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Financial instability in the miningector was identified as a significaeasorfor reducegroduction trends
in South Africa. Coupled with increasing operational costs, the South African miningisexinfronted
with a challengindiinancial situation To remain financially competitivepn a global scaleminesare

adoptingsignificantsociceconomic changes.

Mineworkers require substantial cooling and ventilation to work in a safe and habitable environment. Deep
level mine cooling systems were identified sagstantialenergyintensive consumers to supply such
cooling. Mine cooling systems can make up to 28% of a mines total electricity consuntfigotricity
costsaving initiatives werastudied,implementedand recognised as a viable solutionreduce endise
electrical eergy consumptiomn mine cooling systemkittle attentionhas been directetitoweverio the
sustainability thereof.

Literaturereveals a need for a simpf@acticaland integratedolution to optimise deejgvel mine cooling
systems dynamically for sustainaloestsavings. Therefore, aautanated dynamic control strategy sva
presented to optimise the control of mine cooling systemsduce operational costs and improve system
sustainability An integratedEnergy Management System (EMS) was identified as a suitable centool|

the implementation of thistrategy.The EMS analysed the theoretical impact with the aid of a verified

simulation model.

The control strategy wamplemented on a case study, Mine A, situated at a South African gold mining
complex. An integrated dynamic temperadiget point algorithm and ambient doylb (DB) temperature
prediction model was formulated, implemented and verifiéé.simulation rsults confirmed the accuracy

of theautomatedlynamic control strategyith an average correlation error of4.
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The feasibility of the automated control strategy was investigated and validated to identify
postimplementatiorcostsavingsimplementation results showed a powentnd reduction of 45.7%, or
1960 RV during the evening peak tinmd-use period. This translatedto an annual cossaving of
R1.1million andan operatioml efficiency improvementof 15%. The optimised dynamic control model,
when compared to existing control practises, atsined a chiller coefficient gerformance improvement

and compressor power reduction of 7% and 4% respectively.

An integrated performance monitorindgily report was establishebmportantKPlIs were identified and
included in thelaily report.In addition tathe implementation aiutomatedcostsaving measurekad shift
savingswerealsoreportedfor a period of 14nonths; indicating the sustainalimepact of this studyThis
strategy demonstrated to be simplghowng significant performance improvements f8outh African

mining industries.
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CHAPTER 1: INTRODUCTION

This chaptelsummarises the soe&eronomic crisisn the South African gold mining sector. Production
trends, labour relations and increased operating costs are discussed and critically evaluated. Sustainable

cost savings policies are introducadd explored. The need for the study is formulated and destuss

! Photograph courtesy of Planet KB, http://www.planetkb.co.za/portfigtail. php?MiningPhotography4
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1.1. Preamble
1.1.1. The South African powergrid

Eskom, thestaterun nationaklectricity utility in South Africa, is struggling to remain financially stable.
In addition toincreasing electricity pricesnd-users are finding cheaper alternative enamyrcesand

solutions whichis placing Eskom undexxtremefinancialstrain[1].

Sustainable and cosffective energy resourcese fundamental for the economic development and
sustainability of EskomS o ut h  Aofinrary erergysgenerat which is dominated by the coal
industry; is depletingts coal reservef?]. If radical changes are not implemented, Eskom will be faced

with significant challenges to reduspirallingoperational costandmitigatedepleting coal reserves.

Eskom generatesearly 95% of the total electricity consumed in South Afremad 45% of theatal
electricity used in Afric43]. Energyintensive industrial usersuch as minegonsumel6% of the total

electricity generad[4]. Therefore, Eskom playe criticalrole inmeeting consumestemand.

Between 2008 and 2011 electricity pricesreased by 8%[5]. It was during the periodf 2005 to 2013
that Eskom initiated its expansion programme to incratselectricity generabn capacity The toal
capital expansion programmé&om 2005 to completion in 2018 estimated aRR340 billion [3].
Expansion will increase the nominal generating capacitysalilkely to make a substantial improvement

in economic growth in South Africa.

Souh Africa demand# excess of 5000MW of energy which is more than thgenerating capacity of
Eskom|[6]. In recent years, the demand for electricity incrddse100 MW per annurfi7]. Due to a
rapid increase in electricity consumption, Demand Side Management (DSM) initlzivesstablished

a noteworthyfocus

In conjunction with the capital expansion programthe, National Integrated Resource Plan (NIRP)
suggested with the inclusion of DSNltiatives, a displacement target of BI¥V caneasilybeachieved
[7]. NIRP suggested further that the implementation of DSM initiatives in the industrial sesittt w

improve machinefficiency[7].

Although, DSM assisted in alleviating the financial stran E s k o eléctsicity supply network;
increasing operational costs, depleting coal reserves and the costly expansion programme are collectively

surpassing sales and revenues.

Figure1-1 illustrates the Human Development Index (HDI) versus annual electricity energy usage per
capita. Significantlythere lies a threshold opproximately 4000 kWh per capita that corresponds to an

HDI of 0.9 or larger. South Africavhich has an HDI of approximately 0.8@s above the threshold of
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4 000 kWh per capita. According to the suggested relationship between HDI and electricitpersage

capita, South Kica abuses energy.
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Middle East ODeveloping Asia @ Industrialised Countries
1 :
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Figurel-1: The Un iHDlIand Eldcaritity use perécapif8]
The sample of 60 populous accounts for 5.7 billion peopleatteaforecast o use 90% of

total electricity in the year 2048]. Countries with low HDIs whdie close te or above the 400 kWh

per capita threshold, include; South Africa, Kazakhstan, Saudi Arabia and Rfsia. four, South

Africa has a lower energy intensity capability and earnsdessnit of electricity produced.

To ensurgglobal sustainable energy reserve marginis important thatountries such as South Africa

with an HDI of 0.69 as discussed iRigure 1-1, reduce their energy usage below the threshold of

4000 kWh per capita.

1.1.2. The importance of gold in South Africa

South Africais a country steeped in minerals and natural resources thahiaed, processed and

exported. South Africa is home to the weftonous Witwatersrand gold basin, which accounts for

approxi mately

40 %

of [9]t Gol isveonsidered an esyentialdresaunce that t

contributesextensivelyto the economy of a developing country like South Affidy.

The South African mining industry contributes to approximaié9o of the Gross DomestRroduct

(GDP) and just over 50% in foreign exchange earnjhgp Due toharsh economic environments, the
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South African mining industry is struggling to remain financially competitive. South Africa, which was

once ranked as the leading gold producer, has droppeskteathplaceranking in 201712].

1.2. Financial instability in the South Africanmining sector

Mines utilisean integrated network of people, capital and infrastructure to function. These networks are
complex and require large operating costetoainprofitable. The financial burden to comply with large
operating costhas been brought to light. Large mining companies are struggling to remain competitive.

South African mines are implementing alternative measures to cut back on operatiftE¢osts

During June 2017AngloGold Ashanti announdghat it plamedto curtail cash losses with a questionable
restructuring process. The restructuring process would involvetitemchment of approximatelys®0
employee$l4]. I n | ight of the unfavour abl echiefexeautivaict ur i
officer (CEO) stressed the importangd protecing the longterm sustainability of mining operations

[13]. In addition to the suggesteektructuring process, AngloGold Ashanti pladto place the Savuka
mneonipl anned car e [@A5) do mamtaimedcenanacrviabdity, industry isréed to

abandon existing mines to reduce operational costs.

The retrenchment massacre continued as Sibanye Gold announced the retrenchment of approximately
10200 mining personndlL6]. Although the retrenchment process iemed viable, Sibanye Gold are
considering alternative solutioriSconomic strain w the mining sector has affected the GDP adversely

by reducing investments, which negatively impacts the economic growth of South Africa.

South Africa is faced with a dynamic so@oonomic crisisTo sustain profitability and competitiveness,
the mining industry is forced to restructure. Mining companies are, however, engaging with all the

relevant stakeholdsiin an efforto reduce the risk of unemploymgmg].
1.2.1. Gold production trends in South Africa

Gold production contributes considerably to the secionomic development of South Afriddecause
gold is considered a finite resourdes sought after due tosiincreasing valuerigurel1-2 illustrates the
increase in global gold produmh from 2007 to 2017. Althougthe gold price increased faiine
consecutiverears, in 2017 the gold price dropped by B80 per kilogram (ZARg) [17]. Without the

adoption of drastic cost reducing measuties mining industry is vulnerable to insolvency.

Decreased gold prices indicate that South Africa is under massive financial strain to remain globally
competitive. It is suggested that reducing operating expenses can alleviate the financial strain on the
mining industry Despitetheseeconomic challenges, mines are curtailing producatmsts to maximise

profitability.
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Figurel1-2: Global gold production and gold prif¥7], [18]

Increased global gold production indicates that gold resources are increasingly dimiitighthgrefore
essential that gold producti@maximised at low operiag costs Figurel-3illustratesthe South African
mining contribution to tt GDP androductiondeclinein gold miningfor the past 10 years. Although

local gold production has declined, mining is still a significant contributor to the[GE)P

mmmmm Gold production (metric tonnes) = = = Mining contribution to GDP
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Figure1-3: Mining contribution to the GDP versus Gold production in South Afti€ [20]

A decline in South Africads g o ldidinighingatthoughSouthn
Africa was ranked third in the global gold reserve rankin@017 [21]. Therefore, although gold
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production isdeclining,gold reservesemain available in South Africa, indicating that declinentzre

likely due to the significant financial cost of doing business.

A decline in gold production has prompted South Africa to reconsider the viability of gold mining. The
gold mining industry is forced to adopt alternative measures to reduce opexgeémges and maximise
profitability. The following sections will investigate other financial challenges in the mining industry.

1.2.2. Increasinglabour costs

Mining is a substantial provider of both direct and indirect employment. The mining industry is
committed to contributing to the soes@onomic development of mining societies by providing job
creation fora considerable number of peopletire country[22]. Figure 1-6 illustrates theannual
remuneratiorversus number of employees hired in the gold mining industry.

s Number of employees = = = Average annual remuneration per mine worker

200,000 300,000

180,000
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\
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Figurel1-4: Annual remuneratiomersus number of employees in ®euth Africangold mining industry19], [22]

Due to increaselhbourcosts, mines are forddo restructure and retrench employees. The rapid decline
in employees anthcrease in annual remuneratibas negatively impactddbour costswhich further

exaggerates the economic strain.

Figure 1-2 through to Figure 1-4 elaborateson how financial instability in the mining sector $a
negatively impactegroduction trends and thresultantsociceconomic challenge¥he mining sector,
whichwasone of the largest reverngenerator$or South Africais in a financial feudvith labour unions
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1.2.3. Electricity consumptionin the mining sector

Electricity is an essential resource for both surface and undergmoimd) activities. Important systems

and thermodynamic processes thaludeventilation and refrigeration are enefgyensive The gold
mining sector is considered the | argest user of
total energy generatiof23]. Recently many studiesvere completed tosuccessfullycorrelate these
energyintensve processes to the tonnes of golcied[24].

Figure 1-5 demonstrates the typical enetiggyensive gstemsutilised at a deepevel gold mine. The
largest electricity consuming subsectors include; ventilation and refrigeratidrtompresseair. Both

subsectors consume approximately 28% and 19% respectiveheskielectricity subsectors araot

manageckfficiently andeffectively, mines with a depth larger thart8@0 mcan consume moredh 25%
of the total electricity generation in South A&I@5].
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Refinery/\
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Smelter
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Concentrator c dai
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Ventilation and
Refrigeration
— 28%

Pumping_/

16%

Figure1-5: Allocation of energy usages within a typical m[26]

Historically, Es kom was ¢ onsi dnestseffectiveelectridity prokidersAssucH d 6 s
electricity costs were not a major concern for the mining sel@éf. Due to harsh economic
circumstances, mindgve establisheaimassive focus to curtditcreasingelectricity costs.

1.2.4. Contribution of mining to the South African economy

In the past 100 years, the mining industry has played a vital role in seeustadple South African
economy[19]. In 2017, the mining industry contributed@®%of the ecoomic growthof South Africa
[19]. Although marginally lower than 2016, the South African gold mining indwsttitycontributeda
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total of R312 billion to the GDRn 2017[19]. The gold mining industryas said to expanldy 3.7% in
2017, prompting increased future revenieure1-6 displays theSouth AfricanGDP growth asectoral
level.

2016 m 2015
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Manufacturing

Electricity —
Construction
Trade

Transport

Economic sector {]

Finance
Government
Personal services

Total GDP

-10 -8 -6 -4 -2
GDP change [%]

o
N
I
]

Figurel-6: GDP growth at sectoral levig8]

South African gold mines were identified asignificant stakeholder for the economic growth of South
Africa. Financial instability in the mining sectd attributed to increasing operating costs. Without
effective interventions, the South African GDP wilttiee in rapid alignment with the decline in mining
production To mitigatethe financial crisis, mireare endeavouring teurtail costs by adopting radical

socioeconomic solutios

1.3. Energy management prospective on mine cooling systems

A typical mineshaft consists of several interconneatethponents that incluggimps, compressors, fans,
valves and steelipe networksTheintegrated network of thesmmponentss referred to as aooling

system. Minecooling systems provideool water and air for mining processes.

Globally, the energy systems with the highest potential saving capabilities aredmatorsystems that
include pumpsgucting,fans and compressors. Motdiiven equipment accounts for approximately 60%
of the total electricity usage in the mining indugtf29]. According to Els, cooling underground relies
solely on refrigeration systenfid0]. Subsequentlythe thermal capabilitiesf minecooling systemsare

further dependent on virgin rock temperatures (VRTs) and mining d@aths
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VRTSs represent thiemperature of the rockface and geothermal gradient in °C/m due tocampression
and geothermal heat. The required refrigeration dap&s generally dictated by VRTS.0 meetthe
stringentlegislation,cooling installations on mines adependenbn mining depthsrigure1-7 displays

geothermal temperature gradients of VRT regions in South Africa.
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Figurel-7: VRTs at different mining depths of regions in Southigsfi(adapted fronj31])

Deeplevel mine cooling systems utilisen abundance of electricahergy tomanagesteep geothermal
gradients. Regions in the bushveld, whose geothermal gradient is very steem, leegeir cooling
capacitiest shallower depth82]. According to Nelit is suggestethatdeeplevel minecooling systems
requirea cooling load capacity of 32 M\é accommodate for VRTa depths of 3 kif33].

South Africangold minesextend to depths of approximately 4 kwith VRTs of 60°C[34]. Therefore,
extensive mechmcal processes and machinery aguired to mine in aafe and habitable environment.
According to the South African mining legislation, delgwel mine cooling systems must provide
operating conditions of less than 27.5MB or 32C DB [35]. At mining depths ofleeperthan 3km,
refrigeration plants will typicallysupply 375 kW of cooling per kiloton per metgt/m) to provide
adequate operating conditiof25], [33].

Deeplevel mine cooling systems face a mammoth undertaking to aclgew&ortable working
conditions A promising effort to adapt to thermal heat loads and underground temperature constraints is
the implementation of an enhanced control straf8gy. Costeffective energy management measures

have been implementdad mitigate the need for hefty cooling log@¥]. Energy saving measures on
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mine cooling systems haadsoproven to be feasible without adversely affectngductivity and mine

safety.

1.4. Implementing sustainable costavingpolicies

1.4.1. Demand Side Management (DSM) in South Africa

Within recent decades, the demand for electricity in South Africa exceeded the total capability to supply

electricity[38. Sout h Af r i ut i it

sinking the economic and environmental costs of electiiga}.

cabs es

are abl e

t o

DSM provides a unique solution for reducing operational costs onlégepgold mines. To sufficiently

realise the electricity cosaving potential, DSM projects necessitate hefty sums of resources and assets

to upgrade equipment for improved efficiejd9]. In addition, these strategies are iempented without

affecting production intensitig41].

DSM projectshave revealed prosperous reductions in electricity des{d@tl Figure1-8 demonstrates

theamassed demand savings after the implementation of DSM initiatives be&t@@eand 201543].

DSM strategies wereonsideredthe fastest most vable tactic to reducepower consumption to

accommodate fasociceconomiadevelopmenf44].
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Figure1-8: DSM demand savings from 2005 to 2(43]
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The implementation of modern technology and DSM initiatives is crucial for the sustainability and

economic growth of South Africa. Modern technology is essential for efficient energgemaeain the

mining industry{45]. DSM has proven to provide support where needed and consequently complements

the feasidity of energy projectsfoEn er gy
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1.4.2. Evaluating sustainable energy saving policies

Industrial sectors are adopting energy management and energy efficient policies to sustain financial
competitivenespl7]. Sustainable energy saving practices have become the pridetg® corporations
nationwide [48]. Similarly, energy efficiency practices are deemed -etisctive for sustainable
growth anddevelopmeni{49].

Implementing sustainable energy saving practices is challenging. Although sustaieabkléres have
attained immense focus, several obstacles have prohibited the implementation of such[p0O]icies
Sustainable energy saving measures are best achieved through adapting to behavioural §i&}ations

A lack of awareness and unwillingness to change from mine personnel has prevented the application of

sustainablenergy managemeptactices

The application of sustainable energy saving measures is halted by poor maing2anseistainable
practices are largely dependent on maintenance and monitoring of key performance indicators (KPIs)
[53], [54]. To enhance sustainabilitijaré suggested training important stakeholders to increase the

probability of sustainable energy savirjgs].

Sustainable energy saving practices can be implemented to reduce ttexhofigancial strain on mines.
Although indwstry has adopted sustainable energy saving measures, various challenges were identified.
Application of sustainable energy saving technolobigthe relevant stakeholders cafficiently reduce

operating costs and improve total system performance.

1.5. Problem statement andtudyobjectives

South Africaés gold production has shown no adec
gold production is attributed to a variety of soeeimnomic challengesTo remain financially

competitive, mines are adopgj radical soci@conomic solutions.

Ineffective control and mitigation of increasing operational costs will, in the near future, increase the
financial burden on the mining sector. It is essential that a sustainable solution is adopted to ensure South

African gold mines remain globally competitive.

Refrigerationand ventilatiorwas identified a®ne of the largest single consumers of electricitthe
industrial sectarWithoutsufficient cooling, mines areritically challengedo produce goldiffectively.

Managing heat loads in a casffective manner will alleviate the financial strain on the mining industry.

DSM initiatives havebeen considered as an alternative appréachducing operating costSSM has

yielded sigificant cost savingsgiential. Literaturehowever, has indicatddngterm challenges such
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Need for study

Electricity serves as aessential resource for both surface anderground mining activities. Minesly
heavily on energyntensive thermodynamic processes to reduce heat stréBsesmain financially
competitive, therexists an opportunity for the implementation sustainableosteffectivestrategyon
mine cooling systemd his identified soltiibn enhances profitability andlleviateschallerges such as
underperformancesustainabilityand increasing operating casts

Problem objectives

To alleviate the rapidly increasing so@gonomic crisis in the South African rmg industry,
operational csts such as electriciganbe reduced by achieving the following study objectives:

1 Identify, evaluate and review mine cooling cost saving strategies. Addressing such strategies will
identify energy saving measures aselvice delivery improvements tmhancetotal cooling

system performance.

1 Develop ssimple, practical and integratedergy saving strategy for sustainable savimgsiine
cooling systemsA simple and practicastrategy can beasily adapted and implemented on
multi-industrial coolingsystemgo significantly reduce the financial burden on South Africa

1 Quantify the financial impact of energy saving measures on mine cooling systems.

1.6. Overview of sections

Herewith includes a briebverview of the dissertation. The dissertation is sptib 5ix chapters with
several subsections clarifying important research methodologies and assurdgtiomsrviewof each

chapter is explored below.

Chapter 1: Introduction - This chapteprovides an introduction to the study. Gold mining and the costs
associated thereof are included=inancial instability in the miningector iscritically exploredand
reviewed. Factors including production, ore reserves and labour costs are evBlnatgtithe problem

statement and study objectives are defineddiswlissed.

Chapter 2: Literature study - This chapter provides an overvi@ivcooling systems in the gotdining
industry. Important machineries, infrastructure a&ibting energy saving optimisation strategies are
identified and analysed. The limitatis and constraints of existing statiethe-art optimisation strategies

arediscussed.

Chapter 3: Developmentof an automated dynamic control philosophy- In this chapter, a case study

is identified and evaluated. Existing applications of DSM control strategies are examined and reviewed.
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Assumptions and system limitations are developedadapt existing optimisation strategies for
sustainable energy savingeasures. Th&evelpment andauthenticationof an automated dynamic

energy saving measuiediscussedn detail

Chapter 4: Strategy implemertation and assessment monitoring The chapter discusses the results
obtained from the implementation ah automateddynamic control strateggn mine cooling systems
The feasibility of the study is discussed and revieviveasured results are compared to the simulated
results for strategyerification. Postimplementation results asnalysed andiscussed to identify any

limitations of the control strategy.

Chapter 5: Conclusion and recommendations This chapteiserves as a conclusion that summarises
the findings of the study. Recommendations are provided to assist with future research avehireipts

to the control strategystudy limitations and constraints are also evaluated in detail.

Chapter 6: References- This chapter provides a summary of the various citations used within this
dissertation. The list of references summarises the rdlausimors, titles and locations that will assist the

reader in finding the sources.

1.7. Conclusion

Gold was identified as a finite resource that contributes largely to the economic growth of South Africa.

Research indicates t hatrcé&itaexcedededhd minincuen dhseshelchferr gy

developing countries, suggesting it overexploits energy.

Financial instability in the South African mining sector was accrediteddimeconomic challenges and
increasing operatingosts Combined withdecreasing production trendde sustainability of South

Africabs mi redqonegtionehngevi ty w

VRTs and geothermal gradients were investigated and reviewed. Without sufficient cooling and
ventilation, deepevel mines are challenged to produce gdfitiently. To accommodate for safe and
habitable working conditions, the electrical consumptioneffigeration and ventilatiosystemswas

considered

The need to reduce electricity costs by implementing a sustainablkffeasive solution on mine oting
systems was identified.olremainfinancially competitive,it was suggested to implemeatsimple,

practical and easily adaptalgelutionand investigate the financial impact thereof.
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CHAPTER 2: LITERATURE STUDY

An overviewof mine cooling systems is explored. Limitations and constraints of existing optimisation
techniques are identified and critically evaluated. The performance and implementation of blestaina
energy saving measures are discussed reviewed.

2 Photograph courtesy of Planet KB, http://www.planetkb.co.za/porifgtail.php?MiningPhotography4
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2.1. Introduction

The importance of implementing sustainable @asting policies to enhance financial growth and reduce
operating costs of dedpvel gold mines in South Africa was recognised in Chapteretfective control

of electricity expenditure is hdigening the financial struggle in the South African mining sector.

Mine cooling systems were identified as one of the largest single consumers of electricity in the mining
sector. The financial burden of managhent loads in austainableosteffectivemannerfor the safety

of mineworkers was critically evaluated in ChaptefThis prompted the need to develogsieple,
practical and easily adaptaldentrol strategy, with sustainability as the principle focus area, to reduce
enduse electricity consuntipn on mine cooling system3his will, in turn, enableSouth Africa to

remain financially competitive on a global sgale discussed in Chapter 1.

According to Nel, it is necessary to ascertain key areas for improvement on system performance
reliability and efficiency[33]. As a result, energintensive mine cooling systems and the operation of
typical cooling auxiliaries are critically evaluated and discussed in this ch@pteserves to simplify

the study poblemandmeet the research objectives discussed in Chapter 1.

The impact of energy saving measures on mine cooling systems is discussed and conveyed in this chapter
to identify a practical and adaptable solution. This ensures that the scope of impigraardutomated
dynamic control strategy on mine cooling systems by focusing on sustainability is feasible. This also
enables an integrated control approach to develop the impact of sustainable energy saving measures on

mine cooling systems, as suggestgdhe problem objectives.

The performance of existing DSM initiatives and stt¢he-art controloptimisationtechniques will be
reviewedto identify reasons for underperformance on mine cooling sysidtesature of previously
implemented strategieseafurthermore analysed to identify a broader understanding of integrated mine
cooling systems taentify thefeasibility of implementing gracticalautomated control strategy.

2.2. Refrigeration and cooling systems on dekgvel mines

2.2.1. Overview

Deeplevel mines extend to depths of 4 kB4] and experience VRTs @0°C[55]. Mineral bodies are
located well below the surface with geothermal gradient of rock surfaces varying between 10°C/km and
20°C/km [56]. At such depths, mines demand significant cooling to provide operating conditions of less
than 27.5°CNB [34].

Apart from heat loads due to geothermal gradients, primary heat sourcessdisdure water and heat

machinery are rifg57]. A disturbingly large heasourceis attributed to adiabatic compressitb].
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Adiabatic compression, or better referred to as-aatopressioradds heat to air as a result of an increase
in potential energy of air entering through the shaft. The weight of atmospheric air on the mass of air

descending through the shaft leads to an increase in pressure, kKnownR@BYgIrEESioN.

To ensuresafe anchabitable working conditions underground, integrated infrastructure is ufii8gd

[59]. Such infrastructure is costly resulting in mines delaying upgrades for long periods of times.
Figure 2-1 summariseghe infrastructure needeir ultra-deep gold mines at varied deptfEhis
demographic is utilised to ensure optimal cogliof underground VRTs by considering essential

infrastructure.
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Figure2-1: Cooling infrastructure for variable depths and tempera{6@is

As underground depths increase, larger and more effective cooling infrastrucieeeésiThis ensures
that heat loads are mage to provide safe ammfortablevorking conditions. Asuch depthkowever,

the demand for underground diog and ventilation is erratifs1]. As a resultunderground cooling
equipmen{62] and thermal storage dams are considérbdse storage dams are thermally insulggafl

to store unwanted cooling enerff§2]. Storage dams are closely interconnected to prevent frictional
losseq64].

Chilled water and dehumidified air is required for various mining operations. This is achieved by utilising
large integrated cooling systenl]. These cooling systems are enemggnsive and demand a
combined cooling capacity of 30 MW or mdeb] for deeplevel gold mines in South Africa. Mine
cooling systems are typically installed on the surface and undergiéowever, surface cooling systems

are favoured due to an augmented heat rejection capacity of return air from undej@épund
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Depending on mining operations, geographical locations and mining depths, different cooling system
configurations are preferredigure2-2 displays asurface cooling network and water reticulation system

of a South African deefgvel mine.Mine cooling systems consist of integrated cooling components
including precooling towers, bullair coolers (BACs), condenser towers, chillers and storage [68ins

These components combined enable sufficient underground cooling and ventilation.

Bulk air cooling tower
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Figure2-2: Typical schematic layout of cooling and water reticulation system

Hot service water is pumped from underground-esers to a surface dam at 2§33]. The hot service
water is fed to the preooling towers through spray nozzles for heat rejection. The watdiaisatically
cooled within 2°Cof the ambienDB temperaturg33] before being circulated by evaporator pumps
through the chillers. The water is passed through direct heat exchangers to cool the wattGjEol
Depending o mining operations, chillers vary in terms of layout, configuration and control sequence.

Parallel chiller configurations, as depictedrigure2-2, delivercool water at a constant temperature by
fluctuating the quantity of chillers to meet water flow demand requiremfg8F South Africa is
considered théeadinguser ofchillerswith over 300 chillers installef67]. Condenser pumps circulate
water through condenser cooling tower spray nozzles for heat rejection, after which the water is collected
in the condensesump. Mine ooling systems utilise motalriven equipment that accounts for 60% of

the total electricity usage in a mif#9]. This motordriven turbomachinery is illustrated figure2-2.
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Water stored in the cold confluence d&@CD) is sent to underground users for mining operations or
circulated througBBACs to supply cool ventilated air 7°{69]. BACs ventilate mineshafts to ensure

productive underground working environmefné].

An overview of refrigeration and mine cooling components were provided in this section. The purpose
of supplying sufficient cooling for $a underground working conditions was also briefly discussed. The
following section will characterise integrated cooling systems and their subsystems to identify an
effective solution to mitigate increasing operating costs.

2.3. Control of energy-intensive coahg auxiliaries

2.3.1. Characterising integrated cooling systems

Mine cooling systems are categorised into two sectimarsely: water and air demand requirements. This
ensures characteristics of chillers, hedisorption and rejection towers, auxiliary turbatiaery and
thermal storage capacities are considered to distinguistcooling components and their requirements
Component control limitations amenstraintsarealsodiscussed tidentify sustainable cost savings and
optimisation opportunities for dedgvel mine cooling systems

The effectiveness of mine cooling systems is costly and highly dependent on the complex nagyre of de
level mine cooling systesthe interreliant opeation of their subsystemand their variable flow
capabilities To enhance the control and optimisation of such integrated cooling networks for practical
implementation, a generic control strategy is recommefidd Therefoge, the control and functioning

of the following water and air demand components will be extrapolated to identify a sustainable and

generic solution to address the study problem:

1 Refrigeration cycles;

Bulk air coolers;

= =

Precooling and condenser coolingers;
1 Auxiliary pumps and turbines;
1 Thermal storage dams; and
9 Service water valves.
The following subsections will elaborate on the functioning of the abm@ioned components in detail.

System configurations and technologiesexplored to determmsustainable cost savings opportunities

for South African deegevel mine cooling systems.
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2.3.2. Refrigeration cycles

Refrigeration plants are utilised widely in mine cooling systems to provide chilled water between 3°C
and 6°C[37] to underground endsers. These chillers are the significant energy consumers, exhausting
approximately 66% of a mines cooling system po[8&t. Mines use surface and underground chillers

to cool minirg water. Due to the liited accessibility of exhaust air, the heat rejection capacity of
underground chillers is restricted.

A mines cooling system typically comprises of more than one chiller. These chillers are arranged in three
types of configurations. Such configurations iatended to handle variations in thermal lof2l§. The

three types of configurations ageseries configuration, which is used to vary temperature requirements

a parallel configuration, used to vary flow requiremgaisl acascaded configuration, used for variable
temperature and flow requiremefif4].

Refrigeration cycles used in the mining industry include ammabsorption (ARS) and
vapourcompression (VCR) cycles. Suckicles vary depending on the requirements of the Ifnigg

The VCR and ARS cycles are similar in principle and can be found in the majority of cooling systems
tallored for vehicles, households and malls as heating, ventilaind airconditioning (HVAC)
systemg35].

Within in the mining industry, most chillers utilise VCR refrigeration principfé3. Although, many
models and design adaptations of chillers are available, the VCR cycle is preferred. VCR cycles offer
simplicity and are available at low cost. VCR chillers have cooling capacities of up to nearly 20 MW,
although most are in the order oMWV [37].

Unlike the ARS cycle, VCR is preferred because the working fluid is not fa&ic Depending on
application, VCR refrigeration units use different refrigeration working fluids. The worfkindy is

selected to ensure optimum cycle efficiency. Properties such as temperature and pressure are critical for
evaluating fluid criterid74]. Commonly used refrigerants include R134a and ammonia (R717), because

the fluid poperties of these refrigerants argtablefor mine chiller applications.

Due to their low cosfreon and R134a are the most common refrigerant gases utilised in the VCR cycle.
Freon is preferred for surface chiller applicatiamd is frequently used iindustry as a substitute fluid
for R12 and R500 refrigerant$75]. Figure 2-3 representsa graphic representation of a
vapourcompression refrigeration cycle. The cycle consists of a compressor, two shell tube heat

exchangers and a throttling valve.
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Figure2-3: Vapourcompression refrigeration cycle

Figure2-3illustrates a typical VCR cycle and all its essential components. The cycle is explained briefly
in the steps below:

A. CompressorThe low gessure and temperature vapour refrigerant is drawn into the compressor
inlet through a suction valvgZ6]. The refrigerant is mechanically compressed adiabatically
(irreversible) to a superheated vapour at a higher pre§gbfeThaeafter, therefrigerant is

discharged to the condenser through the compressor delivery valve.

B. Condenser (heat rejection)fhe refrigerant is then condensed and cooled. The refrigerant
releases latent heat which isnséerred to the condensing medium. Condenser mediums include

water or air. The refrigerant leaves the condenser as gphéghkure liquid.

C. Expansion valveThe refrigerant is throttled through the expansion valve to reduce the pressure
of the refrigerantadiabatically. The refrigerant is throttled at a controlled rate to form a cold
mixture of vapour and liquifi73]. During the throttling phase, the saturation temperature of the
refrigerant will decrease. Some of the refriggravaporates as it passes through the expansion
valve[77].

D. Evaporator (heat absorption)he refrigerant is passed through the evaporator at a low pressure
and temperaturg5]. The refrigerantlasorbs its latent heat of vaporization from the water or air
medium which is to be cooldd@7]. The refrigerant is heated and vaporizes within the shell and
tube heat exchanger of the evaporator. The refrigerant exits therateaipas vapour before

returning through the suction valve of the compressor.
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Within the VCR cycletwo of the processes are at constant pressure and entfalgyudy these
properties more thoroughly, a presswmthalpy orPi h diagramis sketchedFigure 2-4 illustrates the

Pi h diagramfor which bothliquid and gas phases of the refrigerant are visible.

Critical pressure
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Figure2-4: Pressurienthalpy, Ph diagram, showing vapowompression cyclg/7]

The VCR cycle requires a compressor to circulate the refrigerant. The most common compressors types
used for mining applications include: centrifugal and screw tjf¥s Reciprocating compressors exist,

but lack the requiredapacity comparedith centrifugal and screw type compressors.

Condensing and evaporating temperature profiles are critical for ensuring compressor design
requirements are met. The type of compressor used in refrigeration systems is regulated by
systemparticular pressures and volum@s8]. Design requirements that differ largely from operating
temperature conditions are considered inefficient. Scrempcessors have versatile condensing
temperature ranges, vahi are favoured for variable heat lofid8]. Screw type compressors éaeoured

for chiller applications on ming68].

Centrifugal compressors are made up of five focal components, namdhpeller, guide vanes, a shaft,
a volute casing and a diffus|®0]. Centrifugal compressors deliver the refrigerant at a stable discharge
pressurg¢8l]. These compressors are powered by an electticrvElectrical motors are considered more

efficient for the &e of most compressors found on VCRs in mine cooling syqt&?hs

The compressors in refrigeration plants utilise either guide vanes (centrifugal compressors) or slide valves
(screw compressors) to regulate the refrigerant flow[#8E The cooling load is controlled by guide
vanes to ensera predetermined evaporator water outlet temperature is acfii®etihe compression

required is determined by the difference between the inlet and predetermined outlet water temperature
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[54]. The compressor vanes are set to 100% before they cutback to achieve the desired water outlet

temperaturg37]. Figure2-5illustrates an example of a mudtiage centrifugal compressor.

Figure2-5: Multi-stage centrifugal compress¢vs]

The electrical power utilised by the compressor to deliver the refrigerant at a certain mass flow rate and
pressure discharge is calculated vétuation2-1:

Equation2-1: Compressor power requirements
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Equation2-1 indicates that parametelisicluding mass flow ratginlet refrigerant temperaturdischarge
pressureand compressor losstagely affects compressor poweBuch parameters are predeteruin
according to the demand of refrigerant required for coollfigachieve energy savings, the discharge

pressure and delivery flow of congmsors is adjusted to matcpradetermined temperature output.

The coefficient of performance (COP) is used tontgjf\athe efficiency of chillers on dedpvel mines.

The COP represents the ratio between thermal energy output and electrical energp isioualy
illustrated that the COP of chillers typically decreases at lower condenser flow rates and increases at
lower evaporator flow ratd83]. Therefore, lower evaporator flow rates are preferred. Although, the inlet
guide vandIGV) strategy is predominantly used to vary flow, various control strategies have an effect
on the COP of the chiller. A compressor ability to manage the fluctuating cdadidgonditions is vital

for improving the COP of chillef84]. It is clear fromEquation2-2 that changes in evaporator flow and

temperature will affect the cooling load of the chiller.

The COP of VCR refgeration cycles typically range between 3 anaitéich is considerably larger than

ARS cycles that range between 0.54 and85). A COP value of 6 is considered energy efficient, while

a chiller cycle with a value of 3 ords is considered inefficiefit6]. The COP of thehiller is optimised

by reducing the compressors electrical power input. The slide valves and guide vanes vary the refrigerant
flow to reduce the compressor power input. The @OYCR chiller is illustrated b¥quation2-2.

Equation2-2: Coefficient of performance farapourcompression refrigeration cycles
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Water cooling in the evaporator is largely dependent on the compressors ability to regulate the demand
flow of refrigerant. Heat transfer between tiefrigerant and mine water is enhanced with the use of a
shell and tube heat exchang€his consequently increases the COP of the chiller as displayed by the

relationship inEquation2-2.

The refrigerant typically passes over the tubes within the pressure vessel, while the water from the
auxiliary pumps flows through the tubes. Special occurrences where size is one of the design constraints,

a compacplate heat exchanger is preferf@8]. Figure2-6 illustrates a shell and tube heatkanger.
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Figure2-6: Schematic representation of a shell and tube heat exct{86yer

The thermal energy transfer from the refrigerant to the water in the heat exchanger is described by

Equation2-3.
Equation2-3: Thermal energy absorbed from a chiller
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Equation2-3 indicates that parameters such as heat gagskfficient and area of hestchanger tubes
affects heat absorption adversely. It can be suggested that reducing scaling or fouling ioHaewmfeex

ducts will greatly improve thermal heat transfer shall and tube heat exchanger.
2.3.3. Auxiliary pumps and turbines

Pumps are widely utilised on debgvel mine cooling systems to circulate water. These pumps are
referred to as auxiliary equipmef@7]. Auxiliary equipment operates sdfifficiently and is used to
circulate condenser and evaporator water f188]. Auxiliary pumps are independently controlled and

do not form part of the refregation unit§54].

Depending on mining operations and delivery requirements, different pump configurations exist. Pumps
are configured in either a direictline or parallelset configurationFigure2-7 illustrates a direeinline

pump configuration and a parallel pump configuration. Dinglthe pump configurations supply water
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to an individual refrigeration unit. Inlenpump configurations are beneficial because variable speed

control only disturbs idividual chillers and not an entire refrigeration netw&%].

3
SRE R

{

Inline pump configuration Parallel pump configuration

Figure2-7: Auxiliary pump configuration§s3]

Parallel pump arrangements circulatater into a conjoint pipe network to supply a network of chillers.

Due to significant pressure drops over the conjoint pipe networks, parallel pufigucations require

inlet chiller valves. The valves aid in sufficiently controlling the flow rate and pressure of water entering
into the chillef54]. Parallel pump configurations are complex and require extensive cordteb#s to
affectively regulate the demand flow. Parallel pump configurations are preferred for their use in cascaded

mine coolingsystems

Mines use singlstage axial and centrifugal pumps in water flow reticulation sysf88js Although
singlestage axial pumps are commonly used, multistage centrifugal pumps are favogredeim
mining environments. Multistage centrifugal pumps provide improvedcsability, pumping capacity
and availability[88]. Through improved scientific discoveries, computational fluid dynamics (CFD)
analysis has enhanced pump design. CFD assisted in mitigating factors such as cavitatiomgriad surg

circumvent pump failurg0].

Within in a centrifugal pump, the fluid is typically accelerated radially by a rotating impeller. The fluid
enters the impeller with a large quantity of kinetic energy. After being radially accelerated, the fluid is
converted to pressure energy at the rotatimgeller outle{89]. The ability of the fluid to convert kinetic

energy into pressure energy is largely dependent on the type of diffuser, irgelleslute desigri89].

The operationalperformance of a pump igypically expressedy means ofa characteristic curve, as
illustrated byFigure2-8. To ensure optimal pump selection, a characteristic curve is necfEark
characteristic curve allows for simplified pump selectigrcorresponding the system head (resistance)

curve with the pump characteristic cuf@d], as illustrated byigure2-8.
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Figure2-8: Pumps characteristic curi@?]

The point where the system resistance curve and pump characteristic curve meet is referred to as the
operating poinf93]. It is suggested that the operating pbimselected within the highest pump efficiency
range. The operating point with the highest efficiency is referred to as the best efficiency point (BEP).
The BEP is selected to emetthe pump is operating at its uppermost achievable effic{88¢y

Figure 2-8 illustrates that for a system only comprising of static head, the operating point at a specific
rotational speed is lower than that at higher speeds. Variations in speed cause the oparistitagshift

along the iseefficiency curve line. This singularity is favoured for ddeyel mine cooling system pumps

with minor static heads and significant frictif8¥]. A system with substantial static head operates at

efficiency lower than the efficiency of the operating p¢@4i].

In cases where the associated pump operates at efficiencies higher than the BEP, factors including 1)
increased wear and tear rates, and 2) increasedylife costs (LCC) are rife. Although factors such as
LCC include procurement costs, electricity castd maintenance costs, all factors affecting LCC are to

be consideref37].

The laws of similarity are used to govern the agien of a centrifugal pumf89]. The laws of similarity
distinguish he diverse relationships among the operating parameters. The laws illustrate that changes in
rotational impeller speeds will adjust the characteristic curve of the associatedq@&jmalthough
changes in impeller speeds are important, valve operations will affect the systems pressure and flow

profiles furthe93]. Controlling the pressure of a pump system is limited by valve oper@iehs

The need to reduce energy consumption has led to the implementation of/auatybespeed drives
(VSDs9 [97]. VSDs are mounted to the power supply of the m@8}. The VSD modulees the motor
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