Dalen et al., 2016:352). Player load was calculated as: \([X^2] + [Y^2] + [Z^2]/800\), where \(X=\)sideways, \(Y=\)forwards, and \(Z=\)vertical acceleration (Dalen et al., 2016:353). A mean accelerometer player load of 558 (in the range of 278–1053) was recorded for elite male soccer players during a total of 29 field-based training sessions consisting of 60-min to 90-min durations (Scott et al., 2013:199). Dalen et al. (2016:354) reported a higher player-load value (13 327), although this was measured over the full duration of a soccer match.

Player load is also found to differ between positions (Barron et al., 2014:737). A difference (ps0.04) was found between the player load of central midfielders (991) and central defenders (745) when measured among youth male soccer players (Barron et al., 2014:737). Player-load values of 892, 866 and 782 were reported for forwards, wide midfielders and wide defenders respectively (Barron et al., 2014:739). Dalen et al. (2016:356) found that following a full match, wide midfielders, central midfielders, central defenders and forwards had a 26%, 18%, 12% and 8% higher player load respectively than fullbacks. Due to correlations found between player load and methods used to assess the internal training load and the Session Rating of Perceived Exertion (RPE), Scott et al. (2013:200) suggest that player load is an acceptable measure of external training load and is largely related to a player’s physiological and perceptual responses to a training stimulus. In order to design training programmes specific to the different playing positions, an understanding of the different ways in which players in these different positions achieve load is necessary (Dalen et al., 2016:358). Since player load is achieved by players from different positions in a variety of ways, specificity should be applied in designing training programmes with distinct emphasis on the physical components required to achieve a stimulating load in relation to each position’s requirements (Dalen et al., 2016:358).

An important factor regarding player load involves movements with accelerations and decelerations (Dalen et al., 2016:352). According to Izzo and Lorenzo (2015:250), the most frequent actions performed in soccer are accelerations and decelerations. Dalen et al. (2016:357) reported that a total of 12–16% of the total player load in their study accumulated from accelerations and decelerations, indicating the importance of these movements in total player load during a match. Furthermore, Izzo and Lorenzo (2015:250) describe that the overall quality
of a player, including dribbling capacity, ability to win a 1-vs-1 contest for the ball and ability to score goals, is dependent on the player’s acceleration and deceleration capacity. Accelerations are also found to be more common than decelerations (64% vs 35%) (Barron et al., 2014:740). Carling et al. (2008:853) proposed that when a player is required to sprint in a match, the player’s capability to accelerate may be more crucial than his/her maximal running speed since the technical demands of the match rarely require a player to attain maximal speeds. Therefore, improving a player’s performance with regard to accelerating could result in improvements in other aspects such as being first to the ball or escaping a marker (Carling et al., 2008:853).

Quantification of the acceleration and deceleration demands of team sports through the use of an applicable measuring device would greatly extend the existing body of knowledge and add great value to the research field (Varley et al., 2012:121). Global positioning system technology can be utilised to assess and provide a more accurate analysis on the acceleration and deceleration of the entire activity performed rather than only assessing the running speed using timing gates (Izzo & Lorenzo, 2015:250). A study by Akenhead et al. (2013:557) on elite male soccer players using 10-Hz GPS units classified accelerations and decelerations into different threshold zones, namely total acceleration (\(T_{\text{ACC.}} > 1 \text{m/s}^2\)), low acceleration (\(L_{\text{ACC.}} 1 \text{ to } 2 \text{ m/s}^2\)), moderate acceleration (\(M_{\text{ACC.}} 2 \text{ to } 3 \text{ m/s}^2\)), high acceleration (\(H_{\text{ACC.}} > 3 \text{ m/s}^2\)), total deceleration (\(T_{\text{DEC.}} < -1 \text{ m/s}^2\)), low deceleration (\(L_{\text{DEC.}} -1 \text{ to } -2 \text{ m/s}^2\)), moderate deceleration (\(M_{\text{DEC.}} -2 \text{ to } -3 \text{ m/s}^2\)) and high deceleration (\(H_{\text{DEC.}} < -3 \text{ m/s}^2\)).

Similar zones were used in an earlier study on male players employing video analysis (Osgnach et al., 2010:173). Barron et al. (2014:737) classified decelerations into: Zone 1 (-20 to -5 m/s²); Zone 2 (-5 to -4 m/s²); Zone 3 (-4 to -2 m/s²); and Zone 4 (-2 to 0 m/s²) and accelerations into: Zone 5 (0 to 2 m/s²); Zone 6 (2 to 4 m/s²); Zone 7 (4 to 5 m/s²); and Zone 8 (5 to 20 m/s²). Akenhead et al. (2013:559) reported that an average of 18% of the total distance covered during a match was by accelerating or decelerating at a rate of more than 1 m/sec². Further analysis showed that 7%, 4% and 33% of the total distance was covered at 1–2 m/s², 2–3 m/s² and >3 m/s² respectively (Akenhead et al., 2013:559). Barron et al. (2014:737) found that low-intensity movements performed in Zone 4 and Zone 5 accounted for 93% of the total distance covered. Positional differences were noted in deceleration Zone 1, with wide midfielders covering more distance than wide defenders, central defenders and central midfielders (\(p \leq 0.00; d=0.55\)) and forwards covering more distance than central defenders (\(p \leq 0.04; d=0.55\)) (Barron et al., 2014:737).
Barron et al. (2014:737) reported a similar finding in deceleration Zone 2 (p≤0.02; d=0.49). In deceleration Zone 3, wide midfielders and forwards covered more distance than central defenders (p≤0.04; d=0.32) (Barron et al., 2014:737). Wide midfielders also covered more distance than central defenders (p≤0.05; d=0.33) and forwards (p≤0.05; d=0.26) in acceleration zones 7 and 8 respectively (Barron et al., 2014:737). These findings were denoted to the combined offensive and defensive responsibilities of wide midfielders and wide defenders (Barron et al., 2014:739).

It has further been highlighted that differences in playing formation, playing standard, effective playing time and score line have an influence on the positional activity profiles (Barron et al., 2014:739).

2.5.1.5 Fatigue indicators during match play and utilization of pacing strategies

Fatigue can be described as a reduction in performance owing to the need for continuous effort and is usually noted in soccer by a deterioration in player work rate towards the end of a match (Barbero Álvarez et al., 2008:8). According to Mohr et al. (2005:598), the exercise of top-class soccer players declines in periods during a match, which is most likely to be caused by the onset of fatigue. Waldron and Highton (2014:1651) claim that players are able to determine and modulate their energy output depending on the nature of the match. Mohr et al. (2003:526) refer to the term “temporary” fatigue, also known as “transient” fatigue (Alghannam, 2012:68), which refers to periods (typically five min) of reduced running intensity that are below the average match intensity and occur immediately after the most intense periods of the match. A complete recovery in running intensity may be attained after that specific period (Waldron & Highton, 2014:1646).

A 4.8% decrease in distance covered between the first and second half of a match was recorded through GPS analysis in a study on female Australian national team players (4 936 m to 4 695 m) (Hewitt et al., 2014:1876). A decrease (p<0.05) in total distance from the first to the second half was also noted by Mohr et al. (2008:345) and Andersson et al. (2010b:914). In addition, Vescovi and Favero (2014:407) reported lower work rates for the players in their study when the first half of a match was compared with the second half. A study examining the locomotor characteristics of sub-elite female players from different positions found that all three groups (forwards, midfielders and defenders) covered less total distance in the second half of a match compared with the first half (Vescovi & Favero, 2014:407). The performance of forwards decreased from 5 232 m to 5 065 m, and midfielders decreased from 5 186 m to 4 939 m although these results were not significant (Vescovi & Favero, 2014:407). The defenders covered less (p<0.05) distance than the forwards and midfielders, and a decrease from 4 878 m to 4 618 m was observed from the first half to the second half (Vescovi & Favero, 2014:407). Defenders thus produced lower
(p<0.05) values of work rate during both the first half (100 m/min) and the second half (96 m/min) when compared with midfielders (first half: 106 m/min; second half: 103 m/min) and forwards (first half: 107 m/min; second half: 106 m/min) (Vescovi & Favero, 2014:407).

Reports on distance covered at LI showed that a further distance was covered by means of walking in the first half compared with the second half by forwards (1 482 m vs 1 540 m), midfielders (1 516 m vs 1 647 m) and defenders (1 540 m vs 1 586 m) (Vescovi & Favero, 2014:407). Distances covered by means of jogging and LIR also decreased for the forwards (667 m vs 570 m; 1 655 m vs 1 483 m), midfielders (677 m vs 639 m; 1 675 m vs 1 446 m) and defenders (607 m vs 567 m; 1 442 m vs 1 292 m) (Vescovi & Favero, 2014:407). The decline in HIR of elite female players at the end of a match is described as a result of fatigue (Krustrup et al., 2005:1246). Krustrup et al. (2005:1244) established that the distance covered at HIR decreased by 30.0% (0.27 km to 0.19 km) and 34% (0.24 km to 0.16 km) from the first to the last 15-minute period of the first and second half of the match respectively. In agreement with these results, a decrease of 26% in HIR was observed during the last 15 minutes of international-level female matches compared to the first 15 minutes, as well as an increase of 4% in LIA (Hewitt et al., 2014:1878). It was further noted that elite female players performed the least amount of HIR in the last 15-minute periods of the first and second halves (Krustrup et al., 2005:1246). A decrease (p<0.05) in performance was also observed in a comparison between the first and the second half in terms of bouts of LIR (29 vs 26.5), HIR (6.5 vs 5.4) and sprinting (p<0.05) (1.2 vs 1) of professional female players (Mohr et al., 2008:345). Similar results were found among elite Danish players for LIR (29.7 vs 27.9), HIR (4.5 vs 4.3) and sprinting (1 vs 0.9) from the first to the second half, which were also reported to be significant (p<0.05) (Mohr et al., 2008:346). High-intensity running and sprinting decreased in terms of first- and second-half performance from 0.9 km to 0.7 km and from 0.25 km to 0.21 km respectively among the national team players and decreased from 0.68 km to 0.62 km and 0.2 km to 0.17 km respectively among the elite players (Mohr et al., 2008:346). A similar tendency was reported for female Australian national team players, with a decrease from 1 224 m to 1 163 m in performing HIR and from 173 m to 165 m in sprinting from the first to the second half (Hewitt et al., 2014:1876).

Mohr et al. (2008:344) sub-divided their match data into smaller time periods (5-min, 15-min, 45-min and 90-min periods) in order to analyse further the activity profiles of female players at different levels during a soccer match. A different approach was followed by Hewitt et al. (2014:1876) by dividing the total match time into periods of 0–15 min, 15–30 min, 30–45 min, 60–75 min and 75–90 min. Carling et al. (2008:852) proposed that an alternative means for comparing the overall physical contribution of players is to calculate a relative measurement of
performance by correcting the absolute value (total distance covered) for a match to a minute-by-minute analysis of distance covered. In a study by Hewitt et al. (2014:1876), the GPS analysis revealed that female players covered less distance per 15-minute period as the match progressed, with a decline observed in the first half from 0–15 min (1 699 m) to 15–30 min (1 570 m) to 30–45 min (1 567 m), and again from 45–60 min (1 595 m) to 60–75 min (1 506 m), with the lowest distance of the entire match covered in the last 75–90 min period (1 458 m). Hewitt et al. (2014:1876) reported a decline from the start to the end of each half in considering the three 15-minute periods per half and found a significant difference (p<0.05) in total distance covered between the 0–15 min (1 699 m) period and both the 60–75 min (1 506 m) and 75–90 min (1 458 m) periods respectively. Professional players in the US league performed 27–57% (0.21 km) (p<0.05) less HIR in the final 15-minute period of the match than during the first four 15-minute periods (0.27 km to 0.33 km) (Mohr et al., 2008:346). Australian national team players also performed less (p=0.022) HIR in the second last (378 m) and final 15-minute (356 m) periods in comparison with the first four 15-minute periods (478 m; 384 m; 382 m; and 429 m) (Hewitt et al., 2014:1876).

In the study by Mohr et al. (2008:346), distance covered by means of sprinting was also shorter (p<0.05) during the last 15-minute period (0.05 km) in comparison with the first four 15-minute periods (0.07 km to 0.08 km). Elite Danish female players also achieved a lower (p<0.05) distance in HIR in the final 15 minutes of both halves compared with the first and second 15-minute intervals and furthermore, covered a 16–41% shorter (p<0.05) distance in HIR in the five last 15-minute periods (0.16 km to 0.23 km) than in the first 15-minute period (0.28 km) (Mohr et al., 2008:346). Moreover, the players sprinted further in the first 15-minute period than in the last 15-minute period of the first half (0.09 km vs 0.05 km) and the second half (0.07 km vs 0.04 km) (Mohr et al., 2008:346). Although differences in distances covered by means of sprinting between the first (173 m) and second half (165 m) of matches were noted by Hewitt et al. (2014:1876), these distances did not differ and neither did the distances covered per 15-minute time period, which were 67 m (0–15 min), 56 m (15–30 min), 50 m (30–45 min), 59 m (45–60 min), 53 m (60–75 min) and 53 m (75–90 min). This may be due to a decline in HIR and the subsequent increase in LIA, which may have given the players more recovery opportunities and resulted in the maintenance of the distance covered by means of sprinting (Hewitt et al., 2014:1878). Regardless of level of participation, less HIR is performed towards the end of a match, suggesting the occurrence of fatigue towards the end of a match (Mohr et al., 2008:348). Comparisons among female players in different positions showed that all positions (forwards, midfielders and defenders) performed less (p<0.05) HIR and sprinting in the second half of a match than in the first half (Mohr et al., 2008:347). The results, therefore, indicate that female
According to Mohr et al. (2008:348), the higher the level of participation, the greater is the running intensity during matches. As a result, a soccer player needs the ability to perform HI exercises repeatedly (Mohr et al., 2008:347). Gabbett et al. (2013:132) reported an average of 5.1 RSA bouts performed per elite female soccer player during a match, with some players performing no repeated-sprint bouts and others performing up to 23 bouts. An average sprint duration of 2.1 s throughout the various RSA bouts was noted, with the greatest number of sprints recorded in a single bout being seven (Gabbett et al., 2013:132). In another study that examined the RSA of elite female soccer players, an average of 4.8 bouts per player per match was recorded, and a mean number of 3.4 sprints performed per sprint bout (Gabbett & Mulvey, 2008:549). Even though sprint duration remained relatively constant across short and long RSA bouts, the mean duration of recovery increased progressively with a greater number of sprints performed per bout (Gabbett et al., 2013:132).

It was also noted that large differences exist in the recovery durations between national and international matches for RSA bouts involving three and four efforts, indicating that national matches are characterised by greater recovery durations (Gabbett et al., 2013:134). Performance characteristics such as the ability to gain possession of the ball or not concede a goal are influenced by a player’s ability to perform HI sprints, which are also considered distinguishing factors between players of a higher and a lower standard (Izzo & Lorenzo, 2015:251). A study by Krustrup et al. (2010:440) proved that RSA and intense intermittent exercise performance of female soccer players are impaired towards the end of soccer matches, thus confirming that these deviations in work rate during the final phases of matches are a result of match-induced fatigue. This was evident in a study by Gabbett et al. (2013:133) who found that the number of RSA bouts performed decreased from the first to the second half (3.0 bouts vs 2.1 bouts), with the greatest frequency of RSA bouts performed during the first 15 minutes of the match. During the first 15 minutes following the half-time break, there were also more RSA bouts performed in comparison with the second and last 15-minute periods of the first half (Gabbett et al., 2013:134). Good performance is closely connected to the level of fatigue (Izzo & Lorenzo, 2015:251). It is believed that players who are able to perform repeated sprints at an equal or very similar intensity are, as a result, likely to perform better over extended periods of time (Izzo & Lorenzo, 2015:251). Although Gabbett et al. (2013:136) found no reduction in RSA from the first to the second half, the amount of LI recovery between repeated-sprint efforts increased, which could explain the
maintenance in repeated-sprint performance. Therefore, the training of female players should place emphasis on improving the ability to recover from intense exercise (Mohr et al., 2008:348).

Furthermore, position-specific training programmes may be required to prepare some players adequately for the high amount of RSA required in matches (Gabbett et al., 2013:136). Female central midfielders performed more RSA bouts (10.0) in international matches than wide midfielders (6.0), forwards (3.6) and defenders (3.2) (Gabbett et al., 2013:133). Also, in national matches, female central midfielders performed the most RSA bouts (7.4), followed by forwards (6.0), defenders (5.3) and wide midfielders (1.0) (Gabbett et al., 2013:133). Similar findings were reported by Gabbett and Mulvey (2008:546), with midfielders performing more bouts per player (6.0) in comparison with forwards (4.7) and defenders (4.0). The recovery between sprints was however, shorter for defenders (4.7 s) compared with midfielders (6.6 s) and forwards (6.7 s) (Gabbett & Mulvey, 2008:546).

Another concept being researched is the use of pacing strategies by players, which can be mistakenly interpreted as the manifestation of fatigue (Paul et al., 2015:517). The reduction in performance of players observed from the first to the second half of a match can thus either be attributed to the effect of accumulated fatigue or to the player applying a subconscious pacing strategy (Edwards & Noakes, 2009:2). The occurrence whereby brief periods of ‘peak’ intensity are consistently followed by significant brief periods of reduced intensity may be described as complex and planned strategies by the player (Waldron & Highton, 2014:1651). Various pacing profiles exist such as ‘positive strategy’, ‘even-paced strategy’ and ‘negative strategy’, which depend on the structure of the sport and the duration of exercise bouts and ultimately characterises match-running performance (Waldron & Highton, 2014:1651).

Edwards and Noakes (2009:10) further suggested a model for pacing based on macro-, meso- and micro-pacing strategies. The macro-pacing strategy is pre-determined before the match and can involve aspects such as finishing the match and responding to the demands of the match as required (Edwards & Noakes, 2009:10). The meso-strategy is an inter-half pacing plan, enabling up- and down-regulation of effort during a match in response to tactical and specific match considerations (Edwards & Noakes, 2009:10). Micro-pacing is a dynamic pacing plan, connecting each level of pacing strategy throughout the match and ensuring that no single factor causes the cessation of exercise (Edwards & Noakes, 2009:11). The slow-positive strategy employed by players completing an entire match involves a progressive decline in running intensity throughout the match, permitting optimal completion of a match while at the same time reserving the capacity for transient periods of HIA (Waldron & Highton, 2014:1652). The concept of pacing advances
previous notions of acute fatigue during matches and could alternatively explain the fluctuations observed in match-running performance (Waldron & Highton, 2014:1646).

According to Edwards and Noakes (2009:11), multi-level pacing plans employed by players ensure that the players are able to perform until the end of a match. While the demands of a match will require players to respond physically, players who do not pace themselves will not be able to perform until the end of the match or have energy reserves for short-term sprints during the later stages of the match (Edwards & Noakes, 2009:11). Hence, players decide how and when to respond to the diverse challenges posed during a match (Edwards & Noakes, 2009:9). According to Waldron and Highton (2014:1648), running performance during matches is self-regulated by players in response to the dynamically changing environmental stimuli. Players, therefore, possess physiological reserves, allowing them to perform HI energy expenditure when required during the match. As a result and especially when needed to play the entire match, players preserve their energy expenditure over the course of the match in an attempt to avoid fatigue (Waldron & Highton, 2014:1648). This theory is supported by Bradley and Noakes (2013:1635) who noted that players who covered the lowest total distances during the first half of a match had the capacity to maintain match-running performance during the second half. It is also explained that subconscious physiological factors influence conscious behavioural decisions in regulating effort, such as a player covering an opponent’s movement rather than intercepting, walking rather than jogging and passing the ball to a team member rather than dribbling (Edwards & Noakes, 2009:8). Players, therefore, down-regulate their energy output for later periods of the match, which is viewed as one method of pacing (Waldron & Highton, 2014:1651). This was proved in a recent study in which an increase in distance covered during the final 10 minutes of a match was observed, indicating an end spurt towards the end of the match and implying that performance during the first half influences the pacing strategy of players playing a full match (Sparks et al., 2016:129).

An area that has not received much attention in soccer is the analysis of match demands throughout a tournament in which matches are played on consecutive days. Some competition structures exist in which playing matches on consecutive days or two days apart from one another is required, and warrants research to provide scientific support to coaches in preparing their players for competitions structured in this manner. Other team field-sport have investigated the effect of fatigue on match performance throughout a tournament (Higham et al., 2012; Jennings et al., 2012; Furlan et al., 2015; Inglis & Bird, 2017). The physiological stress experienced by players result in accumulated fatigue, which leads to a decrease in performance (Marqués-Jiménez et al., 2017:55). Increased match intensity and frequency emphasises the necessity to
recover sufficiently between matches for peak performance (Andersson et al., 2008:372). In order to perform optimally, appropriate recovery interventions in competitive tournaments and between matches is therefore important (Andersson et al., 2008). Between match analysis of field hockey and rugby matches show generally small to large reductions in match variables (Higham et al., 2012; Jennings et al., 2012; Inglis & Bird, 2017). According to Jennings et al. (2012), players have limited time to recover before the next match, and therefore the ability to maintain exercise intensity throughout a tournament could be of importance, since there is a possibility that players may experience accumulated fatigue.

2.5.2 Quantifying internal demands of match play

Soccer requires players to possess good technical, biomechanical, tactical, psychological and physiological characteristics (Sjokvist et al., 2011:1726). The areas of psychology and physiology are, therefore, of critical importance from a fitness perspective (Sjokvist et al., 2011:1726). Methods used for describing internal match demands include HR monitoring (Bendiksen et al., 2013), the use of an RPE scale (Coutts et al., 2009) and the measurement of blood lactate concentration following an activity or task (Baumgart et al., 2014).

2.5.2.1 Determining internal match demands through heart rate monitoring

The measurement of HR is often used as an indirect measure of exercise intensity (Datson et al., 2014:1228). A review by Stølen et al. (2005:503) explains that average work intensity, which is measured as a percentage of maximal HR (HR\text{max}), is close to the anaerobic threshold during a 90-minute soccer match (80–90% of HR\text{max}). Average HR and peak HR values of 84–89% and 98–100% of HR\text{max} respectively have been reported for female soccer players during matches (Andersson et al., 2008; Krstrup et al., 2010; Ohlsson et al., 2015). Maximal HR values of 187 bpm and 185 bpm were reported for international and domestic league matches of female players respectively (Andersson et al., 2010b:917). A similar HR\text{max} was reported for elite Danish female players (186 bpm) by Krstrup et al. (2005:1244), corresponding with 97% of HR\text{max} when assessed with a laboratory treadmill running test. The highest HR\text{max} reported for an individual player during a match was 205 bpm (Krstrup et al., 2005:1246). A more recent study by Krstrup et al. (2010:439) recorded average and peak HR values of 168 bpm (86% of HR\text{max}) and 194 bpm (98% of HR\text{max}) during a match.

During international matches, an average HR of 162 bpm has been recorded, with similar values reported for the first half (164 bpm) and second half (162 bpm) (Andersson et al., 2010b:917). Similar results were found in domestic league games, with values of 164 bpm, 159 bpm and
163 bpm being reported for the first half, second half and total match respectively, thereby indicating no difference in level of competition in terms of HR response (Andersson et al., 2010b:917). The players had an average of between 84% and 86% of their peak HR throughout the matches in both the international and domestic league matches (Andersson et al., 2010b:917). No difference in average HR was noted in a study by Krstrup et al. (2010:439) between the first half (170 bpm) and the second half (167 bpm) of a match with elite female players. Elite Danish players in a different study also recorded an average HR of 167 bpm, corresponding to 87% of \(HR_{\text{max}} \) (Krustrup et al., 2005:1244). A review by Datson et al. (2014:1228) claimed average and peak HR values of 86.0% and 98.0% of \(HR_{\text{max}} \) respectively. When split into smaller time periods, Andersson et al. (2010b:917) found that on international level, HR was higher (p<0.05) in the 15–30 min period (167 bpm) compared with the 0–15 min (162 bpm), 45–60 min (158 bpm) and 75–90 min (162 bpm) periods. It was also noted that in domestic league matches, HR in the 15–30 min period (163 bpm) was higher (p<0.05) than in the 45–60 min period (158 bpm) (Andersson et al., 2010b:917). Krstrup et al. (2010:439), however, could not find any significant differences in the average HR of elite female players between any of the 15-minute periods and reported an average of 171 bpm for the final 75–90 min period.

In summary, Krstrup et al. (2005:1244) reported that it appears that all outfield players have a high aerobic loading throughout a match, with periods corresponding to near-maximal values and defenders, midfielders and attackers performing at 86–88% of their \(HR_{\text{max}} \). Krstrup et al. (2005:1247), however, explain that their findings indicate that the aerobic energy system is highly tasked even for players possessing superior physical capacity and, therefore, the activity profile and energy used during a match is adjusted according to each player’s physical ability.

2.5.2.2 Blood lactate concentration

According to Datson et al. (2014:1229), there is little information pertaining to the anaerobic energy contribution in match play of female soccer players. Anaerobic capacity can be measured through the evaluation of blood lactate (Datson et al., 2014:1229). When one engages in exercise of increasing intensity, blood lactate concentration usually increases rapidly at a power output between 50% and 70% of the maximal workload (Chmura & Nazar, 2010:287). Elite female players exhibited average blood lactate concentrations of 5.1 mmol/L and 2.7 mmol/L following the first and second halves of matches respectively (Krustrup et al., 2010:439). Despite the low value recorded after the second half, it was reported that match intensity and aerobic loading was still high in the final quarter of the match (Krustrup et al., 2010:440). Krstrup et al. (2010:440) proposed that muscle glycogen depletion occurs near the end of a female soccer match, and this
could influence the ability to perform intense intermittent exercise but not jumping performance since this activity is too short to have a substantial glycolytic contribution to energy production. Throughout the execution of a soccer-specific simulation test, blood lactate concentrations of 4.7 mmol/L, 4.8 mmol/L and 4.7 mmol/L were measured after 15 minutes, 30 minutes and 45 minutes (considered as the first half) respectively, and measurements of 4.0 mmol/L, 3.6 mmol/L and 4.9 mmol/L were measured after 15 minutes, 30 minutes and 45 minutes into the second half, although no differences were noted between the first and the second halves (Bendiksen et al., 2013:1437). Bendiksen et al. (2013:1440) explained that this constant level of blood lactate concentration observed in the particular study may be due to the fact that total distances of HIR and sprinting were kept constant in the soccer simulation test.

It is important to emphasise that measured blood lactate concentrations are, to a great extent, dependent upon the activity pattern of the player in the five minutes preceding blood sampling (Stølen et al., 2005:509), which may lead to the under- or overestimation of overall match demands (Datson et al., 2014:1229). The high blood lactate concentrations observed in soccer may be a reflection of an accumulated or balanced response to the numerous high-intensity activities performed (Bangsbo et al., 2006:667). Furthermore, the rate of lactate removal depends on different factors, including lactate concentration, activity during the recovery period and the aerobic capacity of the player (Stølen et al., 2005:509). Consequently, players with a higher \(\dot{V}_O^{2max} \) may have lower blood lactate concentrations due to an enhanced recovery from high-intensity intermittent activity (Tomlin & Wenger, 2001:9). It is also noted that players may have similar blood lactate concentrations while exercising at a higher intensity as players possessing a lower level of fitness (Stølen et al., 2005:509). A challenge, however, is the inherent difficulties in obtaining blood lactate measurements during a soccer match (Bendiksen et al., 2013:1431).

2.5.2.3 Rating of perceived exertion

Rating of perceived exertion is used to assess a player’s psychological perception of a particular session (Sjokvist et al., 2011:1728). In an attempt to overcome the challenges of team-based training, it has been suggested that an uncomplicated system should be developed to quantify each individual player’s response to training (internal training load) (Alexiou & Coutts, 2008:321). This provides coaches with a tool for monitoring and consequently modifying the training according to the players’ individual needs (Alexiou & Coutts, 2008:321). Measurement throughout a soccer match of male players showed that RPE values recorded in the second half (13.6) were higher (p<0.01) than in the first half (11.4) (Aslan et al., 2012:173). Throughout the match, RPE
levels progressed when measured at 15-minute intervals and peaked at the end of the match (15 min: 10.4; 30 min: 11.5; 45 min: 12.6; 60 min: 12.7; 75 min: 13.7; 90 min: 14.5) (Aslan et al., 2012:173). The study thus indicates that the players perceived the progressive periods of the match as being more strenuous (Aslan et al., 2012:173). In addition, RPE levels of forwards (12.9) and midfielders (12.7) were higher than defenders (12.2) (Aslan et al., 2012:173).

Alexiou and Coutts (2008:326) reported correlations (p<0.01) between session-RPE and three different HR-based methods for quantifying training load in elite female soccer players. Thereafter, another study reported a moderate correlation between RPE and both HR_{max} and blood lactate concentrations (Coutts et al., 2009:82). Coutts et al. (2009:82), therefore, claim that RPE is a valid indicator of training intensity for intermittent, aerobic, soccer-specific exercise. However, Impellizzeri et al. (2004:1046) recommend that due to a moderate correlation observed in their study, RPE-based methods should not be considered a valid substitute of HR monitoring and should be used in combination with HR monitoring for determining internal training load. According to Aslan et al. (2012:170), the measurement of RPE values throughout a soccer match can thus provide information for the internal load imposed on players and the accumulated fatigue towards the end of a match.

It is, however, still not clear how hard a player perceives he/she is working throughout a match (Aslan et al., 2012:170). Another important limitation is the timing of the rating because it is important to minimise the influence of the last effort during training or during a match on the player’s RPE of the whole training session or match (Impellizzeri et al., 2004:1046). Foster et al. (2001:111) recommends taking RPE only 30 min after the session and reasoned that this approach is used so that particularly difficult or particularly easy segments toward the end of the exercise bout would not dominate the subject’s rating. The importance of considering the complex interaction of many factors contributing to a player’s personal perception of physical effort has also been highlighted (Borresen & Lambert, 2008:26).

2.6 Conclusion

The popularity of female soccer has seen a considerable increase in recent years, although there is still limited research pertaining to the diverse factors contributing to successful performance. The aim of this literature review was firstly to explore the current research related to the morphological profile of female soccer players and to discuss important aerobic and anaerobic fitness components together with technical skill characteristics deemed important for high-level participation. The influential role of fatigue on technical skill performance was also explained. The second aim was to describe the internal and external match demands experienced by female
soccer players. Differences pertaining to positional roles and demands were also elaborated upon in an attempt to make distinct classifications among different players.

Morphological factors are important for successful performance in sport. The morphological characteristics were discussed in terms of stature, body mass, skeletal lengths and breadths, skinfold measurements and somatotype characteristics. A conclusion was drawn that goalkeepers tend to be taller and heavier in comparison with players in other positions, which is believed to be related to their role of defending the goal area, while midfielders are often shorter and lighter than other players and have to fulfil a linking role between the front and back team players. Taller defending players are also crucial in assisting in the prevention of an opponent scoring a goal by jumping to head the ball if the opponent strikes the ball through the air. The higher percentage of body fat observed in goalkeepers is also attributed to their lower level of activity during matches and even during training. Again, the lower percentage of body fat among midfielders is related to their responsibilities in both defence and attack situations during a match. There is also the impression that players with a somatotype displaying a combination of high muscularity and low adiposity have the advantage of being more movable when contending for possession of the ball during a match.

Together with the morphological characteristics linked to successful performance, an evaluation of the players’ aerobic and anaerobic fitness is necessary since these variables may contribute towards the outcome of the match. A high level of physical fitness provides players with the physiological basis to cope with the physical demands of a match since female soccer players typically cover a distance of approximately 10.3 km during a match. There is a scarcity of data with regard to the Yo-Yo IR1 and the RSA of female soccer players and as such, these warrant further investigation. Due to the unpredictable nature of team sports, short phases of RSA may be required on numerous occasions throughout a match, and even though it is probable that this type of activity only contributes a small proportion to the overall motion activity during competition, it may be crucial to the end result. Other anaerobic-fitness components such as the sprinting and jumping ability of players have also proved to be associated with high-level performance and are crucial in attacking situations and defending the goal. There is, however, very limited research relating to the sprinting characteristics of different playing positions.

Soccer is a free-flowing, intermittent team sport that requires the execution of diverse technical skills in a dynamic context. Technical skills considered to be essential include dribbling, passing, controlling and decision-making. A limitation in the assessment of technical skills in general is the lack of valid and reliable assessment protocols since many of the protocols involve the
assessment of technical skills in a closed situation and from a static position without the influential external factors that exist within a game. The development of the LSPT provides a valid and reliable tool for the assessment of the multi-faceted aspects of soccer and allows the assessment of the impact of fatigue on technical skill performance. A vital component in soccer is the ability to maintain good technical performance throughout match play. The shortage of research investigating the effect of fatigue on technical skill performance has led to very limited information in this particular area of interest and should be further explored since both aerobic and anaerobic fatigue could influence the accuracy and execution of technical skills. Soccer coaches are confronted by the challenge to develop the team all round in terms of physical capacity, technique, tactics and mental concentration in order to tolerate the various situations encountered during a match.

Advances in technology regarding the assessment of soccer players have led to greater opportunities to support the coaching team and players scientifically. The emergence of GPS technology allows for real-time analysis of the external movement demands during a soccer match, with devices that sample at a higher frequency being more accurate. Benefits of a GPS device are that it is portable, lightweight and can store a few hours of data. The locomotor activities of players can be assessed by GPS devices through using different movement categories. The literature review highlights the diverse classifications of movement categories previously used and the difficulty of making comparisons among female soccer players due to a shortage of studies using GPS technology.

Elite female soccer matches consist of multiple bouts of brief intense exercise separated by low-intensity activity and, therefore, good and poor physical performance can be differentiated in terms of the amount of HIR performed. The higher the level of participation in female soccer, the greater the running intensity tends to be during a match. Another new concept being researched through the use of GPS technology is player load, which is a representation of total body load and allows the assessment of sideways, forward and vertical accelerations such as jumping, tackling, passing, accelerating and decelerating as well as sideways and backward movements. These movements are often neglected with TMA or regarded as low-speed movement, even though they place high physical strain on the player and should be used in the overall assessment of players and the classification of playing positions.

Apart from the external match demands placed on soccer players, quantification of the internal match demands is also important. Factors commonly included in the assessment of internal match demands are HR monitoring, blood lactate concentration and RPE. Heart rate monitoring is often
used as an indirect measure of exercise intensity and has proved to be a useful tool. A challenge, however, regarding the assessment of blood lactate concentration includes the inherent difficulties in obtaining blood lactate measurements during a soccer match, while the logistical hindrances in the execution of RPE assessment continuously throughout a soccer match makes this an impractical method for assessing internal match demands.

Finally, fatigue is an important consideration in soccer match play. Decreases in distance covered from the first to the second half at various intensities show that players experience fatigue towards the latter part of a match and also for five minutes after an intense period of activity. Regardless of the level of participation, fatigue occurs towards the end of a match, resulting in less HIR towards the latter part of a match. Players cover less distance in the second half at HIR and cover more distance with low-intensity activity. The physical training of elite players should concentrate on increasing the ability to perform intense activity and to recover rapidly from high-intensity exercise periods.

Due to the growing popularity and number of female soccer players worldwide, there is a high demand for scientific research relating to this population and the analysis of positional roles. Based on this literature review, it is evident that results differ considerably across studies. Possible reasons for this discrepancy in results are related to gender, individual characteristics of players, levels of competition, match conditions, differences in methodology used and movement impairment due to the measuring equipment utilised. Current published literature mainly focuses on male soccer players, with a paucity of publications related to the assessment of the diverse attributes related to female soccer. Furthermore, there are limited studies focused on physical profile and match demands of female players competing on sub-elite level. This is of concern considering that sub-elite level participation and improvement forms the foundation for elite level performance through players progressing from sub-elite to elite level participation. Based on the dearth of research pertaining to the match demands of female soccer players, the researcher recommends that future studies should make use of the more advanced, reliable and time-saving GPS analysis method to classify external match demands and locomotor activities as well as employ assessment methods such as HR monitoring that focus on the internal match demands of players. As a result, knowledge and understanding of this information could assist future coaches and sport scientists in developing match-related conditioning programmes based on each player’s individual demands, thereby improving players’ soccer performance and match standards and promoting a positive image of the female game.
Chapter 2: Literature overview: Match play analysis, anthropometric measurements and physical profiles of female soccer players

References

Chapter 2: Literature overview: Match play analysis, anthropometric measurements and physical profiles of female soccer players

Chapter 2: Literature overview: Match play analysis, anthropometric measurements and physical profiles of female soccer players

Chapter 2: Literature overview: Match play analysis, anthropometric measurements and physical profiles of female soccer players

Chapter 2: Literature overview: Match play analysis, anthropometric measurements and physical profiles of female soccer players

Chapter 2: Literature overview: Match play analysis, anthropometric measurements and physical profiles of female soccer players

Chapter 2: Literature overview: Match play analysis, anthropometric measurements and physical profiles of female soccer players

Chapter 2: Literature overview: Match play analysis, anthropometric measurements and physical profiles of female soccer players

Chapter 2: Literature overview: Match play analysis, anthropometric measurements and physical profiles of female soccer players

CHAPTER 3

COMPARISON OF THE MORPHOLOGICAL CHARACTERISTICS OF SUB-ELITE FEMALE SOCCER PLAYERS ACCORDING TO PLAYING POSITION
This article will be submitted for publication in the Women in Sport and Physical Activity Journal. The article is included herewith in accordance with the guidelines for authors of this esteemed journal (included as Appendix E). However, to provide a neat and well-rounded final product for this thesis, the article has been edited to represent an actual published article as it would appear in this particular journal. This does not imply that the article has been accepted or will be accepted for publication. Consequently, the referencing style used in this chapter may differ from that used in the other chapters of this thesis.
Title: Comparison of the morphological characteristics of sub-elite female soccer players according to playing position

Running head: Morphological characteristics of female soccer players

Authors: Anita Strauss1,2, Martinique Sparks2 and Cindy Pienaar2

1 Department of Sport, Rehabilitation & Dental Science, Tshwane University of Technology, Pretoria, Pretoria West Campus, South Africa, 0001.

2 Physical Activity, Sport and Recreation (PhASRec), North-West University, Potchefstroom, Potchefstroom Campus, South Africa, Private Bag X6001.

Corresponding author:

1 Anita Strauss.

Department of Sport, Rehabilitation & Dental Science, Tshwane University of Technology, Pretoria, Pretoria West Campus, South Africa, 0001. Tshwane University of Technology. Phone: +27 12 382 4442. Fax: +27 12 382 5806. Email: Straussa@tut.ac.za.

This work is based on the research supported in part by the Tshwane University of Technology, South Africa through the Department of Higher Education and Training Research Development Grant.
Chapter 3: Comparison of the morphological characteristics of sub-elite female soccer players according to playing position

ABSTRACT

Soccer has become increasingly popular among female players worldwide. Although much is known about male soccer players, limited scientific information is available on female soccer players, in particular their morphological profile according to playing positions. The primary aim of this study was to examine if there are position-specific differences in the morphological characteristics of South African sub-elite female soccer players. A secondary aim was to utilise the morphological characteristics of South African sub-elite female soccer players to establish the foundation for a database designed to create normative standards for this level of female soccer players. The morphological features of 101 sub-elite female soccer players (age: 21.8±2.7 years, height: 160±6.8 cm, body mass: 57.1±9.1 kg) were assessed. Twenty anthropometric sites were used in the measurements of body composition and somatotype. The average value of body fat percentage was 20.8±5.7%. The somatotype of the overall group was 4.0–2.4–2.1. Positional differences were evident and significant (p ≤ 0.05) in morphological characteristics. Goalkeepers were taller, heavier, possessed the highest body fat percentage and showed higher values for all skinfold, breadth, girth and length measurements. Defenders showed the second-highest breadth and girth measurements. Midfielders were the shortest and the lightest players, with the lowest body fat percentage and the lowest values in most measurements. Positional groups did not differ (p ≤ 0.05) in somatotype characteristics. It was consequently concluded that morphological differences exist among soccer players in their various playing positions. The results of the study may serve as normative values for future comparisons regarding the morphological characteristics of female soccer players.

Keywords: anthropometry, body fat percentage, standing height, somatotype, body mass, positional groups.
INTRODUCTION

A continuous increase is observed in the popularity of soccer worldwide (Sporis, Canaki, & Barisic, 2007), with female soccer experiencing a constant growth in the number of players (Jelaska, Erceg, & Jelaska, 2015). The efficiency of the game is influenced by several factors, including morphological characteristics, motor abilities, functional abilities, technical and tactical abilities and psychological factors (Erceg, Milić, Sivrić, & Košta, 2014). The profile of soccer players has therefore become a subject of decisive interest (Dillern, Ingebrigtsen, & Shalfawi, 2012). Ample literature regarding the morphological characteristics of male soccer players exists, but less is known about female players (Sedano, Vaeyens, Philippaerts, Redondo, & Cuadrado, 2009). To compete at an elite level, players need to possess morphological characteristics applicable to both the sport and to specific playing positions (Hazir, 2010). An in-depth understanding of the determinants of success such as specific morphological characteristics of players is, therefore, important for soccer coaches and sport scientists (Rogan, Hilfiker, Clarys, Clijsen, & Taeymansa, 2011) to optimize players’ performance.

A few studies have recently focused on the morphological characteristics of female soccer players participating on elite and sub-elite level (Hasegawa & Kuzuhara, 2015; Mala et al., 2015; Nikolaidis, 2014). Standing height values of 161.3–171.9 cm (Mara, Thompson, Pumpa, & Morgan, 2017; Sedano et al., 2009) and body mass values of 58.3–65.3 kg have been reported for elite female soccer players (Mara et al., 2017; Sporis, Jovanovic, Krakan, & Fiorentini, 2011). Comparable values for standing height and mass have been reported for sub-elite players (Nikolaidis 2014, Vescovi, 2012). It is evident that standing height and mass differ according to playing position in female soccer (Hasegawa & Kuzuhara, 2015; Milanovic, Sporis, & Trajkovic, 2012; Sporis et al., 2011). Goalkeepers are taller (Milanovic et al., 2012) and heavier (Haugen, Tonnessen, & Seiler, 2012), with defenders also being among the taller players (Milanovic et al., 2012). Midfielders tend to be the shortest and the lightest players, followed by forwards (Sporis et al., 2007; Vescovi, Brown, & Murray, 2006). It is believed that a tall goalkeeper is advantageous in jumping to reach for a ball and defending a goal (Rogan et al., 2011), while the shorter height and lighter body mass of midfielders enable them to move more efficiently and to cover longer distances on the field (Hazir, 2010). Body fat percentage (BF%) also differs between playing positions in female soccer, with goalkeepers having the highest amount of body fat (Hasegawa &
Kuzuhara, 2015). This is possibly due to the lower level of activity required during a match (Dey, Kar, & Debray, 2010).

Skeletal length and girth measurements show a general tendency for goalkeepers to have the largest measurements, with special reference to longer leg and arm lengths compared to other playing positions (Sporis et al., 2007). There is also a trend for midfielders to be among the players with the smallest skeletal length and girth measurements, which can again be attributed to their shorter stature, lower body mass and positional role (Sporis et al., 2007). The physical characteristics of the body are ultimately used to determine somatotype (Noh et al., 2015). Three somatotype components are used to define body shape; namely endomorphy, mesomorphy and ectomorphy, and are expressed by a three-number rating (Carter, 2002). These three components were identified as relative fatness (endomorphy), musculoskeletal component (mesomorphy), and linearity (ectomorphy) (Carter, 2002). Mesomorphy is generally the most predominant somatotype component among soccer players (Gil, Gil, Ruiz, Irazusta, & Irazusta, 2007). An ectomorphic mesomorph body type is advantageous for actions requiring speed, power and endurance, which are vital components for soccer performance (Adhikari & Nugent, 2014).

Morphological characteristics are viewed as important considerations in the selection process for team position (Sporis et al., 2007). Despite this fact, the morphological characteristics of female soccer players have not been clearly defined in literature. Due to a shortage of related studies, a need exists for the establishment of normative data for female players. To the authors’ knowledge, no information exists on female soccer players in South Africa that describes their morphological characteristics in accordance with playing position. Differences or comparisons in data found in relation to previous research are essential for designing individualized training programmes. The research question developed for this study is: Are there position-specific differences in the morphological characteristics of South African sub-elite female soccer players? Hence, the primary aim of this article was to examine if there are position-specific differences in the morphological characteristics of South African sub-elite female soccer players. A secondary aim was to utilise the morphological characteristics of South African sub-elite female soccer players to establish the foundation for a database designed to create normative standards for this level of female soccer players. The hypothesis for the main aim of the study is that the morphological profile of South African sub-elite female soccer players will differ according to playing position. More research is required in future for the development of female soccer in South Africa.
Chapter 3: Comparison of the morphological characteristics of sub-elite female soccer players according to playing position

METHODS

Study design

The study made use of a quantitative research method and cross-sectional design. A demographics questionnaire and an anthropometric datasheet were used to gather information.

Participants

The study comprised 101 South African sub-elite female soccer players with a mean age of 21.8±2.7 years. A clear distinction between elite and sub-elite athletes is not defined in literature. For the purpose of this article, elite players are regarded as players competing on national level and higher divisions, while sub-elite level generally refer to players competing on club, college or university level. In line with previous studies on female soccer players (Haugen et al., 2012; Sporis et al., 2011; Vescovi et al., 2006) the players were divided into four positional groups, namely forwards, midfielders, defenders and goalkeepers. All the participants were regular soccer players competing in local club-level and student tournaments with an average of 7.5 years playing experience. The participants practiced on a regular basis (2–3 times per week). Measurements took place during the competition season. The study was approved by the Health Research Ethics Committee (NWU-00055-15-S1) of the university where the research was conducted. Research was conducted according to the Declaration of Helsinki. Participation in the study was voluntary and participants could withdraw from the study at any time and without prejudice. Prior to the start of the study, the participants were fully informed of the purpose and experimental procedures and an explanation of the potential risks and benefits of the study were given. Each player received a participant number in order to ensure anonymity.

Procedures

Demographics questionnaire

Written informed consent was obtained from all the players before commencement of the assessment procedures. The players had to submit the completed informed consent form on the day of testing if they wished to participate in the study. A questionnaire (see Appendix C), which made use of both open ended questions and a list of answers to select from, was administered before the testing procedures to collect the players’ demographic and personal information.
regarding name, age, ethnicity, exercise habits, playing position, years of participation and competing level.

Anthropometric measurements

Anthropometric measurements were taken according to the standard procedures of the International Society for the Advancement of Kinanthropometry (Stewart, Marfell-Jones, Olds, & de Ridder, 2011). Measurements included: (i) stature measured in centimeters to the nearest 0.1 cm using a Harpenden Portable Stadiometer (Holtain Limited, UK) with the player standing upright and the player’s head in the Frankfort plane; (ii) body mass measured in kilograms to the nearest 0.1 kg using a portable electronic scale (Beurer Ps07 Electronic Scale, Ulm, Germany) with the participants wearing minimal clothing (such as shorts and a crop top) and no shoes; (iii) skinfolds of the triceps, subscapular, supraspinal, abdominal, frontal thigh and medial calf measured with a Harpenden Skinfold Caliper (Holtain Limited, UK) to the nearest 0.2 mm with a constant pressure of 10 g/mm2; (iv) breadths of the humerus, wrist, femur and ankle measured with a Holtain Bicondylar Caliper (Holtain Limited, UK) to the nearest 0.1 mm; (v) girth measurements for relaxed arm, flexed arm, waist, gluteus and mid-thigh taken with a Lufkin metal tape (Cooper Industries, USA) to the nearest 0.1 cm; and (vi) skeletal lengths of the upper arm, lower arm, hand and foot measured with a Rossraft segmometer (Rossraft Innovations Incorporated, Canada) to the nearest 0.1 cm. All anthropometric measurements were taken by the same two Level 2 ISAK-certified anthropometrists twice on the right-hand side of the body. The means of these measurements were used in the statistical analysis. Body fat percentage was calculated according to previously developed equations (Withers et al., 1987). Muscle and skeletal mass were calculated according to predetermined formulas (Lee et al., 2000). Somatotype was calculated using an established formula (Carter & Heath, 1990). Arm, mid-thigh and calf girths were corrected with the different skinfolds at these sites by applying the following formula: Corrected arm girth = Girth – (3.1416 x (triceps skinfold/10)); Corrected thigh girth = Girth – (3.1416 x (thigh skinfold/10)); Corrected calf girth = Girth – (3.1416 x (calf skinfold/10)). Corrected girths were used because they serve as better indicators of musculoskeletal size at each site (Martin, Spenst, Drinkwater, & Clarys, 1990). The technical error of measurement was calculated by applying a previously established formula (Pederson & Gore, 1996). A value of 1.80% (1.75 mm) was revealed for all skinfold measurements, 0.62% (0.16 cm) for all breadth
measurements, 0.01% (0.02 cm) for all girth measurements and 0.87% (0.19 cm) for all length measurements.

Statistical analysis

The Statistical Package for Social Science (IBM SPSS Statistics 24) was used for statistical analysis. Descriptive statistics were calculated and used to describe the morphological characteristics of the players. The statistics were reported as mean ± standard deviation (SD). One-way analysis of variance (ANOVA) was applied to test equality of means among the four playing positions in terms of morphological characteristics. Scheffe’s F test was also used for multiple comparisons between groups. Tukey’s post hoc test was used to quantify significant differences between playing positions for each variable. Effect size was used to compare differences in standardised effects between playing positions. Magnitudes of standardised effects were assessed as: 0–0.2 trivial, 0.2–0.6 small, 0.6–1.2 moderate, 1.2–2.0 large, and >2.0 very large (Batterham & Hopkins, 2006). The level of statistical significance was set at $p \leq 0.05$.

RESULTS

Descriptive statistics of the morphological characteristics for the total group and differences according to specific playing positions are presented in Table 1 and Table 2. The players had a mean standing height and mass of 160.0 cm and 57.1 kg respectively. The F values indicated that differences ($p \leq 0.05$) existed among the positional groups in terms of means calculated for standing height, body mass and skinfold of the triceps and supraspinale. The highest mean results were recorded among goalkeepers. Goalkeepers differed with a moderate effect (ES: 0.7) and forwards differed with a small effect (ES: 0.3) in standing height with midfielders and defenders. With regard to body mass, goalkeepers differed with a moderate effect (ES: 0.9–1.1) from all three outfield playing positions, who only differed with trivial to small effect (ES: 0.1–0.3) from one another. Small to moderate (ES: 0.5–0.6) differences in the skinfold measurements of the triceps and supraspinale were observed between the goalkeepers and the outfield playing positions. Differences ($p \leq 0.05$) between playing positions were also evident in the breadth measurements of the wrist (ES: 0.0–0.1, trivial effect) and femur (ES: 0.1–0.3, trivial to small effect), the girth measurements of the relaxed arm (ES: 0.0–0.5, trivial to small effect), flexed arm (ES: 0.1–0.5, trivial to small effect), waist (ES: 0.0–0.8, trivial to moderate effect), gluteal (ES: 0.0–0.8, trivial to moderate effect) and calf (ES: 0.0–0.5, trivial to small effect) and the length measurements of the acromiale-radiale (ES: 0.0–0.3, trivial to small effect), radiale-styliion (ES: 0.1–0.6, trivial to moderate effect), midstyliion-dactyliion (ES: 0.0–0.3, trivial to small effect).
effect) and the foot (ES: 0.1–0.4, trivial to small effect). Again, goalkeepers on average had the largest breadth (ES: 0.1–0.3) and girth (ES: 0.5–0.8) and the longest length (ES: 0.3–0.6) measurements in comparison to the other positional groups.

Descriptive statistics for body composition characteristics and comparisons between playing positions are presented in Table 3. The sum of the six skinfolds in the total group was 97.5 mm. Significant differences ($p \leq 0.05$) among the positional groups were only found for fat mass (kg) (ES: 0.0–0.6, trivial to moderate effect), muscle mass (kg) (ES: 0.1–0.6, trivial to moderate effect) and skeletal mass (kg) (ES: 0.0–0.3, trivial to small effect), with larger (ES: 0.3–0.6, $p \leq 0.05$) results measured among the goalkeepers in comparison to the other positional groups. Midfielders showed the smallest average measurements for fat mass, muscle mass and skeletal mass. Midfielders also had a lower BF% and a higher muscle mass percentage than players in other positions. Forwards, midfielders and defenders had a similar skeletal mass percentage value.
Table 1: Age, stature and body mass of sub-elite female soccer players by playing position (mean ± SD)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Total (n = 101)</th>
<th>FW (n = 25)</th>
<th>MF (n = 33)</th>
<th>DF (n = 34)</th>
<th>GK (n = 9)</th>
<th>F value</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronological age (years)</td>
<td>21.8 ± 2.7</td>
<td>21.3 ± 2.3</td>
<td>21.7 ± 2.4</td>
<td>22.6 ± 3.0</td>
<td>20.6 ± 2.6</td>
<td>2.0</td>
<td>0.120</td>
</tr>
<tr>
<td>Body stature (cm)</td>
<td>160.0 ± 6.8</td>
<td>160.9 ± 5.7</td>
<td>158.7 ± 6.1</td>
<td>159.1 ± 6.9</td>
<td>166.2 ± 8.4</td>
<td>3.5</td>
<td>0.018</td>
</tr>
<tr>
<td>Body mass (kg)</td>
<td>57.1 ± 9.1</td>
<td>56.3 ± 8.4</td>
<td>55.0 ± 8.4</td>
<td>57.4 ± 9.9</td>
<td>66.5 ± 5.1</td>
<td>4.2</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Note: SD: Standard Deviation; F: Variance of the group means; FW: Forwards; MF: Midfielders; DF: Defenders; GK: Goalkeepers.

Corresponding letters indicate significant differences at p ≤ 0.05. * Differs significantly from goalkeepers at p ≤ 0.01

Effect size: Corresponding symbols indicate a moderate or larger effect size.
Table 2: Descriptive morphology of sub-elite female soccer players by playing position (mean ± SD)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Total (n = 101)</th>
<th>FW (n = 25)</th>
<th>MF (n = 33)</th>
<th>DF (n = 34)</th>
<th>GK (n = 9)</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skinfolds (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tricep</td>
<td>16.0 ± 5.3</td>
<td>15.1 ± 4.7</td>
<td>15.5 ± 4.9</td>
<td>15.9 ± 5.7</td>
<td>20.5 ± 5.8</td>
<td>2.7</td>
<td>0.052</td>
</tr>
<tr>
<td>Subscapular</td>
<td>11.4 ± 4.7</td>
<td>11.4 ± 4.5</td>
<td>10.9 ± 3.9</td>
<td>10.9 ± 3.4</td>
<td>14.6 ± 9.4</td>
<td>1.7</td>
<td>0.169</td>
</tr>
<tr>
<td>Supraspinale</td>
<td>10.3 ± 5.3</td>
<td>9.6 ± 4.1</td>
<td>9.3 ± 4.4</td>
<td>10.7 ± 4.5</td>
<td>15.0 ± 10.4</td>
<td>3.1</td>
<td>0.030</td>
</tr>
<tr>
<td>Abdominal</td>
<td>19.2 ± 8.3</td>
<td>18.8 ± 8.0</td>
<td>17.8 ± 8.4</td>
<td>19.3 ± 7.7</td>
<td>24.2 ± 9.9</td>
<td>1.4</td>
<td>0.233</td>
</tr>
<tr>
<td>Front thigh</td>
<td>24.9 ± 10.2</td>
<td>24.1 ± 8.9</td>
<td>23.8 ± 9.7</td>
<td>24.7 ± 11.3</td>
<td>32.4 ± 9.9</td>
<td>1.8</td>
<td>0.145</td>
</tr>
<tr>
<td>Medial calf</td>
<td>15.7 ± 6.1</td>
<td>15.9 ± 5.1</td>
<td>15.1 ± 7.2</td>
<td>15.4 ± 5.9</td>
<td>18.9 ± 5.3</td>
<td>0.9</td>
<td>0.421</td>
</tr>
<tr>
<td>Breadths (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humerus</td>
<td>6.1 ± 0.3</td>
<td>6.0 ± 0.3</td>
<td>6.1 ± 0.3</td>
<td>6.2 ± 0.4</td>
<td>6.3 ± 0.5</td>
<td>2.2</td>
<td>0.097</td>
</tr>
<tr>
<td>Wrist</td>
<td>5.1 ± 0.3</td>
<td>5.1 ± 0.3</td>
<td>5.1 ± 0.2</td>
<td>5.1 ± 0.3</td>
<td>5.3 ± 0.3</td>
<td>2.8</td>
<td>0.044</td>
</tr>
<tr>
<td>Femur</td>
<td>8.9 ± 0.5</td>
<td>8.9 ± 0.4</td>
<td>8.7 ± 0.4</td>
<td>9.0 ± 0.6</td>
<td>9.4 ± 0.5</td>
<td>4.7</td>
<td>0.004</td>
</tr>
<tr>
<td>Ankle</td>
<td>6.5 ± 0.4</td>
<td>6.4 ± 0.4</td>
<td>6.4 ± 0.3</td>
<td>6.6 ± 0.4</td>
<td>6.7 ± 0.3</td>
<td>3.0</td>
<td>0.034</td>
</tr>
<tr>
<td>Girths (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relaxed arm</td>
<td>24.9 ± 2.6</td>
<td>24.5 ± 2.6</td>
<td>24.5 ± 2.4</td>
<td>25.0 ± 2.5</td>
<td>27.4 ± 2.1</td>
<td>3.6</td>
<td>0.017</td>
</tr>
<tr>
<td>Flexed arm</td>
<td>26.4 ± 2.4</td>
<td>26.1 ± 2.5</td>
<td>25.9 ± 2.1</td>
<td>26.4 ± 2.4</td>
<td>28.7 ± 1.9</td>
<td>3.8</td>
<td>0.012</td>
</tr>
<tr>
<td>Waist</td>
<td>68.0 ± 5.9</td>
<td>67.7 ± 6.5</td>
<td>66.5 ± 5.3</td>
<td>68.0 ± 5.5</td>
<td>73.9 ± 5.4</td>
<td>4.0</td>
<td>0.010</td>
</tr>
<tr>
<td>Gluteal</td>
<td>93.4 ± 6.7</td>
<td>92.4 ± 6.7</td>
<td>92.8 ± 6.4</td>
<td>93.1 ± 6.7</td>
<td>99.9 ± 4.4</td>
<td>3.3</td>
<td>0.022</td>
</tr>
<tr>
<td>Mid-thigh</td>
<td>51.2 ± 4.6</td>
<td>50.3 ± 4.9</td>
<td>50.7 ± 3.9</td>
<td>51.6 ± 4.9</td>
<td>54.6 ± 4.0</td>
<td>2.3</td>
<td>0.085</td>
</tr>
<tr>
<td>Calf</td>
<td>32.9 ± 2.6</td>
<td>32.6 ± 2.1</td>
<td>32.4 ± 2.2</td>
<td>32.9 ± 3.0</td>
<td>35.5 ± 2.0</td>
<td>3.7</td>
<td>0.014</td>
</tr>
<tr>
<td>Lengths (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acromiale-radiale</td>
<td>30.7 ± 1.6</td>
<td>31.0 ± 1.3</td>
<td>30.4 ± 1.4</td>
<td>30.5 ± 1.7</td>
<td>32.0 ± 1.9</td>
<td>3.0</td>
<td>0.032</td>
</tr>
<tr>
<td>Radiale-styliion</td>
<td>24.2 ± 1.5</td>
<td>24.3 ± 1.2</td>
<td>23.8 ± 1.4</td>
<td>24.1 ± 1.3</td>
<td>26.3 ± 1.6</td>
<td>8.6</td>
<td>0.000</td>
</tr>
<tr>
<td>Midstyliion-dactyliion</td>
<td>18.5 ± 1.0</td>
<td>18.5 ± 1.0</td>
<td>18.3 ± 1.0</td>
<td>18.3 ± 0.9</td>
<td>19.5 ± 1.2</td>
<td>4.2</td>
<td>0.008</td>
</tr>
<tr>
<td>Foot</td>
<td>24.4 ± 1.6</td>
<td>24.6 ± 1.0</td>
<td>24.3 ± 1.1</td>
<td>24.1 ± 2.2</td>
<td>25.8 ± 0.7</td>
<td>3.0</td>
<td>0.033</td>
</tr>
</tbody>
</table>

Note: SD: Standard Deviation; F: Variance of the group means; FW: Forwards; MF: Midfielders; DF: Defenders; GK: Goalkeepers.

Corresponding letters indicate significant differences at p ≤ 0.05. * Differs significantly from goalkeepers at p ≤ 0.01

Effect size: Corresponding symbols indicate a moderate or larger effect size.
Chapter 3: Comparison of the morphological characteristics of sub-elite female soccer players according to playing position

Somatotype did not differ according to playing positions, and an average balanced endomorphic somatotype of 4.0–2.4–2.1 was recorded for the total group as displayed in Table 3. All positional groups had average endomorphic values. While the forwards and midfielders presented a balanced endomorph somatotype, the defenders and goalkeepers showed an average mesomorphic-endomorph somatotype. Mesomorphic values were low for forwards and midfielders and average for defenders and goalkeepers. All positional groups had low ectomorphic values. The somatotype chart (Figure 1) shows the location of the somatopoints of the mean somatotype for the total group and each playing position.

Figure 1: Somatotype distribution of sub-elite female soccer players by playing position. An average balanced-endomorph somatotype is evident among all the playing positions.
Table 3: Body composition characteristics of sub-elite female soccer players by positional group (mean ± SD)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Total (n = 101)</th>
<th>FW (n = 25)</th>
<th>MF (n = 33)</th>
<th>DF (n = 34)</th>
<th>GK (n = 9)</th>
<th>F value</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum of 6 skinfolds (mm)</td>
<td>97.5 ± 35.8</td>
<td>94.9 ± 31.7</td>
<td>92.3 ± 35.4</td>
<td>96.9 ± 34.2</td>
<td>125.6 ± 45.9</td>
<td>2.2</td>
<td>0.092</td>
</tr>
<tr>
<td>Fat (kg)</td>
<td>12.2 ± 5.2</td>
<td>20.4 ± 5.1a</td>
<td>20.0 ± 5.7b,†</td>
<td>20.6 ± 5.5c</td>
<td>25.4 ± 7.2a,b,c,†</td>
<td>2.3</td>
<td>0.081</td>
</tr>
<tr>
<td>Fat %</td>
<td>20.8 ± 5.7</td>
<td>11.8 ± 4.6</td>
<td>11.3 ± 4.8</td>
<td>12.2 ± 5.1</td>
<td>17.2 ± 6.2</td>
<td>2.4</td>
<td>0.022</td>
</tr>
<tr>
<td>Muscle mass (kg)</td>
<td>21.3 ± 2.1</td>
<td>21.1 ± 1.9a*</td>
<td>20.8 ± 1.9b,†,*</td>
<td>21.3 ± 2.2c*</td>
<td>23.7 ± 1.0a,b,c,†</td>
<td>5.2</td>
<td>0.002</td>
</tr>
<tr>
<td>Muscle mass %</td>
<td>37.7 ± 2.7</td>
<td>37.9 ± 2.4</td>
<td>38.2 ± 2.6</td>
<td>37.6 ± 2.8</td>
<td>35.7 ± 2.0</td>
<td>2.1</td>
<td>0.107</td>
</tr>
<tr>
<td>Skeletal mass (kg)</td>
<td>6.8 ± 0.9</td>
<td>6.8 ± 0.7a</td>
<td>6.6 ± 0.7b*</td>
<td>6.9 ± 1.0c</td>
<td>7.7 ± 1.0a,b,c</td>
<td>4.3</td>
<td>0.007</td>
</tr>
<tr>
<td>Skeletal mass %</td>
<td>12.1 ± 1.2</td>
<td>12.1 ± 1.4</td>
<td>12.1 ± 1.2</td>
<td>12.1 ± 1.1</td>
<td>11.6 ± 1.2</td>
<td>0.5</td>
<td>0.693</td>
</tr>
<tr>
<td>Endomorphy</td>
<td>4.0 ± 1.3</td>
<td>3.8 ± 1.2</td>
<td>3.8 ± 1.2</td>
<td>4.0 ± 1.3</td>
<td>4.9 ± 1.8</td>
<td>1.8</td>
<td>0.147</td>
</tr>
<tr>
<td>Mesomorphy</td>
<td>2.4 ± 0.9</td>
<td>2.0 ± 0.9</td>
<td>2.3 ± 0.7</td>
<td>2.7 ± 1.0</td>
<td>2.5 ± 1.2</td>
<td>1.8</td>
<td>0.145</td>
</tr>
<tr>
<td>Ectomorphy</td>
<td>2.1 ± 1.2</td>
<td>2.4 ± 1.4</td>
<td>2.1 ± 1.0</td>
<td>1.9 ± 1.3</td>
<td>1.7 ± 1.3</td>
<td>1.2</td>
<td>0.374</td>
</tr>
</tbody>
</table>

Note: SD: Standard Deviation; F: Variance of the group means; FW: Forwards; MF: Midfielders; DF: Defenders; GK: Goalkeepers

Corresponding letters indicate significant differences at p ≤ 0.05. * Differs significantly from goalkeepers at p ≤ 0.01

Effect size: Corresponding symbols indicate a moderate or larger effect size
DISCUSSION

The primary aim of this study was to examine if there are position-specific differences in the morphological characteristics of South African sub-elite female soccer players. The secondary aim was to utilise the morphological characteristics of South African sub-elite female soccer players to establish the foundation for a database designed to create normative standards for this level of female soccer players. Adding to the uniqueness of this study is the large sample size in comparison to most other studies on female soccer players, cited in this paper. The main finding of this study was that the players showed an average mesomorphic-endomorphic somatotype for sub-elite female soccer players. Furthermore, the study revealed positional differences in the players’ morphological characteristics.

Standing height and body mass values of the current study were found to be comparable with values reported for elite Spanish (Sedano et al., 2009) and sub-elite Japanese (Hasegawa & Kuzuhara, 2015) female soccer players. However, the majority of previous research on female soccer players reported considerably higher values for standing height and body mass among both sub-elite (Nikolaidis, 2014; Vescovi et al., 2006) and elite female players (Milanovic et al., 2012; Sporis et al., 2011). Standing height is regarded as a decisive factor in the selection process in soccer and is considered favorable for goalkeepers when defending a goal (Sporis et al., 2007). In agreement with other studies (Haugen, Tonnessen, Hem, Leirstein, & Seiler, 2014; Milanovic et al., 2012; Vescovi et al., 2006), goalkeepers were taller than the outfield players, with results being significant ($p < 0.02$) in comparison to midfielders and defenders. None of the outfield playing positions differed ($p > 0.05$) from one another in terms of body height. However, similar to previous studies (Dillern et al., 2012; Sedano et al., 2009; Sporis et al., 2007; Vescovi et al., 2006), on average, midfielders were the shortest players. The standing height of forwards and defenders were alike. However, it would be expected that the height of forwards would be similar to defenders, taking into account the direct duels when jumping in front of the goal (Matković et al., 2003). Therefore, a particular height may orient a player towards a specific positional role (Dey et al., 2010) and may be a noteworthy factor for tactical success (Hazir, 2010). The standing height values were partly accompanied by the total body mass, leading to the conclusion that goalkeepers were on average the heaviest and midfielders were the lightest, thus supporting previous findings in literature (Haugen et al., 2012; Sporis et al., 2007). Significant results were found in the comparison of the goalkeepers to the forwards ($p = 0.02$), midfielders ($p = 0.004$) and defenders ($p = 0.03$). The heavier body mass often observed in goalkeepers is presumably due
to the fact that endurance is less important for goalkeepers than for outfield players (Rogan et al., 2011).

The influence of body composition on performance can extend much further than standing height (Hazir, 2010). In this regard, various skeletal measurements should also be considered. Skeletal breadth, girth, length and skinfold measurements of the players in the current study were comparable with other female soccer players on sub-elite and elite level, although available literature is very limited for all levels of participation (Adhikari & Nugent, 2014; Jelaska et al., 2015; Mujika, Santisteban, Impellizzeri, & Castagna, 2009; Sedano et al., 2009; Sporis et al., 2007). Results from the current study were either similar (thigh girth and humerus, wrist, femur and ankle breadth) or lower (relaxed arm, flexed arm and waist and calf girth) than previous reports (Can, Yilmaz, & Erden, 2004; Jelaska et al., 2015; Sporis et al., 2007). Upper limb skeletal length for players were longer than those in previous reports but cannot be directly related since this study made use of three measurements (mean acromiale-radiale, mean radiale-stylion and mean midstylion-dactylion) in comparison to the single measurement used for arm length in previous reports (Can et al., 2004; Jelaska et al., 2015; Sporis et al., 2007).

Differences ($p \leq 0.05$) were found between playing positions in the mean breadth measurements of the wrist, femur and ankle and the mean girth measurements of the relaxed arm, flexed arm, waist, gluteus and medial calf. Goalkeepers had larger ($p \leq 0.05$) wrist breadth measurements compared to midfielders and defenders and larger femur breadth measurements compared to forwards ($p = 0.02$) and midfielders ($p = 0.003$). A previous study on female players also reported the largest breadth measurements among goalkeepers (Sporis et al., 2007). The forwards had the smallest humerus and ankle breadth measurements, followed by the midfielders who again had the smallest wrist and femur breadth measurements. In terms of girth measurements, differences ($p \leq 0.05$) were found between goalkeepers and the other three positional groups, with the largest measurements being noted among goalkeepers. Midfielders possessed the smallest mean results for the majority of girths measured, which concurs with previous studies (Sporis et al., 2007). Due to limited data being available on female players, the current study can confirm that the results of the female players with regard to breadth and girth measurements relating to specific playing positions were similar to results reported for male players, with breadth and girth measurements being smaller for female players compared to males (Matković et al., 2003; Rogan et al., 2011).

Players in different positions further varied ($p \leq 0.05$) in terms of the mean length measurements. Goalkeepers had longer ($p \leq 0.05$) acromiale-radiale length measurements than midfielders and
defenders and longer \((p \leq 0.01) \) radiale-stylion length measurements compared to all outfield positions, thus agreeing with previous reports (Sporis et al., 2007). This particular body type contributes to the self-confidence of goalkeepers in performing their tasks of covering the broad area between the goalposts (Matković et al., 2003). Once again, the midfielders had the shortest arm and hand lengths, as has been found previously (Sporis et al., 2007). Furthermore, goalkeepers had larger hands \((p \leq 0.01) \) and longer feet \((p \leq 0.05) \) than midfielders and defenders. In considering standing height and body mass values of the different playing positions, it was not unexpected that the shorter and lighter midfielders generally possessed the smallest skeletal breadth, girth and length measurements. In addition, larger values were found among the taller and heavier forwards and defenders and ultimately, the largest measurements accompanying the tallest and heaviest values were established among the goalkeepers.

Skinfold and body fat measurements are also contributing factors for determining a player’s body composition. Although a certain amount of body fat is important for the maintenance of body metabolism, it is believed that excess adiposity negatively influences soccer performance (Anwar & Noohu, 2016; Slimani, Znazen, Hammami, & Bragazzi, 2017). The sum of the skinfolds can be used to determine adiposity and to provide detail regarding local fat depots and fat distribution in the body (Garrido-Chamorro, Sirvent-Belando, González-Lorenzo, Blasco-Lafarga, & Roche, 2012). The average of the sum of six skinfolds was considerably higher than that previously reported (Mujika et al., 2009) for elite female players in terms of similar skinfold sites measured and was more in agreement with the values reported for junior female players. No difference was found between the different playing positions. However, the midfielders had the lowest total sum of six skinfolds, followed by the forwards and defenders, with the goalkeepers demonstrating the largest value. The body fat mass and mean BF\% of the players lay within the ranges previously reported for female players (Hasegawa & Kuzuhara, 2015; Nikolaidis, 2014; Sedano et al., 2009). Higher muscle mass values than found in this study have been reported for sub-elite and elite Spanish female players (Sedano et al., 2009). Differences were noted between the different playing positions concerning the muscle mass \((p < 0.01) \), skeletal mass \((p < 0.01) \) and fat mass \((p < 0.05) \) values when goalkeepers were compared to the outfield positions. No differences were observed when the outfield positions were compared with one another. The highest mean muscle, skeletal and fat mass values were measured among goalkeepers, while the smallest values were measured among midfielders. The higher BF\% values found among goalkeepers could be attributed to their specific positional requirements of being steadier throughout the game and less mobile. This is in comparison to other playing positions that require the players to be more manoeuvrable and to cover a greater distance throughout a match, which could explain the lower BF\% measured among them. Forwards and defenders, however, had similar BF\% values
compared to midfielders, indicating that BF% was not a distinguishing factor among outfield positions. This agrees with results previously reported for elite Japanese female players (Hasegawa & Kuzuhara, 2015) and elite and sub-elite Spanish (Sedano et al., 2009) female players.

Finally, somatotype is a useful unit of measure that highlights the overall health status of individuals (Ochoa Martínez et al., 2014). In soccer, the mesomorphic component is an important factor for strength together with a prevalence of ectomorphic components (Adhikari & Nugent, 2014). Therefore, an ectomorphic mesomorphic body type is more desirable for speed and endurance with strong muscle power (Adhikari & Nugent, 2014). Although there is a shortage of studies describing the somatotype of female soccer players, the majority reported an endomorphic mesomorphic body type (Adhikari & Nugent, 2014; Can et al., 2004; Withers, Whittingham, Norton, & Dutton, 1987), with one study reporting a mesomorphic endomorphic body type (Nikolaidis, 2014). The players in the present study demonstrated a balanced endomorphic body type. This can be translated into an average value for the endomorphic component and low values for both the mesomorphic and ectomorphic components, indicating that on average, the players had a shorter body type and less muscle characteristics compared to previously reported results. None of the positional groups differed in somatotype characteristics. Defenders and goalkeepers showed more endomorphic and mesomorphic components, while forwards demonstrated the highest ectomorphic component of all the positional groups and midfielders showed the lowest endomorphic component. Comparisons to other studies regarding somatotype characteristics according to playing position could, however, not be made since such analyses have not been conducted previously.

It is, however, notable that midfielders who possessed the lowest endomorphic values also had the lowest BF%, while goalkeepers and defenders, who had the highest endomorphic values, had higher BF% values. The higher endomorphy component observed in goalkeepers could be the result of less intensive training, work-load profile in matches and energy expenditure. Higher level players tend to be more mesomorphic and less endomorphic and ectomorphic than players of a lower standard (Hazir, 2010), which could partly explain the differences observed between the current study on sub-elite players and earlier studies on elite players. Regular training can lead to a general increase in the mesomorphic component and a decrease in the endomorphic component (Can et al., 2004). A change in BF% could change the body type of the players in the present study into an ectomorphic mesomorphic body type, which could have a positive influence on performance.
PRACTICAL APPLICATIONS AND LIMITATIONS

This study provided valuable information concerning the morphological profile of sub-elite female soccer players in accordance with playing position, although several limitations of the study should be considered, along with recommendations for future researchers who wish to further explore this area of study. The participants in this study were not randomly selected according to the population representative of players competing on sub-elite level in South Africa. Future studies should include players participating on sub-elite level which would be representative of the entire population in the country.

The results of the present study show heterogeneity among playing positions and suggest that goalkeepers differ in morphological characteristics compared to outfield players. The results support previous research in that players in defensive positions tend to be among the taller players, which could be advantageous in performing actions such as jumping to gain possession of the ball and defending the goal. Midfielders are likely to be the shortest and lightest players in a team, lending them the advantage of being more manoeuvrable across the field. The inclination of the endomorphic component may be viewed as an indication of undertraining. Coaches and their players should remember that excessive body fat is an important factor influencing performance negatively. The control of body fat content and the regular undertaking of somatotype assessment are, therefore, essential. Each positional role are characterized by a different profile, highlighting the importance of dedicating certain training sessions to training specific to each position. Quantification and comparison of morphological profiles across playing positions can provide coaches and conditioning specialists with a better understanding of the specific demands of certain positions. This may consequently enhance training sessions through the prescription of optimal position-specific training programmes and lead to better performance in matches. Finally, because an aim of this study was to establish normative data within an area characterized by a rarity of information, this study can be regarded as a important contribution to the field for future reference and comparisons.

ACKNOWLEDGEMENTS

The authors wish to acknowledge all the members of the research team who took part in the data collection procedure. The authors wish to express their gratitude towards the players, coaches and team managers for their dedication and enthusiastic participation in the study. This work is based on the research supported in part by the Tshwane University of Technology, South Africa through the Department of Higher Education and Training Research Development Grant. The authors declare that they have no competing interests
Chapter 3: Comparison of the morphological characteristics of sub-elite female soccer players according to playing position

REFERENCES

Chapter 3: Comparison of the morphological characteristics of sub-elite female soccer players according to playing position

Chapter 3: Comparison of the morphological characteristics of sub-elite female soccer players according to playing position

CHAPTER 4

THE EFFECT OF EXERCISE-INDUCED FATIGUE ON THE TECHNICAL SKILL PERFORMANCE OF SUB-ELITE FEMALE SOCCER PLAYERS
This article will be submitted for publication in the Journal of Sports Science and Medicine. The article is included herewith in accordance with the guidelines for authors of this esteemed journal (included as Appendix E). However, to provide a neat and well-rounded final product for this thesis, the article has been edited to represent an actual published article as it would appear in this particular journal. This does not imply that the article has been accepted or will be accepted for publication. Consequently, the referencing style used in this chapter may differ from that used in the other chapters of this thesis.
Chapter 4: The effect of exercise-induced fatigue on the technical skill performance of sub-elite female soccer players

THE EFFECT OF EXERCISE-INDUCED FATIGUE ON THE TECHNICAL SKILL PERFORMANCE OF SUB-ELITE FEMALE SOCCER PLAYERS

Submission type: Research article

Authors:
Strauss, A 1,2, Sparks, M 2, Pienaar, C 2

Author details:
1 Department of Sport, Rehabilitation & Dental Science, Tshwane University of Technology, Pretoria, South Africa 0001. Straussa@tut.ac.za.
2 Physical Activity, Sport and Recreation (PhASRec), North-West University, Potchefstroom, South Africa. Private Bag X6001.

Corresponding author:
Anita Strauss. Tshwane University of Technology; Department of Sport, Rehabilitation & Dental Science; Pretoria; South Africa; 0001. Tel +27 12 382 4442. Fax: +27 12 382 5806. Straussa@tut.ac.za.

Running head: Fatigue and technical skill performance

List of figures:
Figure 1: Schematic representation of the LSPT (Ali et al., 2008) (used by permission)

List of tables:
Table 1: Descriptive statistics (mean ± SD) for the Yo-Yo IR and RSA tests
Table 2: Results of the LSPT preceding (pre-test) and following (post-test) the Yo-Yo IR1 (n=43) and RSA test (n=48) (mean ± SD)
Abstract

Objectives: To evaluate the effect of aerobic and anaerobic fatigue on the technical skill performance of sub-elite female soccer players, and to determine the aerobic and anaerobic fitness characteristics of sub-elite female soccer players. **Methods:** Forty-eight female soccer players participated in the study. Players completed the Loughborough Soccer Passing Test (LSPT) before and directly following the execution of an anaerobic repeated sprint ability (RSA) test and an aerobic Yo-Yo Intermittent Recovery Level 1 (Yo-Yo IR1) test on two consecutive days. Maximal heart rate and blood lactate concentration were obtained following the fatiguing exercises. **Results:** Players covered a mean distance of 560 m in the Yo-Yo IR1 and 614 m in the RSA test. Maximal heart rate values of 190 bpm and 186 bpm were recorded following the aerobic and anaerobic fitness tests respectively. A decline in the LSPT was found in terms of passing, penalty and total time following both fatiguing exercises, and displayed small to moderate effect sizes. A significant (p<0.001) increase in penalty time (32.6%) and total performance time (10.1%) was recorded following the Yo-Yo IR1. Penalty time (20.4%) and total performance time (8.5%) also increased following the RSA test. **Conclusions:** Physical fatigue has a detrimental effect on short-passing ability, with aerobic fatigue influencing passing accuracy more than anaerobic fatigue, resulting in a larger decline in technical skill performance. Therefore, the fatigue-related decline in technical performance is associated with the fitness level of a player.

Keywords: aerobic fatigue, anaerobic fatigue, fitness, Loughborough Soccer Passing Test, skill performance
Chapter 4: The effect of exercise-induced fatigue on the technical skill performance of sub-elite female soccer players

Introduction

The increase in attention devoted to scientific research in female soccer is evidence of the rise in popularity of this sport among females worldwide (Datson et al., 2014). Consequently, the profiles of female players and their development towards becoming elite performers are topics of decisive interest in the soccer milieu (Dillern et al., 2012). Recent studies have shown a decline in physical performance during matches (Hewitt et al., 2014; Vescovi & Favero, 2014). For this reason, the evaluation of a player’s aerobic and anaerobic capacity is important since these variables may determine play a role in the match outcome (Bangsbo et al., 2008).

Female elite players cover a total distance of approximately 8–11 km during matches (Mohr et al., 2008; Hewitt et al., 2014; Vescovi & Favero, 2014; Trewin et al., 2018). Therefore, a high level of aerobic fitness is required (Milanovic et al., 2012). The specificity and practicality of the Yo-Yo Intermittent Recovery (Yo-Yo IR) tests for the assessment of aerobic fitness have resulted in them being widely applied in many team sports and rapidly becoming one of the most intensively studied fitness tests in sport science (Bangsbo et al., 2008). Another characteristic of soccer players is the ability to perform numerous short-duration sprints (< 10 s) interspersed with short periods of rest (< 30 s) or low- to moderate-intensity activity (Bishop & Spencer, 2004). This is known as repeated-sprint ability (RSA). Repeated-sprint ability is commonly accepted as a critical component of high-intensity intermittent sports such as soccer (Gabbett, 2010). Despite the importance of RSA, more research is required in female soccer for the establishment of normative data; this is partly due to the diverse range of testing protocols available.

Soccer further requires the simultaneous performance of technical skills throughout high-intensity intermittent exercise (Russell et al., 2010). The contribution of anaerobic metabolism to energy provision is essential during a soccer match since skillful actions are dependent on quick and powerful movements (Ali & Williams, 2009). Technical performance is also believed to be influenced by aerobic fitness, particularly during the latter stages of a match (Russell & Kingsley, 2011). The impact of fatigue on technical skill performance has been explored quite well in male soccer players (Rampinini et al., 2008; Rampinini et al., 2009; Stone & Oliver, 2009; Russell et al., 2011). Even though it is evident that match-related fatigue has a negative effect on physical performance, limited research has examined the effect of fatigue on the quality of short-passing ability (Lyons et al., 2006; Rampinini et al., 2008). The deterioration of short-passing skills may be related to fatigue accumulated throughout a match and to the acute fatigue that is secondary to high-intensity phases of short duration (Rampinini et al., 2008). Limited experimental research is available in this area due to the difficulty in replicating the complex nature of soccer skills within
Chapter 4: The effect of exercise-induced fatigue on the technical skill performance of sub-elite female soccer players

a laboratory context (Ali, 2011). However, the Loughborough Soccer Passing Test (LSPT) has previously been used to assess skill performance at regular intervals during exercise (Ali & Williams, 2009), which can be utilized for examining the effect of fatigue on skill performance (Ali, 2011). The LSPT is the first soccer skill test to be validated for female players and is recommended to evaluate the soccer skill performance of female players in research settings (Ali et al., 2008).

Research has clarified the physical fitness characteristics of female soccer players in European and American countries (Vescovi et al., 2006; Dillern et al., 2012; Haugen et al., 2014). To the authors’ knowledge, no information exists on sub-elite female soccer players in Africa that describes and compares the effect of aerobic and anaerobic fatigue on technical-skill performance. The first aim of the study was to evaluate the effect of aerobic and anaerobic fatigue on the technical skill performance of sub-elite female soccer players. The secondary aim was to determine the aerobic and anaerobic fitness characteristics of sub-elite female soccer players.

Methods

Subjects

Forty-eight (n=48) South African sub-elite female soccer players (age: 22.0 ± 2.7 years; height: 158.9 ± 5.8 cm; body mass: 55.5 ± 8.1 kg) representing two university teams participated in the study. The participants were purposefully selected and classified as sub-elite level players. All players were soccer players in local tournaments (consisting of formal league club matches and university tournaments) with an average of 7.5 years of playing experience. The players were assessed during the competitive season. Prior to the start of the study, the players were fully informed of the aims of the study and experimental procedures together with the potential risks and benefits. Written informed consent was obtained from all the players before commencement of the assessment procedures. Players were excluded if they were injured.

Study design

The study made use of a quantitative research method through a descriptive and exploratory focus design. A demographic questionnaire and a physical performance datasheet were used to gather information. The study was approved by the Health Research Ethics Committee (NWU-00055-15-S1) of the university where the research was conducted. Research was conducted according to the Declaration of Helsinki. Each player received a participant number in order to ensure anonymity.
Methodology

Aerobic capacity: Yo-Yo IR1

The Yo-Yo IR1, as described previously (Bangsbo et al., 2006), was used to evaluate the aerobic capacity of each player. Cones were used to mark three lines, 20 m and 5 m apart. A commercially available pre-recorded compact disc (CD) was played using a CD player. The players were required to run back and forth between the lines at given speeds controlled by the CD. Upon starting the test, the player stood behind the middle line, facing the last line, and began running 20 m when instructed by the CD. When signalled by the CD, the player turned and returned to the starting point. The player was required to touch the marked lines at either end of the 20 m with one foot when the signal beeped. After each 40 m, the player received a brief 10 sec active recovery period, during which the player had walk back and forth over a 5 m distance. The initial running speed was 10km/h, after which the speed progressively increased. If the line was not reached in time for a beep, a verbal warning was given. The test was terminated if the player failed to reach the line for two consecutive ends within the given time or if the player stopped voluntarily. The last level and number of successfully completed shuttles by each player were recorded for statistical analysis. Total distance covered during the test was recorded. The maximal oxygen consumption ($\dot{V}O_{2\text{max}}$) of each player was estimated through a formula previously used for estimating $\dot{V}O_{2\text{max}}$ from the Yo-Yo IR1 (Bangsbo et al., 2008). A correlation ($p < 0.05$) exist between the Yo-Yo IR1 and $\dot{V}O_{2\text{max}}$ (Bangsbo et al., 2008). Therefore, $\dot{V}O_{2\text{max}}$ can be estimated for the Yo-Yo IR1 (Bangsbo et al., 2008).

Anaerobic capacity: RSA test

The RSA test was used according to a previously described method (Boddington et al., 2001) to assess anaerobic fitness. Six cones were placed 5 m apart in a straight line to cover a total distance of 25 m. The player started the test on the first cone and, upon an auditory signal, sprinted 5 m to the second cone and returned back to the first cone. The player then sprinted 10 m to the third cone and back to the first cone, et cetera. The player continued sprinting back and forth until a period of 30 sec has elapsed. After the first bout, the player was given a 35 sec rest period before starting the second bout of the activity. The activity was repeated for six times (bouts). The players were instructed not to pace themselves but to perform with maximal effort throughout the test. The distance covered by each player was approximated to the nearest 2.5 m during each 30 s shuttle, and this was used to determine the average total distance covered. An analysis by Spencer et al. (2005) on different studies that assessed RSA concluded that a protocol
Chapter 4: The effect of exercise-induced fatigue on the technical skill performance of sub-elite female soccer players

Involving six to seven sprints may best represent an intense bout of RSA specific to field-based team sports during competition.

Heart rate and blood lactate monitoring

The players were fitted with a Polar Heart Rate Transmitter Belt (Polar Electro, Kempele, Finland) before performing both the Yo-Yo IR1 and the RSA tests to measure the heart rate (HR) for each 5 s period while completing the fitness tests. Immediately after completion of the Yo-Yo IR1 test and the RSA test, a blood sample was collected from the fingertip of the left hand to determine blood lactate concentration. A portable analyzer (Lactate Pro, Arkray, Japan) was used to measure blood lactate concentration in mmol/L. The portable analyzer was calibrated before each blood sampling and used according to the manufacturer guidelines. The player’s finger was cleaned with an alcohol swab before each measurement. The blood samples taken were only used to confirm that each player was fatigued from the fitness tests before commencement of the technical skills test. Blood sampling was purposefully done immediately following the aerobic and anaerobic activities due to the design of the study in which players need to progress to the technical skill assessment as soon as possible in order to evaluate if aerobic or anaerobic fatigue would influence technical skill performance negatively.

Loughborough Soccer Passing Test (LSPT)

The LSPT was used to assess the multi-faceted aspects of soccer skills, including passing, dribbling, control and decision-making. Prior to the start of the study, the players were sufficiently familiarized with the LSPT protocol during a practice session in which the execution of the LSPT was explained and demonstrated to the players, and the players had opportunity to perform the test themselves. Figure 1 illustrates the layout of the LSPT. The performance score comprised three variables: time taken to complete the LSPT; penalty time accrued; and total performance time. The execution of the test and the awarded penalty time were in accordance with a previous study (Ali et al., 2008). Four standard gymnasium benches were placed on a grass soccer field, marking a 12 x 9.5 m grid (to the inside of the benches). Four coloured (green, blue, red and white) pieces of cloth (0.6 x 0.3 m) were fixed to the middle of each bench, with a black coloured piece of cloth (0.1 x 0.15 m) fixed vertically in the middle of the target areas. Yellow tape was used to mark the inner (1 x 2.5 m) and outer (2.5 x 4 m) rectangles. The passing zone was the area between these lines. Coloured cones were used to distinguish the different zones. The player performed 16 passes against the coloured target areas as quickly as possible. Penalty time accrued for inaccurate passing and poor ball control. The order of passes (colour of next target) was called out by one investigator, while another investigator recorded the time taken and penalty
time accrued (the sum of which made up total performance time). The same pair of investigators was used to conduct the LSPS in order to avoid inter-examiner variability. The next target was called out once the ball hit the target during the current pass. The order of passes were determined by one of the four trial orders randomly generated by the investigators, with each trial consisting of eight long passes (green and blue) and eight short passes (white and red). Passes had to be executed from within the passing area. Players were also informed that upon retrieval from the previous pass, the ball first had to cross two of the inner marked lines before the next pass could be attempted. The time was stopped when the last pass made contact with the target area. Penalty time was awarded for the following errors: missing bench completely or passing to wrong bench (5 s); missing target area (3 s); handling the ball (3 s); passing from outside of the designated area (2 s); ball touching any cone (2 s); every second taken over the allocated 43 s to complete the test (1 s). A deduction of 1 s was done from the total time if the ball hit the 10 cm black cloth in the middle of the target.

Figure 1: Schematic representation of the LSPT (Ali et al., 2008) (used by permission)

Procedures

After the players had given written informed consent, they were required to complete a demographic and general information questionnaire. Testing was conducted over two consecutive days and players did not engage in normal training sessions between the two testing days. To avoid inter-examiner variability during the LSPT, players were assessed one at a time.
throughout all tests performed. Before testing commenced, the players engaged in a general warm-up of 15 min consisting of low-intensity aerobic activity followed by static and dynamic stretching. On the first day, each player performed the LSPT and progressed to the RSA test upon completion of the technical skills test. Immediately following the RSA test, blood sampling was carried out. Then without any rest, the player completed the LSPT. On the second day, each player performed the LSPT followed by the Yo-Yo IR1 test. Immediately following the Yo-Yo IR1 test, blood lactate measurements were done. Again, without any rest, the player then completed the LSPT. After completion of each fitness test, the player’s maximal HR and rate of perceived exertion (RPE) were recorded. The Borg CR10 scale modified by Foster et al. (1996) was used as a guideline to record the players’ perceived exertion during the tests (Impellizzeri et al., 2004). The tests were performed on a grass soccer field with players wearing their soccer boots. Players were instructed not to engage in strenuous exercise for at least 48 hours before the testing.

Statistical analysis

The Statistical Package for the Social Sciences (IBM SPSS Statistics 22) was used for statistical analysis. Data are presented as means ± standard deviation (SD). Descriptive statistics were calculated and used to describe the aerobic and anaerobic fitness characteristics of the players. Spearman’s Rank Correlation Coefficient was used on each dependent variable (movement time, penalties and total performance in LSPT) to examine the effect of aerobic and anaerobic fatigue on LSPT performance. Correlations were determined between pre- and post-test scores. The strength of the correlation was categorised as follows: ≤0.01 (trivial), <0.3 (small), <0.5 (moderate), <0.7 (large), <0.9 (very large) and ≥1 (perfect) (Hopkins, 2010). Differences in skill-related technical scores measured during the pre- and post-tests (speed, precision, success) were determined using a paired samples T-test, and the Cohen effect size (ES) was used to compare changes in performance between the pre- and post-test. Magnitudes of standardised effects were assessed as 0–0.2 trivial, 0.2–0.6 small, 0.6–1.2 moderate, 1.2–2.0 large, and >2.0 very large (Batterham & Hopkins, 2006). The level of statistical significance was set at p≤0.05.

Results

Physiological measurements

Descriptive statistics for the Yo-Yo IR1 and RSA tests are presented in Table 1. Peak HR was slightly higher following the Yo-Yo IR1 than after the RSA test. Blood lactate measured after the RSA test was higher than blood lactate measured after the Yo-Yo IR1. The RPE (7.1) following the Yo-Yo IR1 and the RSA test was similar.
Chapter 4: The effect of exercise-induced fatigue on the technical skill performance of sub-elite female soccer players

Table 1: Descriptive statistics (mean ± SD) for the Yo-Yo IR1 and RSA tests

<table>
<thead>
<tr>
<th></th>
<th>Yo-Yo IR1 (n=43)</th>
<th>RSA (n=48)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total distance (m)</td>
<td>560.9 ± 212.8</td>
<td>614.3 ± 41.9</td>
</tr>
<tr>
<td>Peak HR (bpm)</td>
<td>190.1 ± 8.0</td>
<td>186.2 ± 8.9</td>
</tr>
<tr>
<td>Peak blood lactate (mmol/L)</td>
<td>11.2 ± 3.2</td>
<td>16.4 ± 4.3</td>
</tr>
<tr>
<td>RPE</td>
<td>7.1 ± 1.9</td>
<td>7.1 ± 2.2</td>
</tr>
<tr>
<td>VO2max (mL/kg/min)</td>
<td>41.1 ± 1.8</td>
<td></td>
</tr>
<tr>
<td>Yo-Yo IR1 level</td>
<td>14.1 ± 0.9</td>
<td></td>
</tr>
</tbody>
</table>

Note: SD: Standard deviation; RSA: Repeated-sprint ability; Yo-Yo IR1: Yo-Yo Intermittent Recover level 1

Passing accuracy

The LSPT performance scores are presented in Table 2. The performance in the LSPT decreased during the post-tests following the fatiguing exercises generally with a small effect. The LSPT passing time increased following both the Yo-Yo IR1 and RSA tests. In particular, penalty time increased following the Yo-Yo IR1 (p<0.001; 32.6%) with a moderate effect. Penalty time increased with a small effect following the RSA test (p=0.01; 20.4%). This is evident in the decrease in precision of passes that ultimately resulted in deterioration in the total performance time following both tests. There were large correlations (r=0.7–0.8) between pre- and post-test trials for all variables following the Yo-Yo IR1. Moderate correlations (r=0.6) were also found between trials following the RSA test.

Table 2: Results of the LSPT preceding (pre-test) and following (post-test) the Yo-Yo IR1 (n=43) and RSA test (n=48) (mean ± SD)

<table>
<thead>
<tr>
<th></th>
<th>Pre-test (s)</th>
<th>Post-test (s)</th>
<th>Percentage change between trials (%)</th>
<th>Cohen d ES</th>
<th>t</th>
<th>df</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yo-Yo IR1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passing time</td>
<td>49.9 ± 6.7</td>
<td>50.6 ± 7.0</td>
<td>1.4</td>
<td>0.1</td>
<td>-1.157</td>
<td>42</td>
<td>0.8</td>
</tr>
<tr>
<td>Penalty time</td>
<td>18.7 ± 10.8</td>
<td>24.8 ± 11.3</td>
<td>32.6*</td>
<td>0.6</td>
<td>-4.978</td>
<td>42</td>
<td>0.7</td>
</tr>
<tr>
<td>Total time</td>
<td>68.5 ± 16.2</td>
<td>75.4 ± 17.2</td>
<td>10.1*</td>
<td>0.4</td>
<td>-4.369</td>
<td>42</td>
<td>0.8</td>
</tr>
<tr>
<td>RSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passing time</td>
<td>51.7 ± 6.8</td>
<td>53.6 ± 8.8</td>
<td>3.7</td>
<td>0.2</td>
<td>-1.812</td>
<td>47</td>
<td>0.6</td>
</tr>
<tr>
<td>Penalty time</td>
<td>22.1 ± 12.5</td>
<td>26.6 ± 13.5</td>
<td>20.4**</td>
<td>0.3</td>
<td>-2.638</td>
<td>47</td>
<td>0.6</td>
</tr>
<tr>
<td>Total time</td>
<td>73.8 ± 18.4</td>
<td>80.1 ± 21.1</td>
<td>8.5**</td>
<td>0.3</td>
<td>-2.548</td>
<td>47</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Note: SD: Standard deviation; RSA: Repeated-sprint ability; Yo-Yo IR1: Yo-Yo Intermittent Recover level; ES: Effect size

*p<0.01: significant difference between pre-test and post-test; **p<0.05: significant difference between pre-test and post-test
Discussion

Since many sports skills are executed in a fatigued state, a need exists to assess skill execution and performance in this condition (Lyons et al., 2006). Limited studies have examined the effect of fatigue on LSPT performance (Lyons et al., 2006; Rampinini et al., 2008). To the researchers’ knowledge, this is the first study to examine this effect using similar testing protocols. The main finding of this study was that both aerobic and anaerobic fatigue induced a decline in short-passing ability, consequently affecting technical performance negatively. The deterioration in short-passing skills may, therefore, be related to the accumulation of fatigue.

Research using an indirect measurement of $\dot{V}O_{2\text{max}}$ on sub-elite female soccer players showed a mean value of 48.7 mL/kg/min (Vescovi et al., 2006). Although data on sub-elite female players is limited, the present results were lower (41.1 mL/kg/min) than those previously reported, indicating a lower level of aerobic fitness. It is however important to note that even though a correlation exists between the Yo-Yo IR1 and $\dot{V}O_{2\text{max}}$, the range of the Yo-Yo IR1 test performance measured in distance can vary considerably (Bangsbo et al., 2008). Although, this indirect measurement of $\dot{V}O_{2\text{max}}$ is more time efficient and less expensive (Bangsbo et al., 2008). The distance covered in the Yo-Yo IR1 was considerably lower than the distance indicated in a previous report (889.5 m) for sub-elite players (Hasegawa & Kuzuhara, 2015). These previously reported results were 25% lower than those of national team players, confirming the correlation between the Yo-Yo IR1 performance and competitive level (Hasegawa & Kuzuhara, 2015). Elite players were able to achieve distances of 1,232–1,379 m (Krustrup et al., 2005; Bendiksen et al., 2013). Hence, players of the current study should improve their aerobic fitness level as a higher level of aerobic fitness (48.7–56.8 ml/kg/min) is required for players competing at a higher standard (Krustrup et al., 2010; Dillern et al., 2012; Haugen et al., 2014).

Furthermore, players need to perform a number of short sprints, interspersed with periods of low to moderate activity or passive rest (Bishop & Edge, 2006; Mujika et al., 2009). While a wide range of testing protocols exists for determining RSA (Gabbett, 2010; Krustrup et al., 2010; Shalfawi et al., 2014), comparisons between studies are difficult due to variations in protocols in terms of mode of exercise, duration of sprints, number of sprint repetitions, recovery type and training status of the players (Spencer et al., 2005). In the current study, the players ran an average of 614 m during the RSA test. A study using a similar testing protocol on players of the same competitive level could not be found. Previous research on female soccer players makes reference to RSA tests of 7 x 30 m sprints (30 s active recovery) (Shalfawi et al., 2014) and
6 x 20 m sprints (15 s active recovery) (Gabbett, 2010). Further research should be performed using a comparable testing protocol on sub-wage elite female players for future comparisons.

Added penalty time makes up most of the difference between the Yo-Yo IR1 and the RSA test, suggesting that aerobic fatigue hinders performance more than anaerobic fatigue. The reason for this could be twofold. Firstly, players experience temporary fatigue following phases of high-intensity exercise and undergo progressive fatigue throughout a match (Mohr et al., 2005). A recent study found that an increased recovery duration resulted in an increased number of total passes and a higher percentage of successful passes in small-sided games (Köklu et al., 2015). By increasing recovery duration during repeated bouts of high-intensity exercise, an increase in physiological recovery occurs that may assist in maintaining physical performance (Balsom et al., 1992; McLean et al., 2016). Hence, in contrast to the progressive fatigue built up during the Yo-Yo IR1 as a result of the longer time duration involved in completing the test and less recovery time (10 s) between running, sufficient recovery was promoted during the shorter RSA test with longer recovery time (35 s) between each bout. The longer recovery period during the RSA test could increase the physiological recovery of the body, leading to better technical performance.

Secondly, testing was conducted during the competition season, that is, before and following a major soccer tournament. During the competitive season, coaches and trainers often place more emphasis on anaerobic conditioning through technical-skill training and short, repeated sprints, neglecting the aerobic conditioning that receives more attention during the pre-season. It is possible that due to specific preparations for the major competition structured in this particular format, more emphasis was placed on anaerobic conditioning, clarifying why anaerobic fatigue did not influence technical-skill performance to the extent that aerobic fatigue did. Small-sided games are a popular method used to develop technical skills and physical capabilities such as aerobic endurance (Köklu et al., 2015) and can be used as a tool for enhancing physiological and technical performance.

The decreased performance indicated in the LSPT is evidenced by the increase in passing time, penalty time and total time after both fatiguing exercises. It appears that players sacrificed accuracy of passes to maintain the speed to complete the LSPT. This phenomenon in which players modify speed and/or precision in an attempt to maintain performance has been previously demonstrated and is known as the speed-accuracy trade-off (Russell et al., 2011). During the LSPT, the players were unable to sacrifice speed due to the time limit imposed and as a consequence, accuracy decreased. From the observations, it was evident that the performance decrement in motor control during the post-tests was due to the aerobic and/or anaerobic fatigue.
experienced, which manifested itself through inaccurate passes. The players attained less perfect scores through not hitting the black strip in the middle of the bench and missing the target area or bench completely, which would have obvious consequences during a match. Furthermore, the fatigue led to players losing control of the ball.

From the observations, it can be posed that the performance detriment was, in part, due to the discomfort experienced by the players following the high-intensity fatiguing exercises, as is evidenced by the high blood lactate concentration levels measured following the Yo-Yo IR1 (11.2 mmol/L) and RSA (16.4 mmol/L) tests. The high blood lactate concentrations observed in soccer may be a reflection of an accumulated or balanced response to the numerous high-intensity activities performed (Bangsbo et al., 2006:667). The rate of lactate removal depends on factors such as lactate concentration, activity during the recovery period and the aerobic capacity of players (Stølen et al., 2005:509). Lactate responses in this study were higher following the anaerobic exercise, although aerobic fatigue had a higher negative effect on technical performance. In a study investigating small-sided games, regimes involving passive rest resulted in higher lactate responses in comparison to active rest (Arslan et al., 2017). The active-resting regime used in the Yo-Yo IR1 may, therefore, enhance blood lactate removal in comparison to the passive-resting regime of the RSA test, which may explain the higher blood lactate concentration measured following the RSA test. Also, players with a higher \dot{V}_O_{2max} may have lower blood lactate concentrations due to an enhanced recovery from high-intensity intermittent activity (Tomlin & Wenger, 2001:9).

Lactate formation is dependent on several factors, one of which is oxygen availability (Myers & Ashley, 1997). An increase in aerobic fitness could enhance recovery from anaerobic performance by supplementing anaerobic energy during exercise and providing aerobically derived energy at a faster rate during the recovery period (Tomlin & Wenger, 2001). Furthermore, improvements that aid the transport networks to and from the muscle such as increased blood flow could enhance the removal of lactate (Tomlin & Wenger, 2001). A decrease in oxygen availability (during the RSA test) results in decreased aerobic and increased anaerobic contribution to sprinting (Tomlin & Wenger, 2001), leading to higher blood lactate concentrations. However, the high blood lactate concentration level following the aerobic test together with the poor Yo-Yo IR1 performance indicates that the players’ aerobic fitness is insufficient, thus resulting in a slower rate of lactate removal.

The RPE is also described as a valid marker of global exercise intensity (Hill-Haas et al., 2011) that represents the athlete’s own perception of training stress (physical and psychological stress).
and could thus be a valuable measure of internal training load (Impellizzeri et al., 2004). Based on the interpretation of the RPE scale used, players experienced the fatiguing exercises as very difficult, and together with the high blood lactate levels, the aerobic and anaerobic tests were of sufficient intensity to exhaust the players before the LSPT.

Technical-skill performance may in addition be influenced by cognitive functions and concentration (Rampinini et al., 2008; Russell et al., 2011; Nédélec et al., 2012). Perceptual abilities (reaction time, decision-making and anticipation) are important during competitive play and for the successful execution of soccer skills (Stone & Oliver, 2009; Nédélec et al., 2012). When players are mentally fatigued, their ability to identify errors and subsequently to adjust performance is diminished (Smith et al., 2016). Immediately following the fatiguing exercises, many players seemed unsteady. It appeared that some players focused more on the fatigue experienced than passing accurately and controlling the ball, resulting in more errors. Recently, LSPT penalty time proved to be higher in a mental fatigue condition, resulting in more passing and ball control errors (Smith et al., 2016), which could explain the same tendency observed among the players in this study.

Although the researchers of this study were unable to determine the direct involvement of these cognitive aspects of performance on the decrement in technique execution, the development of a sensitive measure of soccer skill performance that incorporates perceptual skills and reflects the demands of competition could increase the ecological validity of these findings (Russell et al., 2011). Furthermore, exercise has been identified as synonymous with arousal (Lyons et al., 2006). A review reported five studies that found players’ speed of responding and decision-making as demands increased were facilitated by exercise up to a point and thereafter, exercise resulted in a decline in performance (Tomporowski, 2003). The RSA test could have been sufficient to exhaust the players in a shorter time than the Yo-Yo IR1. However, the longer duration of the aerobic test, along with shorter recovery time during the Yo-Yo IR1 test (10 s) as opposed to recovery time during the RSA test (35 s), could have had a higher negative impact on concentration ability, leading to the larger decline in technique performance. Aerobic metabolism is the most important energy source for soccer players (Shalfawi et al., 2014), and lapses in concentration and mental fatigue are considered factors contributing to more goals being scored towards the end of a match (Reilly, 1997). This ultimately leads to the conclusion that for the participants of this study, it is possible that aerobic fatigue affected technical-skill proficiency more than anaerobic fatigue due to mental fatigue and higher loss of concentration, which can be investigated in future studies.
Conclusion

The findings of this study indicate that the decreased performance in the LSPT is related to the physical fatigue because of the fatiguing exercises, more significantly in regard to aerobic fatigue. Based on the researchers’ interpretation of the percentage decreases in the LSPT variables measured, it seems that aerobic fatigue influenced technical performance more than anaerobic fatigue, which can be justified by the low aerobic fitness levels of the players. Future research should include direct analysis between performance results following the aerobic and anaerobic fatiguing tests to confirm this observation. Aerobic training receives more attention during the pre-season conditioning, while small-sided games and technical-skill training (short anaerobic bursts) are the main focus during the competition season. Recovery from high-intensity intermittent exercise can be enhanced through increased aerobic fitness; enhancing aerobic contribution consequently increases lactate removal. Although beyond the scope of this study, higher mental fatigue leading to lower levels of concentration following the more taxing aerobic fatiguing exercise could further explain this occurrence and should be considered in future studies. Regardless of the physical fitness level of the players, pacing strategies utilized throughout a match or execution of an assessment remains a contextual factor to consider in soccer. The practical importance of the present study is to include aerobic conditioning in the annual training cycle to increase resistance to fatigue during repeated sprint exercise, and this may benefit players by reducing the decline in short-passing ability. The inclusion of both aerobic and anaerobic fatiguing exercises into technical-skills training may help players to cope better with the demands of the game without compromising their ability to make accurate passes.

Acknowledgements

The authors wish to acknowledge all the members of the research team who took part in the data collection procedure. The authors wish to express their gratitude towards the players, coaches and team managers for their dedication and enthusiastic participation in the study. This work is based on the research supported in part by the Tshwane University of Technology (TUT) South Africa through the Department of Higher Education and Training Research Development Grant. The authors would like to thank PhASRec for the financial contribution towards part of the study. The experiments comply with the current laws of the country within which they were performed. The authors declare that there are no known conflicts of interest associated with this publication.
References

Chapter 4: The effect of exercise-induced fatigue on the technical skill performance of sub-elite female soccer players

Chapter 4: The effect of exercise-induced fatigue on the technical skill performance of sub-elite female soccer players

Key points:

- The deterioration in short-passing ability may be related to fatigue.
- Aerobic fatigue has a higher negative impact on technical skill performance than anaerobic fatigue.
- Aerobic conditioning should be emphasised in the annual training cycle to increase resistance to fatigue during repeated-sprint exercise, which may benefit players by reducing the decline in short-passing ability.
Chapter 4: The effect of exercise-induced fatigue on the technical skill performance of sub-elite female soccer players

Author biography

Anita Strauss
Degree: M-Tech
Institution affiliation: Tshwane University of Technology; Department of Sport, Rehabilitation & Dental Science; Pretoria; South Africa; 0001.
Research focus: Sport science; Sport-specific skills; Soccer match analysis
E-mail: straussa@tut.ac.za
Tel: +27 12 382 4442; Fax: +27 012 382 5801

Martinique Sparks
Degree: PhD
Institution affiliation: North-West University; Physical Activity, Sport and Recreation (PhASRec); Potchefstroom; South Africa; Private Bag X6001.
Research focus: Sport Science; Sport analysis
E-mail: Martinique.sparks@nwu.ac.za
Tel: +27 18 299 1770; Fax: +27 18 285 6028

Cindy Pienaar
Degree: PhD
Institution affiliation: North-West University; Physical Activity, Sport and Recreation (PhASRec); Potchefstroom; South Africa; Private Bag X6001.
Research focus: Sport Science; Sport and exercise physiology
E-mail: Cpienaar60@gmail.com
Tel: +27 31 373 5376; Fax: +27 31 373 5184
CHAPTER 5

THE USE OF GPS ANALYSIS TO QUANTIFY THE INTERNAL AND EXTERNAL MATCH DEMANDS OF SUB-ELITE FEMALE SOCCER PLAYERS DURING A TOURNAMENT
This article will be submitted for publication in the Journal of Strength and Conditioning Research. The article is included herewith in accordance with the guidelines for authors of this esteemed journal (included as Appendix E). However, to provide a neat and well-rounded final product for this thesis, the article has been edited to represent an actual published article as it would appear in this particular journal. This does not imply that the article has been accepted or will be accepted for publication. Consequently, the referencing style used in this chapter may differ from that used in the other chapters of this thesis.
Chapter 5: The use of GPS analysis to quantify the internal and external match demands of sub-elite female soccer players during a tournament

Title: The use of GPS analysis to quantify the internal and external match demands of sub-elite female soccer players during a tournament

Running head: Quantifying match demands of female soccer players

Authors: Anita Strauss\(^1,2\), Martinique Sparks\(^2\) and Cindy Pienaar\(^2\)

\(^1\) Department of Sport, Rehabilitation & Dental Science, Tshwane University of Technology, Pretoria, Pretoria West Campus, South Africa, 0001.

\(^2\) Physical Activity, Sport and Recreation (PhASRec), North-West University, Potchefstroom, Potchefstroom Campus, South Africa, Private Bag X6001.

Corresponding author:

\(^1\) Anita Strauss

Department of Sport, Rehabilitation & Dental Science; Faculty of Science
Tshwane University of Technology
Pretoria West Campus; Pretoria; 0001; South Africa

Phone: +27 12 382 4442; Fax: +27 12 382 5806

Email: Straussa@tut.ac.za.

This work is based on the research supported in part by the Tshwane University of Technology, South Africa through the Department of Higher Education and Training Research Development Grant.
Chapter 5: The use of GPS analysis to quantify the internal and external match demands of sub-elite female soccer players during a tournament

ABSTRACT

The aim of this study was to assess the internal and external match demands of sub-elite female soccer players during a tournament. The secondary aim was to describe the magnitude of change of these variables within and between matches over the course of a tournament to determine the effect of player fatigue. Thirty sub-elite female soccer players were assessed throughout a local tournament. Differences in match demands within and between matches were assessed using percent difference, effect size and 90% confidence intervals. The participants covered an average distance of 5917 m during the matches. Midfielders covered the greatest absolute and relative total distances, and achieved the highest low-intensity activity and player load per minute of play. Defenders covered less ($p \leq 0.05$) relative distance and low-intensity activity per minute of play compared to midfielders. Forwards covered the greatest distance at high-intensity, while the greatest percentage of time at high-intensity heart rate was measured among the defenders. Within match comparisons revealed that player load decreased significantly ($p \leq 0.05$) in the second half (ES: 0.4). Relative distance, low-intensity activity and high-intensity activity also decreased in the second half with possibly trivial to likely small changes. Small to large differences in variables were observed throughout the tournament. The biggest magnitude of change was seen with a large decrease (ES: -1.2) in relative distance covered between match 2 and 5. Despite generally small reductions in performance measures, there is evidence that accumulated fatigue throughout a multi-day tournament would affect performance negatively.

KEY WORDS: GPS, heart rate, HIA, match analysis, player load
INTRODUCTION

The soccer milieu has seen a considerable increase in female soccer players participating in international competitions, professional and recreational leagues (31). Female players now have the opportunity to train and compete in professional settings, which gave rise to an increase in the performance expectations placed upon players, and subsequently a need for specific scientific research that could assist to enhance performance (31). The successful evaluation of the physical demands placed upon soccer players requires accurate assessment of both internal and external match demands (21). Wearable technology such as global positioning system (GPS) devices simultaneously used with heart rate (HR) monitoring, are commonly used in elite sport to monitor the internal and external loads of athletes in order to assess physiological and movement demands (4, 6, 14). The use of GPS technology further allows for direct measurement of a player’s movement during a match as opposed to the subjective determination of movement by an observer as required with video analysis (39).

Movement activities in soccer are generally classified according to intensity, determined by the speed of the action (12). Match analysis of locomotor activities performed over different velocity zones (especially at high-intensity) attracts more attention in literature, since it reflects the physical demands of competition (34). Although a large part of a match consists of walking or jogging, it is important to determine the pattern of high-intensity work performed (22), as high-intensity movements have been shown to vary between different levels of participation (22, 29, 34). Studies using GPS found that elite and sub-elite female soccer players cover a total distance of around 8–11 km during a match, ranging between 108–119 and 96–107 metres per minute of play (m/min) for elite and sub-elite players respectively (1, 9, 22, 32, 34, 37, 41), while sprinting and HIR constitutes 8–12% of the total distance covered (1, 10, 20, 27, 32). Midfielders tend to cover the greatest total distance during a match and cover more distance at HIR and sprinting, while defenders cover the shortest total distance as well as distances at HIR and sprinting (1, 22). However, the distance covered at different running speeds should not be the only consideration when evaluating a player’s total work load (15). Player load is a representation of total body load expressed in arbitrary units and involves the measurement of three dimensional body movements with triaxial accelerometers (5, 15). Certain high-intensity soccer-specific movements classified as low-speed movements such as jumping, tackling, collisions, accelerations, decelerations, passing, shooting, sideways and backward running, have been neglected, leading to an underestimation of physical stress, even though it can place high physical strain on players (15). Player load is also found to differ between playing positions in male soccer, with midfielders achieving a higher player load compared to forwards and defenders (5, 15). To the author’s
knowledge no data is available on female soccer examining player load according to playing positions.

Internal load is perceived as a player’s response to an external physical stimulus (36). Heart rate measurement is often used as an indirect measure of exercise intensity and used to examine the internal load of players during training or competition (16, 33). A method commonly used to quantify internal match load is to describe the amount of time spent in different intensity zones based on the percentage of maximum HR (HR\text{max}) (8, 33). Average HR and peak HR values of 84–89% and 98–100% of HR\text{max} respectively have been reported for female soccer players during matches (1, 28, 33). This is an indication that female players experience a high aerobic load throughout a match with periods of near-maximal values (27). Significant differences in HR recordings between the first and second half are also evident (33). Peak and mean HR recorded during the first half were higher than the second half (33, 35). Further analysis showed that a reduction occurred in the time spent in the intensity zone above 95% (33).

Apart from performance assessment during individual matches, the ability of female soccer players to repeat high-intensity efforts on numerous occasions over several days along with the changes in movement patterns over the course of a tournament, have not been examined previously. It is believed that the physiological stress experienced by players result in fatigue that leads to a decrease in performance (30). In order to perform optimally, appropriate recovery interventions in competitive tournaments and between matches are important (2). It is also claimed that players regulate exercise intensity throughout matches to ensure sufficient physiological reserves to complete that match (18). Pacing strategies utilised throughout a match therefore remains a contextual factor to consider in soccer.

To date, limited literature exists on the position-specific match-related locomotor categories, player load profiles and internal match demands of female soccer players. Also, it has yet to be clarified what affect a week-long tournament has on running intensities and movement patterns. A detailed analysis of the internal and external load within a match and throughout a tournament gives a greater insight into the physical demands of female soccer and the requirements over the duration of such a tournament. Highlighting meaningful performance characteristics associated with the demands of female soccer through match analysis is essential to provide information to coaches and conditioning specialists towards prescribing and implementing sport-specific conditioning programmes that replicate the physical demands of competition and adjusting physical preparation to the precise requirements of each position. The primary aim of this study was to assess the internal and external match demands of sub-elite female soccer players during
a tournament. The secondary aim was to describe the magnitude of change of these variables within and between matches over the course of a tournament to determine the effect of player fatigue. The hypothesis of the study is that the internal and external match demands of sub-elite female soccer players will differ within and between matches in a tournament.

METHODS

Experimental approach to the problem

An observational study was conducted to compare the internal and external match demands of sub-elite female soccer players according to playing positions and the role of fatigue during ten official matches of a club championship. Each team was monitored for five matches during the course of a week-long tournament. The matches were played on a standardised soccer field and consisted of two 35 minute halves. Comparisons were made based on different GPS-derived variables, including total distance, distances covered in different velocity zones, high-intensity activities and corresponding heart rates, work rate and player load.

Subjects

Thirty sub-elite female soccer players (age: 22.8 ± 2.4 years; height: 158.6 ± 4.5 cm; body mass: 54.1 ± 6.1 kg) representing two university teams participated in the study. The teams were purposefully selected and representative of sub-elite level players during a university tournament. Data of players who completed full matches were retained for analysis. Players were categorised according to playing position, namely forwards (FW), midfielders (MF) and defenders (DF). Prior to data collection, ethical approval was obtained from the university’s Health Research Ethics Committee (NWU-00055-15-A1). Research was conducted according to the declaration of Helsinki. Anonymity was ensured through assigning participant numbers. Written informed consent was obtained from all the players before commencement of the assessment procedures.

Procedures

Match analysis

Only the activity profiles of the starting line-up were recorded during all matches, providing a total of 84 individual match files. Goalkeepers were excluded from the analysis. Matches were analysed with GPS units sampling at 10 Hz and equipped with 100 Hz accelerometer (MinimaxX S4 V4.0, Catapult Innovations, Victoria, Australia). GPS units were fitted to the upper back of each player using a harness. Units were turned on 10 minutes before each match during
Chapter 5: The use of GPS analysis to quantify the internal and external match demands of sub-elite female soccer players during a tournament

the pre-match warm-up. For a movement to be recorded as an effort, players had to maintain that specific velocity for at least 0.5 sec. Locomotor activities were defined as previously reported for female soccer players (11, 40, 41): standing and walking (0.0–1.6 m/s), jogging (1.7–2.2 m/s), low-intensity running (2.3–3.3 m/s), moderate-intensity running (3.4–4.3 m/s), high-intensity running (4.4–5.6 m/s) and sprinting (>5.6 m/s). Data were normalised to distance per minute played (m/min) to account for differences in total playing time and in match stoppages. For statistical analysis, data were categorised into total distance (m), relative distance (m/min), low-intensity activity per minute (LIA/min) (consisting of standing/walking, jogging and low-intensity running), moderate-intensity running (MIR), high-intensity activity per minute (HIA/min) (consisting of high-intensity running and sprinting), player load per minute (PL/min) and high-intensity heart rate per minute (HIHR/min). Player load was determined by the software using the following formula:

\[
(a_{y1} - a_{y1})^2 + (a_{x1} - a_{x1})^2 + (a_{z1} - a_{z1})^2,
\]

where \(a_y\) = anteroposterior acceleration, \(a_x\) = mediolateral acceleration, and \(a_z\) = vertical acceleration. Horizontal dilution of precision (HDOP) indicates accuracy of GPS in a horizontal plane and optimum satellite availability. During the tournament the average HDOP was 1.06. Data recorded on GPS units were downloaded onto a PC and analysed using the Logan Plus V4.7.1 software (Catapult Sports, Victoria, Australia). An intelligent motion filter was used to exclude non-game activity. The raw data were also further divided into first half and second half files. GPS Doppler data were used during analysis of the GPS-related variables. The validity and reliability of the GPS units have been reported previously (38).

Heart rate monitoring

Heart rate (HR) was recorded individually through a Fix Polar Heart Rate Transmitter Belt (Polar Electro, Kempele, Finland) at five second intervals during the matches. The transmitter belts were fitted to each player before the match. HR_{peak} was defined as each individual’s maximum HR collected during the matches, which were then used for match analysis. Heart rate values were divided into six intensity zones: <60%, 60–75%, 75–85%, 85–90%, 90–95%, and >95% (3). High-intensity exercise, described as HIHR in this study, was defined as exercise intensity with a HR above 90% of HR_{peak} (13). The percentage of time spent in HR zones was used for analysis. Before data analysis commenced, players were excluded if they had missing data.

Statistical analysis

Variables were log transformed to reduce bias due to non-uniformity of error and analysed using the effect size (ES) statistics with 90% confidence intervals (CI) and percent difference to
determine the magnitude of effects using a custom spreadsheet (24). Magnitude-based inferences on differences within and between matches were made by standardising differences using the between-subject SD. Descriptive statistics are presented as mean ± standard deviation and were used to characterise movement patterns. Data are expressed relative to game time played (per minute) to account for variations in playing time from match-to-match. Differences in the match demands and running intensities among playing positions were compared using one-way ANOVA. Where significant effects of position were observed, Bonferroni corrections were used to determine differences in positions. A paired sample t-test in conjunction with the Cohen effect size was used to compare changes in match performance between the first and second halves and between individual matches. Magnitudes of standardised effects were assessed as 0–0.2 trivial, 0.2–0.6 small, 0.6–1.2 moderate, 1.2–2.0 large, and >2.0 very large (7). The effect was reported as unclear when the CI of the standardised difference crossed the threshold for both substantially positive (0.2) and negative (-0.2) values. The quantitative chances of finding differences were assessed qualitatively as follows: < 1%, almost certainly not; 1–5%, very unlikely; 5–25%, unlikely; 25–75%, possible; 75–95%, likely; 95–99%, very likely; > 99%, almost certain. The level of statistical significance was set at p ≤ 0.05.

RESULTS

Table 1 displays the match demands with relevance to playing positions. Midfielders covered the greatest total distance (6065 m), followed by forwards (5847 m). Defenders covered the least total distance (5567 m) throughout the matches. Midfielders covered greater (p ≤ 0.05) relative total distance (84.4 m/min) and LIA (72.2 m/min) per minute of play compared to defenders. Forwards performed more HIA (4.9 m/min) per minute of play compared to the other playing positions, although this difference was not significant. Midfielders achieved a higher player load (9.7 PL/min) compared to both forwards (8.3 PL/min) and defenders (8.6 PL/min). Furthermore, defenders spent the greatest amount of time (13.3%) in the HIHR zone, and forwards the least (9.7%).
Chapter 5: The use of GPS analysis to quantify the internal and external match demands of sub-elite female soccer players during a tournament

Table 1: Match demands according to positional groups. Data are displayed as mean ± SD (and 90% CI).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Forwards</th>
<th>Midfielders</th>
<th>Defenders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total distance</td>
<td>5847 ± 739</td>
<td>6065 ± 880</td>
<td>5567 ± 818</td>
</tr>
<tr>
<td></td>
<td>(5510–6183)</td>
<td>(5764–6366)</td>
<td>(5333–5801)</td>
</tr>
<tr>
<td>PL/min</td>
<td>8.3 ± 0.9</td>
<td>9.7 ± 1.9</td>
<td>8.6 ± 1.6</td>
</tr>
<tr>
<td></td>
<td>(7.9–8.7)</td>
<td>(9.0–10.3)</td>
<td>(8.1–9.1)</td>
</tr>
<tr>
<td>m/min</td>
<td>80.4 ± 9.8</td>
<td>84.4 ± 12.5</td>
<td>76.9 ± 10.7</td>
</tr>
<tr>
<td></td>
<td>(75.9–84.9)</td>
<td>(80.1–88.6)</td>
<td>(73.8–79.9)*</td>
</tr>
<tr>
<td>LIA/min</td>
<td>68.9 ± 9.3</td>
<td>72.2 ± 10.0</td>
<td>66.7 ± 8.0</td>
</tr>
<tr>
<td></td>
<td>(64.6–73.1)</td>
<td>(69.3–76.1)</td>
<td>(64.4–69.0)*</td>
</tr>
<tr>
<td>HIA/min</td>
<td>4.9 ± 1.9</td>
<td>4.7 ± 3.1</td>
<td>4.7 ± 2.8</td>
</tr>
<tr>
<td></td>
<td>(4.0–5.7)</td>
<td>(3.6–5.7)</td>
<td>(3.9–5.4)</td>
</tr>
<tr>
<td>HIHR/min</td>
<td>9.7 ± 10.2</td>
<td>12.8 ± 17.1</td>
<td>13.3 ± 15.9</td>
</tr>
<tr>
<td></td>
<td>(5.1–14.4)</td>
<td>(7.0–18.7)</td>
<td>(8.8–17.8)</td>
</tr>
</tbody>
</table>

Note: CI: Confidence interval; SD: Standard deviation; HIA/min: high-intensity activity per minute; HIHR/min: high-intensity heart rate per minute; LIA/min: low-intensity activity per minute; m/min: meterage per minute; PL/min: player load per minute

* Significantly different from Midfielders (p ≤ 0.05)

Mean HR recorded during the matches was 159 beats per minute (bpm), which corresponded to 81% of HRF peak being 197 bpm. Mean HR was higher (ES: 0.3) during the first compared to the second half (162 vs 157 bpm), corresponding to 82% and 80% of HRF peak respectively. Players spent the greatest amount of time in the 75–85% of HRF peak zone (Figure 1), and spent a combined total of 13% of the total time in the HIHR zones of 90–100% of HRF peak.
Chapter 5: The use of GPS analysis to quantify the internal and external match demands of sub-elite female soccer players during a tournament

Differences in match demands between the first and second half are presented in Table 2. Although player load decreased \((p \leq 0.05)\) from the first to the second half, the effect was likely small. Similarly, all other match variables decreased during the second half and displayed possibly trivial to small effect sizes.

Table 3 indicates the magnitude of change between matches over the course of the tournament. When comparing Match 1 with Match 2, 3, and 4, likely small to moderate positive changes were observed for PL, relative distance and LIA, while a positive change (likely moderate) for HIA was only observed from Match 1 to Match 2. Furthermore, with the exception of the possible moderate positive change observed for PL between Match 3 and 4, all the other changes observed for the remaining match comparisons were negative, and mostly ranged between small and moderate, although a probable large negative change was identified between Match 2 and 5 in terms of relative distance covered. Unclear changes were noticed between Match 2 versus Match 3 and 4, and Match 3 versus Match 4 for LIA, and also between Match 1 versus Match 3 and 4, and between Match 3 versus Match 4 and 5 for HIA. In terms of internal demands assessed, changes in time spent at HIHR ranged between trivial and small, and did not seem to follow a specific trend for increases or decreases observed.
Table 2: Difference in match demands between first and second half (mean ± SD)

<table>
<thead>
<tr>
<th>Variables</th>
<th>First half</th>
<th>Second half</th>
<th>p</th>
<th>Cohen d ± 90% CI</th>
<th>Practical outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL/min</td>
<td>9.1 ± 1.6</td>
<td>8.5 ± 2.1</td>
<td>0.02*</td>
<td>0.4 (0.1–0.6)</td>
<td>Likely small</td>
</tr>
<tr>
<td>m/min</td>
<td>82.8 ± 11.7</td>
<td>76.4 ± 15.6</td>
<td>0.07</td>
<td>0.3 (0.0–0.5)</td>
<td>Possibly small</td>
</tr>
<tr>
<td>LIA/min</td>
<td>71.4 ± 9.3</td>
<td>66.0 ± 12.9</td>
<td>0.07</td>
<td>0.3 (0.0–0.5)</td>
<td>Possibly small</td>
</tr>
<tr>
<td>HIA/min</td>
<td>4.9 ± 3.1</td>
<td>4.6 ± 2.6</td>
<td>0.95</td>
<td>0.1 (-0.2–0.3)</td>
<td>Possibly trivial</td>
</tr>
<tr>
<td>HIHR/min</td>
<td>14.6 ± 17.3</td>
<td>10.3 ± 2.3</td>
<td>0.57</td>
<td>0.1 (-0.2–0.4)</td>
<td>Possibly trivial</td>
</tr>
</tbody>
</table>

Note: CI: Confidence interval; SD: Standard deviation; HIA/min: high-intensity activity per minute; HIHR/min: high-intensity heart rate per minute; LIA/min: low-intensity activity per minute; m/min: meterage per minute; p: significance; PL/min: player load per minute

* Significantly different from first half (p ≤ 0.05).
Table 3: Magnitude of change (mean ± 90% CI) and effect sizes (90% CI) of match demands over the course of a soccer tournament. Chance that magnitude of change between two games is higher/no difference/lower (100/0/0).

<table>
<thead>
<tr>
<th>Variables</th>
<th>M1 v M2</th>
<th>M1 v M3</th>
<th>M1 v M4</th>
<th>M1 v M5</th>
<th>M2 v M3</th>
<th>M2 v M4</th>
<th>M2 v M5</th>
<th>M3 v M4</th>
<th>M3 v M5</th>
<th>M4 v M5</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL/min</td>
<td>% Diff</td>
<td>18.0±15.0</td>
<td>12.6±15.7</td>
<td>14.7±16.7</td>
<td>-7.1±33.7</td>
<td>-5.5±4.1</td>
<td>-2.7±5.3</td>
<td>-9.0±16.6</td>
<td>2.9±4.5</td>
<td>-5.5±16.1</td>
</tr>
<tr>
<td>ES and 90%CI</td>
<td>0.6</td>
<td>0.4</td>
<td>0.5</td>
<td>0.3</td>
<td>-0.3</td>
<td>-0.2</td>
<td>-0.5</td>
<td>0.2</td>
<td>-0.4</td>
<td>-0.4</td>
</tr>
<tr>
<td>QO.</td>
<td>90/9/1</td>
<td>77/20/3</td>
<td>81/16/2</td>
<td>21/25/54</td>
<td>0/18/82</td>
<td>3/57/40</td>
<td>8/17/75</td>
<td>45/53/1</td>
<td>16/23/61</td>
<td>10/21/69</td>
</tr>
<tr>
<td>m/min</td>
<td>% Diff</td>
<td>16.2±14.6</td>
<td>12.8±16.6</td>
<td>13.2±17.0</td>
<td>-8.5±35.4</td>
<td>-3.1±2.5</td>
<td>-3.2±3.6</td>
<td>-12.6±16.0</td>
<td>-1.5±3.5</td>
<td>-10.5±14.2</td>
</tr>
<tr>
<td>ES and 90%CI</td>
<td>0.7</td>
<td>0.6</td>
<td>0.6</td>
<td>-0.4</td>
<td>-0.3</td>
<td>-0.3</td>
<td>-1.2</td>
<td>-0.2</td>
<td>-1.1</td>
<td>-0.6</td>
</tr>
<tr>
<td>QO.</td>
<td>91/7/2</td>
<td>82/14/4</td>
<td>82/14/4</td>
<td>22/16/61</td>
<td>0/25/75</td>
<td>1/29/70</td>
<td>4/6/90</td>
<td>4/56/39</td>
<td>5/7/88</td>
<td>8/15/78</td>
</tr>
<tr>
<td>LIA/min</td>
<td>% Diff</td>
<td>12.6±13.4</td>
<td>11.4±15.1</td>
<td>13.4±15.1</td>
<td>-6.4±32.9</td>
<td>-0.7±2.7</td>
<td>-0.3±3.0</td>
<td>-9.2±14.5</td>
<td>-0.9±3.1</td>
<td>-9.5±12.7</td>
</tr>
<tr>
<td>ES and 90%CI</td>
<td>0.6</td>
<td>0.5</td>
<td>0.6</td>
<td>-0.3</td>
<td>-0.1</td>
<td>-0.0</td>
<td>-1.0</td>
<td>-0.1</td>
<td>-1.0</td>
<td>-0.7</td>
</tr>
<tr>
<td>QO.</td>
<td>86/11/2</td>
<td>80/15/4</td>
<td>85/12/3</td>
<td>25/18/57</td>
<td>4/77/19</td>
<td>10/75/16</td>
<td>7/9/83</td>
<td>5/67/27</td>
<td>5/8/87</td>
<td>9/14/77</td>
</tr>
<tr>
<td>Variables</td>
<td>M1 v M2</td>
<td>M1 v M3</td>
<td>M1 v M4</td>
<td>M1 v M5</td>
<td>M2 v M3</td>
<td>M2 v M4</td>
<td>M2 v M5</td>
<td>M3 v M4</td>
<td>M3 v M5</td>
<td>M4 v M5</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>HIA/min</td>
<td>52.3±39.6</td>
<td>-3.8±39.4</td>
<td>-0.6±47.1</td>
<td>-32.1±91.1</td>
<td>-35.3±21.4</td>
<td>-32±15.7</td>
<td>-40.6±58.7</td>
<td>1.8±15.4</td>
<td>-7.9±58.2</td>
<td>-17.6±46.4</td>
</tr>
<tr>
<td>ES and 90% CI</td>
<td>0.8</td>
<td>-0.1</td>
<td>-0.0</td>
<td>-0.8</td>
<td>-0.7</td>
<td>-0.6</td>
<td>-0.8</td>
<td>0.0</td>
<td>-0.1</td>
<td>-0.4</td>
</tr>
<tr>
<td>QO.</td>
<td>94/5/1</td>
<td>23/40/37</td>
<td>31/35/33</td>
<td>10/12/78</td>
<td>0/1/99</td>
<td>0/0/100</td>
<td>1/6/92</td>
<td>11/83/6</td>
<td>22/33/44</td>
<td>10/22/67</td>
</tr>
<tr>
<td>HIHR/min</td>
<td>-46.0±173.8</td>
<td>-22.8±312.9</td>
<td>-23.3±242.9</td>
<td>224.4±459.9</td>
<td>-36.6±51.9</td>
<td>0.4±82.8</td>
<td>-13.1±1544.4</td>
<td>27.9±93.8</td>
<td>178.0±356.8</td>
<td>75.6±164.3</td>
</tr>
<tr>
<td>ES and 90% CI</td>
<td>-0.5</td>
<td>-0.2</td>
<td>-0.2</td>
<td>1.0</td>
<td>-0.3</td>
<td>0.0</td>
<td>-0.1</td>
<td>0.2</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>QO.</td>
<td>7/17/76</td>
<td>26/24/51</td>
<td>22/27/52</td>
<td>84/8/8</td>
<td>1/24/75</td>
<td>19/63/18</td>
<td>37/18/45</td>
<td>54/36/11</td>
<td>85/7/8</td>
<td>74/18/8</td>
</tr>
</tbody>
</table>

Note: %Diff: percentage difference; CI: confidence interval; ES: effect size; HIA/min: high-intensity activity per minute; HIHR/min: high-intensity heart rate per minute; LIA/min: low-intensity activity per minute; m/min: meterage per minute; M1: match 1; M2: match 2; M3: match 3; M4: match 4; M5: match 5; PL/min: player load per minute; QO.: qualitative outcome
Chapter 5: The use of GPS analysis to quantify the internal and external match demands of sub-elite female soccer players during a tournament

DISCUSSION

This is the first study to describe the match demands and movement profile of South African sub-elite female soccer matches. Unique to this study was the use of velocity zones specific for female field sports in the categorisation of locomotor characteristics (41) and to determining the influential role of fatigue within and throughout a tournament. The study also distinctly compared between positional differences, adding to the limited studies conducted on sub-elite level, and broaden our knowledge on what is regarded as a gap in female soccer. The results of the study support the hypothesis that all the variables studied would show reductions during the course of a tournament over consecutive days. This was specifically apparent from the second to the last match of the tournament. Direct comparisons were limited due to shorter match periods used in the current study compared to other studies on female players. This was due to the design of the tournament during which data collection was conducted, whereby matches were played on consecutive days for a total of five days to determine the winner of the tournament. This structure is specifically used each year during this particular local soccer tournament on sub-elite level and is not typical of national or elite level tournaments. Studies reporting on the match-to-match comparisons throughout a female soccer tournament do also not exist. Though, similar trends for positional differences during a match were noted in comparison with other studies on female players.

The total absolute (5759 m) and relative (80 m/min) distances measured in the current study are lower than those reported for elite female players (1, 9, 32, 34, 40, 41). Currently, no methodological standardisation of velocity thresholds to accurately quantify locomotor activities during female soccer matches exists, limiting comparisons between studies to develop cohesive views concerning locomotor characteristics of female soccer (11). In line with previously described velocity zones used for female players (40, 41), the amount of distances covered by the players from the current study in each velocity zone differed, with players spending 42% standing/walking, 11% jogging, 23% LIR, 11% MIR, 5% HIR and 1% sprinting. Specifically in the HIR and sprinting zones, performance was lower than previous findings (7.5% HIR and 2.5% sprinting) for sub-elite players (41). These findings can be influenced by elements such as physical fitness of the players, game strategies of the players, opposition team standard and formations (22, 29, 30, 32).

Similar to previous studies using GPS or video analysis (32, 34, 40, 41), positional distinctions were evident, with midfielders recording the furthest absolute total distance. Consequently, midfielders achieved the highest relative total distance, which was significantly greater than the results noted for defenders, who, in agreement with a previous study (41), achieved the lowest relative total distance. The greater total distance by midfielders over forwards and defenders was
predominantly from more LIA per minute of play, which was also greater than the distance reported for defenders. This finding can be attributed to the positional demands of midfielders fulfilling a linking role between the front and back players, justifying the higher work rate (17). Results further concur with previous findings on sub-elite female players whereby forwards covered the greatest distance at HIA (consisting of HIR and sprinting) (41). However, studies on elite female players reported more ($p \leq 0.05$) HIR distance for midfielders compared to defenders, while forwards covered more distance at HIR and sprinting compared to defenders (22, 32). Greater sprint distances during a match may be a result of performing more sprints rather than longer sprints (40), possibly explaining the transition from sub-elite to elite level performance whereby midfielders perform more HIA than the other playing positions. This finding could be of importance to coaches and conditioning specialists in planning training programmes to enhance position-specific performance to compete on a higher standard.

The use of player load in addition to GPS-based speed data may provide a more accurate indication of the demands imposed by soccer-specific non-running activities (36). Player load is found to differ between playing positions in youth male soccer players (5). A study on female soccer players examining player load using a similar method could not be found, and therefore comparisons are limited and results of the current study are discussed in line with tendencies found among male soccer players concerning playing position. A difference ($p \leq 0.05$) was found between the player load of midfielders compared to forwards and defenders, while forwards and defenders had comparable values. Due to correlations found previously between player load and methods used to assess internal training load and session-RPE, it was suggested that player load is an acceptable measure of external training load and is mainly related to a player’s physiological and perceptual responses to a training stimulus (36). Once again the higher player load recorded for the midfielders can be justified by the linking role these players fulfil during a match (17). It can in addition be posed that the higher level of manoeuvrability required by midfielders to perform their positional tasks could have a higher player load as a result due to performing more movement activities at both low- and high intensity. With the purpose of designing training programmes specific to the different playing positions, an understanding of the different ways in which players from these different positions achieve load is necessary (15). Since player load is achieved by players from different positions in a variety of ways, specificity should be applied when compiling training programmes with distinct emphasis on the physical components required to achieve a stimulating load in relation to each position’s requirements (15). Differences in playing formations, playing standards, effective playing time and score line are all factors that would affect positional activity profiles and should be considered when making comparisons (5).
It is believed that, in team-sport match analysis, the players’ inability to maintain the running performance within the first half of a match to the second half suggests player fatigue (19). Total distance within matches decreased ($p \leq 0.05$) with 11% from the first to the second half. Studies on elite level female players also noted differences ($4\%; p \leq 0.05$) between the first and second half (1, 32). Although not significant, relative total distance decreased with a possible small effect (8%) from the first to the second half. This change was attributable to a 7% (ES: likely small) decrease in LIA and a 6% (ES: possibly trivial) decrease in HIA across halves. Player load decreased ($p = 0.02$; ES: likely small) across match halves, suggesting more movement activities performed during the first half. These results suggest that the players either exert more efforts/intense movements during the first half, which can be explained by a particular strategy used by the players in order to physically challenge and exhaust the opposing team more during the first half in an attempt to gain a competitive advantage in the second half. Alternatively, these results could be evidence of fatigue experienced in the first half leading to lower performance in the second half. The reduction of HIR towards the end of a match could be a result of fatigue, but can also be influenced by other factors such as game tactics (1, 32). Improving female players’ ability to perform HIA towards the end of a match (through high-intensity aerobic and speed-endurance training) should be emphasised in training programmes, consequently equipping players with the possibility of out-playing the opponent and creating more scoring opportunities.

The findings of the current study suggest that the players need to improve their physical condition, specifically to perform more and longer HIA, which may be a contributing factor towards progressing towards competing at a higher standard. The tournament structure and number of matches played within the week should, however, also be considered when interpreting these results. The influence of multiple matches on exercise intensity and the effect of fatigue during a tournament has been investigated in other field team sports (25, 26). Increased match intensity and frequency highlight the importance of proper recovery interventions between matches in order to continually perform at an optimal level (2). Since players have limited time to recover before the next match, the ability to maintain exercise intensity throughout a tournament could be of importance, considering the possibility that players may experience accumulated fatigue (26). It appears that when Match 1 was compared to Match 2, 3 and 4, the positive changes observed in relative distance, LIA and PL are an indication of likely small to moderate higher performance, with the lowest performance produced in Match 1. The lower performance produced in Match 1 can possibly be attributed to a pacing strategy employed in an attempt to conserve energy for the coming matches (23). It is also reasonable to expect that during the first match the players experienced a higher level of anxiety as it is the start of a tournament, which could have resulted
in players not performing to the best of their abilities. These factors are worth considering in future studies to contribute to studies of this nature. The match-to-match comparisons of HIA performed resulted in a different outcome. A likely moderate increase in HIA was evident from Match 1 to Match 2, while the decreases observed from Match 1 to Matches 3 and 4 were trivial and unclear. Although comparisons between Match 1 and 5 in terms of relative distance, LIA and PL indicate small changes, these results are unclear due to the magnitude of difference, and it would therefore not be accurate to draw a conclusion on the role of fatigue based on this comparison alone. The biggest decrease was observed in the HIA movements with moderate effect in comparing Match 1 with Match 5, even though unclear, these results still suggests a decrease in HIA from the first to the final match. This could be an indication of the effect of accumulated fatigue on HIA movements during and at the final stages of a tournament and should be considered in future studies on players competing in a similar tournament structure.

Furthermore, between match analyses from the second to the final matches generally showed gradual but small to moderate reductions in variables measured. These results are in accordance with differences observed in running intensities performed at low and high velocity zones throughout field hockey and rugby tournaments (23, 25, 26). It is in addition possible that differences in PL may not be an indication of fatigue, which can probably be attributed to the fact that PL is determined by a variety of movements commonly classified as low-activity movements but which could still contribute highly to the fatigue of a player. The preservation of performance between Matches 2, 3 and 4 suggests that transient fatigue is accumulated during a match and that accumulated fatigue has a minimal effect on performance during Match 3 and 4. It is also possible that a specific pacing strategy was used or sufficient recovery methods employed to minimise fatigue build-up in a tournament of this particular structure, or that a combination of these tactics assisted in relative maintenance of performance (23). The importance of Match 4, which in this tournament was the semi-finals, could also have played a role in the relative maintenance of performance in this match. Since Match 4 was a qualifier to progress to the finals, it is typical to expect that players would maximise their efforts in a last attempt to progress to the final match of the tournament. Although, the reduced performance measured across all variable in the final match should provide sufficient evidence of the effect of residual fatigue from the previous match and accumulated fatigue throughout the tournament, resulting in decreased intensities at the end of a tournament. A study on female soccer players found that all neuromuscular parameters, including sprint performance, were considerably altered after a match, and muscle damage indicators (creatine kinase and muscle soreness) were elevated for numerous days (2). The study further explained that mean HR value and HIR performance were
not impaired where two matches were interspersed by two days. In the current study, the load of the competition may have impaired the players’ performance due to insufficient recovery between matches, consequently leading to shorter distances covered in total and within each velocity zone, specifically at HIA. Another notion to consider is the role of opposition team standard. Player density and space available for running may be reduced in matches against higher- or lower ranked teams (22). A team dominating ball possession can lead to a greater number of players in one half of the field, thereby decreasing running space, while playing against opposition of relatively similar strength increases opportunities to move from the defensive to the offensive half (22). During the tournament, the players played against teams of different strengths and rankings, which could have influenced distances covered and HIA. Match analysis of all teams within such a tournament are recommended for future analyses in order to compare teams of different ranking and make conclusive recommendations. These, along with the recovery period are important aspects for consideration by coaches, conditioning specialists and tournament organisers in planning to improve the conditioning status of the players, consequently enhancing performance and allowing for optimal performance during matches.

The clarification of internal match demands in addition to external demands could provide a more detailed description of the physical demands placed on soccer players. An advantage of HR monitoring during a match is the possibility of recording the response of several players taking part in the same specific playing situation, making it a helpful tool coaches can use to control the aim of training and preparing players for matches (33). Vital information provided by HR monitoring can assist to prevent overtraining or understimulation of the cardiovascular system (33). The average HR reported in the current study was lower than previous reported values for competitive matches of elite female players (1, 28, 33). When expressed according to the percentage of time spent in different HR zones based on HRpeak, the results of the players in the current study differed from a previous report on elite female players (33). The players in the current study spent most of the time in zones 60–75 and 75–85% of HRpeak, whereas elite players spent the least amount of time in these two zones (5 and 18%, respectively) (33). Elite players also spent the highest amount of time (32%) in the 90–95% of HRpeak zone in contrast to the 10% achieved by the players of the current study, and spent a combined total time of 55% at HIHR (>90% of HRpeak)(33). It is evident that performance at HIHR may be a factor distinguishing female players of different standards. Furthermore, defenders and midfielders spent more time than forwards in the HIHR zones, possibly indicating a higher physical load on these players due to positional responsibilities. The reduced time spent in the HIHR zones in the second half suggests a decrease in the physical work performed and the occurrence of physical fatigue (35). A
possibility exists that the magnitude of change observed in HIR/min is related to the results noted for HIHR/min and recommends further research, as both these measures produced only possible trivial reductions. Unlike with the external match demand variables discussed, no specific tendency for between match comparisons throughout the tournament could be noted for time spent at HIHR. Changes ranged between trivial and small, but did not follow a specific trend regarding increases or decreases observed. Even though it appears in this study that HIHR may not be a factor to consider in isolation when discussing match demands throughout a tournament, more research is required to justify the current findings.

In conclusion, although playing time was shorter, the players in the current study achieved lower distances at HIA in comparison to players of similar and higher standard, and also lower absolute and relative total distances. The amount of HIA is lowered towards the second half of a match, suggesting the possibility of fatigue influencing HIA movements. Altogether, these findings indicate that sub-elite female players experience fatigue during a match and throughout a tournament consisting of matches played on consecutive days. Positional specificity is also apparent. Sport scientists and researchers are encouraged to use specific velocity zones associated with female players and to consider the variables identified, in order to create consistency and elaborate on the limited data available, thereby expanding the possibility for comparing and justifying results and compiling position-specific training programmes. The tactical use of player substitutions by coaches in the latter periods of a match could be a strategy in an attempt to lessen the effect of fatigue on the players’ and teams’ performance. Although the movement profile of substitute players was beyond the scope of this paper and warrants future studies. The present findings give a unique description of the match demands of sub-elite female soccer players within the specific context of playing 5 matches on consecutive days. It identifies specific changes in match variables throughout a tournament, which can be attributed to accumulated fatigue, filling a critical knowledge gap in South Africa and adding to what is currently known about players on sub-elite level worldwide.

PRACTICAL APPLICATIONS

Players in the current study covered a much lower distance at HIA in comparison to previous studies. Soccer conditioning specialist and coaches should identify the reason for this finding and improve the players' physical conditioning should fitness be the cause of lower performance. Running requirements may also be influenced by technical and tactical abilities. An important factor to consider is the structure of the tournament during which data collection occurred. It is possible, due to consecutive matches being played, that the physical attributes of the players
were compromised by factors such as insufficient recovery periods between matches, leading to fatigue and possibly injuries. This could have affected their performance towards the end of the tournament, resulting in lower distances recorded and decreased performance. This is the first study to profile the positional player load during competitive sub-elite female soccer matches. The current study identified positional differences and provides greater insight into the internal and external match demands of female soccer. In summary, this research elaborates on the limited literature on the match demands of sub-elite female soccer players and can assist coaches and strength and conditioning specialists to compile training programmes to appropriately develop female soccer players on sub-elite level and improve performance on the field. Small reductions in the work rate of players can be expected between the first and second half of a soccer match and the use of tactical player substitutions can assist to maintain the work rate of the team. Reports analysing movement patterns per minute of play is necessary to account for these differences in match time variability.

ACKNOWLEDGEMENTS

The authors wish to acknowledge all the members of the research team who took part in the data collection procedure. The authors wish to express their gratitude towards the players, coaches and team managers for their dedication and enthusiastic participation in the study. This work is based on the research supported in part by the Tshwane University of Technology (TUT) South Africa, through the Department of Higher Education and Training Research Development Grant. The authors declare that they have no competing interests. The results of the present study do not constitute endorsement of the study by the authors or the NSCA.

REFERENCES

Chapter 5: The use of GPS analysis to quantify the internal and external match demands of sub-elite female soccer players during a tournament

Chapter 5: The use of GPS analysis to quantify the internal and external match demands of sub-elite female soccer players during a tournament

Chapter 5: The use of GPS analysis to quantify the internal and external match demands of sub-elite female soccer players during a tournament

CHAPTER 6

SUMMARY, CONCLUSIONS, LIMITATIONS AND RECOMMENDATIONS
6.1 Summary

Women’s soccer is regarded as one of the most popular female sports worldwide. The opportunities for female players to compete on higher levels have seen a considerable increase, allowing players to compete on national and professional level. Apart from specific positional requirements, players need to perform a variety of actions when competing, making it crucial for players to adapt to the multi-factorial demands of a match. Therefore, coaches and conditioning specialists are required to apply more sport specific knowledge in planning training programmes that allow for optimal preparation for competition, considering physical profile, technical performance and match demands. The aims of this study was firstly, to examine if there are position-specific differences in the morphological characteristics of South African sub-elite female soccer players. Secondly, to evaluate the effect of aerobic and anaerobic fatigue on the technical skills performance of sub-elite female soccer players. Thirdly, to assess the internal and external match demands of sub-elite female soccer players within and between matches in a tournament.

Chapter 1 provided a brief introduction and problem statement that underlies the research questions of the study, the objectives and the related hypotheses of the study, as well as the structure of the thesis and a schematic conceptualised representation of the larger project under which the study was conducted. Through this chapter, it was acknowledged that limited information is available on female soccer players competing on sub-elite level and posed that further research was needed to investigate the morphological and physical characteristics of players on this level. It was also recognised that research investigating the effect of fatigue on technical skill performance and also its influence on match demands within and throughout a tournament is lacking. Sport scientists and conditioning specialist can benefit from these results in prescribing position specific training programmes for optimum performance within matches. The thesis is submitted in article format and consists of an introduction (Chapter 1), literature review (Chapter 2), three scientific research articles (Chapters 3, 4, and 5 respectively) and a summary (Chapter 6).

Chapter 2 consisted of a literature review titled: “Match play analysis, anthropometric measurements and physical profiles of female soccer players.” The purpose of this review was firstly to explore current literature pertaining to the anthropometric profile, aerobic and anaerobic fitness qualities and technical skill characteristics of female soccer players. Part of the first aim was further to describe the relationship between some of these variables and also to review positional differences regarding these variables. The second aim was to discuss the internal and external match demands placed on female soccer players. Female soccer players now have the opportunity to train and compete in professional settings. As a result, higher expectations are
placed on female players, which in turn led to an increase in the need for specific scientific
research towards identifying means for improving player performance. In contrast to male soccer
players, limited scientific information is available on female players regarding physical and
physiological characteristics, specifically describing different levels of performance. There is also
a shortage of literature describing the match demands of female players.

Competing on elite level requires players to possess morphological and physiological
characteristics applicable to the sporting code and also playing position. Standing height is crucial
in the selection process and values ranging from 161–169 cm were noted for elite female players.
Average body mass range from 56–67 kg. Certain anthropometric predispositions exist when
analysing positional differences, with goalkeepers being taller, heavier and possessing the
longest length and largest breadth measurements. Literature shows that defenders generally
have the second highest measurements, although it is not consistently proven across studies,
with some reporting the second highest values for forwards. However, previous findings agree
that midfielders are the shortest and lightest players with the smallest values recorded for length
and breadth measurements. It is evident that taller players are more suitable for defensive
positions. The physical characteristics of goalkeepers lend them an advantage in defending the
broad area between the goalposts. Likewise, taller defenders would also have a competitive
benefit in performing actions such as jumping to gain possession of the ball with their head. An
elevated lean body mass could also be beneficial for performing power activities such as jumping
and sprinting. The physical traits of midfielders allow them to move more efficiently across the
field and serve as a linking role between defence and attack.

An important part of body composition is the amount of body fat (BF) a player possesses. A low
BF% is desirable for successful competition, since excess adiposity has a negative influence on
performance. The BF% of elite female players range from 18.5–20.6%. Goalkeepers often have
the highest BF%, which can possibly be explained by the lower aerobic demand specific to the
position and lower energy expenditure during training and competition. Midfielders have the
lowest BF%, again due to their positional role of linking the front and the back of the field. It is
further noted that mesomorphy is the predominant somatotype component among soccer players,
and an important factor for strength. Body types in which a high muscle content is prevalent can
be advantageous in soccer due to the high intensity and repetitive type intermittent activity
required in matches.

Soccer places diverse physical demands on players and therefore players need a good physical
condition to perform optimally. The sport relies predominantly on aerobic metabolism, although
explosive power is often required to win in critical moments in a match. With a game consisting of 90 minutes of play, optimal aerobic fitness is imperative to allow for technical and tactical skills to be used to their full potential throughout a match. Female players typically cover 9–11 km during a match, of which 10–15% of the total distance are covered at high-intensity (HI). Due to expensive equipment and trained personnel being required to perform time-consuming laboratory fitness testing, an alternative is required for the regular assessment of fitness in large groups of players, making the Yo-Yo IR1 a popular test for the assessment of \(\dot{V}O_{2\text{max}} \) due to its specificity and practicality for soccer. It has been proven to be a good predictor of elite female soccer players’ ability to perform high-intensity running (HIR) throughout matches. The \(\dot{V}O_{2\text{max}} \) of elite female players range between 48.7–56.8 ml/kg/min, with the highest values recorded among midfielders, followed by forwards. Furthermore, the anaerobic energy system must also be well-trained to perform HI activities and recover optimally between bursts of anaerobic activity. Short-phases of repeated-sprint activity may be required on many occasions during a match and may be critical to the end result of a match.

Soccer is further characterised as a free-flowing game requiring the execution of many aspects of skill in a dynamic context. Passing, controlling and shooting are essential skills necessary in soccer, with dribbling and short passes being the most frequently performed skills observed in matches. There is a shortage of valid and reliable technical skills tests due to the complex nature of soccer skills and replicating it in a controlled laboratory setting. The Loughborough Soccer Passing Test (LSPT) has been proven to be a valid and reliable method for evaluating the technical skill performance in female soccer players, and assess the multifaceted aspects of soccer, including passing, dribbling, controlling, shooting and decision-making. It is also of importance to understand the effect of aerobic- and anaerobic fatigue on technical performance, while limited previous research evaluated these relationships. Studies have noted that aerobic or anaerobic fatigue would hinder technical skill performance, measuring decreases in passing and shooting ability following different forms of match-related fatigue. Studies concluded that technical training should be conducted under conditions of fatigue to ensure players can maintain accurate skill execution when fatigued in a match.

Finally, an understanding of the internal and external match demands placed upon female players are important to assist coaches and conditioning specialist in planning training programmes that will lead to optimal performance in matches. The use of Global Positioning System (GPS) technology now allows for a greater comprehensive study of locomotor patterns, permits real-time data collection and provides information pertaining to position, displacement, velocity and
acceleration of players. Although no standardised velocity thresholds currently exists for quantifying female soccer matches, the following zones have been used in female soccer: standing and walking (0.0–1.6 m/s), jogging (1.7–2.2 m/s), low-intensity running (LIR) (2.3–3.3 m/s), moderate-intensity running (MIR) (3.4–4.3 m/s), HIR (4.4–5.6 m/s) and sprinting (>5.6 m/s). A large proportion of a match consists of walking or jogging, therefore it is important to determine the pattern of HI work performed. Female players spend around 7.5% and 2.5% respectively at HIR and sprinting during a match. What is evident is that significant reductions are noted in HI movements towards the last part of a match. Work rate ranges between 108–119 m/min for elite female players, and distinctions are clear between playing positions, with midfielders and forwards achieving a higher work rate. Player load is another component to consider when analysing the match demands of players and is a representation of total body load. Player load consists of high- and low-intensity movements or actions such as jumping, tackling, collisions, accelerations, decelerations, passing, shooting, sideways and backward running. It also differs between playing positions. Furthermore, player load is largely related to a player’s physiological and perceptual responses to a training stimulus.

When considering the role of fatigue in soccer matches, studies report a decrease in total distance and distances covered in different velocity zones from the first to the second half of a match. The decline in HIR at the end of a match is related to fatigue influencing performance negatively. However, distance covered by means of sprinting often remains similar or does not decrease significantly from the first to the second half and may be due to a decline in HIR and subsequent increase in low-intensity activity, allowing for more recovery opportunities. On the other hand, research shows that players possibly employ pacing strategies, especially players completing a full match, which involves a progressive decline in running intensity throughout a match to reserve energy for periods of high-intensity activity. In addition, evidence suggests that multiple matches during a field sport tournament has an influential role on exercise intensity and consequently leads to accumulated fatigue. The players’ ability to maintain exercise intensity throughout a tournament could be of importance for the outcome of a match. Appropriate recovery interventions in competitive tournaments and between matches is therefore important to continually perform at optimal level.

This review consequently indicated that optimal performance in female soccer involves a myriad of factors, whereby an understanding of the morphological profile of players is equally important to being knowledgeable of physical and technical performance requirements. Furthermore, analysis of the internal and external match demands seems to be an emerging topic receiving more attention in current research. This has implications for more precise training prescription
and evaluation. Given the importance of monitoring the training and match performance of players in order to maximise performance, better informed decisions can be made in the planning of training programmes leading to improvement in the performance of female soccer players.

Chapter 3 consisted of the first research article, which was compiled in accordance with the guidelines of the *Women in Sport and Physical Activity Journal* and titled: “Comparison of the morphological characteristics of sub-elite female soccer players according to playing position”, by Strauss, Sparks and Pienaar. The main aim of this article was to examine if there are position-specific differences in the morphological characteristics of South African sub-elite female soccer players. A secondary aim was to utilise the morphological characteristics of South African sub-elite female soccer players to establish the foundation for a database designed to create normative standards for female soccer players. Goalkeepers were the only players who differed (p≤0.05) from the other playing positions regarding morphological characteristics. Goalkeepers were the tallest (166.2 ± 8.4 cm), heaviest (66.5 ± 5.1 kg) and possessed the largest anthropometric measurements, lending them a greater advantage in defending the goal area. Differences (p≤0.05) between the goalkeepers and outfield playing positions were evident in the skinfold measurements of the triceps and supraspinale, the breadth measurements of the wrist and femur, the girth measurements of the relaxed arm, flexed arm, waist, gluteal and calf and the length measurements of the acromiale-radiale, radiale-styliion, midstyliion-dactyliion and the foot. In contrast, the midfielders were the shortest (158.7 ± 6.1 cm) and lightest (55.0 ± 8.4 kg) players, and further generally had the smallest breadth, girth and length measurements, efficiently equipping them with the ability to fulfil a linking role between the front and back players. These results correspond with certain trends in previous research findings on female players. Body fat percentage (20.8 ± 5.7%) was within the range previously reported for female players, with goalkeepers possessing the highest BF% values. Finally, a balanced endomorphic (4.0–2.4–2.1) body type was evident among the players. Neither BF% nor body type differed between playing positions. The results indicate that significant positional differences exist in certain morphological features. The results furthermore contribute to the limited research available female soccer players competing on sub-elite level.

Chapter 4 presented the second research article that was compiled in accordance with the guidelines of the *Journal of Sports Science and Medicine* and titled: “The effect of exercise-induced fatigue on the technical skill performance of sub-elite female soccer players”, by Strauss, Sparks and Pienaar. The aim of this article was to evaluate the effect of aerobic and anaerobic fatigue on the technical skill performance of sub-elite female soccer players. The secondary aim was to determine the aerobic and anaerobic fitness characteristics of sub-elite female soccer
players. The article succeeded to determine that physical fatigue had a detrimental effect on short-passing ability. Players achieved a mean distance of 560 m in the Yo-Yo IR1. A mean distance of 614 m was achieved in the RSA test. Peak HR was slightly higher following the Yo-Yo IR1 (190 bpm) than after the RSA (186 bpm) tests. Blood lactate measured was higher after the RSA test than after the Yo-Yo IR1. The RPE (7.1) following the fatiguing tests was similar. Furthermore, an average \(\dot{V}_\text{O}_{2\text{max}} \) of 41.1 mL/kg/min was recorded. The deteriorated performance in the LSPT following the Yo-Yo IR1 and the RSA tests was proven by the increase in passing time (1.4% and 3.7%), penalty time (32.6%, \(p<0.01 \); and 20.4%, \(p<0.05 \)) and total time (10.1%, \(p<0.01 \); and 8.5%, \(p<0.05 \)) respectively. Due to the time limit imposed on the LSPT, players appeared to have sacrificed accuracy of passes in order to maintain the speed of completing the test. Aerobic fatigue influenced technical performance more than anaerobic fatigue, which can be justified by the low aerobic fitness levels of the players.

Chapter 5 contains the third research article that was compiled in accordance with the guidelines of the *Journal of Strength and Conditioning Research* and titled: “The use of GPS analysis to quantify the internal and external match demands of sub-elite female soccer players during a tournament”, by Strauss, Sparks and Pienaar. The aim of this article was to assess the internal and external match demands of sub-elite female soccer players during a tournament. The secondary aim was to describe the magnitude of change of these variables within and between matches over the course of a tournament to determine the effect of player fatigue. The results of this article showed that significant \((p \leq 0.05) \) differences exist in the internal and external match demands of university-level female soccer players within and between matches in a tournament. The study further showed significant positional differences in those demands. Total distance covered averaged 5917 km. Players spent 42% standing/walking, 11% jogging, 23% LIR, 11% MIR, 5% HIR and 1% sprinting. Within match comparisons showed that relative distance, LIA and HIA decreased from the first to the second half with possibly trivial to likely small changes. Player load decreased \((p \leq 0.05) \) in the second half \((ES: 0.4) \). The decrease in relative total distance can be explained by the 7% decrease in LIA and a 6% decrease in HIA across match halves. The higher player load during the first half further suggests more movement activities performed in comparison to the second half. The reduction in movement activities during the second half can be the result of fatigue experienced following the first half. It is also possible that a particular strategy was employed by the players through exerting more intense efforts during the first half in an attempt to physically challenge and exhaust the opposition players to have a competitive advantage during the second half. Small to large differences in variables were observed throughout the tournament. Comparisons between matches generally indicated the highest performance during match 2, from where gradual reductions in performance variables were
measured towards match 5. The competition load may have impaired the players’ performance due to insufficient recovery between matches, leading to shorter distances covered in total and within each velocity zone, specifically at HIA.

Regarding playing positions, the midfielders achieved the greatest absolute and relative total distance and defenders the least. Defenders covered less (p≤0.05) relative distance and LIA per minute of play compared to midfielders. This greater total distance covered by midfielders was predominantly from more LIA per minute of play. Midfielders fulfil a linking role between the front and back players, which can justify the higher work rate among players in this position. Forwards covered the greatest distance at HIA compared to midfielders and defenders. In addition to distances measured at different intensities, player load proved to differ between playing positions, with midfielders achieving the highest player load per minute of play. The higher level of manoeuvrability required by midfielders in performing their positional tasks could result in a greater player load due to performing more movement activities.

6.2 Conclusions

The conclusions drawn from this research are presented in accordance with the set hypotheses from Chapter 1:

Hypothesis 1: There will be significant (p≤0.05) position-specific differences in the morphological profile of South African sub-elite female soccer players.

Each positional role was characterised by a different profile. Fifteen out of twenty-one anthropometric components showed significant (p≤0.05) differences between playing positions. Differences (p≤0.05) were noted when the goalkeepers were compared to the outfield playing positions. However, the outfield positions did not differ when compared against one another. Except for higher BF% values among goalkeepers, it was not a distinguishing factor for the outfield playing positions with no significant (p≤0.05) differences between any of the playing positions. No significant (p≤0.05) positional differences were found in somatotype characteristics. To conclude, although the morphological profile of goalkeepers differed significantly from the other playing positions, no significant differences were found between outfield players. Hypothesis 1 is therefore partially accepted.

Hypothesis 2: Aerobic and anaerobic fatigue will have a significant (p≤0.05) negative effect on the technical skill performance of sub-elite female soccer players.
Physical fatigue had a detrimental ($p \leq 0.05$) effect on short-passing ability. In particular, penalty time increased following the Yo-Yo IR1 ($p < 0.001; 32.6\%$) and the RSA test ($p = 0.01; 20.4\%$). This was evident in the decrease in precision of passes and ultimately resulted in a significant ($p \leq 0.05$) deterioration in the total performance time following both fatiguing exercises. It was evident that the performance detriment in motor control during both post-tests was due to the aerobic and anaerobic fatigue experienced.

Hypothesis 2 is therefore accepted.

Hypothesis 3: The internal and external match demands of sub-elite female soccer players will differ significantly ($p \leq 0.05$) within and between matches in a tournament.

Significant ($p \leq 0.05$) differences in the internal and external match demands of university-level female soccer players exist between matches in a tournament. Total distance within matches decreased ($p \leq 0.05$) with 11\% from the first to the second half. Player load also decreased ($p \leq 0.05$) from the first to the second half (ES: 0.4). Possibly trivial to likely small changes were observed for relative distance, LIA and HIA during the second half, attributable to fatigue accumulated during the first half. Throughout the tournament, the largest magnitude of change was noted with a large effect (ES: -1.2) in relative distance covered between match 2 and 5. Evidence suggests that accumulated fatigue experienced throughout a tournament will have a negative effect on match performance.

Hypothesis 3 is therefore accepted.

This thesis aimed to investigate the physical and physiological characteristics of sub-elite female soccer players and performance during competitive match play. This is the first study of this magnitude in South Africa and the African continent. This is also the first study on female soccer players in Africa that analysed the effect of aerobic and anaerobic fatigue on the performance of technical skills. An abundance of literature is available on male soccer players of different competitive standard investigating these variables and effects, although less is known about female soccer players, particularly those participating on sub-elite level. In general, literature available on female soccer players places emphasis on elite players, leaving a vast area for further contribution to the field regarding players competing on a different level. Further, what make this study unique, are the distinctions that were made between different playing positions based on most of the variables. It is well established in male soccer that morphological characteristics have an influence on team performance, serving as a guideline for the
identification and selection of talented players for specific positions. Goalkeepers are classified as the taller and heavier players, followed by defenders and forwards. Alternatively, midfielders tend to be the shortest and lightest among the team positions. What was found in this study is that significant differences was only noted between goalkeepers and the other outfield playing positions, while the outfield positions displayed relatively similar traits in general. More evidence pertaining to morphological characteristics and the classification of positional distinctions, can contribute to female soccer and the enhancement of performance within specific positions, and prove that these distinct characteristics become more specific as the competitive level increases.

Apart from positional distinctions regarding morphological features, this study contributes to a better understanding of the influence of fatigue on technical skill performance. In female soccer, the LSPT has not received much attention in research, therefore this study contributes to the very limited information available on female players performing the LSPT. Furthermore, researchers face a challenge to examine the effect of fatigue on the performance of technical skills during a match due to numerous reasons. The researchers of this study sought it relevant to use a soccer-specific technical skill test, such as the LSPT, and assess the effect of fatigue on technical skill performance. Evidence is clear that both aerobic and anaerobic fatigue would have a negative effect on technical skill performance, although aerobic fatigue would have a greater negative influence. What can be concluded is that all aspects that form part of the LSPT decreases due to fatigue. This leads to the conclusion that dribbling, passing accuracy, controlling the ball and the ability to make decisions will be hindered by fatigue. This will ultimately lead to a reduction in performance in a match, which could affect the outcome of the match.

It is possible that not only are players participating on a high level because of their technical and tactical skills, but that their high physical performance allows them to compete at a higher level. Currently, very limited research on match assessment of the movement profile of female soccer players using GPS analysis exists. This is also the first study that investigated the match-to-match variations in internal and external match demands during a week-long soccer tournament. Within and between match variations in absolute and relative total distance, player load, and movement intensities are presumably the result of acute and accumulated fatigue experienced by players, and inadequate recovery between matches throughout the tournament. As the tournament progressed, high-intensity activities decreased, suggesting that fatigue had an influential role on match performance. As seen from chapter 4 the LSPT performance showed a greater decrease after the aerobic test which could be due the lower aerobic conditioning of the players in this study compared to previous studies. These results together with the results from chapter 5 pertaining to match and tournament fatigue suggest that by improving aerobic fitness, players may recover
quicker following acute bouts of maximal sprint efforts, cover greater distances during a match and be able to maintain their technical skills and mental concentration more efficiently towards the latter part of a match. Higher aerobic fitness and the use of specific recovery interventions between matches in such a tournament may also provide the players with the capacity to maintain performance as the tournament progresses.

The findings of this study suggest that position specific training interventions can be used to optimise the performance of players and meet the demands of each playing position through aerobic and technical skills training. In conclusion, the importance of physical conditioning of female soccer players along with improving their technical skill performance should be emphasised in training programmes to combat the effect of fatigue on technical skill and match performance.

The unique contribution of this thesis to the current available literature and knowledge in this field can be summarised as follows:

- Understanding positional differences in morphological characteristics can assist sport scientists and conditioning specialists in designing position-specific based training programmes based on physical traits, which can ultimately lead to improved performance and participation on a higher level.
- The greater negative influence of aerobic fatigue on technical skill performance emphasises the importance of incorporating HI aerobic exercise into training programmes.
- The authors established that a week-long tournament leads to reductions in overall performance towards the end of the tournament, suggesting that accumulated fatigue during and following each match leads to further reductions as the tournament progresses.

6.3 Limitations and Recommendations

Although this study provided valuable information pertaining to the profile and performance of sub-elite female soccer players, several limitations of the study should, however, be considered, along with recommendations for future researchers who wish to focus on this area of study:

- The participants in this study were not randomly selected according to the population representative of players competing on sub-elite level in South Africa. Future studies should therefore include players participating on sub-elite level that would be representative of the entire population in the country.
- Arousal level and mental fatigue could explain lower performance in the LSPT following fatiguing exercises. Studies involving the cognitive assessment of players following fatiguing exercises could therefore contribute to the current findings.
The results of the present study relating to match demands must be interpreted with caution, since a small sample size of sub-elite female soccer players were used. Future research should for this reason attempt to use larger sample sizes, specifically if positional comparisons are made.

Future research on sub-elite players competing in a tournament of this nature should attempt to assess all the players from the participating teams, from which results can be compared based on final team ranking at the end of the tournament.

Due to the expensive nature of GPS devices, only the starting ten players could be fitted with devices. Data on substitution players could therefore not be collected. Tactical substitutions of players have been proven effective in other team field sports, indicating differences in movement intensities compared to players who have played a full match. The influential role that substituting players could have on a match and differences in movement intensities compared to full-match players is therefore a future research possibility.

6.4 Future research

For future research we would like to recommend investigating the following:

- To examine whether implementing a programme designed to fatigue players before technical skills training is performed will improve the technical performance of these players under fatigued states.
- To investigate whether different recovery techniques will improve the match performance of soccer players during a tournament.
ANNEXURES

Annexure A: Certificate of Ethics Approval

Annexure B: Informed consent form

Annexure C: Demographic and general information questionnaire

Annexure D: Forms for the collection of data regarding anthropometric, physical fitness and technical skills

Annexure E: Instructions for authors from the *Women in Sport and Physical Activity Journal*, the *Journal of Sports Science and Medicine*, and the *Journal of Strength and Conditioning Research*.

Annexure F: Authorization letter for reproduction of Loughborough Soccer Passing Test figure

Annexure G: Proof of language editing

Annexure H: Description of testing procedures
Dear Dr Sparks

HREC APPROVAL OF YOUR APPLICATION

Ethics number: NWU-00055-15-S1

Kindly use the ethics reference number provided above in all correspondence or documents submitted to the Health Research Ethics Committee (HREC) secretariat.

Project title: Anthropometric profile, selected physical parameters, technical skills and match demands of university-level female soccer players

Project leader/supervisor: Dr M Sparks

Student: A Strauss

Application type: Full Single

Risk level descriptor: Minimal

You are kindly informed that at the meeting held on 17/04/2015 of the HREC, Faculty of Health Sciences, the aforementioned was approved. The period of approval for this project is from 21/09/2015 to 31/12/2017.

After ethical review:

Translation of the informed consent document to the language’s applicable to the study participants should be submitted to the HREC (if applicable).

The HREC requires immediate reporting of any aspects that warrants a change of ethical approval. Any amendments, extensions or other modifications to the protocol or other associated documentation must be submitted to the HREC prior to implementing these changes. Any adverse/unexpected/unforeseen events or incidents must be reported on either an adverse event report form or incident report form.

A progress report should be submitted within one year of approval of this study and before the year has expired, to ensure timely renewal of the study. A final report must be provided at completion of the study or the HREC must be notified if the study is temporarily suspended or terminated. The progress report template is obtainable from Carolien van Zyl at
Annexure A: Certificate of ethics approval

Carollen.VanZyl@nwu.ac.za. Annually a number of projects may be randomly selected for an external audit.

Please note that the HREC has the prerogative and authority to ask further questions, seek additional information, require further modification or monitor the conduct of your research or the informed consent process.

Please note that for any research at governmental or private institutions, permission must still be obtained from relevant authorities and provided to the HREC. Ethics approval is required BEFORE approval can be obtained from these authorities.

The HREC complies with the South African National Health Act 61 (2003), the regulations on Research with Human Participants of 2014 of the Department of Health and Principles, the Declaration of Helsinki, 2013, the Belmont Report and the Ethics in Health Research: Principles, Structures and Processes (SANS document).

We wish you the best as you conduct your research. If you have any questions or need further assistance, please contact the Ethics Office at Carollen.VanZyl@nwu.ac.za or 018 299 2089.

Yours sincerely

[Signature]

Prof Minnie Greeff
HREC Chairperson
PARTICIPANT INFORMATION LEAFLET AND CONSENT FORM FOR UNIVERSITY-LEVEL FEMALE SOCCER PLAYERS

TITLE OF THE RESEARCH PROJECT: INVESTIGATING PERFORMANCE INDICATORS AND INJURY RISK FACTORS FOR THE DEVELOPMENT AND PERFORMANCE OF FEMALE SOCCER PLAYERS

REFERENCE NUMBERS: NWU-00055-15-A1

PRINCIPAL INVESTIGATOR: DR. MARTINIQUE SPARKS

ADDRESS: BUILDING K3, CNR OF THABO MBeki & MEYER STR, POTCHEFSTROOM

CONTACT NUMBER: 018 299 1770

You are being invited to take part in a research project. Please take some time to read the information presented here, which will explain the details of this project. Please ask the researcher any questions about any part of this project that you do not fully understand. It is very important that you are fully satisfied that you clearly understand what this research entails and how you could be involved. Also, your participation is entirely voluntary and you are free to decline to participate. If you say no, this will not affect you negatively in any way whatsoever. You are also free to withdraw from the study at any point, even if you do agree to take part.

This study has been approved by the Health Research Ethics Committee of the Faculty of Health Sciences of the North-West University (NWU-00055-15-A1) and will be conducted according to the ethical guidelines and principles of the international Declaration of Helsinki and the ethical guidelines of the National Health Research Ethics Council. It might be necessary for the research ethics committee members or relevant authorities to inspect the research records.
What is this research study all about?

➢ This study will be conducted at your home training field at the university and at the annual University Sports South Africa (USSA) tournament and will involve us measuring your body composition (e.g. mass, skinfolds etc.), flexibility as well as you performing two fitness tests, a speed test, a stability test and a skills test with experienced health researchers trained in Sport science. You will also be asked to complete two psychological questionnaires and an injury questionnaire. We will also monitor and analyse all of your matches during the USSA tournament. Thirty-eight participants will be included in this study.

➢ The objectives of this research are:

- to determine the anthropometric profile according to player position of university-level female soccer players, thus developing a player profile for each position describing body mass, height, stature and fat percentage;
- to determine the relationship between technical skills and the aerobic- and anaerobic fitness characteristics of university-level female soccer players, thus determining whether your technical skill performance will be influenced by your level of aerobic- and anaerobic fitness;
- to determine the position specific internal and external match demands of university-level female soccer players by making use of global positioning system (GPS) analyses, thus using GPS technology to provide information such as your heart rate and the amount of time you spend at different intensity efforts performing activities such as standing, walking, jogging and running;
- to determine the effect of an aerobic fatiguing test on the salivary cortisol levels and the psychological state of amateur female soccer players;
- to determine the effect of an anaerobic fatiguing test on salivary cortisol levels and the psychological state of amateur female soccer players;
- to determine the effects of the match-outcome (win/lose) and fatigue as a result of a soccer match on salivary cortisol levels and the psychological state of amateur female soccer players;
- to determine the injury history and incidence in university level African female soccer players.
- to determine the intrinsic risk factors associated with lower limb injuries in university level African female soccer players.

Why have you been invited to participate?

➢ You have been invited to participate because you are female and represent your university in soccer
➢ You have also complied with the following inclusion criteria: you are currently injury free and you are part of the USSA squad.
➢ You will be excluded if: you become injured or ill at any time during the project or if we are not able to test you 2 weeks before the USSA championship starts.

What will your responsibilities be?

➢ You will be expected to:
 • Complete the informed consent form before the first day of testing. Informed consent will be obtained by an independent person not directly involved in the study.
 • Complete a questionnaire that pertains to your demographic information, playing and injury history on the first day of testing.
• You will be instructed not to engage in strenuous exercise for at least 48 hours before the fitness testing session. The research team will guide the coaches towards which activities will be allowed to engage in before testing. The research team will also consult with coaches beforehand to inform them of the intended dates of testing, so that they can plan their training program in such a way to accommodate the testing and necessary rest before testing commences.

• Conduct assessments for body composition. Various measurements will be taken using a skinfold caliper by Level 2 International Society for the Advancement of Kinanthropometry (ISAK) certified anthropometrists at a private designated testing area. This will include measurements of body mass, stature, skinfolds, breadths, girths and lengths and will require you to wear minimal clothing. You are allowed to strip down to as much clothing as is comfortable to you. These measurements will be taken at a private enclosed location. The flexibility in your legs and ankles will also be tested in this area.

• While you wait to be measured an injury history questionnaire will be completed for you by a Biokineticist. You will also be asked to complete two psychological questionnaires and provide a saliva sample before the onset of the physical testing.

• Conduct tests for speed (40 m sprint test) and stability. The tests will be explained to you after which you will engage in a general warm-up of 10-15 min consisting of low-intensity jogging followed by static and dynamic stretching. You will then conduct the tests for speed and stability. You will be allowed to wear your soccer boots to complete these tests.

• You will then perform the technical skills test (consisting of dribbling, passing and control), followed by the aerobic fitness test (Yo-Yo Intermittent recovery test level 1 (Yo-Yo IR1)). During the execution of the aerobic fitness test you will be asked to run while being fitted with a portable gas analyser apparatus to measure you expired air as you run. This will require a harness to be fitted to your chest as well as a mask over your head and face. The mask will not hinder your breathing and you will be able to breathe normally. There will also be a heart rate belt fitted across your chest to monitor your heart rate during the test. After the completion of the aerobic fitness test, you will rate how tired you are and a blood lactate concentration [LA] will be taken from the fingertip of the left hand by means of a finger prick test. After blood sampling, you will again complete the skills test. You will not be allowed to recover between the technical skills test and the aerobic test, because we want to examine the effect of exhaustion on soccer skill performance. After the final test you will complete two psychological questionnaires for a second time and thirty minutes after the last test another saliva sample will be taken.

• Engage in explosive power (Vertical jump) test, technical skills and anaerobic fitness tests on the second day of testing. The tests will be explained to you after which you will perform general warm-up of 10-15 min consisting of low-intensity jogging followed by static and dynamic stretching. You will also be asked to complete two psychological questionnaires and provide a saliva sample before the onset of the physical testing. You will then conduct the explosive power test, technical skills test (consisting of dribbling, passing and control) and the anaerobic fitness test (repeated sprint ability test (RSA)). During the execution of the repeated sprint ability test, you will be required to sprint shuttles of 5 meters over a distance of 20 meters. After the completion of the anaerobic fitness test, you will rate how tired you are and a blood
lactate concentration [LA] will be taken from the fingertip of the left hand by means of a finger prick test. After blood sampling, you will again complete the skills test. You will not be allowed to recover between the technical skills test and the anaerobic test, because we want to examine the effect of exhaustion on soccer skill performance. After the final test you will complete two psychological questionnaires for a second time and thirty minutes after the last test another saliva sample will be taken.

• Be assessed at the USSA championship during the matches. You will be asked to wear a GPS sampling unit. This is a vest that is worn underneath your playing shirt, it is lightweight and will not obstruct your play in any way. Again a heart rate belt will be fitted across your chest to monitor your heart rate during the match. Before commencement of the tournament, you will be allowed to wear the GPS harness with the unit and heart rate (HR) transmitter belts during a practice session to familiarize yourself with units, to ensure you do not feel uncomfortable on the first day of the tournament.

• During the tournament saliva samples will be collected and the STAI and POMS questionnaire completed 1 hour before- and 30 minutes after the match, independent of the time of day that the match will take place. Following the soccer match, players will be instructed to indicate their RPE and complete the two questionnaires. Thirty minutes after the match the saliva samples will be collected.

Will you benefit from taking part in this research?

➢ The direct benefits for you as a participant will be that you will have access to your results by means of a personal report provided to you within 4 weeks after the final testing period. In the case of any immediate or unanticipated incidental findings occurring during the time of testing, you will be informed. The data gathered could enable you as player and your coach to compile specific and effective conditioning programs for the different player positions (attackers, midfielders and defenders) that will prepare you for the demands of soccer matches, consequently resulting in an improvement of performance. You could also benefit in terms of your own health by using results provided to you to improve your body composition and physical condition.

➢ The indirect benefit will be a broadening of specialist sport science knowledge with regards to female soccer, which can be transferred to the larger soccer community. This includes knowledge in the field of physical and physiological profiles and match demands of university level female soccer players. Workshops will be held after the completion of the project to empower not only university-level coaches, but also developing coaches to construct effective training programs for their female soccer teams.

➢ Scientists will gain understanding into the different intrinsic risk factors that are associated with lower limb injuries and how to minimize such injuries in future.

➢ Two Biokineticists will also travel with your team during the tournament to assist with strapping and massaging before and after matches.

Are there risks involved in your taking part in this research?

➢ The risks in this study are:

• Physical discomfort: No severe physical stress beyond the risk encountered in normal life and everyday training are anticipated. All the skills and fitness tests are movements that you regularly do in your training program. You will be thoroughly warmed up before taking part in any of these tests. Should you
experience pain or injury at any point you can stop the test and the physiotherapist or team doctor will first be allowed to examine you and assess your injury or discomfort.

- **Physical exhaustion:** The Yo-Yo IR1 test and RSA test are maximal performance tests that need to be done until complete exhaustion. However, you are free to stop the test if you experience any light headedness, shortness of breath or headaches. An Automated External defibrillator (AED) with a qualified operator will also be at all testing opportunities if the need to use the apparatus arises.

- **Social stress:** No negative influence due to the presence of other players and the coaching staff are anticipated, due to you being accustomed to participate in a group and in front of the coaching staff and spectators. A clinical psychological consultant will be available for debriefing in case of any emotional reactions.

- **Blood sample collection:** Some discomfort might be experienced when the finger prick is done for blood sample collection. The procedure will be thoroughly explained to you and you will be free to withdraw if you are not comfortable with continuing. It will be a single prick on your finger taken by qualified scientists. Extreme pain is not expected. The finger prick test will be done on both the first and second day of testing. The needle of the finger prick apparatus as well as the disposable gloves will immediately be dispelled into an anatomical waste bin after each measurement taken. After a lactate reading is given by the lactate analyser the used blood lactate strips will also be dispelled into the portable biodegradable waist container. All the material will be disposed immediately after the collection of the data. The disposable waist container will be collected by the manufacturer, as per instructions.

- **Salivary sample collection:** No severe physical stress beyond the risk encountered in normal life and everyday training are anticipated. Saliva will be collected through a plastic straw into a 20 ml collection vial. The saliva sample will only be used to do hormonal analysis; no other analyses will be done.

- **Psychological stress:** A Sport Psychological Consultant will be available for debriefing in case of any emotional reactions experienced.

- **Injury at the championship:** You will not be exposed to additional risk due to the research conducted, in addition to that related to playing the game. Trained paramedics arranged by the tournament directors will be present at the tournament in case of any injuries.

➤ The benefits outweigh the risk

What will happen in the unlikely event of some form of discomfort occurring as a direct result of your taking part in this research study?

➤ You might feel uncomfortable during the anthropometric measurements where body mass, stature, skinfolds, breadths, girths and lengths will be measured as you will be required to wear minimal clothing and the measurements might result in discomfort. The measurements will be taken by two experienced ISAK Level 2 certified anthropometrists. You will be measured alone in a private designated and enclosed area and will be allowed to strip down to as much clothing as is comfortable for you. Testing will be done taking your privacy into consideration

➤ Should you have the need for further discussions after the physical or psychological discomfort which might be experienced during the testing
procedures, an opportunity will be arranged for you to consult with the team
doctor, physiotherapist or clinical psychologist.

Who will have access to the data?

- Anonymity will be partial to protect you as individual. Confidentiality will be
 ensured by assigning a code to you only known by the researchers. Complete
 confidentiality cannot be ensured, as the research will be conducted in a group
 setting and the researchers cannot ensure confidentiality by other group
 members who might disclose information outside the research setting. In the final
 dataset it will not be possible to identify you. Reporting of findings will be
 anonymous and confidential by not using any individual identifiers in any
 publications resulting from this study. Only the researchers involved in this study
 will have access to the data obtained.

What will happen with the data/samples?

- This is a once off collection that will only take place during 2015 and the data will
 be fully analysed here in South Africa by the Statistical Consultation Services of
 the NWU.
- The hard copies of the data recorded on the first three testing procedures will be
 stored for a minimum of 7 years in a secure safe in the project leader's office,
 accessible only by the primary researchers, after which it will be destroyed by
 means of a paper shredder. The electronic data recorded by the GPS units and
 heart rate monitors will be downloaded to a password protected personal laptop
 immediately after each match and a back-up will be made on a compact disc
 (CD) and stored for a minimum of 7 years in a secure safe in the project leader's
 office, accessible only by the primary researchers, after which it will be erased
 from the laptop and the CD destroyed.

- The salivary samples will only be used for stress hormone analysis and no other
 analyses will be conducted on those samples. These analyses will be done at a
 professional laboratory (Ampath), guaranteeing confidentiality.

Will you be paid to take part in this study and are there any costs involved?

No, you will not be paid to take part in the study but refreshments will be provided
during and after the testing. You will not have any additional travel expenses during the
times that this procedure will be conducted, as the first 3 days of testing will be
conducted during normal practice times when you will be at the training field. The final
testing to be conducted at the USSA tournament will also not lead to any additional
travel expenses for you, as these expenses for travel, accommodation and meals will
already have been paid for by the respective universities. There will thus be no costs
involved for you, if you do take part.

Is there anything else that you should know or do?

- You can contact Dr. Martinique Sparks at 018 299 1770 if you have any further
 queries or encounter any problems.

- You can contact the Health Research Ethics Committee via Mrs Carolien van Zyl
 at 018 299 2089; carolien.vanzyl@nwu.ac.za if you have any concerns or
 complaints that have not been adequately addressed by the researcher.
You will receive a copy of this information and consent form for your own records.

How will you know about the findings?
- The findings of the research will be shared with you 4 weeks after the final testing period. We will be sharing the findings with you by providing you with a personal report regarding your performance scores. You are welcome to contact us regarding the findings of the research. Findings with regards to the game analyses and playing position profiles will be shared with the coaching staff, however these results will be given as group statistics with no individual players identified.
Declaration by participant

By signing below, I .. agree to take part in a research study titled: Investigating performance indicators and injury risk factors for the development and performance of female soccer players

I declare that:

- I have read this information and consent form and it is written in a language with which I am fluent and comfortable.
- I have had a chance to ask questions to both the person obtaining consent, as well as the researcher and all my questions have been adequately answered.
- I understand that taking part in this study is voluntary and I have not been pressurised to take part.
- I may choose to leave the study at any time and will not be penalised or prejudiced in any way.
- I may be asked to leave the study before it has finished, if the researcher feels it is in my best interests, or if I do not follow the study plan, as agreed to.

Signed at (place) ... on (date) 20....

--
Signature of participant Signature of witness
--

Declaration by person obtaining consent

I (name) .. declare that:

- I explained the information in this document to ..
- I encouraged him/her to ask questions and took adequate time to answer them.
- I am satisfied that he/she adequately understands all aspects of the research, as discussed above
- I did/did not use a interpreter.

Signed at (place) ... on (date) 20....

--
--
Signature of person obtaining consent Signature of witness

Declaration by researcher

I (name) .. declare that:

- I explained the information in this document to ...
- I encouraged him/her to ask questions and took adequate time to answer them.
- I am satisfied that he/she adequately understands all aspects of the research, as discussed above
- I did/did not use an interpreter.

Signed at (place) .. on (date) 20....

.. ..
Signature of researcher Signature of witness
Demographic Questionnaire: Soccer Project

Date:

<table>
<thead>
<tr>
<th>PLAYER PERSONAL INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAYER NAME & SURNAME</td>
</tr>
<tr>
<td>DATE OF BIRTH</td>
</tr>
<tr>
<td>AGE (YEARS)</td>
</tr>
<tr>
<td>CONTACT NUMBER</td>
</tr>
<tr>
<td>NEXT OF KIN</td>
</tr>
<tr>
<td>NEXT OF KIN CONTACT NUMBER</td>
</tr>
<tr>
<td>POSITION</td>
</tr>
<tr>
<td>NAME OF CLUB</td>
</tr>
<tr>
<td>JERSEY NUMBER</td>
</tr>
<tr>
<td>YEARS OF PLAYING EXPERIENCE</td>
</tr>
<tr>
<td>YEARS OF PLAYING AT UNIVERSITY/CLUB LEVEL</td>
</tr>
<tr>
<td>RACE</td>
</tr>
<tr>
<td>DATE OF LAST MENARCH</td>
</tr>
<tr>
<td>PRESCRIBED MEDICATION</td>
</tr>
</tbody>
</table>
SOCCER PROTOCOL

<table>
<thead>
<tr>
<th>NAME AND SURNAME</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE OF BIRTH</td>
<td></td>
</tr>
<tr>
<td>POSITION</td>
<td>DEFEND</td>
</tr>
</tbody>
</table>

| STATURE (cm) | |
| WEIGHT (kg) | |

BODY COMPOSITION

<table>
<thead>
<tr>
<th>TEST COMPONENT</th>
<th>1ST READING</th>
<th>2ND READING</th>
<th>MEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRICEPS SKINFOLD (MM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUBSCAPULAR SKINFOLD (MM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUPRASPINALE SKINFOLD (MM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABDOMINAL SKINFOLD (MM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRONT THIGH SKINFOLD (MM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEDIAL CALF SKINFOLD (MM)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEST COMPONENT</th>
<th>1ST READING</th>
<th>2ND READING</th>
<th>MEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUMERUS BREADTH (CM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRIST BREADTH (CM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEMUR BREADTH (CM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANKLE BREADTH (CM)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEST COMPONENT</th>
<th>1ST READING</th>
<th>2ND READING</th>
<th>MEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>RELAXED ARM GIRTH (CM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLEXED ARM GIRTH (CM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WAIST (MINIMUM) Girth (CM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLUTEAL (HIP) Girth (CM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MID THIGH Girth (CM)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEST COMPONENT</th>
<th>1ST READING</th>
<th>2ND READING</th>
<th>MEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACROMIALE-RADIALE LENGTH (CM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RADIALE-STYLION RADIALE LENGTH (CM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIDSTYLION-DACTYLIION (CM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOOT LENGTH (CM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLEXIBILITY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Iliopsoas Flexibility (˚)</td>
<td>R</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Quadriceps Flexibility (˚)</td>
<td>R</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Hamstring Flexibility (˚)</td>
<td>R</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Ankle Flexibility (˚) (Plantar)</td>
<td>R</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Ankle Flexibility (˚) (Dorsi)</td>
<td>R</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Ankle Flexibility (˚) (Inversion)</td>
<td>R</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Ankle Flexibility (˚) (Inversion)</td>
<td>R</td>
<td>L</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EXPLOSIVE POWER</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical Jump (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tendo Peak Power (W)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tendo Speed (M/SEC)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOWER LIMB STABILITY</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Centre of Pressure Test (Eyes Open)</td>
<td>R</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Centre of Pressure Test (Eyes Closed)</td>
<td>R</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Limits of Stability Test</td>
<td>R</td>
<td>L</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPEED</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10m (sec)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30m (sec)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40m (sec)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Annexure D: Data collection forms

ANAEROBIC POWER

RAST TEST (sec)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAXIMUM POWER:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MINIMUM POWER:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AVERAGE POWER:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FATIGUE INDEX (%):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HR\textsubscript{MAX} (BPM)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LACTATE (MMOL)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANAEROBIC POWER

YO-YO LEVEL

<table>
<thead>
<tr>
<th></th>
<th>LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m</td>
</tr>
</tbody>
</table>

DISTANCE (m)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HR\textsubscript{MAX} (BPM)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LACTATE (MMOL)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Speed level	Repetitions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1 (40)</td>
</tr>
<tr>
<td>9</td>
<td>1 (80)</td>
</tr>
<tr>
<td>11</td>
<td>1 (120) 2 (160)</td>
</tr>
<tr>
<td>12</td>
<td>1 (200) 2 (240) 3 (280)</td>
</tr>
<tr>
<td>13</td>
<td>1 (320) 2 (360) 3 (400) 4 (440)</td>
</tr>
<tr>
<td>14</td>
<td>1 (480) 2 (520) 3 (560) 4 (600) 5 (640) 6 (680) 7 (720) 8 (760)</td>
</tr>
<tr>
<td>15</td>
<td>1 (800) 2 (840) 3 (880) 4 (920) 5 (960) 6 (1000) 7 (1040) 8 (1080)</td>
</tr>
<tr>
<td>16</td>
<td>1 (1120) 2 (1160) 3 (1200) 4 (1240) 5 (1280) 6 (1320) 7 (1360) 8 (1400)</td>
</tr>
<tr>
<td>17</td>
<td>1 (1440) 2 (1480) 3 (1520) 4 (1560) 5 (1600) 6 (1640) 7 (1680) 8 (1720)</td>
</tr>
<tr>
<td>18</td>
<td>1 (1760) 2 (1800) 3 (1840) 4 (1880) 5 (1920) 6 (1960) 7 (2000) 8 (2040)</td>
</tr>
<tr>
<td>19</td>
<td>1 (2080) 2 (2120) 3 (2160) 4 (2200) 5 (2240) 6 (2280) 7 (2320) 8 (2360)</td>
</tr>
<tr>
<td>20</td>
<td>1 (2400) 2 (2440) 3 (2480) 4 (2520) 5 (2560) 6 (2600) 7 (2640) 8 (2680)</td>
</tr>
<tr>
<td>21</td>
<td>1 (2720) 2 (2760) 3 (2800) 4 (2840) 5 (2880) 6 (2920) 7 (2960) 8 (3000)</td>
</tr>
<tr>
<td>22</td>
<td>1 (3040) 2 (3080) 3 (3120) 4 (3160) 5 (3200) 6 (3240) 7 (3280) 8 (3320)</td>
</tr>
<tr>
<td>23</td>
<td>1 (3360) 2 (3400) 3 (3440) 4 (3480) 5 (3520) 6 (3560) 7 (3600) 8 (3640)</td>
</tr>
</tbody>
</table>
TECHNICAL SKILLS ASSESSMENT DATASHEET

PLAYER NAME AND SURNAME ______________________________
DATE _______________________

<table>
<thead>
<tr>
<th>TEST COMPONENT</th>
<th>LOUGHBOROUGH SOCCER PASSING TEST (LSPT) PRE- RAST TEST</th>
<th>PASS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TIME (SEC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PASSING TIME</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL PENALTY TIME</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL TIME</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEST COMPONENT</th>
<th>LOUGHBOROUGH SOCCER PASSING TEST (LSPT) POST- RAST TEST</th>
<th>PASS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TIME (SEC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PASSING TIME</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL PENALTY TIME</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL TIME</td>
<td></td>
</tr>
</tbody>
</table>

P = Perfect score (-1 sec)
T = Target (hitting coloured target area)
MT = Miss target (0.6 x 0.3 m) area (3 sec)
MB = Missing bench completely/ passing to wrong bench (5 sec)
H = Handling the ball (3 sec)
O = Passing from outside of designated area (2 sec)
C = Ball touching any cone (2 sec)
Every second taken over the allocated 43 sec to complete the test (1 sec)
PLAYER NAME & SURNAME _______________________________
DATE ____________________

<table>
<thead>
<tr>
<th>TEST COMPONENT</th>
<th>TIME (SEC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASS</td>
<td></td>
</tr>
<tr>
<td>LOUGHBOROUGH SOCCER PASSING TEST (LSPT) PRE-YO-YO TEST</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEST COMPONENT</th>
<th>TIME (SEC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASS</td>
<td></td>
</tr>
<tr>
<td>LOUGHBOROUGH SOCCER PASSING TEST (LSPT) POST-YO-YO TEST</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

P = Perfect score (-1 sec)
T = Target (hitting coloured target area)
MT = Miss target (0.6 x 0.3 m) area (3 sec)
MB = Missing bench completely/passing to wrong bench (5 sec)
H = Handling the ball (3 sec)
O = Passing from outside of designated area (2 sec)
C = Ball touching any cone (2 sec)

Every second taken over the allocated 43 sec to complete the test (1 sec)
Women in Sport and Physical Activity Journal

About WSPAJ

Women in Sport and Physical Activity Journal (WSPAJ) is a peer-reviewed scholarly journal devoted to advancing the understanding of women in sport and physical activity. WSPAJ is the official journal of the Program for the Advancement of Girls and Women in Sport and Physical Activity, housed in the Center for Women's Health and Wellness at the University of North Carolina at Greensboro (learn more here). This established journal publishes articles related to women’s sport and physical activity across the full range of disciplinary perspectives. WSPAJ aims to facilitate opportunities for girls and women to enjoy and benefit from sports and other physical activities.

WSPAJ presents a body of knowledge readily and conveniently. Original research using varied methodologies as well as theoretical papers, reviews, practical articles, and commentaries will be considered for publication. In addition, WSPAJ provides a forum for sharing information and encourages scholars to address issues pertinent to the concerns of women in the sport and physical activity community. The journal also strives toward an international voice, identifying common concerns of women in all countries and working to better communicate among the multicultural women of the world.

WSPAJ is available in a digital format, providing online subscribers with the same authoritative content of the print edition but with additional advantages, including the ability to search entire issues in seconds and access to all back issues. The content of the online version of WSPAJ is available weeks before the print version arrives by mail, and subscribers can receive the table of contents of each issue by e-mail when a new issue has been published. The online format also allows the submission and use of digital media to better communicate ideas and information.

Mission

Women in Sport and Physical Activity Journal, a peer-reviewed journal, provides a forum for scholarship advancing our understanding of women in sport and physical activity. Published biannually, the journal consists of original research using varied methodologies as well as theoretical papers, reviews, practical articles, and commentaries related to women’s sport and physical activity.
Authorship Guidelines
The Journals Division at Human Kinetics adheres to the criteria for authorship as outlined by the International Committee of Medical Journal Editors*:

Each author should have participated sufficiently in the work to take public responsibility for the content. Authorship credit should be based only on substantial contributions to:

a. Conception and design, or analysis and interpretation of data; and
b. Drafting the article or revising it critically for important intellectual content; and
c. Final approval of the version to be published.

Conditions a, b, and c must all be met. Individuals who do not meet the above criteria may be listed in the acknowledgments section of the manuscript.

Open Access
Human Kinetics is pleased to allow our authors the option of having their articles published Open Access within WSPAJ. In order for an article to be published Open Access, authors must complete and return the Request for Open Access form and provide payment for this option. To request Open Access, click here.

Manuscript Guidelines
Women in Sport and Physical Activity Journal (WSPAJ) is a peer-reviewed, scholarly journal devoted to advancing our understanding of women in sport and physical activity. WSPAJ publishes scholarly articles related to women’s sport and physical activity across the full range of disciplinary perspectives. Original research using varied methodologies as well as theoretical papers, reviews, practical articles, and commentaries will be considered for publication.

Style and Format
In preparing manuscripts for publication in WSPAJ, authors should carefully adhere to the guidelines in the Publication Manual of the American Psychological Association (6th ed., 2010). All articles must be preceded by an abstract of no more than 250 words. Special attention should be given to the preparation and accuracy of references, and to the absence of sexist and biased language. The manuscript should be double-spaced, including the abstract, references,
Annexure E: Instructions for authors

and any block quotations. Normally, papers should not exceed a total of 25 pages, including references, tables, and figures.

Manuscripts must not have been published elsewhere or be simultaneously submitted to another journal. The manuscript order should be as follows: (1) blind title page, (2) abstract, (3) manuscript text, (4) references, and (5) tables and figures. For studies involving human participants, the author(s) must include a statement that the research was approved by the appropriate institutional review board and informed consent was obtained.

Artwork and Tables

All artwork must be professionally prepared, with clean, crisp lines. Graphics created on standard computer programs (and submitted in .tif or .jpg formats) will be accepted; freehand or typewritten lettering will not be accepted. If photos are used, they should be clear and show good contrast. Each figure and photo must be properly identified. In graphs, use black and white or gray shading only, no color. Keep labels proportionate with the size of the figures on the journal page. Digital images should be 300 dpi at full size for photos and 600 dpi for line art. Format tables in the table function of your word-processing program rather than aligning columns in text with tabs and spaces or using text boxes.

Videos

Video clips may be submitted to illustrate your manuscript. Upon submission, each digital video file should be designated and uploaded as a “supplementary file.” You also should indicate in the cover letter accompanying your submission that you have submitted a video file. Digital material from a source not original to you as the author must be accompanied by a statement from the copyright holder giving the author permission to publish it; the source and copyright holder must be credited in the manuscript.

Video should be submitted in MPEG-4 (.mp4), Quicktime (.m4v, .mov), or Windows Media (.wmv) format with standard frame sizes of 1920 x 1080 pixels (for high definition) or 720 x 480 pixels (for standard definition) and a frame rate of 30 frames per second. Human Kinetics will inspect all video submissions for quality and technical specifications, and we reserve the right to reject any video submission that does not meet quality standards and specifications.

Review

Please note that a blind review process is used to evaluate manuscripts. As such, any clues to the author’s identity should be eliminated from the manuscript. The first page of the manuscript
must not include author names or affiliations, but it should include the title of the paper and the date of submission. Submissions that do not adhere to these guidelines may be returned to authors.

Manuscripts are read by two reviewers, with the review process taking 8–12 weeks. There are no page charges to contributors.

Please direct all correspondence concerning the journal and manuscript submissions to the WSPAJ editorial office: christinaj@hkusa.com.

Submitting a Manuscript
Manuscripts should be submitted electronically via ScholarOne (see submission button at the top of this page). ScholarOne manages the electronic transfer of manuscripts throughout the article review process while providing step-by-step instructions and a user-friendly design. Please access the site and follow the directions for authors submitting manuscripts.

Authors of manuscripts accepted for publication must transfer copyright to Human Kinetics, Inc. Please visit ScholarOne to view the copyright form located under the "Instructions & Forms" link in the upper-right corner. You do not need an account to access this information. Any problems that may be encountered can be resolved easily by selecting "Help" in the upper-right corner of any ScholarOne screen.
Annexure E: Instructions for authors

Journal of Sports Science and Medicine (JSSM) is a nonprofit scientific electronic journal publishing research and case studies, and review articles in the fields of sports medicine and exercise sciences. JSSM is an open access journal which means that all content is freely available without charge to the user or their institution. Users are allowed to read, download, copy, print, search, or link to the full text of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. JSSM is published quarterly in March, June, September and December. JSSM also publishes editorials, letter to editors, abstracts of congress, panel, conference and symposium, and can function as an open discussions forum on significant issues in the sports medicine and exercise sciences. Articles written in English should be sent to JSSM. The journal content can be presented not only in print (pdf format) but also through the use of video, audio and interactive software since it is being published as an electronic journal. Authors, therefore, are encouraged to submit articles that use all appropriate media. JSSM does not accept descriptive studies or data reports.

MISSION

JSSM is an electronic journal aims to present easy access to the scientific knowledge for sport-conscious individuals using contemporary methods. The purpose is to minimize the problems like the delay in publishing process of the articles or to acquire previous issue by drawing advantage from electronic medium. In this context, forming a discussion channel among the researchers will present a further opportunity to address any question or problem immediately. JSSM would also facilitate to display non-conventional materials like video clips, animations, colour photographs, etc.

SUBMISSION REQUIREMENTS

Manuscripts that do not comply with the following requirements and directions for process, style, and format will not enter the peer-review process.

INSTRUCTIONS TO AUTHORS

Research and review articles, case and brief reports, letter to editors should be submitted to JSSM in the field of sports injuries, exercise physiology, sports rehabilitation, disease and exercise, sports traumatology, sports psychology, sports biomechanics, and kinesiology, sports education. The articles are to be submitted electronically to Editors-in-Chief. Editors may make necessary changes to articles in accordance with “Instructions to Authors”. There is no page or reference limitations for the manuscript. All files related to manuscripts should be submitted electronically. Internet transmission and e-mail attachments are preferred. Text files should be in Microsoft Word 6.0 and later versions. Each figure, table, photograph, or other image should be submitted electronically. The manuscripts should be submitted in Times New Roman font, 12 point type, double-spaced with 3 cm margins on all sides. The reference style used by the Journal is the Harvard System of referencing. All files related to manuscripts should be submitted electronically.

ETHICAL / LEGAL CONSIDERATIONS

Manuscripts are considered if they are submitted only to JSSM and therefore should not be under consideration for publication elsewhere, either in part or in whole, in any language, without the consent of JSSM. Authors are responsible for the scientific content and legal aspects of the article. Each author also accepts that JSSM will not be held legally responsible for any claims of compensation.

Authors wishing to include figures or text passages that have already been published elsewhere are required to obtain permission from the copyright holder(s) and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors.

Please include at the end of the acknowledgments, a declaration that the experiments comply with the current laws of the country in which they were performed. The editor reserves the right to reject manuscripts that do not comply with the above mentioned requirements. The authors will be held responsible for false statements or failure to fulfill the above-mentioned requirements.

Research articles and case studies involving human and animal subjects must conform to the policy statement with respect to the Declaration of Helsinki. It is the author’s responsibility to ensure that a patient’s anonymity be carefully protected and to verify that any experimental investigation with human subjects reported in the manuscript was performed with informed consent and following all the guidelines for experimental investigation with human subjects required by the institution(s) with which all the authors are affiliated. Authors should accurately present open and remove patient names from figures unless they obtain written consent from the patients and submit written consent with the manuscript.

Conflicts of Interest

Authors must state all possible conflicts of interest, including financial, consultative, institutional and other relationships that might lead to bias or a conflict of interest. If there is no conflict of interest, this should also be explicitly stated as none declared. All sources of funding should be acknowledged in the Acknowledgement section.

COPYRIGHT TRANSFER AND DUAL SUBMISSIONS

The JSSM must receive in writing the exclusive assignment of Copyright Transfer Statement from all authors at the time of manuscript submission. Manuscripts will not enter the peer-review process until the Copyright Transfer Statement assignment form is completed and sent to the Editorial Office. Manuscripts are considered for publication on the condition that they are contributed solely to this Journal and, therefore, have not been and will not be published elsewhere, in part or in whole. Manuscripts containing data that have been posted to the Internet for public access will not be considered for publication.

PUBLISHING MODEL AND AUTHORS FEES

30% of all fees collected will be reserved for the submission and peer-review process. All content are available free of charge without restrictions from the journal's Website at http://www.jssm.org. The submission and peer-review of manuscripts are free of charge. Authors are not required to pay USD$ 1000 or EuroE 1500 or GBP£ 1375 per article as an article fee. Hereby, the authors state that the copyright equally with JSSM and have the right to publish their articles in their University/Institute repository or in their personal websites, can use their articles totally or partially in their theses, lectures, lecture notes, test books, can distribute their articles to third party without the permission of JSSM. This fee is requested after positive evaluation of a manuscript. The reviewer as a submitted author of the article has a 10% discount. Only bank transfers are accepted.

AUTHOR WITHDRAWAL POLICY

An author is free to withdraw an article at no charge as long as it is withdrawn within a week of its original submission. After a week, there is a withdrawal fee. Once peer review is completed and/or the paper is accepted for publication, there are some costs of the process, which is about 40% of the publishing fee. This cost is used for the publishing fee bonus of JSSM’s reviewers. Therefore, the withdrawal fee is 40% of the publishing fee. For detail, you can contact with the editors-in-chief.

REVIEW AND PUBLISHING POLICY

It is understood that all authors listed on a manuscript have agreed to its submission. The signature of the corresponding author on the letter of submission signifies that all conditions declined by JSSM web page have been fulfilled and accepted. Each submission should include the Copyright Transfer Statement signed by all authors.

JSSM use double blind review process. Upon receipt of a manuscript the editor will notify the corresponding author that the submission has been received. Received manuscripts are first examined by the JSSM editors and check for plagiarism by using a commercial software program. Manuscripts with insufficient priority for publication and absence of plagiarism are rejected promptly. Manuscripts not prepared in the advised style will be sent back to authors without scientific review. We encourage authors to suggest the names of potential reviewers, but we reserve the right of final selection. The manuscript will undergo a double blinded review process. Under this process the edit will forward the manuscript to two independent reviewers. Normally the review process will take approximately 4 weeks. After the review process has been completed the main author will be notified via e-mail either of acceptance, revision or rejection of the manuscript. If the main author has not been informed of the result of the review process after 8 weeks from the date of submission of the manuscript (by the editor), the author should notify the editor-in-chief directly. If revision was recommended, that should be completed and returned to the editor within 4 weeks, failure to return the revised manuscript within the allotted time will lead to rejection of the manuscript. When a manuscript has been accepted for publication it will be forwarded to the editor-in-chief for final approval. The editor-in-chief will work with the main author to make necessary revisions in order for the manuscript to appear in

http://www.jssm.org

206
Annexure E: Instructions for authors

© 2018 I Sports Sci & Med

http://www.jsssm.org

the journal of Sports Science and Medicine. The final proof of the manuscript will be sent to the main author as an E-mail attachment. If the main author requires any minor changes to the finished work, these should be submitted electronically to the editor-in-chief within one week.

The authors of manuscripts accepted for publication must transfer authors’ fee to the bank account of the publisher. Failure to payment will result in the manuscript not being accepted for publication. Manuscript accepted in the first quarter of the year will be published not later than the third quarter of the year.

PERMISSIONS

Materials taken from other sources must be accompanied by a written statement from both author and publisher giving permission to the Journal for reproduction. Obtain permission in writing from at least one author of papers still in press, unpublished data, and personal communications.

PREPARATION OF MANUSCRIPT

RESEARCH ARTICLE

Include the following sections in research articles without page space:

TITLE

CAPITAL LETTERS.

AUTHORS: Surname followed by initials and institution(s) where the study was conducted.

ABSTRACT: Maximum 50 words.

KEYWORDS: Use this to index the journal, list up to 6 key words (not from title), which your article could be indexed. If possible, use terms from the latest Medical Subject Headings (MeSH) at (http://www.nlm.nih.gov/mesh/).

METHODS

RESULTS

DISCUSSION

CONCLUSION

ACKNOWLEDGMENTS: Provide information sufficient to identify sources of support, technical assistance, and intellectual contributions not associated with authorship.

REFERENCES: Each citation in the text must be numbered and year and must appear in the reference section as an alphabetized order. For example for citation in the text: a) for single author (Giu, 1999); b) for two authors (Giu and Akova, 2001); c) more than two authors (Giu et al., 2000).

Journal article.

Journal article, article not in English.

Journal article in press:

Journal article in electronic format:

Abstract:

Book:

Chapter in edited book:

These not in English:

Units of Measurement:

Measurements of length, height, weight, and volume should be reported in metric units (meter, kilogram, or liter) or their decimal multiples. Temperatures should be given in degrees Celsius. Blood pressures should be given in millimeters of mercury. All hematochemical and clinical chemistry measurements should be reported in the metric system in terms of the International System of Units (SI). Alternative or non-SI units should be added in parentheses.

Abbreviations and Symbols:

Use only standard abbreviations. Avoid abbreviations in the title and abstract. The full term for which an abbreviation stands should precede its first use in the text unless it is a standard unit of measurement.

LEGENDS

AUTHOR BIOGRAPHY: Please include a brief biography, approximately 50 words per author, for each author including (1) academic title (degrees), (2) research affiliation, (3) research focus, (4) post email addresses and (5) photograph if JPEG format.

TABLES, FIGURES, VIDEO, ANIMATION ETC.: The location within the article where e.g., figures and tables appear should be indicated in the text. These materials (e.g. table, figure) should be submitted separately from the text document. Each item should be produced in Microsoft Office (Word, Excel, or PowerPoint), GIF or TIFF format. Electronically produced drawings, graphs, photographs, microphotographs, animation and video are all acceptable. Limit all text files to 700 kilobytes of memory and use 96 dpi resolution or consult with the editor-in-chief. Please have original photos or negatives available to submit on request of the editor-in-chief. Clearly identify digitally enhanced images as such and describe the method of enhancement. Include internal scale markers where appropriate. The author is responsible for ensuring that persons pictured in photographs have provided informed consent for the use of their picture. Please include the photographer’s name with each photograph so that he or she can be properly acknowledged. Submit each item separately and number sequentially as (main author) Figure 1.jpg, (main author) Figure2.jpg, and so on, for example, Gu1.jpg, Gu1.doc, and GuVideo.avi. Video clips should be less than 8 seconds in length, segments of greater length should be broken into a series of shorter clips. Make sure that each video clip is referred to within the body of the manuscript, together with an appropriate description of it.

TABLE

Tables capture information concisely, and display it efficiently; they also provide information at any desired level of detail and preciseness. Including data in tables rather than text frequently makes it possible to reduce the length of the text.

Type each table with double spacing on a separate sheet of paper. Number tables consecutively in the order of their first citation in the text and supply a brief title for each. Do not use internal horizontal or vertical lines. Give each column a short or abbreviated heading. Authors should place explanatory matter in footnotes, not in the heading. Explain in footnotes all nonstandard abbreviations. For decisions use the following symbols; in sequence:

*, **, ***

Identify statistical measures of variation, such as standard deviation and standard error of the mean and give the variations in parenthesis.

Be sure that each table is cited in the text.

If you use data from another published or unpublished source, obtain permission and acknowledge them fully.

REVIEWS ARTICLES

The JSSM accept only systematic reviews or meta-analysis. Include the following sections in reviews articles without page space:

TITLE

CAPITAL LETTERS.

AUTHORS: Surname followed by initials and institution(s) where the study was conducted.

ABSTRACT: Include an abstract of not more than 300 words.
Annexure E: Instructions for authors

http://www.jssm.org

KEY WORDS: To assist in indexing the journal, list up to 6 key words (not from title), which your article could be indexed. If possible, use terms from the Index Medicus medical subjects headings (MeSH) (http://www.nlm.nih.gov/mesh).

MAIN TEXT
The systematic review methodology, the protocol used for identifying studies for inclusion into the review and for assessing the quality of the studies must be given.

CONCLUSION
ACKNOWLEDGMENT
REFERENCES: Each citation in the text must be noted by surname and year in parentheses and must appear in the reference section as an alphabetic order. Example for citation in the text: a) for single author (Gür, 1999); b) for two authors (Gür and Akova, 2001); c) more than two authors (Gür et al., 2000). See the reference section of research article for detail.

LEGENDS
AUTHOR BIOGRAPHY: For detail see the author biography section of research article.

TABLES, FIGURES, VIDEO, ANIMATION ETC.: For details see the tables, figures, video, animation section of research article.

CASE REPORT
Authors are encouraged to submit manuscripts describing specific clinical cases that provide relevant information on diagnosis and therapy of a particular case that proves unique to clinical sports medicine. Manuscripts should contain the following without page space:

TITLE: Capital letters

AUTHORS: Surname followed by initials and institution(s) where the study was conducted.

RUNNING HEAD: Maximum 5 words

ABSTRACT: Include an abstract of not more than 200 words

KEY WORDS: To assist in indexing the journal, list up to 6 key words (not from title), which your article could be indexed. If possible, use terms from the Index Medicus medical subjects headings (MeSH) (http://www.nlm.nih.gov/mesh).

INTRODUCTION
CASE REPORT. A brief case report including history, physical examination and laboratory findings followed by treatment and outcome.

DISCUSSION
CONCLUSION
ACKNOWLEDGMENT
REFERENCES: Each citation in the text must be noted by surname and year in parentheses and must appear in the reference section as an alphabetic order. Example for citation in the text: a) for single author (Gür, 1999); b) for two authors (Gür and Akova, 2001); c) more than two authors (Gür et al., 2000). See the reference section of research article for detail.

LEGENDS
AUTHOR BIOGRAPHY: For detail see the author biography section of research article.

TABLES, FIGURES, VIDEO, ANIMATION ETC.: For details see the tables, figures, video, animation section of research article.

LETTER TO THE EDITOR
Letters addressed to the editor-in-chief will be considered for publication. Letters contain an informative title and follow the submission requirements for manuscripts. Letters should be limited to 2-3 pages, 5-8 references and a maximum of 2 tables or figures (or 1 table and 1 figure). Letters should contain the following without page space:

TITLE: Capital letter.

TEXT
REFERENCES
AUTHORS: Surname and initials together with telephone number, facsimile number and full postal and E-mail address.

TABLE, FIGURE, VIDEO ETC.: For detail see the tables, figures, video, and animation section of research article.

CONFERENCE, SYMPOSIUM, PANEL PROCEEDINGS AND SUMMARIES
Organizers of future conferences, symposia and panel proceedings in sports medicine or the exercise sciences are encouraged to contact the editor-in-chief regarding publication. National or international conferences, symposia and panel proceedings should include the overall title, start and finish dates, location, subject areas and main speakers.

SUMMARIES/REPORTS ON CONFERENCES, SYMPOSIUM, PANEL PROCEEDINGS

Individuals attending international conferences are invited to provide members with a brief summary about keynote speeches. A summary on a particular topic should be a maximum of one page. The person submitting the summary should give their surname, initials and their institution (e.g. summarized by Halcan Gür, Department of Sports Medicine, Medical Faculty of Uludag University, Bursa-TUR. E-mail: halcan@uludag.edu.tr).

Checklist for Authors’ Submission

Double-space manuscript text and use 3cm margins on all sides, and Times New Roman, 12-point type, American English, and SI units.

Include with text a title and heading title, abstract, key words, figure and table lists, figure and table legends.

Submit all materials electronically in separate files.

Include complete author names, addresses, e-mail, phone and fax numbers.

Include informed consent for identifiable patients and video or other subjects.

Include a short (~50 words) author biography for each author with photograph (optional) produced in JPEG format.

Suggest three potential reviewers’ names and addresses including e-mail.

Provide a box with 3.5 bullet points listing the key points of the paper.

Letter of permission to reprint figures or tables or text (if applicable)

Accompany the “Copyright Transfer Statement”

Manuscripts are to be submitted electronically to Editor-in-chief:

Halcan Gür, MD, PhD
Editor-in-chief
Journal of Sports Science and Medicine
Department of Sports Medicine
Medical Faculty of Uludag University
16059 Bursa
Turkey
Tel: +90 (224) 295 13 00
Fax: +90 (224) 442 87 27
E-mail: halcan@uludag.edu.tr or halcan.gur2001@gmail.com
http://www.jssm.org

- Authors submitting manuscripts for review shall also submit Copyright Transfer Statement
- Authors submitting manuscripts for review shall also submit Checklist for Authors’ Submission given above.
- Hard-copy or printed submissions will not be accepted by the Editorial Office and will be discarded.

Publisher and Publication office:
Halcan Gür, MD, PhD
Editor-in-chief
Journal of Sports Science and Medicine
Department of Sports Medicine
Medical Faculty of Uludag University
16059 Bursa
Turkey
Tel: +90 (224) 295 13 00
Fax: +90 (224) 442 87 27
E-mail: halcan@uludag.edu.tr or halcan.gur2001@gmail.com

208
Journal of Strength and Conditioning Research

About the Journal
The editorial mission of *The Journal of Strength and Conditioning Research* (JSCR) is to advance the knowledge about strength and conditioning through research. A unique aspect of this journal is that it includes recommendations for the practical use of research findings. While the journal name identifies strength and conditioning as separate entities, strength is considered a part of conditioning. This journal wishes to promote the publication of peer-reviewed manuscripts which add to our understanding of conditioning and sport through applied exercise science.

Online Submission and Review System
The Journal of Strength and Conditioning Research (JSCR) is the official research journal of the National Strength and Conditioning Association (NSCA). The JSCR is published monthly. Membership in the NSCA is not a requirement for publication in the journal. JSCR publishes original investigations, reviews, symposia, research notes, and technical and methodological reports contributing to the knowledge about strength and conditioning in sport and exercise. All manuscripts must be original works and present practical applications to the strength and conditioning professional or provide the basis for further applied research in the area. Manuscripts are subjected to a “double blind” peer review by at least two reviewers who are experts in the field. All editorial decisions are final and will be based on the quality, clarity, style, and importance of the submission relative to the goals and objectives of the NSCA and the journal. Tips for writing a manuscript for the JSCR can be found at http://edmgr.ovid.com/jscr/accounts/Tips_for_Writing.pdf. Please read this document carefully prior to preparation of a manuscript. Manuscripts can be rejected on impact alone as it relates to how the findings impact evidence based practice for strength and conditioning professionals, end users, and clinicians. Thus, it is important authors realize this when submitting manuscripts to the journal.

JSCR senior associate editors will administratively REJECT a paper before review if it is deemed to have very low impact on practice, poor experimental design, improperly formatted, and/or poorly written. Additionally, upon any revision the manuscript can be REJECTED if experimental issues and impact are not adequately addressed to reviewer satisfaction. The formatting of the manuscript is of great importance and manuscripts will be rejected if not PROPERLY formatted.
EDITORIAL MISSION STATEMENT

The editorial mission of the JSCR, formerly the Journal of Applied Sport Science Research (JASSR), is to advance the knowledge about strength and conditioning through research. Since 1978 the NSCA has attempted to “bridge the gap” from the scientific laboratory to the field practitioner. A unique aspect of this journal is the inclusion of recommendations for the practical use of research findings. While the journal name identifies strength and conditioning as separate entities, strength is considered a part of conditioning. This journal wishes to promote the publication of peer-reviewed manuscripts that add to our understanding of conditioning and sport through applied exercise and sport science. The conditioning process and proper exercise prescription impact a wide range of populations from children to older adults, from youth sport to professional athletes. Understanding the conditioning process and how other practices such as such as nutrition, technology, exercise techniques, and biomechanics support it is important for the practitioner to know.

Original Research

JSCR publishes research on the effects of training programs on physical performance and function to the underlying biological basis for exercise performance as well as research from a number of disciplines attempting to gain insights about sport, sport demands, sport profiles, conditioning, and exercise such as biomechanics, exercise physiology, motor learning, nutrition, and psychology. A primary goal of JSCR is to provide an improved scientific basis for conditioning practices.

Article Types

JSCR publishes symposia, brief reviews, technical reports and research notes that are related to the journal's mission. A symposium is a group of articles by different authors that address an issue from various perspectives. The brief reviews should provide a critical examination of the literature and integrate the results of previous research in an attempt to educate the reader as to the basic and applied aspects of the topic. We are especially interested in applied aspects of the reviewed literature. In addition, the author(s) should have experience and research background in the topic area they are writing about in order to claim expertise in this area of study and give credibility to their recommendations.

The JSCR strongly encourages the submission of manuscripts detailing methodologies that help to advance the study of strength and conditioning.
Manuscript Clarifications

Manuscript Clarifications will be considered and will only be published online if accepted. Not all requests for manuscript clarifications will be published due to costs or content importance. Each will be reviewed by a specific sub-committee of Associate Editors to determine if it merits publication. A written review with needed revisions will be provided if it merits consideration. Clarifications questions are limited to 400 words and should only pose professional questions to the authors and not editorial comments (as of 19.2). If accepted, a copy will be sent to the author of the original article with an invitation to submit answers to the questions in the same manner again with a 400 word limit.

Submissions should be sent to the JSCR Editorial Office via email:

Editorial Office
kraemer.45@osu.edu

MANUSCRIPT SUBMISSION GUIDELINES

Manuscripts should be submitted online at http://www.editorialmanager.com/JSCR following the instructions below.

1. A cover letter must accompany the manuscript and state the following: “This manuscript is original and not previously published, nor is it being considered elsewhere until a decision is made as to its acceptability by the JSCR Editorial Review Board.” Please include the corresponding author’s full contact information, including address, email, and phone number.

2. All authors should be aware of the publication and be able to defend the paper and its findings and should have signed off on the final version that is submitted. For additional details related to authorship, see “Uniform Requirements for Manuscripts Submitted to Biomedical Journals” at http://www.icmje.org/.

3. The NSCA and the Editorial Board of the JSCR have endorsed the American College of Sports Medicine’s policies with regards to animal and human experimentation. Their guidelines can be found online at http://www.editorialmanager.com/msse/. Please read these policies carefully. Each manuscript must show that they have had Institutional Board approval for their research and appropriate consent has been obtained pursuant to law. All manuscripts must have this clearly stated in the methods section of the paper or the manuscript will not be considered for publication.

4. All manuscripts must be double-spaced with an additional space between paragraphs. The paper should include a minimum of 1-inch margins and page numbers in the upper right corner next to the running head. Authors must use terminology based upon the International System of Units (SI). A full list of SI units can be accessed online at http://physics.nist.gov/.
5. The JSCR endorses the same policies as the American College of Sports Medicine in that the language is English for the publication. “Authors who speak English as a second language are encouraged to seek the assistance of a colleague experienced in writing for English language journals. Authors are encouraged to use nonsexist language as defined in the American Psychologist 30:682-684, 1975, and to be sensitive to the semantic description of persons with chronic diseases and disabilities, as outlined in an editorial in Medicine & Science in Sports & Exercise, 23(11), 1991. As a general rule, only standardised abbreviations and symbols should be used. If unfamiliar abbreviations are employed, they should be defined when they first appear in the text. Authors should follow Webster's Tenth Collegiate Dictionary for spelling, compounding, and division of words. Trademark names should be capitalized and the spelling verified. Chemical or generic names should precede the trade name or abbreviation of a drug the first time it is used in the text.”

6. There is no word limitation but authors are instructed to be concise and accurate in their presentation and length will be evaluated by the Editor and reviewers for appropriateness.

Please Note
- Make sure you have put in your text under the “Subjects” section in the METHODS that your study was approved by an Institutional Review Board (IRB) or Ethics Board and that your subjects were informed of the benefits and risks of the investigation prior to signing an institutionally approved informed consent document to participate in the study. Additionally, if you include anyone who is under the age of 18 years of age, it should also be noted that parental or guardian signed consent was also obtained. Please give the age range if your mean and SD suggest the subjects may have been under the age of 18 years.
- Make SURE you have all your tables and figures attached and noted in the text of paper as well as below a paragraph of where it should be placed.
- Very IMPORTANT---Table files must be MADE in Word NOT copied into Word.

MANUSCRIPT PREPARATION
1. Title Page
The title page should include the manuscript title, brief running head, laboratory(s) where the research was conducted, authors’ full name(s) spelled out with middle initials, department(s), institution(s), full mailing address of corresponding author including telephone and fax numbers, and email address, and disclosure of funding received for this work from any of the following organizations: National Institutes of Health (NIH); Wellcome Trust; Howard Hughes Medical Institute (HHMI); and other(s).
2. Blind Title Page
A second title page should be included that contains only the manuscript title. This will be used to send to the reviewers in our double blind process of review. Do not place identifying information in the Acknowledgement portion of the paper or anywhere else in the manuscript.

3. Abstract and Key Words
On a separate sheet of paper, the manuscript must have an abstract with a limit of 250 words followed by 3 – 6 key words not used in the title. The abstract should have sentences (no headings) related to the purpose of the study, brief methods, results, conclusions and practical applications.

4. Text
The text must contain the following sections with titles in ALL CAPS in this exact order:
A. Introduction. This section is a careful development of the hypotheses of the study leading to the purpose of the investigation. In most cases use no subheadings in this section and try to limit it to 4 – 6 concisely written paragraphs.

B. Methods. Within the METHODS section, the following subheadings are required in the following order: “Experimental Approach to the Problem,” where the author(s) show how their study design will be able to test the hypotheses developed in the introduction and give some basic rationales for the choices made for the independent and dependent variables used in the study; “Subjects,” where the authors include the Institutional Review Board or Ethics Committee approval of their project and appropriate informed consent has been gained. All subject characteristics that are not dependent variables of the study should be included in this section and not in the RESULTS; “Procedures,” in this section the methods used are presented with the concept of “replication of the study” kept in mind. “Statistical Analyses,” here is where you clearly state your statistical approach to the analysis of the data set(s). It is important that you include your alpha level for significance (e.g., P # 0.05). Please place your statistical power in the manuscript for the n size used and reliability of the dependent measures with intra-class correlations (ICC Rs). Additional subheadings can be used but should be limited.

C. Results. Present the results of your study in this section. Put the most important findings in Figure or Table format and less important findings in the text. Do not include data that is not part of the experimental design or that has been published before.
D. Discussion. Discuss the meaning of the results of your study in this section. Relate them to the literature that currently exists and make sure you bring the paper to completion with each of your hypotheses. Limit obvious statements like, “more research is needed.”

E. Practical Applications. In this section, tell the “coach” or practitioner how your data can be applied and used. It is the distinctive characteristic of the JSCR and supports the mission of “Bridging the Gap” for the NSCA between the laboratory and the field practitioner.

5. References
All references must be alphabetized by surname of first author and numbered. References are cited in the text by numbers [e.g., (4,9)]. All references listed must be cited in the manuscript and referred to by number therein. For original investigations, please limit the number of references to fewer than 45 or explain why more are necessary. The Editorial Office reserves the right to ask authors to reduce the number of references in the manuscript. Please check references carefully for accuracy. Changes to references at the proof stage, especially changes affecting the numerical order in which they appear, will result in author revision fees. End Note Users: The Journal of Strength & Conditioning Research reference style, http://endnote.com/downloads/style/journal-strength-conditioning-research may be downloaded for use in the End Note application: http://endnote.com/downloads/style/journal-strength-conditioning-research.

Below are several examples of references:
Journal Article

Book

Chapter in an edited book

Software
Howard, A. Moments ½software_. University of Queensland, 1992.
Proceedings
Viru, A, Viru, M, Harris, R, Oopik, V, Nurmeelvi, A, Medijainen, L, and Timpmann, S.

Dissertation/Thesis

6. Acknowledgments
In this section you can place the information related to identification of funding sources; current contact information of corresponding author; and gratitude to other people involved with the conduct of the experiment. In this part of the paper the conflict of interest information must be included. In particular, authors should: 1) Disclose professional relationships with companies or manufacturers who will benefit from the results of the present study, 2) Cite the specific grant support for the study and 3) State that the results of the present study do not constitute endorsement of the product by the authors or the NSCA. Failure to disclose such information could result in the rejection of the submitted manuscript.

7. Figures
Figure legends should appear on a separate page, with each figure appearing on its own separate page. One set of figures should accompany each manuscript. Use only clearly delineated symbols and bars. Please do not mask the facial features of subjects in figures. Permission of the subject to use his/her likeness in the Journal should be included in each submission.

Electronic photographs copied and pasted into Word and PowerPoint will not be accepted. Images should be scanned at a minimum of 300 pixels per inch (ppi). Line art should be scanned at 1200 ppi. Please indicate the file format of the graphics. We accept TIFF or EPS format for both Macintosh and PC platforms. We also accept image files in the following Native Application File Formats:
- Adobe Photoshop (.psd)
- Illustrator (.ai)
If you will be using a digital camera to capture images for print production, you must use the highest resolution setting option with the least amount of compression. Digital camera manufacturers use many different terms and file formats when capturing high-resolution images, so please refer to your camera’s manual for more information.

Placement: Make sure that you have cited each figure and table in the text of the manuscript. Also show where it is to be place by noting this between paragraphs, such as Figure 1 about here or Table 1 about here.

Color figures: The journal accepts color figures for publication that will enhance an article. Authors who submit color figures will receive an estimate of the cost for color reproduction in print. If they decide not to pay for color reproduction in print, they can request that the figures be converted to black and white at no charge. All color figures can appear in color in the online version of the journal at no charge (Note: this includes the online version on the journal website and Ovid, but not the iPad edition currently)

8. Tables
Tables must be double-spaced on separate sheets and include a brief title. Provide generous spacing within tables and use as few line rules as possible. When tables are necessary, the information should not duplicate data in the text. All figures and tables must include standard deviations or standard errors.

9. Supplemental Digital Content (SDC)
Authors may submit SDC via Editorial Manager to LWW journals that enhance their article’s text to be considered for online posting. SDC may include standard media such as text documents, graphs, audio, video, etc. On the Attach Files page of the submission process, please select Supplemental Audio, Video, or Data for your uploaded file as the Submission Item. If an article with SDC is accepted, our production staff will create a URL with the SDC file. The URL will be placed in the call-out within the article. SDC files are not copy-edited by LWW staff, they will be presented digitally as submitted. For a list of all available file types and detailed instructions, please visit http://links.lww.com/A142.

SDC Call-outs
Supplemental Digital Content must be cited consecutively in the text of the submitted
manuscript. Citations should include the type of material submitted (Audio, Figure, Table, etc.), be clearly labeled as “Supplemental Digital Content,” include the sequential list number, and provide a description of the supplemental content. All descriptive text should be included in the call-out as it will not appear elsewhere in the article.

Example:
We performed many tests on the degrees of flexibility in the elbow (see Video, Supplemental Digital Content 1, which demonstrates elbow flexibility) and found our results inconclusive.

List of Supplemental Digital Content
A listing of Supplemental Digital Content must be submitted at the end of the manuscript file. Include the SDC number and file type of the Supplemental Digital Content. This text will be removed by our production staff and not be published.

Example:
Supplemental Digital Content 1. wmv

SDC File Requirements
All acceptable file types are permissible up to 10 MBs. For audio or video files greater than 10 MBs, authors should first query the journal office for approval. For a list of all available file types and detailed instructions, please visit http://links.lww.com/A142.

Electronic Page Proofs and Corrections
Corresponding authors will receive electronic page proofs to check the copyedited and typeset article before publication. Portable document format (PDF) files of the typeset pages and support documents (e.g., reprint order form) will be sent to the corresponding author via e-mail. Complete instructions will be provided with the e-mail for downloading and marking the electronic page proofs. Corresponding author must provide an email address. The proof/correction process is done electronically.
It is the author's responsibility to ensure that there are no errors in the proofs. Authors who are not native English speakers are strongly encouraged to have their manuscript carefully edited by a native English-speaking colleague. Changes that have been made to conform to journal style will stand if they do not alter the authors' meaning. Only the most critical changes to the accuracy of the content will be made. Changes that are stylistic or are a reworking of previously accepted material will be disallowed. The publisher reserves the right to deny any changes that do not affect the accuracy of the content. Authors may be charged for alterations to the proofs beyond those required to correct errors or to answer queries. Electronic proofs must be checked
carefully and corrections returned within 24 to 48 hours of receipt, as requested in the cover letter accompanying the page proofs.

AUTHOR FEES
JSCR does not charge authors a manuscript submission fee or page charges. However, once a manuscript is accepted for publication and sent in for typesetting, it is expected to be in its final form.

OPEN ACCESS
Authors of accepted peer-reviewed articles have the choice to pay a fee to allow perpetual unrestricted online access to their published article to readers globally, immediately upon publication. Authors may take advantage of the open access option at the point of acceptance to ensure that this choice has no influence on the peer review and acceptance process. These articles are subject to the journal’s standard peer-review process and will be accepted or rejected based on their own merit.

The article processing charge (APC) is charged on acceptance of the article and should be paid within 30 days by the author, funding agency or institution. Payment must be processed for the article to be published open access. For a list of journals and pricing please visit our Wolters Kluwer Open Health Journals page. Please select the journal category Sports and Exercise Medicine.

Authors retain copyright
Authors retain their copyright for all articles they opt to publish open access. Authors grant Wolters Kluwer an exclusive license to publish the article and the article is made available under the terms of a Creative Commons user license. Please visit our Open Access Publication Process page for more information.

Creative Commons license
Open access articles are freely available to read, download and share from the time of publication under the terms of the Creative Commons License Attribution-Non Commercial No Derivative (CC BY-NC-ND) license. This license does not permit reuse for any commercial purposes nor does it cover the reuse or modification of individual elements of the work (such as figures, tables, etc.) in the creation of derivative works without specific permission.

Compliance with funder mandated open access policies
An author whose work is funded by an organization that mandates the use of the Creative
Commons Attribution (CC BY) license is able to meet that requirement through the available open access license for approved funders. Information about the approved funders can be found here: http://www.wkopenhealth.com/inst-fund.php

FAQ for open access
http://www.wkopenhealth.com/openaccessfaq.php

TERMINOLOGY AND UNITS OF MEASUREMENT
Per the JSCR Editorial Board and to promote consistency and clarity of communication among all scientific journals authors should use standard terms generally acceptable to the field of exercise science and sports science. Along with the American College of Sports Medicine’s Medicine and Science in Sport and Exercise, the JSCR Editorial Board endorses the use of the following terms and units.

The units of measurement shall be Systeme International d’Unité’s (SI). Permitted exceptions to SI are heart rate—beats per min; blood pressure—mm Hg; gas pressure—mm Hg. Authors should refer to the British Medical Journal (1:1334–1336, 1978) and the Annals of Internal Medicine (106: 114–129, 1987) for the proper method to express other units or abbreviations. When expressing units, please locate the multiplication symbol midway between lines to avoid confusion with periods; e.g., mL_min-1_kg-1.

The basic and derived units most commonly used in reporting research in this Journal include the following: mass—gram (g) or kilogram (kg); force—newton (N); distance—meter (m), kilometer (km); temperature—degree Celsius (_C); energy, heat, work—joule (J) or kilojoule (kJ); power—watt (W); torque—newton-meter (N_m); frequency—hertz (Hz); pressure—pascal (Pa); time—second (s), minute (min), hour (h); volume—liter (L), milliliter (mL); and amount of a particular substance—mole (mol), millimole (mmol). Please note that the correct way to express body mass of the subjects is in kg and not "weight (lbs)" or "weight (kg)."

Selected conversion factors:
- 1 N = 0.102 kg (force);
- 1 J = 1 N_m = 0.000239 kcal = 0.102 kg_m;
- 1 kJ = 1000 N_m = 0.239 kcal = 102 kg_m;
- 1 W = 1 J_s-1 = 6.118 kg_m_min-1.

When using nomenclature for muscle fiber types please use the following terms. Muscle fiber types can be identified using histochemical or gel electrophoresis methods of classification. Histochemical staining of the ATPases is used to separate fibers into type I (slow twitch), type
IIa (fast twitch) and type IIb (fast twitch) forms. The work of Smerdu et al. (AJP 267:C1723, 1994) indicates that type IIb fibers contain type IIx myosin heavy chain (gel electrophoresis fiber typing). For the sake of continuity and to decrease confusion on this point it is recommended that authors use IIx to designate what use to be called IIb fibers. Smerdu, V, Karsch-Mizrachi, I, Campione, M, Leinwand, L, and Schiaffino, S. Type IIx myosin heavy chain transcripts are expressed in type IIb fibers of human skeletal muscle. Am J Physiol 267 (6 Pt 1): C1723–1728, 1994.

Permissions:
For permission and/or rights to use content for which the copyright holder is the society or Wolters Kluwer/LWW, please go to the journal's website and after clicking on the relevant article, click on the "Request Permissions" link under the article. Alternatively, send an e-mail to customercare@copyright.com.
For Translation Rights & Licensing queries, please contact healthlicensing@wolterskluwer.com.

Reprints
Authors will receive an email notification with a link to the order form soon after their article publishes in the journal (https://shop.lww.com/author-reprint). Reprints are normally shipped 6 to 8 weeks after publication of the issue in which the item appears. Contact the Reprint Department, Lippincott Williams & Wilkins, 351 W. Camden Street, Baltimore, MD 21201; Fax: 410.558.6234; E-mail: authorreprints@wolterskluwer.com with any questions.
16 March 2018

To whom it may concern

I, Assoc Prof Ajmol Ali, provide permission for Anita Strauss and colleagues to use the diagram of the Loughborough Soccer Passing Test (LSPT) that was published in the following reference:

Yours faithfully

[Signature]

Ajmol Ali PhD
Associate Professor

School of Sport, Exercise and Nutrition | College of Health
Massey University | Private Bag 102904 | North Shore Mail Centre | Auckland | 0745
phone: +64 9 213 6414 | internal ext: 43414 | mobile: +64 21 781 333
e-mail: a.ali@massey.ac.nz | web: www.ajmolali.com | skype: ajmol.ali
To whom it may concern:

This serves to certify that I, Lydia Searle, performed the copy edit on chapters 1–4 of the document entitled “Anthropometric Profile, Selected Physical Parameters, Technical Skills and Match Demands of University-Level Female Soccer Players”, which was supplied by Mrs Ansa Strauss. Regarding Chapter 1 and Chapter 2, references, in-text citation format and language, grammar, punctuation and layout issues were addressed according to the style required by the North-West University, using MSWord Review (Track Changes) function. Chapter 3 and Chapter 4 were edited following the requirements for journal submission.

Yours faithfully,

Lydia Searle

Member: Professional Editors’ Guild RSA (PEG)

Member: Academic and Non-Fiction Authors’ Association of South Africa (ANFASA)
DECLARATION OF LANGUAGE EDITING

29 May 2018

To whom it may concern

This is to confirm that I, the undersigned, have language edited Chapter 6 and 7 of the thesis entitled: Anthropometric profile, selected physical parameters, technical skills and match demands of university-level female soccer players submitted by Anita Strauss in fulfilment of the requirements for the degree Doctor of Philosophy in Human Movement Sciences.

The responsibility of implementing the recommended language changes rests with the author of the dissertation.

Yours truly,

Jomone Müller
Description of the Yo-Yo Intermittent Recover Level 1 (Yo-Yo IR1) test

The Yo-Yo IR1, as described by Bangsbo et al. (2006:4), was used to evaluate each player’s ability to repeatedly perform intervals over a prolonged period of time and measure each player’s maximal oxygen consumption (\(\dot{V}O_{2\text{max}}\)) and maximal heart rate (HR). The test was conducted on a soccer grass field. Cones were used to mark three lines, 20 m and 5 m apart. A commercially available pre-recorded compact disc (CD) was played using a CD player. The players were required to run back and forth between the lines at given speeds controlled by the CD. Upon starting the test, the player stood behind the middle line, facing the last line, and began running 20 m when instructed by the CD. When signalled by the CD, the player turned and returned to the starting point. The player was required to touch the marked lines at either end of the 20 m with one foot when the signal beeped. After each 40 m, the player received a brief 10 sec active recovery period, during which the player had walk back and forth over a 5 m distance. The initial running speed was 10km/h, after which the speed progressively increased. If the line was not reached in time for a beep, a verbal warning was given. The test was terminated if the player failed to reach the line for two consecutive ends within the given time or if the player stopped voluntarily. The last level and number of successfully completed shuttles by each player were recorded for statistical analysis.
Description of the repeated-sprint ability (RSA) test

The RSA test was used to assess the players' anaerobic fitness. The players were instructed not to pace themselves but to perform with maximal effort throughout the test. Six cones were placed 5 m apart in a straight line to cover a total distance of 25 m. The player started the test on the first cone and, upon an auditory signal, sprinted 5 m to the second cone and returned back to the first cone. The player then sprinted 10 m to the third cone and back to the first cone, et cetera. The player continued sprinting back and forth until a period of 30 s has elapsed. After the first bout, the player was given a 35 s rest period before starting the second bout of the activity. The activity was repeated for six times (bouts). The distance covered by each player was approximated to the nearest 2.5 m during each 30 s shuttle and used to determine the average total distance covered by each player (Boddington et al., 2001).
Description of the Loughborough Soccer Passing Test (LSPT)

Four wooden rebound boards are placed in a rectangle on four lines, marking a 12.0 m x 9.5 m grid to the inside of the boards. A coloured target area (red, blue, white and green; dimensions: 0.6 m x 0.3 m) is painted or taped in the middle of each wooden board beforehand, and an aluminium strip (0.1 m x 0.15 m) is attached vertically in the middle of each target area. Yellow lines are used to mark the inner (1 m x 2.5 m) and outer (2.5 m x 4.0 m) rectangles to indicate the passing zone, with coloured cones indicating the different zones. Players are required to perform 16 passes against the coloured target areas in the fastest possible time, and penalty time for inaccurate passes or poor ball control is imposed. One examiner calls out the order of passes, based on the coloured target areas and consisting of eight short and eight long passes, while another examiner records the time taken from the start of the test (first pass) to the last completed pass. The ball is played from within the passing area, and penalty time is awarded for the following errors: missing the bench completely or passing to the wrong bench (5 s); missing the target area (3 s); handling the ball (3 s); passing from outside the designated area (2 s); causing the ball to touch a cone (2 s); and exceeding the allocated 43 seconds to complete the test (1 s awarded for each additional second). However, if the ball hits the aluminium strip, one second is deducted from the total time. Results of the LSPT are typically reported as: time taken to complete the test; penalty time accrued; and total time (Ali et al., 2008).