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Abstract 

In this dissertation we study two nonlinear partial differential equations namely; 

the Kudryashov-Sinclshchikov equation and the Benney-Luke equation . We employ 

the multiplier method to find conservation laws and Kudryashov method to obtain 

exact solutions for the generalized Kudryashov-Sinelshchikov equation. We derive the 

Noether symmetries of a generalized Benney-Luke equation. Thereafter, we construct 

the associated conserved vectors. In addit ion , we search for exact solutions for the 

generalized Benney-Luke equation via the extended tanh method. 

vii 



Introduction 

In recent years nonlinear part ial differential equations (NLPDEs) have been used to 

model many physical phenomena in various fields such as fluid mechanics, solid state 

physics, plasma physics, chemical physics and geochemistry. Thus, it is important to 

investigate the exact solut ions of NLPDEs. Finding solutions of such equations is a 

difficult task, only in certain special cases can one write down the solutions explicitly. 

There is no doubt that conservation laws play a remarkable role in t he study of dif­

ferential equations. The mathematical idea of conservation laws comes from the for­

mulation of well known physical conserved quantities such as mass, momentum and 

energy. Finding the conservation laws of differential equations is often t he init iating 

step towards finding the exact solutions. Thus, it is essent ial to study conservation 

laws of part ial differential equations. 

In the last few decades, a variety of effect ive methods for find ing exact solutions, 

such as homogeneous balance method [l ], ansatz method [2, 3], variable separation 

approach [4], inverse scattering t ransform method [5], Backlund transformation [6], 

Darboux transformation [7] and Hirota's bilinear method [8] were successfully applied 

to LPDEs. r~-N 91J 
The Kudryashov method was one of the methods fo r finding exact solutions"'of"ho lli1I- ,., 

ear partial differential equations [~]. Steudel [10] introduced a different approach of 

constructing conservation laws, that involves writing a conserved vector in a charac­

teristic form, where the characteristics are the mul t ipliers of the differential equation. 
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In this dissertation we study the generalized Kudryashov-Sinclshchikov equation 

and the Benney-Luke equation. Firstly, we study the generalized Kudryashov­

Sinelshchikov equation that is given by 

(1) 

where u(t , x) is a real valued function and a, b, c and d arc arbitrary constants. 

Equation (1) models the pressure waves in a mixture of a liquid and gas bubbles by 

taking into account the viscosity of the liquid and the heat transfer. When b = 1 

and c = - 1 in equation (1), Kudryashov and Sinclshchikov investigated its peaked 

solitons and certain other properties in liquid wi th gas bubbles . Tu ct al. [11] studied 

the generalized Kudryashov-Sinelshchikov equation (1) for its Lie point symmetries. 

Lastly, we consider the Benney-Luke equation [12] 

(2) 

where u = u(t, x) denotes the wave profile and the variables t and x represent time 

and space respectively. This equation is an approximation of the full water wave 

equations and formally sui table for describing two-way water wave propagation in 

presence of surface tension. The positive parameters a and fJ arc related to the 

inverse bond number a - fJ = 1 - 1/3, which captures the effects of surface tension 

and gravity forces. 

The outline of t his dissertation is as follows: 

In Chapter one. the basic definitions , theorems and coroll aries concerning the Noether 

theorem and mult iplier method arc presented. 

In Chapter two , the multiplier method is used to construct conservation laws for a 

generalized Kudryashov-Sinelshchikov equation. Moreover , exact solut ions of the 

generalized Kudryashov-Sinclshchikov equation arc obtained with the aid of t he 
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Kudryashov method [13]. 

In Chapter three, the conservation laws for the Benney-Luke equation are obtained 

using Noether 's theorem [14] . Thereafter , we construct the exact solutions for the 

Benney-Luke equation using the extended tanh method [15]. 

In Chapter four , we discuss and conclude what we have done in this dissertation. 

A bibliography is given at the end of this dissertation. 
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Chapter 1 

Preliminaries 

In this chapter , we present some basic methods on how to obtain conservation laws of 

differential equations and methods of obtaining exact solutions of differential equa­

tions, which will be utilized in this dissertation . 

1.1 Fundamental relation of multiplier method 

In this section , we present the notation that will be used to construct conservation 

laws for (1) by the multiplier method [16]. 

Consider a kth-order system of partial differential equations of n independent vari­

ables x = (x1
, x2

, ... , x") and m dependent variables u = ( u 1
, u2

, ... , um), viz. , 

Ea(x, u , U(i), ... , U(k)) = 0, ct= 1, ... , m , (1.1) 

where U(i ), u (2), . . . , U (k) denote the collections of all first , ::;ecoud, ... , kth-ordcr par­

tial derivatives, that is, uf = Di(uo:), u0 = D1Di(uo:), .. . respectively, with the total 

derivative operator with respect to xi is given by 

Di = :::i8 . + uf :::i 8 + uf1· 88 + ... , i = 1, .. . , n . uxi uuo: uo: 
J 

(1.2) 

The Euler-Lagrange operator, for each a, is given by 

a= 1, ... ,m. (1.3) 
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The n-tuplc vector T = (T1, T 2
, .. . , T n), T i E A , j 

vector of ( 1. 1) if T i satisfies 

1, ... , n , is a conserved 

The equation (1.4) defines a local conservation law of system (1.1). 

A multiplier A0 (x, u, U(i), . .. ) has the property that 

holds identically. Herc we will consider mult ipliers of the zeroth order , 

(1.4) 

(1.5) 

i. e., A0 = A0 (t , x, u). The right hand side of (1.5) is a divergence expression. The 

determining equation for the multiplier A0 is 

(1.6) 

1.2 Fundamental relationship concerning the Noether 

theorem 

In this section we briefly present the notation and pertinent resul ts that will be used 

in this research. For details the reader is referred to [14, 17- 22]. Consider the system 

of qt li order partial differential equations 

E0 (x, u, U(l ), u(2), ... , U (q) ) = 0, a= 1, 2, .. . , m. (1. 7) 

If there exists a function L (x, u, U(i ), u (2), . . . U (s) ) E A (space of differential functions) , 

s < q such that system (1.7), is equivalent to 

Ct= 1, 2, ... , '171, , (1.8) 

then Lis called a Lagrangian of (1.7) and (1.8) are the corresponding Euler-Lagrange 

differential equations. 

In (1.8) , 6/ 6u0 is the Euler-Lagrange operator defined by 

(1.9) 
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Definition 1. 1 (Point symmetry ) T he vector field 

is said to be a point symmetry of the pth-order partial differential equatiou ( 1. 7) , if 

(1. 11) 

whenever E0 = 0. This can also be wri t ten as 

(1.12) 

where the symbol IEa =O means evaluated on the equation E0 = 0. 

D efinition 1.2 A Lie-Backlund operator X is a Noether symmetry generator asso­

ciated wi th a Lagrangian L of (1.8) if there exists a vector A = (A1 , ... , An) , Ai E A, 

such that 

(1.13) 

If in (1.13) Ai = 0, i = 1, ... , n then X is referred to as a strict Noether symmetry 

generator associated with Lagrangian L E A. 

Theorem 1. 1 For each oether symmetry generator X associated with a given 

Lagrangian L , there corresponds a vector T = (T 1, T 2 , . . . , T n), T i E A, defined by 

(1.14) 

which is a conserved vector of the Euler-Lagrange equat ions (1.8) and the oether 

operator associated with X is 

(1.15) 
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in which the Euler-Lagrange operators with respect to derivatives of uo: are obtained 

from equation (1.9) by replacing uo: by the corresponding derivatives, e.g. , 

In (1.15) , w o: is the Lie characteristic function given by 

W O: 0: ~i 0: 1 =TJ -.,uj, a:= , .. . , m. 

The vector ( 1.14) is a conserved vector of equation ( 1. 7) if T i satisfies 

(1.16) 

1.3 Conclusion 

In this chapter we briefly discussed the mult iplier method. In addition , we presented 

the fundamental relations concerning Noether symmetries and conservation laws. 
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Chapter 2 

Conservation laws and exact 

solutions for a generalized 

K udryashov-Sinelshchikov 

equation 

Kudryashov and Sinclshchikov proposed a nonlinear evolution model given by 

(2. 1) 

Here >. and x are arbitrary constants and it models the pressure waves in a mixture of 

a liquid and gas bubbles by taking into account the viscosity of the liquid and the heat 

transfer. Kudryashov and Sinelshchikov investigated its peaked solitons and certain 

other properties in liquid with gas bubbles . Moreover , Ryabov [23] computed exact 

solutions of equation (2.1 ). The generalized Kudryashov-Sinelshchikov equation (1) 

reduces to the Korteweg-de Vries equation [24] 

(2.2) 

by taking suitable values of the underlying arbitrary constants and it is commonly 

studied in the context of shallow water waves in fluid dynamics . 
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In this chapter, we consider the generalized Kudryashov-Sinclshchikov equation [11] 

given by 

(2 .3) 

where a, b, c and d are arbitrary constants. We will employ the multiplier method to 

derive the conservation laws of equation (2.3). The exact solutions of equation (2 .3) 

will be derived by employing the Kudryashov method. 

2.1 Conservation laws for a generalized Kudryashov­

Sinelshchikov equation (2.3) 

In this section we derive the conservation laws for equation (2 .3) . Herc we will 

consider mult ipliers of the zeroth order /\(t , x, 'U) defined Ly 

c5 
c5'U [/\ (t, X, 'U)('Ut + a'U'Ux + b'Uxxx + C ('U'Uxxt + d'Ux 'Uxx)] = 0, (2.4) 

where the Euler-Langrage Operator c5 / 6'U is defined by 

(2.5) 

and the total differeuti al operators are given by 

[) [) [) [) 
Dt = - +'Ut- +'Utt- +'Utx - + .. ·, 

ot o'U O'Ut O'Ux 

[) [) [) [) 
-
0 

+ 'l.lx -
0 

+ 'Uxx -
0 

+ 'Utx -
0 

+ " · · 
X 'U 'Ux 'Ut 
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Expanding equation (2.4) leads to 

- - Dt- - D - + D - + D -- + D Dt- - D --[a a a 2 a 2 a a 3 a] 
au OUt X OUx t OUtt X OUxx X OUxt X OUxxx 

(A(ut + aUUx + buxxx + C (uuxx)x + duxUxx)) = 0, 

Au(Ut + auux + buxxx + c(uuxx\ + duxUxx) + auxA + CUxx A - DtA- Dx(auA) 

-Dx(cuxxA) - Dx(duxx A) + D;(cuxA) + D;(duxA) - D~(bA) - D~(cuA) = 0. 

Further expansion of the above equation yields 

(2.6) 

Since A depends only on t, x and u, the coefficients of the like derivatives of u can 

be equated to zero to yield the following system of over determined linear partial 

differential equations : 

u3 
X 

u2 
X 

1 

dAuu - bAuuu - cuAuuu - 2cA11.u = 0, 

2dAxu - 3bAxuu - 3cuAxuu - 4cAxu = 0, 

dAxx - 3bAxuu - 3cuAxuu - 2cAxx = 0, 

dAx - 3bAxu - 3cuAxu - 2cAx = 0, 

At + auAx + bAxxx + cuAxxx = 0. 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2. 11) 

(2.12) 

Solving the above system of linear partial differential equations for A prompts the 

following three cases: 

Case 1. a, b, c, d arbitrary but not in the form contained in Case 2 and 3. 
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In this case, we integrate equation (2. 7) with respect to u and obtain 

A(t, x)(b + cu)~ . 
A(t, x, u) = d(d _ c) + B (t, x)u + E(t, x), (2 .13) 

where (d - c) =I= 0, A(t, x), B (t, x) and E(t, x) arc arbitrary functions oft and x. 

Inserting equation (2.13) into equation (2 .8) and solving the result ing equation yields 

Ax(b + cu)~- 1(-d - c) + (2d - 4c)(d- c) Bx = 0. 

Splitting the above equation on (b + cu)~- 1 yields 

(b+cu) ~- 1 

1 

(-d - c) Ax = 0, 

(2d - 4c)(d - c) Bx = 0. 

Integrating equation (2.15) with respect to x gives 

A(t , x) = F(t) , 

(2. 14) 

(2. 15) 

(2.16) 

(2. 17) 

where d =I= -c and F(t ) is an arbitrary function oft . Integrating equation (2. 16) 

with respect to x, we obtain 

B (t, x) = Z(t) , (2 .18) 

where d =I= 2c and Z(t) is an arbitrary function oft. We now substitute equation 

(2. 17) and (2. 18) into equation (2.13) and we get 

F(t)(b + cu)~ 
A(t, x, u) = d(d _ c) + Z(t)u + E(t, x). (2. 19) 

By substit uting equation (2 .19) into equation (2.9) , one obtains 

(d - 2c)Exx = 0. (2.20) 

Integrating the above equation twice with respect to x, we get 

E(t, x) = h(t)x + p(t ), 
r~IB WAURYl 

(2.21) 

where h(t) and p(t) are arbitrary functions oft. Inserting equation (2.21) into equa­

tion (2. 19) yields 

F(t)(b + cu)~ 
A(t, x, u) = d(d _ c) + Z(t)u + h(t)x + p(t) . (2.22) 

11 



Now substitut ing equation (2.22) into equat ion (2. 10), we obtain 

h(t) = 0. (2 .23) 

Therefore, equation (2.22) reduces to 

F(t )(b + cu)~ 
J\ (t, x, u) = d(d _ c) + Z(t)u + p(t). (2.24) 

Inserting equation (2.24) into (2 .12) yields 

F' (t)(b + cu)~ Z'( ) '( ) _ O 
d(d-c) + tu+p t - . (2.25) 

Separating the above equation on powers of u, yields 

d 

(b+cu) 0 F' (t ) = 0, (2.26) 

u Z'(t ) = 0, (2.27) 

1 p' (t ) = 0. (2.28) 

By integrating equations (2 .26), (2.27) and (2.28) with respect to t , we obtain 

(2.29) 

where R1 , R2 and R3 are arbitrary constants. Therefore equation (2.24) becomes 

(2.30) 

Substitut ing equation (2. 30) into (2 .11) and solving the result ing equation yields 

(d - c) R2 = 0. (2.31) 

Since (d - c) 'I= 0, we have R2 = 0. Thus 

R1(b + cu)~ 
J\(t, x, u) = d(d _ c) + R3. (2.32) 

Therefore, equation (2.32) yields the following multiplier: 

(2.33) 
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Integrating equation (2.43) with respect to Ut, we obtain 

(2.44) 

where M(t, x, u , ux) is an arbitrary function of t , x , u and Ux. Therefore equation 

(2.42) becomes 

+ M(t , X, U, Ux)- (2.45) 

Substituting equations (2.41) and (2.45) into (2.40) yields 

ft(t, X , U, Ux) + fu(t , X, U, Ux)Ut + fxuJt , X, U, Ux)Ut + Mx(t, X , U, Ux) 

+ux [ k1CUxx + (d + c)k2(b + cu) ~Uxx + IuuJ t , X, u, Ux)Ut + Mu(t, X , U, Ux)] 
d 

+uxx [ItLxtLx (t , x, u , Ux)Ut + MtLx (t , x, u, Ux)] = [k1 + k2(b + cu) ;:J 

Separating the above equation on powers of Uxx, gives the following: 

Equation (2.47) simplifies to 

Splitting the above equation on powers of Ut, we obtain 

1 

Integrating equation (2.50) twice with respect to Ux gives 

I (t , x, u , Ux) = N (t , x, u)ux + Q(t, x, u), 

14 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

(2.52) 



We now apply equation (1.5) to construct the conservation laws of equation (2.33) 

(2.34) 

From equation (2.34) we have 

d 

[k1 + k2(b + cu)c](ut + auux + buxxx + C (uuxxt + duxUxx) 

[a a a a a ] 1 = -a+ Ut-a +Utt-a+ Utx-a + Utxx-a T (t, x, u, Ut, Ux , Uxx) 
t U Ut Ux Uxx 

[a a a a a] 2 + -a+ Ux-a + Uxx-a + Utx-a + Uxxx-a T (t, x, u, Ut, Ux, Uxx), 
X U Ux Ut Uxx 

which gives 

Splitting equation (2.35) on Utt,Uxxx,Utx and Utxx yields 

Utt 

Uxxx 

Utx 

Utxx T~ = 0, xx 

1 

(2.35) 

(2 .36) 

(2.37) 

(2 .38) 

(2.39) 

(2.40) 

We can now solve the above equations for T 1 and T 2 . From equations (2.36) and 

(2.39), we obtain 

(2.41) 

where I (t, x, u, ux) is an arbitrary function oft , x, u and Ux. Integrating equation 

(2.37) with respect to Uxx, we obtain 

where J (t, x, u, Ut, ux) is an arbitrary function oft, x, u, Ut and Ux. Substituting the 

values of T 1 and T 2 into equation (2.38) gives 

(2 .43) 
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where N(t, x, u) and Q(t, x, u) arc arbitrary functions of t, x and u. Integrating 

equation (2.51) with respect to Ux gives 

(2.53) 

where S(t, x, u) is an arbitrary function oft, x and u. Thus we have 

T1 (t, x, u, Ux) = N(t, x, u)ux + Q(t , x, u), (2.54) 

T 2(t , x, u, Ut, Ux, Uxx) = k1 (b + cu)uxx + k2 (b + cu) ~+1Uxx + N(t, x, u)ut 

1 2 + 2k1dux + S(t, x, u) . (2.55) 

Inserting equations (2.52) and (2 .53) into (2.48), we obtain 

d 

Sx(t, x, u) + Nu(t, X, u)uxUt + Su(t, x, u)ux = k1Ut + k1aUUx + k2(b + cu)cut 
d 

+k2(b + cu)cauux . (2.56) 

Separating the above equation on Ux and Ut yields 

Nu(t, x, u) = 0, 

d 

Nt(t, x, u) + Su(t, x, u) = k1au + k2(b + cu)c au, 

1 Qt(t, x, u) + Sx(t, x, u) = 0. 

Integrating equation (2.57) with respect to u gives 

N(t , x, u) = V(t, x), 

(2.57) 

(2.58) 

(2.59) 

(2.60) 

(2.61) 

where V(t, x) is an arbitrary function oft and x. Inserting equation (2.61) into (2.58) 

and integrating with respect to u yields 

k2(b + cu)~+l 
Q(t, x, u) = k1 u + (d + c) + Vx(t, x)u + Z(t, x), (2.62) 

where Z(t, x) is an arbitrary funct ion oft and x. Substituting equation (2.61) into 

(2.59) and integrating with respect to u gives 

l k 2 k2au(b+cu)~+1(d+2c) - ak2(b+cu)~+2 
S(t, x, u) 2 1au + (d + c)(d + 2c) 

+ ½(t, x)u + W (t, x), (2 .63) 

15 



where W(t, x) is an arbitrary function oft and x. Substituting the values of Q and 

S into equation (2.60) yields 

Zt(t, x) + Wx(t , x) + 2½x(t , x)u = 0. 

Spli tting t he above equation on powers of u, we obtain 

u ½x(t , x ) = 0, 

1 Zt(t, x ) + Wx(t, x) = 0. 

Equation (2. G5) simplifies to 

V(t , x) = J Y(x)dx + P(t), 

(2.64) 

(2.65) 

(2.66) 

(2 .67) 

where P (t) and Y(x) arc arbitrary functions oft and x respectively. Therefore we 

have 

1 [/ ] k2(b + cu) ~+l T (t, x, u, ux) = Y (x) dx + P (t) Ux + k1u + (d + c) 

+ Y (x)u + Z(t, x) , (2.68) 

T 2(t , x , u , Ut, Ux, Uxx ) = k1(b + cu)uxx + k2(b + cu) ~+1Uxx + [/ Y (x )dx + P (t) ] Ut 

I k d 2 1 k 2 k2au(b + cu) ~+1 (d + 2c) - ak2(b + cu) ~+2 

+ 2 1 ux + 2 1 au + ( d + c) ( d + 2c) 

P'(t )u + W(t, x). 

Substituting equation (2 .68) and (2.69) into equation (2.38), we obtain 

J Y(x)dx + P (t) = 0. 

DifferentiatiHg the above cquatiou with respect to t yields 

P' (t) = 0. 

Integrating the above equation with respect to t, we obtain 

16 
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where k3 is an arbitrary constant of integration. Inserting equation (2.72) into (2.70) 

yields 

j Y (x)dx = - k3 . (2.73) 

Thus, from equations (2.68) and (2 .69) we obtain 

1 k2 (b + cu)~+i 
T (t ,x ,u, ux)= k1u + (d +c) + Z (t ,x), (2.74) 

2( ) _ ( ) µ ( )4+1 1 µ 2 1 µ 2 T t , x, u , Ut, Ux, Uxx - k1 b + cu Uxx + k2 b + cu C Uxx + 2k1dux + 2k1au 

k2au(b + cu) ~+l(d + 2c) - ak2(b + cu)~+2 W ( ) 
+ ( d + c) ( d + 2c) + t ' x · 

Therefore, the components of the conserved vectors arc 

Tf = u, 

2 ( ) 1 2 1 2 T1 = b + cu Uxx + 
2

dux + 
2

au ; 

y,i _ (b + cu) ~+i 
2 

- (d + c) ' 

y,2 _ (b )~+1 au(b + cu) ~+l(d + 2c) - a(b + cu)~+2 

2 - + CU Uxx + ( d + C) ( d + 2c) , 

associated with the multiplier (2.33). 

Case 2. d = - c. 

(2. 75) 

(2.76) 

(2. 77) 

(2.78) 

(2.79) 

In this case we follow the same procedure as in Case 1 above and obtain the following 

multiplier: 

for the Kudryashov-Sinelshchikov equation (2.3). The corresponding conservation 
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laws for the above multiplier are 

Tl = ln(b + cu) [sin (fox) sin ( b:!! t) -cos (fox) cos ( b:!! t)] 
+L(t, x), (2.81) 

Tf = [sin (fox) sin ( bJl t) -cos (fox) cos ( b:ll t)] cu,, 

-,/ac [sin (fox) cos ( b:/ t) + cos (fox) sin ( b:!! t)] u, 

+ e:) [sin (fox) sin ( b:!i t) -cos ( fox)cos ( bJl t)] 
-en ln(b + cu) [sin (fox) sin ( b:11 t) -cos (fox) cos ( bdl t) l 
+M(t, x) (2 .82) 

with Lt+ Mx = - ( ~ ) [ cos ( ~x) cos ( ~t) - sin ( ~x) sin ( ~t)] ; 

Ti = ln (b + cu) [sin (fox) cos ( b:ll t) + cos (fox) sin ( b:!! t)] 
+L(t, x), (2.83) 

Ti = [sin (fox) cos ( b:!i t) + cos (fox) sin ( b:!i t)] cu,, 

-Fae [ cos (fox) cos ( b:ii t ) - sin (fox) sin ( b:ll t)] u, 

+ en [sin (fox) cos ( b:1
1 t) + cos (fox) sin ( bJ! t) l 

-e:) Jn{b + cu) [sin (fox) cos ( b:!i t) + cos (fox) sin ( b:ll t)] 
+M(t,x), (2.84) 
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with Lt + Mx = - ( 1) [ sin ( v1x) cos ( 1 t) + cos ( v1x) sin ( b:l t)] . 

T l 
3 

T2 
3 

Tl 
4 

y2 
4 

T,2 
5 

bt bt X 
- +tu- -ln(b+ cu) - - ln(b +cu), (2.85) 
C C a 

ex c ct 2 at 2 3ab2t bat ab2t 
ctUUxx - -Uxx + - Ux - -ux + -u - -- - - u + - ln (b + cu) 

a a 2 2 2c2 c c2 
b bx 

- - x - xu + - ln(b + cu); (2.86) 
C C 

u , 

1 2 1 2 
buxx + CUUxx - 2 cux + 2au ; 

- ln (b + cu) , 

ba ba 
- CUxx - - - au + - ln(b + cu) . 

C C 

(2.87) 

(2.88) 

(2.89) 

(2.90) 

Case 3. d = 2c. 

This case provides us with the mult iplier of t he form 

A(t ,x, u) - k, ( U + ~)' + k, + [k3COS ( l ) X + k,sin ( l ) x] cos ( b:n f 
+ [ k, sin ( l ) x - k, cos ( l ) x] sin ( b;n t , (2.91) 

and the asssociated conservation laws of the generalized Kudryashov-Sinelshchikov 

equation (2.3) are 

T l 1 3 1 b 2 b2 ( ) 
1 6u + 2c u + 2c2 u, 2.92 

2 1 b 2 1 3 b2 b 2 b3 b2 b2 d 2 
Tl 2 u Uxx + 2 cu Uxx + ~ UUxx + u Uxx + 2c2 Uxx + 2c UUxx + 4c2 ux 

b2 1 3b2 1 1 1 b 
+ - u2 - - cu2u2 - buu2 

- - u2 + - du2u2 + -bduu2
. + -au4 + -au3 

4c x 2 x x 4c x 4 x 2c x 2 c 
b2 

+
8

c2au2; (2.93) 
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T,l 
2 

T.2 
2 

T,l 
3 

T.2 
3 

Tl 
4 

y2 
4 

2.2 

u , 

( ) 
1 2 1 2 

b + cu Uxx + 2dux + 2au ; 

[- cos ( /H cos ( bJl t) + sin ( t x) sin ( b:ll t) ] u, 

(2. 94) 

(2.95) 

(2.96) 

[-cos ( l x) cos ( b:ll t) + sin ( lx) sin ( b:ll t)] (b+ cu)uxx 

+ ~du; [-cos ( lx) cos ( b:l! t) + sin ( lx) sin ( bJl t)] 
-t(b + cu)ux [cos ( l x) sin ( b:ll t) + sin ( lx) cos ( b:ll t)] 
+ b: u [ cos ( lx) cos ( b:/ t) -sin ( lx) sin ( b:ll t)] ; 
[cos ( lx)sin e:il t) + sin ( lx)cos (b:ll t) l u , 

[cos ( lx) sin ( b:i t) + sin ( lx) cos ( b:ll t)] (b + cu)u"" 

+~du; [cos ( lx) sin ( bdl t) + sin ( lx)cos e:/ t) l 

(2 .97) 

(2 .98) 

-t(b + cu)ux [cos ( lx) cos ( b:!! t)-sin ( lx) sin ( b:ll t)] 
-b: u [ cos ( lx) sin ( b:i t) + sin ( lx) cos ( b:l! t)] · (2 .99) 

Exact solutions using Kudryashov method 

The purpose of this segment is to present the algorithm of t he Kudryashov t echnique 

for finding exact solut ions of the nonlinear evolut ion equations. T he Kudryashov 

method was one of the initial methods for finding exact solutions of nonlinear partial 

differential equations. [9. 2S , 2G]. 

Let us recall the basic idea of the Kudryashov method. Consider the nonlinear partial 
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differential equation in the form 

(2 .100) 

We use the following ansatz 

(2. 101) 

From equation (2. 100), we obtain the ordinary nonlinear differential equat ion 

(2. 102) 

which has a solution of the form 

!vi 

F( z) = L Ai(H(z))\ (2. 103) 
i=O 

where 

1 
H ( z) = _1 _+_c-os_h_( z_)_+_s-in_h_( z-) 

satisfies the equation 

H'(z) = H(z) 2 - H(z), (2 .104) 

and M is a positive integer while A0 , · · · , AM are parameters to be determined. 

2.2.1 Application of the Kudryashov m ethod 

Making use of anstaz (2 .101) , we obtain the following nonlinear ordinary differential 

equation 

ak1F(z)F1 + bkf F111 + c (kf F(z)F111 + kf F'F") + dkf F'F" + k2F' = 0. (2. 105) 

By letting M = l , the solutions of equation (2 .105) arc of the form 

(2. 106) 
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Substituting equation (2.106) into equation (2.105) and making use of equation 

(2. 104) and then equat ing all coefficients of the functions Hi to zero , we obtain 

the following overdetermined system of algebraic equations in terms of Ao , A1 : 

8cA/k/ + 2dA/k/ = 0, 

6 cA1k/A0 - l 7 cA/k/- 5dA/k1
3 + 6bA1k1

3 = 0, 

-cA1k13 Ao - bA1k13 
- aA1k1 Ao - A1k2 = 0, 

-12 cA1k1
3 A0 + 11 cA/k1

3 + 4 dA / k1
3 

- 12 bA1k1
3 + aA/k1 = 0, 

7 cA1k13 A0 - 2 cA/k1 3 
- dA / k1

3 + 7bA1k/ + aA1k1A0 

-aA /k1 + A1k2 = 0. 

On solving the resultant system of algebraic equations, we obtain 

a= - ck1
2

, 

Ao=~ - 3b 
2ckr 2c ' 

d = -4c, 

k3 b 
A1 = -k3 +-. 

C 1 C 

Consequently a solution of equation (2 .3) is 

u(x, t) = Ao+ A1 { 
1 

} 
1 + cosh(z) + sinh(z) 
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Figure 2.1: Evolution of travelling wave solution (2.107) . 

Similarly by letting M = 2, we obt ain the following overdetermined system of alge­

braic equations: 

36 cki 3 Al+ 12 dk/ Ai= 0, 

40 ck/ A iA2 - 86 cki 3 Al + 10 dk/ AiA2 - 32 dki 3 Al = 0, 

- cki 3 AoAi - bki 3 Ai - aki AoAi - k2Ai = 0, 

24 cki 3 AoA2 + 8 cki 3 Ai 2 
- 92 cki 3 A iA2 + 66 cki 3 Al + 2 dki 3 Ai 2 

- 26 dki3 Ai A2 + 28 dk/ Ai+ 24bk/ A2 + 2akiAl = 0, 
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7 cki 3 Ao Ai - 8 cki 3 AoA2 - 2 cki 3 Ai 2 
- dki 3 Ai 2 + 7 bki 3 Ai 

-8 bki 3 A2 + akiAoAi - 2 akiAoA2 - akiAi 2 + k2Ai - 2 k2A2 = 0, 

6 ck/ AoAi - 54 cki 3 A0A2 - 17 ck/ A/ + 67 ck/ AiA2 - 16 cki 3 Al 

-5 dk/ A /+ 22 dk/ AiA2 - 8dk/ Al+ 6 bk/ Ai - 54 bki 3 A2 

+3 akiAiA2 - 2 akiA2
2 = 0, 

-12 cki 3 AoAi + 38 cki 3 AoA2 + 11 cki 3 Ai 2 - 15 cki 3 AiA2 + 4 dki 3 Ai 2 

-6 dk/ A iA2 - 12 bki 3 Ai + 38 bki 3 A2 + 2 akiAoA2 + akiA/ - 3 akiAiA2 

By solving the above resultant algebraic equations, we obtain 

d = -3c, 

ki = "" , 
a1,, (12 cA0

2 + 2cA0Ai + l 2 bAo + bAi) 
k2 = ---------------

12 cA0 + cA i + 12 b ' 

where 11,, is any root of (12 cA0 + cAi + 12 b) "'2 
- aAi = 0 and subsequently the 

desired solution takes the form 

u(x, t ) = Ao+ Ai . { 
1 } 

1 + cosh(z) + srnh(z) 

+ A2
{ 1 + cosh(z~ + sinh(z) } 

2

' 
(2.108) 
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F igure 2. 2: Evolution of travelling wave solution (2.108). 

Following the same procedure as before and taking M 

overdetermined system of algebraic equations: 

200 ck1 
3 A/ + 80 dk/ A/ = 0, 

4, we get t he following 

288 ck1 
3 A3A4 - 524 ck/ A/ + 108 dk1 3 A3A4 - 224 dk/ A/ = 0, 

-ck1
3 A0 A1 - bk1

3 A1 - ak1AoA1 - k2A1 = 0, 
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208 cki 3 A2A4 + 96 cki 3 A3 2 - 7 44 cki 3 A3A4 + 452 cki 3 A4 2 + 64 dki 3 A2A4 

+36 dki 3 A/ - 300 dki 3 A3A4 + 208 dki 3 A/ + 4 akiA/ = 0, 

7 cki 3 AoAi - 8 cki 3 AoA2 - 2 cki 3 A i 2 - dki 3 A i 2 + 7 bki 3 Ai - 8 bki 3 A2 

+akiAoAi - 2 akiAoA2 - akiAi 2 + k2Ai - 2 k2A2 = 0, 

154 ck/ AiA4 + 126 cki 3 A2A3 - 530 ck/ A2A4 - 243 ck/ A/ + 631 ck/ A3A4 

- 128 ck/ A/ + 28 dki 3 AiA4 + 42 dk/ A2A3 - 176 dk/ A2A4 - 99 dki 3 A/ 

+276 dki 3 A3A4 - 64 dk/ A/ + 7 akiA3A4 - 4 akiA/ = 0, 

-12 cki 3 AoAi + 38 cki 3 AoA2 - 27 cki 3 AoA3 + 11 ck1 3 A1
2 - 15 cki 3 A iA2 

+4 dki 3 Ai 2 - 6 dki 3 AiA2 - 12 bki 3 Ai + 38 bki 3 A2 - 27 bki 3 A3 + 2 akiAoA2 

-3 akiAoA3 + akiAi 2 - 3 akiA iA2 + 2 k2A2 - 3 k2A3 = 0, 

120 cki 3 AoA4 + 84 cki 3 AiA3 - 388 cki 3 AiA4 + 36 cki 3 A22 - 312 cki 3 A2A3 

+442 cki 3 A2A4 + 201 cki 3 A/ - 175 cki 3 A3A4 + 18 dki 3 AiA3 - 76 dki 3 A iA4 

+ 12 dk/ Al - 114 dki 3 A2A3 + 160 dk/ A2A4 + 90 dk/ A / - 84 dki 3 A3A4 

+ 120 bki 3 A4 + 6 akiA2A4 + 3 akiA/ - 7 akiA3A4 = 0, 

60 cki 3 AoA3 - 300 cki 3 AoA4 + 40 cki 3 AiA2 - 204 cki 3 AiA3 + 319 cki 3 AiA4 

-86 cki 3 Al+ 251 cki 3 A2A3 - 120 cki 3 A2A4 - 54 cki 3 A/+ 10 dki 3 A iA2 

- 48 dki 3 A i A3 + 68 dki 3 AiA4 - 32 dki 3 A22 + 102 dki 3 A2A3 - 48 dk1 3 A2A4 

-27 dki 3 A/+ 60 bk/ A3 - 300 bk/ A4 + 5 ak1AiA4 + 5 ak1A2A3 - 6 akiA2A4 

-3 akiA/ = 0, 

6 ck13AoAi -54cki3AoA2 + lll cki3AoA3- 64 cki 3AoA4 - 17 cki 3Ai 2 

+67 ck/ A1A2 - 40 ck1
3 A 1A3 - 16 ck/ A22 - 5 dki 3 A/ + 22 dk1

3 A iA2 

- 12 dk/ AiA3 - 8 dk/ Al + 6 bk/ A i - 54 bk/ A2 + 111 bk/ A3 - 64 bk/ A4 

+3 akiAoA3 - 4 akiAoA4 + 3 akiAiA2 - 4 aki A iA3 - 2 ak1Al + 3 k2A3 

-4k2A4 = 0, 
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24 ck1 3 AoA2 - 144 ck1 3 A0 A3 + 244 ck1
3 A0 A4 + 8 ck1

3 A1 
2 - 92 ck1 

3 A1A2 

+ 160 ck1 3 A1A3 - 85 ck1 3 A1A4 + 66 ck1 3 Al - 65 ck1 3 A2A3 + 2 dk1 3 A1 2 

-26 dk1 3 A1A2 + 42 dk/ A1A3 - 20 dk/ A1A4 + 28 dk/ Al - 30 dk1
3 A2A3 

+24 bk1 
3 A2 - 144 bk1

3 A3 + 244 bk13 A4 + 4 ak1A0 A4 + 4 ak1A1A3 

-5 ak1A1A4 + 2 ak1Al - 5 ak1A2A3 + 4 k2A4 = 0. 

Solving the above system of algebraic equations, we obtain 

a= -2ck12, 

5 
d = --c 2 ) 
A __ cA3 + 72b 
o- 72c ' 

1 
A1 = 6 A3, 

2 
A2 = - 3 A3, 

1 
A4 = - 2 A3, 

k2 = - cA3k1 3 - 2 bk1 3. 

72 

As a result, the solution of equation (2.3) is 

u(x, t) = { 1 } { 1 }
2 

Ao+ A1 -------- + A2 
1 + cosh(z) + sinh(z) 1 + cosh(z) + sinh(z) 

{ 1 }
3 

{ 1 }
4 

+ A3 ------- + A4 ------- , (2.109) 
1 + cosh(z) + sinh(z) 1 + cosh(z) + sinh(z) 
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u 

F igure 2.3 : Evolution of travelling wave solution (2.109). 

2.3 Concluding remarks 

New exact solutions and conservation laws of a generalized Kudryashov-Sinclshchikov 

equation were computed. Kudryashov method was employed to compute soli tary 

wave solutions while conservation laws were computed via the mult iplier approach. 
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Chapter 3 

Lagrangian formulation, 

Conservation laws, Travelling wave 

solutions of a generalized 

Benney-Luke equation 

In this chapter, we study the generalized Benney-Luke equation in the form 

Utt - Uxx + O:Uxxxx - /3Uxxtt + Ut Uxx + 2Ux Ux t = 0, (3. 1) 

In 1964, D.J. Benney and J.C. Luke derived the above equation [27], where a, f3 are 

positive constants. Benney-Luke equation (3 .1) models waves propagating on the 

surface of a fluid in a shallow channel of constant depth taking into consideration 

the surface tension effect . The Benney-Luke equation and its generalizat ions have 

been extensively investigated [24, 28- 31]. The approaches used in the investigation 

include stability analysis, Cauchy problem, existence and analyticity of solutions, 

etc. We refer the interested reader to references [24, 28- 31] and references therein . 

However, in this present work, our goal is to compute conservation laws and exact 

solutions of equation (3. 1). 

We use the Noethcr theorem [14] to construct conservation laws for equation (3 .1 ) . 
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Furthermore, we will obtain exact solutions of the Benney-Luke equation via t he 

extended tanh method. 

3.1 Construction of conservation laws for Benney­

Luke equation (3.1) 

Consider the Benney-Luke equation (3.1), viz. , 

It can be verified t hat the second-order Langragian given by 

1 2 1 2 1 2 1 2 1 2 L = -u - -u + - au - - (./u - -UtU 2 X 2 t 2 XX 2 /J tx 2 X > 

satisfies the Euler-Lagrange equation (1.26). Thus 

ol 
T =O, 
UU 

where the Euler-Langrage Operator o / ov. is defined by 

0 
ou 

and the total differential operators are given by 

a a a a 
Dl = - + Ut- + Utt- + Utx- + · · · , 

at au aut aux 

a a a a 
-a +ux-a +uxx -a +Utx-a + · · ·. 

X U Ux Ut 

We now verify that equation (3.2) satisfies equation (3.3) 

0. 
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(3.3) 

(3.4) 

(3.5) 



As a result the Langragian (3. 2) is the Langragian of (3. 1). 

Consider the vector field 

which has the second-order prolongation given by 

where 

Dt(T/) - Ut Dt(r) - UxDt(E), 

Dx(r7) - Ut Dx(r) - Ux Dx(E) , 

Dt((1) - Utt Dt(r) - Utx Dt((), 

Dx((1) - Utt Dx(r) - Utx Dx(O, 

Dx((2) - Utx Dx(r) - Uxx Dx(O. 

(3.6) 

(3 .7) 

(3.8) 

(3 .9) 

(3. 10) 

(3. 11) 

(3 .12) 

The vector field X , defined iu equation (3. 7), is a called Ioether symmetry cone­

sponding to the Lagrangian L if it satisfies 

(3. 13) 

where B 1 (t, x, u) and B 2 (t, x, u) are the gauge terms. Using the definition of X l2l 

from equation (3 .7) and inserting L from equation (3.2) into equation (3.13) yields 

(3 .14) 

which gives 
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Substituting t he values of Ct , Cx , Ctx and Cxx into equation (3.15) , we obtain 

2 2 3 2 1 2 1 2 1 2 
-UtT/t - Ut T/u + Ut Tt + Ut Tu + UtUx ~t + Ut Ux ~u - 2,Ux T/t - 2,UtUx T/u + 2,UtUx Tt 

1 2 1 3 1 3 2 2 2c 3 
+ 2u xUt Tu + 2u x ~t + 2u t Ux ~u + Ux 1lx + Ux 1lu - UtUx Tx - UtUx Tu - Ux c, x - Ux ~u 

-Ut Ux"flx - Utu;11u + Ux UZTx + u ; uzTu + Utu; ( x + UtU~( u - flutx T/tx - f3 u x Utx'fltu 

-/31.ltUtx T/xu - f3 uZxT/·u. - f3ux UtUt x T/uu + /3 HZx Tt + fJ u x Utx 1ltu + /31lZx ( x + f3 utUtx Tt x 

+f3uttUtx Tx + /3UtUx Utx Ttu + f3 u xUtUtx ~xu + f3uzTxu + 2 f3utUZx Tu + fJ uxUttUtx Tu 

-2au;x~x - Ci'l.luUxx~xx - 2au;Uxx( xu - 30'.Ux U;x~u - O'.U~Uxx~uu - 20'Utx UxxTx 

2 1 2 
- 0'.'l.ltUxxTxx - 20'.UtUx UxxTxu - Cl'.'l.ltUxxTu - 2 0'.Ux Utx UxxTuu - Ci'l.ltUx UxxTuu + 2u x Tt 

1 2 1 2 1 2 1 2 1 2 1 3 1 2 - 2utTt + 2auxxTt - 2f3utx Tt - 2,UtUx Tt + 2,UtUx Tu - 2,UxTu + 2,0'.UtUxx Tu 

1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 13 - 2UtUtx Tu - 2ut U x Tu+ 2u x ~x - 2ut ~x + 2m txx~x - 2f3utx ~x - 2utUx ~x + 2u x ~u 

1 2 1 2 1 2 1 3 1 1 2 2 - 2u x Ut ~u + 2mtxUxx~u - 2f3u x Utx ~u - 2utUx ( u = B l + UtBu + B x + Ux B u . 

(3. 16) 

Splitting the above equation with respect to the derivatives of u, yields the following 

overdetermined system of linear PDEs: 

Tu = 0, 

~t = 0, 

(u = 0, 

T/x = 0, 

T/uu = 0, 
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(3. 17) 

(3. 18) 

(3. 19) 

(3 .20) 

(3 .21) 

(3.22) 



Tltu = 0, (3 .23) 

B;, = 0, (3. 24) 

( x - 3TJu = 0, (3.25) 

Et+ Tlt = 0, (3 .26) 

2TJu - 3(x + Tt = 0, (3.27) 

2T]u - (x - Tt = 0, (3.28) 

2r7u - (x - "f]l + Tt = 0, (3 .29) 

Bz + B; = 0. (3.30) 

We now solve the above ::;ystem of linear partial different ial equations for T , (, TJ, B 1 

and B 2
. Equations (3. 17) and (3 .18) imply that 

T(t, x, u) = a(t) , (3.31) 

where a(t) is an arbitrary funct ion oft. From equations (3 .19) and (3. 20), we obtain 

((t , x, u) = b(x), (3. 32) 

where b(x) is an arbitrary funct ion of x. Integrating equation (3 .21 ) with respect to 

x gives 

77(t , x, u) = c(t , u) , (3.33) 

where c(t , u) is an arbitrary funct ion oft and u. Substituting the value of TJ from 

equation (3.33) into equation (3 .22) and integrating twice with respect to u yields 

c(t , u) = d(t)u + e(t) , (3 .34) 

where d(t) and e(t) are arbitrary functions oft. Thus 

77(t , x, u) = d(t)u + e(t). (3.35) 

Inserting equation (3.35) into (3. 23) and solving the resulting equation gives 

(3.36) 
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where k1 is an arbitrary constant of integration. Integrating equation (3.24) with 

respect to u yields 

B2 (t, x, u) = F(t , x), (3.37) 

where f(t , x) is an arbitrary function oft and x. Substituting the values of~ and 'T/ 

into equation (3.25) and integrat ing with respect to x, we obtain 

(3.38) 

where k1 and k2 are arbitrary constants of integration. Thus 

(3.39) 

Inserting equations (3.31) , (3.36) and (3.39) into (3. 27) and solving gives 

(3.40) 

where k3 is an arbitrary constant of integration and so we have 

(3.41) 

Substituting equations (3.36) , (3 .39) and (3.41) into (3.28) and solving the resulting 

equation gives 

(3 .42) 

As a result equations (3 .36), (3. 39) and (3 .41) reduces to the following: 

T(t , X, u) k3, l~ .. (3r43) 

~(t , x, u) k2, . ~ - 4) ,J 
rJ (t, x,u) e(t). (3.45) 

By substituting equations (3.43), (3.44) and (3.45) into equation (3 .29) , we obtain 

(3.46) 

where k4 is an arbitrary constant of integrat ion. Thus 

rJ(t , x, u) = k4. (3.47) 
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From equation (3.26), we have 

3 1(t, x, u) = G(t, x). (3.48) 

Thus equation (3.30) gives 

(3.49) 

Consequently we have the following: 

T(t, x , u) = k3 , ((t, x , u) = k2 , rJ (t, x , u) = k4 , 3 1(t,x,u) = G(t ,x), 

3 2 (t , x , u) = F(t, x), Gt(t, x) + Fx(t, x) = 0. 

We choose G(t, x) = F(t , x) = 0 as they only contribute to the t rivial part of the 

conserved vectors. Hence the Noether symmetries and t he associated gauge functions 

are 

X1 
a 

3 1 = 0 3 2 = 0 
at' ) ) 

X2 
a 

3 1 = 0 3 2 = 0 
ax 

) ) ) 

X 3 
a 

3 1 = 0 3 2 = 0. 
au 

) ) 

We use the above resul ts to find the components of conserved vectors. Applying 

aether 's theorem leads to the following nontrivial conserved vectors associated with 

three Noethcr point symmetries: 

y2 
1 

T,l 
2 

r,2 
2 

r,1 
3 

r,2 
3 

- UtUx + UZUx - fJ-u tUttx + <.YU,tUxxx - (XU,tx Uxx; (3.50) 

1 3 
Ux Ut + 2u x + /3UtxUxx, 

1 2 12 1 2 1 2 1 2 - 2u x - 2ut - 2auxx - 2/31ttx + 2utUx - f3uxUtt x + O'llxUxxx; (3.51) 

1 2 
-Ut - 2ux, 

Ux - UtUx + /31lttx - O:Uxxx · (3.52) 

35 



3.2 Exact solutions using the extended tanh method 

In this section we use the extended tanh function method which was introduced by 

Wazwaz [32]. We use the following ansatz 

u(x, t) = F(z), z = x - wt. (3.53) 

Making use of (3 .53), equation (3.1) is reduced to the following nonlinear ordinary 

differential equation: 

aF
1111 

(z) - (3w2 F
1111 

(z) + w2 F"(z) - F" (z) - 3wF' (z )F"(z) = 0. (3.54) 

The basic idea in this method is to assume that the solution of (3.54) can be written 

in the form 

M 

F(z) = L AiH(z)i, (3.55) 
i=-M 

where H(z) satisfies an auxiliary equation, say for example the Riccati equation 

(3.56) 

whose solution is given by 

H(z) = tanh(z). (3.57) 

The posit ive integer M will be determined by the homogeneous balance method 

between the highest order derivative and highest order nonlinear term appearing in 

(3.54). Ai arc parameters to be determined. In our case, the balancing procedure 

gives M = 1 and so the solutions of (3.54) are of the form 

(3.58) 
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Substituting equation (3.58) into equation (3.54) and making use of the Riccati 

equation (3.56) and then equating the coefficients of the functions H i to zero, we 

obtain the following algebraic system of equations: 

8cA/k/ + 2dA1
2k/ = 0, 

6 cA1k/ Ao - 17 cA/k/ - 5 dA/k/ + 6 bA1k/ = 0, 

-cA1 k1 3 Ao - bA1k13 
- aA1k1Ao - A1k2 = 0, 

- 12 cA1k1 
3 A0 + 11 cA/ k/ + 4 dA/ k/ - 12 bA1k/ + aA/ k1 = 0, 

7 cA1k/ Ao - 2 cA/k1 3 
- dA/k / + 7 bA1k/ + aA1k1Ao - aA/k1 + A1k2 = 0. 

Solving t he resultant system of algebraic equations leads to the following three cases: 

Case 1 

Case 2 

Case 3 

w= k , 

A_1 = 0, 
-4 ko:+4k,B 

Ai=------· 
4et - 1 ' 

w= k, 

A = _ - 4 ko: + 4 k,B 
-l 4o: - 1 ' 

Ai= O; 

w=p, 

A = _ - 4po: + 4p,B 
-l 16 0: - 1 l 

Ai=_ -4 pet + 4p,B 
16 CJ'. - 1 l 

where k and pare any roots of (4 ,B - 1) k2-4 a+l = 0 and (- 1 + 16 ,B) p2
- 16 o:+ 1 = 

0 respectively. As a result, a solution of (3. 1) is 

u(x , t) = A_ 1coth(z) + A0 + A1 tanh(z), (3.59) 
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where z = x - wt. 

Figure 3.1: Evolution of the solution of (3 .1) for Case 1. 
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Fig ure 3.2: Evolution of the solut ion of (3. 1) for Case 3. 
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3.3 Concluding remarks 

In this chapter the Noether symmetries of a generalized Benney-Luke equation were 

computed . Thereafter, we constructed the associated conservation laws. Moreover, 

we derived exact solutions for the generalized Benney-Luke equation via the extended 

tanh method. 
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Chapter 4 

Conclusions and Discussions 

Ill this dissertation we firs t briefly introduced the basic concepts which were used 

through out the dissertation. In Chapter two we constructed the conservation laws for 

the generalized Kudryashov-Sinelshchikov equation (2.3) by applying the multiplier 

method. Thereafter , Kudryashov method was employed to compute exact solut ions 

for the generalized Kudryashov-Sinclshchikov equation (2 .3). 

In Chapter three the Nocthcr theorem was used to derive the conservation laws for 

the Benney-Luke equation (3. 1). We then employed the extended tanh method to 

find the exact solutions for the Benney-Luke equation (3.1). Finally, in Chapter fo ur 

we summarized the work done in the dissertation. 
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