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ABSTRACT 

NONPARAMETRIC ESTIMATION OF THE ANTIMODE AND THE 

MINIMUM OF A DENSITY FUNCTION 

The study of the estimation of the antimode and the minimum of a density func­

tion has been neglected in the li terature, in spite of their useful applications. The main 

objective of this thesis is to propose and study nonparametric estimators for these param­

eters. Strong consistency and limiting distributions are derived. The estimators depend 

on unknown smoothing parameters. Data-based choices of these smoothing parameters 

are proposed, using the bootstrap and kernel density estimation techniques. A critical 

review of data-driven bandwidth selection procedures for kernel density estimation is pre­

sented. An extensive Monte Carlo study shows that the small sample behaviour of the 

newly proposed estimators is very satisfactory. Finally, some applications to real data 

are discussed. 



OPSOMMING 

NIE-PARAMETRIESE BERAMING VAN DIE ANTIMODUS EN DIE 

MINIMUM VAN 'N DIGTHEIDSFUNKSIE 

Die bestudering van die antimodus en die minimum van 'n digtheidsfunksie het nog 

weinig aandag in die literatuur geniet. Die hoof doe! van hierdie proefskrif is die voorstel en 

bestudering van nie-parametriese beramers vir hierdie parameters. Sterk konsekwentheid 

word aangetoon en limietverdelings word afgelei. Die beramers is afhanklik van onbeken­

de gladstrykingsparameters. Keuses van hierdie gladstrykingsparameters, gegrond op die 

data, word voorgestel, deur van skoenlus- en kerndigtheidsberamingstegnieke gebruik te 

maak. 'n Kritiese oorsig van data-gebaseerde gladstrykingsprosedures vir kernberaming 

word gegee. 'n Uitgebreide Monte Carlo-studie toon <lat die kleinsteekproefgedrag van die 

nuwe voorgestelde beramers baie bevredigend is. Laastens word toepassings op werklike 

data bespreek. 
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Chapter 1 

Some direct estimators of the 

antimode and the minimum of a 

density function 

1.1 Introduction 

The estimation of the mode and the maximum of a density function has received a 

considerable amount of attention in the literature during the last few decades. Significant 

contributions in this area are the results obtained by Parzen (1962), Chernoff (1964), 

Grenander (1965), Venter {1967), Sager (1975, 1978), Eddy {1980), Romano {1988) and 

Narayanan and Sager (1989). However, the study of the estimation of the antimode e and 

the minimum f(B) of an unknown density function f has been neglected , despite their 

useful applications. My interest in these two parameters originated from Astrophysics 

and this study is therefore concluded with relevant real data examples from this field. 

The behaviour of so-called "maximal spacings" is related to the minimum and to the 

local behaviour of the density near its minimum. Consequently, the results obtained in 

this chapter can be applied to obtain new theoretical results for maximal spacings. 

Estimators off( B) may be classified as direct or indirect according to their paternity. 

When the estimator is generated as a by-product from estimating some other quantity, 

1 
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usually the density f itself, it is called indirect. All the standard density estimators 

(Wegman (1972), Silverman (1986) and Izenman (1991) have published excellent reviews 

on nonparametric density estimation methods) provide indirect estimators of J( B) by 

simply minimising the density estimate. In other words, f has to be estimated before f ( B) 

can be estimated. The indirect minimum estimator cannot be expressed in closed form. 

On the other hand, when the estimator is specifically designed for the sole purpose of 

estimating f(B) as a statistical parameter in its own right and can be expressed explicitly 

it is called direct . My proposed estimators of J(B) can in part be heuristically motivated 

from the class of density estimators of the histogram type, studied, for example, by Van 

Ryzin (1973) and Kim and Van Ryzin (1975). However, a special argument enables one 

to express the estimator in closed form. In this sense the estimator can be viewed as 

direct. Furthermore, no initial estimation of the density fun ction itself is necessary. 

The estimation of() may also be classified as indirect or direct . An indirect antimodal 

estimate is obtained by selecting a value at which a density estimate is minimised. In 

Chapter 4, the small and moderate sample behaviour of the proposed direct estimators 

of() and f( B) are compared with, among others, the indirect estimators based on kernel 

estimation . The kernel method, introduced by Rosenblatt (1956), is probably the most 

commonly used density estimation technique and is certainly the best understood math­

ematically. A background of kernel density estimation in general is given in Chapter 2. 

It includes a detailed discussion of current choices of the smoothing parameter or band­

width. The aim of this discussion is to recommend some methods which are probably 

the best to use currently. 

Efron (1979) introduced the well-known resampling procedure called the bootstrap . 

The bootstrap is a nonparametric computer-orientated technique that is growing more 

and more popular along with the advancement of computer technology. In Chapter 

4 the bootstrap is used to estimate smoothing parameters that appear in the proposed 

estimators. It is also applied in the construction of confidence intervals for the parameters. 

Chapter 3 provides a short background of the bootstrap procedure. 

In this chapter the direct estimation of the anti mode () and the minimum f ( B) of 

an unknown density function f (with compact support) is studied. The proposed direct 
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estimators of B and f ( B) are defined in Section 1.3. Strong consistency of the estima­

tors is proved under general conditions. In Section 1.4 almost sure rates of convergence 

are studied. Interesting and surprising results concerning the limiting distributions of 

the proposed estimators are derived in Section 1.5. In Section 1.6 a discussion of the 

relationship between the proposed estimators and maximal spacings is given. 

1.2 Notation and general assumptions 

Let Xi, X2, ... , be a sequence of independent and identically distributed random variables 

on some probability space (D,:F,P) with unknown univariate distribution function F . 

Suppose throughout that Fis absolutely continuous (with respect to Lebesgue measure) 

with density f. For some finite constants a and b, a < b, suppose that f ( x) > 0 for 

all x E [a , b] and f( x) = 0 otherwise. In this section and the following two sections 

arguments are used which are reminiscent of those used by Sager (1975), who studied the 

mode of a density fun ction. 

Definition 1.2.1 Th e subset M of [a, b] is called the antimodal set of F on [a, b] if 

1. f is constant on M, 

2. f(B) < f(x) for each x E [a, b] - M and() EM, 

3. for each open set U containing M, there exists an€= c(U) > 0 such that J(x)-€ 2 

f(B) fo r each x E [a, b]-: U and BE M. 

Definition 1.2.2 We say that an absolutely continuous distribution function F satisfies 

the standard conditions on [a, b] if there is a nonempty antimodal set M in [a, b] such 

that, for some B E M, either 

F~(B) exists and J(B) = F~(B), if B < b, ( 1.1) 

or 

F~ ( B) exists and f( B) = F~ ( B), if() > a, ( 1.2) 

where F~ ( B) and F~ ( B) are the right and left derivatives of F at () respectively. 
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Denote the order statistics of a random sample X1 , X2, .. . , Xn from F by 

Let { sn} be a nonrandom sequence of positive integers such that Sn -+ oo as n --t oo. 

For each n, let Kn be a positive integer-valued random variable defined by, 

( 1.3) 

Note that, since Fis absolutely continuous, Kn is unique and YKn+sn -YKn-sn > 0 almost 

surely. 

In what foilows, ~· denotes convergence almost surely (with probability one) as 

n -+ oo. 

1.3 Strong consistency 

We propose estimating the anti mode () by Bn, where Bn is any statistic satisfying 

( 1.4) 

For example, one can choose 

Theorem 1.3.1 Let F(x) satisfy the standard conditions on [a, bL with associated non­

empty antimodal set M. Suppose 

-1 0 n s11 -+ as n -+ oo, (1.5) 

00 

I: n).5" < oo for all A, 0 < ). < 1, (1.6) 
n=l 

then inf M ::; lim infn--+oo YKn-sn ::; lim supn--+oo YKn+sn ::; sup M almost surely. 

First we state a lemma, proved by Sager (1975), that is needed in the proof of Theorem 

1.3.1. 
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Lemma 1.3.1 Suppose {Zn} is a nonrandom sequence of positive integers such that 

Zn -t oo, n-1 zn -t 0 as n -t 00 1 and 

00 

L nA1
n < oo for all .\, 0 < A < 1. 

n=l 

Further1 let Si, S2, .. . 1 and T1 , T2, .. . 1 be sequences of random variables such that Sn :S Tn 

fo r each n and [Sn, Tn] contains exactly 2ln + 1 of the observations X 1 , X 2, ... , Xn. Then1 

where Fn denotes the empirical distribution function of X1 , X2, . .. , X 11 • 

Proof of Theorem 1.3 .1 

We give the proof when (1.1) holds. The proof for (1.2) is similar. 

Choose and fix 0 E M which satisfies (1. 1). For each n, let Jn be a discrete random 

variable defined by the following: if [O , b] contains at least 2sn + 1 observations, let 

If [O , b] contains fewer than 2sn + 1 observations, let Jn =Sn+ 1. 

First we note that, since f ( 0) > 0, F assigns positive probability to every interval 

[O, 0 + c], c > 0. So, by (1.5) and the strong law of large numbers (SLLN), YJn+sn and 

YJn-sn converge almost surely to 0. 

Consider the following events, 

[ lim {F(YKn+sn) - F(YKn-sn)}n(2snt1 = l], 
n--+oo 

( lim {F(YJn+sn) - F(YJn-Sn)} /(YJn+sn - YJn-sn) = J(O)], 
n--+oo 

(1.8) 

n s [inf M :S liminfYf<n-Sn :S limsupYKn+sn :S supM]. 
n-f'oo n-+oo 

The method of proof will be to show that n 1 n n 2 n n3 c n 4 c ns and that P(n1 ) = 

P(n2) = P(n3) = i. 
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Let w E !11 n !12 n !13 . Using (1.8) and the fact that 

we have 

This implies 

Furthermore, 

This implies 

and hence 

F(YKn+sn) - F(YJ<n-sn) - 1 J(x)dx 
[YKn- • n ;YKn+•nJ 

> j yKn- •n ;YKn+ •n J J( O)dx 

= J(O)[YKn+sn - YK,.-sn l· 

6 

(1.9) 
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Hence, we have that 

Thus w E D4 which implies that D1 n D2 n D3 C D4 . 

Using Lemma 1.3.l we have 

n-+oo 

{ lim [F(YKn+sJ - F(YKn-sn)]n(2snt1}{limsup(n-1 2sn)} 
n--+oo n~oo 

0 

almost surely. 

This implies that F(YKn+sJ - F(YKn-sJ converges almost surely to zero. By (1.9), 

and hence YKn+sn - YKn- sn converges almost surely to zero. 

To show that D4 c D5 , it suffices to show that D~ c D~ . Let w E D~. Thus there is a 

subsequence { n(j)} such that [YKn(;J-sn(;J, YKn(i)+sn(;)] lies outside of (inf M -5, sup M +5) 

for all j large enough and for some 5 > 0, since YKn+sn - Yf<n- sn converges to zero. 

By Definition 1.2.1(3) this implies that 

F(YKn(j )+sn(j)) - F(YKn(j)-Sn(j)) 2'.: j({) ) + £ 

Yxn(j )+sn(j) - YKn(j)-Sn(j) 

for all large j and for some c > 0. But this implies that w ED~ . 

We now prove the probability statements. 

From Lemma 1.3.l we immediately have P(D1 ) = P(D2 ) = 1. To see that P(D3 ) = 1, 

let 

and 
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Write 

(1.10) 

Since YJn-sn and YJn+sn converge almost surely to 0, and in view of (1.1), we have that 

Cn and Dn converge almost surely to f(Ot 1
. Thus, setting Sn = 0 and Tn = YJn+sn in 

Lemma 1.3.1 and using P(!11 ) = 1, we conclude that the left-hand side of (1.10) converges 

to f(0)- 1 almost surely. Thus P(!13 ) = 1. This implies that P(!14 ) = 1 and P(!15 ) = 1. 

0 

The strong consistency of the estimator of On follows directly from the above theorem 

and we state this as Corollary 1.3.1. 

Corollary 1.3.1 Under the assumptions of Theorem 1.3.1, if the antimode is unique, 

i. e., M = {O} , then YKn-sn ~· 0, YKn+sn ~· 0 and On ~· 0 as n -t 00 . 

Remark 

If { sn} is chosen so that Sn ,...., An°' with 0 < a < 1 and A > 0 then (1.5) and (1.6) hold. 

The results obtained in Corollary 1.3.1 can also be derived under different conditions, 

which do not include the third assumption of Definition 1.2.1 and the assumption that 

F satisfies the standard conditions on [a, b]. In order to do this we first introduce the 

following definition. Suppose the antimode 0 E [a, b] is unique. 

Definition 1.3.1 Let R 1 > 1, R 2 > 1 and 8 > 0 be finite constants. For a :::::; 0 - R 1 8 < 

0 - 8 < 0 and/or 0 < 0 + 8 < 0 + R 2 8 :::::; b, define 

max{r+(8), 1+(8)} 
a(5, Ri, R2 ) = min{r-(R

2
8), 1-(R

1
8)}' 
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where 

r+ ( 5) 

r-( R25) 

1 + ( 5) 

1-(R18) 

sup{f(x ); e ::; x ::; e + 5}, 

inf{J(x); e + R25::; x::; b}, 

sup{f(x ); e - 5 ::; x ::; 8} , 

inf{J(x); a::; x::; 8 - R18}. 

Theorem 1.3.2 Suppose {1.5) and {1.6) hold and the antimode e E [a , b] is unique. 

9 

{1) If 8 = a and there is a positive constant R2 > 1 such that r( 5, R 25) < 1 for all small 

positive 5, then Bn ~·a as n --too. 

(2) If 8 = b and there is a positive constant R1 > 1 such that 1 ( 5, R 15) < 1 for all small 

positive 5, then Bn ~- b as n --too. 

(3) If 8 E (a, b) and there are positive constants R1 > 1 and R2 > 1 such that 

a( 5, R 1 , R2 ) < 1 for all small positive 5, then {Jn ~- e as n --t oo. 

The following trivial lemma is necessary to prove part (3) of Theorem 1.3.2. 

Lemma 1.3.2 Let { cn}~=I and { dn}~=I be sequences of real numbers such that1 fo r some 

finite constant </>1 Cn ::; </> ::; dn for all large n and dn - Cn = o(l) as n --t oo. Then 

dn = </> + o(l) and Cn = </>+ o(l) as n --too. 

Proof 

Let c > 0 be arbitrary. Then there exists a positive integer N(c) such that for all 

n 2 N(c), 0::; dn - Cn < €. Hence, 

which implies that d n --t </> as n --t oo. Similarly, c11 --t </> as n --t oo . 

0 
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Proof of Theorem 1.3.2 

Suppose the hypothesis of part (1) of the theorem holds. Let Jn be defined by (1.7) 

with 0 = a. Since J(O) > 0, F assigns positive probability to every interval [a, a+ c:], 

c: > 0. So, by (1.5) and the SLLN, YJn+sn and YJn- sn converge almost surely to a. 

Consider the following events, 

By Lemma 1.3. l with Sn = YKn -sn and Tn = YKn+ sn, we know that P(f21) = 1 and 

with Sn = YJn-sn and Tn = YJn+sn, we have P(D2) = 1. Also, P ( D.3) = 1. Next, we show 

that P(Do) = 1. 

It suffices to show that D1 n D2 n D.3 n D3 = 0. Suppose that w E D1 n D2 n D.3 n D3. 

Since w E n3 , there is an c: > 0 and a subsequence { n(j)} such that 

YKnui-sn(j) > a+ R2 c: for all j large enough. (1.11) 

From the definition of r(·, ·),it follows that there exists a 80 > 0 such that r(80 , R2 8o) < 1 

and 80 < c:. Hence, from (1.11) and the fact that P(D.1 ) = P(D2 ) = P(D3 ) = 1, we obtain 

1 

> 

~[Y .y l r-(R28o)dx Kn(i) - 'n(j)' J(n(i)+ ' n(i) 

J[Y;n(i )- ' n(i) ;Y;n(j)+'n{j) J J ( X )dx 

J[YKn(j)-'n(i) ;YKn(j)+'n(j) ] J ( X )dx 

[F(YJ,.ui+sn(i) ) - F(YJn(j)-sn(j))]n(j)(2sn(j)t1 

[ F(YJ<n(j)+s,.u) - F(YJ(n(j)-Sn(j) )]n(j) (2sn(j) )-l 
c::;· 1 as j --t oo, 
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which leads to a contradiction. Hence, P(D.0 ) = 1. 

As in the proof of Theorem 1.3.1, we conclude that 

(1.12) 

Thus, 

almost surely. Part (1) of the theorem now follows since YKn-sn < ()n < YKn+sn (see 

(1.4)). 

The proof of part (2) is similar to that of part (1). 

Now, suppose the hypothesis of part (3) holds. Since 

it follows that for all small positive 8, r(8, R28) < 1 and 1(8, R18) < 1. Thus parts (1) 

and (2) of the theorem are applicable. 

Define In and Ln by the following: If [a, BJ contains at least 2sn + 1 observations, let 

If [a, BJ contains fewer than 2sn + 1 observations, let In = Sn+ 1. If [B, b] contains at least 

2sn + 1 observations, let 

= max(YJ+sn - YJ-sn;j =Sn+ 1,. · ·, n - Sn;{) S 0-sn S YJ+sn Sb). (1.14) 

If [ (), b] contains fewer than 2sn + 1 observations, let Ln = Sn + 1. 

By part (1) of the theorem and (1.12), we have that YLn-sn and YLn+ sn converge to() al­

most surely. Similarly (by using part (2) of the theorem) it follows that Y1n-sn and Yln+sn 

converge to() almost surely. Let {n(i)}~ll {m(j)}f=1 and {l(k)}k~1 be subsequences of 

{1,2, .. . } such that {n(i)}~1 U{m(j)}f=1 U{l(k)}f:1 = {1,2, ... } and YKn( i)+sn( i ) S ()for 
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Since [YKn(i)-Sn(i) l YKn(i)+sn(i)l c [a, OJ it follows that YKn( i)-Sn(i) = Vin(i) -Sn(1 ) and 

YKn(i)+sn(i) = YJn(i)+sn(i). Hence, Bn(i) ~· 0 as i -+ oo. It follows similarly that Bm(j) ~· 0 

as j -+ oo. Since YK,(k)-si(k) :::; 0 :::; YKi(k)+-'i(k ) for each k, it follows from Lemma 1.3.2 and 

{l.12) that YK,(k)-si( k) and YK,(k)+si(k) both converge to () almost surely. This implies that 

B1(k) ~· 0 as k -+ oo. Hence, Bn ~· () as n -+ oo. 

0 

Let us turn attention to estimation of the minimum f ( 0) of an unknown density f. Let 

{rn} be another nonrandom sequence of positive integers such that rn -+ oo as n-+ oo. 

We propose estimating f ( 0) by 

(1.15) 

where Kn is defined by (1.3). 

The definition of T/n is motivated heuristically as follows. Let An(x) = L::i=1 I(Yi:::; x) 

and suppose t 2 1 is some integer depending on n (I(B) is the indicator function of the 

event B). Van Ryzin (1973) en Kim and Van Ryzin (1975) proposed and studied the 

following nonparametric estimator of J, 

for x E ft 

consider 

!
A ( ) - n - 1 

( 2t + 1) 
n,t X - 1 

YAn(x}+t - YAn(x)-t 

[Yt+1 , Y,1-t+l). Since we are interested in estimating J ( 0) 

maxsn+1SjSn-sn (Yi+ sn - Yi-sn) 

n-1 (2sn +l) 

YKn+sn - YKn-Sn 

fn,sn (YKn ). 

infxf(x), 

Note that T/n = fn,rn(YKJ· The incorporation of the sequence {rn} in the definition of 

T/n allows the estimator to be "more flexible" and some recommendations regarding the 

choice of { r n} (and {Sn}) will be made in the theorems and the numerical studies below. 

If, for example, {rn} and { sn} are chosen such that rn < Sn for all n, then Theorem 
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1.5.2 shows that, under certain regularity assumptions, T/n is asymptotically (as n ----+ oo) 

normally distributed! 

The following theorem shows that T/n is strongly consistent. 

Theorem 1.3.3 Suppose (1 .5) holds, rn ~Sn for all n , and 

00 

L n>.rn < oo for all \ 0 < A < 1. 
n =l 

Further, suppose the anti mode is unique, i.e. , the anti modal set (see Definition 1.2.1) 

M = { B}, and .F has a first derivative in some neighborhood of B E [a, b] with F' contin­

uous at B and f(B) = F'(B). Then T/n ~· f(B) as n----+ oo. 

Proof 

Using the mean-value theorem , it follows that 

obtain from Corollary 1.3.1 that YKn-Tn and YKn+rn converge almost surely toe. Hence, 

asn-+oo 

(1.16) 

Using Lemma 1.3.1 and (1.16) , it follows that 

T/n 
n-1(2rn+l) 

YKn+rn - YKn - Tn 

{
Fn(YKn+rn )- Fn(YKn-rJ} {n-l~~1'n .+ 1)} 

YKn+rn - YKn-Tn n (21 n) 

{ Fn(Y~11 +r11 ) = Fn(Y~11 -rJ} {F(YK~+r11 ) = F:YK 11 -r11
)} {2rn + 1} (1.l 7) 

F(YR 11+r11 ) F(YR 11 -rJ Yl\ 11 +rn YJ\ n- Tn 2rn 

~· f(B). 

0 
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Remark 

Suppose rn = Sn for all n, and F satisfies the standard conditions on [a, b], with asso­

ciated nonempty antimodal set M. Without any further assumptions on F, the strong 

consistency of 7Jn follows directly from (1.17) by applying Lemma 1.3.1 and the fact that 

P(D.4 ) = 1 (see (1.8)) . 

1.4 Strong convergence rates 

In this section we retain all the background and assumptions of the previous sections, ex­

cept assumptions (1. 1) , (1.2) and the third requirement of Definition 1.2.1. Let r (o, R2o), 

l(o, R1o) and a(o, Ri, R2 ) be defined as in Definition 1.3.1. 

Theorem 1.4.1 Suppose the anti mode () E [a, b] is unique and its estimator Bn is de­

fin ed as in (1.4). Let Sn be of the form An2k/(i+2k) for some A > 0, and set On = 

n-1/(1+2k)(log n)1fk, fo rk specified below. 

(1) If() = a and there are positive constants R2 > 1, p and k such that r( o, R 2o) ::; 1- pok 

for all small positive o, then Bn = a+ o( On) almost surely. 

(2) If() = b and there are positive constants R1 > 1, p and k such that 1 ( o, R1 o) ::; 1-pok 

for all small positive o, then Bn = b + o( On) almost surely. 

(3) If () E (a, b) and there are positive constants R1 > 1, R2 > 1, p and k such that 

a( o, R1 , R2 ) ::; 1 - pok for all small positive o, then Bn = () + o( On) almost surely. 

The following lemmas will be needed for the proof of the theorem. Lemma 1.4.l was 

proved by Sager (1975) . 

Lemma 1.4.1 Let Si, S2 , .•. , and T1 , T2 , ... , be sequences of random variables such that 

Sn ::; Tn for each n and [Sn, Tn] contains exactly 2ln + 1 of the observations X 1 , X2, . .. , Xn , 

where {Zn} is a nonrandom sequence of positive integers of the form An°, for some finit e 

constants A> 0 and 0 <a< 1. Th en, as n ~ oo 
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where Fn denotes the empirical distribution function of X 1 , X2, ... , Xn. 

Lemma 1.4.2 Suppose the hypothesis of part (1) of Theorem 1.4-1 holds. Let Jn be 

defined by ( 1. 7) with () = a. Then, as n --+ oo 

Proof 

Let£> 0 be arbitrary. Since f( x) > J(a) > 0 for each x E (a, b], we obtain 

F(a + EOn) - F(a) r J( x)dx 
J( a,a+e:Sn] 

> r J(a)dx 
J(a,a+e:Sn] 
f( a )con. 

This implies that 

1. . f { F( a+ EOn) - F( a)} > 1 llU 111 f ( ) s: _ • 
n~oo a Eun 

(1.18) 

By Lemma 1.3.1 , we have 

(1.19) 

But n-1 (2s11 )/{f(a)con}--+ 0 as n--+ oo, so by (1.19) we have 

F(YJ,,+s,,) - F(a) a.s. O --------+. 
f (a )con 

( 1. 20) 

From (1.18) and (1.20) we deduce that 

1. { F(YJn+sJ - F(a)} 1. . f { F(a +con) - F(a)} 
im sup J( ) s: < nn 111 J( ) s: , 
n--+oo a Eun n--+oo a €u 11 

and hence that F( a+ cOn) > F(YJn+sJ for all large n, almost surely. Since c is arbitrary, 

this implies YJn+sn = a + o( 011 ) almost surely. 

D 

Note that, since a ~ YJn-sn ~ YJn+sn ' we also have that YJn-sn = a+ o(on) almost 

surely. 
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Lemma 1.4.3 Suppose that the hypothesis of part (1) of Th eorem 1.f 1 holds. Then1 as 

n-+ oo 

where Kn is defined in {1.3). 

Proof 

Consider the following events, 

By Lemma 1.4.l with Sn = YKn-sn and Tn = YK,.+sn, we know that P(f21) = 1 and 

with Sn = YJ,.-s ,. and Tn = Y1,.+s,,, we have P(f22) = 1. By Lemma 1.4.2 we know that 

P(f23) = 1. Next, we show that P(f20 ) = 1. 

It suffices to show that f21 n f2 2 n f23 n f20 = 0. Suppose that w E f21 n f2 2 n f23 n f20. 

Since w E 0 0, there is an c > 0 and a subsequence { n(j)} such that 

(1.21) 

Using the hypothesis of (1) , Lemma 1.4.2, (1.21) and Lemma 1.4.1, we have 

J[YK c ·)-• c ·l;YK c ·l+· c·l1f(x)dx n J n J n J " n J 
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[ F(YJn(j)+sn(j) ) - F(YJn(j)-sn(j) )]n(j) (2sn(j) )-l 

[F(YKn(j )+sn(j)) - F(YKn(Ji-sn(j) )Jn(j)(2sn(j) )-1 

( -1/2 l ) 1 + o sn(j) og Sn(j) 

1 + o(n(jtk/(I+2k) logn(j)). 

17 

However, 1 - p(c:8n(j ))k = 1 - pc:kn(jtkf(I+2k) log n(j), which contradicts the above in­

equality for large j. Hence, P(D.0 ) = 1. 

D 

The proof of the following trivial lemma is analogous to that of Lemma 1.3.2 and will 

therefore be omitted. 

Lemma 1.4.4 Let {cn } ~= l ' {dn } ~=l and Pn } ~= I be sequences of real numbers such that, 

for some finit e constant </;, c11 :S </; :S dn for all large n and dn - Cn = o( An) as n ~ oo . 

Then dn = <P + o(,\n) and Cn = <P + o(,\n) as n ~ oo . 

Proof of Theorem 1.4.1 

By (1.9), 

and Lemma 1.4.1 implies that 

Hence, as n ~ oo 

( 1. 22) 

This, together with Lemma 1.4.3, yield 

almost surely. Part (1) of the theorem now follows easily, since 
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almost surely. The proof of part (2) is similar to that of part (1 ). 

Now, suppose the hypothesis of part (3) holds. Since 

it follows that for all small positive 8, r(8, R28):::; l - p8k and 1(8, R18) :::; 1 - p8k. Thus 

parts (1) and (2) of the theorem are applicable. 

Define In and Ln as in (1.13) and (1.14). Since YLn+sn - YLn-sn = o(8n) almost surely 

(which follows as in (1.22)) , we obtain from Lemma 1.4.3 that 

( 1. 23) 

almost surely. Similarly, we obtain that 

(1.24) 

almost surely. 

Similarly, as in the proof of part (3) of Theorem 1.3.2, by using (1.22), (1.23) , (1.24) 

and Lemma 1.4.4, it follows that Bn = () + o( 8n) almost surely. 

0 

We now derive strong convergence rates for T/n (defined in (1.15)), the estimator of 

f ( ()). 

Theorem 1.4.2 Suppose the assumptions of Theorem 1.4.1 hold and r11 =Sn for all n. 

If F has a bounded second derivative in some neighbo rhood of() E [a, b] and f(()) = F'(()) J 

then 

almost surely. 

Proof 

T/n = { J(() ) + 0(8,,), 

J(()) + 0(8~) , 

if k ~ 1, 

if k:::; l J 

Using Lemma 1.4.1 with Tn = YK,.+sn and Sn= YKn-sn, it follows that 

Fn(YKn+sn) - Fn(YK,.- sJ 
F(YKn+sJ - F(YK,.-s,.) 

1 + o(s~ 1 /2 log sn ) 

1+0(8~) . 
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Also, using a Taylor expansion , 

where O'.n is a point between fJ and YKn+sn. Similarly, 

where f3n is a point between fJ and YKn-sn. Hence, 

F(YKn+s.,) - F(YKn-sn) = (YKn+sn - YKn-sJF'(fJ) + HYKn +sn - fJ) 2 F"(an) 

- t(YK.,-sn :_ fJ) 2 F"(/3n)· 

Using the definition of On (see (1.4)) and (1.22), we have 

= o( 811) + YJ< .. -sn - () 

< o(8n) + 011 - fJ. 

19 

This, together with part (3) of Theorem 1.4.1, implies that YKn+sn = fJ + o( 8n) almost 

surely. Also, (1.22) implies that YKn-sn = fJ + o( 8n) almost surely. Hence, 

F(YKn+sn) - F(YKn-sn) = J(fJ) + o( 811 ). 
YKn+sn - YKn-Sn 

It now follows that 

T/11 -
n-1 (2sn + 1) 

Consequently, 

almost surely. 

T/n = { J(fJ) + o(8n), 

f(fJ) + 0(8~), 
if k 2: 1, 

ifk:s;l, 

0 



1.5. ASYMPTOTIC DISTRIB UTIONS 20 

1.5 Asymptotic distributions 

In this section the following will be assumed without fur ther statement: For some finite 

constants a and b, a< b, J(x) > 0 for all x E (a, b) and J( x) = 0 otherwise. There exists 

a() E (a, b) such that , for all x E (a, b) , x # () , J(x) > f(()) > 0. 

Define Kn as in (1.3 ), viz ., 

where {Sn} is a nonrandom sequence of positive integers such that Sn -t oo as n -t oo. 

Throughout the discussion below we consider 

as estimator of(), and TJn , the proposed estimator of J(()), as defined in (1.15) . 

In Theorems 1.5.l and 1.5.2 limi ting distributions are derived for Bn and T/n· Firstly, 

we prove two lemmas that are needed for the proof of Theorem 1.5.1. 

It is well-known that F(Yi), F(Y2 ) , .. • , F(Yn) may be thought of as the order statistics 

of an independent sample from the uniform distribution on [O, l] and that the vector 

(F(Yi), F(Y2), . .. , F(Yn)) has the same distribution as 

where 

Si = Z1 + Z2 + · · · + Zi, i = 1, 2, ... , n + 1, 

with Z1, Z2 , .. . , Zn+l independent random variables, each with a standard exponential 

distribution (e.g., see David, 1981 ). Hence, writing G = p-1 (the inverse exists, since F 

is continuous and strictly increasing), the vector (Yi , Y2, ... , Yn) has the same distribution 

as 

(a ( s~:1 ) , a ( s~:J '···'a ( s~:1 )) · 

Hence, since we intend deriving limiting distributions for Bn and T/n, we can replace Y;, 

i = 1, 2, ... ,n in all proofs by G(SifS,,+ 1 ) , i = 1,2, .. . ,n. Let kn be defined as Kn 

above by applying this representation. Then k,, and Kn have the same distribution. 
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Also, for example, YKn and G(5k)5n+1 ) have the same distribution, etc. For ease of 

notation we shall not distinguish between Kn and Kn, and if two statistics have the 

same distribution, it will merely be denoted by an equality sign . The almost sure results 

obtained for statistics in terms of the Y;'s now hold in probability for these statistics 

defined in terms of the 5; 's. 

15 5 -1 I _ -1 + ( -112 1 ) sup (np]+sn n+l - p - n Sn 0 n og n a.s., 
p 

and 

15 5 -1 I _ -1 + ( -112 1 ) sup [np]-sn n+l - p - -n S 11 0 n og n a.s., 
p 

where [z] denotes the largest integer less than or equal to z . 

Proof 

Write 

S'[np]+sn - [np] - Sn 

5n+i 

+[np] - np + p{-n- - l} + ~. 
S'n+l Sn+l Sn+l 

(1.25) 

(1.26) 

(1.27) 

From the law of the iterated logarithm (e.g., see Breiman, 1968), it follows that 

Sn+l = n + O(n112 (log2 n) 112
) almost surely. Hence, the second and third terms on the 

right-hand side of (1.27) are almost surely o( n-112 log n) uniformly in p, while the last 

term is n-1 sn + o(n-112 logn), almost surely. Consider the first term. We have 

P {sup IS(np)+sn - [np] - Sn I > En 
112 log n} 

p 

< P{forsomej,sn+l ~j ~n-sn,l5i-jl >cn1
/

2 logn} 
n n 

< L P{5i > j + cr1.1l 2 logn} + L P{5i < j - cn1
/

2 logn}. (1.28) 
j=l j=l 

For any random variable X and any constant c, 

P(X > c) ~ Eexp{t(X - c)}, t > 0, 
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provided that this expectation exists. Applying thjs inequality to Sj which has density 

xj-le-x /f(j) for x 2: 0 and 0 otherwise, r( ·) being the gamma function, we get 

Summing over j between 1 and n, we find that the first sum on the right in (1.28) is 

bounded by h>..n where 

and 

Taking 

h = {1 - (1 - t)et}-1
, 

cn-112 log n 
t=-----­

l +cn-1/2logn 

in (1.29) and (1.30), one finds that 

and 

Hence, we obtain an upper bound for the first sum in (1.28), viz. 

( 1. 29) 

(1.30) 

so that E~=l h>..n < oo. Similarly for the second sum in (1.28) . We have proved for all 

€ > 0, 

f p { sup IS[np]+sn - [np] - snl > cn-1/2 log n} < oo. 
n=l p n 

The Borel-Cantelli Lemma now implies that 

IS[np]+sn - [np] - snl _ o(l) 
n112logn - ' 

uniformly in p, almost surely. Thus, 

{S[np]+sn - [np] - s,i} /n = o(n-1
/

2 log n), 
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uniformly in p, almost surely. Hence, from (1.27), it follows that 

S S -1 - -1 + ( -1/21 ) [np]+sn n+l - p - n Sn 0 n og n , 

uniformly in p, almost surely. This completes the proof of (1.25). The proof of (1.26) 

follows similarly. 

D 

Lemma 1.5.2 IfYKn ~- 0 as n---+ 00 1 then n-1 I<n ~- q = F(O) as n---+ oo for a< 0 < b. 

Proof 

Let A= {YKn---+ 0 as n---+ oo} and B = {n- 1 I<n---+ q as n---+ oo}. Choose and fix an 

w E A . Suppose w E B e. Hence, there exists a subsequence { n( i)} of integers such that 

n(i)-1 I<n(i) ---+ las i---+ oo for some finite constant l # q, with 0 ~ l ~ 1. 

Choose c > 0. For all i large enough, if l # 0 and l # 1, we have that 

[n(i)(l - c)] < I<n(i) < [n(i )(l + c) ] + 1, 

which implies that 

Y[n(i)(l-.:)] < Y/(n(i) < }[n(i)(l+.:)]+l · 

Similarly, if l = 0 then a < YKn(i) < Y[n(i).:]+1, and if l = 1 then Y[n(i)(l-,,)] < YKn(i) < b for 

all i large enough. 

Since Fis continuous and strictly increasing, Y[n(i)(/-,,)J ---+ p-1(1- c) as i ---+ oo, for 

0 < l::; 1 and c < l. Also, Y[n(i)(t+,,)]+l---+ p-1(/+c) as i---+ oo, for 0 ~ l < 1andc<1-l 

(e.g., see Serfling, 1980). Hence, since c; is arbitrary, we conclude that 

if 0 < l < 1. Also, since 0 < F( 0) < 1 (which is implied by the assumptions imposed on 

f and 0), we have that 

li1:nsupYKn(i) < F-1(q) = 8, 
1-+00 

if l = 0, and 

lim inf YKn(i) > p - 1 (q) = 0, 
1-+oo 
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if l = 1. Each of these three cases leads to a contradiction. Thus w E B , which implies 

that A C B. This completes the proof of the lemma. 

0 

Henceforth, let ~ denote convergence in distribution as n ~ oo. 

Theorem 1.5 .1 Suppose that the following conditions hold: 

{i} f has a bounded third derivative in some neighborhood of e, with f"(O) > 0, 

(ii) for each open set U containing e, there exists an t: = c( U) > 0 such that f ( x) - t: 2 

f(O) for each x E (a, b) - U, 

{iv} n-4s~ ~ C, for some constant C, 0 < C :S oo. 

Then, as n ~ oo 

where Tis a random variable that maximises the process {Z(t) - t 2
, -oo < t < oo}, and 

{Z(t)} is a Gaussian process, originating from zero, with expectation 0 and covariance 

function given by 

Cov{Z(t), Z(t*)} = Hmin( Jtj, 2B) + min(Jt*J, 2B) - min( it - t*J, 2B)}, 

where 

If C = oo, {Z(t)} is a two-sided Wiener-Levy process, which is defin ed as follows: Let 

{W1 (t), t 2 O} and {W2 (t) , t 2 O} be two independent standard Wiener-Levy processes. 

Then, 

z ( t) = { W1 ( t), if t 2 0, 

W2(-t), if t < 0. 

In this case the covariance funct ion becomes 

Cov{Z(t), Z(t")} = min(ltl, Jt*l){I(t 2 0, f" 2 0) + I (t < 0, t* < O)} , 

where I(· ) denotes (as before) the indicator function. 
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Proof 

Let q = F(B). Using the definition of On, we obtain from the mean-value theorem that 

( 1.31) 

with Wn a point between q and SKn/Sn+1· Note that, since f is continuous ate, F'(B) 

exists and F'(B) = J(B) . Hence, from Corollary 1.3.l (note that Conditions (iii) and (iv) 

imply (1.5) and (1.6)), it follows that YKn c:.:;· e, so that n- 1 Kn ~ q in probability by 

Lemma 1.5.2. It follows from Lemma 1.5.l that SKn+sn/ Sn+1 ~ q and SKn-sn/ Sn+1 ~ q 

in probability, and therefore SKn/ Sn+1 ~ q in probability. This implies that Wn ~ q in 

probability, and consequently G'(\lln) ~ J(Bt 1 in probability, by using Condition (i) . 

Further 

(1.32) 

(1.33) 

By the fact that n-1 Kn ~ q in probability and the SLLN, the last two factors in (1.33) 

converge in probability to q112
• Using the central limit theorem ( CLT) for a random num­

ber of summands (Blum et al., 1963), the second factor in (1.33) converges in distribution 

to a N(O, 1)-distribution. Hence, 

SKn - f{n _ Q ( -1/2) 
- P n . 

Sn+1 

A similar resul t holds for the last term in (1.32), since the CLT and the law of the iterated 

logarithm hold for Sn+l · Hence 

SKn 0 ( -1/2) Kn - nq ---q= pn + . 
Sn+l Sn+l 

(1.34) 

Suppose {Un} is a sequence of positive numbers satisfying 

Then multiplication of (1.34) by U,-; 1 and substitution into (1.31) readily show that if 

u;;1 (n- 1 Kn - q) has a limiting distribution , then U;; 1 f(B)(Bn - e) has the same limiting 

distribution. 
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Now, define the following random process 

fort E [-t0 , t 0], with t0 a finite positive constant, and 

(1.36) 

We shall prove that the process Wn converges weakly to a limit process W on the space 

D[-t0 , t 0] of functions on [-t0 , t 0 ] that are right-continuous and have left-hand limits. The 

limiting distribution of U;:1(n-1 Kn - q) will follow by applying the continuous mapping 

theorem. 

For p close to q, since J'( B) = 0, we have the following Taylor series expansion , 

G(p) = 
1 J"(B) 3 

G(q) + J(B) (p - q) - 6f(B)4 (p - q) 

+ 214 G(4l(w n)(p - q)4 , (1.37) 

where G(4) denotes the fourth derivative of G and \lJ 11 is some point between p and q. 

From Lemma 1.5. l we obtain, 

a.s., (1.38) 

and similar express10ns hold for S[n(q+Unt)]-sn/ Sn+1, 

S[nq]-sn/Sn+l· Expressing the Y;'s in terms of the Si's, (1.35) becomes, by using (1.37), 

(1.38) and its equivalents , 

where 

Rn1(t) 

Zn(t) (2Unnt 112
{(S[n(q+Unt)]+ sn - S[n(q+Unt)J-sJ 

-( S[nq]+sn - S[nqJ-sJ}' 

(1.39) 

(1.40) 
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and 

-{ S[n(q+Unt)]-sn _ q}3 
_ { S[nq]+sn _ q} 3 + { S[nq] -sn _ q}3

] + t2 
Sn+ I Sn+ I Sn+l 

1 !"( ()) -5 J( ()) 4 (2Unn t 112 Sn+ if ( B){ [n-
1 
Sn + Unt + o( n-

1
/
2 

log n )]3 

-[-n-1 Sn+ Unt + o(n-112 Iog n)] 3 - [n-1 Sn+ o(n-112 Iog n)]3 

+[-n-1sn + o(n-1l2Iogn)J3} + t2
, (1.41) 

214 (2Unntl/2 Sn+if(()) [ { S[n(q;~~:)]+sn - q} 4G(4)(\J!n1) 

-{ S(n(q;~~:)]-sn - q} 4G(4)(Wn2) 

-{ s~::1Sn - q} 4 G(4)(wn3) + { s~:~ISn - q} 4 G(4)(wn4)] 

2

1

4 
(2Unnt112 Sn+if(O){[n-1 Sn+ Unt + o(n-112 Iog n)]4G(4)(Wn1) 

-[-n-1sn + Unt + o(n- 1l2 Iogn)]4G(4)(Wn2) 

-[n-1 Sn + o(n-112 log n)j4G(4)(W113) 

+[-n-1sn + o(n-112 Jog n)j4G(4 l(wn4) }, 

where Wn1 is a point between S[n(q+Unt)]+sn/ Sn+l and q, Wn2 is a point between 

S[n(q+Unt)]-sn/ Sn+l and q, Wn3 is a point between S[nq]+sn/ Sn+l and q, and Wn4 is a point 

between S[nq]-sn/ Sn+l and q. 

The leading term in{-} of (1.41) is 6n-1 snU~t2 . It therefore follows from (1.36) and 

the fact that n-1 s~ ---t oo as n ---t oo, that 

sup JR111(t)J=o(l), 
- to9'.Sto 

almost surely. By Condition (iii), 

sup JRn2(t)J = o(l), 
-to'.St9o 

almost surely. 

Hence, it now suffices to prove the weak convergence of the process Zn to Z . For this 

it is sufficient to show that the finite-dimensional distributions of Zn converge to those 

of Zand that the sequence {Zn} is tight (see, e.g., Billingsley, 1968, Theorem 15.1). 
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Consider first a single time point t; we must prove 

d Zn(t) -4 Z(t) as n -4 oo. (1.42) 

From (1.40) it follows that Zn(t) can be written for large n as 

4sn ) "'z. - "' z. L...,; t L.J t ' 

i=l i=2sn+l 

ln(t) 2/n(t) ) 

"'z. - "' z. L...,; t L...,; t ' 

i=l i=ln(t)+l 

if ltl > 2B, 

Zn(t) = 

2sn 

(1.43) 

if ltl ~ 2B, 

where ln(t) = [nUnltlJ. Using Condition (iv), (1.36), (1.43) and the CLT, it follows that 

Zn(t) .:!+ N(O, 2B) if ltl > 2B, and Zn(t) .:!+ N(O, ltl) if ltl ~ 2B. This proves (1.42). 

Next , consider two time points s and t with s < t. We must now prove that 

d (Zn ( s), Z11 ( t)) -4 ( Z ( s), Z ( t)) as n -4 oo . ( 1.44) 

The validity of (1.44) will only be illustrated for. the case I sl~ 2B, ltl ~ 2B and It - sl ~ 
2B. Other cases can be dealt with similarly. Using expressions for Zn(s) and Zn(t) 

analogous to (1.43), it immediately follows, as above, that 

(s 112 Zi, s1! 2z1 + (t - s) 1!2z2 ), if 0 ~ s < t, 
d 

(Zn(s ), Zn(t)) -4 ((-t) 1! 2 Z1 + (t - s )1!2 Z2, (-t) 1/ 2 Z1), ifs < t ~ 0, 

ifs< 0 < t , 

where Z1 and Z2 are two independent N(O, 1)-distributed random variables. This proves 

(1.44). A set of three or more time points can be treated in the same way, and hence the 

finite-dimensional distributions converge properly. 

It remains to show that {Z1i} is tight . From Theorem 15.6 of Billingsley (1968), 

a sufficient condition for this is that there exist constants I 2': 0 and a > ~ and a 

nondecreasing, continuous function H on [-t0 , t0] such that for all t 1 ~ t ~ t2 and n 2': 1, 

Consider the case lt1 I ~ 2B and lt21 ~ 2B. Using (1.43) , (1.45) follows directly by 

choosing/= 2, a= 1 and H(t) = A· t for some finite positive constant A. Other cases 

can be dealt with similarly. 



1.5. ASYMPTOTIC DISTRIBUTIONS 29 

At this point it has been shown that (see (1.39)) Wn ---+ W weakly on D[-t0 , t 0] as 

n---+ oo, where W(t) = Z(t) - t 2
• Since t0 is arbitrary, it follows from Whitt (1970, 1971) 

(and the references therein) that the weak convergence result holds for all t E ( -oo, oo). 

Now, for x E D(-00,00), let 

h(x) =min { t: x(t) = m;i-xx(s)}. 

From the definition of Kn (see (1.3)), (1.35), Theorem 5.1 of Billingsley (1968) and 

the fact that F is continuous, it now follows that h(Wn) ~ h(W) as n ---+ oo, where 

h(Wn) = U;;1 (n- 1 Kn - q) and h(vV) = T, as defined in the statement of the theorem. 

It was proved by Chernoff (1964) and Groeneboom (1989) that P(T < oo) = 1. This 

completes the proof of the theorem. 

0 

Remarks 

(a) From the proof of Theorem 1.5.1 it is clear that U;; 1 (n- 1 I<n - q) ~ T as n---+ oo, 

only under Conditions (i), (iii) and (iv). 

(b) Note that if {sn} is selected so that Sn,...., Ana and A> 0, then Theorem 1.5.l holds 

for t :::; a < g. 

(c) Suppose Conditions (ii) and (iv) of Theorem 1.5.1 hold, and instead of (i) and (iii) 

we assume 

(i)' f has a bounded fourth derivative in some neighbourhood of e, with!'"(())> 0, 

(iii)' n-7 s~ ---+ c, for some constant c, 0 :::; c < oo. 

Then, following the same arguments as in the proof of Theorem 1.5.1, we can show 

that 

is asymptotically distributed as the variable T which maximises the process { Z(t)­

t2 + C*t,-oo < t < oo}, where {Z(t)} is as before and 
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In this case, if { sn} is selected so that Sn ,....., An° and A > 0, then the above holds 

for i <a < z. 
5 - - 8 

We now derive the limiting distribution of 7Jn, the estimator of J( 8), as defined in 

(1.15), viz. 

Recall that Kn (see (1.3)) is defined in terms of the sequence {sn}· 

Theorem 1.5.2 Suppose the following conditions hold: 

(i) f has a bounded third derivative in a neighbourhood of 8, with f"(8) > 0, 

(ii) for each open set U containing 8, there exists an c = c( U) > 0 such that J ( x) - c 2: 

J(8) for each x E (a , b) - U, 

(iv) n-4s~ -too as n --too, 

(v) n-4r~ -t k as n --t oo , for some constant k, 0 ~ k < oo , 

Th en, as n --t 00 1 we have 

Proof 

Expanding G(Sxn+rn/Sn+1) and G(SK,.-rn/Sn+1) in a Taylor series around q = F(8) 

to third order terms and using the fact that f'( 8) = 0, we have 

(2rn + 1)112{f(8)7J;;1 -1} 

(2rn + 1) 112 {f(8)n(2rn + l)-1 [Yxn+rn - YJ\n-rn] - l} 

{(SKn+rn - SKn-r..) - 2rn}(2rn + l)-l/ 2nS';;~1 
+{(2rn)(2rn + l)- 1 /2nS;;~ 1 - (2rn + 1)112

} 
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+n(2rn + ltl/2 J"(O) 
3 

{ [SKn-rn _ q] 3 
_ [SKn+rn _ q] 3

} 

6(!( 0)) Sn+l Sn+l 

+n(2rn + 1r1;2G(
4
)(en1)f(O) [SKn+rn _ q] 4 

24 Sn+1 

-n(2rn + lt1;2G(
4
)(en2)f(O) [SI<n-rn _ q] 4 

24 Sn+1 
{(SKn+rn - SKn-rn) - 2rn}(2rn + l)-l/2nS~~l 

+Rn1 + Rn2 + Rn3 + Rn4 (say), (1.46) 

where enl is a point between SKn+rn/Sn+1 and q and en2 a point between SKn-Tn/Sn+l 

and q. 

From Corollary 1.3.l and Lemma 1.5.2 it follows immediately that 

(1.47) 

Also, using Lemma 1.5.l and (1.47) we have that G(4)(eni) = Op(l) and G(4)(en2) = Op(l). 

From (1.47) and the CLT for a random number of summands (Blum et al., 1963) we 

have 

(1.48) 

Since U;: 1 (n- 1 Kn -q) (with U11 defined in (1.36)) has a limiting distribution (see Remark 

(a) above), it follows that 

(1.49) 

Hence, from (1.48), (1.49) and the CLT we obtain 

SKn+rn -1 Q (U ) SKn-Tn -1 Q (U ) 
S 

- q = n rn + p n ' s - q = -n rn + p n . 
n+l n+l 

(1.50) 

By the conditions of the theorem and (1..50) it readily follows that R111 = op(l) , 

Rn3 = op(l) , Rn4 = op(l) and R112 = -Hk/2) 1
l

2J11 (0)(J(O)t 3 + op(l). Hence, from 

(1.46) we have 

(2rn + 1)1/2{J(0)77~1 -1} 

= {(SKn+rn - SKn-rJ - 2rn}(2rn + l)-l/2nS~~l 

-Hk/2)112 J"(O)(f(0))-3 + op(l). 
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Since nS;;~ 1 ---+ 1 almost surely, to complete the proof of the theorem, it suffices to show 

that 

(1.51) 

The left-hand side of (1.51) can be written as 

1/2 -1/2 (2rnt {TKn+rn -T[nq]+rn} + (2rn) {T[nq]-rn -TKn-rn} 

+ (2rnt1
/

2{T[nq]+rn - T[nq]-rn}, (1.52) 

where Tn = Sn - n. Let 8 > 0 be arbitrary. From (1.49), it follows that there exist finite 

positive constants M( 8) and N( 8) such that for all n > N( 8), 

P(IKn - [nq]I > nM(8)Un) < 8. (1.53) 

By Kolmogorov's inequality for sums of independent random variables (e.g., see Breiman, 

1968) and (1.53) , we have for all £ > 0, 

P{(2rnt 112 ITKn+rn - T[n9J+rnl > c} 

< P{ITKn+rn - T[nq]+rnl > c(2rn )112
, IKn - [nq]I::; nM(8)Un} + 8 

< 2P{ max ITkl > c(2rn)112
} + 8 

1 ~k~[nM(o)Un] 

< 2[nM(8)Un] fJ 
£ 2 (2rn) + . 

From this we conclude that the first term in (1.52) is op(l), by letting n---+ oo (applying 

Condition (vi)) and then 8---+ 0. A similar argument yields that the second term in (1.52) 

is op(l). The third term has the same distribution as (2rnt 1 f2T2rn, which converges to 

a N(O, 1)-distribution. From this and Slutsky's theorem, the proof of the theorem is 

completed. 

0 

Remark 

Note that if {sn} is selected so that Sn,...., A 1na and {rn} is selected so that rn,...., A2n.6, 

then Theorem 1.5.2 holds for t < a< g and H2 - a) < {3 ::; t· The bias in the limiting 

distribution derived above, is non-zero only if {3 = t· 
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1.6 Relationship with maximal spacings 

Let Xi, X 2 , •• • , be a sequence of independent and identically distributed random variables 

on some probability space (D.,:F,P) with unknown univariate distribution function F on 

the real line. Suppose F is absolutely continuous (with respect to Lebesgue measure) 

with density f. Denote (as before) the order statistics of X 1 ,X2 , •.• ,Xn by 

Let {kn} be a nonrandom sequence of positive integers. The maximal kn -spacing is defined 

by 

A great deal is known about the behaviour of Mn when kn = 1 for all n and the X;'s 

are uniformly distributed on (0,1). For example, Devroye (1981, 1982) and Deheuvels 

(1982, 1983) derived laws of the iterated logarithm for Mn. If kn ---+ oo as n ---+ oo at 

certain rates, Deheuvels and Devroye (1984) obtained analogous results. 

However, few results are available when Fis arbitrary. For kn = 1, Deheuvels (1984) 

derived strong limiting bounds for lvln. He pointed out, among others, that if F has a 

continuous density f, the major influence on the behaviour of maximal spacings is exerted 

by the behaviour of f in the neighbourhood of its minimum. Under the assumption 

that Yi and Yn belong to the domain of attraction of extreme-value distributions and 

that kn = 1, Deheuvels (1986) showed that the weak limiting behaviour of Y1 and Yn 

characterises completely the weak limiting behaviour of Nln and he also obtained the 

corresponding limiting non-normal distributions. Also, Barbe (1992) proved that Mn 

(appropriately standardised) converges in distribution to a Gumbel distribution if it is 

assumed, among other things, that the density f has a positive minimum and kn = 1 

for all n. The weak limiting behaviour of Mn is related to the minimum of the density 

function and to the local behaviour of the density function near its minimum, as is the 

case for the almost sure behaviour of Mn (Barbe, 1992) . 

In previous sections we studied a modified version of Mn. Firstly, we defined a maximal 
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2sn -spacing by 

and then modified it to 

The estimator of J ( 0) was then defined in terms of Vn, viz. 

In deriving the strong and weak limiting properties of T/n, the corresponding results for 

the modified st.atistic ~i were in fact being obtained. A strong law of large numbers and 

a limiting distribution for Vn can thus be formally stated as follows: 

Theorem 1.6.1 Under the conditions of Theorem 1.3.3} as n--+ oo 

Theorem 1.6.2 Under the conditions of Theorem 1.5.2, we have, as n --+ oo 

The result in Theorem 1.6.2 is surprising, since it is in contrast with the non-normal 

asymptotic distributions obtained in the literature for the maximal kn-spacing Mn. The 

incorporation of the second sequence { r,i} of integers enabled me to derive the limiting 

normal distribution. 



Chapter 2 

Kernel density estimation 

2. 1 Introduction 

The antimode and minimum of a density estimator provide indirect estimators of () and 

J( B). In Chapter 4 the small and moderate sample behaviour of my proposed estimators 

of() and J( B) are compared with these obvious alternatives. The well-known and popular 

kernel method introduced by Rosenblatt (1956) is used here, as density estimation tech­

nique. The practical application of kernel density estimation is crucially dependent on the 

choice of the so-called smoothing parameter. The ultimate aim of this chapter is to mo­

tivate the specific preferences of smoothing parameters, applied in the numerical studies, 

from the extensive recent literature on data-based selection of the smoothing parameter 

in kernel density estimation. To reach this goal, a short background is first provided of 

kernel density estimation in general and secondly some of the current smoothing methods 

are discussed in general terms. 

Let Xi, X 2 , ••• , Xn be independent, identically distributed random variables with un­

known univariate distribution function F and probability density function f. The kernel 

estimator of J is defined by 

(2.1) 

where ]( is the kernel function. The value h = hn is known as the smoothing parameter; 

also called the window width or bandwidth. The value of h will generally depend on the 

35 
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sample size n, but this dependence will not always be made explicit. 

It is interesting to note that Cacoullos ( 1966) appears to have been the first to call J( 

in (2.1) a kernel function. Previously, /(was referred to as a weight function . The 

simplest class of kernels consists of probability density functions that satisfy 

K(u) 2 0, j K(u)du = 1. (2.2) 

If a kernel ]( from this class is used in (2.1), then Jh will always be a bona fide den­

sity. Popular choices of univariate kernels include the Gaussian kernel with unbounded 

support, 

and the compactly supported "polynomial" kernels, 

{ 

K (1 lulr)s K(u) = rs - ' 
0, 

if -1 :::; u :::; 1, 

otherwise, 

where 
T 

Krs= 2B(s+l,~)' r>O, s20, 

with B( ·, ·) denoting the beta-function. The rectangular kernel is obtained if s = 0 

(x:ro = t); the triangular kernel if r = 1, s = 1 (x:11 = l); the Epanechnikov kernel if 

r = 2, s = 1 (K21 = ~); the biweight kernel if r = 2, s = 2 (K22 = ~~) and the triweight 

kernel if r = 2, s = 3 (K23 = ;;). The Gaussian kernel can be obtained if r = 2, s = oo, 

after a suitable rescaling. 

Before discussing various properties of the density estimator Jh, some measures of 

discrepancy that are often used in establishing the closeness of the estimator Jh to the 

true density f are given. 

2 .2 Measures of discrep a ncy 

Various measures of discrepancy of a density estimator J (}may be the kernel estimator 

fh, or any other density estimator) from the true density f have been proposed. When 



2.2. MEASURES OF DISCREPANCY 37 

considering estimation at a single point, a natural measure is the mean squared error 

(MSE), defined by 

MSEx(f) = E[f(x) - J(x)] 2
• 

By elementary properties of mean and variance, the MSE of J can be written as 

MSEx(}) = [E}(x) - f( x)] 2 + Var}(x) , (2.3) 

i.e., the sum of the squared bias and the variance of J. 
A measure of global accuracy of J as an estimator off is the mean integrated squared 

error (MISE) defined by 

MISE(}) = E j[J(x) - J(x)]2dx = j E[}(x) - J(x)]2dx, (2.4) 

According to (2.3), MISE(}) can be written as 

MISE(}) j MSEx(})dx 

j[E}(x) - f(x)] 2dx + j Var}(x)dx. (2.5) 

Other global measures of deviation such as the mean integrated absolute error (MIAE) , 

E j lf(x) - f(x )ldx, 

may appear to be more natural under some circumstances (see Devroye & Gyorfi, 1985). 

It can easily be shown from the early work of Whittle (1958) that the mean and 

variance of the kernel estimator are given by 

A 1 J (x - y) Efh(x) = hn ]{ -,;;:-- f(y)dy , (2.6) 

and 

Varfh(x) = n~; { j J{ (x ~ y) 
2 

f(y)dy - [! ]( (x ~ y) J(y)dyr}. (2.7) 

These expressions may be substituted into (2.3) and (2.5) to obtain exact expressions for 

the MSE and MISE, but except in very special cases, the calculations become intractable 

and the expressions obtained have little intuitive meaning. It is more instructive to obtain 

approximations to (2.6) and (2. 7) under suitable conditions, as is done in the following 

section. 
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2.3 Large-sample properties 

There is an enormous literature on the large-sample properties of kernel density estima­

tors. The reader is referred to Rosenblatt (1971), Prakasa Rao (1983) and Rosenblatt 

(1991) for reviews of the literature. In the first part of this section approximate expres­

sions for the bias and variance are given. In the second part these expressions are used 

to investigate the behaviour of the MSE and the MISE and consequently to establish 

the ideal choices for the bandwidth and kernel. The last part includes a few asymptotic 

results to give an indication of the large-sample behaviour of the kernel density estimator 

in general. Assume throughout this section that the kernel ]( is a symmetric probability 

density function defined on ~ that satisfies the following, 

j uK(u)du = 0, (2.8) 

0 < j u2K(u)du < oo. (2.9) 

2.3.1 Approximate expressions for bias and variance 

If the density function f is bounded and continuous at x and hn - 0 as n - oo, the bias 

converges to zero as n - oo. If f is bounded and 

nhn --? oo, hn --? 0, as n--? oo, (2.10) 

the variance Varfh(x) tends to zero as n - oo (Rosenblatt, 1991). 

If f is continuously differentiable up to second order with bounded derivatives, the 

bias can be approximated, using (2.8) and (2.9), by 

(2.11) 

An approximation for the variance is 

A 1 J 2 Varfh(x) '.::::'. nhn J(x) K(u) du. (2.12) 
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The integrated squared bias and the integrated variance are required in (2.5) for the 

MISE and are given by 

j bn(x)2 dx ~ ~h! j J"(x) 2dx {j u 2 K(u)du} 
2

, 

j Varfh(x)dx ~ n~n j K(u) 2du. 

(2 .13) 

(2.14) 

Suppose now that one wants to minimise the MISE. One of the fundamental problems 

of density estimation is represented by the two components of the MISE (or the MSE). 

To reduce the bias a small value for the bandwidth should be used. In this case, the 

integrated variance (the second component of the expression for the MISE) will become 

large. On the other hand, choosing a large value for h will reduce the random variation 

as quantified by the variance, at the expense of introducing systematic error, or bias, into 

the estimation. In other words, by adjusting the amount of smoothing, the bias can be 

reduced at the expense of increasing the variance, and vice versa. 

2.3.2 Optimal bandwidth and kernel 

Using (2.11) and (2.12) , the MSE can be approximated by 

E[fh(x) - J(x)] 2 ~ ~h!J"(x) 2 [! u2J<(u)dur + n~n J(x) j K(u)2du. 

It is clear that one gets the most rapid rate of decay to zero if 

-[ J(x)JK(u)
2
du ]

115
n_ 1; 5 

hn - (J"(x)fu2J<(u)du) 2 . 

Then 

Note that the magnitude of the locally optimal hn is O(n-115
), which decreaces rather 

slowly to zero as n -t oo. 

From (2.13) and (2.14), it follows that the approximate mean integrated squared error 

(AMISE) is 

(2.15) 
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The optimal value of h, from the point of view of minimising AMISE in (2.15), is h., 

where 
h - [ J K(u)2du l 1/5 n-1/5 

* - (J f"(x)2dx)(f u2K(u)du) 2 · 
(2.16) 

Substituting the value of h* back into (2.15) shows that AMISE becomes 

~C(K) [! J"(x) 2dxr
15 

n-
4
!

5
, (2 .17) 

where the constant C(K) is given by 

[ ] 
2/5 [/ ] 4/5 C(K) = j u2K(u)du K(u) 2du 

As far as the choice of a kernel is of interest, formula (2.17) shows that one should 

choose a kernel J{ with a small value of C(K). The problem of minimising C(K) (see 

Epanechnikov, 1969) reduces to that of minimising 

subject to the constraints 

1. j K(u)du = 1, 

2. K(u) = K(-u), 

3. ju2K(u)du=l. 

The solution to this simple variational problem is the kernel function 

Ke(u) = { (3/4)5-
1
1

2
(1 - u

2
/5), if JuJ ~ 51

!
2

, 

0, otherwise. 

The kernel Ke( u) is often called the Epanechnikov kernel. 

It is interesting to compare the optimal kernel function Ke(u) with other kernel func­

tions K(u), by computing the ratio 

J K 2(u)du 
r= . J K;(u)du 

For example, it is clear from Table I (Prakasa Rao, 1983:66), Table 3.1 (Silverman , 

1986:43) and Table 2.1 (Rosenblatt, 1991:10) , that AMISE is quite insensitive to the 
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shape of the kernel. However, in multidimensional problems, the shape of the kernel may 

be of greater importance. In the one-dimensional case the choice of the kernel should be 

based on other considerations, for example the continuity of the kernel function or the 

degree of differentiability required. 

2.3.3 Consistency and limiting distribution results 

The property of density estimators that received a good deal of at tention is consistency 

in various senses: Before giving any of the results , it will be useful to give an indication 

of some of the various meanings of the term "consistency". 

A sequence°{fn } of density estimators is consistent (in L1 ) if the integrated absolute 

error (IAE) tends to zero in probability as n --+ oo, that is , 

!
()() A p 

_ 

00 

I !11 ( x) - J ( x) I dx --+ o, 

where ..!:.+ denotes convergence in probability as n --+ oo. 

A sequence {fn} of density estimators is strongly consistent (in L1 ) if the IAE 

tends to zero almost surely as n --+ oo, that is , 

1: lfn(x) - f(x)ldx ~· 0. 

A sequence {f n} of density estimators is consistent in quadratic mean if the MSE 

tends to zero for every x, that is, 

lim E[fn(x) - J( x )] 2 = 0, 
n-+ oo 

and uniformly consistent in quadratic mean when E[fn(x ) - J(x)]2 converges to 

zero uniformly in x. 

A sequence {fn} of density estimators is integratedly consistent m quadratic 

mean if the MISE tends to zero, that is, 

which is also referred to as integratedly uniformly consistent in quadratic mean. 
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A sequence {fn} of density estimators is said to be weakly consistent if 

' p 
fn(x) -t f(x ), 

for every x. 

A sequence {fn} of density estimators is uniformly weakly consistent if 

' p 
sup lfn(x) - f(x )I -t 0. 

x 

A sequence {fn} of density estimators is strongly consistent if 

fn(x) ~· J( x ), 

for every x. 

A sequence {fn} of density estimators is uniformly strongly consistent if 

sup lfn(x) - f(x)I ~· 0. 
x 

Since unbiased estimators do not exist for f (Rosenblatt (1956) proved this rather 

disappointing result), the concept of asymptotic unbiasedness was introduced. 

A sequence of density estimators {fn} is asymptotically unbiased if, for every x, 

lim Efn(x) = J( x). 
n-oo 

A sequence of density estimators {fn} is uniformly asymptotically unbiased if 

lim sup JEfn(x) - f(x)I = 0. 
n~oo x 

Under certain mild regularity conditions on f and ](, Parzen (1962) proved that the 

kernel estimator Jh is asymptotically unbiased if hn -t 0 as n -t oo. Under (2.10) and 

surprisingly mild regularity conditions on ](and f, Parzen (1962) proved the consistency 

of Jh at a single point x. Bertrand-Retali (1978) studied uniform consistency under 

slightly stronger conditions than those of (2.10), namely 

nhn(log n)-1 -too, and hn -t 0, as n -too. (2 .1 8) 

Devroye (1983) , using the Li-approach, proved the remarkably simple result that if ]( 

satisfies (2.2), then the kernel estimator is a strongly consistent estimator off if and only 
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if (2.10) holds, without any assumptions on f. More results concerning consistency in its 

various senses can be found in Prakasa Rao (1983). 

Asymptotic normality of the kernel estimator Jh was first proved by Parzen (1962). 

Rosenblatt (1971) proved that if (2.10) holds and certain regularity conditions on J( and 

f are met, then 

is asymptotically normally distributed with mean zero and variance 

J(u) j K(u) 2 du. 

Finally, it is clear that conditions (2.10) and (2.18) under which consistency was 

proved are extremely weak. This does not suggest that good estimates of the density 

can be obtained for a wide range of values of hn. In fact, the rate at which fh converges 

to f is quite sensitive to the choice of hn. For example, if h11 is chosen optimally, then 

AMISE tends to zero at the rate n-4
/

5 (see (2.17)). If hn is not chosen optimally, but still 

satisfying (2.10), AMISE converges to zero at a slower rate, for instance, if hn = n-1
/

2
, 

then (see (2.15)) AMISE is O(n-112
). 

2.4 Data-based bandwidth selection 

Practical application of kernel density estimation is crucially dependent on the choice of 

the smoothing parameter, h. (For ease of notation, I use h instead of hn in this section.) 

Too small an h gives a curve which is too noisy in that it is quite dependent on the 

particular realisation of the data at hand, showing features which are not shared by the 

density f. Too large an h creates a bias which can eliminate, by oversmoothing, some 

interesting features of f. The aim of this section is to provide a review of the extensive 

recent literature on automatic, data-based selection of a global smoothing parameter in 

univariate kernel density estimation. During the discussion it will become clear that no 

one method is universally best . However, some conclusions are reached that enable us to 

point out an overall current preference. 
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Throughout, the mean integrated squared error (MISE) is used as a measure of dis­

crepancy between f and Jh (see (2.4)), 

MISE(h) = MISE(}h) = E j[fh(x) - J(x)] 2dx. 

The global minimiser of MISE (for fixed n) is denoted by h0 . It is the ideal or optimal 

bandwidth with respect to MISE, in that it represents the bandwidth of the best possible 

kernel estimator in these terms. The asymptotic representation for h0 is given by h. (see 

(2.16)). 

A useful tool for the comparison of smoothing parameter selection techniques (e .g., 

see Park & Marron, 1990) is the asymptotic rate of convergence to the optimum. Hall 

and Marron (1991) showed that the best attainable rate of convergence of any data-based 

procedure to h0 is n-1/ 2 , assuming that f is sufficiently smooth. The optimal root n rate 

can be achieved by some of the choices of h which will be discussed below, even without 

using higher order kernels in some cases. 

Other performance criteria which may be used instead of the MISE include the inte­

grated squared error (ISE), 

ISE(h) = jl fh(x) - f( x)] 2 dx, (2.19) 

and the Kullback-Leibler information loss function , 

I(h) = j f(x) log{f(x)/ fh(x)}dx . (2.20) 

There is a growmg body of opinion (e.g., see Mammen, 1990) which maintains that 

the bandwidth which should be aimed at is not the minimiser of the MISE, but rather 

the minimiser of the ISE, that is, one should focus on loss rather than risk. In more 

practical terms, one should try to minimise the integrated squared error for the particular 

sample at band, not for some hypothetical average sample. There is disagreement in 

the literature concerning this statement. These issues are addressed in Hall and Marron 

(1991) and Jones (1991). Hall and .Johnstone (1992) pointed out that h0 can be estimated 

very accurately, with a relative error of Op(n- 112 ) even in a nonparametric setting, yet 

the minimiser of the ISE can be estimated only poorly with an accuracy of no better 
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that n-1/ 10 even in simple parametric problems. They gave an explanation why the 

minimiser of ISE is so difficult to estimate. They quantified the difficulty by providing 

sharp lower bounds and showed efficient and potentially practical estimators which attain 

these bounds. It is clear from the extensive discussion on Hall and Johnstone's paper 

that the final word has not been spoken as to whether the "risk" MISE or the "loss" ISE 

should be preferred in measuring the accuracy of a nonparametric density estimate. I 

follow the recommendations of Hall and Marron (1991) and Jones (1991) to prefer the 

risk function to the loss function. 

Another question is whether one should consider £ 1 -error for example, the mean 

absolute error (MAE), 

MAE(h) = Elfh(x) - f(x)I, 

and the mean integrated absolute error (MIAE), 

MIAE(h) = E j ifh(x) - f(x)ldx, 

instead of £ 2-error. Hall and Wand ( 1988) compared two asymptotically optimal band­

widths for kernel estimation of a probability density function at a point, by considering 

the two norms MSE and MAE. In most cases the two results obtained differed by only a 

few percent. Schucany (1989) showed that the ratio of these two bandwidths is constant 

(and equals 0.985) for all kernels and density functions that satisfy the usual smoothness 

conditions. This implies that the £1-error and Lrerror criteria do not yield large-sample 

results that differ by any meaningful amount. Jones et al. (1994) mentioned that for 

most densities they considered, the results concerning comparisons of various bandwidth 

selectors were much the same when MISE was replaced by a suitable L1 -analogue. Cao 

et al. (1994) also concluded that all the selectors they considered in their simulation 

studies showed a similar performance for the metrics L1 and L2. For now, I continue 

with Lrerror, specifically MISE, because it is technically simpler to deal with. 

2.4.1 Plug-in methods 

A natural method for choosing the smoothing parameter is to plot out several curves and 

to choose the estimate that is most in accordance with one's prior ideas about the density. 
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This approach is appropriate and sufficient if the purpose of the density estimation is to 

explore the data in order to suggest possible models and hypotheses. 

Another very easy and natural parametric approach is to use a standard family of 

distributions to assign a value to the term J J"(x) 2dx in the expression for some optimal 

bandwidth, for example h. (see (2.16)) . If the Gaussian distribution (with variance a-2
) 

is used as reference distribution, 

and the expression for the optimal bandwidth becomes 

[ 
f I<(u)2du ] 1/5 -1/5 

17 
0.2l2(f u2I<(u)du) 2 n · 

A quick way of choosing the smoothing parameter would be to estimate the scale a­

from the data to obtain an estimated value for h*. Silverman (1986) considered estimating 

the scale a- by s, the sample standard deviation. This method works well if f is a normal 

density. However, it may oversmooth if f is multimodal or heavily skewed. He also 

considered a more robust measure of spread, viz. the sample interquartile range (IQR) 

normalised by the theoretical N(O, 1) interquartile range, IQR/ (<I>- 1 (~)-<I>- 1 (~)) . Using 

this estimate of a-, better results are achieved for long-tailed and skew distributions, but 

the problem of oversmoothing becomes even worse for bimodal distributions . Silverman 

(1986) claimed that bet ter results can be achieved by using the smaller bandwidth, that 

is, by estimating the scale by 

This resulted in Silverman's first rule-of-thumb (denoted by hRoTl)· However, this choice 

of bandwidth frequently tends to be too large. Hence Silverman (1986) proposed a re­

duction of the bandwidth, by an arbitrary factor of 90%, which resulted in his second 

rule-of-thumb (denoted by hRoT2)· 

In this context, Janssen et al. (1995) proposed bandwidth selectors based on alter­

native measures of scale, which are more local in character. Firstly, they considered the 
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collection of differences between order statistics that are a fixed percentage of observa­

tions apart, and then took the minimum of these differences in order to make the scale 

measure as focussed as possible. This measure of scale results in density estimates that 

are superior to density estimates in which hRor1 and hRoT2 are used. However, they are 

still biased towards oversmoothing. The authors addressed this problem heuristically for 

an important special case of a bimodal density. This led to their second proposal in which 

they provided an improvement of the scale estimator (denoted by D3) by incorporating 

an estimate of the proportion of data that lie in the more prominent peak of the density. 

This choice of bandwidth performed better in the bimodal case. However, it was pointed 

out that it could perform poorly in situations where the density has several high peaks 

near each other. To solve this problem, they followed Silverman's idea and defined their 

"super scale" measure, 

SS= min(s, D3) . 

The bandwidth selector based on SS is denoted by hss. 

Janssen et al. (1995) considered a variety of densities, including some very challenging 

m their simulation studies. The selector hss performed much better than the other 

selectors (sometimes with the exception of the selector hRoT2), except for densities close 

to the Gaussian. They pointed out that hss has very good mean properties, but is much 

more variable than the other selectors. Janssen et al. (1995) (see also Jones et al. , 1994) 

classified the methods discussed . above as "quick and dirty" smoothing methods. The 

practical implementation of hss depends heavily on the choice of an unknown parameter 

/3 and, of course, the choice of the reference density to evaluate J f"(x) 2dx. Therefore, 

this bandwidth selector will not be applied in the Monte Carlo studies of Chapter 4. 

If (2.16) is used to derive data-driven bandwidth selectors, this method is known in 

the literature as the "plug-in" approach. Alternative plug-in selectors will be discussed 

in Section 2.4.3, but a different approach, viz. cross-validation, which has received much 

attention in the literature, will be discussed first. 
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2.4.2 Cross-validation 

The basic algorithm of cross-validation involves removing a single value, say X;, from the 

sample, computing the appropriate density estimate at that X; from the remaining n - 1 

sample values, 

(2.21) 

and then choosing h to optimise some given criterion involving all values of Jh,-i(X;) , 

i = 1, 2, ... , n. Two different versions of cross-validation have been used in density 

estimation, least-squares cross-validation and maximum likelihood cross-validation, which 

pre-dated the former. 

Maximum likelihood cross-validation 

The basic idea of this method is that the smoothing parameter h is considered as a 

parameter which can be estimated by the maximum likelihood procedure. The mean 

log-likelihood is 
1 n A 

LC(h) = - 2.:= log fh ,- i(X;). 
n i=l 

The value of h maximising the function LC( h) for the given data is the maximum likeli­

hood cross-validation choice of h, denoted by hLc · 

The function LC(h) was suggested by Habbema et al. (1974) and Duin (1976). It 

has strong intuitive appeal and does not present serious computational difficulties. How­

ever, the performance of LC(h) is very sensitive to outliers (see Scott & Factor, 1981). 

It is known that when using compactly supported kernels such as the compactly sup­

ported "polynomial" kernel (see Section 2.1), maximum likelihood cross-validation pro­

duces strongly consistent (in L1 ) estimates of compactly supported densities (Chow et 

al., 1983), but does not necessarily do so for estimat ing infinitely supported densities 

(Schuster & Gregory, 1981 ). Devroye and Gyorfi (1985, Chapter 6, Theorem 4) proved 

that the h chosen by maximum likelihood cross-validation provides universal consistency 

(in L1 ) with the only condition of compact support off. No continuity or differentiability 

assumption is imposed on f. They also made some suggestions in the case of densities 
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with noncompact support (Devroye & Gyorfi , 1985:153) and thereby showed the invari­

ance of the Li-metric under monotone transformations. This ensures the consistency of 

this method for all densities f which can be viewed as a property of robustness. 

Hall (1987) proved that hLc asymptotically minimises the Kullback-Leibler discrep­

ancy between Jh and f (see (2.20)). He studied the complex influence that the tails of 

both I< and f have on maximum likelihood cross-validation in terms of the Kullback­

Leibler loss. Its poor behaviour in the heavy-tailed case is a major drawback of the 

maximum likelihood procedure (Bowman , 1984, 1985, and Marron, 1985). In connection 

with this, Broniatowski et al. (1989) related this problem to the stability of the extreme 

order statisti cs·. They proved that 

almost surely (in probability) if and only if the extreme order statistics 

Yi= min(X1 , ... ,Xn) and Yn = max(X1 , ... ,Xn) are strongly (weakly) stable. Since 

many common distributions (including those with heavier-than-exponential tails) do not 

satisfy this condition, the above result could be considered as a nearly decisive argu­

ment against the maximum likelihood method. Finally, Chow et al. (1983) and the 

simulation studies by Scott and Factor (1981) indicated that , depending upon the type 

of kernel employed, maximum likelihood cross-validation could lead to either a severely 

undersmoothed or oversmoothed density estimate. 

Least-squares cross-validation 

The method of least-squares cross-validation was suggested independently by Rudemo 

(1982) and Bowman (1984). See also Bowman et al. (1984) for further discussion. 

As mentioned earlier, an optimal choice of h (not depending on the location x) is 

obtained by minimising the MISE as a fun ction of h. Since the answer depends on the 

unknown f, it is useless. However, a plausible alternative might be to minimise some 

estimate of MISE. To derive such an estimate, write ISE(h) (see (2 .19)) as 

ISE(h) = j[}h(x) - f(x)]2dx = j fh( x)2dx - 2 j Jh(x)f (x) dx + j f(x) 2dx . 
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Since only the first two integrals depend on h, consider 

(2.22) 

The second integral in (2.22) depends on the unknown J and should be estimated. Define 

Jh,-i as in (2.21 ), and define 

! . 2 2~· 
CV(h) = fh(x) dx - - L.J fh,-i(Xi)· 

n i=I 
(2.23) 

It can easily be shown that 

E[CV(h)] = E[R(}h)], 

so that CV(h) is an unbiased estimator of MISE - J J(x) 2dx. The idea of least-squares 

cross-validation is to minimise CV( h) with respect to h. Denote this minimiser by hcv. 

Least-squares cross-validation does not seem to display the peculiar behaviour ex­

hibited by maximum likelihood cross-validation. Indeed, very mild tail conditions on f 

and ]{ are needed to prove asymptotic optimality results. For example, Hall (1983) and 

Stone (1984) showed that least-squares cross-validation achieves asymptotically the best 

possible choice of smoothing parameter in the sense of minimising the integrated squared 

error. Bowman (1984) also showed , via a limited simulation study, that least-squares 

cross-validation achieves satisfactory results for long-tailed f. 

However, the general performance of the method is far from satisfactory, despite its 

practical popularity. Firstly, Hall and Marron (1987b) and Scott and Terrell (1987) 

showed that the relative rate of convergence to the optimum is of the extremely slow 

order of n-1110 , i.e., 

hc v _ 1 + 0 ( -1/10) 
ho - P n , (2.24) 

as n --+ oo. Secondly, the bandwidth selected by least-squares cross-validation has a large 

variability, i.e., different data sets from the same distribution will often give results which 

are very different. See in this regard the results in Hall and Marron (1987c) and the 

numerical results in Scott and Terrell (1987). 
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2.4.3 Other smoothing methods 

In spite of some attractive asymptotic properties, the performance of least-squares cross­

validation has been often disappointing in simulations and applications. Many simulation 

studies in the literature have shown that this selector tends to choose smaller smoothing 

parameters more frequently than predicted by asymptotic theorems (e.g., see Scott & 

Terrell, 1987). A density estimate with a smaller smoothing parameter tends to show 

too many false features (structures) of the data. Moreover, as previously mentioned, hcv 

exhibits too much variability. Chiu (1991) derived an approximate expression for hcv 

which clearly points out the source of variation. The major source of variability of hcv is 

contributed by iJ(>.)12 at high frequencies which do not contain much information about 

J(x ); J(>..) being the sample characteristic function, 

(2.25) 

The terminology "frequency" for ). is borrowed from time sen es analysis (e.g., see 

Brillinger, 1975:8), where the parameter>. is called the frequency of the sinusoid exp( i>.t) , 

>. real, and the index t is the time of recording of the measurements, t = 0, ± 1, ±2, .... 

Because of the unacceptably large dependence of least-squares cross-validation on sam­

pling fluctuations, there has been serious investigation into other, more stable, methods 

of bandwidth selection. 

Further plug-in methods 

The only unknown quantity in the expression for AMISE and hence in the asymptotic 

optimal bandwidth , h*, (see (2.15) and (2.16)) is J J"(x) 2dx. As mentioned in Section 

2.4.1, the plug-in approach attempts to estimate J f"(x) 2dx in order to obtain a band­

width selector. Estimating the functional J f"(x) 2dx is a different smoothing problem 

from estimating f itself. The value of the bandwidth most appropriate for kernel esti­

mation of this functional , denoted by g, will differ from h. In the earliest of the plug-in 

methods, no distinction was made between g and h (Woodroofe, 1970) . 

The plug-in method has an apparent advantage in that it does not need an opti-
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misation program. The motivation of these plug-in smoothing parameters is based on 

asymptotic arguments. This can be considered as a drawback from the point of view of 

practitioners. Care must be taken as to which estimates are plugged in for the above 

functional. 

Park and Marron (1990) studied a plug-in selector which can be described as follows . 

Estimate the curvature f J"(x) 2 dx by f f;'(x) 2dx, where ]9 is a kernel estimate based on 

a bandwidth g and a kernel L, not necessarily equal to h and I< respectively. The authors 

then proposed a slight modification of this curvature estimate, viz. 

The fact that the auxiliary bandwidth g is used instead of his a crucial difference between 

this approach and biased cross-validation described below. 

Let g1 be the asymptotically optimal (with respect to MISE) bandwidth for estimating 

f J"(x )2 dx . Park and Marron (1990) derived an exact expression for 91 by using the work 

of Hall and Marron (1987a). Again, 91 depends on an unknown functional off. However, 

at this second stage, it turns out to be sufficiently good to estimate this functional less 

well, for example, by using a known scale model for J, with the scale estimated robustly. 

This gives an estimate g1 of 91 and Park and Marron (1990) suggested using g = ?;1 . 

Their proposed selector of h has a relative error rate of convergence of order n-4
/

13
• 

Sheather and Jones (1991) proposed an improved version of the plug-in bandwidth 

of Park and Marron (1990). It consists of re-incorporating the diagonal terms in the 

estimation of the curvature and using the auxil iary bandwidth g to approximately cancel 

the positive bias due to the diagonal terms with the negative leading smoothing bias 

term. The plug-in bandwidth is defined by 

h - [ f K(u)2du l 1/5 -1/5 

SJ - S(9)(f u2J<(u)du)2 n ' 

where S(g) is a kernel estimate of the curvature, now given by 
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A data-dependent choice of g is made by Sheather and Jones ( 1991) by using similar 

techniques as those discussed by Hall and Marron (1987a) and Jones and Sheather (1991). 

The bandwidth, hsJ, has a relative error rate of convergence of the order n-5/ 14 . 

Jones et al. (1994) reported the results of a major Monte Carlo study. They included 

some densities that are very hard to estimate. Overall, hsJ delivered accurate density 

estimates. The careful choice of the pilot bandwidth g is, however, very important. A 

wrong choice of g can give rise to a very poor density estimate. 

Hall et al. (1991) proved that the optimum convergence rate n-1
/

2 can be achieved 

by using plug-in bandwidths. This approach lacks appeal because it requires the use of 

higher-order kernels in the estimation of preliminary quantities and it uses an asymptotic 

expansion of MISE which needs to be carried out to two terms in the bias. Of course, 

using higher-order kernels can lead to density estimates that take on negative values. 

Chiu (1991) proposed a simple plug-in bandwidth estimate . Since it involves some of 

the ideas of his stabilised methods, it is discussed below. 

Biased cross-validation 

Biased cross-validation was proposed by Scott and Terrell (1987). This method is actually 

a hybrid of cross-validation and plug-in methods in that a score function is minimised as 

for least-squares cross-validation (see (2.23)), but the score function makes use of some 

plug-in ideas. The score function is given by 

BC(h) = nlh j K(u) 2 du + 
21

:2 h [! u 2 K(u)dur ~cp (Xi~ Xi), 
where cp(x) = f K"(u)K"(u + x)du. 

Unlike CV(h) given in (2.23), which is an unbiased estimator of MISE - f f(x) 2 dx, 

BC(h) is based on the AMISE. In fact (see (2.15)), 

E[BC(h)] }h4 [! u2 K(u)dur j J"(x) 2dx + n\ j K(u) 2 du + O(n-1
) 

AMISE + O(n-1 
). 

The effect of this method is to provide a data-based bandwidth with substantially 

less sample variability than ordinary cross-validation at the price of including some bias. 
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Scott and Terrell (1987) compared licv with the minimiser of BC(h), denoted by hBc · 

Theoretically they showed that hBc shares with hcv (see (2.24)) the rate property 

Cao et al. (1994) showed that BC(h) has no finite global minimum. Plots of the function 

BC(h) typically showed a local minimum which they used in their simulation results. 

The smoothing parameter chosen by this method has a high efficiency for symmetric 

thin-tailed as well as heavy-tailed densities, but a very low efficiency for asymmetric 

densities with thin or medium tails. A comparison of least-squares cross-validation , plug­

in rules and biased cross-validation can be found in Park and Marron (1990). 

Smoothed cross-validation 

The method of smoothed cross-validation, proposed by Hall et al. (1992), has the feature 

of obtaining n-1/ 2 convergence to the optimum h0 . This is achieved without using higher 

order kernels . The idea of smoothed cross-validation has also been developed by Jones et 

al. (1991) with a slight technical difference. 

Consider the following estimate of MISE, 

1 J 2 ' SC(h) = nh I<(u) du+ Bg(h), 

where 

jg is an auxiliary (pilot) estimator of J, i.e., jg is a kernel estimator with bandwidth g 

and kernel L, allowed to be different from/(. The above-mentioned authors assumed that 

g is of the form g = CnPh"t, for constants C, p and m. The smoothed cross-validation 

selector is defined as the value h which minimises SC(h). The selector is denoted by hsc . 

Motivation for using SC(h) is that the first term is a good approximation of the 

integrated variance of jh, while B9(h) provides an estimate of the true integrated squared 

bias. This method has therefore a simple, intuitive nonasymptotic motivation. (See in 

this regard (2.5).) This approach also provides a more direct estimate of the integrated 
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squared bias than the usual asymptotic bias approximations , for example those used 

in biased cross-validation and the usual plug-in methods discussed above. Jones et al. 

(1991) (and similarly Hall et al., 1992) showed that 

with m = -2, p = -;~and C depending on f and its first four derivatives in a complicated 

way. 

The smoothed cross-validation selector showed a fairly good behaviour in the simu­

lation results of Cao et al. (1994). However, specification of C seems to be a serious 

problem, and therefore the smoother hsc cannot be recommended for practical use. 

Trimmed cross-validation 

The proposal of Feluch and Koronacki (1992) is based on the idea of excluding the pairs 

(X;,Xj) of observations that are too close in the cross-validation criterium CV(h) (see 

(2.23)). As already mentioned , the bandwidth chosen by least-squares cross-validation 

hcv has high variability when sample sizes are too small. Usually (see Section 2.4.3 of 

Silverman, 1986 and also Devroye, 1989) the reason that it assumes "too small" values is 

that some differences jX; - Xj I in (2.23) happen to be "very small". Therefore, in order 

to prevent the tendency of a resulting cross-validated bandwidth to be "too small", it 

seems natural to disregard in (2.23) components with small differences jX; - Xjl· Hence, 

trimmed cross-validation is done by minimising with respect to h, the trimmed version 

of (2.23), 

J . ( )2 2 "" ,, (xi - xj) (I 1 fh x dx- n(n-l)h-{;jA h I X;-Xj >en), (2.26) 

where I(·) denotes the indicator function and { c,i} is a sequence of positive constants, 

en/h--+ 0 as n--+ oo. Feluch and Koronacki (1992) showed that (2.26) can be written as 

the U-statistic 

1 J 1 (X· - X·) TC(h)=nh I<(u)2du+n(n-l)h~cpn 'h J' 

where cpn(c) = J I<(u)I<(u + c)du - 2K(c)I(jcj > cn/h). 
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The authors obtained conditions under which TC( h) is asymptotically equivalent to its 

original untrimmed version. They showed via simulation that some amount of trimming 

leads to an apparent improvement on hcv for small samples. However, no indication 

is given as to how the trimming constants Cn should be chosen, and consequently this 

smoothing procedure was not implemented in the Monte Carlo studies in Chapter 4. 

Stabilised smoothing method (with variations) 

Chiu (1991) introduced three simple bandwidth selectors which are much more stable 

than that given by least-squares cross-validation. To reduce the variability in the cross­

validation bandwidth estimator, he suggested modifying the sample characteristic func­

tion beyond some cut-off frequency (henceforth, denoted by A) in estimating the MISE 

and proposed a procedure for estimating the cut-off frequency. 

As mentioned in the first paragraph of Section 2.4.3, Chiu ( 1991) pointed out that the 

major source of variability in the bandwidth estimator selected by least-squares cross­

validation, is contributed by 1¢(>.)12 at high frequencies, which do not contain much 

information about f (¢(>.)is the sample characteristic function given in (2.25)). 

Formally, his procedure to reduce this influence of 1¢(>.)1 2 at high frequencies is as 

follows. Find the random variable A which is the first >. such that 1¢(>.)1 2 S c/n for 

some constant c > 1. The selection of c is not important when f is sufficiently smooth, 

as is proved in Theorem 4 of Chiu (1991) , and also confirmed by his empirical results. 

For most practical purposes, setting - loge(0.15) S c S - loge(0.05) should yield good 

results. The bandwidth estimate hs, called the stabilised bandwidth estimate, is 

obtained by minimising (with respect to h), 

(2.27) 

where k(>.) = Jexp(i>.u)K(u)du is the characteristic function of K(u). S(h) uses the 

first part of (2.27) to estimate the bias term in 7rMISE(h), where 

(see Lemma 1 and the discussion thereafter, Chiu (1991)). 
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Under commonly assumed smoothness conditions, the convergence rate of the sta­

bilised bandwidth selector is faster than the convergence rate of the cross-validation 

estimate. For sufficiently smooth J, the stabilised bandwidth estimator can attain the 

convergence rate of n-1/ 2 , instead of the rate n-1! 10 of the cross-validation estimator. 

Chiu (1991) also proved the asymptotic normality and asymptotic unbiasedness of hs. 
His simulation results verified that the proposed selector performed much better than 

cross-validation for finite samples. The stabilised procedure is adaptive to the smoothness 

of f. When the true density is not smooth enough, the stabilised procedure is more bi­

ased towards oversmoothing than least-squares cross-validation. The procedure performs 

excellently when 1¢(>-)I decays nicely (this can be seen from the plot of 1¢(>-)12
), where 

¢( >.) is the characteristic function of J( x), 

¢(A)= j exp(i>.x)J(x)dx. 

However, if 1¢(>-)1 2 does not decay monotonically, the procedure may ignore the sidelobes 

and, consequently, over-estimate the optimal bandwidth. In all the examples I considered 

(see Section 4.2), 1¢(A)J2 did decay monotonically. 

Note that the bandwidth selectors proposed by Park and Marron (1990), Sheather and 

Jones (1991), Hall et al. (1991) and Jones et al. (1991) are derived from score functions 

that can be written in forms similar to (2.27) (Chiu , 1991). 

More recently, Chiu (1992) proposed two new procedures for selecting the cut-off 

frequency A. Firstly, replace A in (2.27) by A=, where A00 is the minimiser (with respect 

to A) of the cross-validation score function 

The minimiser of (2.27) with A replaced by A=, is the proposed bandwidth selector , h=. 
However, CV=(i\) occasionally selects an unduly large A. In order to reduce the 

chance of selecting big A, Chiu (1992) proposed a second modification. The modified 

estimate Am is the global minimiser of 

{ }

1/2 

cvm(A) = CV00 (A) + 1.65 2 max(O, A - A1) J J(x )2 dx/7r /n, 
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where A1 is the first local minimiser of CV00 (J\). The unknown quantity J J(x )2dx is 

estimated by 

The minimiser with respect to h of S(h) with A replaced by Am in (2.27) , is the second 

proposed selector, and is denoted by hm. 

Chiu (1992) carried out extensive simulation studies to check the performance of 

the bandwidth selectors for finite samples. He included the usual least-squares cross­

validation selector hcv, the plug-in selector of Sheather and Jones (1991) hsJ, his own 

proposed stabilised selector hs , as well as the two improvements on the stabilised selector, 

h00 and hm, in . the simulation studies. The bandwidth estimator of Sheather and Jones 

(1991) was included, because according to Chiu (1992) it is "the most promising selector 

of the procedures proposed by Hall et al. (1991 ), .Jones et al. (1991 ), Park and Marron 

( 1990) and Sheather and Jones ( 1991)". 

Chiu (1992) concluded that fis should be replaced by h00 or hm in practice. For all 

the cases he considered, the performance of hm was either the best or comparable to 

the best one, which was often hsJ. However, the latter was substantially biased towards 

over-smoothing in some of the cases. In general, Chiu (1992) recommended hm when one 

prefers a more stable estimate. 

As mentioned earlier, Chiu (1991) also proposed a simple plug-in bandwidth estimate. 

Since 

j J"(x)2dx = (27rt1 j >.41 <P (>.)12d>. , 

he proposed to estimate J f"(x) 2dx by 

where J\ is the cut-off frequency mentioned above. The plug-in bandwidth estimate hp1 , 

is given by 

J K(u) 2du -1/5 [ l 
1/5 

(7r- 1 J! ,\4 {1¢(>.)12- l/n}d>.)(Ju2K(u)du) 2 n . 
(2 .28) 
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In his simulation studies, Chiu (1991) concluded that, for small sample sizes or rougher 

densities, the estimate hp1 outperformed hs. He also introduced an adjusted plug-in 

estimate that is asymptotically equivalent to the stabilised estimate. 

Surprisingly enough, the modified choices of the cut-off frequency A were not applied 

by Chiu (1992) to the plug-in bandwidth estimate hp1 . Replacing the value A by Am in 

(2.28) results in a modified plug-in bandwidth estimate, which we denote by hP2 . Tables 

4.4 and 4.5 display the results of a comparison between hp2 and hm, showing that the 

latter performs slightly better. However, hp2 is much faster to compute. 

B ootstrap-ba,sed procedures 

The reader is referred to Chapter 3 for a brief review of bootstrap methodology. This 

section deals with bootstrap-based procedures to select the smoothing parameter in kernel 

density estimation. The basic idea is to calculate a bootstrap estimate of MISE, and then 

to minimise it with respect to h. 

Let X{, x;, .. . , X~ be a bootstrap sample from the empirical distribution function 

Fn of X1,X2, ... ,Xn. Suppose ]17(x) is the bootstrap kernel estimator 

]~(x) = nlh ~ J( (x ~ Xt). (2.29) 

The bootstrap estimate of MISE is given by 

where E* denotes expectation with respect to X{,X;, ... ,X~, and jh is (as before) the 

kernel estimator based on X1 , X 2 , ... , Xn. However , MISE*(h) is in fact not suitable for 

bandwidth selection because 

This shows that there is no bias in this bootstrap world, which is disastrous because as 

shown by the MISE( h) analysis in Section 2.3, bias constitutes one of the two essential 

quantities to be balanced in bandwidth selection . 

This motivated researchers to estimate MISE( h) differently, and consequently obtain­

ing different estimates of h. Some of these methods will now be discussed. 
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(a) Smoothed bootstrap 

Taylor (1989) suggested applying the smoothed bootstrap (see Section 3.3 of Chapter 3). 

Let x;, X2, ... , X~ be independent random variables with common density function jh· 
MISE.(h) is defined as above, using the smoothed bootstrap data. Taylor (1989) derived 

an exact expression for MISE.( h), which is given if a Gaussian kernel is used, by 

1 [ _1 "°' { (Xi - Xi)
2

} 
MISE.(h) = 2n2h(27r)1/2 (l+n )~exp - Sh2 

t,J 

4 { (Xi - Xi)
2

} 
- 31/2 L, exp - 6h2 

t ,J 

+21/2 L exp { - (Xi - ;i)2 } + n21/2J. 
. . 4h 
t,J 

Hence, no resampling is required in order to calculate MISE.(h) . Numerical methods can 

be used to minimise MISE,.( h) with respect to h. Denote this data-based bandwidth by 

hBT· In Remark 3.6 of Hall et al. (1992), it is shown that 

This very slow rate of convergence is the same as that obtained by least-squares cross­

validation and biased cross-validation . For this reason the smoothed bootstrap, using a 

pilot bandwidth, was introduced. 

(b) Smoothed bootstrap with pilot bandwidth 

Faraway and Jhun (1990) proposed a smoothed bootstrap-based choice of the smoothing 

parameter h by using a pilot bandwidth g. Let x;, X2, ... , X~ be a bootstrap random 

sample from Jg, the kernel estimator based on a bandwidth g instead of h and a kernel 

L which may differ from K. The bootstrap estimate of MISE is now defined by 

MISE,.(h) = E. j[f~(x) - }g(x)]2dx , 

with f;.(x) calculated as in (2.29) by using the bootstrap sample x; l x;, ... 'x~ from jg· 

Once again, MISE.(h) can be expressed directly in terms of the data Xi, X2, ... , Xn, 

so that no resampling is needed. For example, if I< = L = </>, the standard normal 
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density, we have 

[ { 
(X·-X ·) 2

} n-2 (l+n-1 ){47r(h2 +g2)}-1/2"°'exp - 1 1 

0. 4(h2 + g2) 
i,J 

-2{27r(h2 + 292)}-1/2 "°'exp { - (X; - Xj)2} 
0. 2(h2 + 2g2) 
i,J 

+{ 47rg2}-1/2 L exp { - (X; - ;j )2} + n{ 47f h2}-1/2] . 
.. 4g 
i,J 

Faraway and Jhun (1990) chose g by least-squares cross-validation, but good insight 

into the problem of how to choose g was provided by Jones et al. (1991) and Hall et al. 

(1992). These authors proved that, under certain condit ions , 

hBFJ _ l + Q ( -1/2) 
ho - P n ' 

where hBFJ is the minimiser of MISE.(h). This result is not surprising, since MISE .. (h) 

is almost identical to SC(h), the smoothed cross-validation criterion discussed earlier. 

Consequently, hBF J and hsc behave similarly for small samples, and hBF J therefore 

suffers the same drawbacks as hsc, specifically with respect to the choice of g. 

( c) Modified bootstrap 

Hall (1990) proposed the following way to estimate the bandwidth h, by applying the 

modified bootstrap (see Section 3.5 of Chapter 3). Let x;,x;, ... ,X~ be a bootstrap 

random sample of size m < n from the empirical distribution Fn. Let h = g(~) 1 1 5 . He 

suggested estimating MISE by 

with Jii(x) calculated as in (2.29). An estimate of his obtained by minimising MISE.(g). 

Hall (1990) showed that, under certain conditions, this bandwidth estimate has a relative 

error of n-1/10
• However, this procedure cannot be implemented in practice, since the 

choice of m is unknown. 
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Main conclusion 

Jones et al. (1994) performed a comprehensive Monte Carlo study to compare various 

data-driven bandwidth selectors. They included the densities of Marron and Wand (1992) 

that ranged from very easy to very hard to estimate. Their simulation studies led them to 

commend the use of hsJ for general purposes. Unfortunately, Jones et al. (1994) did not 

include the bandwidth selector proposed by Chiu (1992), because "this fine contribution 

arose too late to be included in our simulation study". In his simulation studies, Chiu 

(1992) included, among others, hsJ and came to the conclusion that "for all cases, the 

performance of hm is either the best or comparable to the best one" . In view of this 

and the discussions above, the selectors hm and hp2 are preferred , and will therefore be 

applied in the Monte Carlo studies of Chapter 4. 

2. 5 Estimating functionals of the density 

There are a number of statistical problems where it is necessary to obtain estimates 

of functionals of the density like J J(x) 2dx, J J(x)logf(x)dx, J J"(x) 2dx , etc. Another 

important example is estimation of the mode or the antimode of a density. An obvious 

way of constructing these estimates is to find an estimate J of J and then to use this 

estimate in the functional of f. Sometimes it is possible to express these estimators in 

closed form. For example, if J is the kernel estimator Jh, then J Jh(x )2dx can be expressed 

explicitly using the formula 

where K(2) = f( * K, i.e., the convolution of/( with itself. 

The problem of estimation of the mode of a density has received some attention in 

this regard . Parzen (1962) proposed using the location of the maximum of the kernel 

density estimate to estimate the mode off. Assume that f is unimodal in the sense that 

there exists a unique real number <P such that 

J( <P) = max J(x ). 
- oo<x<oo 
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Suppose f ( x) is uniformly continuous and suppose J( ( ·) is a continuous function such 

that K(x ) ~ 0 as x ~ ±oo. Then }h(x) is continuous and there is a random variable <f>n 

such that 

<f>n is called the sample mode. 

The uniform strong convergence property of Jh to f gives the convergence of <f>n to </> 

in the corresponding sense. Parzen (1962, Theorem 3A) gave conditions under which <f>n 

is a strongly consistent estimator of¢. Nadaraya (1965) and Van Ryzin (1969) derived 

stronger consistency results . Parzen (1962, Theorem 5A) gave conditions under which <f>n 

(appropriately ·normalised) has an asymptotic normal distribution. 

In general, the mode off may not be unique, in which case, let 

</> = M(f) =inf { xl f (x) = s~p J(y )}, 

and </>n = M(}h)· Eddy (1980 , Corollary 2.2) proved the asymptotic normality of <Pn 

under less stringent conditions than those of Parzen. 

In Chapter 4 the small and moderate sample behaviour of the kernel-based estimate 

of the antimode and the kernel-based estimate of the minimum of a density are studied. 

The large-sample behaviour of these estimators has not been addressed in the literature. 

2.6 Incorporating support constraints 

So far in the discussion of kernel density estimation , it has been assumed implicitly either 

that one is interested in estimating over all of~' or if the density has a compact support, 

that estimation is carried out at a point well away from the boundary points. If the point 

of estimation is at the boundary or too close to that, serious inconsistency problems 

develop. In fact, if f has support [a, b], a and b finite, and K(x) = K(-x) for all x E ~' 

then under some mild regularity conditions, we have 

(i) }h(x) ~· J(x) if a< x < b, 

(ii) }h(a) ~· f(a)/2, 
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(iii) fh(b) ~ J(b)/2. 

A heuristic proof of the statements is the following. By using the strong law of large 

numbers and a Taylor expansion , 

_!_ [_!_ t I< (x - Xi)] 
h n i=l h 

~· * E f{ ( x -h X 1 
) (for h fixed) 

* 1b I<(x ~ y)f(y)dy 

i

(x - a)/h 
J( (z )J(x - hz )dz 

(x - b)/h 

i

(x - a)/h 
I<( z ){J(x ) - hz f'( x ) + · ··}dz 

(x - b)/h 

i

(x - a)/h i(x-a)/h 
J( x ) I<(z)dz - hf'(x) z I<(z)dz + · · · 

(x-b)/h (x-b)/h 

i
(x- a)/h 

J( x ) K( z )dz + O(h ). 
(x - b)/h 

Let a < x < b. For this case, as n --t oo and h --t 0, 

}1i (x ) ~· J(x) 1-: I<( z )dz 

J(x). 

Let x = a, then as n --t oo and h --t 0, 

Case (iii) follows similarly. 

}h(a) ~· f(a) [
0

00 

I<( z )dz 

f(a) 
2 

0 

According to Marron and Ruppert (1994), the boundary region is often 20-503 (some­

times even more) of the support off, so that boundary bias can be a serious problem. 

Several methods have been proposed to modify kernel estimators to handle boundary 

effects. One view is that one can no longer make use of a kernel function symmetric 
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about zero if the point of estimation is at the boundary or too close to it. This suggests 

that one ought to investigate the existence of nonsymmetric kernel functions that will 

allow one to obtain the same asymptotic properties as in the case of symmetric kernel 

functions. Such kernel functions will be useful in estimation at the boundary or close to 

it. Rosenblatt (1991) considered a simple family of kernel functions that are useful in the 

estimation of density functions which are continuously differentiable up to second order. 

Let 

{ 
[l-(t-y)2](a+f3{t- y}), 

p(t, y) = 
0, 

if -1 + y :::; t :::; 1 + y' 

otherwise, 

with the properties that 

1
1+y 

p(t,y)dt = 1, 
-l+y 1

1+y 

tp(t , y )dt = 0. 
-l+y 

Solving these two equations for a and f3 on the interval [-1+y,1 + y], results in 

p(t,y) = [l - (t -y)2] (~ - 145y {t - y}) . 

Rosenblatt (1991) suggested applying the kernel estimator where the kernel J<(·) is now 

defined by 

p(-, 0), if a + h :::; x :::; b - h, 

J<(·)= p(·,(a-x+h)/h), ifa:::;x<a+h, 

p(·, (b - x - h)/h) , if b- h < x:::; b. 

Note that the kernel fun ction can take on negative values. This boundary kernel approach 

is computationally complicated since each point in the boundary region requires its unique 

kernel. 

Another way of incorporating support constraints into kernel density estimators was 

suggested by Schuster (1985). He proposed a "reflection about the boundaries" adjust­

ment of the kernel estimator Jh, viz. 

if a:::; x:::; b, 

otherwise. 

The basic problem with the usual kernel estimator is that Jh(x) > 0 for some x's with 

x < a and x > b, but f(x) = 0 for x < a and x > b. If xi is close to a, then part 
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of the contribution of Xi to fh(x) flows over to (-oo,a). Similarly, if Xi is close to b, 

then part of the contribution of Xi to Jh(x) flows over to (b, oo ). The estimator jh(x) 

tries to incorporate the overflow to (-oo,a) and (b,oo) back into [a,b]. Schuster (1985) 

limited consideration to symmetric kernels with compact support which can be taken to 

be [-1, 1] and choices of the smoothing parameter h were limited to 0 < h < (b - a)/2. 

Figure 2.1 illustrates the "reflection about the boundaries" technique for two different 

densities, both with compact support [O, 1]. The densities, Case 11 and Case 15, as 

described in Section 4.2, and the bandwidth h = hm were used. 

Figure 2.1: (a) Case 11 and (b) Case 15 - The averaged simulated densities jh.(x) and 

.A ( x) are represented by the so lid and dashed curves, respectively, and the theoretical 

densities f ( x) by the dott ed curves. 

Some convergence properties are given by the next two theorems (Schuster, 1985). 

Theorem 2.6.1 Suppose the kernel J( is a bounded symmetric probability density func­

tion and vanishes off [-1 , 1] . L et {hn} be a sequence of positive constants with hn --t 0 

and nhn --too. If F' = f is uniformly continuous on [a, b], then, for every x, 
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3. fh(x) is strongly consistent for J(x) , 

4. (nhn) 112(fh(x) - J(x)) is asymptotically normally distributed with mean zero and 

variance u2
, when x E [a, b]. 

Theorem 2.6.2 Suppose the kernel J( is a bounded symmetric probability density func­

tion and vanishes off [-1, 1] . Let { hn} be a sequence of positive constants with 

I:~=l exp( cmh;) < oo for all a > 0. Th en 

lim sup lfii(x) - J( x)I = 0, 
n~oo x 

almost surely, i.e., Jh is uniformly strongly consistent. 

Schuster's (1985) "tied down" technique which incorporates knowledge of f(a) and/or 

f(b) into Jh will not be discussed. 

Marron and Ruppert (1994) showed that Schuster's reflection technique reduces the 

bias, but that the bias at a, for example, after reflection is approximately proportional 

to hnf'( a) as n ---+ oo. In contrast, the bias in the interior is approximately proportional 

to h;f" ( x) /2. Thus, unless f has a derivative equal to zero at both boundaries and hn 

is sufficiently small, the bias at the boundaries will be larger than in the interior. They 

proposed to transform the data to a density that has first derivative equal to zero at both 

boundaries, estimate the density of the transformed data and obtain an estimate of the 

density of the original data by a change of variables. Under certain conditions, Marron 

and Ruppert (1994) proved that their density estimator so obtained has boundary bias 

O(h;). Their estimator depends on two bandwidths. Unfortunately, no indication is 

given as to how they can be estimated from the data. However , some insights of how this 

can be done were recently given by Cheng (1994). 



Chapter 3 

Bootstrap methodology 

3.1 Introduction 

Efron (1979) introduced a very general resampling procedure for estimating the distribu­

tions of statistics based on independent observations. This resampling procedure is called 

the bootstrap. In contrast with the popular Quenouille-Tukey jackknife method, the boot­

strap is more widely applicable and perhaps has a sounder theoretical basis. With the 

advancement of computer technology, the bootstrap (which is a computer-based method) 

becomes increasingly more feasible and acceptable. 

The bootstrap has some attractive properties for the statistical practitioner. It re­

quires few assumptions, little modelling or analysis, and can be applied in an automatic 

way in a wide variety of situations. The use of the bootstrap either relieves the analyst 

from having to do complex mathematical calculations , or in some instances provides an 

answer where no analytical answer can be obtained. In Chapter 4 the bootstrap technique 

will be applied to derive data-based smoothing parameters. Furthermore, the bootstrap 

will be used to construct confidence intervals. 

The bootstrap can be used either nonparametrically, or parametrically. In the non­

parametric situation, it avoids restrictive and sometimes unrealistic assumptions about 

the form of the underlying population distribution. Since the bootstrap is used most 

often in the nonparametric set-up, t he discussion below will be limited to this approach, 

68 
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emphasising aspects which are relevant for our purposes. 

3.2 Formal description 

The review of the bootstrap method will be started by giving a formal description of 

the procedure. Let X n = (Xi, X 2 , ••• , Xn) be a sample of independent, identically 

distributed random variables with common unknown distribution function F. Suppose 

Tn(Xn; F) is some specified random variable of interest, possibly depending upon the 

unknown F. Let Fn denote the empirical distribution function of X n, defined to be the 

discrete distribution that puts probability l/n on each value Xi , i = 1, 2, ... , n . The boot­

strap method consists of approximating the sampling distribution of Tn(X ni F) under F 

by the bootstrap distribution of Tn(X:; Fn) under Fn, where x: = (X;, x;, ... , X~) 
denotes a random sample of size n drawn with replacement from F11 • 

The actual calculation of the bootstrap distribution of Tn(X~; Fn) is usually difficult. 

However, Efron (1979) suggested a Monte Carlo method that provides an accurate ap­

proximation of the bootstrap distribution. Generate B bootstrap random samples of size 

n from Fn, 

x~(l), x :(2), ... , x:(B). 

The empirical distribution of the corresponding values 

is taken as an approximation of the actual bootstrap distribution of T11 (X:; Fn)· This 

approximation can be made arbitrarily accurate by taking B sufficiently large. Monte 

Carlo approximation is not always required, because direct theoretical calculation of the 

bootstrap distribution is possible in some cases. Some nontrivial examples are discussed 

by Efron (1979) . 

The mechanism of the bootstrap procedure is illustrated by the following simple exam­

ple concerning accuracy estimates. The bootstrap was initially introduced as a computer­

based method for estimating the standard error off, an estimate of a parameter of interest 
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T. The bootstrap estimate of the standard error requires no theoretical calculations, and 

is available no matter how mathematically complicated the estimator f may be. 

Example 

In this example the bootstrap estimate of the standard error for one-sample situations 

are considered. Let f = +(X1 ,X2 , . •• ,Xn) be a real-valued statistic with standard error 

u(F), i.e., 

u(F) = {Varp( f) }1
/

2
• 

Of course, u( F) is also a function of the sample size n and the form of the statistic f , 

but since both of these are known, these dependencies will not be made explicitly in the 

notation. Since F is unknown , u(F) is also unknown. The bootstrap estimate of u(F) 

is simply u( F) evaluated at some estimate of F, usually the empirical distribution Fn· 

Hence, the bootstrap estimate of standard error is simply given by 

(3.1) 

where f* = +(X;, x;, ... , X,:) and (X;, x;, ... , X,:) is a bootstrap sample from Fn. Var. 

denotes variance over the conditional law of x~ given x n· 

The argument leading to the bootstrap estimate of the standard error in (3.1) is a 

direct example of the so-called plug-in principle. In this case, the plug-in estimate of the 

parameter, which is some functional of the distribution fun ction F, is simply given by 

the same functional of the empirical distribution Fn . 

Sometimes it is possible to derive an explicit expression for (3.1). Suppose f = Xn , 

in which case u(F) = {µ 2 (F)/n}11 2
, where 

Note that fr= {s~/n}112 , wheres~= n-1 2:~1 (Xi - X11 )
2

, so that (3.1 ) can be written 

in closed form in this case. 

Since there is no simple expression for the functional u( F) in most cases, the Monte 

Carlo algorithm (Efron, 1979) is now implemented as follows. 
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1. Construct Fn, putting mass n-1 at each point X 1 , X2 , . .. , Xn. 

2. Using a random number generator, draw a random sample x:, X; , ... , x,: from Fn 

with replacement and calculate f*(l) = f(X:, x;, ... , X~). 

3. Independently repeat step 2 some number B times to obtain bootstrap replications 

f*(l), f*(2), . . . , f *(B). 

4. Calculate 

CrB = -
1
-l:[f*(b) - f*(·)]2 , 

{ 

B }1/2 
B - 1 b=1 

where f*(·) = B-1 'L~= 1 f *(b). 

Note that CrB converges to fr = a(Fn) as B ---+ oo. In most cases a value B in the range 

of 50 to 200 is adequate for estimating standard errors (Efron, 1981) . Larger values of B 

are required for bootstrap confidence intervals (see Section 3.4). 

Other measures of statistical error, or accuracy, such as bias or prediction error, can 

also be easily assessed using the bootstrap . For example, consider estimation of the bias . 

For a given estimator f(Xn) of a parameter r(F), let 

The bias of f(Xn) for estimating T(F) is 

The bootstrap estimate of bias is 

where E. denotes expectation over the conditional law of x:i given X n- The only change 

in the numerical evaluation of~ occurs in Step 4 of the algorithm given above, 

Once again, we have that ~B ---+ ~ as B ---+ oo. 
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Remark 

If the parameter T cannot suitably be written as a functional of F, one can (as is often 

being done in the literature) replace T(Fn) in the definition of~ by any accurate estimator 

of T. 

3.3 The smoothed bootstrap 

So far, the empirical distribution function Fn was used in the bootstrap calculations. Fn is 

not a bad choice, since it is asymptotically minimax and is the nonparametric maximum 

likelihood estimator of F (Beran, 1984). However, since Fn is a discrete distribution, 

samples constructed from Fn in the bootstrap simulation will have some rather peculiar 

properties. All the values taken by the members of the bootstrap samples will be drawn 

from the original sample values. Therefore nearly every sample will contain repeated 

values. This seems unacceptable when dealing with continuous variables. The smoothed 

bootstrap is a modification done to the usual (sometimes referred to as the "naive") 

bootstrap procedure to avoid bootstrap samples with this property. The basic idea is 

to perform the repeated sampling not from Fn itself, but from a smoothed version of 

Fn . According to Swanepoel (1990) a smoothed version of Fn is, for example, the kernel 

estimator of F, which is defined by 

where h = hn is a sequence of smoothing parameters such that h11 -t 0 as n -t oo. 

The kernel H is a known continuous distribution function symmetric around zero. Az­

zalini (1981) obtained second-order results that show an asymptotic improvement in the 

estimation of F by using Fh instead of Fn , provided certain regularity conditions on F 

are met and that the sequence hn converges to zero at a certain rate. An algorithm to 

construct a bootstrap sample from Fh is the following. 

1. Generate x;, x;, ... , X~ which are independent random variables with common 

cumulative distribution function Fn. 
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2. Generate Z1, Z2, ... , Zn which are independent random variables with common cu­

mulative distribution function H. 

3. If both these samples are independent, then we take }i* = Xt + hZi, i = 1, 2, ... , n, 

as a bootstrap sample from Fh. 

No definite answer exists whether the smoothed bootstrap is superior to the un­

smoothed bootstrap, especially for small samples. The difficult part in applying the 

smoothed bootstrap comprises the choice of the smoothing parameter h. Silverman and 

Young (1987) studied the problem of choosing the smoothing parameter but unfortu­

nately their result is not very useful in practice, since it does not specify the value of the 

smoothing parameter h for which the smoothed bootstrap is superior. Hall et al. (1989) 

showed that in estimating the variance of a sample quantile, the rate of convergence of 

the relative error can be improved by using a smoothed bootstrap instead of the usual 

bootstrap. In Section 2.4 the smoothed bootstrap was considered as a possible band­

width selection procedure. Since the direct application of the bootstrap fails in trying to 

estimate the mean integrated squared error of the kernel density estimator, this proves 

to be a situation where smoothing is not only desirable but necessary. 

3 .4 Confidence intervals 

One of the main purposes in obtaining &, the estimated standard error of an estimator 

f of an unknown parameter T, is to assign approximate 100( 1 - a) %-confidence intervals 

to T. Typically these intervals are of the form 

f ± z(a./2)&, 

where z(a/2) is the 100(1 - a/2) percentile point of the standard normal distribution. 

However, these intervals may often be very inaccurate, in the sense that the nominal 

coverage probability is not attained. The bootstrap can be applied very successfully to 

obtain nonparametric confidence intervals. Various bootstrap methods for constructing 

confidence intervals exist in the literature. Comprehensive surveys are given by DiCiccio 

and Romano (1988) and Hall (1988b ). 
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A brief discussion of the following nonparametric procedures will now be given: 

• bootstrap-t, 

• percentile intervals. 

Bootstrap-t intervals 

Let c = c( F) be a constant satisfying 

P(lf - rl/&:::; c) ~ 1 - a. 

The quantity (r - r)/0- is called an approximate pivot. This means that its distribution 

is approximately the same for each value of r. If the constant c( F) were known , a 

100(1 - a)%-confidence interval for r would be 

f ±ca. 

However, replacing c(F) by the bootstrap est imate c(F,i), an approximate 100(1 - a)%­

confidence interval for r is 

f ± c(Fn)a. 

The bootstrap estimate c(Fn) is defined by 

P*(lf* - fl/&* :::; c(Fn)) ~ 1 - a, 

where f*, 0-* are the estimates f and 0- based on the bootstrap random sample 

x;, X2, ... , X~ from Fn. Note that P* denotes the conditional probability law of (X;, X2, 

... , X~) given (X1 , X2 , ... , Xn)· The random variable c(Fn) can now be approximated 

by means of the following Monte Carlo algorithm. 

1. Draw a bootstrap random sample x;, X2, ... , x,: of size n with replacement from 

Fn and calculate f *, a* and 

T;(1) = If* - fl/&*. 

2. Independently repeat Step 1 some number B times, obtaining bootstrap replications 

T;(1), r,;(2), ... , r:(B). 
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3. Let D(i), i = 1, 2, ... , B, denote the order statistics of T;:(i), i = 1, 2, ... , B. 

4. The random variable c(Fn) is now approximated by D(k) , where k =[B(l - a)] with 

[z] denoting the largest integer less than or equal to z. 

Percentile intervals 

Let G denote the cumulative distribution function of 7• = 7(X;' x;' ... 'x,:) , i.e. , 

G(t) = P*( 7• s t). 

The percentile 100(1 - a)3-confidence intervals are given by 

TE [Q- 1(a/2),G- 1 (1- a/2)], (3.2) 

which can be approximated as follows. Draw B independent bootstrap random samples 

of size n and calculate fi, r;, ... , f-B. If ft1) S ft2) S · · · S f-tB) denote the corresponding 

order statistics, the percentile interval can be approximated by 

where the integers rands are defined by r = [Ba/2] ands= [B(l - a/2)]. 

The bias-corrected percentile 100(1 - a)3-confidence intervals are given by 

TE [Q-1 {<I>(2z0 - z(a/2))},G-1 {<l>(2z0 + z(a/2))}]. (3.3) 

Here <I>(·) is the standard normal cumulative distribution function , <I>(z(a/2)) = 1 - a/2 

and z0 = q,- 1 (G(f)) . 

These intervals improve on the percentile intervals in the sense that they attempt to 

eliminate the effects of bias of the bootstrap distribution off•. Note that in the median 

unbiased case, i.e. , G( f) = 0.5, z0 = 0 and (3 .3) reduces to (3 .2). 

The bias-corrected percentile intervals can be calculated exactly as above, except that 

we now define 

r = [B<I>(2z0 - z(a/2))], 

s = [B<I>(2z0 + z(a/2))], 
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and 

G(+) =.I_ tJ(ib* < + ), 
B b=1 

where /( ·) denotes the indicator function. 

Efron (1982) gave a detailed discussion of these two types of confidence intervals. 

Efron (1987) introduced an improved version of the bias-corrected percentile method, 

called the accelerated bias-corrected percentile method. This method incorporates 

both a bias and skewness correction. The 100(1 - a)%-confidence intervals are defined 

by 

(3.4) 

where 

b( a/2) = z( a/2) - Zo + Zo, 

l -a(z0 -z(a/2)) 

z(a/2) + z0 c(a/2)- - z0 , 

- l-a(z0 + z(a/2)) 

and a being some constant depending on the unknown F. Note that if a = 0 then (3.4) 

reduces to (3.3). Now, suppose T = t(F), for some smooth functional t, and f = t(Fn)· 

There are various ways to compute a. Efron (1987) suggested that a be estimated by 

(3.5) 

where U; is the so-called empirical influence function off evaluated at X; , i = 1, 2, ... , n, 

i.e. , 

U
. _ 

1
. { t((l - c)F11 + E:5;) - t(Fn)} 

,- 1m , 
e--+O E: 

with 5; the degenerate distribution function at the point X;. Instead of letting E: --t 0 

to compute Ui, some small value of E:, for example E: = l/(n + 1), is usually selected. 

(See Efron, 1982:41 for a detailed discussion.) Alternatively, we may use the jackknife 

influence Junction for f, viz. 

(3.6) 

where 
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and 
• 1 ~. 
T(·) = - ~ T(i) · 

n i=l 

This avoids having to explicitly define f as a functional statistic. 

Note that the quantity a is called the acceleration because it refers to the rate of 

change of the standard error off with respect to the true parameter value T (see (3.5), 

(3.6) and Efron & Tibshirani, 1993:186). 

D iscussion 

The bootstrap-t procedure is a useful and interesting generalisation of the usual Student 's 

t-method. It is particularly applicable to location statistics like the sample mean, the 

median, the trimmed mean, or a sample percentile. However, the bootstrap-t has some 

drawbacks. Bootstrap-t intervals are difficult to compute when 0-, the bootstrap estimate 

of the standard error of f, needs also to be calculated. The entire computation is then 

a double-nested bootstrap. The bootstrap-t method is not invariant under reparame­

terisation. Beran (1987) suggested a different pivotal construction, which mimics the 

probability integral approach. The theoretical and numerical properties of his pivotal it­

eration confidence intervals are comparable to those of bootstrap-t intervals . Finally, the 

bootstrap-t intervals have good theoretical coverage probabilities, but tend to be erratic 

in practice. 

The percentile intervals are reasonably stable in practice, but have less satisfactory 

coverage probabilities. They have a tendency to undercover. The three percentile boot­

strap confidence intervals discussed above are in order of increasing generality. Like the 

standard t, or normal intervals, they are invariant under reparameterisation. Of these 

three techniques, the accelerated bias-corrected intervals generally perform best. Their 

coverage accuracy can, however, still be erratic for small sample sizes. The coverage 

probabilities of both the accelerated bias-corrected percentile interval and the bootstrap­

t interval differ from the nominal level (i.e., the (1 - a)-level) by only O(n-1
) instead of 

O(n- 112
) for normal intervals. In other words, the accelerated bias-corrected percentile 

and the bootstrap-t intervals are second-order accurate while the standard and percentile 
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methods are only first-order accurate. This was proved for the mean by Singh (1981) 

and for more general statistics by Hartigan (1986) , Bickel (1987) and Hall (1988b). If the 

standard error estimate er is chosen correctly, the bootstrap-t can perform better than 

the accelerated bias-corrected procedure. 

The main disadvantage of the bias-corrected accelerated percentile method is the 

large number of bootstrap replications required. The discussion in Section 19.3 of Efron 

and Tibshirani (1993) shows that at least B = 1000 replications are needed in order 

to sufficiently reduce the Monte Carlo sampling error. To assess this disadvantage, we 

mention another method of obtaining bootst rap intervals. DiCiccio and Efron (1992) 

discussed the approximate bootstrap confidence interval. It is a method of approximating 

the bias-corrected accelerated percentile interval endpoints analytically, without using 

any Monte Carlo replications at all. The approximation is usually quite good as can 

be seen from Table 14.2 of Efron and Tibshirani (1993:183). Most importantly, the 

approximate bootstrap interval endpoints require substantially less computational effort 

than is required for the bias-corrected accelerated percentile intervals. The approximate 

bootstrap interval endpoints are invariant under reparameterisation and are second-order 

accurate. 

Most of the published work on bootstrap confidence intervals has concentrated on 

equal-tailed two-sided intervals. An equal-tailed (1 - a)-level confidence interval for T is 

of the form 

[+ - a,f + b], 

where a and b are chosen so that 

A O'. 
P(T < + - a)= P(T > + + b) = 2. 

Hall (1988a) discussed symmetric two-sided bootstrap-t intervals of the form 

[+ - c,f + c], 

where c is chosen so that 

P(I+ - Tl > c) = a. 
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Hall(1988a) showed that in quite general circumstances equal-tailed bootstrap-t intervals 

have coverage error 0( n-1 ) and that symmetric bootstrap-t intervals have coverage error 

O(n-2 ) . Beran's (1987) pivotal iteration method reduces the error to a very low O(n-3 ). 

It was also proved that symmetric intervals are not necessarily any longer than equal­

tailed intervals. 

3.5 The modified bootstrap 

Suppose Tn(X ni F) is some specified variable of interest, depending upon the underlying 

cumulative dis tribution function F. The bootstrap method consists of approximating the 

sampling distribution of Tn(Xn; F) under F by the bootstrap distribution of Tn(X~; Fn) 

under Fn, where x:i = (X;, X2, ... , X~) denotes a random sample of size n from Fn, i.e., 

(3 .7) 

for any Borel set A. P* denotes the conditional probability law of Tn(X :i; Fn) given Xn. 

Singh (1981) and Bickel and Freedman (1981) showed that approximation (3.7) is 

asymptotically valid in a large number of situations, including t-statistics, the empirical 

and quantile processes and van Mises functionals. However, they also provided some 

counter-examples to show where the bootstrap apparently fails. These examples are for 

pivotal quantities based on a U-statistic, extreme order statistics and spacings of the 

observations x n. 

The basic idea of the modified bootstrap procedure, suggested by Swanepoel (1986), is 

to replace Tn(X~; Fn) in (3.7) by Tm(X;n; Fn) for some suitable choice of the bootstrap 

sample size m in terms of n. Swanepoel (1990) showed how the counter-examples to 

Efron's (1979) bootstrap method, given by Bickel and Freedman (1981 ), can be mended by 

the modified bootstrap procedure. Hall (1990) applied the modified bootstrap procedure 

in the context of automatic bandwidth selection (see Section 2.4). 



Chapter 4 

Numerical studies 

4.1 Introduction 

In this chapter the results of extended simulation studies are reported. Data were gener­

ated from a variety of populations. The different underlying probabi li ty density functions 

are discussed in Section 4.2. Sections 4.3-4. 7 deal with the estimation of the minimum of 

a density, f( B), in various aspects. Consideration of the estimation of the anti mode (), is 

postponed to Section 4.8 for reasons to be explained later. Monte Carlo estimates of the 

bias and the mean squared error of the estimator proposed in Chapter 1, 1Jn , are reported 

in Section 4.3. This is done in order to investigate the role played by the smoothing 

parameters, Sn and rn , in the behaviour of 17n· Data-driven methods to determine the 

smoothing parameters are discussed in Section 4.4. In Section 4.5 possible alternative 

estimators of J ( B) are discussed . Section 4.6 consists of the results of simulation studies 

in which the small and moderate sample behaviour of all the estimators is investigated 

and compared. Confidence intervals are constructed by using, among others, the double 

bootstrap in Section 4. 7. Section 4.8 deals with the estimation of () for selected cases; 

alternative estimators, possible smoothing methods and some simulation results are dis­

cussed. Interesting real data applications from the field of Astrophysics are considered in 

Section 4.9. 

80 



4.2. TARGET DENSITIES 81 

4.2 Target densities 

In this chapter the results of a series of Monte Carlo studies which were performed to in­

vestigate the accuracy of the proposed and possible alternative estimators for () and f ( ()) 

are reported. For convenience, densities with compact support [O, 1] were considered. 

Data were generated from fifteen different populations. The first nine cases were popula­

tions with different von Mises probability density functions according to different choices 

of parameters. The last six cases were constructed in order to include nonperiodical and 

more complex densities. 

A random variable X is said to have a von Mises distribution if its probability density 

function is given by 

where ! 0 ( "') is the modified Bessel function of the first kind and order zero, i.e., 

The parameter µ is the mean direction while the parameter "' is described as the concen-

tration parameter. Note that f(O) = J(2rr). 

This distribution plays a dominant role in statistical inference on the circle and its 

importance there is almost the same as that of the normal distribution on the line. The 

distribution is unimodal and is symmetrical about x = µ. The mode is at x = µ and 

the antimode () , is at x = µ - rr. As K -t 0, the distribution converges to the uniform 

distribution; as K -+ oo, the distribution tends to the point distribution concentrated in 

the directionµ. The reader is referred to Mardia (1972) and Fisher (1993) for a discussion 

on the various properties of the von Mises distribution as well as its relation with other 

distributions. 

Since consideration is limited to the interval [O , 1], the von Mises density defined by 

the following, was used, 

f(x) = { 
0, 

_l_e" cos(21r(x-µ)J 
fo(K) 1 0 :::;: x :::;: 1, K, > 0, 0 :::;: µ < 1, 

elsewhere. 
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Nine von Mises densities were considered, according to different choices for "' and B = 

µ - ~. These are displayed in the following table. 

Table 4.1: Von Mises densities. 

Case e /\, J(B) 

1 0.125 0.25 0.767 

2 0.125 0.50 0.570 

3 0.125 1.00 0.291 

4 0.250 0.25 0.767 

5 0.250 0.50 0.570 

6 0.250 1.00 0.291 

7 0.500 0.25 0.767 

8 0.500 0.50 0.570 

9 0.500 1.00 0.291 

In order to include, among others, nonperiodical densities with J(O) -=f J(l), six 

additional density functions were constructed. 

The densities are given by: 

Case 10: J(x) = 5x2 
- 5x + ~1 , 

Case 11: J(x) = 5x2 
- ~x + ~~' 

Case 12: f(x) = x 2 
- x + ~' 

Case 13: J(x) = x2 
- ~x + ~~' 

Case 14: J(x) = g(x)/{f g(x)dx} , where 
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with 

C1 = 54.025, C2 == -111.1, C3 = 69.126, C4 = -12.052, Cs= 1.1, 

Case 15: J(x) = g(x )/ {f g(x )dx }, where 

with 

C1 = -1712.006, C2 = 5136.018, C3 = -5755.922, C4 = 2951.814, 

Cs = -672.680, Cs= 52. 776, C7 = 0.8. 

The constants c1,c2, .. . ,cs (Case 14) and c1,c2, . .. ,c7 (Case 15) were numerically 

obtained by fitting polynomials to specified values for the modes and maxima, and the 

antimodes and minima of the densities . Table 4.2 displays the values of () and f (()) for 

Cases 10-15. 

Table 4.2: Nonperiodical densities . 

Case () f(()) 

10 0.50 0.583 

11 0.75 0.271 

12 0.50 0.917 

13 0.75 0.854 

14 0.12 0.409 

15 0.25, 0.75 0.161 

Cases 1-11 are displayed in Figure 4.1. Cases 12-15 are viewed as being more difficult 

as far as the estimation off(()) is concerned (see Figure 4.2) . 
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Figure 4.1: (a) Case 1 is represented by the solid curve, Case 2 by the dashed curve and 

Case 3 by the dotted curve. (b) Case 4 is represented by th e solid curve, Case 5 by th e 

dashed curve and Case 6 by the dott ed curve. ( c) Case 7 is represented by the solid curve, 

Case 8 by the dashed curve and Case 9 by the dott ed curve. ( d) Case 10 is represented 

by the solid curve and Case 11 by the dashed curve. 
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Figure 4.2: (a) Case 12 is represented by the solid curve and Case 13 by the dashed curve. 

(b) Case 14 is represented by the solid curve and Case 15 by the dashed curve. 

4.3 Optimal choice of smoothing parameter 

The estimator of J(B), T/n, (see (1.15)) , is defined in terms of two smoothing parameters, 

s = Sn and r = rn. A simulation study was first conducted to investigate the influence of 

different choices of s and r on the MSE of T/n, viz. 

MSE(TJn) = E (T/n - min J(x))
2 

= E(TJn - J(B)) 2
• o:::;x :::;1 

( 4.1) 

Monte Carlo estimates (based on 2000 independent trials) were obtained for MSE( TJ,,) for 

all pairs (r, s), where both rand s were allowed to vary over all integers between 1 and 

[(n - 1)/2], under the restriction r::::; s. All fifteen densities were considered and sample 

sizes n = 100 and n = 400 were used. It turned out that in each case MSE( T/n) attained 

its minimum at some unique pair (r , s) with r = s. No theoretical explanation for this 

behaviour can be given at this point. Table 4.3 displays the minimum values of MSE( 7711 ) , 

and the corresponding optimal values r = s . Estimates of ET/n based on these optimal 

values are also included and comparing them with the f ( B)-values , show that T/n is in all 

cases (except Case 15, for n = 100) almost unbiased. 
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Table 4.3: Monte Carlo estimates of bias and minimum NISE. 

n = 100 n = 400 

Case f ( 8) Sn ETJn min(MSE) Sn ETJn min(MSE) 

1 0.767 13 0.782 0.006 46 0.773 0.003 

2 0.570 6 0.564 0.007 28 0.578 0.003 

3 0.291 2 0.301 0.005 11 0.293 0.002 

4 0.767 16 0.775 0.005 57 0.776 0.002 

5 0.570 9 0.581 0.006 33 0.578 0.002 

6 0.291 3 0.299 0.004 13 0.294 0.001 

7 0.767 19 0.782 0.004 57 0.771 0.002 

8 0.570 10 0.585 0.005 34 0.580 0.002 

9 0.291 3 0.294 0.004 13 0.295 0.001 

10 0.583 11 0.598 0.005 37 0.593 0.002 

11 0.271 3 0.276 0.003 13 0.276 0.001 

12 0.917 35 0.929 0.002 125 0.926 0.001 

13 0.854 26 0.865 0.003 96 0.862 0.001 

14 0.409 3 0.432 0.006 11 0.41 8 0.003 

15 0.161 1 0.233 0.008 2 0.158 0.001 
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Consequently, the following estimator of f ( B) was considered during the rest of the 

numerical studies, 

( 4.2) 

with Kn as defined in (1.3). 

Figures 4.3-4.17 show the behaviour of E17n and MSE as functions of Sn. Two sample 

sizes, n = 100 and n = 400, were considered. The number of trials was 2000. For each 

case it is clear that there exists a unique choice of Sn where the MSE is minimised. This 

is indicated by a vertical dotted line. Note that in some cases the MSE has values close 

to its minimum for a range of Sn-values . (See Figures 4.6, 4.9, 4.12, 4.14 and 4.15.) This 

implies (as will be seen later) that the estimator 1Jn will be quite accurate for any of these 

values of Sn· This is in contrast with the cases in Figures 4.5, 4.8, 4.11, 4.13, 4.16 and 

4.17. 

Hence, from the figures it is clear that a "correct" choice of smoothing Sn is possible. 

In Section 4.4 data-driven choices of Sn will be discussed. The performance of T/n based 

on these data-based smoothers will be empirically evaluated in Section 4.6. 
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Figure 4.3: Case 1 - Monte Carlo estimates of E17n (solid curve) and E(1Jn - f(B)) 2 

(dashed curve). 
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Figure 4.4: Case 2 - Monte Carlo estimates of Eryn (solid curve) and E(ryn - f(B)) 2 

(dashed curve). 
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Figure 4.6: Case 4 - Monte Carlo estimates of ET/n (solid curve) and E(TJn - f(B)) 2 

(dashed curve). 
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Figure 4.7: Case 5 - Monte Carlo estimates of ET/n (solid curve) and E(TJn - f(B)) 2 
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Figure 4.8: Case 6 - Monte Carlo estimates of ET/n (solid curve) and E(T/n - J(0)) 2 

(dashed curve). 
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Figure 4.10: Case 8 - Mo nte Carlo estimates of Eryn (solid curve) and E(ryn - f(B)) 2 

(dashed curve). 
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Figure 4.11 : Case 9 - Monte Carlo estimates of Eryn (solid curve) and E(ryn - f (B)) 2 
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Figure 4.12: Case 10 - Monte Carlo estimates of Eryn {solid curve) and E(ryn - f(0)) 2 

(dashed curve) . 

1.0 
n= 100 

0.125 1.0 
n 400 

0.125 

I 
I 

I 
I 

0.75 0.093 0.75 I a .a93 
I 

I I 
I I 

I I 

~ Li.I ~ Li.I 
!;:'" a .5 a .a62 ~ !;:'" a.5 I a .a62 ~ w I w I I 

I 
I 

I 

a.25 I a.a31 a .25 I a.a31 
I 

I I 
I I 

I 

/ I ,. 
' 

,,. .,. 
a .a a.a a.o a.o 

0.0 10.0 20.0 30.0 4a.a 50.0 0.0 50.0 1ao.a 150.0 200.0 
s,. s,. 

Figure 4.13: Case 11 - Monte Carlo estimates of Eryn (solid curve) and E(ryn - f(0)) 2 

(dash ed curve). 
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Figure 4.14: Case 12 - Monte Carlo estimates of Eryn (solid curve) and E(ryn - f(fJ)) 2 

(dashed curve) . 
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Figure 4.15: Case 13 - Monte Carlo estimates of Eryn (solid curve) and E(ryn - f(fJ)) 2 

(dash ed curve). 
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Figure 4.16: Case 14 - Monte Carlo estimates of ET/n (solid curve) and E(T/n - f(0)) 2 

(dash ed curve). 
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Figure 4. 17: Case 15 - Monte Carlo estimates of ET/n (solid curve) and E(T/n - J(0)) 2 

(dashed curve) . 
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4.4 Data-based choices of the smoothing parameter 

The importance of a data-dependent method of selecting the smoothing parameter Sn 

was discussed in Section 4.3. In this section some smoothing methods are discussed . 

A first possibility is to choose Sn as the minimiser of an estimator of MSE(77n) 

(see (4.1)). The naive bootstrap estimate of MSE(77,.) is E.(77~ - 77n) 2
, where 77~ = 

77n(X;, x;, ... , X~) and x;, x;, ... , X~ is the bootstrap random sample from Fn , the 

empirical distribution function of X 1 , X2 , ..• , Xn. E. denotes the expectation over the 

conditional law of x;, x;, ... , X~ given X1 , X2 , ... , Xn. In all the simulation studies , it 

was found that. this estimate adequately estimated the variance component of the MSE, 

but it estimated the bias component as almost zero. This failure of the naive bootstrap 

is also experienced in bootstrap-based procedures determining the bandwidth in kernel 

density estimation . (See the discussion in Section 2.4.) 

However, an alternative bootstrap estimate of MSE(7711 ) is (see the remark at the end 

of Section 3.2) , 

( 4.3) 

where fn is some density estimate. Simulation studies proved that in using this definition 

of MSE.(77n), the bias of 1]n is estimated adequately. The first proposed data-based choice 

of Sn is the minimiser (with respect to sn) of MSE.(77n) defined by (4.3) . 

Let (see (4.2)) 

the stochastic component of 77n· Since the smallest concentration of observations occurs 

in a neighbourhood of the antimode (which implies that Var(Vn) wi ll typically be large) , 

a second data-based choice of s 11 is suggested as the maximiser of Var(V,i)· In case of 

local maxima, the Sn corresponding to the first local maximum is chosen. Figures 4.18-

4.24 display the behaviour of Var(V,i) as a function of Sn . Additional motivation for this 

method is found by comparing the optimal s,.-values displayed in Table 4.3 with the sn­

values that maximise Var(V,.). The bias and MSE of 77n based on these Sn-values can be 

obtained from Figures 4.3-4.17, and compared with the optimal values of bias and MSE. 
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Figure 4.18: Monte Carlo estimates of Var(V,i) based on 2000 independent trials. Case 

1 is represented by the solid curve, Case 2 by the dash ed curve and Cas e 3 by the dotted 

curve. 
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Figure 4.19: Monte Carlo estimates of Var(Vn) based on 2000 independent trials. Case 

4 is represented by the solid curve, Case 5 by the dashed curve and Case 6 by the dotted 

curve. 
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Figure 4.21: Monte Carlo estimates of Var(Vn) based on 2000 independent trials. Case 

10 is represented by the solid curve and Case 11 by the dashed curve. 
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Figure 4.22: Monte Carlo estimates of Var(Vn) based on 2000 independent trials. Case 

12 is represented by the solid curve and Case 13 by the dashed curve. 
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Figure 4.24: Case 15: Monte Carlo estimates of Var(V,i) based on 2000 independent 

trials. 

4.5 Alternative estimators 

Deheuvels (1984) derived strong limit theorems for maximal spacings. Under certain 

conditions, he proved that Cn ~- J(B) as n --too, where 

Cn = n-
1 

logn . 
max1~i~n-1 (Yi+1 - Yi ) 

All the simulation studies done showed that (n performed poorly in comparison with the 

proposed estimator T/n· A possible explanation for this is that (n does not depend on any 

smoothing. I therefore do not include (n in what follows . 

A kernel-based estimator of J ( B) is the following, 

tn = min f;.,(x), 
O<x<l 

( 4.4) 

where f;,,(x) is the corrected kernel estimator suggested by Schuster (1985) (see Section 

2.6), viz . 

];.(x) = ];.(-x) + };.(x) + };.(2 - x), ( 4.5) 

where };.(x) is the kernel estimator based on some data-based bandwidth h. Two good 

choices of h are h = hm (modified stabilised smoother) and h = hp2 (modified plug-in 
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smoother), as was pointed out in Section 2.4. Since the density f is assumed to have 

compact support , we take I< as the Epanechnikov kernel, 

K(x) = ~(1 - x2
), -1 ::; x::; 1. 

Firstly, a Monte Carlo study was conducted to investigate the influence of hm and hp2 

on the behaviour op in· The sample size was n = 100 and the number of independent 

trials 2000. Tables 4.4 and 4.5 display estimates of Eh, Ein, RMSE([n) (root mean 

squared error of in) and RATIO , the ratio (expressed as a percentage) of the RMSE's 

with the RMSE of in based on hm as nominator. The estimated standard errors of 

the averages were found to be negligibly small , and were therefore omitted from the 

tables. It is evident that there is little to choose between the two selectors, although hm 

delivered slightly better results for almost all cases. Note, however, that hp2 requires far 

fewer calculations and is consequently much faster to compute. Similar results were also 

obtained for other sample sizes. 

Another alternative estimator of the minimum of a density, f(B), is the following. Let, 

for j =Sn+ 1, Sn+ 2, . . . , n - S 111 

1 j+s,. 

s;Jj) = 2s + 1 . L (Yi - Y(j))2 , 
n i=J-Sn 

where 
_ 1 j+ sn 

Y(j) = L }i. 
2sn + 1 · · i=J-Sn 

Let Jn be an integer-valued random variable defined by 

s;n (Jn) = max s;n (j). 
· sn+l~J~n-sn 

( 4.6) 

The estimator of J(B) which I propose is (compare with (4.2)) , 

(4.7) 

Results regarding the strong consistency, strong rates of consistency and asymptotic 

distribution of /n can be proved along the same lines as those of 17n (see Sections 1.3-1.5), 

and will therefore be omitted. . 
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Table 4.4: Monte Carlo estimates of bias and root mean squared error for Cases 1-8. 

Case J( ()) h Eh Etn RMSE(tn) RATIO 

1 0.767 hm 0.288 0.713 0.138 95 .2 

hp2 0.275 0.705 0.145 

2 0.570 hm 0.247 0.552 0.135 98.5 

hp2 0.235 0.543 0.137 

3 0.291 hm 0.183 0.264 0.111 99.l 

hp2 0.173 0.256 0.112 

4 0.767 hm 0.260 0.718 0.138 94.5 

hp2 0.246 0.708 0.1 46 

5 0.570 hm 0.209 0.549 0.124 96.9 

hp2 0.193 0.537 0.128 

6 0.291 hm 0.165 0.276 0.096 98.0 

hp2 0.156 0.267 0.098 

7 0.767 hm 0.209 0.680 0.178 93 .2 

hp2 0.197 0.666 0.191 

8 0.570 hm 0.147 0.490 0.161 93.l 

hp2 0.137 0.474 0.173 
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Table 4.5: Monte Carlo estimates of bias and root mean squared error for Cases 9-15. 

Case f ( 0) h Eh E~n RMSE(tn) RATIO 

9 0.291 hm 0.102 0.199 0.139 94.6 

hp2 0.095 0.186 0.147 

10 0.583 h111 0.140 0.472 0.185 93.0 

hp2 0.130 0.454 0.1 99 

11 0.271 hm 0.122 0.193 0.123 94.6 

hp2 0.114 0.182 0.130 

12 0.917 hm 0.269 0.775 0.201 93.9 

hp2 0.257 0.764 0.214 

13 0.854 hm 0.257 0.721 0.195 94.2 

hP2 0.244 0.710 0.207 

14 0.409 hm 0.253 0.505 0.164 100.6 

hp2 0. 242 0.499 0.163 

15 0.161 hm 0.091 0.176 0.099 103.l 

hp2 0.086 0.162 0.096 
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Monte Carlo estimates (based on 2000 independent trials) were obtained for MSE(tn), 

VIZ. 

for Sn = 1, 2, . . . , [(n - 1)/2]. All fifteen densities were considered and sample sizes 

n = 100 and n = 400 were used. Table 4.6 displays the minimum values of MSE(Jn) and 

the corresponding optimal Sn-values. Estimates of E1n based on these optimal values 

are also included and comparing them with the J( 0)-values, shows that In is in all cases 

(except Case 15, for n = 100) almost unbiased. 

Graphs of MSE(tn) and E1n similar to that of MSE( 'T]n) and Eryn (see Figures 4.3-4.17) 

were compiled. They revealed the same tendencies and are therefore omitted. However , 

from these graphs it was once again clear that a "correct" choice of smoothing Sn is 

possible. The performance of In based on a data-based bandwidth (discussed in Section 

4.4), will be empirically evaluated in Section 4.6. 

4.6 Comparison of the estimators 

The small and moderate sample behaviour of the following estimators of J ( 0) was com­

pared mutually. 

• MSBl: 
A n-1(2.5n+l) 

'T]n = ' yR., +· - yR., -n Sn n-Sn 

(4.8) 

where Sn is the minimiser of (see (4.3) and (4.5)), 

with h = hm (modified stabilised smoother) and kn is defined by 

Y- - Y· - max (Y+· - Y. - ) Kn+sn Kn-Sn - • +l < "< . J Sn J-Sn · Sn _J_n-sn 

• MYS: 
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Table 4.6: Monte Carlo estimates of bias and minimum MSE. 

n = 100 n = 400 

Case f ( 0) Sn E1n min(MSE) Sn E1n min(MSE) 

1 0.767 11 0.789 0.009 41 0.786 0.004 

2 0.570 6 0.593 0.010 19 0.566 0.004 

3 0.291 1 0.265 0.006 9 0.296 0.002 

4 0.767 12 0.771 0.008 45 0.783 0.004 

5 0.570 7 0.583 0.009 23 0.574 0.004 

6 0.291 2 0.286 0.005 9 0.289 0.002 

7 0.767 16. 0.799 0.007 43 0.778 0.003 

8 0.570 7 0.574 0.008 23 0.573 0.004 

9 0.291 2 0.283 0.005 10 0.296 0.002 

10 0.583 8 0.595 0.008 27 0.592 0.003 

11 0.271 2 0.262 0.004 10 0.277 0.002 

12 0.917 31 0.941 0.003 100 0.932 0.002 

13 0.854 21 0.869 0.005 78 0.867 0.002 

14 0.409 2 0.405 0.007 8 0.412 0.004 

15 0.161 l 0.233 0.008 2 0.164 0.001 
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where Sn is the minimiser of 

MSE.(ln) = E. (1: - min iJ,,(x )) 
2

, o::;x::;t 

with h = hm, /~ = /n(X;,x;, ... ,X~) (see (4.7)), and Jn is defined by (4.6) with 

Sn replaced by Sn· 

• MSB2: 

iJn, as defined in (4.8) , where Sn is now the value where Var.CV,:) attains its first 

local maximum (see Section 4.4) , with 

v· = Y:. .+ - Y,~ . = max (Y·+ - y· ) . 
Sn "n Sn "n-Sn +l< ·< J Sn J- Sn Sn _J_ n -sn 

Var. denotes the vanance over the conditional law of Xi , X i, ... , X~ given 

Xi, X2, ... , Xn. For our purposes, Sn was calculated as follows: 

the first integer Sn as s11 increases from 1 upwards such that 

Sn= Sn ~ N - [O.O~n] and Var.CV,:.) 2 maxsn+1::;i::;sn+(o.osn)Var.(V;*), ( 4.9) 

N - [0.05n] + 1, if no such s11 exists , 

where N = [(n - 1)/2] and [z] denotes the largest integer less than or equal to z . 

• MKE: 

in, as defined in ( 4.4) , with h = hm. 

Monte Carlo simulations were performed for sample sizes n = 100 and n = 400 , using 

all fifteen densities. All estimates were based on 1000 independent random samples for 

n = 100, and 200 independent samples for n = 400. In order to calculate bootstrap 

estimates (see Section 3.2) , B = 500 independent bootstrap replications were gener-

-ated for each trial. Tables 4.7-4.14 display Monte Carlo estimates of Esn , Ef(O) and 

RMSE(f{O)) (root mean squared error), where ![ii) refers to the estimators MSBl , MYS, 

MSB2 and MKE. To facilitate comparison, the following ratios were calculated 

-RMSE(f ( 0)) 
RATIO= 100 x RMSE(MI<E) %, 
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-for J(B) = MSBl, MYS and MSB2. Estimated standard errors of the sample averages 

appear in parentheses. 

From the tables it is evident that MSBl and MYS performed very similarly for both 

sample sizes (compare the RMSE's ), although the former performed slightly better in 

most cases. MSBl has smaller bias than MKE, except for Case 14 (both sample sizes) and 

Case 15 (n = 100). A comparison of the RMSE's of MSBl and MKE, reveals that the new 

proposed estimator (MSBl) outperformed MKE substantially (the improvement in RMSE 

was up to 35% ), except in the above-mentioned cases. 

The behaviour of MSB2 is very interesting. From the tables it seems that it has 

exceptionally g·ood performance for larger J( 0)-values or for densities with non pronounced 

minima. If one therefore has prior information that this is indeed the case, the use of 

MSB2 is recommended. However, for smaller J(O)-values or densities with pronounced 

minima, MSB2 can perform poorly. 

Table 4.7: Monte Carlo estimates of bias and RMSE for Case 1. 

- - -Case J( B) n J(O) Esn EJ(O) RMSE(f(O)) RATIO 

1 0.767 100 MS Bl 13.8 (0.3) 0.749 (0.004) 0.138 98.6 

MYS 11.3 (0.2) 0.750 (0.005) 0.143 102.1 

MSB2 12.7 (0.2) 0.750 (0.004) 0.140 100.0 

MKE 0.713 (0.004) 0.140 

400 MSBl 40.4 (1.2) 0. 739 (0.006) . 0.088 89.8 

MYS 31.6 (1.0) 0. 741 (0.006) 0.093 94.9 

MSB2 53.5 (1.3) 0.785 (0.006) 0.088 89.8 

MKE 0.714 (0.006) 0.098 
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Table 4.8: Monte Carlo estimates of bias and RMSE for Case 2 and Case 3. 

- - -Case f ( 0) n f ( 0) Esn E f ( 0) RMSE(f(O)) RATIO 

2 0.570 100 MS Bl 8.2 (0.1) 0.583 (0.004) 0.136 103.0 

MVS 6.7(0.1) 0.585 (0.004) 0.141 106.8 

MSB2 9.7 (0 .1) 0.621 (0.005) 0.156 118.2 

MI<E 0.556 (0.004) 0.132 

400 MSBl 29.3 (0.7) 0.571 (0.005) 0.073 101.4 

MVS 24.5 (0.7) 0.572 (0.005) 0.075 104.2 

MSB2 35.2 (0.9) 0.598 (0.006) 0.095 131.9 

MKE 0.555 (0 .005) 0.072 

3 0.291 100 MSBl 2.5 (0.1) 0.305 (0.003) 0.093 86 .9 

MVS 2.1 (0.0) 0.303 (0.003) 0.094 87.9 

MSB2 5.9 (0.1) 0.406 (0.004) 0.182 170.1 

MKE 0.260 (0.003) 0.107 

400 MSBl 12.2 (0.3) 0.291 (0.004) 0.060 100.0 

MVS 9.4 (0.3) 0.291 (0.004) 0.062 103.3 

MSB2 16.8 (0.5) 0.325 (0 .005) 0.080 133.3 

MKE 0.279 (0.004) 0.060 
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Table 4.9: Monte Carlo estimates of bias and RMSE fo r Case 4 and Case 5. 

- - -Case f(O) n f ( B) Esn E f ( B) RMSE(f(O)) RATIO 

4 0.767 100 MSBl 16.7 (0.3) 0.746 (0.004) 0.137 93.8 

MYS 13.5 (0.3) o. 748 (0.004) 0.142 97.3 

MSB2 14.0 (0.2) 0.735 (0.004) 0.140 96.0 

MKE 0.712 (0.004) 0.146 

400 MSBl 49.4 (1.3) o. 7 41 (0 .005) 0.081 87.l 

MYS 37.0 (1.0) o. 741 (0.006) 0.086 92.5 

MSB2 62.4 (1.3) 0. 778 (0.005) 0.077 82.8 

MKE 0.716 (0.006) 0.093 

5 0.570 100 MSBl 10.1 (0.2) 0.573 (0.004) 0.125 100.8 

MYS 7.8 (0.1) 0.573 (0.004) 0.129 104.0 

MSB2 10.2 (0.1) 0.582 (0.004) 0.130 104.8 

MKE 0.545 (0.004) 0.124 

400 MSBl 34.2 (0.9) 0.562 (0.006) 0.079 96.3 

MYS 24.9 (0.6) 0.561 (0.006) 0.083 101.2 

MSB2 41.2 (0.9) 0.589 (0.006) 0.080 97.6 

MKE 0.541 (0.005) 0.082 
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Table 4.10: Monte Carlo estimates of bias and RMSE for Case 6 and Case 7. 

f(O) - -Case f(B) n Esn E J ( B) RMSE(f ( B)) RATIO 

6 0.291 100 MSBl 3.7 (0.1) 0.301 (0.003) 0.092 98.9 

MYS 2.8 (0.0) 0.300 (0.003) 0.094 101.1 

MSB2 5.1 (0.1) 0.334 (0.003) 0.110 118.3 

MKE 0.276 (0.003) 0.093 

400 MSBl 15.0 (0.4) 0.294 (0.004) 0.057 100.0 

MYS 11.1 (0.3) 0.295 (0.004) 0.059 103.5 

MSB2 20.0 (0.6) 0.320 (0.004) 0.069 121.1 

MKE 0.280 (0.004) 0.057 

7 0.767 100 MSBl 16.7 (0.3) 0.716 (0.005) 0.157 89.2 

MYS 13.4 (0.3) 0.715 (0.005) 0.163 92.6 

MSB2 15.2 (0.2) 0.726 (0.004) 0.132 75.0 

MKE 0.677 (0.005) 0.176 

400 MSBl 33.8 (1.2) 0.688 (0 .006) 0.119 83.2 

MYS 24.2 (0.8) 0.687 (0.007) 0.123 86.0 

MSB2 66.8 (1.4) 0.784 (0.005) 0.072 50.3 

MI<E 0.653 (0.006) 0.143 
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Table 4.11: Monte Carlo estimates of bias and RMSE for Case 8 and Case 9. 

- - -Case f ( ()) n f ( ()) Esn EJ(B) RMSE(f ( B)) RATIO 

8 0.570 100 MSBl 8.1 (0 .2) 0.524 (0.004) 0.144 89.4 

MYS 6.1 (0.1) 0.524 (0.004) 0.148 91.9 

MSB2 11.2 (0 .2) 0.580 (0.004) 0.126 78.3 

MKE 0.484 (0.004) 0.161 

400 MSBl 20.5 (0.7) 0.512 (0.006) 0.107 87.0 

MYS 14.7 (0.5) 0.510 (0.007) 0.111 90.2 

MSB2 44. 7 ( 1.0) 0.600 (0.006) 0.086 69.9 

MKE 0.482 (0.006) 0.123 

9 0.291 100 MSBl 2.0 (0.1) 0.264 (0.003) 0.090 64.3 

MYS 1.6 (0.0) 0.265 (0.003) 0.093 66.4 

MSB2 5.6 (0.1) 0.338 (0.003) 0.111 79.3 

MKE 0.199 (0.003) 0.140 

400 MSBl 5.4 (0.2) 0.2:31 (0.005) 0.090 85 .7 

MYS 4.0 (0.2) 0.231 (0.005) 0.094 89.5 

MSB2 21.2 (0.6) 0.328 (0.004) 0.072 68.6 

MKE 0.207 (0.005) 0.105 
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Table 4.12: Monte Carlo estimates of bias and RMSE for Case 10 and Case 11. 

- - -Case f(B) n f(B) Esn Ef(B) RMSE(f(B)) RATIO 

10 0.583 100 MSBl 8.3 (0.2) 0.529 (0.005) 0.157 87.2 

MYS 6.3 (0.2) 0 . .528 (0 .005) 0.162 90.0 

MSB2 12.3 (0.2) 0.602 (0.004) 0.119 66.1 

MKE 0.485 (0.005) 0.180 

400 MS Bl 18.2 (0.7) 0.505 (0.007) 0.124 86.1 

MYS 13.0 (0.5) 0.502 (0.007) 0.128 88 .9 

MSB2 48.4 (1.0) 0.609 (0.005) 0.070 48.6 

MKE 0.471 (0.006) 0.144 

11 0.271 100 MSBl 2.1 (0 .1) 0.245 (0.003) 0.084 64.6 

MVS 1.7 (0.0) 0.245 (0.003) 0.085 65.4 

MSB2 5.9 (0.1) 0.326 (0.003) 0.113 86.9 

MKE 0.187 (0.003) 0.130 

400 MSBl 6.1 (0 .3) 0.222 (0 .004) 0.077 84 .6 

MYS 4.4 (0.2) 0.222 (0.004) 0.078 85 .7 

MSB2 21.8 (0.7) 0.305 (0.004) 0.072 79 .1 

MKE 0.199 (0.004) 0.091 
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Table 4.13: Monte Carlo estimates of bias and RMSE for Case 12 and Case 13. 

- - -Case J( ()) n f ( ()) Esn EJ(O) RMSE(J( 0)) RATIO 

12 0.917 100 MSBl 22.5 (0.4) 0.819 (0 .004) 0.164 85.4 

MYS 18.8 (0.3) 0.823 (0.004) 0.167 87.0 

MS B2 15.9 (0.2) 0.781 (0.004) 0.182 94.8 

MKE o. 782 (0.004) 0.192 

400 MSBl 50.3 (1.7) 0.806 (0.006) 0.142 81.1 

MYS 36.2 (1.2) 0.803 (0.007) 0.148 84.6 

MSB2 79 .l (1.7) 0.868 (0.004) 0.078 44.6 

MKE 0.765 (0.006) 0.175 

13 0.854 100 MSBl 18.3 (0.3) 0.767 (0.004) 0.160 87.0 

MYS 14.8 (0.3) 0. 771 (0.004) 0.163 88.6 

MSB2 15.7 (0.2) 0.761 (0.004) 0.151 82.1 

MKE 0.730 (0.004) 0.184 

400 MSB l 42.l (1.3) 0.7.53 (0.006 ) 0.131 79.9 

MYS 30.2 (1.0) 0.755 (0.006) 0.133 81.1 

MSB2 73.0 (1.7) 0.816 (0.005) 0.081 49.4 

MKE 0.714 (0.006) 0.164 
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Table 4.14: Monte Carlo estimates of bias and RMSE fo r Case 14 and Case 15. 

- - -Case f(O) n f ( 0) Esn E f ( 0) RMSE(f ( 0)) RATIO 

14 0.409 100 MSBl 6.5 (0.1) 0.531 (0.004) 0.183 111.6 

MYS 5.5 (0.1) 0.528 (0.004) 0.181 110.4 

MSB2 6.5 (0.1) 0.5:34 (0.005) 0.209 127.4 

MKE 0.506 (0.004) 0.164 

400 MSBl 25.7 (0.5) 0.527 (0.006) 0.142 108.4 

MYS 22 .l (0.5) 0.524 (0.005) 0.138 105.3 

MSB2 20.5 (0 .7) 0.485 (0.008) 0.133 101.5 

MKE 0.516 (0.005) 0.131 

15 0.161 100 MSBl 1.5 (0.0) 0.250 (0.003) 0.119 114.4 

MYS 1.3 (0.0) 0.249 (0.003) 0.120 115.4 

MSB2 3.2 (0.1} 0.329 (0.005) 0.220 211.5 

MKE 0.179 (0.003) 0.104 

400 MSBl 2.9 (0 .1 ) 0.167 (0.004) 0.054 98.2 

MYS 2.3 (0.1) 0.168 (0 .004) 0.059 107.3 

MSB2 4.8 (0.4) 0.203 (0.006) 0.095 172.7 

MI<E 0.147 (0 .004) 0.055 
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4. 7 Confidence intervals 

In this section the behaviour of the proposed estimator iJn with regard to confidence 

intervals for f ( ()) is briefly studied. Firstly, a standard interval , based on the standard 

normal distribution quantiles, is studied. To do this, an estimate of the standard error of 

TJn is needed. Since T/n in Chapter 1 was defined in terms of two different sequences { r n} 

and { sn} of smoothing parameters, the result of Theorem 1.5.2 cannot be used. However, 

it is claimed that for large n, 
""' J(0)2 

Var(77n) = , 
2sn + 1 

(4.10) 

which can be proved heuristically as follows. 

Let G = p-1
, and define Si, i = 1, 2, ... , n, as in the introduction of Section 1.5. 

Now, since T/n is (under certain conditions) a strongly consistent estimator of J(O), we 

have that T/n 3:' 77;; 1 J ( ()) 2
, so that 

Using the fact that Kn~ nq, q = F(O), (which was proved in Chapter 1), it follows that 

-1 
T/n 

YKn+sn - YKn-Sn 
n-1 (2sn+l) 

~ Ynq+sn - Y,iq-sn 
n-1 (2sn+l) 

d n(2sn + 1)-1{a(Snq+s")-a(Snq-s")} 
Sn+l Sn+l 

n(2sn + 1)-1
{ G(q) + G'(q)( S;:::" - q) + ... 

-[G(q)+G'(q)(S;:::" -q) + ... ]} 
""' n(2sn + 1)_ 1 G'(q)(Snq+ss:~nq-sn) 

n(2sn + 1)-1 j(()t1 ( Snq+sS~+~nq-sn) 
2sn 

d n(2sn + 1)-1 (nf(()))-1 L Zi, 
i=l 

where the Z;'s are independent random variables, each with a standard exponential dis­

tribution. Hence, 
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and 
"" J ( 8)2 

Var( 77n) = . 
2sn + 1 

0 

Hence, I suggest estimating the standard error of Tfn by (2.Sn + 1 )-1 l 2 ifn· A standard 

100(1 - a)%-confidence interval for J(B) is therefore 

[iJn (1 - z(a/2)/(2.Sn + 1)112
) ,iJn (1+z(a/2)/(2.Sn+1)112

)], ( 4.11) 

where z (a/2) is the 100(1 - a/2) percentile point of the standard normal distribution. 

If the normal quantiles in ( 4.11) are under suspicion, the bootstrap can be used to 

construct nonparametric confidence intervals (see Section 3.4 of Chapter 3). This is 

illustrated by applying the percentile method discussed in Section 3.4. From (3.2) it 

follows that a percentile 100(1 - a)%-confidence interval for J(B) is given by 

(4.12) 

where G(t) = P*(i/~ ~ t), and ry~ is defined in (4.8) with Xi,X2 , ••• ,Xn replaced by a 

bootstrap sample x;, x;, ... , x,:. Note that the calculation of s~ = sn(X;, x;, ... , X~) 
requires second-level bootstrapping, i.e., sampling from the empirical distribution of 

x;,x;, ... ,X~ (often also referred to as the double bootstrap). To calculate (4.12), 

one can apply the Monte Carlo approximation method described in Section 3.4. 

A simulation study was conducted to investigate the performance of the confidence 

intervals given in (4.11) and (4.12) with respect to coverage probability and expected 

length. I chosen= 100, a= 0.05, a= 0.1 0 and only considered Cases 1, 2, 5 and 6. The 

number of Monte Carlo trials was 200, and the numbers of first-level and second-level 

bootstrap replications were 200 and 100 respect ively. It should be emphasised that the 

calculation of the bootstrap interval ( 4.12) is extremely computer-time expensive. It was 

therefore necessary to use h = hp2 (modified plug-in smoother) instead of h = hm in 

the definition of MSBl given in (4.8). Estimated standard errors of the sample averages 

appear in parentheses. 

From Tables 4.15-4.18 it is clear that all the intervals behaved satisfactorily, in the 

sense that the estimated coverage probabilities were close to the prescribed confidence 
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levels. The satisfactory coverage probabilities attained by the standard intervals can be an 

indication of rapid weak convergence of f, 11 (properly standardised) to a standard normal 

distribution. However, it should be noted that the standard intervals based on MSB 1 

and MSB2 tend to be conservative. The percentile interval based on MSB 1 is slightly 

anti-conservative, and the. percentile interval based on MSB2 is conservative, but less 

than the standard intervals. As far as the expected length is concerned, the intervals 

behaved almost identically. Nonparametric confidence intervals can also be constructed 

by using the techniques discussed in Section 3.4, but due to the good performance of the 

percentile interval they were not included in the study. Moreover, it would require an 

immense amount of additional computer time. 

Table 4.15: 100(1 - a)% standard intervals, (4.11) , using MSBl. 

Case f ( 0) Ei/n a Coverage E(Length) 

1 0.77 0.76 (0.01 ) 0.05 0.98 (0 .01) 0.61 (0.01 ) 

0.10 0.92 (0.02) 0.51 (0.01) 

2 0.57 0.56 (0.01) 0.05 0.97 (0.01) 0.62 (0.01) 

0.10 0.94 (0.02) 0.52 (0.01) 

5 0. 57 0.57 (0.01) 0.05 0.96 (0.02) 0.53 (0.01) 

0.10 0.92 (0.02) 0.44 (0.01) 

6 0.29 0.30 (0.01) 0.05 0.98 (0.01) 0.47 (0.01) 

0.10 0.95 (0.02) 0.39 (0.01) 
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Table 4.16: 100(1 - a)% percentile intervals, (4.12), MSBl. 

Case f(O) EiJn a Coverage E(Length) 

1 0.77 o. 76 (0.01) 0.05 0.93 (0 .02) 0.63 (0 .01) 

0.10 0.88 (0.02) 0.56 (0.01) 

2 0.57 0.56 (0.01) 0.05 0.92 (0.02) 0.52 (0.01) 

0.10 0.87 (0.02) 0.45 (0.01) 

5 0.57 0.57 (0.01) 0.05 0.92 (0.02) 0.52 (0 .01 ) 

0.10 0.87 (0 .02) 0.44 (0.01) 

6 0.29 0.30 (0.01) 0.05 0.91 (0 .02) 0.29 (0.01) 

0.10 0.85 (0.03) 0.25 (0.01) 

Table 4.17: 100(1 - a)% standard intervals, (4.11) , using MSB2. 

Case J(O) EiJn a Coverage E(Length) 

1 0.77 0.76 (0.01) 0.05 0.98 (0.0 1) 0.61 (0.01) 

0.10 0.94 (0 .02) 0.51 (0.01) 

2 0.57 0.63 (0.01) 0.05 0.98 (0 .01) 0.61 (0.01) 

0.10 0.94 (0.02) 0.51 (0.01) 

5 0.57 0.56 (0.01) 0.05 0.97 (0. 01) 0.52 (0.01) 

0.10 0.92 (0.02) 0.44 (0.01) 

6 0.29 0.33 (0.01) 0.05 0.95 (0 .02) 0.43 (0.01) 

0.10 0.92 (0 .02) 0.36 (0.01) 
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Table 4.18: 100(1 - a)% percentile intervals, (4.1 2), using MSB2. 

Case f ( 8) Ei/n O' Coverage E(Length) 

1 0.77 0.76 (0.01) 0.05 0.95 (0 .02) 0.59 (0.01) 

0.10 0.93 (0.02) 0.51 (0.01) 

2 0.57 0.63 (0.01) 0.05 0.95 (0.02) 0.59 (0.01 ) 

0.10 0.93 (0.02) 0.51 (0.01) 

5 0.57 0.56 (0 .01) 0.05 0.95 (0.02) 0.50 (0. 01 ) 

0.10 0.92 (0.02) 0.42 (0.01 ) 

6 0.29 0.33 (0 .01) 0.0.5 0.97 (0.0 1) 0.40 (0.01) 

0.10 0.93 (0.01) 0.34 (0.01 ) 

4.8 Estimation of the antimode 

In Section 1.3, it was proposed to estimate the antimode () by Bn, where Bn is any statistic 

satisfying 

and Kn is defined in (1.3 ). The small and moderate sample behaviour of Bn = YKn will 

now be discussed briefly. Because of this choice, attention will be limited to densities 

with antimodes not too close to the boundaries. Clearly, one should choose ()n differently 

when this is not the case, for example, On = YKn-sn or Bn = YKn+sn. Since YKn depends 

on the smoothing sequence { sn}, two data-based smoothing methods will be considered. 

The following estimators of () were compared mutually. 

• YKBl : 

Ykn, where Sn is the minimiser of 

MSE.(YKJ = E. (Y,,{. - arg min f;..( x))
2

, 
n O~x~l 
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with h = hm and YJ{. is the bootstrap version of YI..-n. As before, Kn is defined by 
n 

Y· . - Y:·. . = max (Y: .s - Y_5 ) . 
Kn+sn Rn-Sn • +I< "< · J+ n J n Sn _J_n-sn 

• YJB: 

Yjn, where Sn is the minimiser of 

MSE.(Y1 ) = E. (Y;. - arg min fh(x))
2

, 
n n O<x<1 

with h = hm and Yj. is the bootstrap version of Y1
11 

(see (4.6)). As before, In is 
n 

defined by { 4.6) with Sn replaced by Sn· 

• YKB2: 

Ykn, where Sn is now the value where Var.(V,;) attains its first local maximum (see 

Section 4.4), with 

• AKE: 

Monte Carlo simulations were performed for sample sizes n = 100 and n = 400, using 

densities, Cases 4-13. All estimates were based on 1000 independent random samples 

for n = 100, and 200 independent samples for n = 400. In order to calculate bootstrap 

estimates (see Section 3.2), I generated B = 500 independent bootstrap replications for 

each trial. Tables 4.19-4.23 display Monte Carlo estimates of Esn, EB and RMSE(O) 

(root mean squared error), where {J refers to the estimators YKBl, YJB, YKB2 and AKE. 

To facilitate comparison, the following ratios were calculated 

RMSE(B) 
RATIO = 100 x RMSE(AI<E) %, 

for 8 = YKBl, YJB and YI<B2. Estimated standard errors of the sample averages appear 

in parentheses. 
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Table 4.19: Monte Carlo estimates of bias and RMSE for Case 4 and Cas e 5. 

Case () n () Esn EB RMSE(B) RATIO 

4 0.25 100 YKBl 15.7 (0.6) 0.311 (0 .005) 0.157 60 .4 

YJB 18.9 (0.7) 0.315 (0.005) 0.157 60.4 

YKB2 14.0 (0.2) 0.330 (0.004) 0.144 55.4 

AKE 0.269 (0.008) 0.260 

400 YKBl 60.9 (5.1) 0.270 (0.007) 0.104 73.2 

YJB 75.0 (6.0) 0.271 (0 .007) 0.101 71.1 

YKB2 62.4 (1.3) 0.287 (0.004) 0.071 50.0 

AKE 0.247 (0.010) 0.142 

5 0.25 100 YKBl 9.1 (0.4) 0.257 (0.003) 0.092 60.1 

YJB 11.9 (0.5) 0.260 (0.003) 0.089 58.2 

YKB2 10.2 (0.1) 0.287 (0 .002) 0.074 48.4 

AKE 0.218 (0 .005) 0.153 

400 YKBl 41.1 (3.5) 0.253 (0.004) 0.063 75.0 

YJB 53.1 ( 4.2) 0.252 (0.004) 0.063 75.0 

YKB2 41.2 (0.9) 0.269 (0.003) 0.050 59.5 

AKE 0.241 (0.006) 0.084 
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Table 4.20: Monte Carlo estimates of bias and RMSE for Case 6 and Case 7. 

Case e n e Esn EO RMSE(B) RATIO 

6 0.25 100 YKBl 3.8 (0.2) 0.255 (0 .002) 0.075 80.6 

YJB 5.5 (0.2) 0.252 (0 .002) 0.070 75.3 

YI<B2 5.1 (0.1) 0.276 (0.002) 0.070 75.3 

AKE 0.239 (0.003) 0.093 

400 YI< Bl 19.6 (1.8) 0.255 (0.004) 0.053 96.4 

YJB 28. l (2.3) 0.252 (0.004) 0.050 90.9 

YKB2 20.0 (0.6) 0.255 (0.003) 0.046 83 .6 

AKE 0.252 (0.004) 0.055 

7 0.50 100 YKBl 26.2 (1.0) 0.504 (0.004) 0.123 65.1 

YJB 28.9 (1.0) 0.504 (0.004) 0.123 65 .l 

YKB2 15.2 (0 .2) 0.497 (0.004) 0.114 60.3 

AKE 0.506 (0.006) 0.189 

400 YKBl 130.7 (10.5) 0.500 (0.006) 0.081 79.4 

YJB 139.l (10.8) 0.498 (0.005) 0.075 73.5 

YKB2 66.8 (1.4) 0.494 (0.005) 0.072 70 .6 

AKE 0.493 (0.007) 0.102 
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Table 4.21: Monte Carlo estimates of bias and RMSE for Case 8 and Case 9. 

Case a n a Esn EB RMSE(B) RATIO 

8 0.5 100 YKBl 19.0 (0.8) 0.499 (0.003) 0.088 85.4 

YJB 23.8 (0.9) 0.498 (0.003) 0.079 76.7 

YKB2 11.2 (0.2) 0.497 (0.003) 0.085 82 .5 

AKE 0.498 (0.003) 0.103 

400 YKBl 86.4 (8.2) 0.497 (0.005) 0.065 90 .3 

YJB 105.3 (8.9) 0.501 (0.004) 0.053 73.6 

YKB2 44.7 (1.0) 0.499 (0.004) 0.055 76.4 

AKE 0.502 (0.005) 0.072 

9 0.5 100 YKBl 7.0 (0.4) 0.500 (0.003) 0.087 102.4 

YJB 14.1 (0.6) 0.499 (0.002) 0.071 83.5 

YKB2 5.6 (0.1) 0.502 (0.002) 0.074 87.1 

AKE 0.498 (0.003) 0.085 

400 YKBl 29.2 (4.1) 0.499 (0.004) 0.061 95.3 

YJB 62.2 (6.1) 0.503 (0.003) 0.046 71.9 

YKB2 21.2 (0.6) 0.500 (0.003) 0.048 75.0 

AKE 0.503 (0.005) 0.064 
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Table 4.22: Monte Carlo estimates of bias and RMSE for Case 10 and Case 11. 

Case () n () Esn EB RMSE(B) RATIO 

10 0.50 100 YKBl 20.6 (0.9) 0.500 (0.003) 0.097 85.l 

YJB 25.5 (1.0) 0.497 (0.003) 0.085 74.6 

YKB2 12.3 (0.2) 0.500 (0.003) 0.087 76.3 

AKE 0.496 (0.004) 0.114 

400 YKBl 102.6 (9.1) 0.503 (0.005) 0.067 74.4 

YJB 121.1 (9.9) 0.500 (0.004) 0.060 66.7 

YI<B2 48.4 (1.0) . 0.500 (0.004) 0.054 60.0 

AI<E 0.503 (0.006) 0.090 

11 0.75 100 YKBl 3.8 (0.2) 0.737 (0.003) 0.096 84.2 

YJB 5.0 (0.2) 0.740 (0.003) 0.087 76.3 

YKB2 5.9 (0.1) 0.690 (0.002) 0.098 86.0 

AKE 0.760 (0.004) 0.114 

400 YKBl 19.1 (1.8) 0.745 (0.005) 0.071 89.9 

YJB 23.8 (2.0) o. 746 (0.005) 0.067 84.8 

YKB2 21.8 (0.7) o. 732 (0.004) 0.060 75.9 

AKE 0.750 (0.006)) 0.079 
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Table 4.23: Monte Carlo estimates of bias and RMSE for Case 12 and Case 13. 

Case () n {) Esn EB RMSE(O) RATIO 

12 0.50 100 YKBl 24.5 (0.9) 0.510 (0.006) 0.179 59.l 

YJB 27.1 (1.0) 0.510 (0.006) 0.181 59.7 

YKB2 15.9 (0.2) 0.497 (0.005) 0.163 53.8 

AKE 0. 518 (0. 010) 0.303 

400 YKBl 120.9 (9.8) 0.521 (0.010) 0.149 66.8 

YJB 134.6 (10.5) 0.525 (0.010) 0.147 65.9 

YKB2 79.l (0.7) 0.503 (0.009) 0.132 59.2 

AKE 0.534 (0.016) 0.223 

13 0.75 100 YKBl 18.9 (0.8) 0.660 (0.005) 0.177 76.6 

YJB 21.1 (0.8) 0.655 (0.005) 0.181 78.4 

YKB2 15.7 (0.2) 0.608 (0.004) 0.197 85.3 

AKE 0.747 (0 .007) 0.231 

400 YI< Bl 80.9 (7.0) 0.693 (0. 010) 0.147 79 .0 

YJB 88.2 (7.6) 0.694 (0 .010) 0.149 80.l 

YKB2 73 .0 (1.7) 0.665 (0.007) 0.128 68.8 

AKE 0.748 (0.013) 0.186 
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From Tables 4.19-4.23 it is clear that the newly proposed estimators (YKB l , YJB and 

YKB2) are far superior (in terms of RMSE) to AKE, the standard method of estimating 

the antimode (). The estimators YKBl, YJB and YKB2 have small bias, except for Cases 

4 and 13. However, it seems that AKE is almost unbiased in all cases, implying that (in 

view of the large RMSE) it has large variability. 

4.9 Application to real data 

One of the aims in 1-ray, X-ray and optic ray astronomy is to identify these rays from 

rotating bodies called pulsars. Pulsars are objects in the universe with masses more or 

less that of our sun's mass and radii of about 10 km. They are fast rotating objects with 

periods ranging between 1 millisecond and a few hundred seconds. Some of them radiate 

1-rays with the same period as the spin period of the pulsar. These 1-rays are detected 

on earth via satellites or ground-based telescopes. 

However, aperiodic cosmic rays (background radiation or noise) are also detected. 

Thus, a typical data set consists of a sequence of arrival times ti, each arrival time 

representing either noise or pulsed radiation. In the pre-analysis , the t/s are folded 

modulo 1 with pulsar period q, 

XI. = tqi - [tqil ' i = 1, 2, ... . 

The pulsar's signal period q can be accurately determined from observations of its radio 

pulses. 

The unknown periodic density function (or light curve) i(x) of the folded (modulo 1) 

arrival times can be represented as 

i ( X) = 1 - P + Pis ( X) , 

where p, 0 ::Sp ::S 1, is the unknown strength of the periodic signal and the unknown source 

function is ( x) gives the relative radiation intensity as a function of x. An important 

problem is to estimate the strength of the pulsed signal, p, in a series of high-energy 

photon arrival times. 



4.9. APPLICATION TO REAL DATA 126 

Tests for the following hypothesis have been developed (e.g., see Protberoe, 1985, and 

Swanepoel & De Beer, 1990), 

H0 : p = 0 versus HA : p > 0. 

The interpretation of the null hypothesis is that the pulsar doesn ' t radiate 1-rays. If this 

hypothesis is rejected and under the reasonable assumption that 

minls(x) = 0, 
x 

we have 

minl(x) = 1 - p, 
x 

so that estimation of p can be reduced to the estimation of the minimum of 1. The 

estimation of a unique antimode is not important in this set-up, as will become clear 

from the discussion below. 

In order to estimate p from the data, it is usually assumed in the literature (e.g., see 

De Jager et al., 1989) that ls(x) has some known parametric form , such as the cardioid 

or von Mises density functions. Estimators of p can then be derived by using standard 

statistical methods, for example, maximum likelihood and method-of-moments. However, 

these estimators can perform poorly (i.e., having large bias and/or large variance) if the 

assumed parametric form of ls( x) deviates from its true form. A more realistic approach 

is to estimate p nonparametrically. To the best of my knowledge, this problem has not 

yet been formally addressed in the literature. 

However, the following subjective technique to estimate p (for ls( x) unknown) is often 

applied in practice. Denote the sample of folded (modulo 1) arrival times by X; (0 < 

X; < 1), i = 1, 2, ... , n, which are usually referred to as sample phases. Construct a 

histogram of the X;'s, using a bin width c. Use visual inspection to determine an interval 

J of phases corresponding to that part of the histogram characterised by only random 

:fluctuations around its lowest level. The subjective estimator of p is then 

_ { (number of X;'s in J)} 
p =max 0, 1 - . 

n x length( J) 
(4.13) 
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The performance of p can be seriously affected by wrong choices of c and J. Moreover, J is 

a random variable and quantities defined in terms of J have totally unknown distributions. 

Hence, a standard error and bias cannot be attached to P. Typically, if J is chosen such 

that length( J) is "too large", then p will have large bias (and small variability) and vice 

versa if length ( J) is "too small". 

The estimator for p involving iJn (see (4.8)) has the same form asp in (4.13). However, 

the important exception is that J is replaced by an interval I which is chosen objectively, 

in the sense that it can be calculated automatically from the data, without having to 

construct a histogram or any other density estimate. 

Suppose the sample phases X 1 , X 2 , .• • , X,, are arranged in ascending order of magni­

tude and then denoted by Yi, Y;, .. . , Y,,. Let k 11 be the integer defined as before by 

and let I be the interval of phases with lower bound Yk,.-sn and upper bound Ykn+sn , 

that is, 

I= [Y..:-, . Y1-. . ]. 
nn-Sn' \n+sn 

From the expression for iJ 11 in ( 4.8), the proposed estimator of p is now given by 

(compare with (4.13)), 

p max { 0 , 1 - iJn} 

{ 
(number of Xi's in I)} 

max 0 , 1 - 1 l (!) . n x engt 1 

The standard error of p (henceforth denoted by SE(P)) is given by (see ( 4.10)) 

(r + 1)1/2 
SE(p) = ~Sn . 

n(Y..:-, . - Yt· . ) nn+sn nn-Sn 

It is important to bear in mind that the sample phases represent either noise or pulsed 

radiation. In other words, background radiation is always present and this implies that 

the minimum of f is never small. Furthermore, by nature of the source function , the 

minimum of f is typically nonpronounced. For these two reasons, Sn was calculated as 

for MSB2, that is, by using ( 4.9). 
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The signal strength p was estimated for five sets of data. The first data set , AE 

Aquarii, consists of 7712 sample phases. AE Aquarii is a 33 second period accreting 

white dwarf emitting periodic X-rays with energies between 0.1-4 keV, as discovered by 

Patterson et al. (1980). The arrival times as described by De Jager (1991) were folded 

with the recent ephemeris of De Jager et al. (1994). The next four data sets were obtained 

by considering all pulsar phases above 50 MeV for Geminga (Mayer-Hasselwander et al., 

1994), Vela (Kanbach et al., 1994) and Crab (Nolan et al., 1993), but above 300 MeV 

for PSRl 706-44 (Thompson et al., 1992). The choice of 300 MeV for PSRl 706-44 follows 

from the fact that the signal is weak below 300 MeV, as was pointed out by Thompson 

et al. (1993). The number of sample phases for these four data sets are 5018, 4691 , 1470 

and 477, respectively. The data were extracted from the public domain Phase I of the 

EGRET experiment on Compton Gamma Ray Observatory ( CGRO). 

For each of the data sets , sn, I, p and SE(p) were calculated (see Table 4.24). The 

values of (2/n )112 , the "standard conventional" measure of error in estimating the signal 

strength (De Jager et al., 1989), are also included. It is evident that p estimates p very 

accurately, since its standard error SEtP) is very small in each case. A striking feature of 

the results in the table is the remarkable correspondence between SE(p) and (2/n )112
. 

Table 4.24: Signal strength estimates and standard errors. 

Data Set n 8 71 I p SE(P) (2/n)1/2 

AE Aquarii 7712 1540 [0.229, 0.679] 0.112 0.016 0.016 

Geminga 5018 306 [0 .257, 0.486] 0.468 0.022 0.020 

Vela 4691 310 [0.612, 0.996] 0.656 0.014 0.021 

Crab 1470 119 [0.652, 0.947] 0.450 0.036 0.037 

PSRl 706-44 477 64 [0.178, 0.559] 0.290 0.063 0.065 

Each data set is represented by binning the data into a phase histogram, as is typically 

done in the astrophysical literature. This is done merely to give a visual representation of 

the data. In the figures, I included the estimated background level 1-p, 1-p ± SE(l - p) 
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(as is also typically done in the astrophysical literature), and the phase interval I. The 

histograms displayed in Figure 4.25 are based on 50 phase bins each, and the histogram 

in Figure 4.26 on 20 phase bins. 

All numerical computations were performed using FORTRAN programs together with 

IMSL (Version 1.0) and exponent GRAPHICS (Version 1.0) on an IBM RS6000 computer. 
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Figure 4.25: Phase histograms, each with estimated background level 1 - p (solid line), 

1 - p ± SE(l - p) (dashed lin es) , and phase interval I. 
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Figure 4.26: Phase histogram1 with estimated background level 1 - p (solid line) 1 1 - p ± 

SE( 1 - p) (dashed lines) 1 and phase interval I. 
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