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Abstract

Galactic cosmic rays (GCRs) are affected by solar modulation while they propagate through the heliosphere. The
study of the time variation of GCR spectra observed at Earth can shed light on the underlying physical processes,
specifically diffusion and particle drifts. Recently, the AMS-02 experiment measured with very high accuracy
the time variation of the cosmic-ray proton and helium flux between 2011 May and 2017 May in the rigidity
range from 1 to 60 GV. In this work, a comprehensive three-dimensional steady-state numerical model is used to
solve Parker’s transport equation and reproduce the monthly proton fluxes observed by AMS-02. We find that the
rigidity slope of the perpendicular mean free path above 4 GV remains constant, while below 4 GV, it increases
during solar maximum. Assuming the same mean free paths for helium and protons, the models are able to
reproduce the time behavior of the p/He ratio observed by AMS-02. The dependence of the diffusion tensor on the
particle mass-to-charge ratio, A/Z, is found to be the main cause of the time dependence of p/He below 3 GV.
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1. Introduction

Galactic cosmic rays (GCRs) are charged particles produced
by some of the most energetic phenomena in the universe that
travel the endless voids of our galaxy before finally arriving at
the edge of the solar system (Amato & Blasi 2017). Here they
meet with the heliosphere, a huge cavity carved out of
interstellar space by a supersonic stream of magnetized plasma
constantly blown out from the Sun called the solar wind
(Parker 1958). By the time the GCRs reach Earth, they have
interacted with the turbulent magnetic field embedded in the
time-varying solar wind: the overall effect of the physical
processes involved in this interaction is called solar modulation
(Parker 1965; Potgieter 2013a).

In recent years, a new interest in GCRs has been spurred by
the observations of an excess in their antimatter components,
like positrons (Adriani et al. 2013a; Accardo et al. 2014) and
antiprotons (Adriani et al. 2010; Aguilar et al. 2016a),
suggesting an exotic origin, such as dark matter annihilation
or decay (Turner & Wilczek 1990; Donato et al. 2009) or new
astrophysical phenomena (Blasi & Serpico 2009; Hooper et al.
2009; Blum et al. 2013). Since the fluxes of the various species
of GCRs are distorted by the influence of the Sun below a few
tens of GV, a better understanding of the solar modulation and
its time evolution is of paramount importance to correctly
deduce their shape before they enter the heliosphere (Fornengo
et al. 2013, 2014; Cirelli et al. 2014; Yuan & Bi 2015;
Tomassetti 2017).

Since they are a highly ionizing form of radiation that can
penetrate the walls of a spacecraft, an astronaut spacesuit, and
the human body itself (Cucinotta & Durante 2006), GCRs are
also an unavoidable challenge for any human space exploration
program. The knowledge of the time variation of the GCR flux
and the study of the propagation of particles in the heliosphere
will help reduce the uncertainties in the radiation dose
predictions (Cucinotta et al. 2013).

Recently, the AMS-02 experiment on board the Interna-
tional Space Station measured, with very high accuracy and on
the scale of a Bartels rotation (BR; 27 days), the time variation
of the cosmic-ray proton and helium flux between 2011 May
and 2017 May in the rigidity range from 1 to 60 GV (Aguilar
et al. 2018; the data can also be retrieved at NASA’s
CDAWeb3). The key points of the AMS-02 observations are
the complex time behavior due to the short-term activity and
the decrease of the p/He ratio coinciding with the start of the
flux recovery after the solar maximum.
In this work, we use a comprehensive three-dimensional

(3D) numerical model to solve the propagation equation of
GCRs in the heliosphere in order to understand the physical
processes underlying the AMS-02 results. In the following
sections, the numerical model will be detailed, specifying the
various ingredients needed to correctly describe the physics of
the heliospheric transport of GCRs. Then, the method to
reproduce the proton monthly fluxes will be presented, together
with the results. Next, the p/He prediction from the best-fit
models will be compared with the data, and finally, we will
perform a dedicated study to understand the origin of the p/He
time dependence.

2. Numerical Model Description

A state-of-the-art 3D steady-state numerical model has been
developed during recent years (Potgieter et al. 2014; Vos &
Potgieter 2015) to solve the Parker equation of GCR transport
in the heliosphere (Parker 1965),
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where f (r, R) is the omnidirectional GCR distribution function,
V sw is the solar wind speed, andK is the diffusion tensor, which
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can be separated into a symmetric part, describing the
scattering of particles on the heliospheric magnetic field
(HMF) irregularities, and an asymmetric part, describing
particle drifts along magnetic field gradients, curvatures, and
the heliospheric current sheet (HCS). In the steady-state
approximation, ∂f/∂t=0; this is a reasonable assumption
during the solar minimum but less so during the solar
maximum. Nevertheless, for studies of the time variation of
GCR fluxes averaged over BRs, it is still acceptable.

The model uses a finite-difference solver, the alternating-
direction implicit method (Peaceman & Rachford 1955), to
obtain f at all positions in the heliosphere. This method has been
adapted to cope with four numerical dimensions: three spatial
(therefore called 3D) and one to handle rigidity. Including a time
dependence would make the method numerically unsuitable, so
either one spatial dimension should be sacrificed (Ngobeni &
Potgieter 2014) or the so-called stochastic differential equation
approach should be followed (see, e.g., Kopp et al. 2017; Luo
et al. 2017 and references therein).

2.1. Solar Wind, HMF, and Current Sheet

The solar wind velocity profile is assumed to be separable in
a radial and latitudinal component:

q q= q( ) ( ) ( ) ˆ ( )V rr V r V, . 2rsw

The radial component describes the fast rise to supersonic
speed within the first 0.3 au from the Sun (first term of
Equation (3)) and the transition to subsonic speed at the
termination shock (second term of Equation (3)),
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where =r 0.005 au is the Sun radius, r0=1 au, rTS is the
radial position of the termination shock (which, in principle,
can vary in time), L=1.2 au is the width of the shock barrier,
and s=2.5 is the shock compression ratio in the downstream
region, i.e., the ratio of the velocity before and after the shock.

The latitudinal term describes the transition between the
slow (polar) and fast (equatorial) component of the solar wind,

q q x=
+ -

¢ q ( ) [ ( )] ( )V
V V V V

2 2
tanh 6.8 , 4

pol eq pol eq

where Vpol and Veq are, respectively, the polar and equatorial
solar wind speed components; q q p¢ = - 2; and ξ is the polar
angle at which the transition between the equatorial and polar
streams begins. The top and bottom signs correspond,
respectively, to the northern (0<θ<π/2) and southern
(π/2<θ<π) hemisphere. During periods of solar maximum,
there is no clear latitudinal dependence of the solar wind speed,
so that on average, Vpol=Veq, and the second term of
Equation (4) vanishes.

The reacceleration at the termination shock via diffusive
shock acceleration is not included in the model, since for
protons above 1 GV, the effects of the termination shock at
Earth are negligible (see, e.g., Langner & Potgieter 2005 and
references therein). The drop in solar wind velocity at the

termination shock is taken into account in the evaluation of the
HMF and diffusion tensor, reproducing the actual diffusion
barrier present at the shock.
The HMF implemented in this model is the Parker field with

the Smith–Bieber modification,
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where Bn is a normalization factor dependent on the observed
magnitude of the HMF at Earth, B0; H is the Heaviside step
function, which describes the opposite polarity above and
below the HCS; θHCS is the polar position of the HCS; and ψ is
the spiral angle, i.e., the angle between the direction of the
HMF and the radial direction. Here ψ is defined as
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where Ω is the angular rotation frequency of the Sun, = b r20 is
the distance from the Sun where the HMF becomes fully radial,
and BT(b)/BR(b)≈−0.02 is the ratio of the azimuthal-to-radial
magnetic field components (Smith & Bieber 1991). Imposing

p =( )B r B, 20 0, we obtain y p= + ( )B B r1 tan , 2n 0 0 .
See also Raath et al. (2016) for a detailed study of the Smith–
Bieber and other HMF modifications.
The position of the HCS is given by Kóta and Jokipii (1983),
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where α is the tilt angle, i.e., the maximum latitudinal extent of
the HCS. To avoid numerical instabilities created by the
discontinuity of the polarity flip when passing from one side of
the HCS to the other, the Heaviside function is replaced with a
smooth transition function,
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where A is the HMF polarity (±1) and ΔθHCS=2rL/r=
2R/(rBc) is the angle spanned by two gyroradii for a particle
with rigidity R. This means that the HCS drift effects are taken
into account only if the particle is within 2 gyroradii from the
HCS. See also Raath et al. (2015) for a detailed study of how
the treatment of the HCS in numerical modeling studies affects
cosmic-ray modulation.

2.2. Diffusion and Drift Coefficients

The rigidity dependence of the parallel diffusion coefficient
is approximated by a double power law with a smooth change
of slope, while the radial dependence is assumed to be
inversely proportional to the magnitude of the HMF:
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where k
0 is a normalization factor; β=v/c; Rk is the rigidity at

which the transition between the two power laws happens;
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a and b are, respectively, the slopes of the low- and high-
rigidity power laws; and s controls the smoothness of the
transition. The perpendicular diffusion coefficients are assumed
to be proportional to the parallel diffusion coefficient,

q= =q q^ ^ ^ ^ ( ) ( )k k k k u k k, , 10r r, ,
0

, ,
0

where k̂ r,
0 and qk̂ ,

0 are scaling factors of the order of percent,
while u(θ) is a function that enhances the perpendicular
diffusion in the polar regions and is defined as
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The numerical values are chosen to reproduce cosmic-ray
observations at higher latitudes by the Ulysses spacecraft
(Potgieter & Haasbroek 1993; Kóta & Jokipii 1995; Potgieter
2000; Heber & Potgieter 2006; Potgieter 2013b). We note that
forcing on k̂ r, and qk̂ , the same rigidity dependence of k is a
simplification, since both turbulence theory and observations
predict a different rigidity behavior (see, e.g., Burger et al.
2000 and references therein). In this work, the slopes of the
perpendicular diffusion coefficient are not constrained to be
equal to those of the parallel diffusion coefficient; therefore, we
introduce the parameters a , b (slopes of the parallel diffusion
coefficient) and â , b̂ (slopes of the perpendicular diffusion
coefficient). The transition rigidity Rk and the smoothness factor
s are instead assumed to be the same for all diffusion coefficients;
for an overview of these aspects, see Potgieter (2017).

The drift coefficient is defined as
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where kA
0 is a normalization factor that can be used to reduce

the overall drift effects, while RA is the rigidity below which the
drift is suppressed due to scattering. For a detailed study of how
this expression is obtained and what effects it has on solar
modulation of GCRs, see Ngobeni & Potgieter (2015) and
Nndanganeni & Potgieter (2016). This approach means that the
model is diffusion-dominated, rather than drift-dominated as
the original drift models of the 1980s and 1990s were and also
as recently applied by, e.g., Tomassetti et al. (2017).

2.3. Local Interstellar Spectrum

The proton and helium local interstellar spectrum (LIS) are
parameterized between 0.1 GV and 3 TV as a combination of
four smooth power laws in rigidity,
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where N is the flux normalization at 1 GV, γ0 is the spectral
index of the first power law, g gD = - -i i i 1 is the difference in
spectral index between the ith power law and the previous one,
Ri are the rigidities at which the breaks between power laws
happen, and si controls the smoothness of the breaks.

Following the same method as in Corti et al. (2016), the proton
LIS is derived by a combined fit on low-rigidity data measured by
Voyager 1 outside the heliosphere (Stone et al. 2013) and

high-rigidity data measured by AMS-02 (Aguilar et al. 2015),
modulated with the force-field approximation (Gleeson &
Axford 1968). The best-fit parameters are = ( )N 5658 57

g = ( )m sr s GV , 1.669 0.005,2
0 = ( )R 0.572 0.004 GV,1

D = -  = s4.117 0.005, 1.78 0.021 1 , = ( )R 6.2 0.2 GV,2

D = -  = s0.423 0.008, 3.89 0.49,2 2 = ( )R 540 2403
D = - GV, 0.26 0.13 , and s3=1.53±0.43. This LIS is

consistent within 0.2% with the one from Corti et al. (2016).
The He3 and He4 LISs are derived by a combined fit to

multiple data sets4: Voyager 1 He (Cummings et al. 2016),
Voyager 1 He3 and He4 (Webber et al. 2018), IMAX He3 / He4

(Reimer et al. 1998), BESS He3 and He4 (Wang et al. 2002;
Myers et al. 2003), AMS-01 He3 and He4 (Aguilar et al. 2011),
PAMELA He3 and He4 (Adriani et al. 2016), and AMS-02 He
(Aguilar et al. 2017). The Voyager 1 data were measured
outside the heliosphere, while all other data were collected at 1
au at different solar activity conditions, so they were modulated
with the force-field approximation. We allowed the modulation
parameter for He3 to be different from the modulation
parameter for He4 (see Section 5 for the dependence of the
results on this assumption). According to the standard model of
GCR production, acceleration, and transport in the galaxy, He4

is produced in astrophysical sources, while He3 is produced by
collisions of heavier nuclei with the interstellar material, so that
He3 / He4 at very high rigidity (100 GV) becomes propor-
tional to 1/D, where D ∝ R δ is the diffusion coefficient in
the galaxy (Amato & Blasi 2017). The latest B/C data from
AMS-02 (Aguilar et al. 2016b) constrain δ to be −1/3, in
agreement with Kolmogorov’s theory of interstellar turbulence
(Kolmogorov 1941). Furthermore, at high rigidities, propaga-
tion in the galaxy should be mostly dependent on rigidity only,
while at low rigidity, energy-loss processes are also velocity-
dependent. For these reasons, the parameters R2, s2, R3,Δ3, and
s3 for He3 are assumed to be equal to the ones for He4 , while
g g= -( ) ( )He He 1 32

3
2

4 . The parameters N, γ0, R1, Δ1, and
s1 are instead left free independently for He3 and He4 . The
best-fit parameters for He4 are = ( ) ( )N 362 4 m sr s GV ,2

g = 2.113 0.007,0 = ( )R 1.15 0.01 GV1 , D = - 5.791
= s0.01, 1.27 0.011 , =  D = ( )R 5.2 0.5 GV, 0.472 2
= s0.01, 2.19 0.062 , =  D = ( )R 298 38 GV, 1.0633 3

0.003, and s3=0.270±0.008. The best-fit parameters for
He3 are g=  = ( ) ( )N 60.2 1.5 m sr s GV , 2.29 0.04,2

0
= ( )R 2.37 0.08 GV,1 and D = -  = s10 0.9, 1.271 1

0.06.
Figure 1 shows a comparison of the p, He3 , He4 , and He

(equal to He3 + He4 ) LIS parameterizations (top panel) and their
ratios (bottom panel). For alternative methods of obtaining the
proton and helium LISs, see Bisschoff & Potgieter (2016), and
for a discussion of the impact of the Voyager and PAMELA
observations on determining the appropriate LIS, see Potgieter
(2014).

3. Reproduction and Fit of the AMS-02 Monthly Proton
Fluxes

The standard approach of a least-squares fit with MINUIT
(James & Roos 1975) is not feasible in this work, since a single
model runs too slowly to allow the thousands of sequential
iterations needed to find a global minimum. Furthermore, the
fit should be repeated for each of the 79 BRs observed by

4 IMAX, BESS, AMS-01, and PAMELA data have been downloaded from
the CRDB (Maurin et al. 2014): https://lpsc.in2p3.fr/cosmic-rays-db.
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AMS-02, potentially generating a given model multiple times
and thus wasting computing time. To solve this issue, a
different strategy has been developed.

An ensemble of models is created in parallel, each with a
different combination of input parameters. The resulting
multidimensional grid of models is linearly interpolated to find
the set of parameters that minimizes the χ2 between the models
and the data. This way, the models are generated only once,
and they can be reused in the fitting of every flux, avoiding
their duplication. The parameters and their values defining the
multidimensional grid are listed in Table 1.

The normalization of the perpendicular radial and polar
diffusion coefficients has been kept fixed at =k̂ 0.02r,

0 and
=qk̂ 0.01,

0 , consistent with the values found by Zhao et al.
(2014), Vos & Potgieter (2015), and Potgieter & Vos (2017)
analyzing data from PAMELA and with the expectation
of turbulence theory (see, e.g., Burger et al. 2000 and

Bieber et al. 2004). The parameters describing the drift
processes, RA and kA

0, are set to the values used for
reproducing PAMELA data, i.e., 0.55 GV and 1, respectively.
The transition rigidity Rk and the smoothness of the change of
slope s are the same for all three diffusion coefficients and
equal to 4.3 GV and 2.2, respectively. The termination shock
is fixed at 80 au and the heliopause at 122 au, consistent with
the Voyager observations. The equatorial and fast solar wind
components have been assumed to have the same speed,
V0=440 km s−1, since we are mostly analyzing the solar
maximum period.
The spatial grid has 609 steps in the radial direction, from 0.4 to

122 au; 145 steps in the polar direction, from 0 to π; and 33 steps
in the longitudinal direction, from 0 to 2π. The rigidity grid has
been divided into 245 steps, uniformly distributed in logarithmic
space between 1 and 200 GV. To reduce the output file size, the
solution has been saved in a reduced spatial grid, with a radial step
of 2 au, a latitudinal step of 5°, and at f=0. The latter choice is
justified by the fact that the modulated flux at Earth is negligibly
dependent on the heliographic longitude; indeed, the flux variation
around the average value is of the order of 0.3%.
More than 3 million models have been generated, for a

running time of 10 weeks and a total disk size of 4.6 TB.

3.1. Heliosphere Status

A steady-state model assumes that the heliosphere status is
frozen in the whole time interval during which the particles
propagate from the heliopause to Earth. Clearly, this assump-
tion is never valid in a dynamical system like the heliosphere,
especially during periods of high solar activity, when the HMF
and tilt angle can have large variations on a monthly basis.
Nevertheless, the steady-state approximation is widely used,
due to the simplicity of the treatment of the numerical solution
of the Parker equation (see, e.g., Potgieter et al. 2014; Zhao
et al. 2014; and Vos & Potgieter 2015).
As a first approximation, a way to take into account the time-

varying status of the heliosphere is to use an average value for
a and B0. Given a BR, we take the average of the tilt angle and
HMF over a time period preceding the selected BR. This time
period has been chosen such that the average values of a and
B0 reflect the average conditions sampled by GCRs while
propagating from the heliopause to Earth. Since the HMF is
frozen in the solar wind, it propagates with the same velocity: if
V0=440 km s−1, taking into account the drop in velocity at
the termination shock, the propagation time is of the order of
2 yr. However, GCRs diffuse inward in a much shorter period

Figure 1. Top: the p (dotted yellow), He3 (solid red), He4 (dashed blue), and
He (dotted-dashed green) LIS parameterizations used in this paper, derived by a
combined fit to Voyager 1 unmodulated data and various modulated data sets
collected at 1 au at different times (see text for details). Bottom: the He3 / He4

(dotted yellow), He3 /p (solid red), He4 /p (dashed blue), and He/p (dotted-
dashed green) LIS ratio.

Table 1
Definition of the Grid of Input Parameters Used to Generate the Numerical Models

Parameter Symbol Values

HMF polarity A < 0,>0
Tilt angle (deg) a 20, 25, 30, 35, 40, 55, 65, 75
HMF magnitude at Earth (nT) B0 4.5, 5.5, 6.0, 6.5, 7.5, 8.5
Normalization of the parallel diffusion coefficient ( ´ -6 10 cm s20 2 1) k

0 50, 70, 90, 110, 130, 150, 170, 190, 210, 230a, 250a

Low-rigidity slope of the parallel diffusion coefficient a 0.2, 0.5, 0.8, 1.1, 1.4, 1.7, 2.0

High-rigidity slope of the parallel diffusion coefficient b 0.2, 0.5, 0.8, 1.1, 1.4, 1.7, 2.0, 2.3

Low-rigidity slope of the perpendicular diffusion coefficient â 0.2, 0.5, 0.8, 1.1, 1.4, 1.7, 2.0
High-rigidity slope of the perpendicular diffusion coefficient b̂ 0.2, 0.5, 0.8, 1.1, 1.4, 1.7, 2.0, 2.3

Note.
a Only for A>0 models.
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of time, between 1 and 4 months (Strauss et al. 2011), and do
not spend the same amount of time at all radial distances. In
fact, the more they penetrate the heliosphere, the more energy
they lose, so that the residing time increases going toward the
Sun. At the same time, most of the modulation happens in the
heliosheath, as observed by Voyager 1 (see, e.g., Webber et al.
2012 and Vos & Potgieter 2015). We decided to consider a
period of 1 yr, during which the heliosphere conditions affect
the GCRs. See Section 4 for a discussion of the dependence of
the results on the duration of this period.

Figure 2 illustrates the time variation of the tilt angle,
measured every Carrington rotation by the Wilcox Solar
Observatory5, and the daily HMF observed at 1 au by the ACE
and Wind spacecraft.6 The values used as input for the models
are computed with a 1 yr backward average and shown with
thick lines.

For each BR, the tilt angle and HMF are fixed to the values
aá ñ and á ñB0 obtained by the 1 yr backward average. Since the
grid has only a few discrete values of a and B0, a 2D linear
interpolation is used to obtain the modulated flux aF á ñ á ñ( )B, 0
corresponding to the average heliosphere status. Let us define

aF = F( )QB, ;i j i j, 0, , where = ^ ^  ( )Q k a b a b, , , ,0 is a
vector representing one of the possible combinations of the
remaining parameters of the grid, while i and j are the points
on, respectively, the a axis and B0 axis, for which
 a a aá ñ +i i 1 and  á ñ +B B Bj j0, 0 0, 1. Let us also define

the interpolating factors a a a a= á ñ - -a +( ) ( )s i i i1 and
= á ñ - -+( ) ( )s B B B BB i i i0 0, 0, 1 0,0 . If aá ñ or á ñB0 is outside

the range covered by the generated grid, then as and sB0 are
computed using the two closest points to aá ñ and á ñB0 . A first
interpolation is performed on the B0 axis: F á ñ =( )Bi 0

- F + F +( )s s1 B i j B i j, , 10 0 and F = - F ++ +( ) ( )B s1i B i j1 0 1,0

F+ +sB i j1, 10 . The final interpolation is carried out on the a
axis: aF á ñ á ñ = - F á ñ + F á ña a +( ) ( ) ( ) ( )B s B s B, 1 i i0 0 1 0 . The
procedure is repeated for all of the grid combinations of Q.
We verified in a small subsample of the models that the 2D
linear interpolation does not introduce any bias in the fluxes
with respect to generating a model directly with aá ñ and á ñB0 ;
the difference due to the interpolation procedure is always
much smaller than 1%.

A good fraction of the monthly fluxes were collected by
AMS-02 during the period of the magnetic field polarity
reversal. Since the model expects a well-defined polarity, it is
not possible to correctly describe the heliosphere status in this
time interval. For this reason, both models with negative and
positive polarity have been used to describe the BRs between
2013 October and 2015 February, while before 2013 October,
the polarity was only negative, and after 2015 February, it was
only positive. The reversal period ended in 2014 February, but
we decided to extend it up to 1 yr later to take into account the
propagation through the heliosphere.

3.2. Best-fit Parameters Estimation

The interpolated fluxes are used to estimate the best-fit
parameters k

0, a , b , â , and b̂ and their time variation. For
every BR n and model m (with the corresponding set of
parameters Qm), the χ2, c ,n m,

2 between the generated flux
aF = F á ñ á ñ( )QB, ;n m n n m, 0 and the flux Fn measured by AMS-

02 is computed:

åc
s

=
- F ⎛

⎝⎜
⎞
⎠⎟

( ) ( )F R
, 14n m

i

n i n m i

n i
,

2 , ,

,

2

where i is the rigidity binning index of the AMS-02 data, and
σn,i is the AMS-02 uncertainty in the ith rigidity bin. The
generated flux Φn,m is evaluated at the rigidity = +R R Ri i i 1 ,
where Ri and Ri+1 are the left and right edge of the ith rigidity
bin, by interpolating the flux value between consecutive
rigidity steps with a power law. The model  ( )m n with the
minimum χ2, c c=  ( )n n m n

2
,

2 , is considered as the best-fit model

for the nth BR and the corresponding parameters, =
 ( )Q Qn m n ,

as the best-fit parameters.
The uncertainty on a given parameter is estimated in the

following way. For every value q of the parameter, the
minimum χ2, c ( )qn,min

2 is found, regardless of the values of all
of the other parameters (i.e., we marginalize over the other
parameters); let us note that c c= ( )qn n n,min

2 2, where qn is the
best-fit value of the given parameter. We then find the values
qn,l and qn,r, respectively, to the left and right of qn, for which
c c c= = +( ) ( )q q 1n n l n n r n,min

2
, ,min

2
,

2 . The lower uncertainty is
defined as -q qn n l, , while the upper uncertainty is defined as

- q qn r n, . Figure 3 shows an example of uncertainty estimation
for the normalization of the parallel diffusion coefficient, k

0, in

Figure 2. Time variation of the tilt angle, a, measured in Carrington rotations
by the WSO (green dotted line) and the daily HMF magnitude, B0, obtained by
OMNIWeb (thin orange lines). The dashed dark green and solid brown lines
are the 1 yr backward average of, respectively, the tilt angle and the HMF for
every BR. The vertical dashed magenta lines delimit the period of the solar
magnetic field polarity reversal.

Figure 3. Uncertainty estimation for the normalization of the parallel diffusion
coefficient, k

0 (Equation (9)), in BR 2447. The circles are c ( )qn,min
2 , and the

positions of c  q q, ,n n n l
2

, , and qn,r are indicated by arrows. The dashed line is
just for guiding the eye.

5 We used the classic model (line of sight) from http://wso.stanford.edu/
Tilts.html (Hoeksema 1995).
6 The HMF magnitude data have been downloaded by NASA/GSFC’s
OMNI data set through OMNIWeb: https://omniweb.gsfc.nasa.gov/index.
html.
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BR 2447 (2012 December 2–28), with c  q q, ,n n n l
2

, , and qn,r
indicated by arrows. The c ( )qn,min

2 curve is well behaved,
being approximately parabolic around the best-fit value.

4. Numerical Results

Figure 4 shows some examples of fitted fluxes. In the top left
panel, three AMS-02 proton fluxes at different levels of solar
activity are plotted as a function of rigidity: BR 2427 (2011
June 11–July 7) in green squares, corresponding to the
ascending phase of solar cycle 24 and a moderate level of
solar modulation; BR 2462 (2014 January 11–February 6) in
orange diamonds, corresponding to the solar maximum and a
very depleted GCR intensity; and BR 2505 (2017 March 3–
April 12) in magenta circles, corresponding to the descending
phase of solar cycle 24 and a low level of solar modulation.
The best-fit models are also shown: BR 2427 was modeled with
negative polarity (red line); BR 2462 with both negative (red
line) and positive polarity (blue line), since it was during the
period of polarity reversal; and BR 2505 with positive polarity
(blue line). For reference, the proton LIS is also shown as a
dashed black line. In the bottom left panel, the ratio between
the best-fit models and data for the three selected fluxes (red
and blue lines) is shown and compared to the corresponding
uncertainty on the AMS-02 fluxes (colored hatched regions).
These plots highlight the very good agreement between the
models and data at all rigidities, mostly within the experimental

uncertainties. A similar level of agreement is also obtained for
all other fluxes.
In the top right panel of Figure 4, three rigidity bins of the

AMS-02 proton fluxes as a function of time have been chosen
(gray circles): [1.01–1.16], [4.88–5.37], and [33.53–36.12] GV.
The best-fit models are shown as red (negative polarity models)
and blue (positive polarity models) lines. As previously mentioned
(Section 3.1), both negative and positive polarity models were used
in the period from 2013 October to 2015 February. As shown, the
time dependence of the proton flux is not exactly the same at
different rigidities; for example, after 2013 June, the flux at 5 GV
stays almost flat with month-to-month fluctuations, while the flux
at 1GV keeps decreasing until 2014 February. The flux around
35GV, instead, is mostly constant until the maximum, decreases
around 3.5% over the course of 10 months after the polarity
reversal, and finally starts to slowly recover (about 2% yr−1) after
2015 January. All of these rigidity-dependent features in the time
variation of the proton fluxes are reproduced by the best-fit models.
In the bottom right panel, the ratio between the best-fit models and
data for the three selected rigidity bins (red and blue lines) is
shown, together with the corresponding uncertainty on the AMS-
02 fluxes (gray hatched regions). The models are mostly within the
experimental uncertainties at all rigidities.
The values of the best-fit parameters, together with their

estimated uncertainties, are listed in Tables 2 and 3 in the
Appendix. The time variation of the best-fit parameters is
analyzed in Figure 5. In the top panel, the tilt angle (dashed

Figure 4. Top left: three selected AMS-02 proton fluxes (colored symbols) as a function of rigidity, together with their best-fit models (red and blue lines) and the
proton LIS (dashed black line). Bottom left: ratio of best-fit models to data for the three proton fluxes (red and blue lines), compared to the corresponding AMS-02
uncertainties (colored hatched regions). Top right: three selected rigidity bins of the AMS-02 proton fluxes as a function of time (gray circles), together with their best-
fit models (red and blue lines). Bottom right: ratio of best-fit models to data for the three rigidity bins (red and blue lines), compared to the corresponding AMS-02
uncertainties (gray hatched regions). The vertical dashed magenta lines delimit the period of the solar magnetic field polarity reversal.

6

The Astrophysical Journal, 871:253 (15pp), 2019 February 1 Corti et al.



Figure 5. Time variation of the best-fit parameters (lines) and their uncertainties (bands) for models with negative (red) and positive (blue) magnetic polarity.
(a) Sunspot number (gray area, 27 day running average), HMF (brown line), and tilt angle (dashed green line) used as input parameters in the models. (b) Normalized
χ2 of the best-fit models. (c) Normalization of the diffusion coefficient, k

0, together with two rigidity bins of AMS-02 normalized fluxes (green circles and orange
squares). (d) and (e) Low- and high-rigidity slopes of the parallel diffusion coefficient, a and b . (f) and (g) Low- and high-rigidity slopes of the perpendicular
diffusion coefficient, â and b̂ . The vertical dashed magenta lines delimit the period of the solar magnetic field polarity reversal.
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green line, right axis) and HMF (brown line, right axis) used as
input in every BR are displayed for reference, together with the
daily sunspot number (SILSO World Data Center 2011)
smoothed with a 27 day running average (gray area, left axis).

The second panel shows the normalized minimum χ2,
c dofn

2 , for models with negative (red) and positive (blue)
polarity. In general, the agreement between the best-fit models
and data is very good for all months, as also shown by the
bottom panels of Figure 4. After 2015 August, the normalized
χ2 stays flatter and with fewer fluctuations with respect to the
previous months; this is probably due to the fact that in this
period, the heliosphere is globally quieter than before, and thus
the steady-state approximation used to solve the Parker
equation is more valid. The sudden increases of the normal-
ized χ2 for the positive polarity models in the middle of 2013,
during the period of the polarity reversal, might be considered
statistical fluctuations but also an indication that modeling a
mixed-polarity heliosphere is necessary to correctly describe
GCR fluxes during the solar maximum.

The third panel shows the best-fit values (lines) for the
normalization of the parallel diffusion coefficient (Equation (9))
with their estimated uncertainties (bands), together with the
monthly AMS-02 fluxes in the rigidity bins [1.00–1.16] GV
(green circles) and [4.88–5.37] GV (orange squares), normalized
to their averaged values. The variations of k

0 closely follow the
time dependence of the observed fluxes (especially around
5 GV), as expected, since k

0 is the main parameter that controls

the level of modulation. For example, the drops of k
0 (i.e., short-

term increases in the modulation strength) correspond with the
drops of the proton fluxes, e.g., in 2011 October or 2012 March.
A caveat of this analysis is that these drops are due to CMEs
hitting the Earth, i.e., local disturbances, which are not included
in the model. Nevertheless, the model is able to reproduce the
flux by globally changing the diffusion coefficient in order to
match the local conditions. We expect that, in these cases, the
solution at positions far from Earth will not be accurate, since the
diffusion in these positions is not affected by the CME. It is
worth noting that, in the period of the polarity reversal, the best-
fit k

0 obtained from models with negative polarity agrees with
the one from models with positive polarity; i.e., the normal-
ization of the diffusion coefficient seems to be mostly insensitive
to the sign of the HMF polarity. We computed the Pearson
correlation between k

0 and the proton flux intensity at different
rigidities, taking into account the uncertainties on the measured
fluxes and best-fit values with a toy Monte Carlo. The maximum
correlation r=0.82, with a 95% confidence interval of (0.78,
0.85), is found around 5 GV, while at 1 GV, r=0.73, with a
95% confidence interval of (0.68, 0.77). The correlation
becomes consistent with zero at the 95% confidence level
around 22GV.

Panels (d) and (e) show the time variation of the low- and
high-rigidity slope of the parallel diffusion coefficient, a and
b . The best-fit values vary considerably from month to month,
making it difficult to discern any clear time-dependent pattern.
Indeed, sometimes the c ( )qmin

2 curve has two local minima or
does not have a parabolic behavior. This means that these two
parameters are not well constrained by fitting the AMS-02
proton fluxes, implying that the modulated flux is not so
sensitive to the values of a and b for rigidities above 1 GV. A
possible explanation is that the parallel diffusion dominates
very close to the Sun, when most of the modulation has already
happened. The diffusion coefficient in the radial direction is

K y y= + ^k kcos sin ;rr r
2

,
2 imposing equality between the

two terms yields y =^ ktan 1 50r
2

,
0 , corresponding to a

spiral angle y » ◦80 , which can already be found around 5 au,
a mere 0.01% of the whole heliosphere volume. The time
variation of GCR protons measured by PAMELA down to
400 MV (Adriani et al. 2013b; Martucci et al. 2018) would
provide a better constraint on the slopes of the parallel diffusion
coefficient; this study will be the focus of a future work.
The parameters describing the perpendicular diffusion

coefficient, â and b̂ , are shown in panels (f) and (g).
Remarkably, b̂ is almost constant with time for both positive
and negative polarity, whose best-fit values agree in almost all
of the overlapping months. Here â is mostly flat before the
maximum of solar activity, when A<0. During the period of
the polarity reversal, â rises, almost doubling its value (with
respect to 2011 and 2012) as the solar activity peaks, showing
an anticorrelation with the proton flux at 1 GV (see the third
panel). This suggests that, on top of the overall modulation
scale determined by k

0, low rigidities experience an even
smaller perpendicular mean free path. This is also supported by
computing the Pearson correlation between â and the proton
flux intensity at different rigidities: the maximum anticorrela-
tion r=−0.5, with a 95% confidence interval of
(−0.62,−0.39), is found at 1 GV, while it decreases with
increasing rigidity, becoming consistent with zero above
20 GV. As for k

0, during the period of the polarity reversal,
the best-fit â and b̂ obtained from models with negative
polarity agree, within the fit uncertainties, with the ones from
models with positive polarity. We verified that these results do
not depend on the duration of the period used to compute the
backward average of the HMF and tilt angle (see Section 3.1).
We varied the number of months (n) included in the average
between zero and 24 months in steps of 2 months. For n�4
months, the values of the best-fit parameters are consistent,
within the uncertainties, with the ones presented in Figure 5,
while the residuals between the best-fit models and the data are
similar to the ones shown in Figure 4. For n=0 and 2 months,
the normalized χ2 and the residuals are worse in a few BRs
between the end of 2014 and the beginning of 2015, when the
HMF has a higher variability than in the rest of the analyzed
period. This suggests that the steady-state approximation is a
valid approach to describe the time variation of GCRs above
1 GV on a monthly basis, provided the heliosphere status is
adjusted by smoothing the input HMF and tilt angle with a
backward average of at least 4 months.

5. p/He Ratio Comparison

It is generally assumed in modulation studies that the rigidity
dependence of the three mean free paths is the same for all
nuclei. The assumption has not been rigorously tested because
the observational data were never accurate enough over the
relevant rigidity range for all cosmic-ray nuclei over a complete
solar cycle. Under this assumption, the best-fit parameters
derived in Section 4 from AMS-02 protons should also be valid
for other nuclei, in particular He3 and He4 . In order to compute
the modeled p/He ratio, we ran the best-fit models for He3 and
He4 (with the corresponding charge, mass, and LIS), and then
we summed the resulting modulated fluxes.
Figure 6 shows the comparison between the p/He ratio

observed by AMS-02 and the one predicted by the model. In
the top left panel, three p/He AMS-02 ratios for the same BRs
from Figure 4 are plotted as a function of rigidity (colored
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symbols), together with the best-fit models (blue and red lines,
respectively, for negative and positive polarity models). For
reference, the p/He LIS is also shown as a dashed black line. In
the bottom left panel, the ratio between the best-fit models and
data for the three selected BRs (red and blue lines) is shown
and compared to the corresponding uncertainty on the AMS-02
p/He ratios (green, orange, and magenta hatched regions). The
light red, blue, and gray shaded regions represent the
uncertainty on p/He due to the uncertainty on the He3 and
He4 LISs. This uncertainty has been estimated by varying the
data sets used to derive the He3 and He4 LISs and assuming (or
not) the same modulation potential for He3 and He4 (see
Section 2.3). A total of 16 different LIS parameterizations
have been computed, and for each of them, the best-fit models
have been run. The minimum and maximum values among the
different parameterizations at each rigidity have been con-
sidered as the uncertainty on the modulated p/He. While the
difference in LIS parameterizations above 2 GV is between
10% and 60% for He3 and between 5% and 10% for He4 , the
uncertainty on the modulated p/He is relatively small: less than
4%. For comparison, the uncertainty on the proton LIS coming
from the parameterization fit is less than 2%, so its contribution
to the modulated p/He uncertainty is considered negligible. In
the following, the LIS parameterization described in
Section 2.3 will be called the reference LIS.

In the top right panel of Figure 6, three rigidity bins of the
AMS-02 p/He ratio as a function of time have been chosen
(gray circles): [1.92–2.15], [4.88–5.37], and [9.26–10.10] GV.
The best-fit models, together with their uncertainties, are shown
as red (negative polarity models) and blue (positive polarity
models) lines and shaded regions. In the bottom right panel, the
ratio between the best-fit models and data for the three selected
rigidity bins (red and blue lines and shaded regions) is shown,
together with the corresponding uncertainty on the AMS-02
fluxes (gray hatched regions). We can see that the modeled
p/He using the reference LIS on average underestimates the
data by 5% below 6 GV. This difference remains basically
constant in time, amounting to a rigidity-dependent normal-
ization shift in the modulated p/He below 6 GV, which persists
even considering the modeled p/He uncertainties. Indeed, the
different LIS parameterizations result in similar p/He time
variations, differing only for a shift constant in time. This might
be due to two reasons: (a) the He3 and He4 LIS parameteriza-
tions are not correct below 5 GV, and (b) the assumption of
same mean free path for p and He at all relevant rigidities is
inadequate. We believe that (a) is the most probable
explanation; indeed, the use of the force-field approximation
to derive the LIS might introduce a bias in the resulting
parameterization, which could affect the results of the
numerical model analysis.

Figure 6. Top left: three selected AMS-02 p/He ratios (colored symbols) as a function of rigidity, together with their best-fit models (red and blue lines) and the p/He
LIS (dashed black line). Bottom left: ratio of best-fit models to data for the three BRs (red and blue lines), compared to the corresponding AMS-02 uncertainties
(green, orange, and magenta hatched regions). Light red, blue, and gray shaded regions represent the p/He uncertainty due to different He3 and He4 LIS
parameterizations. Top right: three selected rigidity bins of the AMS-02 p/He ratio as a function of time (gray circles), together with their best-fit models (red and blue
lines and bands). Bottom right: ratio of best-fit models to data for the three rigidity bins (red and blue lines and shaded regions), compared to the corresponding AMS-
02 uncertainties (gray hatched regions). The vertical dashed magenta lines delimit the period of the solar magnetic field polarity reversal.
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6. Time Dependence of p/He

The AMS-02 data show that above 3 GV, the p/He ratio is
time-independent. Below 3 GV, it is flat within month-to-
month variations until 2015 March, and then it starts to
decrease, seemingly correlated with the decrease in solar
activity. As stated in Aguilar et al. (2018), the origin of the
p/He time dependence may be due to (a) the difference in LIS
shape between p and He and (b) the dependence of the
diffusion tensor on the particle mass-to-charge ratio, A/Z. For
the sake of simplicity, let us examine the steady-state one-
dimensional version of the Parker equation,
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where V is the solar wind speed and = =( )k k r R A Z, ,
l( ) ( )/v R A Z r R, ,1

3
is the radial diffusion coefficient. Here

b= = +( ) ( ) ( )/v R A Z c c A Z mc eR, 1 2 2 is the particle
velocity, with m the proton rest mass, while λ(r, R) is the mean
free path, which is assumed to depend only on the radial distance
and rigidity, i.e., to be the same for all nuclei.

Let us assume that two nuclei, p1 and p2, have the same A/Z
but a different LIS shape: then the diffusion coefficient will be the
same for both, but the boundary conditions will not be equal. In
particular, the last term is sensitive to the spectral index,
G = ¶ ¶ = ¶ ¶( ) ( )f R R f f Rlog log , so we can expect that
the difference in Γ at the heliopause will persist during the
propagation through the heliosphere. Since V and k change with
varying modulation conditions, Γ(p1/p2)=Γ(p1)−Γ(p2) will be
changing as well; i.e., the ratio p1/p2 at a given rigidity will not be
constant in time. Now let us assume that two nuclei with different
A/Z have the same LIS shape; then all the terms in the Parker
equation are the same for the two species, except for the
divergence of the diffusive flux, because of the A/Z dependence
of k. A time variation of k will translate into a time variation of
p1/p2 at a given rigidity. It is important to note that this
dependence comes from the fact that we assumed λ to depend
only on R; if λ was also a function of A and Z, the A/Z
dependence of vλ might cancel out. Effectively, we can say that if
two nuclei with different A/Z have the same mean free path, then
the time variation of p1/p2 is a natural consequence, even when
the LIS shape is the same.

The same reasoning can be applied to the full 3D case. The
symmetric components of the field-aligned diffusion tensor K
can all be written as l=k vi i

1

3
, where i stands for the parallel,

perpendicular radial, and perpendicular polar directions, so that
K also depends explicitly on A/Z.

In the case of p/He, all of the species involved have different
A/Z and LISs, so the time dependence is due to a combination
of (a) and (b). To assess which of the two causes is dominant,
we separately test the effect of (a) and (b). Since the
uncertainties on the He3 and He4 LIS parameterizations do
not affect the modeled p/He time dependence at a given
rigidity, but only its normalization, in the rest of this section,
we will use the reference LIS and compare the normalized
modeled p/He to the normalized observed p/He, in order to
remove any normalization shift. We verified that the uncer-
tainty on the normalized p/He due to the uncertainty in the He3

and He4 LISs is less than 0.5% at all rigidities and for each BR.

6.1. Difference in the LIS Shape

To understand the effect of the difference in the LIS shape,
we ran the best-fit models for p, He3 , and He4 , forcing the same
A/Z for all three species but using the appropriate LIS for each
particle. In the following, p corresponds to the proton LIS and
A/Z=1, He3 corresponds to the He3 LIS and A/Z=1, while
He4 corresponds to the He4 LIS and A/Z=1. The same
results are obtained if we use A/Z=3/2 or 2 for all particles.
Figure 7 shows the comparison of the normalized modeled

p/ He3 (red and blue lines; left panels) and p/ He4 (red and blue
lines; right panels) with the normalized observed p/He (gray
circles) for three selected rigidity bins: [1.92–2.15],
[2.40–2.67], and [2.97–3.29] GV. Note that the plotted
experimental uncertainties are the sum in quadrature of the
statistical and time-dependent uncertainties only; the systematic
uncertainties constant in time are not considered here, since
they would affect only the average value of p/He in a given
rigidity bin, not its time variation.
The time trend of the observed p/He is not reproduced:

p/ He4 increases with time at all rigidities after 2015 March,
while p/ He3 increases at 2 GV, stays flat at 2.5 GV, and
slightly decreases at 3 GV.
We can better understand the different behavior of p/ He3

and p/ He4 by looking at the spectral index, Γ, of the LIS ratio.
Because of the adiabatic energy losses, the observed particles at
2 GV had a greater rigidity before entering the heliosphere, so
in order to compare Γ in interstellar space, we should correct
for this effect. In the force-field approximation framework, the
energy losses are related to the modulation potential f, whose
values usually vary between a few hundred MV and 1 GV,
depending on the level of solar activity. Using f=400 MV as
the average modulation potential in the descending phase of the
solar cycle, we can relate the rigidity observed at Earth

= +( )R T T Amc Ze2E E E
2 with the rigidity at the heliopause

= +( )R T T Amc Ze2HP HP HP
2 , where THP=TE+Zef,

while TE and THP are, respectively, the kinetic energy at Earth
and the heliopause. With this choice, we find that at 2 GV,
G = -( )p He 0.253 , while G = -( )p He 0.39;4 at 2.5 GV,
G = -( )p He 0.033 , while G = -( )p He 0.26;4 and at 3 GV,
G =( )p He 0.123 , while G = -( )p He 0.164 . Note that when
the values of G( )p He3 and G( )p He4 are very similar in
absolute value, so is the amplitude of the time variation in the
normalized modeled ratios. A different choice of f leads to
different values for Γ, but qualitatively, the comparison
remains the same: G( )p He4 is always negative and decreases
in absolute value with increasing rigidity, while G( )p He3 is
negative at 2 GV, very close to zero at 2.5 GV, and positive at
3 GV. This suggests that the time behavior of the ratio of two
species with the same A/Z is related to the spectral index of the
LIS ratio of the two species: if Γ<0, then the ratio will be
anticorrelated with the solar activity, while if Γ>0, the ratio
will be correlated with the solar activity. The amplitude of the
time variation is instead proportional to the absolute value of Γ.
We verified that this result holds when considering different
parameterizations for the He3 and He4 LISs. The uncertainties
on the He4 LIS are small enough that Γ(p/ He4 ) is always
negative, leading to an increase of p/ He4 . Instead, the
uncertainties on the He3 LIS are such that G( )p He3 can be
positive or negative depending on the parameterization, so
p/ He3 decreases or increases with time according to the sign of
G( )p He3 . Since He4 accounts for around 80% of the He, the
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Table 2
Best-fit Parameters Used as Input for Numerical Models with Negative Polarity

BRa ab B0
c

k
0d λ⊥(1 GV)e λ⊥(5 GV)e a f

b g â h b̂ i

2426 51.20 4.85 -
+110 5

20
-
+0.009 0.003

0.003
-
+0.034 0.004

0.005
-
+0.8 0.2

0.2
-
+1.7 0.2

0.2
-
+0.8 0.2

0.2
-
+0.8 0.2

0.1

2427 53.55 4.87 -
+110 5

4
-
+0.006 0.002

0.0005
-
+0.032 0.003

0.002 0.3 -
+1.7 0.1

0.1
-
+1.1 0.3

0.05
-
+0.8 0.06

0.08

2428 55.33 4.93 -
+110 4

9
-
+0.009 0.002

0.003
-
+0.034 0.002

0.004
-
+1.1 0.1

0.1
-
+2 0.2

0.2
-
+0.8 0.1

0.2
-
+0.8 0.1

0.1

2429 57.05 4.96 -
+110 5

20
-
+0.009 0.002

0.003
-
+0.033 0.003

0.005
-
+1.1 0.2

0.2
-
+2 0.2

0.3
-
+0.8 0.1

0.2
-
+0.8 0.1

0.1

2430 58.67 5.05 -
+130 10

6
-
+0.011 0.002

0.005
-
+0.039 0.004

0.004 1.8 -
+1.4 0.07

0.2
-
+0.8 0.1

0.3
-
+0.8 0.09

0.1

2431 60.34 5.10 -
+110 4

5
-
+0.009 0.0008

0.003
-
+0.032 0.002

0.003
-
+1.4 0.1

0.1
-
+2 0.2

0.1
-
+0.8 0.05

0.2
-
+0.8 0.08

0.06

2432 62.13 5.13 -
+130 7

4
-
+0.011 0.001

0.004
-
+0.038 0.002

0.003 1.9 -
+1.4 0.04

0.1
-
+0.8 0.08

0.3
-
+0.8 0.07

0.07

2433 63.64 5.14 -
+130 5

10
-
+0.007 0.003

0.002
-
+0.035 0.003

0.003
-
+0.5 0.2

0.1
-
+1.7 0.1

0.2
-
+1.1 0.3

0.2
-
+0.8 0.1

0.08

2434 64.97 5.19 -
+130 6

10
-
+0.007 0.002

0.002
-
+0.035 0.003

0.004
-
+0.5 0.2

0.1
-
+2 0.3

0.1
-
+1.1 0.2

0.2
-
+0.8 0.09

0.1

2435 66.09 5.24 -
+130 8

6
-
+0.01 0.002

0.004
-
+0.037 0.003

0.003
-
+1.7 0.1

0.2
-
+1.4 0.07

0.3
-
+0.8 0.1

0.3
-
+0.8 0.09

0.1

2436 66.48 5.34 -
+130 10

7
-
+0.01 0.002

0.004
-
+0.037 0.004

0.004
-
+1.7 0.1

0.2
-
+1.4 0.09

0.3
-
+0.8 0.1

0.3
-
+0.8 0.1

0.2

2437 66.29 5.40 -
+110 20

6
-
+0.008 0.003

0.004
-
+0.031 0.005

0.004
-
+1.7 0.1

0.3
-
+1.7 0.1

0.2
-
+0.8 0.2

0.3
-
+0.8 0.09

0.2

2438 66.25 5.35 -
+130 9

6
-
+0.006 0.002

0.001
-
+0.034 0.003

0.003
-
+1.1 0.2

0.1
-
+1.7 0.1

0.2
-
+1.1 0.2

0.1
-
+0.8 0.08

0.1

2439 66.79 5.38 -
+130 5

10
-
+0.006 0.002

0.002
-
+0.034 0.003

0.003
-
+0.8 0.2

0.09
-
+1.7 0.1

0.3
-
+1.1 0.2

0.2
-
+0.8 0.09

0.09

2440 67.54 5.45 -
+130 20

7
-
+0.006 0.003

0.002
-
+0.033 0.005

0.004
-
+1.1 0.2

0.2
-
+1.4 0.09

0.3
-
+1.1 0.3

0.2
-
+0.8 0.1

0.2

2441 68.22 5.47 -
+110 4

10
-
+0.005 0.002

0.002
-
+0.028 0.002

0.003 0.34 -
+2 0.1

0.2
-
+1.1 0.2

0.2
-
+0.8 0.07

0.1

2442 68.70 5.48 -
+90 5

20
-
+0.007 0.001

0.003
-
+0.028 0.004

0.006
-
+1.1 0.2

0.2
-
+1.7 0.1

0.2
-
+0.8 0.1

0.3
-
+1.1 0.3

0.07

2443 69.02 5.53 -
+110 9

8
-
+0.008 0.002

0.004
-
+0.03 0.003

0.004 1.9 -
+2 0.1

0.3
-
+0.8 0.1

0.3
-
+0.8 0.06

0.1

2444 69.31 5.57 -
+130 20

6
-
+0.006 0.002

0.002
-
+0.033 0.005

0.005
-
+1.7 0.2

0.2
-
+1.7 0.3

0.2
-
+1.1 0.2

0.3
-
+0.8 0.09

0.3

2445 69.39 5.54 -
+110 7

10
-
+0.008 0.001

0.004
-
+0.03 0.002

0.005 1.9 2.1 -
+0.8 0.08

0.3
-
+0.8 0.07

0.2

2446 68.95 5.52 -
+110 8

20
-
+0.005 0.002

0.002
-
+0.028 0.003

0.006
-
+0.8 0.1

0.3 2.1 -
+1.1 0.3

0.2
-
+0.8 0.09

0.3

2447 69.39 5.48 -
+130 10

6
-
+0.0041 0.002

0.0005
-
+0.031 0.004

0.003
-
+0.8 0.1

0.1
-
+1.7 0.2

0.2
-
+1.4 0.3

0.08
-
+0.8 0.08

0.2

2448 69.57 5.51 -
+130 5

7
-
+0.004 0.002

0.0006
-
+0.031 0.002

0.002
-
+0.50 0.1

0.07
-
+2 0.2

0.1
-
+1.4 0.3

0.1
-
+0.8 0.06

0.09

2449 69.31 5.49 -
+130 5

10
-
+0.0063 0.0006

0.003
-
+0.033 0.002

0.004
-
+1.4 0.1

0.08
-
+2 0.2

0.1
-
+1.1 0.06

0.3
-
+0.8 0.07

0.1

2450 69.96 5.48 -
+130 6

4
-
+0.0063 0.0007

0.002
-
+0.033 0.002

0.002
-
+1.4 0.09

0.07
-
+1.7 0.1

0.1
-
+1.1 0.06

0.2
-
+0.8 0.05

0.08

2451 70.68 5.38 -
+110 5

20
-
+0.005 0.002

0.002
-
+0.029 0.002

0.005
-
+0.8 0.2

0.2 2 -
+1.1 0.3

0.3
-
+0.8 0.09

0.1

2452 71.08 5.36 -
+110 5

10
-
+0.005 0.002

0.002
-
+0.029 0.002

0.004
-
+0.8 0.1

0.2
-
+2 0.1

0.2
-
+1.1 0.2

0.2
-
+0.8 0.08

0.1

2453 71.09 5.38 -
+90 5

9
-
+0.0045 0.002

0.0009
-
+0.023 0.002

0.003
-
+0.5 0.1

0.2 2.2 -
+1.1 0.2

0.1
-
+0.8 0.07

0.2

2454 70.97 5.36 -
+90 5

20
-
+0.004 0.001

0.002
-
+0.026 0.004

0.006
-
+0.8 0.2

0.2
-
+1.7 0.08

0.3
-
+1.1 0.2

0.3
-
+1.1 0.3

0.07

2455 70.59 5.40 -
+110 8

5
-
+0.005 0.001

0.002
-
+0.028 0.002

0.003
-
+1.7 0.1

0.2
-
+2 0.2

0.1
-
+1.1 0.1

0.3
-
+0.8 0.06

0.1

2456 70.25 5.31 -
+110 10

6
-
+0.006 0.001

0.002
-
+0.029 0.004

0.004 1.8 -
+2 0.2

0.2
-
+1.1 0.2

0.3
-
+0.8 0.08

0.2

2457 70.09 5.26 -
+90 4

20
-
+0.003 0.001

0.001
-
+0.025 0.003

0.005 0.35 -
+2 0.2

0.2
-
+1.4 0.3

0.2
-
+1.1 0.3

0.09

2458 69.75 5.20 -
+110 10

9
-
+0.004 0.001

0.001
-
+0.027 0.003

0.004
-
+1.1 0.1

0.2 2.1 -
+1.4 0.3

0.3
-
+0.8 0.07

0.2

2459 69.38 5.16 -
+110 10

9
-
+0.004 0.001

0.002
-
+0.028 0.003

0.003
-
+1.1 0.1

0.2
-
+2 0.1

0.3
-
+1.4 0.2

0.3
-
+0.8 0.07

0.2

2460 69.35 5.18 -
+110 10

6
-
+0.0023 0.001

0.0003
-
+0.026 0.003

0.002 0.37 -
+2 0.2

0.2
-
+1.7 0.3

0.09
-
+0.8 0.07

0.2

2461 69.19 5.17 -
+110 8

6
-
+0.0036 0.0007

0.001
-
+0.028 0.002

0.003
-
+1.4 0.2

0.1
-
+2 0.2

0.2
-
+1.4 0.1

0.2
-
+0.8 0.08

0.1

2462 68.89 5.22 -
+110 4

5
-
+0.0023 0.001

0.0003
-
+0.025 0.002

0.001 0.28 -
+2 0.1

0.1
-
+1.7 0.3

0.07
-
+0.8 0.06

0.06

2463 68.43 5.33 -
+90 5

10
-
+0.0029 0.001

0.001
-
+0.022 0.002

0.004 0.41 2.1 -
+1.4 0.3

0.2
-
+0.8 0.1

0.2

2464 68.01 5.29 -
+110 10

5
-
+0.0036 0.001

0.001
-
+0.027 0.004

0.003
-
+1.4 0.2

0.1
-
+2 0.2

0.2
-
+1.4 0.2

0.2
-
+0.8 0.08

0.2

2465 67.03 5.34 -
+110 10

6
-
+0.004 0.001

0.002
-
+0.027 0.004

0.003
-
+1.1 0.1

0.2
-
+1.7 0.08

0.3
-
+1.4 0.2

0.3
-
+0.8 0.1

0.2

2466 65.73 5.35 -
+110 5

10
-
+0.0035 0.001

0.0009
-
+0.027 0.002

0.003
-
+0.8 0.1

0.1 2.1 -
+1.4 0.3

0.2
-
+0.8 0.07

0.1

2467 64.25 5.34 -
+110 4

3
-
+0.0055 0.0004

0.002
-
+0.029 0.001

0.002 1.9 -
+2 0.2

0.1
-
+1.1 0.04

0.2
-
+0.8 0.05

0.06

2468 63.14 5.30 -
+110 10

6
-
+0.004 0.001

0.001
-
+0.027 0.004

0.003
-
+1.1 0.1

0.2
-
+1.7 0.09

0.2
-
+1.4 0.2

0.3
-
+0.8 0.09

0.2

2469 62.32 5.20 -
+110 5

9
-
+0.0036 0.001

0.0008
-
+0.027 0.003

0.003
-
+0.8 0.1

0.1
-
+2 0.2

0.2
-
+1.4 0.3

0.1
-
+0.8 0.1

0.09

2470 62.20 5.29 -
+110 6

20
-
+0.004 0.001

0.001
-
+0.027 0.003

0.005 0.41 -
+2 0.2

0.3
-
+1.4 0.3

0.3
-
+0.8 0.1

0.1

2471 62.36 5.40 -
+110 6

20
-
+0.003 0.001

0.001
-
+0.026 0.004

0.005 0.38 -
+2 0.3

0.2
-
+1.4 0.3

0.2
-
+0.8 0.3

0.09

2474 59.85 5.87 -
+110 3

9
-
+0.0078 0.0006

0.003
-
+0.028 0.002

0.003
-
+1.7 0.1

0.2
-
+1.7 0.1

0.1
-
+0.8 0.05

0.2
-
+0.8 0.1

0.05

2475 58.91 6.04 -
+110 5

20
-
+0.0076 0.001

0.004
-
+0.027 0.002

0.005
-
+1.7 0.2

0.2
-
+2 0.2

0.2
-
+0.8 0.08

0.3
-
+0.8 0.2

0.2

2476 57.80 6.17 -
+130 20

7
-
+0.006 0.002

0.002
-
+0.029 0.004

0.004
-
+1.4 0.1

0.2
-
+1.4 0.2

0.2
-
+1.1 0.2

0.3
-
+0.8 0.1

0.2

2477 56.43 6.18 -
+110 4

7
-
+0.0047 0.002

0.0008
-
+0.025 0.002

0.002
-
+0.8 0.1

0.1
-
+2 0.1

0.2
-
+1.1 0.2

0.1
-
+0.8 0.07

0.2

Notes. A � (�) symbol means that the best-fit value for the parameter coincides with the lower (upper) edge of the grid, so a lower (upper) limit is reported, corresponding to +q qn n r,

( -q qn n l, ).
a BR number.
b Tilt angle, in units of degrees.
c HMF intensity at Earth, in units of nT.
d Normalization of the parallel diffusion coefficient, in units of ´ -6 10 cm s20 2 1.
e Perpendicular mean free path at 1 and 5 GV at Earth, in units of au. The uncertainty is computed by propagating the uncertainties on k

0, â , and b̂ .
f Low-rigidity slope of the parallel diffusion coefficient.
g High-rigidity slope of the parallel diffusion coefficient.
h Low-rigidity slope of the perpendicular diffusion coefficient.
i High-rigidity slope of the perpendicular diffusion coefficient.
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Table 3
Best-fit Parameters Used as Input for Numerical Models with Positive Polarity

BR a B0 k
0 l̂ (1 GV) λ⊥(5 GV) a b â b̂

2446 68.95 5.52 -
+110 9

10
-
+0.005 0.001

0.001
-
+0.028 0.003

0.004
-
+1.7 0.3

0.3 2.1 -
+1.1 0.1

0.2
-
+0.8 0.06

0.1

2447 69.39 5.48 -
+130 10

5
-
+0.0041 0.001

0.0005
-
+0.031 0.003

0.002
-
+1.1 0.2

0.3
-
+1.4 0.2

0.3
-
+1.4 0.2

0.08
-
+0.8 0.08

0.1

2448 69.57 5.51 -
+130 6

6
-
+0.004 0.0006

0.0006
-
+0.031 0.002

0.002
-
+0.5 0.1

0.2
-
+2 0.2

0.2
-
+1.4 0.1

0.1
-
+0.8 0.04

0.09

2449 69.31 5.49 -
+130 7

7
-
+0.0041 0.001

0.0005
-
+0.031 0.003

0.002 0.38 -
+2 0.2

0.3
-
+1.4 0.2

0.08
-
+0.8 0.05

0.1

2450 69.96 5.48 -
+130 9

6
-
+0.0041 0.001

0.0005
-
+0.031 0.003

0.002 0.44 -
+1.4 0.3

0.3
-
+1.4 0.2

0.08
-
+0.8 0.09

0.1

2451 70.68 5.38 -
+110 5

5
-
+0.0055 0.0006

0.0007
-
+0.029 0.001

0.002
-
+1.4 0.2

0.3 2 -
+1.1 0.07

0.08
-
+0.8 0.04

0.07

2452 71.08 5.36 -
+110 6

5
-
+0.0055 0.0008

0.001
-
+0.029 0.002

0.002
-
+1.7 0.3

0.3 2 -
+1.1 0.09

0.1
-
+0.8 0.05

0.09

2453 71.09 5.38 -
+90 20

7
-
+0.004 0.002

0.001
-
+0.023 0.005

0.003
-
+1.7 0.3

0.3 2 -
+1.1 0.3

0.2
-
+0.8 0.08

0.3

2454 70.97 5.36 -
+90 10

20
-
+0.004 0.002

0.002
-
+0.023 0.004

0.006
-
+1.7 0.3

0.3 2.1 -
+1.1 0.2

0.3
-
+0.8 0.1

0.2

2455 70.59 5.40 -
+110 9

5
-
+0.0035 0.0007

0.0007
-
+0.026 0.002

0.002 1.7 -
+1.7 0.2

0.3
-
+1.4 0.1

0.1
-
+0.8 0.07

0.1

2456 70.25 5.31 -
+110 20

9
-
+0.004 0.001

0.001
-
+0.027 0.005

0.004 1.7 -
+1.7 0.2

0.3
-
+1.4 0.2

0.3
-
+0.8 0.1

0.3

2457 70.09 5.26 -
+90 5

10
-
+0.0029 0.0004

0.0009
-
+0.025 0.002

0.004
-
+0.5 0.2

0.3
-
+1.7 0.2

0.2
-
+1.4 0.08

0.2
-
+1.1 0.2

0.08

2458 69.75 5.20 -
+110 20

10
-
+0.0023 0.0009

0.0005
-
+0.026 0.004

0.003 0.44 2.1 -
+1.7 0.2

0.1
-
+0.8 0.07

0.2

2459 69.38 5.16 -
+110 10

8
-
+0.0023 0.0007

0.0004
-
+0.026 0.003

0.003 0.46 2.1 -
+1.7 0.2

0.1
-
+0.8 0.06

0.2

2460 69.35 5.18 -
+110 10

7
-
+0.0023 0.0006

0.0004
-
+0.026 0.003

0.002
-
+0.5 0.2

0.3 2 -
+1.7 0.2

0.1
-
+0.8 0.05

0.2

2461 69.19 5.17 -
+110 6

5
-
+0.0023 0.0004

0.0003
-
+0.026 0.002

0.002
-
+0.8 0.3

0.3
-
+2 0.3

0.3
-
+1.7 0.1

0.08
-
+0.8 0.05

0.1

2462 68.89 5.22 -
+110 5

6
-
+0.0023 0.0003

0.0003
-
+0.025 0.001

0.002 0.47 -
+2 0.3

0.2
-
+1.7 0.07

0.09
-
+0.8 0.05

0.07

2463 68.43 5.33 -
+90 10

10
-
+0.0029 0.0007

0.001
-
+0.022 0.003

0.004
-
+0.8 0.3

0.3 2.1 -
+1.4 0.1

0.2
-
+0.8 0.09

0.1

2464 68.01 5.29 -
+110 10

7
-
+0.0023 0.0006

0.0004
-
+0.025 0.003

0.002
-
+1.7 0.3

0.3
-
+2 0.3

0.3
-
+1.7 0.2

0.1
-
+0.8 0.06

0.2

2465 67.03 5.34 -
+110 9

6
-
+0.0023 0.0005

0.0004
-
+0.025 0.002

0.002
-
+0.5 0.3

0.2
-
+2 0.3

0.2
-
+1.7 0.1

0.1
-
+0.8 0.05

0.1

2466 65.73 5.35 -
+130 10

6
-
+0.0027 0.0007

0.0004
-
+0.029 0.003

0.002
-
+1.7 0.3

0.3
-
+1.4 0.2

0.2
-
+1.7 0.2

0.1
-
+0.8 0.09

0.1

2467 64.25 5.34 -
+110 10

10
-
+0.0023 0.0006

0.0006
-
+0.025 0.003

0.003 0.4 2 -
+1.7 0.2

0.2
-
+0.8 0.2

0.2

2468 63.14 5.30 -
+110 9

6
-
+0.0023 0.0005

0.0003
-
+0.025 0.002

0.002 0.48 -
+2 0.3

0.3
-
+1.7 0.1

0.09
-
+0.8 0.05

0.1

2469 62.32 5.20 -
+130 20

20
-
+0.003 0.001

0.001
-
+0.03 0.005

0.005
-
+1.7 0.3

0.3
-
+1.4 0.2

0.3
-
+1.7 0.2

0.2
-
+0.8 0.2

0.2

2470 62.20 5.29 -
+130 10

8
-
+0.0027 0.0008

0.0003
-
+0.03 0.003

0.002 0.39 -
+1.1 0.04

0.2
-
+1.7 0.2

0.06
-
+0.8 0.1

0.07

2471 62.36 5.40 -
+110 7

20
-
+0.0035 0.0006

0.002
-
+0.026 0.003

0.005 0.49 -
+2 0.3

0.3
-
+1.4 0.1

0.3
-
+0.8 0.2

0.1

2474 59.85 5.87 -
+110 3

5
-
+0.005 0.0003

0.0005
-
+0.026 0.001

0.001
-
+1.7 0.3

0.3
-
+1.7 0.3

0.2
-
+1.1 0.04

0.07
-
+0.8 0.07

0.04

2475 58.91 6.04 -
+110 5

20
-
+0.0049 0.0006

0.002
-
+0.025 0.002

0.005
-
+1.4 0.3

0.3 2 -
+1.1 0.08

0.3
-
+0.8 0.1

0.08

2476 57.80 6.17 -
+130 9

4
-
+0.0036 0.0008

0.0003
-
+0.027 0.002

0.001
-
+0.5 0.2

0.3
-
+1.1 0.05

0.2
-
+1.4 0.1

0.06
-
+0.8 0.06

0.07

2477 56.43 6.18 -
+110 20

20
-
+0.005 0.001

0.002
-
+0.025 0.004

0.005
-
+1.7 0.3

0.3 2 -
+1.1 0.1

0.3
-
+0.8 0.1

0.2

2478 55.22 6.29 -
+110 9

6
-
+0.003 0.0006

0.0004
-
+0.023 0.002

0.002 0.51 2 -
+1.4 0.1

0.08
-
+0.8 0.04

0.1

2479 54.36 6.33 -
+130 20

10
-
+0.0023 0.001

0.0005
-
+0.025 0.004

0.003 1.7 -
+1.7 0.3

0.3
-
+1.7 0.3

0.1
-
+0.8 0.1

0.3

2480 54.19 6.36 -
+150 20

10
-
+0.0026 0.001

0.0004
-
+0.028 0.004

0.003 0.44 -
+1.4 0.3

0.3
-
+1.7 0.2

0.09
-
+0.8 0.1

0.1

2481 54.24 6.43 -
+130 5

6
-
+0.0035 0.0004

0.0005
-
+0.026 0.001

0.002 0.4 -
+2 0.3

0.2
-
+1.4 0.08

0.09
-
+0.8 0.07

0.08

2482 54.08 6.51 -
+150 6

6
-
+0.0039 0.0005

0.0006
-
+0.03 0.001

0.002
-
+0.8 0.2

0.2
-
+1.4 0.3

0.2
-
+1.4 0.08

0.09
-
+0.8 0.05

0.06

2483 53.42 6.64 -
+170 20

9
-
+0.0044 0.001

0.0009
-
+0.033 0.004

0.002
-
+1.7 0.3

0.3 0.46 -
+1.4 0.2

0.1
-
+0.8 0.1

0.07

2484 52.55 6.72 -
+150 5

20
-
+0.006 0.0006

0.002
-
+0.031 0.002

0.004 1.8 -
+1.4 0.3

0.3
-
+1.1 0.06

0.2
-
+0.8 0.1

0.08

2485 51.26 6.67 -
+150 4

10
-
+0.006 0.0005

0.002
-
+0.031 0.001

0.003 1.8 -
+1.4 0.3

0.2
-
+1.1 0.06

0.2
-
+0.8 0.09

0.06

2486 50.12 6.66 -
+150 5

8
-
+0.006 0.0006

0.001
-
+0.031 0.001

0.002 1.7 -
+1.4 0.3

0.3
-
+1.1 0.07

0.1
-
+0.8 0.06

0.06

2487 49.89 6.60 -
+170 10

9
-
+0.0044 0.002

0.0005
-
+0.033 0.004

0.002 0.36 0.5 -
+1.4 0.3

0.07
-
+0.8 0.1

0.07

2488 49.67 6.56 -
+170 7

8
-
+0.007 0.001

0.001
-
+0.036 0.002

0.002
-
+1.7 0.2

0.2 0.48 -
+1.1 0.1

0.1
-
+0.8 0.1

0.05

2489 49.34 6.52 -
+190 10

9
-
+0.005 0.002

0.0005
-
+0.038 0.004

0.002 0.35 0.46 -
+1.4 0.3

0.06
-
+0.8 0.1

0.07

2490 49.14 6.50 -
+190 8

10
-
+0.008 0.001

0.002
-
+0.041 0.004

0.004
-
+1.7 0.2

0.2 0.5 -
+1.1 0.1

0.2
-
+0.8 0.2

0.06

2491 48.94 6.47 -
+190 10

20
-
+0.008 0.002

0.003
-
+0.041 0.006

0.005
-
+1.4 0.2

0.3 0.46 -
+1.1 0.2

0.3
-
+0.8 0.3

0.06

2492 48.80 6.44 -
+210 20

9
-
+0.006 0.002

0.001
-
+0.038 0.004

0.005
-
+0.5 0.2

0.2 2 -
+1.4 0.3

0.1
-
+0.50 0.05

0.3

2493 48.59 6.47 -
+190 10

20
-
+0.008 0.003

0.003
-
+0.041 0.006

0.005
-
+1.1 0.2

0.3 0.48 -
+1.1 0.2

0.3
-
+0.8 0.3

0.06

2494 47.84 6.40 -
+210 10

10
-
+0.009 0.002

0.003
-
+0.041 0.003

0.005
-
+1.7 0.3

0.2 2.1 -
+1.1 0.1

0.2
-
+0.50 0.04

0.2

2495 47.01 6.37 -
+210 20

9
-
+0.0056 0.002

0.0007
-
+0.038 0.004

0.005 0.36 2.1 -
+1.4 0.3

0.08
-
+0.50 0.04

0.3

2496 46.45 6.33 -
+210 20

9
-
+0.0056 0.002

0.0007
-
+0.038 0.004

0.005 0.36 2.1 -
+1.4 0.3

0.08
-
+0.50 0.04

0.3

2497 45.86 6.30 -
+210 20

10
-
+0.009 0.002

0.002
-
+0.041 0.004

0.005
-
+1.7 0.3

0.2 2.1 -
+1.1 0.2

0.2
-
+0.50 0.04

0.2

2498 45.47 6.20 -
+210 10

10
-
+0.009 0.003

0.002
-
+0.042 0.004

0.005
-
+1.4 0.2

0.2 2.1 -
+1.1 0.2

0.2
-
+0.50 0.04

0.2

2499 45.05 6.15 -
+190 8

20
-
+0.013 0.002

0.006
-
+0.046 0.006

0.006 1.7 -
+0.5 0.3

0.3
-
+0.8 0.09

0.3
-
+0.8 0.3

0.08

2500 44.38 6.12 -
+230 20

10
-
+0.01 0.005

0.003
-
+0.047 0.005

0.006
-
+1.4 0.3

0.2
-
+2 0.2

0.3
-
+1.1 0.3

0.2
-
+0.50 0.05

0.2

2501 43.52 6.04 -
+210 20

20
-
+0.014 0.003

0.006
-
+0.046 0.004

0.007 1.8 2 -
+0.8 0.1

0.3
-
+0.50 0.05

0.2

2502 42.56 5.92 -
+210 20

20
-
+0.015 0.004

0.006
-
+0.047 0.005

0.007 1.7 2 -
+0.8 0.2

0.3
-
+0.50 0.05

0.3

2503 41.26 5.80 -
+210 20

10
-
+0.015 0.003

0.006
-
+0.048 0.004

0.006 1.8 2.1 -
+0.8 0.1

0.3
-
+0.50 0.04

0.2

2504 39.91 5.67 -
+210 20

10
-
+0.01 0.004

0.003
-
+0.046 0.005

0.006
-
+0.5 0.2

0.2 2.1 -
+1.1 0.3

0.2
-
+0.50 0.05

0.2

2505 38.61 5.59 -
+210 20

10
-
+0.01 0.004

0.002
-
+0.047 0.005

0.006
-
+0.8 0.2

0.2 2.1 -
+1.1 0.3

0.1
-
+0.50 0.05

0.3

2506 37.77 5.52 -
+170 20

20
-
+0.013 0.005

0.005
-
+0.046 0.007

0.006
-
+1.1 0.2

0.3
-
+0.5 0.3

0.3
-
+0.8 0.3

0.3
-
+0.8 0.3

0.1

Note. See Table 2 for the description of the columns.
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p/He behavior is dominated by p/ He4 ; thus, even taking into
account the uncertainty on the He3 and He4 LISs, the observed
p/He can not be reproduced if we assume the same A/Z but
different LIS.

The relation between the time variation and the spectral
index could be tested with a long-term measurement of the ratio
of two species with exactly the same A/Z, for example,
deuterons and He4 . Because of its large acceptance and

Figure 7. Effect of the difference in LIS shape on the time variation of p/He. The normalized modeled p/ He3 (red and blue lines; left) and p/ He4 (red and blue lines;
right) compared to the observed p/He (gray circles) are shown as a function of time for three selected rigidity bins. The vertical dashed magenta lines delimit the
period of the solar magnetic field polarity reversal.

Figure 8. Effect of the A/Z dependence of the diffusion tensor on the time variation of p/He. The normalized modeled p/ He3 (red and blue lines; left) and p/ He4 (red
and blue lines; right) compared to the observed p/He (gray circles) are shown as a function of time for three selected rigidity bins. The vertical dashed magenta lines
delimit the period of the solar magnetic field polarity reversal.
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precision, AMS-02 might be able to perform such a
measurement.

6.2. Charge-to-mass Ratio Dependence of the Diffusion Tensor

To understand the effect of the A/Z dependence of the
diffusion tensor, we ran the best-fit models for p, He3 , and He4 ,
forcing the same LIS for all three species but using the
appropriate A/Z for each particle. In the following, p
corresponds to the proton LIS and A/Z=1, He3 corresponds
to the proton LIS and A/Z=3/2, while He4 corresponds to
the proton LIS and A/Z=2.

Figure 8 shows the comparison of the normalized modeled
p/ He3 (red and blue lines; left panels) and p/ He4 (red and blue
lines; right panels) with the normalized observed p/He (gray
circles) for the same rigidity bins as in Figure 7.

The time trend of the observed p/He is reproduced, but for
He3 models, the amplitude of the decrease below 3 GV is
smaller than that for the data and He4 models; the difference in
A/Z between He3 and He4 is clearly playing an important role.

It is interesting to consider the ratio between particle
velocities: at 2 GV, =( ) ( )v vp He 1.13 , while =( ) ( )v vp He4

1.23; at 2.5 GV, =( ) ( )v vp He 1.073 , while =( ) ( )v vp He4

1.16; and at 3 GV, =( ) ( )v vp He 1.053 , while =( ) ( )v vp He4

1.12. The values of ( ) ( )v vp He3 at 2 GV and ( ) ( )v vp He4 at
3 GV are very similar, and so is the amplitude of the decrease
of p/ He3 at 2 GV and p/ He4 at 3 GV. This suggests that the
magnitude of the time variation of the ratio of two species with
the same LIS is proportional to the velocity ratio of the two
species. As seen in Section 4, k

0 is the main parameter that
determines the level of modulation of the flux, so it is
reasonable to expect that the amplitude of the variation of p/He
depends on the component-wise ratio K K =( ) ( )p He

( ) ( )v vp He .
These results do not depend on the choice of the LIS. Using

any parameterization of the He3 or He4 LISs, we obtain the
same normalized p/ He3 and p/ He4 as the results presented in
Figure 8.

The two tests show that the observed p/He time variation is
most probably due to the A/Z dependence of the diffusion
tensor, since the difference in LIS shape should produce the
opposite time behavior between 2 and 3 GV. However,
PAMELA was able to measure p/He at lower rigidities than
AMS-02 (down to 0.4 GV) and took measurements at different
solar activity conditions (from the minimum of solar cycle 23/
24 to the maximum of solar cycle 24). At 1 GV, the spectral
index of the p/ He3 and p/ He4 LIS ratios is negative and
greater (in absolute value) than that at 2 GV, so it might be
possible that the difference in LIS shape plays a bigger role at
1 GV than at 2 GV.

As noted before, the symmetric components of K depend on
A/Z, but the diffusion tensor also contains the drift coefficient,
kA, in its antisymmetric part. From Equation (12), we see that
kA is a function of A/Z, so we might expect a different behavior
of the time dependence of p/He according to the HMF polarity.
We verified that this is not the case by repeating the tests with
best-fit models with both polarities for all BRs. The difference
between the A<0 and A>0 models is of the order of 0.5%
for R�2 GV. The drift effects for protons become larger
below 1 GV (Potgieter & Vos 2017), so the PAMELA data
might be able to reveal a difference in the time variation of
p/He before and after the polarity reversal, due to the A/Z
dependence of the drift coefficient.

7. Conclusions

Understanding diffusion processes in the heliosphere is
crucial to improving predictions of the time variation of GCR
fluxes at Earth and other locations of interest. The recently
published monthly proton and helium fluxes measured by
AMS-02 allow the detailed study of the effects of solar
modulation during the ascending phase, solar maximum, and
descending phase of solar cycle 24. It was observed by AMS-
02 that the proton flux at 1 and 5 GV behaves differently with
time during the period of the solar maximum: the flux intensity
at 1 GV keeps decreasing until the peak of solar activity, while
at 5 GV, it remains flatter. Instead, the AMS-02 p/He ratio
below 3 GV is constant in time until 2015 March; then it starts
to decrease, at the same time that proton and helium fluxes start
to recover, while the solar cycle progresses toward the next
minimum.
In this work, a sophisticated state-of-the-art 3D numerical

model has been tuned to reproduce the monthly proton fluxes
measured by AMS-02. The fitted normalization of the parallel
diffusion coefficient is well correlated with the proton flux
intensity at 5 GV and anticorrelated with the sunspot number.
The different time behavior of the proton flux at 1 and 5 GV is
determined by the slope of the perpendicular diffusion
coefficient. During the period of maximum solar activity, the
perpendicular mean free path decreases more at low rigidities
than at high rigidities.
Assuming the same mean free path for p, He3 and He4 , the

best-fit models are able to reproduce the observed time trend of
the p/He ratio, albeit with a small rigidity-dependent normal-
ization shift, most probably due to a bias in the He3 and He4

LIS parameterization.
To understand the origin of the time dependence of p/He,

two separate tests were performed. First, the model was run
assuming a different LIS for p, He3 , and He4 but the same
mass-to-charge ratio, A/Z, to explore how the difference in LIS
shape can affect the time variation of p/He. Then, the model
was run assuming the same LIS for p, He3 , and He4 but a
different A/Z, to check the effect of the A/Z dependence of the
diffusion tensor. The second test was able to reproduce the
observed p/He time variation, while the first test was not. Thus,
the A/Z dependence of the diffusion tensor seems to be the
dominant cause of the time variation of p/He, at least in the
rigidity range between 2 and 3 GV. Data from PAMELA on
p/He at lower rigidities and from AMS-02 on d/ He4 would
shed light on the importance of the difference in the LIS shape.

We would like to thank E. E. Vos, R. D. Strauss,
N. Tomassetti, and S. Della Torre for fruitful discussions about
the physics of GCR transport in the heliosphere. We acknowl-
edge the financial support of National Science Foundation Early
Career under grant NSF AGS-1455202; Wyle Laboratories,
Inc., under grant NAS 9-02078; and NASA under grant
17-SDMSS17-0012. M.S.P. acknowledges the financial support
of the South African National Research Foundation (NRF) under
the Competitive Funding for Rated Researchers grant 68198.

Note added. While this work was in review, we became aware of a
related study from Tomassetti et al. (2018). Their work is based on the
same data sets as ours, but it follows different approaches for the
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galactic and heliospheric transport modeling. Their results are
consistent with those presented in this manuscript.
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