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Fluidised bed granulation is a widely used wet granulation technique. The operation of a fluidised bed 

granulator (FBG) as well as the quality of the product is strongly influenced by multiple process variables 

and disturbances. Controlling this process is difficult due to long lag times between sample analysis. 

Inference sensors are therefore an effective control solution for this complex process. A continuous 

industrial FBG was used to develop multiple linear regression (MLR) models that included two-way 

interaction effects. Elementary artificial neural network (ANN) models were developed to qualitatively 

assess the MLR models. The influences of the fluidizing air, the spray liquid and the seed particle size on 

the product quality were investigated and modelled. The spray liquid was found to have the largest 

correlation with the quality variables. Both modelling techniques produced accurate models, however 

undertraining of some ANN models resulted in a larger deviation between the model and validation data. 
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

1. INTRODUCTION 

Granulation is widely used in different agriculture and 

pharmaceutical industries for granule growth and for 

improvement of material properties such as bulk density, 

dissolution rate and shape (Zhang et al. 2000; Palis et al. 2012). 

Granulation is divided into (i) dry granulation, where dry 

powder is compressed into pellets and (ii) wet granulation, 

where a spray solution is used to bind granules together 

(Biswal 2011). 

Fluidised bed granulation is a wet granulation technique 

comprising a single operating unit with the advantage of low 

operational cost and an improved mass and heat transfer rate. 

Wet granulation is a complex multidimensional process 

comprising mixing, granulation and drying, making modelling 

challenging. The control of an FBG is also difficult due to long 

sample analysing times. Inference sensors may be an efficient 

control solution allowing the prediction of the product quality 

in real-time (Burggraeve et al. 2013). A thorough 

understanding of the correlations between the operating and 

quality variables can improve the analysis, modelling and 

control of FBGs (Aleksic et al. 2014). 

Wong et al. (2013) investigated the influences of the spray 

liquid flow rate, binder addition, and the distance between the 

spray nozzle and granulator bed on the product properties. The 

authors used quadratic MLR models and developed accurate 

models with reasonable prediction capabilities. Ziyani & Fatah 

(2014) used MLR models with two-way interactions to study 

the influences of the fluidising air flow rate, fluidising air 

temperature, spray liquid flow rate, and spray liquid pressure 

on the granule properties and obtained acceptable models. 

Murtoniemi et al. (1994) compared ANN models with MLR 

models by investigating the influences of fluidising air 

temperature, atomising air pressure, and binder addition rate 

on the size and strength of the granules. The authors concluded 

that ANNs performed more accurately than the MLR models. 

Aleksic et al. (2014) developed ANNs with the back-

propagation learning algorithm to model and predict the size 

and shape properties of the granules using the binder additions 

and granulation time as the inputs. The authors obtained high 

correlation values and concluded that the ANN models proved 

successful as a modelling technique for FBGs. 

Most of the FBG models were developed on batch lab-scale 

FBGs with only a few operating variables being investigated. 

This study investigates the influences of the operating 

variables on the product quality of a continuous industrial 

FBG. The operating variables include the fluidising air, the 

spray liquid, and the seed particle variables, which have not 

received much attention yet. 

The operation of an FBG and the influences of the operating 

variables are described in section 2 of this paper. The 

modelling approach is discussed in section 3 followed by the 

experimental description and evaluation criteria in section 4. 

The results and conclusions are presented and discussed in 

sections 5 and 6 respectively. 
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2. FLUIDISED BED GRANULATION 

Fluidised bed granulation comprises three main processes 

referred to as wetting, granule growth, and attrition. Figure 1 

is a schematic representation of an FBG, displaying the 

different operating and quality variables. 

 

Figure 1: FBG adapted from Qiu et al. (2009, p.704) 

The granulation process starts with fluidising the seed particles 

entering the granulator as observed in Figure 1. The fluidised 

seed particles are sprayed with a solution or melt of the product 

material. The wetted particles can follow either the 

agglomeration or layering growth mechanism. The growth 

mechanism is determined by the operating conditions of the 

FBG and the physicochemical properties of the material. 

Layering occurs when the liquid on the wetted particle dries 

before colliding with another particle. Collisions between 

wetted particles result in the formation of liquid bridges that 

solidifies, forming an agglomerate (Sahoo 2012; 

Srinivasakannan & Balasubramaniam 2003). 

The rate of collision is larger than the rate of solidification, 

making the agglomeration the predominate growth 

mechanism. Attrition of granules occur during drying where 

agglomerates break due to weak solid bridges and collisions 

with other granules or the granulator wall, forming smaller 

granules. Some agglomerates withstand attrition and result in 

the production of larger granules (Iveson et al. 2001; Ziyani & 

Fatah 2014).  

The final particles exit the granulator and are sieved where the 

oversize and undersized particles are recycled as seed material. 

The oversize particles first undergo crushing which tend to 

result in nonlinear oscillations of the particle size distribution 

(Palis et al. 2015). 

FBGs are complex multidimensional process units with many 

influential process variables. These include the fluidisation 

and atomising spray conditions along with the 

physicochemical properties of the spray liquid (Burggraeve et 

al. 2013; Ziyani & Fatah 2014). The influence of some 

operating variables was investigated by various authors and 

are summarised in Table 1.  

 

 

Table 1. Influences of FBG operating variables 

Variable Source Observations 

Fluidising air 

flow rate 

(FAF) 

Fries et al. (2014) 

and Rambali et al. 

(2003)  

Increasing FAF, 

increases attrition 

rate. Decrease of 

particle size. 

Fluidising air 

temperature 

(FAT) 

Becher & 

Schlünder (1998) 

and Ziyani & Fatah 

(2014) 

Increasing FAT, 

increases 

evaporation rate. 

Decrease of 

particle size. 

Spray liquid 

flow rate 

(SLF) 

Becher & 

Schlünder (1998), 

Fries et al. (2014), 

and Wong et al. 

(2013) 

Increasing SLF, 

increases droplet 

size. Increase in 

granule growth. 

Spray liquid 

temperature 

(SLT) 

Sahoo (2012) Increase in SLT, 

decreases 

viscosity. 

Spray liquid 

concentration 

(SLC) 

Sahoo (2012) and 

Srinivasakannan & 

Balasubramaniam 

(2003) 

Increase in SLC, 

increases growth 
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Seed particle 

size (SPS) 

Biswal (2011), 

Sahoo (2012), and 

Srinivasakannan & 

Balasubramaniam 

(2003) 

Decrease in SPS, 

increases growth 

rate. 

3. MODELLING OF THE FLUIDISED BED 

GRANULATOR 

A thorough understanding of the influences that the operating 

variables have on the process is required to develop effective 

inference models for control purposes (Burggraeve et al. 

2013). Figure 2 represents a block diagram of a soft sensor 

being used for inference control. The inference model uses 

process variables to predict the output quality, Y, of the process 

in real-time, which can then be used for control purposes 

(Seborg et al. 2011, p.297). This study focusses on developing 

inference models for an FBG. 

 

Figure 2: Block diagram for inference control adapted from 

Seborg et al. (2011, p.297) 

Modelling approaches can be divided into (i) white-box, (ii) 

black-box, and (iii) grey-box. The white-box approach 

incorporates conservational aspects such as thermodynamics, 

mass and heat transfer, and particle growth into the models. 

Black-box models use arbitrary functions to fit experimental 

data. The grey-box approach combines both approaches by 

including the underlying chemical and physical aspects with 
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2. FLUIDISED BED GRANULATION 

Fluidised bed granulation comprises three main processes 

referred to as wetting, granule growth, and attrition. Figure 1 

is a schematic representation of an FBG, displaying the 

different operating and quality variables. 

 

Figure 1: FBG adapted from Qiu et al. (2009, p.704) 
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(2013) 

Increasing SLF, 

increases droplet 

size. Increase in 

granule growth. 

Spray liquid 

temperature 

(SLT) 

Sahoo (2012) Increase in SLT, 

decreases 

viscosity. 

Spray liquid 

concentration 

(SLC) 

Sahoo (2012) and 
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2013). Figure 2 represents a block diagram of a soft sensor 

being used for inference control. The inference model uses 

process variables to predict the output quality, Y, of the process 

in real-time, which can then be used for control purposes 

(Seborg et al. 2011, p.297). This study focusses on developing 

inference models for an FBG. 

 

Figure 2: Block diagram for inference control adapted from 
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Modelling approaches can be divided into (i) white-box, (ii) 

black-box, and (iii) grey-box. The white-box approach 

incorporates conservational aspects such as thermodynamics, 

mass and heat transfer, and particle growth into the models. 

Black-box models use arbitrary functions to fit experimental 

data. The grey-box approach combines both approaches by 
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process data to develop models. The white-box and grey-box 

models are flexible but time consuming and expensive while 

the black-box approach develops models faster but is limited 

to the measurement range. The black-box approach is often 

considered, especially with complex processes such as 

granulation (Burggraeve et al. 2013; Cameron et al. 2005). 

Predicting the product quality in real-time is essential for 

process control with common inference models following the 

black-box approach which includes statistical modelling 

techniques such as MLR and ANN (Zhu et al. 2011). 

3.1 Muliple Linear Regression Models 

MLR models are used to assess the strength of the 

relationships between independent variables with a dependent 

variable. The general equation for MLR models is given by 

(1), with 𝑌̂𝑌 representing the dependent variable, 𝑋𝑋𝑖𝑖 the 

independent variables, b0 the constant offset and bi the 

regression coefficients. The regression coefficients are 

calculated using the least squares method which minimizes the 

sum squared error between the model and actual data (Azadi 

& Karimi-Jashni 2016; Berenson et al. 2012, pp.579–580). 

𝑌̂𝑌 = 𝑏𝑏0 +∑𝑏𝑏𝑖𝑖𝑋𝑋𝑖𝑖
𝑘𝑘

𝑖𝑖=1
 (1) 

The effect of one independent variable can change due to 

another independent variable and is referred to as an 

interaction effect. Equation (1) only includes the main effects 

but it can be expanded to include interactions as shown in (2) 

(Berenson et al. 2012, p.602). 

𝑌̂𝑌 = 𝑏𝑏0 + 𝑏𝑏1𝑋𝑋1 + 𝑏𝑏2𝑋𝑋2 + 𝑏𝑏3𝑋𝑋1𝑋𝑋2 (2) 

3.2 Artificial Neural Networks 

ANNs is a powerful nonlinear technique that can be applied to 

any situation where there is a relationship between the 

dependent and independent variables (Hill & Lewicki 2006, 

p.420). ANNs are constructed with an input layer, an output 

layer, and hidden layers with hidden nodes. The nodes are 

connected to the adjacent layer with a weight value assigned 

to each connection, representing the strength of that 

connection. The values from the independent variables enter 

the ANN from the input layer and is multiplied by their 

respective weight values. The sum of the results pass through 

an activation function to determine the node values. This 

process is repeated until all the values for each node are 

calculated. This process is referred to as the feed forward phase 

(Azadi & Karimi-Jashni 2016; Hill & Lewicki 2006, pp.421–

422). 

The error is minimized during the training phase where the 

weights for each connection are adjusted. Different learning 

algorithms have different attributes, with the most common 

algorithm being the back-propagation algorithm. The 

algorithm takes small step changes making it stable but slow. 

The Gauss-Newton algorithm has faster convergence but is 

unstable due to a first order derivative. The Levenberg-

Marquardt learning algorithm is a combination of both 

algorithms, having the stability of the back-propagation 

algorithm and the speed of the Gauss-Newton algorithm (Hill 

& Lewicki 2006, p.437; Wilamowski & Irwin 2011, p.7). 

4. EXPERIMENTAL PROCEDURE 

4.1 Materials 

Experiments were conducted on an industrial Prill Granule 

Ammonium Nitrate FBG with tangential spraying. 

Ammonium nitrate (AN) granules with an average mean 

particle size of 1.2 mm were used as seed particles. The spray 

solution consisted of AN, water, and an internal additive as 

binder. Atmospheric air was used as process air for fluidisation 

and atomisation. 

4.2 Experimental Design 

The independent variables are the FAF, FAT, SLF, SLT, SLC, 

SPS, and seed particle size slope (SSL). Five operating levels 

are used for each operating variable. Each variable is randomly 

changed to ensure discrete data. The data set consists of 73 

data samples that are divided into 80% for modelling and 20% 

for validation of the models. 

The dependent variables include the normalised run rate 

(RUR), normalised recycle rate (RER), spray efficiency (EFF), 

product mean particle size (PPS), granulator particle size 

(GPS), product porosity (POR), product circularity (PCR), 

product particle slope (PSL), and granulator particle slope 

(GSL). 

4.3 Product Quality Analysis 

The RUR is the amount of final product produced per hour. 

Both the RUR and RER values are calculated using a steady 

state mass balance. The EFF of the plant is calculated as the 

ratio between the fresh AN entering the granulator to the 

amount of AN sprayed. 

The particle size information (average mean, first- and third 

quartile particle sizes) and circularities are determined using a 

Haver CPA 2-1 laser diffraction particle size analyser. The 

particle slope (m) is calculated using the linearized Rosin-

Rammler equation given in (3) using the first- (d25) and third 

quartile particle size (d75). The POR is the ratio of the void 

volume over the particle volume. The values are obtained 

using an oil absorption technique. 

𝑚𝑚 = ln(ln
[1 − 0.25]

ln[1 − 0.75]) /ln (
𝑑𝑑25
𝑑𝑑75

) (3) 

4.4 Multiple Linear Regression Model Developement 

Two-way interaction MLR models were developed using IMB 

SPSS (2013) with the forced entry method (Landau & Everitt 

2004). The p-values, obtained from a t-test, of the independent 

variables were evaluated to determine the statistically 

significant variables. The Shapiro-Wilk test of normality was 

used to assess the normality of the dependent variables (Field 

2009, p.144). Standardised residual box plots were used to 

identify and remove outliers. 
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4.5 Artificial Neural Network Model Development 

The Neural Network ToolboxTM of MATLAB® was used to 

develop ANN models (Beale et al. 2014). One hidden layer 

was chosen with a rule of thumb for the number of hidden 

nodes, given by (4) with NH, NI, and NO representing the 

number of hidden nodes, inputs, and outputs respectively 

(Azadi & Karimi-Jashni 2016). The tan-sigmoid and pure-

linear activation functions were used for the hidden and 

outputs nodes respectively. The Levenberg-Marquardt 

learning algorithm was used with the default training 

parameters. The maximum validation failure was set to 10 to 

ensure efficient training. The mean square error was used as 

error performance evaluation. All the independent variables 

were used as inputs to the neural network. 

𝑁𝑁𝐻𝐻  = 2
3 × 𝑁𝑁𝐼𝐼 + 𝑁𝑁𝑂𝑂 (4) 

4.6 Model Performance Evaluation 

The relationship between two variables can be determined 

using the Spearman’s rho’s non-parametric value. The 

Spearman’s rho value determines the strength to which a 

monotonic function can describe the relationship between two 

variables. Correlation values close to 1 indicate a strong 

positive relationship, values close to -1 indicate a strong 

negative relationship, and values close to 0 indicate no 

relationship (Hauke & Kossowski 2011). A two-tailed test was 

used to assess the confidence of the Spearman values by 

assessing the p-values. 

There is no universally applicable parameter to measure the 

performance and accuracy of models. The standard error of 

estimate (SEE) calculates the deviation of the actual data 

points from the predicted line. The coefficient of multiple 

determination (CMD) describes the amount of variation of the 

dependent variable that can be explained by the independent 

variables. The mean absolute error (MAE) is a dimensional 

parameter that evaluates the error between the actual and 

predicted values. This parameter can be used to compare 

models predicting the same dependent variable. 

5. RESULTS AND DISCUSSION 

The Spearman’s rho results are summarised in Table 2. The 

SLF has a large positive correlation with the RUR variable. An 

increase in the spray flow rate will result in an increase in the 

production of granules. This correlation result agrees with the 

findings obtained from Fries et al. (2014). 

A higher spray temperature increases the evaporation rate and 

consequently increases the concentration which promotes the 

layering mechanism. Layered granules are denser and stronger 

resulting in a better spray efficiency and lower recycle rate. 

The Spearman’s rho results indicate a strong positive 

correlation between the SLT, SLC and EFF variable and a 

negative correlation with the RER variable. 

Sahoo (2012) observed that an increase in SLT lowers the 

viscosity of the spray liquid. A lower viscosity and increase in 

evaporation rate favour the layering mechanism, resulting in 

an increase in production rate and the production of more 

spherical particles. The strong negative correlation found 

between the SLT and PCR is contradictory to this literature 

observations and might be due to the presence of an adhesive. 

The FAF and FAT do not have significant correlations with 

any of the quality variables. These variables are important for 

FBG operation and might only have a small contribution 

towards the final product quality. 

The GPS and POR quality variables have low correlations with 

all operating variables. 

Table 2: Spearman's rho correlation matrix 

 FAF FAT SLF SLT SLC SPS SSL 

RUR -.06 -.14 .74** .17 .12 .30* -.05 

RER -.00 .21 -.26* -.55** -.41** .13 .04 

EFF -.05 -.09 -.04 .71** .72** -.26 -.08 

PPS -.16 -.27* .10 .42** .28* -12 -.37** 

GPS -.08 -.09 .16 .12 -.09 .26* -.13 

POR -.03 .22 .14 -.23 .03 -.15 .17 

PCR -.10 .01 .01 -.63** -.49** .17 -.09 

PSL -.28* -.04 -.39** -.15 -.21 -.14 .17 

GSL .01 .55** -.39** .35** .20 -.36** .47** 

                    Note: *p<.05, **p<.01 

Table 3: Performance results for the multiple linear regression and artificial neural network models 

 Parameter RUR RER EFF PPS GPS POR PCR PSL GSL 

M
L

R
 CMDmodel 0.90 0.73 0.71 0.35 0.43 0.74 0.49 0.36 0.73 

CMDvalidation 0.96 0.85 0.70 0.33 0.66 0.16 0.43 0.60 0.78 

SEE 0.40 1.71 5.88 0.13 0.10 1.56 1.20 0.58 0.36 

MAE 0.28 1.31 4.06 0.09 0.07 1.05 0.80 0.42 0.27 

A
N

N
 CMDmodel 0.92 0.85 0.76 0.36 0.27 0.31 0.61 0.59 0.78 

CMDvalidation 0.94 0.80 0.51 0.55 0.23 0.20 0.66 0.72 0.89 

SEE 0.39 1.32 5.65 0.13 0.11 2.33 1.06 0.49 0.33 

MAE 0.28 0.98 4.08 0.10 0.08 1.79 0.75 0.37 0.26 
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4.5 Artificial Neural Network Model Development 

The Neural Network ToolboxTM of MATLAB® was used to 

develop ANN models (Beale et al. 2014). One hidden layer 

was chosen with a rule of thumb for the number of hidden 

nodes, given by (4) with NH, NI, and NO representing the 

number of hidden nodes, inputs, and outputs respectively 

(Azadi & Karimi-Jashni 2016). The tan-sigmoid and pure-

linear activation functions were used for the hidden and 

outputs nodes respectively. The Levenberg-Marquardt 

learning algorithm was used with the default training 

parameters. The maximum validation failure was set to 10 to 

ensure efficient training. The mean square error was used as 

error performance evaluation. All the independent variables 

were used as inputs to the neural network. 

𝑁𝑁𝐻𝐻  = 2
3 × 𝑁𝑁𝐼𝐼 + 𝑁𝑁𝑂𝑂 (4) 

4.6 Model Performance Evaluation 

The relationship between two variables can be determined 

using the Spearman’s rho’s non-parametric value. The 

Spearman’s rho value determines the strength to which a 

monotonic function can describe the relationship between two 

variables. Correlation values close to 1 indicate a strong 

positive relationship, values close to -1 indicate a strong 

negative relationship, and values close to 0 indicate no 

relationship (Hauke & Kossowski 2011). A two-tailed test was 

used to assess the confidence of the Spearman values by 

assessing the p-values. 

There is no universally applicable parameter to measure the 

performance and accuracy of models. The standard error of 

estimate (SEE) calculates the deviation of the actual data 

points from the predicted line. The coefficient of multiple 

determination (CMD) describes the amount of variation of the 

dependent variable that can be explained by the independent 

variables. The mean absolute error (MAE) is a dimensional 

parameter that evaluates the error between the actual and 

predicted values. This parameter can be used to compare 

models predicting the same dependent variable. 

5. RESULTS AND DISCUSSION 

The Spearman’s rho results are summarised in Table 2. The 

SLF has a large positive correlation with the RUR variable. An 

increase in the spray flow rate will result in an increase in the 

production of granules. This correlation result agrees with the 

findings obtained from Fries et al. (2014). 

A higher spray temperature increases the evaporation rate and 

consequently increases the concentration which promotes the 

layering mechanism. Layered granules are denser and stronger 

resulting in a better spray efficiency and lower recycle rate. 

The Spearman’s rho results indicate a strong positive 

correlation between the SLT, SLC and EFF variable and a 

negative correlation with the RER variable. 

Sahoo (2012) observed that an increase in SLT lowers the 

viscosity of the spray liquid. A lower viscosity and increase in 

evaporation rate favour the layering mechanism, resulting in 

an increase in production rate and the production of more 

spherical particles. The strong negative correlation found 

between the SLT and PCR is contradictory to this literature 

observations and might be due to the presence of an adhesive. 

The FAF and FAT do not have significant correlations with 

any of the quality variables. These variables are important for 

FBG operation and might only have a small contribution 

towards the final product quality. 

The GPS and POR quality variables have low correlations with 

all operating variables. 
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                    Note: *p<.05, **p<.01 
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The MLR models that include interaction effects were 

compared to the ANN models and the performance evaluated. 

The results for both models are summarised in Table 3. 

The RUR, RER, EFF, and GSL models show high CMD 

values. The results from the Spearman’s rho correlation values 

indicated that there were significant correlations between these 

variables and the operating variables, resulting in these high 

accuracy models. 

Both the MLR- and ANN RUR models fit the data with high 

accuracy (low MAE values) as shown in Figure 3 and Figure 

4. The deviation between the data points is low, as indicated 

from the low SEE values. The ANN model fits the validation 

data points with higher accuracy, despite its lower validation 

CMD value.  

 

Figure 3: RUR MLR model performance 

 

Figure 4: RUR ANN model performance 

There is a smaller difference in the CMD values for the ANN 

RER model which indicates a more reliable prediction 

performance from the model. The same conclusion is obtained 

for the MLR EFF model.  

The PPS and GPS models have low CMD values indicating a 

low accuracy. The values are distributed almost evenly around 

the developed model resulting in the low SEE and MAE 

values. These models are inaccurate and cannot be used, 

despite their low error values. 

The MLR POR model fits the modelling data with a high CMD 

value, but fails the validation fit. The ANN model fits both the 

modelling and validation data with low accuracies. The 

validation check performed during training forced the ANN to 

stop when the validation error started to increase. This was 

done to prevent overtraining but resulted in the undertraining 

of the ANN with a large MAE value and a large deviation 

between the actual and predicted values. 

The PCR models have modelling and validation CMD values 

with small differences. The ANN model’s CMD values are 

higher compared to the MLR model, however the MLR model 

performed better as seen in Figure 5. The ANN gave near 

linear predicted PCR values between data points 25 to 49, 

which indicates undertraining. The validation data contain 

high and low extreme values which caused a large increase in 

the validation error as training continued, resulting in 

prematurely stopping the training process of the ANN. 

 

Figure 5: PCR MLR model performance 

 

 

Figure 6: PCR ANN model performance 

The PSL models have low CMD model values but increased 

CMD validation values. This indicates that the validation data 

were only partly representative of the modelling data set. 

Outliers in the modelling data set resulted in an inaccurate fit 

and lower CMD modelling values. 

Both GSL models show high accuracies with low deviation as 

indicated by the low SSE and MEA values. The ANN GSL 

model has a CMD validation value of 90% compared to a 80% 

model value. The large difference in the CMD values indicates 

that the validation data were not representative of the 

modelling data. The MLR GSL model is therefore preferred 

due to the smaller difference in the CMD values. 

6. CONCLUSIONS 

The Spearman’s rho matrix gave a good indication of the 

correlations between the operating and quality variables. Most 

of the correlation results obtained agreed with literature 

findings. It is concluded from the Spearman’s matrix that the 

spray conditions have the strongest correlations with the 

quality variables. The correlations serve as a good initial step 

in determining the possible independent variables for each 

model. 

Accurate models were developed using both the MLR and 

ANN techniques, especially with regards to the RUR, RER, 

EFF, and GSL variables. Both techniques struggled to obtain 

accurate models for the PPS, GPS, POR, PCR, and PSL quality 

variables. The ANN models had a better data fit compared to 
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the MLR models. However, undertraining occurred in some 

models due to early termination in training. 

The ANN models were only used as a first order evaluation 

and were therefore not optimised. Fixed initial weight values 

were used which limited the training performance. Using 

randomised weights reduces the risk of getting stuck in local 

minima of the error and increases the training performance.  

Larger data sets will increase the accuracy and reduce the risk 

of undertraining. It is also important to randomise the data to 

ensure that the validation data are a true representation of the 

full data set. 

Future work includes the optimisation of the ANN models with 

the implementation and evaluation of the final models on-site 

for control purposes. Additional process variables could also 

be considered for inference measurement, i.e. the fluidised bed 

height and bed density. 
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