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1. Introduction

Agricultural systems across the Sudano-Sahelian zone of Africa
often display considerable interannual variability in output, which
often is ascribed to unstable environmental conditions, usually rainfall
(FAO, 2016a; Leroux et al., 2016). The relationships between rainfed
crop output and environmental conditions in this zone have been ex-
plored extensively on different spatial scales, usually by focusing on
statistical correlations between crop yields and remote sensing atmo-
spheric and soil variables, but often leave a large part of the crop
variability unexplained (Kamali et al., 2018; McNally et al., 2015;
Traoré et al., 2011). Adding to the difficulty of capturing the complex
relationships between water availability, nutrients, and crop growth
under changing agro-ecological conditions, the limited explanatory
capacity is commonly explained by a lack of data availability of omitted
factors that are relevant for crop variability (Louise et al., 2015). Ex-
amples of such factors are pests, technological innovations, fertilizers,
farm incomes, labour and land availability, development projects, po-
litical programs, conflicts, population dynamics, and market prices
(Hazell and Wood, 2008; Mertz et al., 2010; Nelson et al., 2016;
Ouédraogo et al., 2017; van Vliet et al., 2013). One reason for the
omission of these factors is the dominance of climate change agendas
and climate models in setting agricultural research priorities (Whitfield
et al., 2015), with its allure of providing results over extended spatio-
temporal scales. Such results, however, do not add much of value for
agricultural management in the Sudano-Sahelian zone in near-time
periods, where decision makers are concerned with tangible pro-
ductivity improvements, and where combinations of socio-economic,

political, and climate variability factors are the prime drivers of change.
Moreover, the influences of these factors are strongly connected to the
spatial scale of the analysis, and the socio-economic complexity that
goes with it (Jahel et al., 2016; Whitfield et al., 2015). This emphasizes
a further need for including socio-economic factors when analysing
crop variability on spatial scales beyond the farm level.

Crop output on a sub-national (henceforth referred to as regional)
scale is crucial for a range of food security metrics and operational tools
employed by AGRHYMET, the Food and Agriculture Organization of
the United Nations (FAO), the Famine Early Warning Systems Network
(FEWS NET), the World Food Programme (WFP), and others (FEWS
NET, 2011; IPC Global Partners, 2012; Jones et al., 2013). Under-
standing the drivers of regional crop variability however requires socio-
economic data of considerable detail, which is generally lacking across
the Sudano-Sahelian zone. The continuous food security monitoring
and data collection from these organizations over recent years provide
valuable information on the ongoing processes in agricultural systems
on regional scales, but their qualitative nature render comparisons over
extended time periods difficult. Coupling socio-economic data from
these and other sources with quantitative environmental data in studies
of regional crop variability thus faces several methodological issues.
Partly due to this, studies on both the farm and national scales have
received more attention than regional ones (Hoffman et al., 2018; Jahel
et al., 2016; Whitfield et al., 2015; Yengoh, 2013), based on either
detailed data from field studies in specific areas, or nationally ag-
gregated datasets.

This paper presents a method under which a broad range of datasets
of varied resolution and type can be combined to improve the
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explanatory and predictive capacity to the regional crop production
variability, and applies it to an empirical analysis in Chad. By com-
bining an extensive set of agricultural, environmental, and livelihood
data spanning 1983–2016, this paper is the most extensive and detailed
study of crop production variability in Chad to date. It further hopes to
spur similar research on coupled socio-economic and agricultural dy-
namics on this level of analysis across the Sudano-Sahelian zone.

1.1. Agricultural systems in Chad

Regional crop dynamics in Chad are known to be highly fluctuating,
which is usually ascribed to the high ratio of rainfed and low-input
farming, as well as the high variability in atmospheric conditions
(World Bank, 2015). Despite its recognized importance for both local
livelihoods and national economic development, and continuous efforts
to increase and stabilize agricultural productivity (Ministry of
Agriculture and Irrigation, 2013), knowledge on both the patterns and
drivers of crop variability is sparse, with seasonal production forecasts
based foremost on cumulative precipitation and NDVI estimates, and
with unevaluated predictive capacities (AGRHYMET, 2017; FEWS NET,
2016). The livelihoods in Chad are furthermore subject to transforma-
tions related to population increase, urbanisation, natural gas ex-
ploration, economic development, and conflicts both within the country
and in the neighboring countries (World Bank, 2015). FEWS NET's li-
velihood profiles provide a thorough overview of the varying agro-
ecological conditions, population dynamics, economic opportunities,
coping strategies, and food security components for the different re-
gions in the country (FEWS NET, 2011). With the currently low agri-
cultural productivity levels, combined with the ongoing rural trans-
formations, and potentially disruptive events such as pests, conflicts,
and altered economic opportunities, crop production variability is
likely to hold more complexity than what cumulative precipitation and
NDVI estimates capture. Furthermore, with widespread differences in
agro-ecological conditions and livelihoods within the country, both the
patterns and the drivers of regional crop production variability differ
accordingly. Only two previous studies have explored the quantitative
correlations between environmental variables and crop production
variability in Chad, and only by including hydro-climatic and soil
variables: one, for national millet yields for 2001–2010 (McNally et al.,
2015), and another for sub-regional harvested area and yield in the Lac
region around Lake Chad for 1988–2012 (Nilsson et al., 2016). Reports
on agricultural performance and food security conditions are however
plentiful, both for specific areas and points in time (INSEED, 2012,

1993; Republic of Chad, 2009; WFP, 2013, 2009, 2005), as well as in
the continuous publications of FEWS NET's food security updates (e.g.
FEWS NET, 2010). Moreover, regional crop statistics and market prices
form the basis of much of the operative food security work, but has yet
to be combined over extended time series to evaluate patterns of cov-
ariation and quantified causalities, which this study is now addressing.

2. Methods & data

The methodology was developed to analyze drivers of interannual
variability in the agricultural systems on a regional level of analysis.
Data were collected from crop statistics, key atmospheric and soil
variables, market prices, livelihood conditions, and food security clas-
sifications. Due to the varying resolutions and types of data used, as
well as the small sample sizes, both qualitative and quantitative
methods were applied. The quantitative methods formed the basis of
the analysis, while the qualitative methods were used to validate the
quantitative analysis, add additional detail, and to infer on explanations
for deviating observations and patterns.

2.1. Crop data

Annual harvested area and production of the three main rainfed
crops (maize, millet, and sorghum) for 1983–2016 on regional levels
were acquired from the Direction de la Production et des Statistiques
Agricoles in Chad (DPSA), which consistently has been collecting
agricultural data through their regional and sub-regional offices (DPSA,
2017a; INSEED, 2006). The yield was derived by dividing the produc-
tion with the harvested area, which distinguishes it from a yield related
to the planted area. While the harvested area, the yield, and the pro-
duction all influence the dynamics of economic development, the pro-
duction is arguably of most importance for food security and was the
main focus of the analysis. The harvested area and yield were included
to the extent that they could advance the understanding of the dy-
namics in the production data. As the administrative regions in Chad
have changed over this time period, the regional division with the
lowest shared detail was used (Fig. 1), which is the one used by DPSA
for the period 1998–2009 (DPSA, 2017b). With up to three rainfed
crops analyzed in each of the 13 regions, this resulted in 37 crop pro-
duction variables, as no maize production was reported for Batha and
Biltine. Errors and inconsistencies in the crop statistics are expected to
be prevalent (FAO, 2013; INSEED, 2006; Ronelyambaye, 2015; World
Bank, 2017), which justifies aiming for generalized conclusions. At the

Fig. 1. Distribution of maize, millet, and sorghum crops as given in the Earthstat dataset (Monfreda et al., 2008), together with the regional divisions used in this
study. Note that this is not the current administrative regional division in Chad.

E. Nilsson, et al. Journal of Arid Environments 175 (2020) 104081

2



same time, its continuous use in operational food security work im-
proves its reliability (see e.g. FEWS NET, 2000). The location of the
cultivated areas of maize, millet, and sorghum were taken from the
Earthstat dataset (Fig. 1, Monfreda et al., 2008), which gives the
average fraction of hectares under cultivation between 1997 and 2003
for each crop and grid cell (at 0.1°).

These fractions were used to ascribe weights to each grid cell, to
calculate weighted averages of the atmospheric and soil water variables
for each crop and region. Due to ongoing transformations in the agri-
cultural systems across Chad, the extent and location of cultivated areas
have changed over the studied time period (1983–2016). However, as
such expansions are likely to occur adjacent to current areas, the at-
mospheric conditions are likely to remain similar. The start of the
growing season for each crop and region was estimated based on crop
calendars in FEWS NET's livelihood profiles for 2005 and 2011 (FEWS
NET, 2011, 2005). To include effects of changing atmospheric growing
conditions over the studied period, precipitation thresholds were
identified based on the given crop calendars at the year of the liveli-
hood profiles for each crop and region, which were used to define the
start of the growing seasons for all other years.

2.1.1. Detrending and filtering of crop statistics
The crop data were detrended to remove the influence of factors

that were not included in the analysis, both in the mean values and the
variability. Examples of causes of trends in the mean values are popu-
lation increase, farm inputs and market incentives, while for trends in
the variability it could be due to increased specialization, expansion
into marginal lands, and altered seasonal water availability. As de-
trending risks removing the influence of the drivers one wishes to
evaluate, the drivers were also detrended, which further focuses the
analysis on the correlated patterns of variability between the drivers
and response variables. Due to the uncertainty involved in detrending
under conditions of multifaceted and dynamic drivers, and as previous
research has showed that abrupt and structural breaks are common in
the crop statistics in Chad (Nilsson and Uvo, 2018), two different de-
trending methods were used. One solely used moving averages of
5 years as the basis of the detrending, while the other combined this
with a breakpoint analysis, where moving averages were applied within
the subsamples between the breakpoints. The breakpoint methodology
used the Wald test (see e.g. Andrews, 1993), based on linear robust
regressions with Huber's maximum likelihood estimator (see e.g. Huber
and Ronchetti, 2009; Stuart, 2011), and is presented in detail in Nilsson
and Uvo (2018). With two trend dimensions per variable, i.e. mean and
variability, this resulted in four different detrended data series per crop
variable: Moving Average (MA), Moving Average with variability
(MA + var.), Breakpoint (BP), and Breakpoint with variability
(BP + var.). A data error filter was further applied to remove un-
reasonable values, which were defined as values exceeding two stan-
dard deviations within moving windows of five data points, in the de-
trended datasets.

2.2. Environmental data for crop-water relationships

The environmental impact on crop production variability was as-
sessed based on precipitation, crop evapotranspiration, and crop water
deficits over each growing season. With considerable uncertainties in
the datasets and methods, as well as lack of information on specific crop
and growing conditions, a range of potentially influential environ-
mental variables were evaluated to identify the one with the highest
overall correlative performance against the crop production. Crop
evapotranspiration, crop water deficits, and subsequent effects on the
crops were estimated based on FAO's methods for yield response to
water (Allen et al., 1998; Doorenbos and Kassam, 1979; Steduto et al.,
2012). Crop specific information needed for these calculations were
taken for generic crop varieties for arid conditions as presented in key
FAO references (Table 1). Crop characteristics will however vary

according to the specific crop varieties used in the different regions in
Chad, which generally are composite varieties for maize, open polli-
nated varieties for millet, and a mixture of pure lineage and improved
population varieties for sorghum (CEDEAO et al., 2016; FAO, 2012).
But due to a lack of information on the spatiotemporal distribution of
the respective varieties, and on the crop characteristics required to
complete the calculations, the generic crop characteristics in Table 1
were used for all regions and years.

Seasonal precipitation, crop evapotranspiration and crop water
deficits per region were calculated as weighted averages based on a 0.1°
spatial resolution and relative weights according to the previously de-
scribed crop maps. A combination of remote sensing, modelled, and re-
analysis datasets were used for the environmental data needed for these
calculations (Table 2).

For datasets with larger spatial resolution than 0.1°, the grid cell
center closest to the 0.1° grid cell was selected, thus assuming homo-
geneity within each grid cell irrespective of resolution. Two data
sources were used to drive the crop water availability calculations:
precipitation from ARC2 (Novella and Thiaw, 2013), and satellite based
soil moisture estimates from ESA CCI SM v03.2 (EODC, 2017; Liu et al.,
2012, 2011; Wagner et al., 2012). The ARC2 dataset was developed
specifically for the operational use of FEWS NET in Africa, while its
high resolution and extensive coverage period also makes it suitable for
research activities (Novella and Thiaw, 2013). The ESA CCI SM v03.2
have shown promising validation results (Liu et al., 2012), and im-
provements over atmospherically driven soil water estimates related to
crop yields in the Sahel (McNally et al., 2015). A potential advantage
with remote sensing soil moisture data is that they include all sources of
water input to the soil, e.g. runoff and irrigation, which are usually
neglected in the atmospherically driven estimates. Shortcomings, on
top of measurement uncertainties, mostly stem from the fact that only
the soil moisture in the topsoil is measured (EODC, 2017). Due to un-
certainties in the input data and few validation options, three com-
monly applied methods were used to estimate the seasonal crop water
availability in the root zone (Fig. 2). First, the daily water availability
was estimated with a one-size soil bucket model with ARC2 precipita-
tion as input, evapotranspiration demand estimated from FAO's crop
soil-water model (Allen et al., 1998; Steduto et al., 2012), and gridded
root zone soil water holding capacity from the Global Soil Hydraulic
Properties dataset (Hengl et al., 2014; Montzka et al., 2017; Schaap
et al., 2001). Secondly, a combination of the ESA estimated topsoil
water content and the ARC2 model was employed, where the daily root
zone water variability was taken from the variability of the ESA data
and unified to the seasonal mean and standard deviation of the ARC2
model. The assumptions underlying this was that the variability in the
ESA data reflects the variability in the full root zone, while actual levels
and amplitudes of the root zone availability were more accurately de-
scribed by the ARC2 model. Thirdly, a layered bucket model with water
transfer between the layers was developed by using the ESA estimated
topsoil water content combined with layered soil parameters from the
Global Soil Hydraulic dataset. Water transfers at each time step were
calculated according to the layers' water content, unsaturated hydraulic
conductivity, and pressure differences, where the topsoil water content
was set to the ESA estimate. As sequences of missing data was common
for the remote sensing data, daily sequences of missing data in grid cells
in the ARC2 and ESA data of up to five days were replaced with linearly
interpolated values, while grid cells with missing sequences larger than
this were discarded from the analysis.

The effect of crop water deficits in specific growth stages on the
yield were estimated by yield response factors and yield response re-
lationships (Doorenbos and Kassam, 1979). The estimates of these
factors as given by Doorenbos and Kassam (1979) are based on ex-
perimental results with high performing crop varieties, and are set to be
valid for daily evapotranspiration deficits of up to 50%. Yield response
factors and relationships are furthermore known to vary widely be-
tween crop varieties and growing conditions, and several studies have
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argued for applying site specific relationships (Greaves and Wang,
2017). Due to lack of more precise information on the yield responses in
the studied regions, both the additive and multiplicative yield reduction
equations were applied (Doorenbos and Kassam, 1979; Garg and
Dadhich, 2014; Jensen, 1968).
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where: =i crop growing stage

=k yield response factory

=ET actual evapotranspirationa

=ET maximum evapotranspirationm

To address uncertainties in the yield response factors under condi-
tions of evapotranspiration deficits above the set limit of 50%, a new set
of adjusted yield response factors for each region and crop were cal-
culated based on constrained regressions to the respective crop variable
within a range of ± 50% of the original yield response factors. An
issue with this approach is that the resulting adjusted yield response
factors are overfitted to the specific crop variables, while using the
original yield response factors might not be applicable to the specific
growing conditions. Due to the uncertainties involved in the yield re-
duction estimates, total seasonal precipitation and total seasonal eva-
potranspiration were included as less detailed, but possibly more reli-
able, water availability determinants. In total, this resulted in 16 water
availability determinants (Table 3).

The precipitation, relative humidity and temperature datasets were
verified against monthly observations stations in Chad from the
Direction des Ressources en Eau et de la Météorologie (DREM) for the
period 1998–2013 (DREM, 2014), with 8 stations for precipitation and
3 stations for temperature and relative humidity. The average
Spearman correlation coefficient to the nearest four grid cells of each
observation station was 0.88 for the ARC2 data, 0.89 for ERA Interim
Temperature, and 0.95 for ERA Interim Relative Humidity, which were
acceptable validations of the remote sensing atmospheric data. Due to
data limitations, additional soil characteristics such as soil salinity, soil
nutrients, and fertilizer applications were not included in the analysis.
Data on irrigation was also lacking from the analysis, and while it is
known to be rare in the Sahelian parts of Chad, it is applied extensively
in some parts of the Soudanian zone (FEWS NET, 2011). Irrigation in
the Soudanian zones is however usually confined to certain crops,
mainly rice, and might thus be of limited importance for the analysis of
variability in the rainfed crops considered in this study.

2.3. Food security reports and market prices

To assess the role of socio-economic factors to the crop production
variability, data provided by food security reports from FEWS NET were
included. These reports are available on a monthly basis from 2000
(FEWS NET, 2018), and cover events and conditions relevant to the
operational activities of food security actors in Chad. Aspects covered
by these reports generally include: food security conditions, market
prices, conflicts both in Chad and in neighboring countries, population
movements, trade flows, employment opportunities, pests, and political
developments. The extent, detail, and temporal consistency in these
reports provide a wealth of information about livelihood changes in
Chad. The reporting is mostly qualitative in nature, with few quantifi-
able parameters, and differs noticeably across the studied time period,
both in coverage and in detail. Initially, data taken from the food se-
curity reports every 3 months for 2000–2016 were sorted according to
the region, month, and livelihood factor they concerned. The reporting
is done on different spatial scales, and to accurately relate the data to
the concerned regions, all data within each livelihood zone, as defined
by FEWS NET (2011), were assigned to the respective regions used in
this study (Fig. 1), while data on broader spatial scales than this were
excluded. This initial sorting and categorization was done in MAXQDA,
and later imported as a database to MatLab for further analysis. From
here on, three strands of approaches were developed to explore the
explanatory capacity of this database to the crop output.

First, already quantified categories (food security classifications and
market prices) and categories that were consistently reported on in the
food security reports were set as “Livelihood Inclusion Determinants”
(Table 4). Pests, floods, and conflicts were quantified for each growing
season by ascribing intensity scores from 1 to 5 according to their
qualitative descriptions. All information in these data categories pre-
ceding the estimated harvest date of up to 9 months for each region and
crop were averaged and assigned to each growing season.

Quantifying a large set of qualitative data with relative scores has
the advantage of being applicable to statistical analysis, while a note-
worthy drawback is the uncertainty in the estimated scores, especially
as the descriptions and detail may vary considerably across time series.
To reduce the uncertainty in these estimates, categorical values (pre-
sent/not present) were also assigned to these categories. Monthly
market prices for the included crops were collected from reports and
online databases from FAO, FEWS NET, and INSEED for the time period
1990–2016, and deflated with the World Bank Consumer Price Index
(FAO, 2016b; FEWS NET, 2002, 2001; 1997; INSEED, 1999, 1994;
World Bank, 2017b). Market prices from these sources were available
for eight main cereal markets: Abéchè, Bol, Mao, Mongo, Moundou,
Moussoro, N'Djamena, and Sarh. Trade routes and market connections
for each region were taken from FEWS NET's livelihood profiles (FEWS
NET, 2011), which were used to connect each region to its primary

Table 1
Crop characteristics.

Crop Growth days Basal crop coefficiente Yield response factors

Stage

1 2 3 4 1 2 3 4 1 2 3 4

Maize 20a 35 40 30 0.15b – 1.15 0.15 0.4c 1.5 0.5 0.2
Millet 15b 25 40 25 0.15b – 0.95 0.20 0.4d 0.6 1.25 0.8
Sorghum 20a 35 45 30 0.15b – 1.00 0.35 0.2c 0.4 0.55 0.2

a Allen et al. (1998).
b Doorenbos and Pruitt (1977).
c Doorenbos and Kassam (1979).
d FAO, 2009.
e Describes the relationship between crop evapotranspiration to reference evapotranspiration when water is not a limitation. Coefficients for stage 2 are interpolated on a daily

basis.
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market from this list. Average market prices at the primary market over
6 months preceding the estimated planting dates were included as a
determinant in the statistical analysis. A general assumption underlying
this approach is that market prices preceding the planting date of each
season influence farmers' agricultural strategies, by focusing on certain
crops, altering the planted area, investing in farm inputs, or diversifying
into other livelihoods. However, market prices can also be connected to
altered access to food and farm goods, which further complicates the
potential relationships between market prices and crop production.
Secondly, certain events and interventions can have substantial and
unique effects on the crop production, such as development projects
and conflicts, which poses issues for statistical evaluation. If such ef-
fects are apparent and consistent over at least a small number of years,
they could partly be detected and evaluated through a trend and
breakpoint analysis, or through inclusion as categorical variables. If any
such effect on other hand is transient and inconsistent, it would not be
captured by either of these methods, and left unaddressed, it could
distort the regression analysis for the whole sample. Another strand of
analysis based on the food security reports was thus added to evaluate
the effect of excluding years with potentially distortive events. The
groups of events listed in Table 5, if preceding the estimated harvest
date with less than 9 months, where included as “Livelihood Exclusion
Determinants” for this end. A drawback with this approach is that any
established explanatory capacity with excluded years will only be valid
for a subgroup of the whole sample, but this could still be a consider-
able improvement over a lower explanatory capacity for the full
sample.

Thirdly, the created database with categorized and sorted qualita-
tive data from the food security reports was used to complement the
statistical analysis by providing qualitative descriptions of the liveli-
hood conditions for selected regions and years. As the information
concerning each region and growing season was taken from food se-
curity reports spanning up to two years, simply categorizing and sorting
all this information into a searchable database provided valuable ana-
lytical advantages compared to the original report structure.

2.4. Statistical analysis

The statistical analysis was based on regression analyses and sought
to evaluate the explanatory capacity of combinations of the water and
the livelihood determinants (Tables 3–5) to the crop production (i.e.
response variables). It aimed to identify the combination of determi-
nants and detrending method that provided the highest explanatory
capacity to the variability in the full crop production dataset, consisting
of 37 crop production variables. The explanatory capacities of the de-
terminants to the harvested area and yield were evaluated as an alter-
native to the production, where the respective explanatory capacities
were weighted and combined according to their relative correlation to
the production. For regions and crops where the determinants had low
explanatory capacity to the production, this combined analysis of the
harvested and the yield could add an additional, if yet fragmented,
understanding of the dynamics in the production. From the set of de-
terminants, regression models were created and fitted to the response
variables through constrained multivariate least square error linear
regressions. The water determinants formed the basis of the regression
models, and were evaluated both separately and jointly with all com-
binations of the livelihood determinants. As the effects of the evaluated
livelihood factors were expected to differ considerably between the
regions and crops, contrary to the effect of water availability which
should be more constant, the methodology focused on finding the water
determinant that in combination with a group of livelihood determi-
nants provided the highest overall explanatory capacity to the crop
production dataset. As the livelihood data were only available from
2000, only water determinants were evaluated for the 1983–2016
period, to compare their performance over different time periods. With
a large set of combinations of determinants explored for each responseTa
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variable, low degrees of freedom, and uncertainties in the data, the
statistical analysis needed to be conducted with constraints, and per-
formative evaluations adapted to these conditions. Positive or negative
constraint limits for the regression coefficients were thus set to comply
with the expected relationships for the water and Livelihood Inclusion
determinants to the response variables (Table 6). A minimum of eight
degrees of freedom was deemed to be sufficient to identify reliable
correlations, while acknowledging the sparse temporal extent of several
of the datasets. Regression performances were evaluated by leave-one

out cross validated root mean squared errors (RMSE) (see e.g. Taylor
et al., 1984). Significance levels were estimated based on coefficients of
determination (R2) from 1000 pair-wise randomized bootstrap itera-
tions (see e.g. Fox, 2016). Only regression models significant at the 0.05
level were selected for the results summary. Due to the low sample size
and expected uncertainties in the data sets, only linear relationships
were evaluated, and no interaction terms were included in the regres-
sion models.

3. Results

The results section initially presents an evaluation of the ex-
planatory capacities of the combinations of determinants and de-
trending method to the full crop production dataset. The performance
of the selected determinant combination and detrending method for a
set of subgroups is further evaluated, as is the selection of livelihood
determinants. Finally, a combined livelihood data and water determi-
nant analysis is provided for the crop production variables where the
cross validated R2 is above 0.5.

3.1. Summarized determinant combination performances

The summed significant cross validated R2 to all of the 37 crop
production variables is presented for each detrending method and de-
terminant category in Fig. 3. For the determinant categories with li-
velihood data (yellow, purple, and green lines), the livelihood de-
terminants that in combination with each water determinant give the
highest cross validated R2 are selected. Contributions from the analysis
of the harvested area and the yield are included, as previously de-
scribed. As the rate of significant variables are low for all of the de-
terminant combinations, the R2s presented here are low, and should
only be interpreted in relation to each other. The improved explanatory
capacity with addition of the livelihood data in the determinant cate-
gories (moving to the right in the legend) is clear from Fig. 3, with a
mean relative improvement in summed cross validated R2 of 286%
between only using water determinants (red lines) and combined water
with both Livelihood Inclusion and Exclusion determinants (green
lines). Addition of the Livelihood Inclusion determinants (yellow lines)
generally outperforms additions of Livelihood Exclusion determinants
(purple lines). By combining both of them, the explanatory capacity
improves considerably, and foremost for the “BP + var.” detrending
method (including breakpoints for both the mean and variability). As
the regression models evaluate a large set of determinants for each of
the livelihood determinant categories, improvements in the cross vali-
dated R2s are expected on purely statistical grounds. A larger number of
potential determinant combinations can also explain why the

Fig. 2. The three different soil moisture (SM) models used in the analysis.

Table 3
Seasonal water availability determinants.

Water Determinants Soil moisture models Coverage

ARC2 Satellite
Unified

Satellite
Layered

Seasonal Precipitation X – – 1983–2016
Seasonal Crop

Evapotranspiration
X X X 1983–2016

Yield Reduction Additive X X X 1983–2016
Yield Reduction Additive

Adjusted
X X X 1983–2016

Yield Reduction Multiplicative X X X 1983–2016
Yield Reduction Multiplicative

Adjusted
X X X 1983–2016

Table 4
Livelihood inclusion determinants.

Determinant Coverage

Conflicts (x 2a) 2000–2016
Floods (x 2a) 2000–2016
Food security classifications 2000–2016
Market prices 1990–2016
Pests (x 2a) 2000–2016

a Categorical and Intensity scores.

Table 5
Livelihood exclusion determinants.

Determinant Coverage

Agricultural support 2000–2016
Conflicts 2000–2016
Crop and livelihood switches 2000–2016
Floods 2000–2016
Market and trade disruptions 2000–2016
Pests 2000–2016
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Livelihood Inclusion determinants generally outperforms the Exclusion
determinants, and that their joint improvements over only using water
determinants are larger than their summed respective improvement.
For a reliable evaluation of the explanatory capacity of the livelihood
determinants to the crop production variability, livelihood determi-
nants with high selection rates in the determinant combinations must
be identified, which is done in Section 3.2.1. By only including de-
terminants from the livelihood determinants categories (not presented
in Fig. 3), i.e. excluding water determinants altogether, the results are
similar as for the water determinants for 2000–2016, with an average
relative increase of 12% in mean summed cross validated R2. The low
and comparable separate performances of these determinant categories,
and their noteworthy combined improvements, show that they all are
correlated to the crop production, and that their joint effects need to be
acknowledged. The two periods of water determinants, 1983–2016 and
2000–2016, show similar results with only minor improvements seen
for the later period, which indicates that there is no pronounced dif-
ference in data quality over the two time periods.

The four detrending methods show similar results for all but the
joint Livelihood Inclusion and Exclusion determinant category, where
on average the two variability based detrending methods have the

highest performances. Here, the “BP + var.” detrending method in-
creases the mean summed cross validated R2 by 18, 33, and 54% re-
lative to the three other detrending methods. These differences are in
line with the increased analytical detail involved in adding a detrending
of the variability, and applying a breakpoint methodology to a dataset
known to have structural breaks (Nilsson and Uvo, 2018). It further
shows that there are trends in the variability of the crops, and break-
points in both the mean and the variability. That only slight differences
are seen between the detrending methods for the rest of the determi-
nant categories can be explained by their overall low performance, as
additional detrending detail is not adding any considerable improve-
ments in the summed cross validated R2s. The differences in detrending
performances are on the other hand most apparent for the highest
performing determinant and determinant category, identified as the
ARC2 driven Yield Reduction Additive Adjusted determinant with the
Livelihood Inclusion and Exclusion determinant category. Compared to
the basic “MA” detrending method, both the “MA + var.” and the “BP”
have relative improvements of 30% for this determinant and determi-
nant category, while the “BP + var.” clearly outperforms the others
with a relative improvement of 65%.

Table 6
Constraint ranges for linear regression coefficients.

Determinant Constraint range Justification

Conflicts Negative Reduces productive capacities
Crop evapotranspiration Positive Increases crop water uptake
Floods Negative Reduces productive capacities
Food security classifications Negative Scale is negatively defined (i.e. 5 is lowest food security), and high food insecurity is presumed to reduce productive capacities.
Market prices No constraints Depending on the level of income and market dependence of farm households, increasing market prices can lead to both

production incentives and reduced access to goods
Pests Negative Reduces productive capacities
Precipitation Positive Increases crop water uptake
Yield reduction Negative Inversely related to crop water uptake

Fig. 3. Summed significant cross validated R2 for the production variables per detrending method, determinant categories, and water determinant (for explanations
of the determinants see Section 2.2 & 2.3).
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3.2. Selected determinant combination performance

The ARC2 driven Yield Reduction Additive Adjusted determinant,
with the “BP + var.” detrending and the joint livelihood determinant
category, has a total significant cross validated R2 of 0.193 to the full
crop production dataset of 37 variables. Its performance is more clearly
understood when reviewing its summed significant cross validated R2 to
all the crop categories in the Sahelian and Soudanian zone (Table 7).
The highest explanatory capacity is generally found in the Sahelian
zone, and primarily to the production variables. Noteworthy results are
especially the pronounced difference between the harvested area and
the production variables in the Sahelian zone, as well as the lack of any
significant variables found for the yield variables in the Soudanian
zone. As the production and harvested area is what is assessed from the
fields, and the yield being derived from the two, the higher perfor-
mance of the production variables points to uncertainties and possible
inconsistencies in the data on harvested area and subsequently the
yield.

The rates of significant variables in Table 7 show that only a min-
ority of the included crop variables have significant regression models
established, with an average of 35% for the production variables, which
explains the low values for the summed cross validated R2s as seen
against the whole production dataset (0.20 & 0.12). However, the mean
cross validated R2s are much higher within each subgroup's set of sig-
nificant variables, which is in line with the few other studies conducted
on environmentally driven regressions models against crop output in
Chad (McNally et al., 2015; Nilsson et al., 2016). This further affirms
that the best performance is within the production variables, with an
average cross validated R2 of 0.50 for 9 production variables in the
Sahelian zone, and 0.44 for 4 production variables in the Soudanian
zone. The spatial distribution of the explanatory capacity to the pro-
duction, including contributions from the harvested area and the yield
where no significant regression models were established for the pro-
duction, is presented in Fig. 4. The significant regression models for
maize are generally found in the Soudanian zone, while for millet and
sorghum they are generally found in the Sahelian zone. These spatial
differences are best understood in terms of accuracy of the crop sta-
tistics, and regional variations in rainfed farming, as the Sahelian zone
is rainfed to a higher degree than the Soudanian zone, which in turn has
more extensive irrigation practices (FEWS NET, 2011). Moreover, for
the maize variables in Guéra and Moyen-Chari, both with cross vali-
dated R2 ≥ 0.50, the regression models excluded the water determinant
altogether and only included livelihood determinants, which further
points to the decoupling of these crops' variability from the atmospheric
water conditions. The higher proportion of millet production found in
the Sahelian zone (DPSA, 2017a; FEWS NET, 2011) could also explain
these patterns, as measures for data collection and the responses to
varying water conditions both might be more consistent than for the
other crops.

3.2.1. Evaluation of livelihood determinants
To get a reliable evaluation of the explanatory capacity of the

livelihood determinants, their selection rates in the highest performing
regression models are presented in Table 8. As this table only shows
which livelihood determinants improved the explanatory capacity of
the regression models the most, it does not exclude the possibility that
other livelihood determinants had significant correlations, but should
serve as an indication of which livelihood determinants are most potent
for this end. Seen for the 21 production variables with significant re-
gression models in both zones, the Livelihood Inclusions determinants
are selected in 57% of the cases, while the corresponding rates for
Exclusion determinants are 71%. The most frequently selected Inclusion
determinants are Market Prices and Food Security Classifications and,
for the Exclusion determinants, Conflicts and Agricultural Support.
Market Prices and Food Security Classifications were the only Inclusion
determinants that were quantitative in their original form, while the
rest of the Inclusion determinants where quantified based on the qua-
litative information in the food security reports. Their high selection
frequency points to their relevance, and to the uncertainties involved in
quantifying the livelihood data. Moreover, for the group of quantified
livelihood determinants, only categorical determinants were selected,
and no intensity determinants, which further confirms the uncertainties
in the quantification processes.

3.2.2. Combined analysis of variables with high explanatory capacity
Even though the explanatory capacity is considerably improved

when involving livelihood determinants, it is still low as seen for the
whole dataset (Table 7). For the selected water determinant and de-
terminant category, 16 of the 37 production variables have no sig-
nificant regression models established, and the mean cross validated R2

for all the significant production variables is 0.36. For specific pro-
duction variables, as seen in Fig. 4, the cross validated R2s are however
much higher, which can serve as examples of the usefulness of this
methodology. With an increasing rate of explained variability for a crop
variable, there is also an increasing potential to attribute the un-
explained variability to qualitative descriptions of the livelihood con-
ditions for specific years, which can provide a more comprehensive
understanding of the drivers of production variability in these systems.
Table 9 lists all the production variables with cross validated R2s above
0.5 together with the selected livelihood determinants, indicating
where the evaluated methods perform best.

The utility of this kind of combined analysis can be exemplified with
two of highest performing variables, millet production in Batha (Fig. 5)
and Biltine (Fig. 6). Here, high prediction deviations, set to 0.8 standard
deviations, are given potential explanations based on the information in
FEWS NET's food security reports for the respective growing season.

The effect of including a Livelihood Exclusion determinant in the
regression predictions can be seen in Fig. 6. The effect of excluding
agricultural support years in Biltine (Fig. 6), for 2007 and 2008, al-
though correctly identifying deviating prediction performances, also
shows the uncertainty involved in this methodology, as the resulting
deviation goes in different directions for the two years. The effects of
agricultural support on the crop production on regional scales will
depend on a range of factors which cannot be assessed further without
additional sample cases and more detailed data. On this level of ana-
lysis, as agricultural support is usually triggered by low food security
and conflicts, growing seasons with agricultural support recorded could
as well be linked to underperformance of the water availability condi-
tions. For operational purposes, the main usage of identifying catego-
rical variables that correlate with prediction deviations, like agri-
cultural support in this case, is first and foremost to give an early
indication of deviations from normal production patterns, and secondly
to determine their effects. For the additional production variables with
high performing regression models established (Table 9), the years with
high prediction deviations are given potential explanations in Table 10.
The qualitative attributions in this analysis show that negative devia-
tions are generally more robustly established than positive ones (Figs. 5
and 6, and Table 10), which stems from the negative bias in the food

Table 7
Significant cross validated R2 per subgroup for the ARC2 driven Yield
Reduction Additive determinant, with the Livelihood Inclusion and Exclusion
determinant category. Results are presented both for all of the variables in each
subgroup, as well as only for the variables with significant regression models.

Area Yield Production

All Sig. All Sig. All Sig.

Sahel (R2) 0.07 0.29 0.15 0.30 0.20 0.50
Variables (no.) 22 5 22 11 22 9
Soudan (R2) 0.09 0.34 0 0 0.12 0.44
Variables (no.) 15 4 15 0 15 4
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security reports, which are more focused on monitoring and averting
crises than optimizing the production systems. Several of the explana-
tions given here were also evaluated but not selected as Inclusion or
Exclusion determinants for the respective variables in the statistical
analyses, such as Agricultural Support, Floods, and Pests. The un-
certainty involved in the effects of these factors, stemming from their
broad descriptions in the food security reports as well as their inter-
action with other factors, limits their potential to establish any statis-
tically reliable causalities. Using them as potential explanations in
qualitative terms holds less explanatory and predictive applicability,
but is still able to point to potential relationships with more precision
than previous studies.

4. Discussion

By adding livelihood data to the commonly assessed water avail-
ability, the explanatory capacity to crop variability was considerably
improved. This improvement was mostly realized through the 57%
selection rate of the Livelihood Inclusion determinants, while the 71%
selection rate of the Livelihood Exclusion determinants holds less ana-
lytical clout due to their unspecified effects and low occurrence rates,
but can still be useful in identifying disruptions to normal crop pro-
duction patterns. The Livelihood Inclusion determinants with the
highest selection rates in the regression models, which were Market
Prices and Food Security Classifications, were both quantitative vari-
ables originally, while quantifying the qualitative information in the
food security reports was of less use. Given the broad descriptions used
in these reports and the complexity involved in regional agricultural
systems, this comes as no surprise, and goes to show that this in-
formation foremost lends itself to updates on the food security condi-
tions, rather than for predictive crop variability purposes. The examples
of high-performing production variables given in this study also show
how qualitative and quantitative datasets can be combined to identify
and explain deviating production patterns. Building on these methods
and results to further attribute prediction deviations to potential causes
using food security reports and other datasets will be able to advance
the understanding of the crop production dynamics in Chad. Added
detail in the detrending methods was able to further improve the ex-
planatory capacities, where a breakpoint based detrending of both the
mean and the variability showed large improvements over the more
basic methods. The potency of breakpoint methodologies in the trend
analysis confirms findings by previous studies that the progressions in
these datasets have non-linear elements with abrupt and structural
breaks, which needs to be accounted for in studies of both long-term
trends as well as drivers of variability (Nilsson and Uvo, 2018). Un-
derstanding the patterns and causes of such progressions could improve
the precision of the detrending, as well as provide valuable information
about ongoing transformations in the agricultural systems.

Despite applying a broad range of datasets and analytical combi-
nations, the majority of the regional crop production variability is left
unexplained, with only 21 of the 37 production variables having

Fig. 4. Spatial distribution of the explanatory capacity to the production variables.

Table 8
Selection rates (%) of the Livelihood Inclusion and Exclusion determinants for
the highest performing regression models. Note that the significant variables
are given in absolute numbers.

Livelihood Inclusion determinants Sahel Soudan

Market Prices, Food Security Classifications, Conflictsa, Pestsa,
Floodsa

0 20

Market Prices, Food Security Classifications, Pestsa, Floodsa 0 20
Market Prices, Food Security Classifications 13 0
Floodsa 0 20
Food Security Classifications 6 0
Market Prices 25 20
Pestsa 6 0
Not selected 50 20
Significant variables (no.) 16 5

Livelihood Exclusion determinants
Agricultural Support, Crop Switches, Market Disruptions 0 20
Agricultural Support, Crop Switches 0 20
Agricultural Support, Market Disruptions 13 0
Agricultural Support 13 0
Conflicts 31 40
Crop Switches 0 20
Market Disruptions 6 0
Not selected 38 0
Significant variables (no.) 16 5

a Categorical.
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significant regression models established for the best performing de-
terminant combination. The role of water availability has arguably
been explored more exhaustively than the livelihood factors, and builds
on established methodologies from a long tradition of crop-water stu-
dies. The detailed adjustments of such methodologies for the specific
conditions in Chad have however not been established, as the water
variables were only crudely validated, and as all of the crop specific
factors behind the yield reduction estimates were set according to
generic assumptions about crop type and agro-ecological conditions.
The set of evaluated water determinants in this study has addressed
some of these issues, and found that the precipitation driven Yield
Reduction Additive Adjusted determinant had the best overall perfor-
mance, which outperformed determinants driven by a satellite mea-
sured topsoil moisture dataset, the ESA CCI SM v03.2. The relative
performance of these two groups of water determinants in the different
regions was however not explored, which could be of interest to future
studies, as increasing rates of irrigation might improve the performance
of satellite measured soil moisture products over precipitation as pre-
dictors of crop water uptake. Further selecting and adjusting water
availability estimates and crop specific factors can be advanced by ca-
tegorizing information from governmental institutions and develop-
ment organizations on various spatial scales, and increasing its acces-
sibility for research projects. Increased validation and calibration
potential of such datasets could come through agricultural field trials,
but with added costs.

The lack of higher explanatory capacities can further be explained
by data quality issues in the crop statistics, with potentially inconsistent

data collection methods and coverage. Although the explanatory ca-
pacity was similar for the time periods 1983–2016 and 2000–2016,
indicating that there are no consistent changes to data quality in any
direction, year-to-year changes in data collection could limit the po-
tential of the regression models to capture the crop variability. Besides
the already ongoing initiatives to improve data quality and coverage in
Chad (see e.g. World Bank, 2017a), accessing and evaluating the sub-
regional crop data that constitute the regional data used here could
improve the identification of erroneous data points.

With improved crop statistics and soil water estimates, together
with increased detail in the food security reports and similar assess-
ments, new valuable research opportunities would open up. Benefits of
such research would come in terms of improved food security assess-
ments, evaluations of rural development projects, and identifications of
investment opportunities in the agricultural sector. As information
channels are already established for these ends by governmental in-
stitutions and development organizations, increasing the quality and
quantitative applicability of the collected data, and its accessibility,
might be a cost-efficient strategy for food security and rural develop-
ment purposes.

5. Conclusion

This study has showed that the explanatory capacities towards crop
production variability can be considerably improved by adding liveli-
hood data to the commonly applied environmental datasets, as well as
increasing the detail of the detrending methods. By combining

Table 9
Production variables with cross validated R2 ≥ 0.50

Region Crop X R2 Livelihood Inclusion Livelihood Exclusion

Batha Millet 0.61 – –
Biltine Millet 0.78 – Agricultural Support
Chari Baguirmi Sorghum 0.64 Market Pricesn Conflicts
Guéraa Maize 0.57 Market Pricesp, Food Security Classification –
Lac Maize 0.52 Market Pricesp Conflicts
Moyen Charia Maize 0.61 Market Pricesp Agricultural Support, Crop Switches, Market Disruptions
Tandjilé Maize 0.51 Market Pricesn, Food Security Classifications, Pests, Floods Conflicts

a No water determinant included, only livelihood determinants.
p Positive regression coefficient.
n Negative regression coefficient. Variables without superscripts have regression coefficients according to their constraint range (Table 6).

Fig. 5. Detrended millet production in Batha and prediction from the ARC2 driven Yield Reduction Additive Adjusted determinant. Prediction deviations above 0.8
standard deviations are given potential explanations from FEWS NET's food security reports for the respective growing season.
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qualitative and quantitative methods, it has shown how a more com-
prehensive understanding can be achieved in studies of crop variability
on regional scales. Several shortcomings and further improvements
centered on data coverage and quality have been identified, where
collaborations between government institutions, development organi-
zations, and research bodies, in both Chad and other countries in si-
milar development contexts, are set to be fruitful. For the regions in
Chad where the developed methodology has the highest performance,
the established relationships are of sufficient precision to inform food
security assessments and outlooks.
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