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Abstract

The main focus of this thesis will be on the constrained two-dimensional
guillotine-cut cutting stock (C2DGC) problem. Stock cutting involves the
process of cutting certain small demand items from a larger object. During this
process, waste material is generated, which is called trim loss. The cutting
stock problem presents itself in many industrial processes where the cutting of
material is concerned, for instance the cutting of wood in the furniture
industry, the cutting of glass and plastic sheets in the glass industry, the
cutting of paper in the cardboard industry and the cutting of steel bars in
metatlurgy, to name but a few. The cutting stock problem aims to find one or
more solutions to a cutting problem so that the optimal amount of the stock
sheet is utilized. This, in turn, implies that the trim loss (waste) will be kept to

a minimum.

Artificial intelligence search methods as well as existing exact C2DGC
problem solution methods are investigated and evaluated critically. Different
artificial intelligence search methods are then combined with the existing
C2DGC problem solution methods, forming feasible algorithms to solve
C2DGC problems. Existing C2DGC problem solution methods are also
enhanced using innovative ideas. Numerical tests are then conducted to test
the effectiveness and efficiency of each original and enhanced algorithm.



Uittreksel

Die sentrale fokus van hierdie proefskrif is die sogenaamde begrensde twee-
dimensionele guillotine-snit mateniaalsny (C2DGC) probleem. Materiaalsny-
probleme behels die sny van gegewe kleiner bestel-items vanuit ‘n groter
voorraadplaat. Materiaalsnyprobleme kom te voorskyn in verskeie industriéle
prosesse waar materiale gesny moet word. Voorbeelde hiervan is die sny van
hout in die skrynwerkbedryf, die sny van glas en plastiek in die glasbedryf, die
sny van papier in die kartonbedryf en die sny van staalstawe in die
staalbedryf. In die oplossing van materiaalsnyprobleme word gepoog om een
of meer oplossings vir ‘n gegewe probleem te vind sodat die voorraadplaat
optimaal benut word. Hierdie proses impliseer dat onbenutte dele op die
voorraadplaat tot ‘n minimum beperk sal word.

Kunsmatige intelligensie soekmetodes asook bestaande eksakte C2DGC
probleem-oplosmetodes word ondersoek en krities geévalueer. Verskillende
kunsmatige intelligensie soekmetodes word dan met die bestaande C2DGC
probleem-oplosmetodes gekombineer om uitvoerbare algoritmes te vorm
waarmee C2DGC probleme opgelos kan word. Bestaande C2DGC probleem-
oplosmetodes word ook verbeter deur middel van innoverende idees.
Numeriese toetse word dan gedoen om die effektiwiteit en kwaliteit van elke
bestaande en verbeterde algoritme te toets.
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CHAPTER 1: Introduction

‘Enthusiasm without knowledge is like running in the dark.”
- Fred Hatfield.

1.1 Introduction

According to Fred Hatfield, enthusiasm is not the sole driving force behind all
success stories. In order to achieve a set goal, it is important to remember
| that being aware of a few facts concerning a specific problem are better than
being aware of none at all. Therefore, always attempt to define your problem
and the possible solutions as best you can before attempting to solve the
problem itself. Hatfield states another simple truth in this famous quote and
although it can be applied to many situations, it is particularly well suited to
the field of Computer Science, and especially Artificial Intelligence. It clarifies
the fact that no matter how eager a researcher is, without the proper scientific
knowiedge of a subject or field of study and a thorough comprehension of its
principles, it is impossible to predict and realize its possibilities and potential.

Stock cutting involves the process of cutting certain small demand items from
a larger object. During this process, waste material is generated, which is
called trim loss. The cutting stock problem presents itself in many industrial
processes where the cutting of material is concemed, for instance the cutting
of wood in the furniture industry, the cutting of glass and plastic sheets in the
glass industry, the cutting of paper in the cardboard industry and the cutting of
steel bars in metallurgy, to name but a few. The cutting stock problem aims to
find one or more solutions to a cufting problem so that the optimal amount of
the stock sheet is utilized. This, in turn, implies that the trim loss will be kept to
a minimum (Morabito & Garcia, 1998:469).

As the heading implies, this chapter guides the reader into the work by
explaining the problem statement, the scope of the work, objectives of the

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems



study and the methodology that was followed. After having read this chapter it
should be clear what the work is all about and what to expect from it.

1.2 Problem statement

It is imperative to describe why it is necessary to further research the specific
subject, namely the practical implementation of artificial intelligence search
methods to solve constrained two-dimensional guillotine-cut cutting stock
problems. From this point onward, the constrained two-dimensional guillotine-
cut cutting stock problem will be referred to as the C2DGC problem, as it is
used in the literature concerning cutting problems.

Morabito and Garcia (Morabito & Garcia, 1998:469-470) state that a large
Brazilian hardboard industry generates waste material in their cutting process
at an estimated amount of 20 tons per day. This translates to a financial loss
of $1 million per year because of good quality hardboard scraps that has to be
discarded. These pieces are seen as useless for practical purposes because

of their small size.

In the area of the nesting problem, which involves the packing of irregular
shapes and is often used in the ship building industry, a European company
(Esprit Automation Ltd.} has recently granted £50,000 to research concerning
the development of more efficient algorithms that will provide solutions to
nesting problems, resulting in less trim loss (Kendall, 2000:21).

it should be noted that methods do exist that can be implemented to solve
C2DGC problems, and among these exact and non-exact methods can be
identified.

1.2.1 Exact methods

A method is exact if it finds the highest-quality (optimal) solution when a
problem has several different solutions. Christofides and Whitlock (1977),
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Nilsson {1980}, Wang (1983), Bagchi and Mahanti (1983), Pearl (1984), Sen
and Bagchi (1988), Vasko (1989) and Oliveira and Ferreira (1990), amongst
others, have done work concerning exact methods to solve C2DGC
problems. This thesis and the research done for it deals with exact methods
to solve constrained stock cutting problems, focusing on the method
proposed by Wang (1983). Vasko (1989) and Oliveira and Ferreira (1990)
made enhancements to the original method as proposed by Wang and these
enhancements are also considered. Even though much work and research
have been done in the C2DGC field, some problems still remain with respect
to exact methods, which will be described shortly.

1.2.1.1 Problem areas concerning exact methods

Stock cutting problems, including C2DGC problems, are inherently difficult
combinatorial optimization problems. An exponential explosion of possible
search paths quickly materializes when solving all but the most trivial of
textbook problems. This leads to a situation where the practicality of these
methods are questioned where industry problems are concerned. For this
reason, Wang proposed a method (which later became known as the Wang
method) that utilizes a proportion parameter called beta (B) that is used to
inhibit the exponential explosion of explored altematives. It accomplishes
this by not generating patterns containing more trim loss (waste) than is
allowed by beta (B). This parameter prunes away significant portions of the
problem search space when its value (possible range is 0 =B <1) is low,
but even with this enhancement, larger problems still suffer from an
exponential explosion of possible search paths. For this reasoh, Vasko
introduced computational irﬁprovements to the Wang method, but the real
revolution came when Oliveira and Ferreira introduced the modified Wang
method (WAM method). The WAM method is still an exact one, but uses a
heuristic function to lead the search more efficiently, thereby generating
optimal solutions quicker. It was believed that this algorithm would be the
answer to solve larger probilem instances, but as will be shown, the
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calculation of the values required by the WAM heuristic function becomes
ineffective for larger, industry sized problems.

A second problem where the Wang method is concerned, is determining an
initial value for beta. If the value is underestimated, it has to be increased
and the search must then be undertaken again, resulting in unnecessary
work being done. If the value is overestimated, the algorithm searches
through unnecessary portions of the search space. The last problem is
determining by what amount the beta value is to be incremented if the initial

value was an underestimation.
1.2.2 Non-exact methods

Non-exact methods to solve stock cutting problems, including the C2DGC
problem, exist in the form of heuristic search methods such as greedy
searches, beam searches, depth-limited searches and hill-climbing searches
(refer to chapter 3 and 4 for further details concerning these search
methods).

1.2.2.1 Problem areas concerning non-exact methods

A great deal of uncertainty exists regarding the efficiency and effectiveness
of algorithms based on these methods. Furthermore, it is difficult to evaluate
the results given by the algorithms derived from the non-exact methods, as
the solutions are not always optimal (the method does not guarantee that it
finds the highest-quality solution if there are several different solutions).
Non-exact methods are therefore not very well suited for academic research
or scientific experimentation. For this reason, non-exact methods are only
used here for algorithmic enhancements. For example, beam search will be
used to calculate upper bounds for the Wang and WAM methods because it
finds a solution fast, even if it is more often than not a non-optimal solution.
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These facts demonstrate that the C2DGC problem is indeed a worthwhile and
active topic with many opportunities for further research.

1.3 Scope of the work

Rigorous research efforts in the fieid of stock cutting have led to the
emergence of a myriad of sub-problem areas. These research areas are all
complex and multifaceted in their own right, and for this reason, definitive and
concrete boundaries are placed on the scope of this study. The main focus of
this work will be the constrained two-dimensional guillotine-cut cutting stock
problem. The following describes the above-mentioned phrase:

» Constrained: An upper bound is placed on the number of each
required demand rectangle size that can be cut from the stock sheet.

Therefore, with a given set of demand rectangles of type r; (i=1, 2, 3,

... n), each type will have a demand constraint of b; (Viswanathan &

Bagchi, 1993:768). This implies that the given problem will indicate the

maximum number of demand b; for rectangles of type r; that may be
cut from the stock sheet;

» Two-dimensional: This aspect of the problem implies that each
demand rectangle type r;, will have given dimensions (4, ) for each i,
where [ is the length and w; the width of type r;. Furthermore, these
demand rectangles will be cut from a stock sheet of length £ and
width #/ (Fayard & Zissimopoulos, 1995:620). On the other hand,
one-dimensional cutting problems consist of a stock sheet of length £
and width %/, and demand rectangles ry, 12, ra... fn, where r; represents
the ith demand rectangle with length £ and width %/ (Gau & Wascher,
1995:573). In three dimensional situations, an extra parameter is
added to the two-dimensional cutting problem in the form of a third
dimension;

» Guillotine-cut. According to Wang (Wang, 1983:573), guillotine cuts
are obtained by only considering successive edge-to-edge cuts made
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on the stock sheet and successively produced sheets. Cutting from
one edge of the stock sheet to another is always required when cutting
glass and almost always when cutting wood or thin metal (Christofides
& Hadjiconstantinou, 1995:21); and

» Cutting stock problem: This is normally used as a generic term for the
entire class of cutting and packing problems.

It is assumed thai the constraints mentioned above are placed on the

research criteria. These limits wilt therefore direct the research.

1.4 Obijectives of the study

The next step is an attempt to define objectives for the research.

1.4.1 Gaining an understanding of what artificial intelligence search
methods are and how they function

The first objective is essential, as in our context, this provides the theoretical
background that is needed to solve cutting stock problems. Firstly, it shows
that search methods are indeed a suitable means for representing and
solving cutting problems. Secondly, it presents options available from which
to choose the best-suited search methods for the problem.

1.4.2 Gaining an_understanding of what the C2DGC problem_models
and algorithms entail

In section 1.3, a short description of the C2DGC problem was given, showing
its complexity. For a clear and unambiguous understanding of the problem,
however, an in-depth discussion is necessary. Firstly, this discussion defines
the C2DGC problem thoroughly. Secondly, it highlights previous research
efforts that provided useful results that are applicable to this study.
Therefore, only by reaching this objective is it possible to continue with the
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task of developing effective probiem solving algorithms, and improve on
previous results obtained by other researchers.

1.4.3 Developing algorithms that solve C2DGC problems

A very important part of this research includes developing working, efficient
and preferably exact algorithms, which investigate the practicalities of the
theoretical results. The best-suited search methods will be identified to use
as the basis for these algorithms. From the execution of the algorithms,
results are attained and recorded.

1.4.4 Investigate the effectiveness and efficiency of these algorithms

The results obtained from solving sample problems serve as a measure of
how efficiently and effectively the algorithms performed, by comparing the

results of the various approaches.

1.4.5 To develop an integrated software package implementing these
algorithms

All the algorithms that were developed will be implemented in an integrated
software package. This will demonstrate the effectiveness of different
problem-solving algorithms.

1.5 Methodology

When planning a thesis of this nature, a comprehensive study of existing
literature needs to be done, identifying all possibie sources from which facts,
statistics, data, diagrams and any other form of useful information pertaining
to the subject and field of study can be obtained. These sources could be
obtained in the university library by doing a comprehensive search on the
computer database using the title of the thesis or key concepts in the title. The

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems



sources used range from magazine articles, scientific journal articles,
textbooks, interviews, Intemnet sites and electronic fuli-text databases.

The fuli-text Internet databases used for this study include:

» ScienceDirect at hitp://sciencedirect.com/; and

» Citeseer at htip://citeseer.nj.nec.com/.

Resources used for the planning and development of the integrated software
package includes software engineering coding standards as set forth by the
Ellemtel Telecommunication Systems Laboratories’. Borland C++ Builder is
used as a coding platform. With the help of the integrated software package,
empirical studies will be done, using textbook-sized problems as well as
larger, industry-sized problems. This will help to determine how well certain
problem solving methods scale when given larger problems to solve.

1.6 Organization of the thesis

In this section a description is given to expiain the purpose of each chapter
and its structure.

1.6.1 Chapter 1: Introduction

The first chapter discusses the problem statement, objectives of the study,
methodology and the organization of the thesis.

! Copyright @ 1990-1992 by Ellemtel Telecommunication System Laboratories
Box 1505
125 25 Alvsjo
Sweden
Tel: international extension + 46 8 727 30 00
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1.6.2 Chapter 2: Defining key concepts and terms

The key terms necessary for fluently reading and understanding the thesis
are defined in this chapter. Definitions for concepts such as artificial
intelligence, search methods and the C2DGC problem will be given. These
are standard definitions as it is used in the field of stock cutting and artificial
intelligence research areas and communities.

1.6.3 Chapter 3: Uninformed search methods

The main goal of this chapter is to introduce the reader to search methods.
These methods are very basic and form the building bilocks from which
informed search methods are constructed. Problem solving search methods
are essential for writing algorithms that have to make decisions by finding
sequences of actions that lead to desired states.

1.6.4 Chapter 4: Informed search methods

The concepts introduced in chapter 3 are expanded upon in chapter 4, where
informed search methods are discussed. As the name implies, informed
search methods utilize domain specific knowledge about a problem to guide
a search in the correct direction.

1.6.5 Chapter 5: C2DGC problem solution methods

Existing exact and non-exact C2DGC problem solving methods are
discussed in this chapter. These methods are analyzed and problems are
identified with algorithmic implementations of these methods. A list of
possible problems to investigate is given, and these will be looked at in
further chapters.
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1.6.6 Chapter 6: Algorithmic enhancements

Chapter 6 introduces modifications to the existing algorithmic
implementations of the Wang and modified Wang methods. These
modifications aim at enhancing the performance of these algorithms and also
at eliminating the problems identified in chapter 5. These enhancements
include optimization techniques, beta handling stratégies for the Wang and
modified Wang methods, calculating sharper lower bounds and explicitly

managing upper bounds.

1.6.7 Chapter 7: Numerical fests and results

By solving standard problem instances with the algorithms discussed in
chapters 5 and 6, and implementing the enhancements made in chapter 6,
numerical results will be obtained and these results wili be discussed in

chapter 7.

1.6.8 Chapter 8: Conclusion

The last chapter summarizes the goals set forth for the study and how these
goals were achieved. Furthermore, new problems that arose, which falls
outside of the scope of this study, and opportunities that presented itself
during the study are discussed to outline possible ideas that can be used as
the basis for further study in this field. Lastly, the new research and newly
developed algorithms are highlighted, which shows the contributions of the
study.
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CHAPTER 2: Defining key concepts and terms

2.1 Introduction

In this chapter the key terms and concepts used throughout this thesis are
defined. In section 2.2, the terms artificial intelligence, search methods and
the C2DGC problem are defined. Descriptions of related fields of study within
the cutting and packing (CP) problem environment are also given, with
supplied definitions for each field. Section 2.3 discusses previous research
done in the field of C2DGC problems, and section 2.4 summarizes the
contents of the chapter.

2.2 Defining key concepts

if the title of this thesis is carefully studied, three terms are identified that need
to be defined. The first, and most obvious, is the term artificial intelligence.
Secondly, the term search methods are described and lastly the C2DGC
problem is defined.

2.2.1 Artificial intelligence

Winston defines the concept of artificial intelligence very broadly, and states
that it is “the study of ideas which enable computers to do things that make
people seem intelligent” and continues in stating “the central goals of artificial
intelligence are to make computers more useful and to understand the
principles which make intelligence possible” (Winston, 1977:1).

Although it is a general definition, the idea of using artificial intelligence as a
problem-solving tool becomes apparent when Winston's description of the
concept is considered. This attribute of artificial intelligence provides a
means by which cutting problems may be solved.

11
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An in-depth definition can be found in the book a Modermn approach to
artificial intelligence by Russel and Norvig (Russel & Norvig, 1995:4), in
which they state that there are two major paths taken when defining artificial
inteliigence; the first being thought processes and reasoning, whereas the
second deals with behaviour.

In short, Russel and Norvig (Russel & Norvig, 1995:5) divide the definitions
into the two above-mentioned categories. These two categories will then be
subdivided, each into two more categories, which will then form four basic
definitions:

2.2.1.1 Thought processes and reasoning

They state that where thought processes and reasoning are concerned,
systems can be developed that think like humans and systems that think

rationally.

In this category a few definitions have been introduced by different authors,
some of the best-known being: “The study of mental faculties through the
use of computational models.” (Charniak and McDermott, 1985) and “The
exciting new effort to make computers think... machines with minds, in the
full and literal sense.” (Haugeland, 1985).

2.2.1.2 Behaviour

Furthermore, Russel and Norvig (Russe! & Norvig, 1995:5) distinguish
between systems that act like humans and systems that act rationally.

Once again reference has been made to different authors’ definitions, which
reads: “The art of creating machines that perform functions that require
intelligence when performed by people.” (Kurzweil, 1990) and “A field of
study which seeks to explain and emulate intelligent behaviour in terms of
computational processes.” (Schalkoff, 1990).

12
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2.2.2 Search methods

Search methods are universal problem solving mechanisms, used in the field
of artificial intelligence. The steps required to solve problems that are
addressed by search methods, which include cutting stock problems, are not
known in advance, and have to be determined by a systematic trial-and-error
exploration of alternatives (Korf, 1996:1).

The alternatives generated by the trial-and-error process, can be viewed as
part of the state space, which consists of an initia! state, the alternative
states, and a goal state. The problem is therefore reduced to reaching the
goal state from the initial state. For this reason, searches undertaken by
search methods are often referred to as state space searches (Bundy,
1997:115).

Two forms of search methods that are useful in the study of cutting problems
are uninformed and informed search methods.

2.2.2.1 Uninformed search methods

Uninformed search methods, aisc called brute-force or blind search
methods, require no domain specific knowledge to function (Korf, 1996:1).
Although uninformed search methods are an impractical tool for solving
nontrivial problems (problems where the state space is too large to consider
every possibility), it serves as an invaluabie tool in describing the basic
ideas behind informed search methods (discussed in chapter 4).

2.2.2.2 Informed search methods

Informed search methods, also referred to as heuristic search methods,
implement rules that expand nodes in the state space that are most likely to
lead to an acceptable problem solution. These rules, used for decision-
making, are based on domain specific knowledge of the state space.
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Unfortunately, like all rules of discovery and invention, heuristics are fallible.
A heuristic' is only an informed guess of the next step to be taken in solving
a problem (Luger & Stubblefield, 1993:116-117).

2.2.3 The C2DGC problem

The C2DGC problem belongs to a well-known family of problems called CP.
These problems are natural combinatorial optimization problems, as found in
the fields of Computer Science, Industriai Engineering, Logistics,
Manufacturing, etc. (Cung et al, 2000:186).

The C2DGC problem forms that part of the CP problem domain where
rectangles are cut from a rectangular stock sheet, with the aim of minimizing
the total trim loss (waste material) generated by the cutting process. The size
of the problem domain is fortunately reduced by two constraints that are
placed on feasible cuts that have to be explored as possible solutions. The
first constraint is an upper bound assigned to every demand rectangle, which
is the number of times a certain demand rectangle type can be cut from the
stock sheet. The second constraint is that all cuts have to be guillotine cuts,
which are made from the one edge of the stock sheet to the other and are
parallel to the edges of the stock sheet (Daza et al, 1995:633).

Figure 2.1, adapted from Christofides and Hadjiconstantinou (Christofides &
Hadjiconstantinou, 1995:22), illustrates the difference between a guillotine
and a non-guillotine cutting pattemn. In the figure, pattern (a) is a guillotine
cutting pattern because all cuts are edge-to-edge cuts and parallel to the
edges of the stock sheet or successively produced sheets. Pattern (b), on
the other hand, does not conform to the definition of a guillotine cutting

pattern.

! Refer to chapter 4, section 4.1, page 32, for information pertaining to heuristics
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Figure 2.1: Two cutting patterns, where (&) is & guillotine
pattem and (b) is not.

The cuts in figure 2.1 (a) are numbered in the order in which they could be
made, although other sequences are obviously also possible.

Due to the combinatorial characteristics of the C2DGC problem, it is possible
to represent the search space as a formal tree structure, which integrates
seamlessly with artificial intelligence search methods. Arificial intelligence
search methods offer the capability of constructing these tree-like search
spaces facilitating searching through it for possible optimal solution patterns.

2.2.3.1 Mathematical formulation

Let S be a stock sheet of length £ and width %) and let R be a set of
demand rectangles of type r; {i = 1, 2, 3, ... n), where each type will have a
demand constraint of b;, a length of £ and a width of w;. From this, the
guillotine cutting pattern with a minimum frim loss must be determined that
uses no more than b; replicates of demand rectangle r; (i =1, 2, 3, ... n)
(Wang, 1983:574). The problem statement, as adapted from Wang (Wang,
1983:574), can also be stated in the form

Maximizes Tis; x; fiw;
Subjectto 0<Sx;S b

XiiﬂthBI’ (f=1, 2, ...,?!)
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where x; is an integer indicating the number of times the demand rectangle
r; appears in the guillotine cutting pattern G under consideration.

2.2.3.2 Problems related to the C2DGC problem

As noted in chapter 1, rigorous research efforts in the field of stock cutting
have led to the emergence of a myriad of modeling areas. These will shortly
be described, as knowledge obtained from research in some of these fields
will be used and referred to in this thesis.

> Assortment problem: Assortment problem solutions intend to
minimize the number or area of stock sheets used by optimally
placing given demand rectangles. Solutions to the problem are
applied in the industry, for example solving cutting stock problems of
rectangular steel bars (Li & Tsai, 2001:1245-1246). According to
Baker (Baker, 1999:84), it is not possible to place all required
demand rectangles on a single stock sheet, and therefore solution
algorithms have to decide which rectangles to hold and which to use
to reach optimal cutting patterns spanning two or more stock sheets.

» Bin-packing: Bin-packing probiem solutions attempt to partition or
pack a certain number of objects into a minimum number of bins
(Chao et al, 1995:133). Problems where all the objects must be
loaded into the bin are differentiated from those where some objects
might be left out of the solution. The first type of problem is referred
to as the three-dimensional bin-packing problem and the second
type is known as the three-dimensional knapsack problem (Bortfeldt
& Gehring, 2001:143).

» Knapsack problem: The knapsack problem often presents itself as a
relaxation methodology in one-, two-, and three-dimensional cutting
and packing problems. When given demand rectangles need to be
cut from a stock sheet, or objects need to be optimally placed in a
container or bin, the knapsack approach may be used to help solve
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the probiems (Fayard & Zissimopoulos, 1995:618). This problem
can be viewed as a bin-packing problem when some additional
constraints are placed on the value assigned to each object
(Kendall, 2000:12).

» Nesting problem: The fwo-dimensional nesting problem concerns
itself with the optimal placement of iregularly shaped stencils onto
an irregularly shaped surface. The problem 'usually presents itself in
the fabric and clothing industry. Some constraints are placed on the
stencil placement, for instance on the allowable degrees of stencil
rotation and on the area of placement if the fabric contains any
patterns (Heckmann & Lengauer, 1998:473).

2.3 Previous research done in the field of 2DGC problems

Numerous approaches have been proposed to solve both constrained and
unconstrained two-dimensional guillotine-cut cutting stock probiems (2DGC),
and the techniques used range from dynamic programming and linear
programming to recursive procedures, incremental development algorithms
and artificial intelligence search methods.

According to Cung (Cung et al, 2000:186), the study of cutting problems
started nearly sixty years ago, but during the last ten years a renewed interest
in the field has sparked the imaginations of numerous researchers and it has
led to the development of new problem solving models.

The unconstrained two-dimensional guillotine-cut cutting stock (U2DGC)
problem was extensively studied by Gilmore and Gomory (1965, 1967) and
Beasley (1985). They implemented dynamic programming and linear
programming methods to solve the U2DGC problem, where the number of
times a specific demand rectangle is allowed to be used in the cutting pattern
is unlimited. Herz (1972) solved the same problem by using recursive search
procedures. Hinxman (1976) and later Morabito, Arenales and Arcaro (1992)
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used the problem reduction methodology to solve unconstrained cutting
problems.

Christofides and Whitlock (1977) used the results obtained by Gilmore and
Gomery (1967) and a classical transportation problem to devise an exact tree
search algorithm to solve the C2DGC problem. This soiution implemented
dynamic programming procedures to solve the constrained cutting problem.
Wang (1983) propeosed and implemented two incremental development
algorithms to solve the C2DGC problem, and Vasko (1988) and Oliveira and
Ferreira (1990) improved upcen secme aspecte cf these algorithms.

Viswanathan and Bagchi (Viswanathan & Bagchi, 1993:768) state that
artificial intelligence search methods and their application to constrained
cutting problems have been studied exiensively by Nilsson (1980), Bagchi
and Mahanti (1983), Peari (1984) and Sen and Bagchi (1989). Viswanathan
and Bagchi proposed the use of the best-first search method to solve the
C2DGC problem. Furthermore, Held and Karp (1971) proposed an
implementation of the travelling salesperson problem to solve the C2DGC
problem.

2.4 Summary

This chapter introduced the reader to the C2DGC problem, and also
discussed the basic principles behind artificial intelligence search methods.
Chapter 3 continues with an in-depth study of uninformed search methods,
which lays the foundation for the discussion of informed search methods in
chapter 4. As was stated in section 2.2.3, artificial intelligence search methods
are ideally suited for searching through C2DGC search spaces (represented
as tree structures).
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CHAPTER 3: Uninformed search methods

3.1 Introduction

This chapter deals with uninformed artificial intelligence search methods.
These methods are discussed by explaining how to implement them.
Furthermore, the methods are evaluated with certain criteria as listed in
section 3.2. Section 3.3 introduces and discusses uninformed search
methods, and sections 3.4 and 3.5 conclude the chapter with final thoughts

and a summary of the chapter content.

3.2 Evaluating different search methods

A simple yet effective criterion to measure the effectiveness and efficiency of
search methods has been proposed by Russel and Norvig (Russel & Norvig,
1995:73). The maijority of work in search methods has gone into finding the
most effective search method for a given problem. To aid researchers in the
evaluation process of the different search methods, the following four criteria
can be used:

» Completeness: is the method guaranteed to find a solution when one
exists for the problem?

> Time complexity. how long does it take to find a solution?

» Space complexity: how much memory does it need to perform the
search?

» Exactness: does the strategy find the optimal solution when there are

several different solutions?

The results obtained for these four measures when the method is tested, are
all important factors to consider when deciding on a search method for a
specific problem. If, for instance, a method’s time complexity is acceptable
(the method finds a solution within an acceptable period of time) but its space
complexity is infeasible (the method cannot find a solution because not
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enough physical memory is available) for many problem instances, the
method is not an acceptable tool for solving the probiem. Furthermore, it can
be logically deduced that if a method is exact it is also complete, but if it is
complete it is not necessarily exact (Russel & Norvig, 1995:73).

3.2.1 Asymptotic notation

According to Preiss (Preiss, 1999:36-37), P. Bachman devised a notation in
1982, which describes the asymptotic behaviour of functions. This notation
later became known as the big oh (O) notation. Big oh notation is used to
describe the asymptotic upper bound of functions, with omega notation
describing a iower bound. The big oh notation will be used for the evaluation
of worst-case time-complexities of search methods.

y=fin)
400 - fon) = an¥

Fn)=8n+ 128

0 ~ T T T T 3
] 5 18 15 0 25

| Figure 3.1: Showing thet fr)) = 8n+128 = O(n?) |

The following defines big oh notation mathematically:
Consider a function f(n) that is non-negative for all integers n =20. It is said

that “f(n) is big oh g(n),” which is written as f{n) = O(g(n)), if there exists an
integer ng and a constant ¢ > 0 such that for all integers n =ng, f(n) <cg(n).
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Preiss (Preiss, 1999:36-37) gives an illustrative example that demonstrates
the functioning of big oh. When the function f{n) = 8n + 128 is considered, it is
shown in figure 3.1 that f(n) is non-negative for all integers n =0. To show that
the asymptotic complexity of the function f(n) is O(n?), it is necessary,
according to the definition of big oh, to find an integer np and a constantc >0
such that for all integers n =ny, f{n) <cn®. It does in fact not matter what these

constants are, as long as they exist.

Working with the function f(n) mentioned above while the value of 1 is chosen
for the constant ¢, we have:

fin) <cn® - 8n+128 =n’
- 0 <n’°-8n-128
- 0 <(n—16)(n+8)

Since (n+8) > 0 for all values of n =0, it can be deduced that f(n) <cn?® if
(n - 16) =0. Therefore ny can be chosen as 16. It is thus clear that for ¢ = 1
and np = 186, f(n) <cn? for all integers n =ne. From this follows that f(n) is
O(n?). It is indeed possible to further prove a stronger result for this function
f(n) so that f(n) = O(n).

3.3 Types of uninformed search methods

The following is a discussion of different types of uninformed search methods.
The methods are evaluated according to the four criteria described in section
3.2

3.3.1 Breadth-first search

Barr (Barr, 1981:47) defines breadth-first search as a “method that expands
nodes in the order of their proximity to the start node, measured by the
number of arcs between them”. In other words, the start node is expanded
first, and then all nodes expanded from the start node are expanded next,
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and so on. All nodes on the n’th level of the search tree are expanded before
the algorithm moves on to the level n+1.

Breadth-first search is therefore a strategy that systematically searches
through all possible nodes on level one of the search tree, and only then it
moves on to the second level. Figure 3.2 shows how breadth-first search
expands nodes in a simple binary tree. When a solution for a problem exists,
breath-first search will always find the shallowest goal node first. In terms of
the four criteria (according to section 3.2, page 19), breadth-first search is
complete, and it is exact provided the path cost is a non-decreasing funstion
of the depth of the node (Russel & Norvig, 1995:74).

©

Figure 3.2: The order of node generation for breadth-first search

According to Bundy (Bundy, 1997:27), the breadth-first search method is
admissible’, because of the fact that the strategy is guaranteed to terminate
with the minimal cost path to the goal node.

At this point it might seem as if breadth-first search is indeed a practical and
acceptable method for problems that require state-space searches. When

! An admissible method guarantees to find 2 solution path of minimal cost for any problem instance if
any solution path exists. Chapter 4, page 50, introduces a formal definition of the concept of
admissibility.
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the time and space complexity of this method is evaluated, however, their
impeding influences are revealed. The main reason for excessive time and
memory usage is the branching factors encountered by almost all non-trivial
problems. This can be illustrated with a state space where each state can be
expanded to yield b new states, where b is referred to as the branching
factor. Suppose now that the problem’s solution has a solution depth of d,
then the maximum number of nodes that will be expanded before the
solution is reached, is:

G=1+b+b?+b*+. . +b" (3.9)

The result obtained from equation 3.1 is the maximum number of nodes that
could be expanded, but the possibility to find the goal node before reaching
the last node of the final layer is high. This implies that the actual number of
expanded nodes will most likely be less than G. The asymptotic time and
space complexity of the breadth-first search algorithm can therefore be
expressed as O(b%).

According to Ciesielski (Ciesielski, 2001), under some quite reasonable
assumptions the space and time complexity at different depths of the search
tree for a problem with a branching factor of 10 can be summarized as in
tabie 3.1. The branching factor value of 10 represents that of a reasonable
C2DGC problem'’s branching factor. The depth of a search tree for a C2DGC
problem can easily reach a depth of 10 or more, and table 3.1 shows that at
least 1 terabyte of memory and 128 days of processing time is required to
solve it at depth 10. The values for table 3.1 were caiculated assuming that
100 bytes of memory are used for storing a single node and that 1000 nodes
can be expanded per second.
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Table 3.1:Time and space complexity examples
for a problem where b=10

£* OPEN and CLOSED are lists */
OPEN = Start node, CLOSED = empty.

‘While OPEN is not empty do

{
Remove leftmost node from OPEN, call it X

X is agoal
return Success.
else

{
Generate children of X

Put X on CLOSED

Elimintate the children of X already on
OPEN or CLOSED

Put remaining children of X on the right
end of OPEN

Figure 3.3: & breadth-first search algorithm

To conclude the discussion on breadth-first search, a general breadth-first
search algorithm is given in figure 3.3.
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3.3.2 Uniform-cost search

A slightly modified version of the breadth-first search algorithm results in the
uniform-cost search method. According to Barr (Barr, 1981:47), uniform-cost
search will always find the “cheapest path from the start state to the goal
state.” The cheapest path implies that the solution will not necessarily find
the shortest solution path, but the least-cost soiution path. An important
factor for uniform-cost algorithms is that a nonnegative cost must be
associated with every path (arc) joining two nodes in a search tree. The
algorithm produces a pure breadth-first search when the costs associated to
all nodes are equal. Russel and Norvig (Russel & Norvig, 1995:75) depict an
instance of the systematic functioning of the uniform-cost strategy graphically
as in figure 3.4.

s ; )
1 5 15
A B C
11 10
a{4) G
(b
Figure 3.4: (&) The state space. (b) Progression

of the search, 2ach node labeled
with a value g(n)

R —
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The figure shows the state space in (a), with the cost of each path (arc)
associated with it. The problem is to traverse from the start state S to the
goal state G and to minimize the path cost. As shown in (b) in figure 3.4, the
first iteration of the algorithm expands the initial state, yielding the nodes A, B
and C. The costs of these nodes are evaluated and the least-cost node,
which is A in this instance, is expanded next. Once A is expanded, the path
SAG is generated with a cost of 11. Since SAG represents a path from the
start state to the goal state, it is a solution path, but is not yet recognized as
the best solution because nodes B and C have not yet been considered for
expansion. The next step is to expand node B, which generates SBG with a
cost of 10. The only incomplete path left is SC with a path cost of 15 before
expansion. Therefore, the path SBG is the cheapest possible solution path
and is therefore the optimal solution.

The uniform-cost search method is also known as the Dijkstra single-source
shortest-path algorithm. The method is complete and it also guarantees that
whenever a node is expanded, a lowest-cost path to that node has been
found (exactness) provided the path cost is a non-decreasing function of the
depth of the node (Russel & Norvig, 1995:76). The worst-case asymptotic
time complexity of uniform-cost search is O(b*™), where ¢ is the cost of an
optimal solution and m is the minimum cost arc within the state space. The
algorithm unfortunately requires the same order of memory as breadth-first
search algorithms to solve problems, in other words O(b%). (Korf, 1996:7).

Figure 3.5 gives a uniform-cost algorithm, which closely resembies the
breadth-first search algorithm in figure 3.3. One difference is that whenever a
new node is selected that will be expanded, the algorithm does not select the
node sequentially. It directs the selection process by evaluating the costs of
the currently expanded child nodes, and selecting the minimum value,

In the uniform-cost algorithm given below, the cost of the path from node X to
node X; is denoted by c(X,Xs). The cost of a path from the start node to any
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node X (or in other words the cost of node X) is denoted by g(X). The cost of
the start state will be set to zero.

™ OPEN and CLOSED are lists */

OPEN = Start node, CLOSED = empty.

‘While OPEN is not empty do
{

Select the node with the minimum cost from
OPEN, call it X.

IFX 15 a goal node
refum success.

else

{
Generate children of X
Put X on CLOSED
For every successor node X of X, compute
the cost of X5 as gs) = g(X) + ¢ 3LXg)
Place all successor nodes on the OPEN
list.

}

}

Figure 3.5: A uniform-cost search algorithm

3.3.3 Depth-first search

Luger and Stubblefield (Luger & Stubblefield, 1993:89-96) state “depth-first
search goes deeper into the search space whenever this is possible. Only
when no further descendants of a state can be found are its siblings
considered.” Depth-first search methods implement a strategy known as
backtracking. This strategy starts its search at the start state (usually the root
node) and pursues that path until it reaches a goal node or a dead end in the
state space. If the algorithm determines that a goal node has been reached,
it terminates and retums the solution path. Otherwise it backtracks to the
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most recent node in the path that has unexamined siblings and continues
down one of those branches.

®

RS

Figure 3.6: The order of node generation for depthfirst search

The advantage of depth-first search is that it requires much less memory
than breadth-first search does. The amount of memory that is required
increases linear to the search depth, as opposed to exponentially for breadth
first search. This is easily explained, as only those nodes that are in the path
from the root node to the current node need to be stored. The asymptotic
space-complexity is therefore favorable and can be expressed as O(b.d)
(where b is the branching factor for the problem and d is the depth of the
maximum-depth node). Another way to express the space-complexity is that
the method only requires storage space for b.d nodes, where b is equal to
the branching factor for the problem and d is equal to the depth of the
maximum-depth node. Time-complexity, on the other hand, still remains a
problem as the same number of nodes is expanded for depth-first search as
was expanded for breadth first search. The only difference is the order in
which these nodes are expanded, and the asympiotic time-complexity will
therefore also be O(b%. One of the main disadvantages of depth-first search
is that it may not terminate on an infinite tree and simply go down the
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leftmost path forever (Korf, 1996:8). Depth-first search is therefore neither
exact nor complete (Russel & Norvig, 1995:78).

To conclude the discussion on depth-first search, a general depth-first
algorithm is given in figure 3.7.

{* OPEN and CLOSED are lists */
OPEN = Start node, CLOSED = empty.

‘While OPEN is not empty do

{
Remove leftmost node from OPEN, call it 3

FXis agoal
return success.
else
{
Generate all successors of X.
Put X on CLOSED.
Elminate any successors that are already on
OPEN or CLOSED
Put remaining successors on LEFT end
of OPEN

Figure 3.7: A depth-first search algorithm

3.3.4 Depth-limited search

To solve the depth-first search’s problem of getting stuck on an infinite path
in a search tree, depth-limited search was proposed. This algorithm places a
bound on the maximum depth the algorithm is allowed to search to, therefore
preventing all nodes on jower levels than the bound in the graph to be
expanded. This leads to a search method that neither guarantees to find a
shortest path to a solution if one exists, nor to find a solution even if one
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exists (Bundy, 1997:33). Therefore the method is neither complete nor exact.
The time complexity for the method is O(b% where b is the branching factor
and d is the depth limit. The space complexity is O(b.d).

3.3.5 lterative-deepening depth-first search

According to Ciesielski (Ciesielski, 2001), iterative-deepening search
performs a depth-first search of the state space with a depth-bound of 1. If
this search faiis to find a solution for the problem, it continues with a depth-
first search of the search space with depth-bound 2. This continues with the
depth-bound increased for every iteration.

It might seem, at first glance, as if the iterative-deepening strategy is
inefficient, because when the depth-bound is increased from level d to level
d+1, the search is repeated for all levels up to level d. However, since typical
search spaces grow exponentially with the increase of the search depth d,
the search on level d+7 dominates the total search time. In fact, iterative-
deepening performs very well where asymptotic time (O(b%) and space
(O(b.d)) complexities are concemed (Bundy, 1997:61). Furthermore, the
method is complete and exact (Russel & Norvig, 1995:79-80).

3.4 Final thoughts

Luger and Stubblefield (Luger & Stubblefieid, 1993:99) state that all the
uninformed search strategies, as discussed in this chapter, namely breadth-
first, uniform-cost, depth-first, depth-limited and iterative-deepening search
methods, can be shown to have worst-case exponential time complexities.
This fact is true for all uninformed search methods, and the only searching
approaches that reduce this complexity, employ heuristics to guide the
search. Therefore, chapter 4 introduces informed search methods that
implement heuristics to guide the search more effectively.
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3.5 Summary

Uninformed search methods have now been discussed and evaluated with
the set criteria. The next chapter deals with informed search methods that
expand upon uninformed search methods.
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CHAPTER 4: Informed search methods

4.1 Introduction

George Polya (Polya, 1945) defines heuristic as “the study of the methods
and rules of discovery and invention”. Heuristics form the basis of informed
search methods and according fo Bundy (Bundy, 1997:52), informed search
methods is an advanced technique to do state space searches, with the state
space normally represented in the form of a graph or tree.

The word heuristic comes, in fact, from the Greek word heuriskein, meaning
“to discover”. It is also the origin for the word eureka, derived from
Archimedes' reputed exclamation heurika (| have found”), uttered when he
had discovered a method for determining the purity of goid.

As mentioned in chapter 2, heuristics, like all rules of discovery, are fallible.
Heuristics are often based on previous experience or intuition, and therefore it
leads to an informed guess of the next step that should be taken to solve a
specific problem. Even though heuristics cannot predict the exact branching of
the state space tree, it can drastically improve the performance of the search
methods (Luger & Stubblefield, 1993:117).

This chapter deals with different heuristic search methods in section 4.2 and
section 4.3 summarizes the contents of the chapter.

4.2 Types of informed search methods

The following is a discussion of different types of informed search methods.
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4.2.1 Generate-and-test

In the literature conceming search methods, various authors voice different
opinions pertaining to the generate-and-test search method. Barr (Barr,
1981:30) states that the generate-and-test method merely generates new
states in the state space and then tests them against a specific goal state.
This translates to an uninformed search method that utilizes no information
concerning the state space. Rich and Knight (Rich & Knight, 1991:64), on the
other hand, explain that only in its most basic form can the generate-and-test
-method be seen as an uninformed search method. The method can be
implemented by using the following algorithm:

> Step 1: Generate a possible solution: Some methods require that a
path be generated from the start state, and for other probiems this
means generating a particular state in the state space;

> Step 2: Test to see whether the generated state is indeed equal to
the goal state; and

> Step 3: If, at this stage, a solution has been found, terminate the
algorithm. Otherwise return to step 1.

In its most basic form, the generate-and-test algorithm is an exhaustive
depth-first search algorithm, which generates all possible states of the
search tree and tests them. The method can also generate random
searches, which does not guarantee that a solution wili be found. Random
generate-and-test algorithms are often referred to as British Museum
algorithms, which is a reference to a method for finding an object in the
British Museum by wandering around in random directions (Rich & Knight,
1991:64).

Up to this point, the generate-and-test algorithm still presents itself as an
uninformed search method, but by implementing a general purpose heuristic
such as the nearest neighbor heuristic, some states that seem unlikely to
lead to a solution, are not expanded further. Researchers studying the
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traveling salesperson problem, where the algorithm selects a city that has
not been visited and is closest to the current city, devised the nearest
neighbor heuristic. The nearest neighbor heuristic is similar to the heuristic
implemented by best-first search algorithms. This conforms to the idea of
informed search, and therefore such a generate-and-test search method is
regarded as an informed search method (Rich & Knight, 1991:41).

4.2.2 Hill climbing

Winston (Winston, 1992:70) describes the classical hilt climbing search
method intuitively by stating that search efficiency may improve spectacularly
if there exists a way to order the branches under each node so that the most
promising ones are explored. In some situations, measurements can be
made to determine a reasonable ordering. Some examples are:

» The temperature in a room is uncomfortably hot. The thermostat in
the room can be used to change the temperature, but the markings
on it have been removed, leaving it up to the user to choose which
way to move the thermostat switch; and

> The television’s picture has deteriorated over a period of time. The
brightness, color, tint and tuning controls have to be adjusted to
obtain a better picture.

Both of these problems conform to an abstraction in which there are some
adjustable parameters and a way of measuring the performance associated
with any particular set of values for the parameters. Hill climbing is therefore
a depth-first search method which implements a heuristic that orders the
alternatives at each decision point. Movement proceeds through the
alternative that offers the best improvement fo the situation in one step. The
required measurements may be absolute or relative, precise or appropriate
(Winston, 1992:70-73).
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Figure 4.1: (&) The foothiil problem. (b) The ridge problem. () The plateau problem.

Bundy (Bundy, 1997:54) writes that hill climbing is a search method that is
used to determine the maximum or minimum value of an evaluation function.
The method considers the local neighborhood of a node, calculates the
maximum or minimum values for all the neighbors and chooses those nodes
with the largest or smallest vaiues. Hill climbing differs from other methods
that use evaluation functions in that it does not implement backiracking. It
rather follows one path down the search tree and does not retain previous
unexpanded nodes that were promising. This property is what makes the
method computationally very efficient, but also explains why it is not
guaranteed to find a solution for all problem instances.
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Winston (Winston, 1992:72-74) states that the foothill, ridge and plateau
problems are the three main pitfalls that hinder hill climbing and illustrates it

as in figure 4.1.

4.2.2.1 The foothill problem

The source of the foothill problem is secondary peaks in the state space,
which causes hill climbing to find only locally exact solutions. Unfdrtunately,
secondary peaks usually divert the search in wrong directions, preventing
the discovery of global axact solutions. This situation is depicted in figure
4.1 (a).

4.2.2.2 The ridge problem

A more subtle and frustrating problem is the ridge problem, shown in figure
4.1 (b). The contour map shows that each decision made by the hill
climbing method moves the current position across contour lines, even
though no local or global maximum is near the current position. Increasing
the number of search directions might help solve the problem.

4.2.2.3 The plateau problem

The plateau problem occurs when mostly flat area in the state space
separates the peaks. The local improvement operation fails to yield
meaningful paths and all standard-step probes leave the performance
unchanged. This will ultimately lead to a situation where no solution is
offered by the method, as depicted in figure 4.1 (c).

Figure 4.2 shows a general implementation of the hill climbing search

method. The main difference between the depth-first and hill climbing search
methods are indicated by the text written in italic in figure 4.2.
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/* OPEN and CLOSED are lists */
OPEN = Start node, CLOSED = empty.

‘While OPEN is not empty do

{
Remove lefimost node from OPEN, call # X

IfXis a goal
return success.
else

{

. Generate all successors of X.
Put X on CLOSED.
Eliminate any successors that are already on
QPEN or CLOSED.
Sort the new successors by the estimated
distances between these nodes and the
goal

Put remaining successors on LEFT end
of OPEN.

Figure 4.2; A hill climbing search algorithm

4.2.3 Dynamic hill climbing

Yuret and De la Maza (Yuret & De la Maza, 1993:2) recognize the same
three problems encountered by basic hill climbing, but offer solutions to the
first two, namely the foothill and ridge problems. The plateau problem,
though, is referred to as a hopeless one by Yuret and De la Maza, because
the state space offers no information about its structure. In this case, any
random search method will perform as well as any other heuristically
informed method. A dynamic hill climbing method is proposed, which
implements measures that attempt to resolve the effects of the foothill and
the ridge problems.
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4.2.3.1 Dynamic coordinate frame

Basic hill climbing techniques usually implement static coordinate frames,
with which movement is restricted to, for instance, the four basic compass
directions: north, west, south and east. As shown in figure 4.1 (b), these
directions may sometimes all lead to worse states. One solution to the ridge
problem might be, as mentioned in section 4222 (page 36), to increase
the number of search directions to also include combinations of search
directions for instance. northwest, northeast, southwest and southeast. This,
unfortunately, presents the problem of combinatorial explesicns of search
states that is difficult or impossible to resolve. Dynamic hill climbing, on the
other hand, adopts a dynamic coordinate frame approach. This implies that
whenever the basic hill climber gets stuck, a more appropriate coordinate
frame is automatically calculated. The process leads to a situation where
the number of search directions remains constant, but these directions are
only changed when necessary (Yuret & De la Maza, 1993:2-3).

4.2.3.2 Exploitation of local optima

A possible measure against the foothill problem is to consider the
advantage of individual optimal solutions as an advantage in the selection
procedure. This implies that as in many genetic algorithms, whenever a
local optimum is reached its chance of survival surpasses that of other
possible solutions. The goals of diversity-based strategies are to protect the
search from early convergence and to expiore the state space as
homogeneously as possible. In practice, these strategies usually take into
account the fitness and diversity of locally optimal solutions (Yuret & De la
Maza, 1993:3).
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4.2.4 Beam search

Beam search employs a simple heuristic to alter the breadth-first search
method. The search still progresses in a level-by-level fashion through the
search space, but only the best m nodes are considered for further
exploration and the rest of the nodes on the level are ignored. Each node on
a certain level is evaluated with a chosen heuristic evaluation function and
the m nodes with the lowest cost are then chosen and the rest is ignored.
Beam search ensures that the number of nodes explored remains
manageable, even if the branching factor is large and the search needs to
probe deeply into the search tree. This search method does not, however,
ensure that a solution for the problem instance will be found even if one
exists, or that if a solution is found that it will be optimal. As with basic hill
climbing, beam search does not implement backtracking, but rather than
following only the one most promising path down the search tree like hill
ciimbing does, beam search follows the m most promising paths. Figure 4.3
illustrates the first few steps of how beam search expands a search tree
where the beam width m is 2. The values next to the nodes indicate the cost
associated with each node (Luger & Stubblefield, 1993:147).

é(lzj) (10.4) Cbaz) d)(ms) (bazz) @9 6(105)

OO Do e Qoo

Figure 4.3: The order of node generation for beam search
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{* OPEN and CLOSED are lists */

OPEN = Start node, CLOSED = empty.

Remove leftmost node from OPEN, call it X
IfX1s agoa
return success.
else
{
Generate children of X
Put X on CLOSED.
Elminate children of X already on OPEN or CLOSED
Put remaining nodes on OPEN.

)
Evaluate the costs of all nodes on OPEN, keep only the

m best nodes on OFEN.
Delete the rest of the nodes on OPEN.

While OPEN is not empty do
{
ForCount=1tom
{
Remove lefimost node from OPEN, call it X.
FXisagoal
refurn success.
else

{
Generate chidren of X
Put X on CLOSED.
Eliminate children of X already on OPEN or CLOSED
Put remaining nodes on right end of OPEN.

}

Evaluate the costs of all nodes on OPEN, choose only the
m best nodes and put these on the lgft end af OPEN.
Delete the rest of the nodes on OPEN.

}

Figwre 4 4: A heam search algorithm

To conclude the discussion on beam search, an algorithmic implementation
of the method is displayed in figure 4.4. The algorithm closely resembles a
breadth-first search algorithm, except that it only chooses the m best nodes

40

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems




on every level of the search tree to explore further, whereas breadth-first
search explores all possible paths on any level of the search free.

4.2.5 Best-first search

Best-first search differs only slightly from basic hill climbing. In best-first
search methods, the focus shifts after each cycle to the best node found
globally. Basic hill climbing, on the other hand, moves its attention to the best
node found locally, meaning that forward motion is always generated through
the seemingly best descendant. Best-first search generates forward motion
from the best node so far, no matter where it is located in the partial
developed search tree (Winston, 1992:75).

The best-first search method uses an estimate vaiue to determine the next
node that should be expanded. It is calculated using a heuristic evaluation
function h that estimates the minimum path cost from the current node to the
goal. The cost of node n is dencted as h(n).

Figure 4.5, adapted from Rich and Knight (Rich & Knight, 1991:74), shows
the first few steps for the best-first search procedure. Initially, only the root
node (node 0) is part of the state space, therefore it will be expanded first.
This expansion yields nodes 1, 2 and 3, with respective costs of 3, 6 and 1.
These values represent the estimated costs of reaching a goal node from the
current position (h(n)). This number must be minimized, and if nodes 1, 2
and 3 are analyzed, node 3 is found to have the minimum cost. Therefore
node 3 is expanded next and the same procedure is followed until a goal
node is found.
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Figure 4.5: The order of node generation for best-first search

Rich and Knight (Rich & Knight, 1991:74) concludes their discussion on best-
first search by stating that a bit of depth-first search is done at the most
promising node in the state space. Eventually, if a goal node is not found, the
current branch will start to look less promising than one of the top-level
branches that had previously been ignored. The now more promising,
previously ignored branch will be explored. The old branch is not forgotten
however, and its last node is placed in the set of generated but unexplored
nodes. The search can return to it whenever all the others get bad enough
that it is again the most promising path.

A general algorithm for the best-first search method is given in figure 4.6.
The algorithm displays similarities to that of the basic hill climbing atgorithm,
with two differences. The first is that for every iteration the lowest cost node
in the list OPEN is placed in X and not the leftmost node in the list. Secondly,
the newly generated successors of the current node is not sorted, but merely
placed in the OPEN list.
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f* OPEN and CLOSED are lists */
OPEN = Start node, CLOSED = empty.

‘While OPEN is not empty do

{
Remove lefimost node from OPEN, callt X

IFXis agoal
refurn success.
else

{

Generate all successors of XL

"Put X on CLOSED.

For every successor node X of X,
compute the cost of X as h(Xg} =
remaining distance to the goal.

Eliminate any successors that are already
on OPEN or CLOSED.

Put remaining successors on OPEN.
Sort the entire OPEN list with least-cost

nodes (fowest h) in the front of the list.

Figure 4.6: Abest-first search algorithm

4.2.6 Branch-and-bound search

A method that can be implemented to generate optimal solutions for problem
instances is called branch-and-bound search. The branch-and-bound
method always keeps track of all nodes that could be expanded next. It
therefore giobally selects the lowest cost node at any given time during the
search process and expands it (generates its children). At this stage it might
seem to be exactly the same as best-first search, but the heuristic evaluation
function used to determine the best node (node to be explored next) differs
slightly from that of best-first search.
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The branch-and-bound method uses the exact cost of every node (the cost
of reaching the current node from the start node) and denotes it as g(n). The
lowest-cost, globally unexplored node is then chosen as the node to be
expanded next. This process repeats until the goal is reached, and because
the lowest cost node is always the one chesen for expansion, the first goal to
be found is likely to be the optimal solution.

To turn likely into certain, all nodes in the OPEN list have to be expanded
until their costs are equal to or more than that of the solution. The reason for
this is that the last step taken to reach the goal may be costly enough to
make another open node able to generate a less costly solution.

Figure 4.7, adapted from Winston (Winston, 1992:83), shows how branch-
and-bound search functions when searching for an optima! solution. The cost
to reach node 7 (a goal node) is 13. Similarly, the cost to reach node 5 is
also 13 and any additional movement along that branch will make it more
expensive than 13. Therefore, node 5 does not need to be expanded further,
because any resulting node including node 5 in the solution, will have a more
expensive cost than node 7.

D

©

(4)
) (6 )
an(7)

Figure 4.7: Node generation considerations for branch-and-bound search
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/* OPEN and CLOSED are hsts ¥/
OPEN = Start node, CLOSED = empty.

While OPEN is not empty do
{
Remove leftmmost node from OPEN, call t X

IfX is agoal
return success.

else

{

Generate all successors of X
Put X on CLOSED.
For every successor node Xg of ¥, compute
the cost of Xz as g(Xg) = cost of reaching
node X from the start node.
Eliminate any successors that are already
on OPEN or CLOSED.
Put remaining successors on OPEN.
Sort the entire OPEN list with least-cost
} nodes (lowest g) in the front of the list.

}

Figure 4.8: A branch-and-bound search aigorithm

A general algorithm for the branch-and-bound search method is given in
figure 4.8.

4.2.7 Branch-and-bound search with underestimates

In some cases, you can improve branch-and-bound search greatly by
guessing the remaining cost of reaching the goal from the current node, as
well as using facts about costs already accumulated to get to the current
node.

The branch-and-bound method with underestimates consists of two
components. The first is the exact cost of reaching the current node n from
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the start node, which is denoted as g(n). The second component is the
underestimated cost from the current node n to a goal node and is denoted
as h(n). Therefore, the following function is used to guide the branch-and-
bound method with underestimates:

f(n) = estimated cost of the cheapest solution through n

_ which can be written as

fin) = g(n) + h(n)

according to Russel and Norvig (Russel & Norvig, 1995:77). Note that by
using underestimates (h(n)) the optimal path will never be overlooked,
because an underestimate of the remaining cost of reaching the goal node
from the current node n added to the exact cost of reaching the current node
n from the start node will always yield an underestimate of the total cost of
reaching the goal. Therefore, if a goal node is reached by expanding the
lowest-cost (underestimated values) nodes repeatedly, no extra work need to
be done after all nodes in the OPEN list have been expanded with a cost of
less than or equal to that of the goal node.

(b(13-4) (129)
(%é) an(s )

a3

Figure 4.9: Node generation for branch-and-bound search with underestimates
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Branch-and-bound search augmented by underestimates determines that a
solution through the nodes 0-2-4-6-7 is optimal. In figure 4.9 the numbers
beside the nodes are accumulated distance (g(n)) plus underestimates of
distance remaining (h(n)). Underestimates quickly push up the lengths
associated with bad solutions. In the example in figure 4.9, fewer nodes are
expanded than would be expanded with branch-and-bound search operating

without underestimates.

A general algorithm for the branch-and-bound search method using
underestimates is given in figure 4.10. The algorithm closely resembles
branch-and-bound search, and the only addition is the inclusion of the h(n)
value when computing the costs of each successor node.

* OPEN and CLOSED are Lists */
OPEN = Start node, CLOSED = empty.

While OPEN 1s not empty do
{
Remove leflmost node from OPEN, call it X

IXisagoal
retum success.
else
{
Generate all successors of X
Put X on CLOSED.
Calculate node costs for each successor Xg of X
by adding the values of g{ X)and h{ X).
Elminate any successors that are already
on OPEN or CLOSED.
Put remaining successors on OPEN.
Sort the entire OPEN list with least-cost
} nodes (lowest g+h={") in the front of the kst.

}

Figure 4.10: A branch-and-bound sesarch algorithm
using underestimates
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4.2.8 Branch-and-bound search using the dynamic programming
principle

A second method to improve the basic branch-and-bound method is by
eliminating portions of the search tree structure. This is accomplished by
ignoring (not expanding) more expensive duplicate nodes that also exist in
other portions of the search space.

Figure 4.11 illustrates this concept. The numbers beside the nodes are
accumulated distances (g{n)). There is ho point in expanding the instance of
node D at the end of S-A-D, because getting to the goal via the instance of D
at the end of S-D is obviously more efficient.

S e

1 38

Figure 4.11: The principal of dynamic programming

This example illustrates a general principle. Assume that the path from a
starting point S to an intermediate point 1 does not influence the choice of
paths for traveling from | to a goal point G. Then the minimum cost from S to
G through 1 is the sum of the minimum cost from S to | and the minimum cost
from | to G. Consequently the dynamic-programming principle holds that,
when a least-cost path from S to G is required, all paths from S to any
intermediate node | can be ignored except the minimal-length path from S to
i
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A general definition of the dynamic-programming principle:

The best way through a particular, intermediate place is the best way fo it
from the starting place, followed by the best way from it to the goal. There
is no need to look at any other paths fo it or from the intermediate place.

A general algorithm for the branch-and-bound search method using the
dynamic-programming principle is given in figure 4.12. Note that this
algorithm does not include underestimates.

/* QPEN and CLOSED are bists */
OPEN = Start node, CLOSED = empty.

While OPEN is not empty do
{ .
Remove lefimost node from OPEN, call it X

IfX 1s a goal
return success,
else
{
Generate all successors of X.
Put X on CLOSED.
Calculate node costs for each successor X of X
as g(X¢) = cost of reaching X from the start node.
Eliminate any successors that are already
on OPEN or CLOSED.
Iftwo or more nodes are identical, delete all
but the least-cost node from OPEN.
Put remaining successors on OPEN.
Sort the entire OPEN list with least-cost
nodes (lowest g) m the front of the hst.

Figure4.12: 4 branch-and-bound search algorithm
using the dynemic programming principle
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4.2.9 The A* search method

The A* search method is a branch-and-bound search, with an estimate of
remaining distance (h(n)), combined with the dynamic programming
principie. If the estimate of remaining distance is a lower bound on the actual
distance, then the A* method is exact and it produces optimal solutions.

4.2.9.1 Admissibility of the A* method

If the A* method is used with an evaluation function in which h{n) (estimated
cost of reaching the goal from node n) is less than or equal to the exact cost
of reaching the goal from node n, for all n, the resulting algorithm is
admissible. Therefore, in the interests of admissibility, the value of h{n) for
all n must never be overestimated (Luger & Stubblefield, 1993:132-133).

Admissible heuristics are by nature optimistic, because they think the cost
of solving the problem is less than it actually is. This optimism transfers to
the f function as well, and therefore if h is admissible, f(n} never
overestimates the actual cost of the best solution through n (Russel &
Norvig, 1995:97).

If an algorithm is admissible, it implies that the algorithm is guaranteed to
terminate with the least-cost solution, if such a solution exists (Bundy,

1997:12).

4.2.9.2 Monotinicity of the A* method

According to Luger and Stubblefield (Luger & Stubblefield, 1993:133), a
heuristic function h is monotone if:
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1. For all states n; and n;, where n; is a descendant of n;,

h{n;} — h{n) <cost(n, ny), where cost{n; ny is the actual cost of

going from state n; to n,.
2. The heuristic evaluation of the goal state is zero, or h(Goal) = 0.

In other words, if a search space is examined that was created with a
monotone heuristic function, the node costs (value of function f) never
decreases as one moves down any given path in the search space (Russe!
& Norvig, 1995:97).

The advantage of a monotone heuristic function is that it guarantees that if
a state is discovered using that heuristic, the same state will not be found
later in the search at a cheaper cost.

4.2.9.3 Informedness and the A* method

For two A* heuristics hs and hy, if hy <h,, for all states n in the search
space, heuristic hy is said to be more informed than hy. Therefore, if a
heuristic h; is more informed than hy, then the set of states examined by h;
is a subset of those expanded by h, (Luger & Stubblefield, 1993:135).

4.2.9.4 Underestimation of h

Consider the situation shown in figure 4.13. According to Rich and Knight
(Rich & Knight, 1991:78) all arc costs are fixed and equal to one. For each
node, fis indicated as the sum of g and h, as is specified by the definition of
the A* method.

The figure depicts a situation where five iterations of an algorithm
implementation of the A* method have been executed and nodes 1, 2, 3, 4
and 5 have been expanded. Initially, though, only node 0 is expanded.
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When the node costs are evaluated, node 1 is identified as the lowest-cost
node with f{(1) = 4, therefore, it is expanded first. Suppose node 1 has only
one successor namely 4, which also appears to be three steps away from a
goal state. If the cost of node 4 is evaluated, it is shown to be f(4) = 5. This
is, in fact, the same as the cost for node 2, but this situation is resolved by
favoring the path that is currently being foliowed. This implies that node 4 is
expanded next and for this problem instance, node 4 aiso has only one
successor namely node 5. Node 5 also appears to be 3 steps away from
reaching a goal node and it becomes clear that unnecessary steps are
being used up and no progress is made. The node cost of node § is,
however, f(5)} = 6. This is greater than that of node 2, therefore the current
path is abandoned and node 2 is expanded next. It is deduced that by
underestimating the value of h, some effort will possibly be wasted in the

search,

Figure 4.13: Underestimation of h

4.2.9.5 Overestimation of h

Now the instance in figure 4.14 is considered. As was the situation in figure
413, the initial nodes’ costs are once again evaluated and node 4 is
expanded. The expansion sequence remains the same as that for the
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instance illustrated in figure 4.13 up until node 5 is expanded. Then, the
node costs of nodes 5, 2 and 3 are evaluated. Node 5 is still the most
promising node and is expanded to yield node 6, which represents a goal
state. The length of the solution path is therefore 4.

Suppose, however, that a direct path exists between node 3 and a goal
state. This path will never be found because h(3) = 5 is an overestimate,
even though it has a path length of only 2.

o (143 Cz_l’)wa) éum

Figure 4.14: Overestimation of h

4.2.9.6 Graceful decay of admissibility

For most real world problems, the only way to guarantee that h is never
overestimated, is to set it to zero. Then, unfortunately, the method
degenerates to basic branch-and-bound search. A corollary to this theorem
does exist, however, which is called graceful decay of admissibility.
According fo Rich and Knight (Rich & Knight, 1991:79), the graceful decay
of admissibility is defined as follows:
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If h is rarely overestimated by more than 8, then an A* algorithm will rarely
find a solution whose cost is more than & greater than the cost of the
optimal solution.

To conclude the discussion of the A* method, a general algorithmic
implementation of the method is given in figure 4.15.

/* OPEN and CLOSED are lists */
OPEN = Start node, CLOSED = empty.

While OPEN is not empty do
{
Remove lefimost node from OPEN, cali it 3

IXis agoal
return success.

else

{
Generate all successors of X.
Put X on CLOSED.
Calculate node costs for each successor Xg of X
by adding the values of g{X;) and h(X).
Elimmate any successors that are already
on OPEN or CLOSED.
Iftwo or more nodes are identical, delete all
but the least-cost node from OPEN,
Put remaining successors on OPEN.
Sort the entire OPEN list with least-cost
nodes (lowest g-+th={) i the front of the list.

Figure 4 15: An A* search algonthm

4.3 Summary

Chapter 4 concludes the discussion on the basic and more advanced ideas
behind search methods. Chapter 5 leads the reader into a detailed discussion
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on different existing exact and non-exact problem solving methods. These
methods are analyzed and problems are identified with algorithmic
implementations of these methods.
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CHAPTER 5: C2DGC problem solution methods

5.1 Introduction

As was mentioned in chapter 1, the C2DGC problem has a wide range of
commercial and industrial application areas. The need for optimal solutions for
the problem arises in the steel, glass, wood and metallurgy industries to name
but a few. Therefore, well-defined, structured, effective, efficient and
sometimes exact algorithms are required by industries and this chapter acts
as a guide to undéfstanding the methods that exist (exaét and non-exact)
from which these algorithms can be deduced.

Sample problem instances are aiso solved throughout this chapter illustrating
the functioning of the discussed solution methods.

Problem | Stock plate length | Demand rectangles’ length(c), width (%)

{£) and width i#) and upper bound (b)
P1 (19.10) (21.1% (322) 33.2), (3.4 ,5%(8,2,3), (37,1 (8,4.2).
P2 (70.40) (17,913 (11,18,8), (12, 21,3, (14,23,4) (24,15,13;

(24,1523, (25,164 7,17.2) (18,29.3% (21,31 3,
(32,22.2), (23 33,3 (34,242 (3525 2} (36,26 1);
(37, 271), (38,26,1) (39,29,1 (41,301}, (43,31 7).

P3 {70.40) (28517, (3,39.8%, (558 1%, (381 5,1, (11,162,
(23,.213), (29.44,4) (16.18,3) (8362} (22,4.2).

P4 (70,40) (22,18,2) (40,10,1X (13,27 3X (23,18 2), (29.8,4%,
(16 4,1), (47,9,1% (19,19,4); (13,16 ,2); (36,16 4).

PS (84) (2,1 4% (333} (1.42% 2.2,3).

P6 (30,12) (36.3% (7.42) C.5.1% (8.2,3% (85.3%, (862, (9,715,
(10,4,4) (15,53} (196 .2); (4,8,2). (49,1).

P7 (4?.32) (34415 15112y (14735 (12204) (17,11,3);
(16,143, (24 8.2% (8,17,3% (13,16,1); (19,162}

P8 (55,50) (11,13.3), (17 283} (23232 (16,18 3), (18,15,1),
(18,23,1% (15,244% (16,24 2) (27,28,2); (31,10,4).

EP1 G5 a.1,1% 3.25).

Takle 5.1: Set of nine C2DGC problems (P1-P8 as presented by Daza)
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Daza et al (Daza et al, 1995:642) present a set of eight C2DGC problem
instances in their article, some of which were also studied by Christofides and
Whitlock (1977). These eight problem instances were solved by algorithms
deveioped by Daza, and the problem specifications are summarized in table
5.1.

Section 5.2 discusses existing exact C2DGC problem solving methods,
whereas section 5.3 describes existing non-exact methods. Section 5.4
concentrates on the properties of algorithms based on these methods, and
also identifies certain problem-areas within these algorithme that require
further investigation. Section 5.5 summarizes the content of the chapter.

5.2 Exact methods to solve the C2DGC problem

As discussed in chapter 2, section 2.3 (pages 17-18), the C2DGC problem
has been researched by Christofides and Whitlock (1977). They used
dynamic programming procedures and results obtained by Gilmore and
Gomory (1965, 1967) who studied the U2DGC problem, to solve the C2DGC
problem. Furthermore, Held and Karp (1971) proposed an implementation of
the travelling salesman problem to solve the C2DGC probiem. Lastly, Wang
(1983), Vasko (1988) and Oliveira and Ferreira (1990) used a rectangle-
building method, as proposed by Wang, to solve the C2DGC problem. This
approach (referred to as the Wang method or Wang’s method in the literature)
will be used as the foundation from which modified algorithms will be derived
in this thesis.

The Wang method is used as a basis because:
> It integrates effectively with artificial intelligence search methods and
the tree structures they use to represent state spaces; and

» It can be shown that when an effective pruning criterion is used, the
Wang method (and algorithms derived from it} is exact.
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5.2.1 The Wang method

The Wang method (WA), as was presented by Wang (Wang, 1983:573-577)
in 1983, proposed an ingenious way of building larger rectangles by joining
smaller ones. Wang proposed two algorithms based on this method to solve
C2DGC problems. By using her method, rectangles are gradually generated
considering the original demand rectangles, rotated versions of the original
demand rectangles and new rectangles generated in each state of the
algorithm. Every newly generated rectangle may or may not contain trim
lcss. This trim loss is called internal trim loss. From the discussion of the
C2DGC problem in chapter 2, section 2.2.3 (pages 14-17), the problem is
defined as:

Let S be a stock sheet of length £ and width w, and let r be a set of demand
rectangles of type i (i = 1, 2, 3, ... n), where each type will have a demand
constraint of b, a length of § and a width of w. From this, the guillotine
cutting pattern with @ minimum trim loss must be determined that uses no
more than b; replicates of demand rectangle ri(i=1, 2, 3, ... n)."

Daza et al (Daza et al, 1995:635) state that for each newly generated
rectangle, three feasibility criteria are considered:

> Rectangle dimensions must be less than or equal to the stock sheet
dimensions®. These rectangles are referred to as feasible rectangles;

> Internal trim loss must be less than or equal to a certain
predetermined percentage of the stock sheet; and

» The number of demand rectangles of a specific type cut from the stock
sheet must be less than or equal to its upper bound.

! Refer to chapter 2, section 2.2.3.1, pages 15-16, for the mathematical formulation of the problem
? Note that for each newly generated rectangle only the comparisons {<= £ and w <= #need to be done
58

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems




5.2.1.1 Rectangle building with the bottom-up approach

The bottom-up rectangle building approach is based on the observation that
by using horizontal and vertical builds on demand rectangles and their
rotated equivalents, all the possible guillotine cuts® can be obtained on the
initial stock sheet. Wang (Wang, 1983:573-577) first proposed these
construction methods for guillotine-cutting problems, but it can be linked to
particular cases of methods used by Albano and Sapuppo for solving the
iregular-shape cutting stock problem (Cung et al, 2000:188).

A vertical build of two rectangles A = {3 x was and B = 5 X ug is a rectangle
Sv having dimensions max{f,i8) X (wa + wg) and containing A and B. A
horizontal build of A and B is a rectangle Sy of dimensions (f + ) X

max(wa, wa) that contains A and B.

Figure 5.1 illustrates how vertical (b} and horizontal (c) builds are
constructed by using given demand rectangles (a).

Demand rectangles Vertical build Hortzontal build
fa
—— max((y .{p)
S —
A
(wa+wp mex (wy ¥p
‘s
—— B
“B{ B Sy
(2 ® ©®

Figure 5.1: An illustration of the bottom-up rectangle
building spprosch

? Refer to chapter 2, section 2.2.3, pages 14-15, for more information pertaining guillotine cuts
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5.2.1.2 Trim loss

Trim loss, or waste as it is sometimes referred to, arise if there is a
mismatch in the relevant dimensions of the rectangies being combined,
andfor if a complete? rectangle (a rectangle which cannot be used
successfully as a component in a further vertical or horizontal build because
then the resulting build would exceed either the length or width of the stock
sheet, or both) does not have the same dimensions as the stock sheet.
Three types of trim loss may occur, namely infemal trim loss, external tim
loss and total trim loss.

5.2.1.2.1 Internal trim loss

Iinternal trim loss is the area within a generated rectangle that is wasted.
This idea is illustrated in figure 5.2, where (a) represents the demand
rectangles and (b) and (c) illustrate how intemal trim loss is generated for

vertical and horizontal builds respectively.

Demeand rectengles Yertical build Horizontal build
Internal trim loss of the Internal trim loss of the
wertical build horizontal Tnild

A
A
&
B
B
Sy
B Sv
& ® ()
Figure 5.2: Internal trim loss, as generated by
horizontal and vertical builds

* Section 5.2.2, pages 75-77, uses the concept of completeness to enhance the original Wang algorithm
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5.2.1.2.2 External trim loss

External trim loss is the area outside a complete demand rectangie or
complete generated rectangle that is wasted when it is placed on (cut
from) the stock sheet. To grasp the concept of external trim loss, consider
figure 5.3. In this instance, rectangles A and B and rectangles C and D are
combined to form E and F respectively. Subsequently, joining E and F
generates rectangle G. From the previous definition of internal trim loss, it
is evident that the shaded sections in rectangles E and F represent the
internal trim loss of these rectangles respectively. Rectangle G, however,
has its own internal trim loss, which is the sum of the internal trim loss of
rectangles E and F, plus the trim loss generated when they were joined.

Figure 5.3: External trim loss

When the newly generated rectangle G is placed over (cut from) the stock
sheet, an L section is formed as a residual on the stock sheet. If rectangle
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G is a complete rectangle {a rectangle which cannot be used successfully
as a component in a further vertical or horizontal build), then the external
trim foss is the unused area remaining on the stock sheet, as indicated in

figure 5.3.

5.2.1.2.3 Total trim loss

Total trim loss for a complete demand rectangle or complete generated
rectangle is defined as the internal trim loss plus the external trim loss of

that rectangle.

5.2.1.3 Acceptable waste percentages (B)

As was stated earlier (section 5.2.1, page 58), Wang proposed two
algorithms that are based on her method of rectangle generation. Both
algorithms utilize internal trim loss to evaluate whether a cut is feasible by
comparing it to a parameter B, which represents the maximum acceptable
waste percentage of any generated rectangle produced by the algorithms.
Wang's first algorithm uses a parameter R, that is measured with respect to
the area of the stock sheet £ x #. The second algorithm utilizes the
parameter R, that is measured with respect to the area of a rectangle that
was generated with either a horizontal build Sy or a vertical build Sy.

5.2.1.4 Wang’s two original algorithms

The method as proposed by Wang will now be described and two
algorithms to implement this method will follow the discussion. Firstly, at
most b; demand rectangles of type r; must be specified with dimensions (£,
w) for each i, where i = 1, 2, 3, ... n and { is the length and w; the width of
- type r,. Furthermore, these demand rectangles will be cut from a stock
sheet of length £ and width #/ Wang's method will now start an iterative
building process where each rectangle i is combined horizontally and
vertically with every other rectangle i. This combinatory process will then
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form new rectangles that may contain internal trim loss, which must in tum
also be combined with all the original demand rectangles and the newly
generated rectangles. Only those generated rectangles with an internal trim
loss of less than R.L.#) will be stored for further consideration, the rest is
discarded. It should be noted that rotated demand rectangles are also
considered in this process, therefore the original demand rectangles are
rotated and these rotated versions are also seen as part of the original
demand rectangles in the building process. The combinatory process
continues until no further rectangles can be generated with horizontal and
vertical builds. The best solution (cutting pattern) for the predetermined R4
value is then chosen as the generated rectangle with the least total {rim loss
(internal + external trim loss).

The two algorithms, as proposed by Wang (Wang, 1983:576-577), are
illustrated in figure 5.4 and figure 5.5.

Stepl. () Choose a vatue for 8,,0% 5,5 1;
() DefineL® =F® = (g 1, .., 1}, and setk=1;

Step 2.(s) Compute F(N which is the set of all rectangles T satisfying:

@ T isfonmed by a feasible honzontal or vertical build of two
rectangles from L1

(1) the emount of tnmloss in T does not exceed B, L. %, and

(iil) those rectangles r; appearing in T do not violate the bound
constraints by, B2, ... by;

(o) Set L =101} U FI¥ Remove any identical cufting patiem
from L1,

Step BIfF‘Hisnonempty, setk<« k+1 and go to Step 2. Ctherwise,
Step 4(e) SetM=k-1;

(t) Choose the rectangle from L) that has the smallest total trim loss
when placed in the stock sheet(£ x#).

Figure 5.4: Wangs first algorithm (using ;)

As is lucidly apparent when comparing the algorithms presented in figures
5.4 and 5.5, the oniy difference between the two algorithms is that for
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algorithm two, B, is replaced with 3; in step 1.(a) and step 2.(a)(ii) of
algorithm one is replaced in algorithm two by:

(a)(ii) the amount of trim loss in T does not exceed B; . area(T).

Stepl.(d) Choose a value for i;, 0 8,51,
() Define L® =F® = {5, 13, .., 1n), and setk=1,

Step 2.(8) Compute FI which is the set of all rectangles T satisfying
@ Tis formed by a feasible horizontal or vertical build of two
rectangies from Lk}
(i) the amount of trim loss in T does not exceed B, .area(T),
(iii) those rectangles 1; appearing in T do not violate the bound
constraints by, bz, ... by;
(b) Set LW = L0y FW  Remove any identical cutting pattern
from 10 :

Step 31FFW s nonempty, set k«— k+1 and go to Step 2. Otherwise,
Step 4(a) SetM=k-1;

(b) Choose the rectangle of LM that has the smallest total trim loss when
placed in the stock sheet (L X #/}

Figure 5.5: Wang's second algorithm (using 8,)

The algorithms in figures 5.4 and 5.5 show the iterative process of rectangle
building used by Wang’s method. It should be noted, however, that it only
uses a single, predetermined beta value and executes the iterative process
only once with this value. It is up to the user that implements the algorithm
to increment the value of beta (by some chosen value) when an optimal
(section 5.2.1.5, pages 65-66, deals with the optimality condition for the
Wang algorithm) solution is not found with the initial beta, as Wang did not
specify how this value is to be handled. Later in the thesis this problem is
discussed further.

Furthermore, the Wang algorithms (WA) based on Wang's method of
rectangle building are categorized as uninformed search strategies
(breadth-first search) because no information conceming the problem
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domain is considered when solving the cutting problem. The method merely
sequentially generates all possible combinations with horizontal and vertical
builds, and rejects those nodes (rectangles) that do not satisfy both the
feasibility criteria of the problem and the pruning criterion. The pruning
criteria for the two algorithms are based on the values assigned to 5 and
B,. Furthermore, the best solution is found only if the cost of each pruned
away node is higher than the optimum value.

The method used by WA is therefore classified as an uninformed method
although a numerical function is associated with each rectangie. The reason
for this is that the function only prunes away some branches of the search
tree, but it does not direct the search process.

5.2.1.5 Specifying values for B and optimality conditions

The two algorithms as given by Wang are nearly identical except for the two
small differences as noted in section 5.2.1.4 (pages 62-65). For the
purposes of this study, Wang’s algorithm 1 will be used as a basis for
further research (as used by Vasko and Daza). Therefore when referring to
Wang’'s algorithm and B it is assumed that reference is being made to
Wang’s algorithm 1 and R4.

In her article Two algorithms for constrained two-dimensional cutting stock
problems, Wang (Wang, 1983:573-577) does not explicitly specify which
method to use to obtain an initial value for B. Neither does she state how
this value should be handled if an optimal solution is not found using the
initial chosen R value. From the literature, it would seem that many
researchers have adapted a policy of starting with an initial 3 value of zero
and systematically incrementing the value until an optimal solution is
reached (refer to chapter 6, section 6.5, pages 131-136) for more
information on initial B values and incrementing B values).
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Wang (Wang, 1983:578) proves that the optimality condition for algorithm
one can be written as shown in the following theorem:

Theorem T1: If the total trim loss x of the paitem T obtained from
algonithm one with a fixed value of 3 satisfies X =B.L.w then T is an

opftimal pattern.

where £ and % represents the stock sheet length and stock sheet width
respectively and the pattern T is the pattern with the least total trim loss
found by algorithm one. It should be noted that Wang did not inciude this
optimality condition in the two algorithms in figures 5.4 or 5.5. It is up to the
user that implements these algorithms to determine whether a solution
found by the algorithm using an initiai beta value is optimal (with the
optimality condition stated above), and if it is not, the beta value should be
increased and the process repeated until an optimal value is found.

Sample C2DGC problems will now be solved with the Wang method to
graphically illustrate how the rectangle building process functions.

5.2.1.6 Solving sample C2DGC problem instances with Wang's method

The process of solving a C2DGC problem, with the use of artificial
intelligence search methods and an algorithm based on Wang's method,
requires the integration of these two concepts. Firstly, artificial intelligence
search methods offer a means by which the rectangle building process can
be represented in a formal tree search structure. Secondly, the method
conceived by Wang then provides the mechanism required to generate the
nodes that form the search tree.

To better grasp the combinatorial process involved in the Wang method,
illustrations are given of a breadth-first search representation of the Wang
method utilizing horizontal and vertical builds to generate new rectangles,
and then Wang's method is implemented using the A* method.
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5.2.1.6.1 Implementing Wang’s method using breadth-first search

By implementing the Wang method using a breadth-first search® method,
an algorithm is created that also expands nodes on a level-by-level
fashion, but where some nodes are not considered for further expansion
due to its excessive internal trim loss (in other words they are pruned). The
value of beta (R) as defined by the Wang method, is used to determine
whether a node is to be expanded further by determining if the internal trim
loss of the node is less than or equal to stock sheet length (£).stock sheet
width (1).8.

Problem | Stock platelength | Demand rectangles’ length{c), width (%)
(£) and width {») and upper bound (b

PS5 (84) (2115 (3333 (1 4.2 (22,3).

EP1 B.5) 1.1.1), (325).

Takle exiract: Two problem instances (P5 and EP1) from table 5.1

Two problem instances will be solved for the purposes of demonstrating
how breadth-first search combined with the Wang algorithm functions. The
first is a very small instance named EP1 introduced in table 5.1, Because
of its small size, all possible feasible builds that can be obtained with the
Wang method using breadth-first search will be shown (figure 5.7). The
second problem, P5 as shown in table 5.1, is a slightly larger probiem
instance where all possible builds cannot be shown due to paper size
constraints (these two problem instances are aiso shown in the table
extract above).

Figure 5.6 is a partial representation of how feasible builds for problem
EP1 is obtained by the Wang rectangle building process with a beta value

* Refer to chapter 3, section 3.3.1, pages 21-24
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of 0.24. The least total trim loss pattern for this problem contains a total
trim loss of 6, and only when the value of beta reaches 0.24 can it be
proven that this is the optimal solution (6 <5.5.(0.24)) (according to theorem T1).

As figure 5.6 demonstrates:

¢ the initial step taken by the algorithm is to generate patterns using
only the basic demand rectangles as well as their rotated
equivalents (builds 1-3, in part [a], figure 5.6). These three initial
builds are located on the first level of the breath-first search tree;

¢ Now, the first step is to start combining rectangie number 1, as
indicated in part [a], figure 5.6, with itself (by means of horizontal
and vertical builds) if possible. A horizontal build with itself is not
possible, as the new build would exceed the stock sheet length,
therefore the fourth build is a vertical combination of build number 1
with itself (build 4, part [a], figure 5.6);

o Next, build number 1 must be combined horizontally and vertically, if
possible, with build 2. Horizontal and vertical builds between builds 1
and 2 are possible, therefore builds 5 (part [b], figure 5.6) and 6 (part
[c], figure 5.6) are generated;

o Next, build number 1 must be combined horizontally and vertically, if
possible, with build 3. Horizontal and vertical builds between builds 1
and 3 are possible, therefore builds 7 {part [d], figure 5.6) and 8 (part
fe], figure 5.6) are generated;

68

Impiementing artificial inteiligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems



swiapqoid yoo01s Sumno Jno-suno]ms [eucIsuUSUIP

-0M] PSUTRIISUOD SA[OS 0} SPOYISWI YoTeas 3duaSifaiur reroynie Sunuswsyduy

69
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o Next, build number 1 must be combined horizontally and vertically, if
possible, with build 4. Neither a horizontal nor vertical build can be
made between builds 1 and 4. in both instances the stock sheet
dimensions would be exceeded;

e Next, build number 1 must be combined horizontally and vertically, if
possibie, with build 5. A horizontal build is not possible, because the
stock sheet length would be exceeded. A vertical build is possible,
but if it is made, the resulting build would contain an internal trim
loss value of 7. This is not allowed by the beta value, therefore the
build is not stored;

¢ Next, build number 1 must be combined horizontally and vertically, if
possible, with build 6. Neither a horizontal nor vertical build can be
made between builds 1 and 6. In both instances the stock sheet
dimensions would be exceeded;

¢ Next, build number 1 must be combined horizontally and vertically, if
possibie, with build 7. A horizontal build is not possible, because the
stock sheet length would be exceeded. A vertical build is possible,
and build number 9 (part [f], figure 5.6) is generated and stored;

¢ Next, build number 1 must be combined horizontally and vertically, if
possible, with buiid 8. A horizontal build is not possible, because the
stock sheet length would be exceeded. A vertical build is possible,
and build number 10 (part [g], figure 5.6) is generated and stored;

e Next, build number 1 must be combined horizontally and vertically, if
possible, with build 9. Neither a horizontal nor vertical build can be
made between builds 1 and 9. In both instances the stock sheet
dimensions would be exceeded;

o Next, build number 1 must be combined horizontally and vertically, if
possible, with build 10. Neither a horizontal nor vertical build can be
made between builds 1 and 10. In both instances the stock sheet
dimensions would be exceeded;

¢ At this time, the end of the list of stored nodes has been reached,
now to continue the process, all stored nodes will be combined with
build number 2. Therefore, build number 2 must be combined
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horizontally and vertically, if possible, with build 1. Horizontal and
vertical builds between builds 2 and 1 are possible, therefore builds
11 (part [h], figure 5.6) and 12 (part [i], figure 5.6) are generated;
and

e This process continues until all stored nodes have been combined,
if possible, with themselves as well as each other.

Figure 5.6 shows that the sequence of node generation is accomplished by
always combining the node that has to be expanded next with itself as well
as all other currently stored nodes. This process will continue until the final
stored node must be combined with itself as well as all the other stored

nodes, but no feasible build is possible.
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Figwre 5.7: All stored nndes, in the sequence they are generated,
for problem instance EP1 using breadth-first search
and Wang's algorithm

Figure 5.7 illustrates all stored builds that are generated by the Wang
method combined with a breadth-first search. They are also shown in the

order in which they are generated.
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By examining the totai trim loss of each complete build (a build which
cannot be used successfully as a component in a further vertical or
horizontal build because then the resulting build would exceed either the
length or width of the stock sheet, or both) it is evident that several optimal
solutions are found by the Wang method for this problem instance.
Reasons for this are either unique placements of the original demand
rectangles on the stock sheet, or symmetrical duplicate patterns. An
example of an optimal solution for problem EP1 is:

with a total trim loss of 6, which is less than or equal to L. #R

((5).(5).(0.24) = 6), and according to theorem T1 (section 5.2.1.5, page 66)
the build shown above is then an optimal solution.

An important aspect that is iliustrated by figure 5.7, which might not be
obvious at first glance, is that the Wang method refrains from generating
non-guillotine cutting patterns. For instance, the pattern shown in figure 5.8
could be generated for problem EP1 and is one that contains no tim loss
(in other words it represents the best possible layout for a non-guillotine
cutting pattern), but it is not a guillotine pattern. This pattern is therefore
not generated by the Wang method.

Piece 2

Pioce 2
Rotated

Figure 5.8: Wang's method does not
generste non-guillotine cuts
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Figure 5.9 illustrates the initial steps when solving problem instance P5. As
figure 5.9 demonstrates, the first step taken by the algorithm is to generate
initial patterns using only the basic demand rectangles as well as their
rotated equivaients. Figure 5.9 is a partially generated breadth-first search
tree, with nodes that are pruned if the internal trim loss of the node is less
than or equal to stock sheet length (£).stock sheet width (#).R. it should
be noted though that because of paper-size constraints the entire second
and third level of the search tree could not be displayed in figure 5.9. This
is why the children of.node 10 are numbered n+1, n+2, ..., n+5, where n is
equal t¢ the number cf the final build of level 2. Furthermore, shaded areas
within builds indicate the internal trim loss of those builds, and builds with
lines drawn underneath them, are not expanded further because their

internal trim losses exceed that allowed by beta.

These first patterns (patterns 1 to 6) also include the rotated equivalents of
the original demand rectangles. It should be noted though that if an initial
demand rectangie is square it has the exact same fength and width
(demand rectangles 2 and 4), then only one pattern is created, because if
the pattern is rotated its dimensions stay exactly the same. This simple
addition to the algorithm prevents the generation of costly and
unnecessary duplicate sub-trees in the search space. Equally important is
to note that only the initial demand rectangles are rotated in the rectangle
generation process. Rectangles containing more than one demand
rectangle is not explicitly rotated because rotated versions of these
rectangles will be created when the rotated original demand rectangles are
combined. As an example, observe in figure 5.9 that rectangle number 9
originates from the horizontal combination of rectangles 1 and 4. A rotated
equivalent to rectangle 9 will be created once rectangles 2 and 5 are
vertically combined, therefore eliminating the need to explicitly rotated
rectangle 9. In other words, the process of rectangle combination
considers both horizontal and vertical builds, as well as the rotation of
original demand rectangles (implying the rotation of all other, more
complex builds).
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By completing the iterative process as described in figure 5.4 (Wang's
algorithm 1), the optimal solution for any given C2DGC problem will always
be found, given a large enough value for beta, encugh time and computer
memory (Wang, 1983). It is, however, possible to enhance the
performance of the Wang method by using an informed search method
(such as the A* search method) that will guide the search more effectively

and efficiently through the search space.

5.2.2 A computational improvement to Wang’s algorithm one

Vasko (Vasko, 1989:109-115) studied the two algorithms as proposed by
Wang, and made some computational improvements to the first of the two
algorithms. He based this improvement on the ideas of horizontal and
vertical completeness of cutting patterns, as well as dynamically diminrishing
the value of B. These three concepts will now be defined.

5.2.2.1 Horizontal completeness

A rectangle, resulting from successive vertical and/or horizontal builds,
which cannot be used successfully as a component in a horizontal build
because combining it with any r; (or rotated r;) would result in a rectangle
with length exceeding £ (stock sheet length) is said to be horizontally
complete. Once a rectangle has been identified as horizontally complete,
then it is no longer considered as a candidate component for horizontal
builds. Also, once a rectangle is known to be horizontally complete, then its
length is increased to £ and its internal trim loss is recalculated.

5.2.2.2 Vertical completeness

A rectangle, resulting from successive vertical and/or horizontal builds,
which cannot be used successfully as a component in a vertical build
because combining it with any r; (or rotated ;) would result in a rectangle
with width exceeding 14/(stock sheet width) is said to be vertically complete.
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Once a rectangie has been identified as vertically complete, then it is no
longer considered as a candidate component for vertical builds. Also, once
a rectangle is known to be vertically complete, then its width is increased to
#and its intemnal trim loss is recalculated.

5.2.2.3 Dynamically diminishing the 8 value

Before a rectangle enters F* (refer to figure 5.4, section 5.2.1.4, pages 62-
65} it is tested for both horizontal and vertical completeness. If a rectangle
is complete (both horizontally and vertically) its length is increased to ., its
width is increased to ¥/, and its internal trim loss (which is equal to its total
trim loss because the rectangle is the same size as the stock sheet) is
recaiculated. If this internal trim loss is less than or equal to R.#/L (Wang's
optimality condition, theorem T1) the build is stored in F¥ | otherwise it is
not. Its internal trim loss is then compared to the best total trim loss known.
If it is less than the best known total trim loss, the value of R is recalculated
according to this new best total trim loss. it should be noted that when using
an algorithm based on the branch-and-bound search method that utilizes
the dynamic programming principle (chapter 4, section 4.2.8, pages 48-49)
or algorithms based on methods derived from it (for instance the A* search
method as discussed in chapter 4, section 4.2.9, pages 50-54), this
dynamic diminishing of the beta value is accomplished implicitly. The
reason for this is that an algorithm based on the branch-and-bound method
utilizing the dynamic programming principle will never expand a rectangle
with an internal trim loss that is greater than the total trim loss of the best
known total trim loss rectangle.

The following is a description of the enhancements that Vasko made to
Wang's algorithm one (figure 5.4, section 5.2.1.4, page 63):

> When defining L each r; and rotated r; is checked for both vertical
and horizontal completeness. If a rectangle is either horizontally or
vertically complete (or both), then its length or width dimension (or
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both dimensions) as well as its internal trim loss are appropriately
adjusted. If a horizontally complete rectangle, vertically complete
rectangle or a rectangle that is both horizontally and vertically has
an intermnal trim loss greater than 3.4/£ (Wang's optimality
condition, theorem T1), then it is not included in L'Y; otherwise it is
included.

> In Step 2a° if a rectangle T is horizontally (vertically) complete,
then it is not considered during the horizontal (vertical) building
process.

» In Step 2a°, once a horizontal (vertical) rectangle has been built, as
part of the process of determining if a rectangle T should be
included in F¥, a check for horizontal (vertical) completeness is
made. If the rectangle just built is horizontally (vertically) complete,
then its length (width) dimension and internal trim loss are adjusted
appropriately. If the newly calculated internal trim loss of rectangle
T is less than or equal to B.%.c the rectangle is included in FY,
otherwise it is not.

> If a rectangle T should enter F¥ and it is complete (both
horizontally and vertically), then its length and width dimension as
well as its internal trim loss are adjusted appropriately. If the newly
calculated internal trim loss of rectangle T is less than or equal to
B.#.c the rectangle is included in F¥, otherwise it is not. If it is
entered into F¥ the internal trim loss of T is compared to the best
total trim loss known; B is updated if the internal trim loss is less
than the best total trim loss.

5.2.3 The modified Wang method (WAM

According to Daza et al (Daza et al, 1995:635), Oliveira and Ferreira (1990)
studied Wang's method and resulting algorithms extensively and they
developed an improvement on her method. It is denoted as the WAM
method, which is an abbreviation for the phrase Wang’s modified method.

¢ Refer to Wang’s algorithm one, Step 2a, section 5.2.1.4, figure 5.4, page 63
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The WAM method, according to Daza et al (Daza et al, 1995:635), requires
that for each newly generated rectangle three feasibility criteria be
considered:

> Rectangle dimensions must be less than or equal to the stock sheet
dimensions;

» The estimated total trim loss (internal trim loss + estimated external trim
loss) must be less than a certain percentage of the stock sheet's area.
The concepts of estimated external trim loss and estimated total trim
loss are described in sections 5.2.3.1.1 (pages 78-83) and 5.2.3.1.2
(page 87) respectively; and

» The number of demand rectangles of a specific type cut from the sheet
must be less than or equal to its upper bound.

These three criteria closely resemble those listed for Wang’s original method,
but the second criterion differs slightly. The WAM method now requires
internal as well as estimated external trim loss (instead of only internal trim
loss as for WA) to be taken into account when evaluating the criteria.

5.2.3.1 Trim loss

Internal, external and total trim loss were discussed in sections 5.2.1.2.1 —
5.2.1.2.3 (pages 60-62) as it is used extensively by WA as well as by the
WAM method. Estimated external trim loss and estimated total trim loss, on
the other hand, are new concepts introduced and used by the WAM
method.

5.2.3.1.1 Estimated external trim loss

To grasp the concept of estimated external trim loss, consider figure 5.10.
In this instance, rectangles A and B and rectangles C and D are combined
to form E and F respectively. Subsequently, joining E and F generates
rectangle G. From the previous definition of internal trim loss, it is evident
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that the shaded sections in rectangles E and F represent the internal trim
loss of these rectangles respectively. Rectangie G, however, has its own
internal trim loss, which is the sum of the internal trim loss of rectangles E
and F, plus the trim loss generated when they were joined.

Figwre 5.10: Estimated external trim loss, generaied by placing
rectangles over the L section

When the newly generated rectangle G is placed over the stock sheet, an
L section is formed as a residual on the stock sheet. At this point in the
rectangle building process, it is evident that remaining available demand
rectangles must be used to fill the area shown as the L section in figure
5.10. If this area could be filled exactly with the remaining demand

rectangles leaving no extra trim loss, the situation would have been ideal,
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but unfortunately this does not happen often. Therefore, a method is

needed that can estimate the amount of trim loss that will be generated

when remaining demand rectangles are placed over the L section. Since

we are working with guillotine cuts this L section can be viewed in different

ways. According to figure 5.10 one way is to consider it to be a

combination of two rectangles with dimensions (¢ x b) and (d — b) x (c—a),

and another is by viewing it as a combination of two rectangles with

dimensions (a x b) and {(c — a) x d). These two views are illustrated in

figure 5.11.
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Piece (cxb)

Piece
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™

Piece (axt)

Piece
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Figure 5,11 : Dividing the L section into different views
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Each rectangle (c x b), (d - b) x {c — a), (a x b) and ((c - a) x d) may be cut
according to a cerfain pattern and this process generates some internal
and external trim loss. An estimate of the total trim loss for such rectangles
is therefore required, and consequently a method to accomplish this is

discussed.

Oliveira and Ferreira (1990) proposed a method of estimating this trim
loss. Firstly, the L section is divided {as shown in figure 5.11) and by using
the exact method as prescribed by Gilmore and Gomory (1966), rectangles
are theoretically assigned over the divided L section. This exact process
involves solving an unbounded two-dimensional knapsack problem
{(section 5.2.3.1.1.1, pages 83-87, explains this problem and process)
once, before the rectangle building process starts, for the entire stock
sheet dimension (£,%). This unbounded knapsack is solved using a
dynamic programming procedure, therefore every possible dimension
included within the larger stock sheet dimension will have an internal trim
loss value associated to it when the procedure finishes. These values are
then stored in a lookup fable and used as estimated external trim loss for
any given dimension within the stock sheet. These values are
underestimates of the exact external trim loss that could be incurred,
because of the relaxation (the upper bound b; on the maximum number of
demand rectangles for each type r; is ignored) of the model that was used.

if T, denotes the estimated internal trim loss on node n in the search
space when rectangles are assigned over piece i, and additionally it is
denoted that, according to figure 5.11, (which is a typical representation of
a node n) / has been defined to be the following sequence of pieces’:

i =1, the piece of dimensions ¢ x b;
i =2, the piece of dimensions (d - b) x (c - a);
i = 3, the piece of dimensions a x b; and

vV V Vv V¥

i = 4, the piece of dimensions (c—a) x d.

TNotethatdleLsectioninﬁgureS.IliscoveledintwodiﬁerentwayswhereiisequalwldemdwhmiisequaltoSmdf{
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Then the value of h{n} in function 5.1 represents the estimated trim loss of

node n in the search space:
h(n) = Min{Tp + Tn2, Tz + Toa} (5.1)

According to Daza et al (Daza et al, 1995:639), however, by using smali
examples it can be shown that function 5.1 is neither monotone® nor
admissible®. This situation may be improved upon by taking future trim loss
into account, with the purpose of diminishing the value of A(n). The reason
for-this is that, because function 5.1 is not admissitle, it yields values for
h(n) that are greater than the exact ones (overestimates®). To satisfy the
admissibility condition, the following function is defined by :

ha(n) = Max{Tp + Tps — Tps,0} (5.2)

where Ts is the unconstrained trim loss of the rectangle in the upper right
hand comer of the stock sheet of node n. In reference to figure 5.10 (page
79), this is the rectangle of dimensions b x (c — a). Note that as a condition
hz(n} =h(n) must be valid, and that if T,s =T, + Tn then the condition
hz(n) = 0 is satisfied. On the other hand, if Tp,s < Tp1 + Tpa, two possibilities
exist. The first possibility isthat h(n) =T+ Toand ho(n) = T + T — Tis
also satisfies the condition because Tpy <T,2 + Tns. Secondly, if h(n) = Tps
+ The @and hz(n) = Tpq + Tps — Tps, then similarty we have T, <Tp3 + Tps.

Function 5.2 is more effective than function 5.1, but Daza et al (Daza et al,
1995:639-641) proves that in order to obtain monotonicity, the function
should be rewritten as:

Max{T,, +T,, ~T,s,0} if hy(n)is monotone,

g(n)+h(n;)~-g(n;) in other cases (5.3)

hy(n) = {

® Refer to chapter 4, sections 4.2.9.1 and 4.2.9.2, pages 50-51, for further information pertaining to
admissibility and monotonicty

® Refer to chapter 4, sections 4.2.9.4 and 4.2.9.5, pages 51-53, for further information pertaining to
underestimating and overestimating the value of hfn)}
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Where node n is obtained from a horizontal or vertical build between nodes
n; and n;. Note that the admissibility of this function is a direct consequence
of its monotonicity. A generalization of the monotonicity requirement for
C2DGC problems is represented by the following inequality:

h(n) = h(n) =g(n) + c(n; ) (5.4)
where c(n;, ny) is the additional trim loss generated by the horizontal or
vertical build resulting from the combination of nodes n; and n; so that we

can write that g(n) = g(n) + g{) ~ c(n;, ny). Refer to section 4.2.9.2, pages
51-52, for further information pertaining the cost function c(n;,ny.

5.2.3.1.1.1 Unbounded two-dimensional knapsacks

As stated above, the unbounded two-dimensional knapsack problem is
solved by the exact method as described by Gilmore and Gomory (1966).
Gilmore and Gomory (Gilmore & Gomory, 1966:1045) give a broad
definition of problems falling in the knapsack category:

“Knapsack problems can arise directly in two ways. Firstly, a portion of
space is being packed with objects, each having a value, and the
knapsack problem is then to find the most valuable packing.
Alternatively and equivalently, if a portion of space is being cut into
pieces of different values, the knapsack problem is to find the most
valuable way of cutting.”

An example of the first set of problems would be the packing of
containers in one, two or three dimensions. An example of the second set
of knapsack problems would be the cutting of glass or any other material
from a larger stock sheet or multiple stock sheets, also in one, two or
three dimensions. The difference between the bounded and the
unbounded problems are that with bounded problem instances oniy a
certain number of each demand rectangle is required, and with
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unbounded problem instances an unlimited number of each demand
rectangle is required. Gilmore and Gomory (1966:1046) define a so-called
two-dimensional knapsack function G as follows:

“One is given rectangles of positive dimensions (4w), i = 1, ..., m that
have nonnegative values ITy, ..., [1,, associated with them; then G(x,y) is
the maximum of I11Z; + ... + [IhZ,, where Z4, ..., Zy are nonnegative
integers such that there exists a way of dividing a rectangle (x,y) into Zi

rectangles (4,w), fori=1, ..., m.

The calculation of G(x,y) for given x and y is not an easy task. Therefore,
for problem instances utilizing the guillotine cutting constraint, Gilmore
and Gomory (Gilmore & Gomory, 1966:1046) defines another knapsack
function F similar to G.

“F is defined like G except that in dividing a rectangle (x,y) into Z;
rectangies (§,w;) fori= 1, ..., m, the following restriction is imposed: The
division must take place by a series of straight lines that extend from
one edge of a stock sheet to the opposite edge, parallel to the other two
edges; we will call them ‘guitlotine cuts’.”

Furthermore, they prove a functional theorem for such knapsack functions
F. From the discussion above it is clear that when the rectangles (4,u;) of
worths II;, i = 1, ..., m, are given, the knapsack function F(x,y) defined
from them satisfies the following three sets of inequalities:

F(x.y} 20, (5.5)
F(xs+x2,y) =F(x1,y) + F(x2,y), (5.6)
F(x,y1+y2) =F(xy1} + F(x,y2), (5.7
F(w) 21 (i=1,...m) (5.8)

Inequalities {5.5) and (5.7) speak for themselves. The inequalities (5.6)
are a consequence of the permitted method of cutting a large rectangle
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(x,y) into the smaller rectangles (4,w;). F is not the only function to satisfy
these inequalities, although it is the minimal function in the sense of the
following theorem.

Theorem T2: F is a knapsack function defined from the rectangles
(fus) with values II;, i = 1, ..., m, if and only if F satisfies (5.5), (5.6),
(5.7) and (5.8), and (5.8) is: For any G satisfying (5.9) to (5.7), F(x,y) <
G(x.,y) for ali x and y.

An efficient method for computing the two-dimensional knapsack functicn
F, according to Gilmore and Gomory (Gilmore & Gomory, 1966:1051) is
by a modified dynamic programming technique that is based upon the
functional equation:

F(x.y) = max{Fo(x.y}), F(x1.y) + F(x2y}, F(x.y1) + F(x.y2); (5.9)
X>=X1+Xp, 0<X1<=Xg, y>=Y1+Y2, and 0<y;<=y,}
where Fo(x.y} = max{0,1I;; li<=x and w;<=y}.

They then prove the following theorem to justify the above-mentioned
method.

Theorem T3: The functional equation (5.9) is satisfied only by the
knapsack function.

Using these fundamental theorems and refining them computationally,
Gilmore and Gomory (Gilmore & Gomory, 1966:1067-1068) eventually
propose an algorithm they call the ‘Basic Two-Dimensional Step-Off
Algorithm’. 1t can be divided into four major parts, and in part | only
general initializations take place. In parts Il and Il it is assumed that a
general step-off point has been defined. In part |l step-offs from (x,y2)
take place along the line y = y2 while in part il step-offs take place
along the line x = x2 , where the former step-off are taken first. Finally in
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part IV a new step-off point is determined in the order discussed above.
Recall that Fp is defined in equation 5.9:

I.  Let F(x,y) = Fo(x,y) for O<=x<=L and O<=y<=W. Let I*(l,w) = |; and
w*(l.wy) =w; for i=1, ...,m, and let I'(0,0) = w*(0,0) = 0. Let x2 = y>
= 1 and go to step II.1;

if. 1. Letxs=1;
2. If xy+xo<=L then let V=F*(x4,y2) + F*(x2ty2)} and go to step II.3.
Otherwise go to step il.1;
3. If V>F*(x1+X2,y2) then let F*(x1+x2,y2)=V, let I'(x1+x2,y2)=x4, and
let w*(x4+x2,y2)=y2 and go to step I.4. If V=F*(xs+Xa2,y2) then let
I*(x1+x2,y2)=x+s and go to ll.2. Otherwise go to step lil.1.
4. If x4<xz then let x;=x4+1 and go lto step II.2. Otherwise go lo step
mn1;

il 1. Lety;=1;
2. If ysty<=W then let V=F*(xay1) + F*(x2%,2} and go to step
I11.3. Otherwise go to step IV.1;
3. If V>F*(x2,y1+y2) then let FX(xz,yr+y2)=V, let w*( xz,y1+y2)=ys,
and let I'( x2,y1+y2)=xz and go to step lll.4. If V=F*(xz,y1+y2) then
let w*(x2,y1+y2)=y: and go to lll.4. Otherwise go to step lll.4;
4. If y1<y, then let ys=y4++1 and go to step lll.2. Otherwise go to
step IV.1;
IV. 1. If xo<L then let xz=x2+1 and go fto step II.1. Otherwise go io step
1.2;
2. If y2<W then let yo=y>+1 and x>=1 and go to step Ii.1. Otherwise
stop.

Finally, the following implication of the Gilmore and Gomory method for
computing knapsack functions is worthy of notification. Since the
knapsack function considered by Gilmore and Gomory differ from the
C2DGC problem considered in this thesis and more specifically from the
model treated by Wang, it is interesting that since they treat the
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unconstrained problem, they find knapsack function values F(x,y} for the
relevant (x,y) points on the grid by solving a relaxation of the C2DGC
problem. As such, the solutions give underestimates of the (internal) trim
loss. These values are then used to compute estimated external trim loss.

5.2.3.1.2 Estimated total trim loss

Estimated total trim loss is defined as the sum of the intemal and
estimated external trim loss for any given original demand rectangle or
generated rectangle. -

5.2.3.2 Solving sample C2DGC problems with the modified Wang
method (WAM) using the A* search method

QOliveira and Ferreira (1990) studied the Wang method (WA) extensively
and developed an improved version of the method. The new method was
called the modified Wang method (WAM) and introduced the idea of using
future information concerning the state space to predict which partial cuts
would potentially yield better results than other partial cuts when evaluated
further. The result of their study was the introduction of estimated external
trim loss, calculated by solving an unconstrained two-dimensional knapsack
problem as described in section 5.2.3.1.1.1 {pages 83-87). The heuristic
evaluation function 5.1 (section 5.2.3.1.1, page 81) as proposed by Oliveira
and Ferreira (Oliveira and Ferreira, 1990:257-259), can be used to calculate
the estimated external trim loss (h(n)). Unfortunately, this evaluation
function is neither admissibie nor monotone'®. Therefore, it is suggested
that the evaluation function 5.3 (section 5.2.3.1.1, page 82) as proposed by
Daza et al (Daza et al, 1995:639) be used for the caiculation of the

estimated external trim loss.

As described in chapter 4, the A* search method uses a heuristic function to
evaluate the cost of each node as it is constructed during the search

1 Refer to section 5.2.3.1.1, pages 78-83, for a detailed discussion of the evaluation function
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process, and if the cost of the node is less than a certain set cost, the node
will be expanded and stored, otherwise it wili be not be expanded or stored.
The A* method’s heuristic function (refer to chapter 4, section 4.2.9, pages
50-54) requires two parameters to determine whether a node shouid be
evaluated or not, and can be written as:

f(n) = g(n) + h{n)

where g(n) is the cost of the node up to the current state, and h(n) is an
estimated cost that may be incurred if the node is part of a complete cutting
pattern for the sheet. By adding these two values, a node cost, f(n), is
calculated.

To use the A* method employing the modified Wang method’s pruning
criteria, the value of g(n) will be set to the internal trim loss of the current
node, and the value of h{n) will be set to the estimated external trim loss as
shown in evaluation function 5.3 (section 5.2.3.1.1, page 82). This leads to
a situation where some domain specific knowledge as well as future
information is used to evaluate the current node. Furthermore, throughout
the process of rectangle combination, the three feasibility criteria, as
described in section 5.2.3 (page 78), are constantly kept under
consideration. '

When the pruning criterion as presented by Wang is employed with a B
value of 0.00 for problem PS5, then the pruning value is:

.stock length.stock width = (0.00).(8).(4) =0
With a pruning value of 0, all nodes in the search space with an estimated

total trim loss (internal trim loss plus estimated external trim loss) of more
than 0 are not considered for further evaluation.
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Figure 5.12: Parlial representation of generated nodes for problem instance P5
using A™ search and the modified Wang algorithm (3 =0.00)




Figure 5.12 shows the partially developed search tree with estimated total
trim loss associated with each node shown in the boxes next to the node
numbers. These values are calculated using evaluation function f(n) = g(n}
+ h(n), and the vaiue of R is chosen as 0.00. The value of h(n) is calculated
using the evaluation function 5.3 (section 5.2.3.1.1, page 82). As was
discussed in section 5.2.1 (page 58), the method employed by the Wang
algorithms (WA) is an uninformed method that utilized a pruning criterion.
The WAM method, on the other hand, can be classified as an informed
method because information about the search space is used to guide the
search. This domain-specific knowledge is represented in the form of
estimated external trim loss and can be calculated as illustrated in section
5.2.3.1.1, pages 78-83. Figure 5.13 represents the WAM algorithm:

Stepl. (@) Choose avalueforﬁ 0sh8s=];
() Define L® =F® = {15, .., 1}, snd set k=1,

Step 2.(a) Compute F¥ which is the set of all rectangles T satisfying;

(D T is formed by a feasible horizontal or vertical build of bro
rectangles fromL{k-1)

(i) the amount ofes&mted total iim loss of T does not exceed BL W,

(i) those rectangles 1; appearing in T do not violate the bound
constraints by b,

(0) Set LW =Lty F[H Remove any identicel cutting pattem
fromLM;

Step 31FFY is nonempty, setk «— k+1 and go to Step 2. Otherwise,
Step 4(a) Set M =k- 1;

() Choose the recta.ngle of LM that haes the smallest totel trim loss when
placed in the stock sheet(£ x W)

Figure 5.13: The modified Wang algorithin

5.3 Non-exact methods to solve the C2DGC problem

As was stated in chapter 1, section 1.2.2 {pages 4-5), non-exact methods to
solve stock cutting problems, including the C2DGC problem, exist in the form
of heuristic search methods such as greedy searches, beam searches, depth-
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limited searches and hill-climbing searches. These search methods can be
combined with the Wang and modified Wang methods, but it yields algorithms
that are not guaranteed to find the optimal solution for any given problem
instance. This does not mean that non-exact algorithms are of no use. On the
contrary, some cof these algorithms will be implemented and used to calculate
upper bounds for beta (R). Refer to chapter 6, section 6.4.2 (pages 129-131)
for numerical resuits obtained from using beam search to generate upper
bounds for 3 and defining a waste gap.

5.4 Exact methods’ algorithmic preperties and considerations

One of the advantages of using non-exact methods to derive problem solving
algorithms, is that in most cases it executes and finds solutions faster than
exact methods. Therefore some industries, where raw materials are cheap
and time is a more important resource, will prefer to use non-exact algorithms
that do not necessarily find optimal solutions but do find acceptable solutions

fast.

Exact algorithms, on the other hand, will usually spend more time than non-
exact ones when solving a given problem instance, but the quality of the
solution will be better. For this reason, and in the interest of scientific
experimentation, exact methods and algorithms are preferred for this study.

As was stated in section 5.2 (page 57), the Wang and modified Wang
methods wili be used as the basic methods from which enhanced algorithms
will be derived in this thesis. After completing a theoretical study of the Wang
and modified Wang methods, a few problems presented itself, as indicated
below.

5.4.1 Problems with the Wang method

As was stated in section 5.2.1.4 (pages 62-65), algorithms derived from the
Wang method are uninformed, because it only prunes certain areas of the
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search space, with no heuristic function that leads the search in a certain
direction. This is the first major drawback of the Wang method. Secondly,
Wang did not define a strategy for the handling of the beta value. Neither in
terms of calculating an initial value for beta nor for the increase of the beta
value when an optimal solution was not found by the algorithm with the initial
beta value. Lastly, algorithms based on the Wang method generate great
amounts of data in the rectangle building process, and the inherent

information in this data is mostly ignored and not utilized.
5.4.2 Problems with the WAM method -

To remedy the fact that the Wang method is an uninformed one, Oliveira and
Ferreira (1990) devised the modified Wang method (WAM). The WAM
method utilizes a heuristic function (see section 5.2.3, pages 77-87) that
guides the search process and this may yield computational improvements
over the Wang method as were demonstrated by using example instances
by Oliveira and Ferreira (Oliveira & Ferreira, 1989:260-265). The heuristic
function uses lower bounds that represent underestimates of external trim
loss. These are calculated once at the beginning of the solving process.
These bounds are calculated using Gilmore and Gomory’s unbounded two-
dimensional knapsack function (refer to section 5.2.3.1.1.1, pages 83-87).
The problem is that these bounds are not tight enough, causing the algorithm
to underestimate the value of h(n) significantly, therefore generating more
nodes in the process than a more informed heuristic would. Secondly, the
lack of a good strategy to handle the value of beta still remains a problem as
for the Wang method. Lastly, for small textbook probiems, the caiculation of
lookup tables for the lower bounds using the unbounded two-dimensional
knapsack function is feasible. Unfortunately though, for larger industry sized
problems, the calculation of these lower bounds becomes tedious and a
time-consuming process (refer to chapter 7, section 7.2.8, pages 171-178).

The problems mentioned in sections 5.4.1 and 5.4.2 lead the author to believe
that there is still much opportunity to enhance these methods and the
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algorithms derived from it. Therefore, an effort will be made to investigate the
following aspects:

» lower bounds as it is used by the modified Wang method. Sharper
lower bounds are needed and this should lead to faster execution times
for algorithms derived from the WAM method;

> the use of non-exact methods to generate upper bounds;

» the use of information contained in the data generated by the building
process involved in the Wang and modified Wang method’s algorithms.
it was observed that the algorithms prcduce a great deal of data, but
most of it is discarded and not used by the algorithms. Firstly, the
author proposes the use of this data to generate upper bounds for the
problem instance. Secondly these upper bounds can be used to
manage the value of beta by defining a waste gap;

> strategies to handle the value of beta, as this is a problem for both the
Wang and modified Wang methods; and

» lower bound calculation and lookup table generation for larger,
industry-sized problems. For ilarger problems the lower bound
calculation process becomes tedious and time-consuming.

5.5 Summary

Chapter 5 concluded the discussion on existing exact and non-exact problem
solving methods for the C2DGC problem. Furthermore, it postulated that
inefficiencies still exist within these existing methods (section 5.4, pages 90-
93). Chapter 6 will delve deeper into these issues by presenting algorithmic
modifications and additions, most of which is proposed by the author, to
enhance the performance of the existing algorithms.
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CHAPTER 6: Algorithmic enhancements

6.1 Introduction

The Wang (chapter 5, section 5.2.1, pages 58-75) and modified Wang
(chapter 5, section 5.2.3, pages 77-87) methods are basically enumeration
methods that generate cutting patterns by means of successive horizontal and
vertical builds. These methods also use a pruning criterion, which allows only
builds containing less than a certain amount of trim loss to be stored, and the
rest is discarded. This pruning criterion utilizes a value called beta (B), as a
proportion parameter, from which an upper bound on the amount of trim loss
that is allowed for builds is calculated. Therefore, upper bounds play an
important role in the Wang and modified Wang methods. Usually, algorithms
based on these methods will start with a beta value equal to 0.00 and if the
optimal solution is not found using this initial value, beta is increased by an
arbitrary value (usually 0.01). For many problems 0.00 is not a suitable initial
value for beta, and for problems requiring a large value of beta to reach an
optimal solution, the arbitrary increase of 0.01 for the value of beta is arguably
not the best strategy. Therefore, it is obvious that an initial lower bound on the
value of beta would also be useful, as well as a strategy to manage the value
of beta.

Furthermore, the modified Wang method relies heavily on lower bounds as
produced by Gilmore and Gomory’s unbounded two-dimensional knapsack
function. These lower bounds are mostly not sharp enough, and for this
reason an improvement to the lower bounds may expedite the solution
process.

This chapter deals with certain algorithmic enhancements that can be made to
the existing algorithms derived from the Wang and modified Wang methods.
Section 6.2 will describe optimization techniques that can be applied to the
existing algorithms to increase performance. Section 6.3 describes a method
devised by the author to sharpen the underestimates as given by the
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unbounded two-dimensiona! knapsack, which is used by the modified Wang
method. Section 6.4 describes a method devised by the author to generate
upper bounds using data generated by the Wang and modified Wang
methods, and indicates how these upper bounds can be used to manage the
value of beta. Furthermore, section 6.4 describes a beam search method to
also calculate upper bounds. Section 6.5 further describes strategies for
determining an initial lower bound on the value of beta and also effective
means of incrementing the beta value.

6.2 Optimization technigucs

The basic knowledge to find solutions for the C2DGC problem using the Wang
and modified Wang methods has now been discussed. 1t should, however, be
noted that some other strategies such as the exploitation of symmetry, the
order of cutting and demand rectangle rotation may lead to better resuits
when implemented effectively. Therefore, these concepts will now be

discussed.

6.2.1 Detection of duplicate patterns: symmetric strategies

When algorithms for solving the C2DGC problem are derived from, for
example, the WA and WAM methods, the probability of generating
symmetrically duplicate pattemns is high. To prevent these algorithms from
generating duplicate patterns, all previously generated and accepted
patterns are stored in a list, denoted as CList. Any new qualifying pattern is
compared to the patterns in CList to establish whether the specific pattern
already exists or is symmetrically equivalent to a pattern in CList.

According to Cung et al (Cung et al, 2000:196), authors such as Tschoke
and Holthofer (1995) have proposed that a procedure be applied to every
newly generated pattern in order to detect an equivalent pattern throughout
CList. Although their strategy is very effective and detects many duplicate
pattems, it requires a great deal of computational effort because of the great
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number of comparisons that have to be made. This procedure’s time
compiexity is therefore unacceptable.

6.2.1.1 Pattern coding

To improve upon the time complexity, Cung et al (Cung et al, 2000:196) has
proposed a method whereby patterns that are stored in CList are coded,
and tests are then defined that use these codes to avoid duplicate patterns
from being stored. The pattern coding system can be defined as follows:

“Let A be a pattern obtained by combining vertically (respectively
horizontally) a set of sub-patterns A';, A", ..., A, {respectively A";, A", ...,
A"S), where AY; (respectively A",-) denotes an NV-pattern (respectively NH-
pattern). Let Ia (respectively wa) be the length (respectively width) of
pattern A.

On one hand, it is assumed that each pattern A that is an NV pattern
(respectively an NH pattern) has two identifiers denoted by I!4 and P
where I, (respectively /"4) represents the ordered set that indicates how A
is obtained in CList from the NV (respectively NH) pattern, where CList is
the list of stored best sub-problems transferred from the Open list to CList
on account of the fact that it has the best upper bound for the evaluation
function. 1t is assumed that the identifiers of each pattern of the Open list
are undefined, where the Open list refers to the list of patterns that still
have to be considered for further builds. Refer to figure 4.15, section 4.2.
On the other hand, if A is not an NV-pattern (respectively NH-pattern), then
s (respectively 1"4) is represented by the set of identifiers of the NV-
pattern {respectively NH-pattern) which contribute to construct A, in other
words the set of identifiers represented by Mas, Maz ..., ar (respectively
P'a1, Paz, ..., Fas). The number of distinct NV-patterns, which contribute to
produce A (which have different identifiers), is denoted by D's and the
number of the same NV-patterns (with the same identifier), which
contribute to construct A, is denoted by N4. Let R be the rectangle
obtained by combining horizontally two patterns A and B. Then, the code
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of R is obtained as follows (because of an error in the article by Cung et al
(Cung et al, 2000:196), these definitions have been aitered slightiy):

Horizontal: I"g = order of insertion; D"r = 1; N"z = 1.
Vertical: I'r = I'a U I'; D'k = | & | (the cardinality of D'z) and if D'r = 1 then Nz = N4
+ N"3, otherwise, N"s = undefined.

Now, let S be the rectangle obtained by combining vertically two patterns A
and B. Then, the code of S is obtained as follows:

Horizontal: I's = I"y U I"s; D" = | I"s | {the cardinality of D) and if D"s = 1 then N =
N", + N"s, otherwise, N = undefined.
Vertical: I's = order of insertion; D's = 1; N'g = 1.

Pattern A PaitemB PatternC ~ PatiemE Pattemm F Pattern G

o L e L e e
=0 ld e e @

Pattern H PattemnJ Pattern K Pattemn M

3 i [
4 4 s | 3| 4 4 3
3

Figure 6.1 : Soms constructed pattems, as entered
into CList

The code for each produced pattern is computed as foliows:

» Piece A: Initial piece (NH-pattern and NV-pattern):
o D'a=D"s=1,Na=Ns=1,1 a=F={3}
» Piece B: (NV-pattemn but not a NH-pattern), vertical combination of
two instances of the pattern A:
o D'%=1,Ns=1,1s={5),D"=1,Ns=2, I"g=(3)
> Piece C: Initial piece (NH-pattern and NV-pattern):
e D'c=D"c=1,Nc=Nc=11c="c={4}
97

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems



» Piece E: (NH-pattern but not a NV-pattern), horizonta! combination
of Aand C:
o D'e=2 Ne=undef, 'e=1{3,4}, D'==1, N'e=1, Pe = {6};

» Piece F: (NH-pattern but not a NV-patten), horizontal combination
of two instances of C:
o D'e=1,Np=21e={4}, D=1, Ne=1, =}

» Piece G: {(NV-pattern but not a NH-pattern), vertical combination of
two instances of C:
o D'c=1,Ns=11s={8},D's=1,Ns=2Fc={4)}

>» Piece H: (NH-pattern but not a hV-pattern), horizontal combination
of the patterns A and G:
o D'u=2 Ny=undef, I'y={3, 8}, D’y=1, N'y=1, 'y ={9};

» Piece J: (NH-pattern but not a NV pattern), horizontal combination of
the patterns A and F:
o D';=2, N',=undef, I';={3, 8}, D",=1, N";=1, ;= {10};

» Piece K: (NV-pattern but not a NH-pattern), vertical combination of
two instances of the pattern E:
o D'%=1,Nk=1,Fc={11}, D'k =1, N'xk=2, Fx = {6}.

> Piece M: (NH-pattern but not a NV-pattern), horizontal combination
of the patterns G and B:
o D'y=2, N'y=undef Iy={5,8}, D=1, N'u=1, Fu={12).

Now that a method for coding patterns has been established, it is possible
to show how these codes may be implemented to reduce computational
effort at every new node that is generated by a C2DGC algorithm. Three
basic methods are described by Cung et al (Cung et al, 2000:197-201),
namely pattern domination, symmefrical duplicate patterns in the same
direction and symmetrical duplicate patterns in opposite directions.

6.2.1.2 Pattern domination

The fact that patterns are constructed by consecutive horizontal and/or
vertical builds creates a situation where two or more patterns with the same
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dimensions may be created. By doing a few translations on these patterns,
it might become obvious that one of these patterns contains fewer pieces
than another with the same dimensions. This is demonstrated in figure 6.1,
where the pattermn H is dominated by the patterns K and M.

The following proposition shows that some patterns can be neglected,
because of pattern domination, if some conditions are satisfied.

Proposition 1: Let A and B be two patterns. Suppose that R is a feasible
pattern obtained using a horizontal build between A and B. Let £’ k¢ S =
{1, ..., n}, be the number of times the k-th piece is used in R, Then R is a
dominated pattern if and only if

Jk e S:by- b’k > 0 and (Ig, wr) =(l, W)

where we = wa —wWg and lg = lg if wa > Wa, Wg = Wag — Wy and Igr = I

otherwise.

Cung et al (Cung et al, 2000:198) provides a proof for this proposition in
their article, and states that proposition 1 only treats horizontal builds
between patterns A and B, but that the same'pn'nciple can be applied to
vertical builds to eliminate dominated patterns.

6.2.1.3 Symmetric (duplicate) patterns on opposite directions

The second symmetric strategy builds on the first one. It states that pattemns
are symmetrical duplicates if they are the same size and are composed of
exactly the same demand rectangles. Once again referring to figure 6.1,
pattemns K and M can be identified as duplicate patterns.

Proposition 2 describes how these duplicate pattems can be identified when
they are generated and therefore more than one instance of a pattern, orits
symmetrical duplicate, will not be stored in CList.
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Let A denote a pattern cbtained by combining horizontally the NH-patterns
Ay, Az ..., Arand B is a pattern obtained by combining horizontally the NH-
patterns By, By, ..., Bs, with d = [y — Ig where d =0.

Proposition 2: A vertical build between two pafterns A and B has a
symmetric pattern if there exist two vectors x = (xjwhere i=1,2, ...,randy
=(y) wherej=1, 2, ..., s satisfying the following inequalities:

Sk = ey, <d

i=1 =t

] zr:x,. <r and Zs:yj <s
i=1 j=1
x, €{0,1} and }j e{0,1}

.

To avoid exponential growth of the lists that need to be maintained for this
proposition, Cung et al (Cung et al, 2000:200) states that a simpler
approach can be taken to eliminate only some symmetrical constructions.
Therefore, let A and B be two patterns and suppose the following inequality
exists, 0 =<y — Iy <d, where l4 and /5 represent respectively the
subpatterns of A and B, stored in Clist according to their lengths. In this
case, a vertical build between the previous A and B pattemns are forbidden.

6.2.1.4 Symmetric (duplicate) patterns on the same direction

The third symmetric strategy is implemented to cover symmetric patterns
that might be generated but are not covered by propositions 1 and 2. It
rejects the storage of patterns that were constructed by combining two
patterns vertically (respectively horizontally), for instance A and B. It is
assumed that both patterns A and B are composed of different sub patterns
combined vertically (respectively horizontally). For example, the pattern J in
figure 6.1 could be constructed by combining the pattems F and A
horizontally, but also by horizontally combining the patterns E and C. The
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following proposition handles the horizontal instance, but the vertical
instance could be treated in the same way.

Proposition 3: The horizontal build between two pattemns A (taken from the
list Open) and a pattemn B (taken from CList) is discarded if one of the three
following cases are verified:

1) D'a=1and D’g=1and I's = Fgand (N'a— N's <-1or N'a— N'g > 1);
2) D'a=1andD's A and Fac 'g or
3) D' #=1.

Cung et al (Cung et _al, 2000:201) finally states that proposition 3, if
implemented correctly, eliminates many unnecessary branches that wouid
have been developed in the search tree. More complex build combinations
could, however, be rejected if other competitive strategies were to be
formulated using the coding standard.

6.2.2 Cutting order

¥ y
A B B c

0 l X 0 l X

¥ 1 2 y 2 i
A B c A B C
0 a b =z 0 a b b:4
® @
I?igmﬁz:'rheeﬂ'ectofcutordeﬁng ]
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Another form of pattern duplication that may occur, results from the order in
which pieces are cut from the stock sheet. Christofides and Hadjiconstantinou
(Christofides & Hadjiconstantinou, 1995:20) expiain the situation as follows: Let
the chosen rectangle (i) be cut into smaller rectangles (a, y) and (x-a, y} by
an x-cutf at r = a. A second x-cut is performed on (x-a, y) at r = b such that a
< b < %(x-a)] at some successor node results in producing three rectangles
A, B and C as shown in pattern (i) in figure 6.2. The same set of rectangles
can be generated by pattern (i) in figure 6.2, where the numbers next to the
x-cuts indicate the order in which the cuts are made.

The consequence of implementing cut ordering is to eliminate from explicit
consideration different sequences of cuts when these lead to the same final
cutting pattern. This can be done, without missing any unique cutting pattern,
by introducing an arbitrary cut ordering so that if a rectangle (x, y) is cut at,
for instance, r = a, then all subsequent x-cuts on the two resultant rectangles
must be greater than or equal to a (Christofides & Hadjiconstantinou,
1995:21).

6.2.3 Demand rectangie rotation

~

Af

l_!‘igm 63 : Demand rectangle rotation l

Demand rectangle rotation is an optional feature that can be included in the
algorithms derived from C2DGC problem solving methods. An example of a
rotated demand rectangle is demonstrated in figure 6.3. Christofides and
Hadjiconstantinou (Christofidles & Hadjiconstantinou, 1995:23) and
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Viswanathan (Viswanathan, 1993:769) both state that their algorithms

assume the following:

> The orientation of the demand rectangles is considered to be fixed,
in. other words a demand rectangle of length [ and width w is not the

same as a demand rectangle of length w and width £

When rotated demand rectangles are considered, as by Wang (Wang,
1983:573-586) and Cung et al (Cung et al, 2000:188), it can be proven that
the method is complete, therefore generating all possibie cutiing patierns.
The demand constraint b; for the 7th demand rectangle still holds though,
implying that only b; instances of the demand rectangie as well as its rotated
equivalent are allowed to be cut from the stock sheet. For this reason this
situation is preferred to the one where rotated demand rectangles are not
considered.

6.3 Improving the lower bounds of the WAM method

it can be observed that the Wang and modified Wang methods produce
information in the process of searching for solutions using a certain value of
beta. If, for instance, all generated builds (if any is found) are considered that
has a certain dimension (fw)} using a specific beta value, the one that
produces the least internal trim loss will in general be an improved lower
bound over the one found by the unbounded two-dimensional knapsack
function for the same dimension ({w). This improved lower bound for the
dimension (4w) is only a valid underestimate for the specific beta value that

was used to calculate it.

Problem | Stock plate length | Demand rectangles’ length D, width &)
(£) and width (%) and upper bound (b
EP1 (55) (11 4% (325).

Figure §.4: Example problem instance

103

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems



On the other hand, the underestimates calculated by the unbounded two-
dimensional knapsack function are valid for ali values of beta. The concept of
improved underestimates can be illustrated using a simple example. Consider
the small example problem instance EP1 (table 6.4), first introduced in
chapter 5, section 5.1, table 5.1, page 56, where the stock sheet has
dimensions (5,5) and two demand rectangle types exist that may be cut from
the stock sheet. Firstly, because a demand rectangle with the dimensions
(1,1) exists, the unbounded two-dimensional knapsack will use the fact that it
has an unlimited number of these at its disposal, and fill the demand rectangle
with it. This happens even thcugh only one instance is alicwed to be cut from
the stock sheet, and therefore produces underestimates of 0 at each
dimension within the larger stock sheet. It is already obvious that the
unbounded knapsack fails to generate good lower bounds for this problem
instance. When the iterative process of rectangle generation (based on
Wang's method) is executed, different rectangular builds are produced with
different dimensions. Figure 6.5 shows one of these possibie generated
rectangles (see also chapter 5, figure 5.6, build number 7 for a demonstration
of how the build in figure 6.5 is constructed).

0.5 G

2
©02) 42

Demand rectangle 2 Demand

rect-
1

0 40 GO

Figure 6.5: An example genersted rectangle
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The build that is iliustrated in figure 6.5 is a horizontal build constructed by
combining demand rectangles 1 and 2 and will only be stored by the Wang
method if a beta value of 0.04 or larger is used. It forms a new rectangle with
dimensions (4,2) and an internal trim loss of 1. This build is also the best
possible build for the dimension {4,2) (refer to chapter 5, figure 5.7, page 71)
for a compiete illustration of all stored builds using a beta value of 0.24. In
figure 5.7 it can be seen that no build with less than 1 unit of internal trim loss
exists for the dimension (4,2) when using a beta value of 0.24) and 1 is
therefore an acceptable lower bound for that dimension if a beta value of 0.04
or larger is used to solve the problem. The underestimates produced by the
unbounded two-dimensional knapsack function that is equal to 0 for the
dimension (4,2), can therefore be replaced with the value of 1, which is a
more accurate underestimate. This concept is used in the stock sheet
propagation algorithm proposed by the author in section 6.3.1, pages 111-
123.

A further observation is that the Wang and modified Wang methods may not
generate builds with internal trim loss values allowed by beta for each
dimension within the stock sheet {£,#). Figure 6.6 illustrates this concept,

using problem instance EP1.

o a4m @29 GO @n GO

Figure 6.6: Propagated builds
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Problem instance EP1 contains one demand rectangle of dimensions (1,1),
and if it is placed at position (0,0) on the stock sheet, no more demand
rectangles exist with a length or width dimension of 1 and no demand
rectangle of dimensions (2,2) exists either. This implies that through
inspecticn (for this small probiem instance) it is impossible to generate builds
with the following dimensions (as shown in the shaded sections in figure 6.6
(this can also be seen in chapter 5, figure 5.7, which shows all possible builds
for EP1 with a beta value of 0.24)):

(2,1), (3,1), (4,1), (6.1), (2,2), (1.2}, (1,3), (1,4) and (1,5)

It may however be possible to artificially construct builds for the dimensions
stated above. This can be achieved by adding trim loss to slightly smaller
builds (the build (1,1} in this instance) that were constructed, which will fill the
dimensions to the required size. This process of constructing missing builds is
called propagation, and section 6.3.1, pages 111-123, introduces a method
created by the author (PSSP method), which uses propagation and data
obtained by the building process to improve the WAM lower bounds.

Before continuing with the discussion of the PSSP method, a small example
instance (EP1, figure 6.4) will be used to further illustrate the concepts of
underestimate updating and build propagations, as they form very important
parts of the PSSP method. Firstly, the optimal guillotine-cut cutting pattemn
obtainable for EP1 (using a beta value of 0.04 or higher} is a pattern with a
total trim foss of 6 (internal trim loss of 1), and is illustrated in figure 6.7 (see
also chapter 5, section 5.2.1.6.1, figure 5.7, page 71, for an illustration of this
pattern in the complete list of stored nodes for EP1 using a beta value of
0.24).
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Demand rectangle 2
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Demand rectangle 2
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Figure 6.7: An optimal schution for EP1

Even though a pattern with a total trim loss of 6 (intemnal trim loss of 1) for this
problem instance could already be generated with a beta value of 0.04, it is
necessary to increase the beta value to 0.24 ((0.24).5.5 <6) to prove that 6 is
indeed the best obtainable frim loss value for the problem (according to Wang,
chapter 5, section 5.2.1.5, theorem T1, page 66), and that figure 6.7 indeed
illustrates an optimal soiution.

As noted earlier, if the problem is solved with the modified Wang method
(WAM) and underestimates are calculated using an unbounded two-
dimensional knapsack function (chapter 5, section 6.2.3.1.1.1, pages 83-87,
Gilmore and Gomory (1966)), all underestimate values should be 0 for this
problem instance (EP1). This is due to the unbounded nature of the knapsack
function and the fact that one demand rectangle of dimensions (1,1) exists.
These values can be improved upon though, by solving a simplified problem
instance using a smaller stock sheet but the same demand rectangles and
demand constraints. The solving of this simplified problem instance is fast and
can lead to better underestimates. This principle will now be demonstrated
using an example problem instance (EP1). The calculated underestimates
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using an unbounded two-dimensional knapsack function for the WAM method
for problem (EP1) is given in table 6.1:

(=2 =Jf=)fe]
olo|o|C
[ Lon B Fn B o
Q|IOo|0|o|O

0
0
0
0
=0{olololo
[Table 6.1: Original underestimates as generated by the unbounded knapsack function]

These underestimates are not accurate enough, but it is possible to increase
the values by following a few steps. Firstly, initialize values in an array with
values calculated as follows:

Cell(x,y} = x.y

where x and y indicate index values for cells (stored elements) within the two-
dimensional array and at the index (x,y) the value of x.y should be stored.
Note that where cells are referenced, the x indicates the row and the y
indicates the column, therefore the reference cell(x,y) is equal to
cell(row,column). These values indicate the maximum trim loss that could
exist for every dimension in the two-dimensional array, and is represented in
table 6.2:

[Table 6.2: Maximum trim loss values for each dimension

It should be noted that a lot of these values exceed the maximum internal trim
loss as allowed by the currently used beta value (which is 0.24 in this case).
Therefore, replace the values in the array in tfable 6.2 that are iarger than
|5.5.(0.24)+1 = 7 with the integer value 7. It shouid be noted that it is not
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absolutely necessary to replace the values that is larger than 7 with 7, but it
establishes uniformity in the table and shows with clarity which values exceed
the maximum internal trim loss as allowed by the currently used beta value.

~d|]e |
SIETIENIES
=~ {=~I{n

Nl |WiN]|=
~N ([ [N

717
[Table 6.3: Maximum trim Joss aliowed by betd

The array has been initialized, and to take the process further, the problem
ihstance will be solved with the original Wang method. Note that only half of
the stock sheet length (3) will be used and the full stock sheet width, resulting
in a simplified problem to be solved. The dimensions and upper bounds of the
demand rectangles will remain the same as for the original problem. Refer to
chapter 5, section 5.2.1.6.1, figure 5.7, page 71, for a representation of all
possible feasible builds (R=0.24) that are stored by the Wang method for EP1.

[Table 6.4: Internal trim loss of builds generated by the original Wang method when solving the simplified problend

When the simplified problem is solved, builds with internal trim loss as
indicated by table 6.4 are attained, where —1 indicates the algorithm did not
find a build for that specific dimension. These values are now compared with
those in table 6.3 (maximum intenal trim loss allowed by beta). If a build was
found with the Wang method and it's internal trim loss (represented in table
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6.4) is less than that of the maximum allowed by beta (represented in table
6.3), the value in table 6.3 is replaced by the value in table 6.4. When this is
complete, the following table is produced:

)

| able 6.5: Altered values

Unfortunately, some values in table 6.5 are still overestimates of the maximum
internal trim loss that could be generated by certain builds. For instance, cell
(2,1) has a value of 2, but a build with an internal trim loss of 1 could be
constructed by taking the build with dimensions (1,1) and adding 1 unit of trim
loss at the bottom of the build (build propagation). This will lead to a build with
an internal trim loss of 1. Therefore, we need to run a propagation algorithm to
verify that no overestimated internal frim losses remain in table 6.5. After this
algorithm (the propagation algorithm is discussed in more detail in section
6.3.1, pages 111-123) was run, the values in table 6.6 are generated.

Compare the values stored in table 6.6 with the propagated builds in figure
6.6. The values in table 6.6 represent the internal trim loss as illustrated in the
propagated builds of figure 6.6.

All that remains to be done now is to compare the values in table 6.1 with the
values in table 6.6. Keep in mind that the values in table 6.6 are
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underestimates of internal trim ioss that could occur in any build, therefore it is
acceptable underestimates for the modified Wang method. If the value for a
given dimension in table 6.6 is larger than its corresponding value in table 6.1,
the value in table 6.1 must be replaced by the value in table 6.6. In this
instance, all the values in table 6.1 are 0, and table 6.6 can be used as the
first part of an updated lookup table for the modified Wang method. It should
be noted that this is an exceptional case, and that usually the values in the
original lookup table will not be all 0. in those instances, the two tables must
be carefully compared. Table 6.7 represents the new table of underestimates
to be used with the WAM method:

0/1/2]0]0
1131040]0
2{0|2]0]0
3{1j0{040
41312;0|0

fTable 6.7: Final updated underestimates|

it is obvious that table 6.7 represents much sharper underestimates than table
6.1, and this guarantees that the modified Wang method using the updated
underestimates will perform better (or in certain cases the same) than the
modified Wang method that used the original underestimates. This statement
is explained further in the next section.

6.3.1 Partial stock sheet propagation (PSSP) method
The partial stock sheet propagation (PSSP) method is a new method devised
by the author. It uses the modified Wang method and its characteristics as a

basis and then refines the estimates used by the method. Characteristics of
the modified Wang method (WAM) are:
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» An unbounded two-dimensional knapsack function is solved once at
the beginning of the problem solving process providing
underestimates of internal trim loss for each smaller dimension
within the larger stock sheet. This unbounded knapsack function is
based on a dynamic programming recursion function (Gilmore &
Gomory, section 5.2.3.1.1.1, pages 83-87),

» The solutions obtained from this function is stored in a two-
dimensional array (named array A), used as a lookup table to
determine estimated external trim loss; and

> These values are never updated.

The problems that can be identified with the method are:

> The unbounded nature of the two-dimensional knapsack function
often causes the underestimates to be unrealistically low (section
6.3 highlights this fact with the use of example problem EP1); and

> Unnecessary builds are generated because the value of h(n) is too
optimistic as a result of the impractical underestimates.

As a result, the author proposes an extension to the modified Wang method.
The previous section (section 6.3) introduced concepts used by the proposed
extension to the modified Wang method, which is called the PSSP method.
This section will aim at solving a larger example problem instance with this
method and then at defining a formal PSSP algorithm based on the method.
The PSSP method aims at updating the values in the two-dimensional amray
(array A) containing the underestimates of the external trim loss. This will be
accomplished by solving a smaller instance of the given original C2DGC
problem instance by using only part of the given stock sheet, but still using all
the original demand rectangles. For instance, if the stock sheet has
dimensions (70,40) any possible smaller part of the stock sheet may be
used. Through empirical studies (refer to chapter 7, table 7.6, pages 161-
163) it was found that half of the stock sheet length and the full width is
normally a good choice, which translates to a stock sheet of dimensions
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(35,40). The full stock sheet length and half of the width (£ (0.5).w) could be
an even better choice, but for the sake of uniformity the dimensions ((0.5).£
w) will once again be used as it was also used with problem instance EP1.
Therefore, the original C2DGC problem will be solved with the original Wang
(WA) method using the given demand rectangles and a chosen beta value,
but a smaller ((0.5).f w) stock sheet. While the smaller instance of the
original problem is being solved, newly generated builds are constantly
evaluated and if it contains the least internal trim loss for that specific
dimension at that stage, it is stored. When the smaller instance of the original
probiem has been soived, a propagation algorithm must be run to ensure
that no overestimates exist within the new underestimates. The least intermnal
trim loss for any given dimension (x,y) can then be compared with the
underestimate as generated by the unconstrained two-dimensional knapsack
function at the same dimension. If the least internal trim loss value is greater
than that of the knapsack function, the knapsack function’s value can be
replaced with the least total trim loss value for dimension (x,y). By repeating
this comparison process for each dimension falling in the smaller stock
sheet, it is possible to tighten the underestimates. The updated
underestimates can be used with the WAM method to solve the original
C2DGC problem instance with the chosen beta value, the original demand
rectangles and a stock sheet of dimensions (70,40). Note that these updated
underestimates are only valid for the beta value that was used to calculate
them. When the PSSP algorithm is executed with a different beta value, the
updated underestimates must be calculated again for the new beta value.

To demonstrate the idea behind the algorithm, a larger sample probiem
instance will be used than the one that was used to illustrate the basic
concepts (problem EP1, figure 6.4, page 103). The sample problem consists
of a stock sheet of dimensions 70x40 and ten demand rectangles'. The
optimal solution for this problem is found using the Wang or modified Wang
algorithm (utilizing hs(n)?) with a beta (B) value of 0.02%. The original

! Refer to chapter 5, section 5.1, table 5.1, problem F3, page 56
% Refer to chapter 5, section 5.2.3.1.1, function 5.3, page 82
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underestimates as given by the unbounded two-dimensional knapsack
function for this problem instance are shown in table 6.8. Unfortunately,

because of paper size constraints only part of the table is shown.

30 | 33|36 | 39 | 42 | 45 } 48 | 51 | 54 | 57 | 60 | 63 j6s|60] 72 | 76 | 78 | 81 | 84 |87 |90} 93{96] 00102 105
40 | 44 |48 | 52 | 56 | 60 | 64 | 6B | 72 [ 76 | 80 [ 84 | O | 4 -1 12 | 16 | 20 | 24 [28|32|36|40) 441 48 | 52
50 | 55|60 | 65|70 | 75 | 80 | 85 | 90 | 95 |100|105|22|27[ 32 | 37 | 42 | 47 |52 |0 | 6 [10]15]20] 25 | 30
60 | 66 | 72 | 78 | B84 | 90 | 96 (102|108 | 114 | 120|126 |44 |50 56 | 62 | 68 | 74 { 80 |29|35|41|47|53)| 59 | 65
70 | 77 | 84 | 91 | 98 | 105|112 | 119|126 | 133 | 140 | 147 |66 73| 80 | 87 | 94 | 101 |108]58|65|72|79| 66| 93 | 100
80 | 88 | 96 | 104|112 | 120 | 128 | 136 | 144 | 152 | 160 | 168 0 | 8 | 16 | 24 | 32 | 40 | 48 |56 |64 |7280|68| 96 | 104
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170] 41 ] 28 | 45 | 62 | 79 | 96 [113|130]| 19 [ 36 { 53 |22]139| 56 | 73 | 90 |107 | 12415830 (47|47 |33| 50 | 67
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2101 55 | 76 | 97 | 118,139 32 | 53 | 74 | 95 | 116|137 |22| 0 | 21 | 42 | 63 | 84 |105|29] 5 |26]30| 20| 41 | 62
44 | 66 0 22 | 44 | 66 0 22 | 44 | 66 0 22 144|231 O 2|1 44| 23 0 |22 23| 0|21 351 23
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36 |44 | 80 | 56 |35 | 71|48 |84 ] 0 |36 |44 |80 | 03523 |48 56| 0 |36 |22|20] 0 |35]|23] 48 | 55
46 | 55 |92 | 69 | 49 | 86 | 64 |101] 18 | 55 | 64 |101|22 16| 16 | 24 | 56 | 27 | 48 | 8 | 5 |31|25|20] 33 | 45
56| 66| 16 |54 | 63 [101] 0 | 38 66 | 16 | 34 |35]30| 32 | 18 | 42 | 54 | 16 | 0 |30|39| 0 |22| 36 | 49
% | 77 67 |50] 0 |16 | 55| 0 |39 |36 |28 |23(50] 0 |16 |55 0 |20 |0 |0 ]6[a2| 0| 16| 36
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[Table 6.8: Original underestimates as stored in array Al

-

3 Refer to chapter 7, section 7.2.2, table 7.2, page 147, for results when solving problem P3 with the
Wang and modified Wang methods :
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The PSSP algorithm will then be implemented using the following steps:

> Firstly, aliocate memory for a new two-dimensional array, named
array B, (recall that the array used as a iookup table to determine
estimated external trim loss is called array A and it contains the
underestimates as calculated by the unconstrained two-dimensional
knapsack function), with dimensions 35x40. Note that it is half of the
stock sheet length by the stock sheet width of the example problem
instance;

» Fill the new array (erray B) with values calculated as follows:

Cell(x,y) = x.y

where x and y indicate index values for cells (stored elements)
within the two-dimensional array B and at the index (x,y) the value of
x.y should be stored;

> Replace the values in array B that is larger than [ 35.40.(0.02) J+1 =
29 with the integer value 29;

Table 6.9 represents the initialization vaiues in array B.

» Solve the given problem instance with the original Wang method,
using the original ten demand rectangle types and a beta (B) value
of 0.02, but use only half of the original stock sheet dimensions
(35x40);

» The values in array B are replaced with the internal trim loss of the
best build found for any given dimension (x,y} with the original Wang
method, if any build for dimension (x,y) was found;

Table 6.10 represents the values stored in array B after the original Wang

method has been executed. The highlighted values in array B, table 6.10,
represent builds that were generated and stored by the Wang method.
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[Table 6.9: Array B, initjalization values
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Updated values of array B after running the original Wang method|

Table 6.10
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Ali builds that were found with the original Wang method are highlighted in
table 6.10. After this process is completed, some of the values in table 6.10
are still overestimates of the internal trim loss. The highlighted values
represent exact builds with the least amount of internal trim loss that were
found by the original Wang method on the specific dimensions, therefore
these values are not overestimates. On the other hand, examine as an
example celi(5,22), that contains the value of 29 (which is an overestimate)
and is situated directly beneath (in the next row) a build found by the original
Wang method with an internal trim loss of 0. To calculate the vaiue that, say
all cells(x,y) should contain {except for exact builds), the following
propagation formula can be used:

Min{value(cell(x,y)), value(cell{x-1,y))+y,value(cell(x,y-1})+x} (6.1)

This formula is intended to be applied in a recursive manner. Starting for
example in cell(1,1), continuing in the row to cell(1,2), then to cell(1,3),
constantly updating and adjusting the estimates in these cells according to
formula 6.1. When the end of row 1 is reached, the algorithm moves to row 2
and so forth. Note that the minimum of three different cells are calculated
when formula 6.1 is used, and that if, for instance, cell(1,1) is examined, only
the first of the three possibilities refer to a valid cell (falling within the stock
sheet dimensions). Whenever a cell is examined by formula 6.1, the
algorithm must first determine which of the three cell references are valid,
and only use the valid cell references for function 6.1.

The basic idea behind the recursive propagation algorithm, utilizing function
6.1, is that for any celi(i,j) that has to be aliotted an underestimate that is
valid for the current value of beta, the internal waste and resulting further
waste for every build found by the Wang method (within the {i,j) dimension) is
considered and the cell with minimal waste is chosen.
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Therefore, the value of cell(5,22) wil be calculated as:
Min{value(cell(5, 22)),value(cell(5,21)}+5,value(celi(4,22))+22} = 22
A further example could be cell(5,23):
Min{value(celi(5,23)),value(cell(5,22))+5,value(cell(4,23))+23} = 27

where in this case, the result of 27 is based on underestimates developed by
the recursive formula 6.1 for cells (4,23) and (5,22).

When formula 6.1 is used to examine the values in table 6.10 and updates it
if it is overestimates, the values in tabie 6.11 is produced. To complete the
process, follow the following simple steps for every corresponding cell{x,y} in
array A and array B:

» Compare the value of each cell(x,y) in array A (table 6.8) with the
value of each cell(x,y) in array B (table 6.11); and

» If the vaiue in array B is larger than the value in array A, repiace the
value in array A with the value in array B.
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Through this process we have increased the values of some of the
underestimates in array A, but the updated values still remain
underestimates (valid only for the beta value that was used to caiculate
them). The resulting updated values in array A is represented in table 6.12,
and this array can now be used with the modified Wang method (WAM) as a
lookup table for estimating external trim loss. Table 6.12 represents only half
of the finai array A (full size of array B), because only that part of array A is
updated. A few important facts to note about the partial stock sheet
propagation (PSSP) algorithm are:

» It uses the same or better underestimates than the modified Wang
method, therefore the values of the heuristic evaluation function
(h(n)) used by the PSSP algorithm will aiways be greater than or
equal to the values of the heuristic evaluation function (h{n)) of the
modified Wang method. Therefore the PSSP heuristic is more
informed than the WAM heuristic and therefore the set of states
examined by PSSP is a subset of those expanded by the modified
Wang method (refer to chapter 4, section 4.2.9.3, page 51 for a
detailed explanation of this statement);

> According to section 5.2.3.1.1 (page 82), when using the heuristic
evaluation function 5.1 as proposed by Oliveira and Ferreira (1990)
to cailculate the values of h(n), overestimates of the actual external
trim loss may occur. Therefore, the PSSP algorithm should be
implemented using the heuristic evaluation function hz(n) (refer to
chapter 5, section 5.2.3.1.1, function 5.3, page 82), which is both
admissible and monotone;

» The PSSP algorithm can be implemented using any partial stock
sheet size. This implies that the partial stock sheet size (in our
example 35x40) used in the first part of the algorithm may vary in
dimensions. For instance, the dimensions 70x20 could have been
used, or any other partial dimensions of the original stock sheet;

» The propagation of values will never extend further into array A than
the dimensions of array B; and
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» The PSSP algorithm will only be initialized for B values larger than 0.
If the original WAM method cannot find a solution for a problem
instance with a B value of 0, then the PSSP algorithm will be used.

210| 55 | 76 | o7 |118139| 32 | 53 | 74 | 95 |116|137|22| 0 [ 21 |42 | 63 | 84 [105[20] 5 |26 62
66| 0 [22 |44 |66 | 0 22|44 66| 0 |22(aa[23| 0 [22[aa|23| 0 [22]35]23 3
7712|3558 |81 /16|39 (62 (85|20 | 0 [23]46|24 | 4 [27 |50 28 | 8 [31|54|32]29] 35|58
88 |24 |48 |72 | 96|32 |56 |80 [104| 40 [21 | 0 (24|48 |20 | 8 |32 | 56 |28 40 29| 48
99 |36 | 61|86 [111]48 | 73 | 98 (123 60 [ 42 (22| 4 | 20 54 | 34 | 16 | 41 |20} 29 28] 42 [28] 37 [ 40

26 | 84 |110| 48 | 74 |100|126| 64 | 90 [116142| 80 | 63 |44 |27 | 8 |34 | 60 | 43 | 29| 20 [ 28] 36 [ 40 [ 40 [ 28] 52
27 | 94 [121] 60 | 87 [114[141| 80 [107[134] 33 [ 60 [ 84 [23 | 50| 32 | 16 [ 43 [ 70 | 52 4033 29 {291 38 | 53
: 124|152 41 52 80| 0 |28)|56 (47 [20] 52 | 80
28 29 28 0 |z |29]29/29|29] 20

46 | 40 | 28 [28] 14 30 |29 19

64 28 | 36 | 33 | 56 29 |28 46 |32 |55 |30 |29

79 42 | 40 | 29| a7 0 [32 30 32 | 15

66 3| 40 24| 0 (3055 33|29 |29

84 37 |28 | 38 | 52 [29429 39 |32 |29 29| 30

102 40 | 52 | 53 | 80 [ 20 19 |2 29| 30 | 49

0 48 | 56 [ 29 | 36 35 [29] 48 | 55

18 e 48 |2 31 33 | 45

36 35|39 | 32 | 29 | 42 | 54 |29 |29 30 | 30 |28} 29 36 | 49

8|3 ]29 50 | 28 55 39 32 |36

; 18 | 33 | 44 | 49 |29 39| 24 | 38 | 72 [27 ] 42 [ 28] |33

[Table 6.12: Final values in array A after comparison with array B
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To conclude the discussion of the PSSP method, an algorithm is given in

figure 6.8.

To solve a C2DGC problem instance with ditensions length(£) and width(#’) with the PSSP
algorithm, follow these steps:

Initial sieps:
- Choose a value for heta (greater than or equal to 0 and less than or equal to 1);
- Allocate memory for arraysnamed A and G with dimensions (L,%);
- Execute the unbounded two-dimensional knapsack function as proposed by Gilmozre
and Gomory (1966) and fill each dimension of array G with the velue returmed for that
dimension by the knapsack function The value represents an underestimation of
internal trim loss for that ditmension,
- Allocate memory for another two-dimensional array named B, with dimensions
(L*3,%), where S indicates a certain percentage of the stock sheet (5 is
greater than 0 and less than or equal to 1);
Recursive sieps:

-SetA =G,

- Fill array B with values indicating the maximum intemal trim loss for & pattern in each
dimension of array B. In other words cellixmi =x* y;

- Replace values in atray B that is larger than thet allowed by beta with [beta * £ * /] + 1;

- Solve the CZDGC problem instance with the original Wang method, using the
otiginal demand pieces for the problem as well as the upper bounds placed on these
pieces bul only peart of the stock sheet (L *S,#), effectively simplifying the problem,
While the problem is being solved, compare each newly generated feasible (f¢ £, w0 € %)
build's intemnal trim 1oss with the values stored in array B. If the internal ttim loss of
any newly generated buildis lower than the velue for that same dimension that is
stored in array B, the value in array B should be replaced by the intemal ttim loss of
the new build,

- When the Wang method has finished its iterations, execute a propagation algorithm,

which must ensure thet no vatues stored in array B are overestimations for the specific 3;

- For every comresponding cell(xy) in array A end array B:

* Compare the value of cell(xy) in array A with the velue of cell(xy) in amay B; and
* [fthe value in atray B is larger than the value in array A replece the value in
array A with the value in array B.
- Scive the original problem instance with the WAM algorithm using the tighter lower
bounds represented in array A,

- If an optimal solution was found for the problem instance, stop; otherwise restart at the

recursive steps,but choose alarger value for beta (refer to patagraph 6.5 for a beta

handling strategy).
Figure 6.8: The algonithm

6.4 Upper bounds and the waste aap

When delving further into the significance of the beta value and its inherent
properties, it becomes obvious that although lower bounds are necessary to
determine good estimations of future trim loss as well as initial beta values,

the range of possible beta values that might be used remains huge. For
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instance, if an initial beta value of 0.02 is calculated using lower bounds, the
waste gap still remains at 0.02 <= 3 <= 1. In the literature concerning the
modified Wang method {(WAM), a vast amount of work has been done
regarding lower bounds and its usefulness. The author has also contributed in
the lower bound field with the PSSP algorithm (section 6.3.1, pages 111-123),
which aims at computing sharper lower bounds by updating the original lower
bounds as given by Gillmore and Gomory (chapter 5, section 5.2.3.1.1.1,
pages 83-87).

Two strategies will be utilized tc determine upper bounds for C2DGC
problems. Firstly, a method utilizing information from the Wang method’s
building process is discussed from which an upper bound could be calculated.
Secondly, a beam search algorithm is used that calculates good solutions for
C2DGC problems, which could in turn be used as upper bounds.

6.4.1 Upper bound propagation and the waste gap

As an extension to the PSSP algorithm research, the author proposes a
method of using information obtained from the building process in the original
Wang method by storing all builds (feasible and infeasible (internal trim loss
exceeds the pruning criterion (£.%.B)), falling within the stock sheet area)
and using these as upper bounds. If a specific build was not found that is
equal to the stock sheet dimensions, a propagation algorithm is used to find
the best cut with the same dimensions as the stock sheet. When this value
has been acquired, the waste gap might be reduced.

Problem P8 (chapter 5, section 5.1, table 5.1, page 56) will be used to
demonstrate the effectiveness of this algorithm addition. Firstly, the algorithm
is executed with an initial beta value of 0.00. All builds (feasible and
infeasible, falling within the stock sheet area) are stored. When two or more
builds are found with the same dimensions, the build with the least internal
trim loss will be used. Table 6.13 shows part of the upper bound array, as it
is stored in memory after the algorithm has been executed with a beta value
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of 0.00. Due to paper size constraints, the whole array can unfortunately not
be displayed.

* 44 * 0 * 104 " | 44 * 0 | 155 | 104 | 66 * 22 * 52

* 66 * 0 * 1130} ¢ 66 | 33 65 | 130 | 99 * 33 | 0 | 865

o

44 * 78 * * * L] 18 * * L 88 L 24 * 156 *

0 | 486 | 36 | 55 | 28 | 28 | 91 | 248 | O 36 | 36 | 28 { 72 |10 O 0

* | O

* * * 77 M7yt 30 | 32 * 72 * " * | 154 | 46 | 96

* *p140 | ¢ * 62 (128 * * * (216 * {152 156 | * * | 252

80 [220| O [168] * 3121} 220 168 | * 93 {160 168 | 110} * 13 | 160

0
23 (192 {121 |12 ] 26 | 26 0 0 0 18 | 18 | 18 | 288 | 242 | 23 | 23 | 23
L] * 170 * * * * * * *

225 * 60 | 33 | 64 * * * 1360} 99 {304 [312 | * [123 (420|230 *
48 | 11 * 33 " 45 | 48 * 72 | 99 * * 1308 | 92 | 264 | 165 | 416
80 115|288 | 22 (442 | 78 | 22 [ 29 | 64 | O | 60 | &4 0 90 | 330 | 115 | 240
0 |[234 ]| * 75 | 80 | 17 | 108 | * 88 | 99 | 352 | 138 (312 | * * 0 | 80
90 | 96 | 34 | 44 * o104 ¢ 90 | 96 | O | 126|494 * | 364 | 87 | 161 | O
55 | 0 31 0 [1056| 0 | 51 | 112} 51 0 |31 | 112 0 [ 85| 0 | 31
120 (224 | 68 | O * 20 | 81 | 28 [145| 30 | 62 | 256 81 | 10 | 66 | 30 | 62
225 * 56 | 54 | 60 | 93 | 288 (150} 68 | O [612] * 76 | 685 | 80 | 90 | 42
48 * 13 | 54 [150 | 13 | 102 | 36 | 80 | O | 36 | 462 | 60 | 48 | 462 | 96 | 72
168 | * * 220 ¢ * 66 | 77 | 88 | 340 * * * * * | 442 | 459
126 | 96 | 104 [ 220 [ 189 | 56 [ 261|160 | 62 | 180|758 [ 170 ] * " * 1190 | 273
* * *|638| * 4 * |156 169 ;182|770 | * * * * * * *
160 | 550 | 70 | 23 * 65 [243 | 60 | 32 | 46 | 108 | 448 | 140 | 238 | 550 | 345 | 144
80 | 348 | 80 | 23 (480|225 | 45 | 60 | 75 | 24 | 31 | 480 | 132 | 272 | 168 | 184 | 352

348 " 221 | 11 * 91 | 48 | 64 | 64 | 72 | 18 * * * 1594 | 165 | 192

80 | 221 | 162 (110 (200 [ 130 | 289 | 126 | 23 | 46 | 780 | 324 | 196 | 210 | 300 | 31 | 176

23 | 11 110 | 33 | 33 | 55 | 87 | 62 0 | 24 | 54 [ 54 [220 {143 (638 | 23 | 23

4801 * | 200 33 * * * 1300} ¢ 0 * | 45 * * 1 675 | 286

225 | 91 1130 | 55 * 1143|280 30 | 32 | 0 | 90 * 48 {247 | 682 | 69 | 312

45 289 | 87 * 1280 * |704) 92 | 99 *|]884| * 1308{174] 0 | AN

75 231 0 * 32 {92 | 0 | 23] 0 {93 |736,486|160| 88 | 0 | 29

48

60 | 64 | 126 62 [300( 30 |704 | 644 | O 0 [910 459 | 54 | 60 | 203 | 62 | 16
64
72

24 46 | 24 0 g |99 ]| 0O 0 0 0 |340| 46 | 24 | 46 | 46 | O

31| 18 | 780 54 * 90 * 910 93 | O * * * o234} " 0 | H

480 ) * | 324 | 4 * * |884 14591736340 * Y1836 * * | 384 | 992

[Table 6.13: Initial upper bounds before propagation for P8 and beta = 0.00)
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Table 6.13 shows all the builds (feasible and infeasible) that were found by
the original Wang method. All cells with stars (*} indicate dimensions where

builds were not found.

59

80

16

32

48

33

16

32

48

33

16

78

59

76

93

35

65

82

99

24

41

71

36

28

28

46

R=(R|E

0

18

36

28

46

77

71

72

91

=y
iy
o

47

67

86

79

98

117

55

118

| 97

116

136

30

32

72

92

112

132

162

66

101

122

119

140

160

181

76

79

100

121

142

163

184

205

121

141

140

161

183

62

106

126

148

170

192

152

156

178

176

103

23

46

69

92

23

45

69

92

115

110

133

36

47

41

65

26

26

0

0

18

18

18

42

66

23

23

87

82

107

69

70

45

46

47

66

67

68

93

118

76

78

127

60

33

59

85

90

92

94

99

116

118

144

123

129

133

11

38

33

60

45

75

72

99

126

153

180

92

119

173

51

79

S50

78

22

29

57

0

28

56

28

56

112

29

80

17

46

75

88

48

77

106

51

80

109

29

69

74

61

91

90

o6

0

30

60

80

120

87

31

3

62

51

0

31

51

31

31

40

olo|R|IR(N

32

20

52

28

60

30

62

81

10

42

62

80

42

60

g7

74

68

0

33

76

62

80

42

82

47

81

13

47

36

70

0

EAN Y

60

48

82

72

122

89

124

57

77

88

48

a3

118

111

100

136

150

127

KR5S B[R]

131

167

92

123

62

96

132

168

162

152

188

190

182

136

136

173

210

100

137

169

109

144

181

218

213

204

241

244

237

176

70

61

65

103

60

32

46

84

122

140

178

216

254

144

119

80

62

101

45

60

75

24

31

70

109

148

168

184

199

159

121

51

91

48

64

o4

72

18

58

98

138

178

165

192

121

162

130

93

110

23

46

67

108

149

180

231

72

11

53

33

87

62

0

24

54

54

96

138

180

23

51

94

76

99

132

108

47

0

43

86

45

88

131

78

91

130

99

143

177

30

32

0

44

88

48

92

136

113

93

132

177

222

76

79

48

93

138

99

144

174

3

110

108

30

76

122

0

0

46

92

54

60

106

16

23

47

32

79

0

23

0

47

94

105

112

88

29

NIRIR(S

46

0

0

48

0

0

0

0

48

46

24

45

18

67

43

44

93

46

47

0

49

98

97

76

g9

A

108

86

88

138

92

94

48

98

148

148

128

152

(Table 6.14: Propagated upper bounds for P8 and beta = 0.

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

126



Even though a build was found in the last cell (50,55), it is not necessarily the
optima! upper bound, because in this instance, the cell (49,55) contains a
build with internal trim loss of 31. This implies that cell {(50,55) can contain a
build with an internal trim loss of 31 + 55 = 86.

For the above mentioned reason we run a propagation algerithm to fill the
empty cells with values and let it determine the best upper bound for cell
(50,55). Table 6.14 displays the array of updated, propagated upper bounds,
and it shouid be kept in mind that with a beta value of 0.00 the optimal
solution for P8 was not found. After the original Wang algorithm was
executed with a beta value of 0.00, a feasible build with a total trim loss of
104 was found (the build has an internal trim loss of 0, but is complete and
therefore when it is placed on the stock sheet has an external trim loss of
104, and the total trim loss is internal trim loss plus external trim loss). This is
not an optimal solution, because 104 is not less than or equal to
{0.00).55.50, therefore the search has to continue with larger beta values. To
minimize the waste gap, the value stored in cell (50,55), which is 86, is
important, and the gap can now be written as:

0.00 < B <= (86 / (55.50))
0.00 < B <=0.0313

Continuing to solve the problem will imply increasing the value of beta. From
the above-stated waste gap, it is already clear that a beta value of more than
0.0313 is unnecessary. For the sake of the example, the beta value will be
increased with an arbitrary value of 0.01. Therefore, after the original Wang
method has been executed with a beta value of 0.01, table 6.15 is produced
as the propagated upper bounds. The upper bound in cell (50,55) indicates a
value of 34, implying a sharp drop in size of the waste gap. The best cutting
pattern with a beta value of 0.01 for problem P8 is again one with a total trim
loss of 104, indicating that it is not an optimal solution. The waste gap can
now be written as:
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0.01 < B <= (34 / (55.50))
0.01 < B <= 0.0124

From this it can be deduced that any beta value of more than 0.0124 is
redundant. Therefore, the value of beta will not be increased to 0.02, but
rather kept down to 0.0124, which guarantees that an optimal solution will be

found with this value of beta.

42 35
0| 18| 36| 54| 28 28| 46| 64 O 0O 18 36 28 46/ 64/ O O
58| 77] 96| 71] 72| 91[110| 47| 48 67| 86| 79| 98{117] 54| 55
98/ 118) 77 97/ 116{136) 30| 32| 521 72| 92) 112;132) 152 46| 66

101] 122] 119 140 160 181] 76{ 79 100 121] 142| 163[ 184 205| 100; 121
141] 140| 161] 183| 62| 84| 106 126 148 170| 192[ 152} 156| 178{ 154| 176
103] Of 23] 46; 69 92| 0] 23] 46| 69 92| 20| 43| 66| 13| 36
47 41| 65 26| 26| O Ol O 18 18 18 42{ 49| 23 23 23

87| 82/ 107{ 69| 70| 45 46| 47| 66{ 67| 68 93/101} 76| 77| 78

1277 60| 33] 59 84| 86| 92| 94 99 99( 101] 127] 123( 129 131] 133,
11| 38| 33| 60| 45 48| 75 72 99 126| 151} 165 92+ 119 146 56

51 26 32| 60f 221 29 57| 0O 10| 38 0| 28/ 55 83 26

29 43 51| 17| 46) 75| 64] 48 56| 85 26| 55 55 29
67| 34 74| 61| 91| 37 67 30, 60 27) 57| 87| 54 O
13 O 31 620 13 O 31 620 13| 0 13 31
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(=]

80| 33| 36/ 60, 58 91| 74 38 31 53| 66| 80} 58{ 36
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58| 54| 82| 50| 57| 66| 53| 35 48| 63( 96| 94| 70{105 58| 73
49 85 68 93] 56| 57| 93] 55 74| 63 99 69 105129 50{ 31
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801 121| 113| 53| 85102 74] 18] 23| 46[ 67| 38 26| 49 64 31| 7.
23] 11] 53| 33) 33| 22| 22| 62| 0, 18 36| 47| 45 45 87| 23 11
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75| 58] 23 0] 29 32| 79 0 23 0 13 60 61 70| 64/ 0 29|
18| 18| 46| 18] O] O 26| O O O 0O 48 46| 18 46| 46/ O
31) 18| 67| 36| 25| 26| 68 48] 13| 0| 49 98] 79/ 28 74/ 0O 31

48] 58| 38 47| 68] 45 95 92 60| 48 98/148/130) 56) 50| 52 34
[Table 6.15: Propagated upper bounds for P8 and beta = 0.01]
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The original Wang method is now executed for a third time with a beta value
of 0.0124. Upon completion of the execution, an optimal cutting pattern is
found with an internal trim loss of 34 (34 < (0.0124).55.50). This will then
terminate the search process.

6.4.2 Beam search, upper bounds and the waste gap

A second method that couid be used to determine an upper bound for any
given C2DGC problem is a greedy search method. In its simplest form a
greedy search would usuzlly follow tha single best path down a search tree
(hence the name greedy} and terminate when the deepest node in the path
cannot be expanded any further. This will then terminate the search. Even
though greedy searches execute very fast, the quality of the solution
obtained by them is usually not very good. In order to obtain a better result
but still inhibit the exponential growth of C2DGC problem search spaces, a
beam search algorithm is used that limits the number of nodes expanded per
level {a specific depth in the search space) to the value w.

For this reason the author impiemented a beam search algorithm that can be
combined with the Wang and modified Wang methods, where the value of w
can be specified. The algorithm computes a possible solution for any given
C2DGC problem instance, and depending on the size of w (beam width) the
quality of the solution may vary. As an example, problem P8 (chapter 5,
section 5.1, table 5.1, page 56) will be used to demonstrate the use of this
algorithm in determining upper bounds and the waste gap.

The first step is to choose a value for the beam width w. For this example,
the problem will be solved five times with five separate beam widths (10, 15,
20, 25 and 30) starting each time with a beta value of 0.00, which is
systematically increased. The results of the solution process are summarized
in table 6.16.
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Beam width (m)
_ Wango | 49 15 20 25 30
a beam)
s 0.00 104 212 212 | 212 | 212 110
@ 0.0 104 212 128 | 128 | 128 110
0.02 34 194 86 86 86 86

rl'able 6.16: Least total trim loss of solution patterns using beam search

The first observation that can be made when examining table 6.16 is that
Wang's method will aiways find either the same or better quality solution than
beam search. A beam width of 30 seems fo generate good quality solutions
when compared with the Wang method, but it should be taken into account
that execution times of the beam search algorithm increases as the beam
width increases. After the first iteration of the beam search algorithm with m
equal to 30, the waste gap can be defined as:

0.00 < <= (110/(55.50))
0.00 <} <=0.04

showing that any value of beta greater than 0.04 will generate unnecessary
patterns. After the second iteration of the beam search algorithm with m
equal to 30, the waste gap can be defined as:

0.01 < <= (110 /(55.50)}
0.01 <R <=0.04

which implies that the value of beta lies in-between 0.01 and 0.04. After the
third iteration of the beam search algorithm with m equai to 30, the waste
gap can be defined as:

0.02 < B8 <= (86 / (55.50))
0.02 < & <= 0.0313
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Upon completion of the iterative search process, it seems as if the
calculation of the waste gap with the upper bound propagation method, as
described in section 6.4.1, performs better. Still, the beam search method to
calculate upper bounds and the waste gap remains a simple and effective
implementation.

6.5 Strategies for handling the value of beta (B)

An important aspect of all algorithms based on Wang’'s method is choosing an
initial starting value for B. Many researchiers have proposed different
strategies to compute an initial value, and some of these methods will shortly
be described.

The most popular method is choosing an initial starting value of 0.00, and if
the optimal solution is not found, the value of 8 is gradually increased by a
constant value (usually 0.01) until the optimal solution is found (Daza et al,
1995:642). Therefore, this method uses 0 as a lower bound on the value of B.
A problem with this method is that some problem instances may require a
large value for B before the optimal solution is found, and through this lower
bound process, a great amount of unnecessary work may be done to iterate
through small & values.

Another method to calculate a lower bound for the value of R was proposed by
Zissimopoulos (Zissimopoulos, 1984) and Hifi (Hifi, 1994), and Hifi (Hifi,
1997:730-732) introduced an improved version of the method a few years
later. This method involves the implementation of a one-dimensional bounded
knapsack for creating a set of horizontal and vertical strips and then combines
them for obtaining a feasible cutting pattern for a given problem instance. If
the realized solution does not satisfy the demand constraints then solving
approximately two sets of packing problems creates a feasible cutting pattern.
From this pattern the initial value of B is then derived.
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. Vasko introduced the idea of calculating an upper bound on the value of B,
and then to gradually decrease (diminish) this value as the search progressed
(refer to section 5.2.2.3, pages 76-77, for more information on dynamically
diminishing the B value). The upper bound on B is calculated using an
algorithm called SPAM, which quickly generates soiutions to the constrained
two-stage cutting stock problem. These solutions are then used to obtain an
initial upper bound for the minimum trim waste of the general (non-staged)
constrained guillotine cutting stock (C2DGC) problem (Vasko, 1988:109).

6.5.1 Lower bound using the WAM lookup table

The author proposes a new method to find an initial lower bound on the
value of R. A sample problem with stock sheet dimensions of 70x40 and
twenty demand rectangles (refer to chapter 5, section 5.1, table 5.1, page 56,
problem P2) will be used to demonstrate the concept. The optimal solution
for this problem is found with a beta (B) value of 0.02. The method derives a
lower bound from the iookup table (array A) that was constructed using the
unbounded two-dimensional knapsack function of Gilmore and Gomory
(Gilmore & Gomory, 1966). Part of the resulting lookup table for the given
problem instance is diéplayed in table 6.17.

The highlighted value in table 6.17 is the last entry in array A at cell(40,70).
This value is an underestimate of the minimum total trim loss of the best
feasible cutting pattem for the given problem instance. Therefore, it is a
viable value that can be used to calculate R:

8 = value(cell(w, r)) / (£.W) (6.2)

where £ is equal to the stock sheet length and #/is equal to the stock sheet

width. For this specific problem instance, the initial value of & is:

B = value(cell(40,70)) / 70.40 = 25 / (70.40) = 0.008
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The value of B is incremented with the value of 0.01. Therefore, the
calculated value will be rounded up to the nearest 0.01 increment and the
initial B value for this specific problem instance is then 8 = 0.01.

76| 64| 78| 57| 71| 57! 46| 32| 39| 25
36| 63| 72| 83] 56| 45| 32| 0] 27{ 32
0| 28| 17| 45| 17| 45{ 65| 38; 0/ 28
32| 23] 0| 29| 37| 28! 51| 59| 50| 53
29| 47| o 30] o 18] 21| 21] 45 33
18] 18| 0| 0 12| 24 15 i5| 21| 18
34| 54| 37| 42| 21| 0] 21| o] o 18
0| 12] 21| 22| 0] 12} 25| 0| 0| ©
19{ 9| 0| 12/ 23] 0| 18] 9] 0] 18
18| 53 0] 35| 22( 9| o] 18] 27| 27
18! ol ol o{ o]l of o} o] o} 0O
19 53] 15) 12| 36| 44| 28[ 35| 9| 14
0 9] 21| 0| 9] 0f 0] 9| o} 14
36) 26| 12| 17| 31| 20{ o[ 21| 11| 14
19| 22} 12| 18] 41| 22| 19| 15| 19} 2

Table 6.17: Initial lower bound on beta (B)

This method therefore generates an initial B value that might be less than the
optimal B value. Therefore, if the initial value is too small, it wili gradually be
increased by 0.01 until the optimal solution is found.

6.5.2 Increasing the value of beta (B)

Whenever an initial value for beta is chosen and the optimal solution for the
problem is not found using that beta value, the value of beta is gradually
increased by a constant value (usually 0.01) until the optimal cutting pattern
is found. This process of increasing the value of beta by the arbitrary vaiue of
0.01 is arguably not the best method to determine the next beta value,
because in some cases a very large beta value is required to solve the
problem optimally.
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| Chart 6.1: Change in total trim loss as the value of beta increases I
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The author proposes that the solving process for any given C2DGC problem
instance be started with an initial beta value as calculated in section 6.5.1.
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When all patterns have been constructed using the initial beta value and the
optimal solution were not generated, the vaiue of beta should be
incremented by a specific fraction. To calculate this increment fraction, chart
6.1 shows specific problem instances (P2, P3, P4, P7 and P8 from chapter 5,
section 5.1, table 5.1, page 56) that were solved with the original Wang
method using a starting beta value of 0 and an increment value for beta of
0.01. The idea is that when the problem is solved with an initial beta value (in
these cases 0.00, but it can be any other starting value), the pattern with the
least amount of total trim loss is identified. This total trim loss is then
converted to a percentage value (in terms of the stcck sheet arez) and
multiplied by a certain fractional value to obtain the next value for beta. Chart
6.1 will be used to determine a trend for the change in total trim loss value as
the value of beta increases by 0.01, and from this a fractional increase value
will be determined.

The least total trim loss (LTT) line for all problems basically shows the same
characteristics. If the value of beta is 0 (the initial value), the value of the
least total trim loss is relatively high. As the value of beta increases (leading
to more, and better patterns being generated) the value of the least total trim
foss for the best pattern found using the given beta value decreases. This
trend continues until the optimal solution for the specific problem instance is
found, and then the LTT line wili flatten and remain on the same stock sheet
percentage value.

Table 6.18 summarizes the values given in chart 6.1. The table also gives

the percentage values needed to reach the beta value required to generate
the optimal solution.
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Problem 0.00 0.01 0.02 Fraction
P2 0.1857 0.1354 0.0104 0.0560
P3 0.2671 0.1504 0.0154 0.0577
P4 0.1000 0.1000 0.0111 0.1110
P7 0.1915 0.0053 - 0.0277
P8 0.4000 0.2484 0.0124 0.0310

Average fraction 0.0567

[Table 6.18: Calculation of beta (B) increase fraction|

The fraction value for each problem (P2, P3, P4, P7 and P8) was calculated
using the value of the least total trim loss value of the optimal pattern divided
by the least total trim loss value of the best pattern found with the initial beta
value. For instance, for P2 the value of fraction was calculated as follows:

0.0104 /0.1857 = 0.0560

This implies that the value of beta should be set to 5.60% of the value of the
least total trim loss as generated by a beta of 0.00 to find the optimal
solution. The fraction values were then calculated for all other problem
instances and an average fraction value was produced from these. The
average fraction value is then 5.67%, meaning that if the optimal solution is
not found with the initial beta value, it should be set to the current beta value
plus 5.67% of the least total trim loss found with the initial beta. This process
should then be iterated until the optimal solution is reached. Refer to chapter
7, section 7.2.7, pages 168-170, for numerical results when the increase
fraction is implemented to solve problem instances.

6.6 Summary

Chapter 6 delved into the problems that were identified in chapter 5
concerning algorithms based on the Wang and modified Wang methods. It
started off by introducing the reader to optimization techniques that could be
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used to enhance the performance of C2DGC problem solving algorithms. The
optimization techniques included pattern coding and elimination of
symmetrical duplicate patterns. Chapter 6 continued with a discussion of
lower bounds and the problems encountered by the modified Wang method
when these bounds are not tight enough. It then introduced the PSSP
algorithm that was proposed by the author, which attempted to calculate
better lower bounds and improve the efficiency of the WAM algorithm. Lastly,
the importance of upper bounds was discussed and how it can be used in
accordance with other techniques to construct a strategy to manage the value
of beta.

Chapter 7 supplies numerical results that were obtained by practicaliy

implementing the ideas that were represented in this chapter and then solving
problems P1 through P8.
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CHAPTER 7: Numerical tests and results

7.1 Introduction

By practically implementing existing algorithms and the author's proposed
PSSP algorithm, numerical results were obtained and these resuits will now
be discussed. Firstly, a comparison will be made between the results obtained
by the author’s implementation of the Wang algorithms® (WA) and modified
Wang algorithms (WAM) and the WA and WAM algorithms of Daza et al
(Daia et al, 1995:643). Secondly, the results obtained by implementing
algorithm enhancements (symmetrical duplicate pattern removal, partial stock

sheet propagation algorithm) will be discussed.

7.2 Numerical results

Numerical tests were done on the eight C2DGC problem instances given in
table 5.1 (chapter 5, section 5.1, page 56). These problems were also solved
by Daza et al (Daza et al, 1995:643) and the different results will be
compared. All problems were solved on the same personal computer, with the

following specifications:

Intel Gigabyte motherboard and an Athlon XP 1.8 GHz CPU;
256 MB of RAM,;

40 gigabyte hard disk drive; and

running Microsoft Windows 2000 Service Pack 2.

vV V V V

The programming language that was used is Borland C++ Builder 6.0 using
Microsoft’'s DirectX application programming interface (API).

! Refer to chapter 5, section 5.2, pages 57-90, for information pertaining the author’s implementation of
the Wang and modified Wang algorithms.
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7.2.1 AWA and AWAM algorithms versus DWA and DWAM algorithms

In this section, results obtained by solving the eight C2DGC problem
instances given in chapter 5, are summarized. No algorithm enhancements
were added (partial stock sheet propagation algorithm or symmetrical
duplicate pattern removal). The WA and WAM algorithms, as was
implemented by Daza et al, will be referred to as the DWA and DWAM
algorithms The results as given in table 7.1 for these two algorithms are
taken directly from Daza’s article (Daza et al, 1995:643). On the other hand,
the algorithms as implemented by the author will be referred to as the AWA
and AWAM aigorithms. The AWA and AWAM algorithms utilise the
improvements made by Vasko (refer to chapter 5, section 5.2.2, pages 75-
77) to the original Wang method. The modified Wang methods (both the
author's and Daza’s) use the heuristic evaluation function as presented by
Oliveira and Ferreira (refer to chapter 5, section 5.2.3.1.1, function 5.1, page
81). Section 7.2.4 gives numerical results when the admissible, monotone
heuristic function 6.3 (refer to chapter 5, section 5.2.3.1.1, function 5.3, page
82) is used instead of function 5.1.

Table 7.1 summarizes the results obtained by Daza for the DWA and DWAM
algorithms and by the author with the AWA and AWAM algorithm. The
following codes are used as headings for the various columns in the table:

» Problem: Indicates which problem instance (refer to table 5.1,
chapter 5, section 5.1, page 56) was solved;

» Algorithm: The specific algorithm that was used to solve the
different problem instances;

» RB: The value of beta that was used by the specified algorithm to
solve a specific problem instance; _

» N: The exact number of nodes that were generated by each
algorithm. This implies that every pattern that is generated by
Wang's method is counted, even if it does not represent a feasible
pattern to be stored;
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» L: The exact number of nodes that were stored in memory by each

algorithm. This value represents only the feasible patterns that
were generated by Wang's method and that were stored,
Processing time: The time taken by each algorithm to solve a
specific problem instance, written in the form
(minutes’seconds.milliseconds”); and

Trim loss: The least amount of total trim loss for the optimal cutting
pattern generated by a specific algorithm for a specific problem

instance.

As this chapter progresses, a large number of algorithms will be introduced,
each of which will be assigned a specific abbreviation. As new algorithms are
introduced, a reference table will be updated with the new abbreviations and
a short description of the characteristics of the new algorithm. Reference
table 7.1 introduces the first four algorithms, named DWA, DWAM, AWA and

AWAM.

Algorithm Description

DWA Daza's implementation of the original Wang method. This algorithm utilizes a breadth-first
search method combined with Wang's rectangie building method and pruning criteria (using
a proportion parameter Beta and intemal trim loss).

DWAM Daza's implementation of the modified Wang method. This algorithm utilizes a breadth-first
search method combined with Wang's rectangle building method and Oliveira and Ferreira's
heuristic function {A(n)) and pruning criteria (using a proportion parameter Beta and intemal
trim as well as estimated extemnal trim loss).

AWA The author's implementation of the original Wang method. This algorithm utilizes a breadth-
first search method combined with Wang's rectangle building method and pruning ctiteria
{using a proportion parameter Beta and internal trim loss). This algorithm also implements
the improvements made by Vasko (complete builds) to the Wang method.

AWAM The author's implementation of the modified Wang method. This algorithm utilizes a breadth-

first search method combined with Wang's rectangle building method and Oliveira and
Fermreira's heuristic function {((n)) and pruning criteria {(using a proportion parameter Beta
and intemal trim as well as estimated external trim loss). This algorithm also implements the
improvernents made by Vasko (compiete builds) to the Wang method.

[Reference table 7.1: DWA, DWAM, AWA and AWAM algorithmg
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Problem | Algorithm B N L Processing Trim
Time Loss
P1 DWA 0.00 400952 | 546 04'25.22" 0
AWA 0.00 8931 | 386 00'03.33" 0
DWAM 0.00 267 168 446 03'56.01" 0
AWAM 0.00 8 465 376 00'02.117 0
P2 DWA 0.02 | 3819692 1693 3554.01" 29
AWA 0.02 343 470 628 01'49.90° 29
DWAM 0.05 324 942 485 04'14.69" 29
AWAM 0.03 42 808 222 00'14.09” 29
P3 DWA 0.02| 1750218 | 1165 16'57.76" 43
AWA 0.02 399 440 825 02'09.90” 43
DWAM 0.06 * * * ¢
AWAM 0.03 105 255 396 00°'34.09" 43
P4 DWA 0.02 989954 | 868 09'29.95" 3
AWA 0.02 393210} 1144 02'17.30" 31
DWAM 0.06 | 1238464 971 15'08.40" 100
AWAM 0.04 451784 | 1423 02'38.90” 31
P5 DWA 0.00 1400 31 00'00.93" 0
AWA 0.00 273 34 00'00.18" 0
DWAM 0.00 926 25 00'01.31" 0
AWAM 0.00 273 34 00°00.18" 0
P6 DWA 0.00 * * * *
AWA 0.00 15 828 389 00'05.44" 0
DWAM 0.00 637 298 693 09'10.24" 0
AWAM 0.00 12226 | 311 00'04.33" 0
P7 DWA 0.01 367 692 526 03°39.58" 8
AWA 0.01 85625 352 00'29.48" 8
DWAM 0.05 555 912 644 12'00.98" 11
AWAM 0.01 9 402 125 00'03.52" 8
P8 DWA 0.02| 1700076 | 1138 16°00.91" 34
AWA 0.02 171873 | 446 00'59.12" 34
DWAM 0.08| 1502852 | 1081 29°00.00” 34
AWAM 0.02 6 961 81 00°02.56" 34
[Table 7.1: Results for AWA and AWAM versus DWA and DWAM|
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The results displayed in the table show that for problem P1 the AWA and
AWAM algorithms perform much better than the DWA and DWAM algorithms
in terms of generated nodes and stored nodes. In terms of generated nodes
for P1, the AWA generates only 8 929 nodes compared to the 400 952 of the

DWA algorithm.

Chart 7.1: N Values for all problem instances
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This is an impressive 392 023 saving in terms of number of generated
nodes. The number of stored nodes for the AWA amounts to 386 where the
DWA stores 546 nodes. Where the AWAM algorithm is concerned in problem

P1, the results are equally impressive. The AWAM algorithm generates only
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8 465 nodes to find the optimal solution where the DWAM aigorithm
generates 267 168. This is nearly 31 times more generated nodes for the
DWAM algorithm than for the AWAM algorithm. In terms of processing time,
the AWA and AWAM algorithms perform much better than the DWA and
DWAM algorithms. This, in part, can be ignored because of the fact that the
problems were solved on a much slower computer, but then again the AWA
and AWAM algorithms do generate, in virtually all cases, a lot less nodes
than the DWA and DWAM algorithms.

Chart 7.1 graphically demonstrates the results. The chart displays the
number of generated nodes (N) as generated by every algorithm for each
problem instance. It is clearly visible that the AWA and AWAM algorithms
perform better for all problem instances than the DWA and DWAM
algorithms. In most cases, the performance improvement is quite drastic.

Chart 7.2 displays the number of stored nodes (L) as stored by every
algorithm for each problem instance. It is obvious that the DWA and DWAM
algorithms do not perform much better where stored nodes are concerned.
Both the AWA and AWAM algorithms perform better than the DWA and
DWAM algorithms for 6 of the 8 problem instances that were solved where
stored nodes are concerned.

Furthermore it should be noted that the DWA algorithm fails to find an
optimal solution for problem P3 (indicated by an asterisk (*) in table 7.1), but
the AWA algorithm does manage to efficiently find the optimal solution for
P3. Lastly, the DWA algorithm fails to find a solution for problem P8, but the
AWA algorithm once again manages to efficiently solve the problem and

delivers an optimal solution.

With all these facts considered, and the results showing that the AWA and
AWAM algorithms outperform the DWA and DWAM algorithms, it is accepted
that the AWA and AWAM algorithms are indeed suitable algorithms for which
more efficient algorithmic enhancements may now be considered. From this
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point on, the results obtained from the implementation of the AWA and
AWAM algorithms to solve the problem instances P1 to P8 will be used for

reference.

Chart 7.2: L Values for all problem instances
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7.2.2 AWA and AWAM algorithms versus the MAWAM aigorithm

In chapter 5, a detailed description was given concerning the admissibility
and monotonicity of heuristic functions. In short, the original modified Wang
method as proposed by Oliveira and Ferreira utilised a heuristic evaluation
function to determine estimated external trim loss. Although this function
worked reasonably weli, the method sometimes required a larger B value to
find the optimal solution than the original Wang method (WA) did (this is
evident when studying table 7.1 above, for instance, problem P2 requires a
beta value of 0.02 for the AWA method and a beta value of 0.03 for the
AWAM method). This was because in some cases, the heuristic function
overestimated the value of h{n), resulting in critical patterns not being
generated. Furthermore, these overestimates could result in a situation
where the algorithm fails to find the optimal solution for a problem instance
even if the value of beta is increased to 1. Daza et al (Daza et al: 1995:639)
provides a solution to this problem in the form of an admissible, monotone
heuristic function? that never overestimates the value of hs(n). It therefore
only requires the same R value as the originai Wang method to reach optimal
cutting patterns.

Reference table 7.2 introduces the MAWAM algorithm and shows that this
algorithm differs from the AWAM algorithm in that it uses a monotone and
admissible heuristic function hs(n) instead of the heuristic function h(n) as
introduced by Oliveira and Ferreira.

Algorithm Description

DWA Daza's implementation of the original Wang method. This algorithm utilizes a breadth-first
" | search method combined with Wang's rectangle building method and pruning criteria (using
a proportion parameter Beta and internal trim loss).

DWAM Daza's implementation of the modified Wang method. This algorithm utilizes a breacdth-first
search method combined with Wang's rectangle building method and Ofiveira and Femeira’s
heuristic function (h(n)) and pruning critetia (using a proportion parameter Beta and intemal
trirn as well as estimated external tim loss).

% Refer to chapter 5, section 5.2.3.1.1, function 5.2, page 82.
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AWA The author's implementation of the original Wang method. This algorithm utilizes a breadth-
first search method combined with Wang's rectangle buitding method and pruning criteria
(using a proportion parameter Beta and intermnal trim loss). This algorithm also implements
the improvements made by Vasko (complete builds) to the Wang method.

AWAM The author's implementation of the modified Wang method. This algorithm utilizes a breadth-
first search method combined with Wang’s rectangle building method and Oliveira and
Ferreira's heunstic function (A{n)} and pruning criteria (using a proportion parameter Beta
and internal trim as well as estimated external trim loss). This algorithm ailso implements the
improvements made by Vasko (complete builds) to the Wang method.

MAWAM The author’s implementation of an enhanced modified Wang method. This algorithm utilizes
a breadth-first search method combined with Wang's rectangle building method and Daza's
heuristic function (hz{n)) and pruning criteria (using a proportion parameter Beta and internal
tim as well as estimated extemal trim loss). This algorithm also implements the
improvements made by Vasko (complete builds) to the Wang method.

[Reference table 7.2: MAWAM algorithm

Table 7.2 summarizes the results obtained by solving the eight example
problem instances with the MAWAM algorithm using an admissible heuristic
function (hs(n)), and it also gives results obtained from the AWA (author’s
original Wang method) and AWAM (author’s original modified Wang method)
algorithms for comparative purposes.

It is evident when studying {able 7.2 that Daza’s heuristic function holds true
to its promises. It always finds the optimal solution for all the problem
instances utilizing the same R value as the original Wang method. One
important point to note is that if the AWAM and the MAWAM algorithms find
the optimal solution at the same R value, it is possible for the AWAM
algorithm to outperform the MAWAM algorithm, as illustrated in problems P86,
P7 and P8. The reason for this is that even though the AWAM algorithm
sometimes overestimates the h(n) value, it may for some problems, not
discard critical builds that lead to the optimal solution. For any problem
instance, the AWAM algorithm is not guaranteed to find the optimal solution
using the same B value as the MAWAM method, and is indeed “lucky” if it
does. The fact remains however, that if they do find the optimal solution with
the same B value, the AWAM algorithm couid fare better than the MAWAM
algorithm.
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Problem | Algorithm R N L Processing Trim
Time Loss
P1 AWA 0.00 8 931 386 00'03.33" 0
AWAM 0.00 8 465 376 00°02.11" 0
MAWAM 0.00 8 465 376 00'02.11” 0
P2 AWA 0.02 343470 628 01'49.90" 29
AWAM 0.03 42 808 222 00°14.09” 29
MAWAM 0.02 38 466 183 00'12.47 29
P3 AWA 0.02 399440 | 825 02°09.90" 43
AWAM 0.03 105 255 396 00'34.09" 43
MAWAM 0.02 96 837 357 00°31.62" 43
P4 AWA 0.02 393210 1144 02'17.30" 31
AWAM 0.04 451784 | 1423 02'38.90" 31
MAWAM 0.02 76858 | 495 00'25.95" 31
P5 AWA 0.00 273 34 00°00.18" 0
AWAM 0.00 273 34 00'00.18" 0
MAWAM 0.00 273 34 00'00.18" 0
P6 AWA 0.00 15 828 389 00'05.44" 0
AWAM 0.00 12226 | 311 00'04.33" 0
MAWAM 0.00 13549 | 337 00'04.58" 0
P7 AWA 0.01 85625| 352 00'29.48" 8
AWAM 0.01 9402 125 00'03.52" 8
MAWAM 0.01 19 020 159 00°06.52" 8
P8 AWA 0.02 171 873 446 00'59.12" 34
AWAM 0.02 6 961 81 00'02.56" 34
MAWAM 0.02 23161 144 00'07.97" 34
[Tabie 7.2: Admissible heuristic function|
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Chart 7.3: N Values for all problem instances -
Admissible heuristic function
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Chart 7.3 shows the consistent and reliable performance of the MAWAM
algorithm when compared to the AWA and AWAM algorithms. It performs
better in most instances where the number of generated nodes {N} are
concerned. It should be noted that the N value represents the number of
generated nodes for the three algorithms (AWA, AWAM and MAWAM) at the
beta (f) value where the optimal pattern was found for each individual
algorithm.
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Chart 7.4: L Values for all problem instances - Admissible
heuristic function
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Chart 7.4 shows that where stored nodes (L) are concerned, the MAWAM
algorithm once again performs well with less high peaks than the AWA and
AWAM algorithms.
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Chart 7.5: Execution times for all problem instances -
Admissible heuristic function

180

160 r

140 :
i
120 )

@

]

c : 1

8 f/ ! \I

3 Fh

- 100 ’i —e— AWA
g 80 - 4- MAWAM
=

o

®

%

w

{
1
[
60 I
/
40 )’
[ A
20 %
-4 |

P1 P2 P3 P4 PS5 P6 P7 P8
Problem instances

Chart 7.5 shows nearly the same structure and properties as chart 7.3. This
can be expected when the heuristic function that is used do not require
excessive computational times.

7.2.3 AWA and AWAM algorithms versus A*WA and A*WAM algorithms

Up to this point, the implemented algorithms (both Daza’s (DWA and DWAM)
and the author's (AWA, AWAM and MAWAM)) algorithms utilized Wang's
method of rectangle generation, combined with a breadth-first search
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algorithm®. The DWA and AWA algorithms used the original Wang method’s
pruning criteria to prune away unnecessary branches in the search tree
(where intemnal trim loss is greater than the value of (beta).(stock sheet
length).(stock sheet width)). The DWAM, AWAM and MAWAM algorithms
used the modified Wang method’s pruning criteria combined with a breadth-
first search algorithm to prune away unnecessary branches in the search
tree (where estimated total trim loss is greater than the value of (beta).(stock
sheet length).(stock sheet width)).

These algorithms can be improved upon by replacing the breath-first search
algorithm with an A* search algorithm (which implies a branch-and-bound
search combined with the dynamic programming principle*). This implies that
nodes will be sorted as they are expanded and the most promising node
(least cost node) will aiways be expanded next. The most promising node is
the node with the iowest internal trim loss for the original Wang method and
the node with the lowest estimated total trim loss for the modified Wang
method. Furthermore, the search process can be terminated as soon as the
least cost node’s cost (the one to be expanded next) is higher than that of
the best solution found up to that point.

The enhanced AWA and MAWAM algorithms are called the A*"WA and
A*WAM algorithms. The A*WA and A*WAM algorithms are introduced in
reference table 7.3

3 Refer to chapter 5, section 5.2.1.6.1, pages 67-75, for a detailed discussion on the implementation of a
breadth-first search method combined with the Wang method.
4 Refer to chapter 4, sections 4.2.6-4.2.9, pages 43-54, for detailed discussions of branch-and-bound
search, branch-and-bound search with underestimations, branch-and-bound using the dynamic
programming principle and the A* search method.
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Algorithm Description

DWA Daza's implementation of the original Wang method. This algorithm utilizes a breadth-first
search method combined with Wang's rectangle building method and pruning criteria (using
a proportion parameter Beta and internal trim loss).

DWAM Daza's implementation of the modiied Wang method. This algorithm utilizes a breadth-first
search method combined with Wang's rectangle building method and Oliveira and Ferreira's
heuristic function {h{n)) and pruning criteria (using a proportion parameter Beta and intema!
tim as well as estimated external trim loss).

AWA The author's implementation of the original Wang method. This algorithm utifizes a breadth-
first search method combined with Wang's rectangle building method and pruning criteria
{using a proportion parameter Beta and internal trim loss). This algorithm also implements
the improvements made by Vasko (complete builds) to the Wang method.

AWAM The author's impiementation of the modified Wang method. This algorithm utitizes a breadth-
first search method combined with Wang's rectangle building method and Oliveira and
Ferreira’s heuristic function (h(r)} and pruning criteria (using a proportion parameter Beta
and internal trim as well as estimated extemal trim loss). This algorithm also implements the
improvements made by Vasko (complete builds) to the Wang method.

MAWAM The author’s implementatioh of an enhanced modified Wang method. This algorithm utilizes
a breadth-first search method combined with Wang's rectangle building method and Daza's
heuristic function (h3(n)) and pruning criteria {using a proportion parameter Beta and intemal
tim as well as estimated extemal trim loss). This algorithm also impiements the
improvements made by Vasko (complete builds) to the Wang method.

A*"WA The author's implementation of an enhanced original Wang method. This algorithm utilizes
an A* search method combined with Wang's rectangle building method and pruning criteria
(using a proportion parameter Beta and intemnal trim loss). This algorithm also implements
the improvements made by Vasko (complete builds} fo the Wang method.

A*WAM The author's implementation of an enhanced modified Wang method. This algorithm utilizes
an A* search method combined with Wang's rectangle building method and Daza's heuristic
function {hs{n)) and pruning criteria (using a proportion parameter Beta and intemal trim as
well as estimated external trim loss). This algorithm also implements the improvements
made by Vasko (complete builds) to the Wang method.

Reference table 7.3: A*WA and A*WAM algorithms

The eight example problem instances were once again solved using these
new algorithms based on the A* search method and the results are
compared with that of the AWA and MAWAM algorithms. Note that the
MAWAM algorithm is used instead of the AWAM algorithm, this is because
using an admissible and monotone heuristic function (hs(n)) is preferred and
because the A*WAM method also uses ha(n). Table 7.3 summarizes the
results obtained by solving the example problem instances.
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Probilem | Aigorithm R N L Processing Trim
Time Loss
P1 AWA 0.00 8 931 386 0003.33" 0
MAWAM 0.00 8465 | 376 00'02.11" 0
A*WA 0.00 8 931 386 00'03.33" 0
A"WAM 0.00 8 465 376 0002.11" 0
P2 AWA 0.02 343 470 628 01'49.90" 29
MAWAM 0.02 38 466 183 00'12.47" 29
A"WA 0.02 140 449 534 00'45.80” 29
A"WAM 0.02 17 923 170 00°05.88" 29
P3 AWA 0.02 399 440 825 02°09.90” 43
MAWAM 0.02 96 837 357 00'31.62" 43
A*WA 0.02 400 349 | 1055 02'11.207 43
A"WAM 0.02 75 342 397 00'24.83" 43
P4 AWA 0.02 393210 | 1144 02'17.30” 31
MAWAM 0.02 76 858 495 00°25.95" 31
A*WA 0.02 131 184 963 00'43.53 31
A*WAM 0.02 25 369 279 00°'08.63” 31
P5 AWA 0.00 273 34 00'00.18" 0
MAWAM 0.00 273 34 0000.18" 0
A"WA 0.00 273 34 00'00.18" 0
A"WAM 0.00 273 34 00'00.18" 0
P6 AWA 0.00 15828 | 389 00°05.44" 0
MAWAM 0.00 13549 | 337 00'04.58” 0
A*WA 0.00 15828 | 389 00'05.44" 0
A*WAM 0.00 13549 | 337 00'04.58" 0
P7 AWA 0.01 85625 | 352 00°29.48" 8
MAWAM 0.01 19 020 159 0006.52" 8
A"WA 0.01 44 395 324 00'14.95" 8
A"WAM 0.01 10 627 144 00'03.81" 8
P8 AWA 0.02 171 873 446 00'59.12" 34
MAWAM 0.02 23 161 144 0007.97" 34
AWA 0.02 91015 442 00'32.17" 34
A*WAM 0.02 12 935 138 00'04.63" 34
[Table 7.3: A* search al
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Chart 7.6: N Values for all problem instances - A*
search algorithms
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Chart 7.7: L Values for all problem instances - A*

search algorithms
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Chart 7.8: Execution times for all problem instances - A*
search algorithms
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7.2.4 Adding symmetrical duplicate pattern removal to the A*WA and
A*WAM algorithms

Cung et al (Cung et al, 2000:196) studied symmetrical patterns occurring in
search lists of cutting problems and devised a pattern coding scheme to
identify these duplicates and remove them from the list. They are called the
SA*WA and SA*WAM algorithms and reference table 7.4 introduces them.
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Algorithm

Description

DWA

Daza's implementation of the original Wang method. This algorithm utilizes a breadth-first
search method combined with Wang's rectangle building method and pruning criteria {using
a proportion parameter Beta and internal trim loss).

DWAM

Daza’'s implementation of the modified Wang method. This algorithm utilizes a breadth-first
search method combined with Wang's rectangle building method and Oliveira and Ferreira's
heuristic function (A(n)) and pruning criteria (using a proportion parameter Beta and internal
trim as well as estimated external trim loss).

AWA

The author's implementation of the original Wang method. This algorithm utilizes a breadth-
first search method combined with Wang's rectangle huilding method and pruning criteria
{using a proportion parameter Beta and intemal tim loss). This algorithm also implements
the improvements made by Vasko (complete builds) to the Wang method.

AWAM

The author's implementation of the modified Wang method. This algorithm utilizes a breadth-
first search method combined with: Vvang's rectangle building method and Oliveira and
Ferreira’s heuristic function (h(n)) and pruning criteria (using a proportion parameter Beta
and intemal tim as well as estimated extemnal trim loss). This algorithm also implements the
improvements made by Vasko (complete builds} to the Wang method.

MAWAM

The author's implementation of an enhanced modified Wang method. This algorithm utilizes
a breadth-first search method combined with Wang's rectangle building method and Daza's
heuristic function (hs{n)) and pruning criteria {using a proportion parameter Beta and internal
tim as well as estimated extemal trim loss). This algorithm also implements the
improvemants made by Vasko (complete builds) to the Wang method.

A*WA

The author's implementation of an enhanced original Wang method. This algorithm utilizes
an A* search method combined with Wang’s rectangie building method and pruning criteria
(using a proportion parameter Beta and internal trim loss). This aigorithm also implements
the improvements made by Vasko (complete builds) to the Wang method.

A*"WAM

The author’s implementation of an enhanced modified Wang method. This algorithm utilizes
an A* search method combined with Wang's rectangle building method and Daza's heuristic
function {hsfn)} and pruning ctiteria (using a propottion parameter Beta and intemal trim as
well as estimated external trim loss). This algorithm also implements the improvements
made by Vasko (complete builds) to the Wang method.

SA*WA

The author's implementation of an enhanced original Wang method. This algonthm utifizes
an A" search method combined with Wang's rectangle building method and pruning criteria
{using a proportion parameter Beta and intemal trim loss). This algorithm also implements
the improvements made by Vasko (complete builds) to the Wang method as well as Cung's
pattern coding scheme to rermove symimetrical duplicate pattemns.

SA*"WAM

The author's implementation of an enhanced modified Wang method. This algorithm utilizes
an A* search method combined with Wang's rectangle building method and Daza's heuristic
function {hs{n)} and pruning criteria {using a proportion parameter Beta and intemal trim as
well as estimated external trim loss). This algorithm also implements the improvements
made by Vaske (complete builds) to the Wang method as well as Cung's pattem coding
scheme to remove symmetrical duplicate pattems.

Reference table 7.4: SA*WA and SA*WAM algorithmg

Table 7.4 shows the results when the 8 example problem instances are
solved with the SA*WA and SA*WAM algorithms that utilize Cung’s method
of pattern coding to remove symmetrical duplicte patterns.
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Problem | Algorithm B N L Processing Trim
Time Loss

P1 A*"WA 0.00 8 931 386 00'03.33" 0
A*WAM 0.00 8 465 376 0002.11" 0

SA"WA 0.00 8 8562 382 00'03.30" 0

SA*WAM 0.00 8 388 372 00'02.017 0

P2 A*WA 0.02 140 449 534 00°45.80" 29
A*WAM 0.02 17 923 170 00'05.88" 29

SA"WA 0.02 139 348 530 00'45.63" 29

_ SA"WAM 0.02 17 823 169 00'05.83" 29

P3 TAWA 0.02| 400349 | 1085 0211.20" 43
A*"WAM 0.02 75 342 397 0024.83" 43

SA"WA 0.02 388310 | 1031 02'09.22" 43

SA"WAM 0.02 73 589 391 00'23.927 43

P4 A*WA 0.02 131 184 963 00'43.53 31
A"WAM 0.02 25 369 279 00'08.63" 31

SA*WA 0.02 125 987 889 00°'40.67" K|

SA"WAM 0.02 25132 273 00'08.23" 31

P5 A*WA 0.00 273 34 00'00.18 0
A*WAM 0.00 273 34 00'00.18" 0

SA"WA 0.00 272 33 0000.17" 0

SA"WAM 0.00 272 33 00'00.177 0

P6 A*WA 0.00 . 15 828 389 00'05.44 0
A"WAM 0.00 13 549 337 00'04.58" 0

SA™"WA 0.00 15275 355 00'05.28" 0

SA"WAM 0.00 13015 304 00'04.46 0

P7 A*WA 0.01 44 395 324 00'14.95" 8
A"WAM 0.01 10 627 144 00'03.81" 8

SA*WA 0.01 43 797 321 00'14.57 8

SA"WAM 0.01 10 627 144 00°'03.81” 8

P8 A"WA 0.02 91015 442 00'32.17" 34
A"WAM 0.02 12935 138 00'04.63" 34

SA*WA 0.02 90 442 440 00'31.47" 34

SA*WAM 0.02 12 860 138 00'04.51” 34

Table 7.4: A* search algorithms with symmetrical duplicate pattern removalj
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The results show that this algorithmic enhancement does not greatly
enhance the performance of the A*WA and A*WAM algorithms, but Cung
does state that it is possible to generate more efficient and competitive
strategies using the pattern coding scheme to reject more complex
symmetrical duplicate combinations.

7.2.5 Partial stock sheet propagation (PSSP) algorithm

In the previous section, the A*WAM algorithm was found to be one of the
best performing algorithms tested so far (without symmetrical duplicate
pattern removal). The PSSP aigorithm, as described in chapter 6 (section
6.3.1, pages 111-123), will utilize the A*WAM algorithm. One of the reasons
is that an admissible heuristic function is needed if the PSSP algorithm, as
proposed by the author, is to be complete and exact.

Table 7.5 summarizes the numerical results that were obtained by practically
implementing the PSSP algorithm. The table contains data about the solving
of the partial sub-problem with the original Wang method (Sub AWA).
Furthermore, it also displays data for the complete problem that were soived
using the A*WAM algorithm with updated underestimate values (PSSP).
These values are then added to show the total number of generated (N) and
stored (L) nodes as well as the combined execution time. (For more
information on the PSSP algorithm, refer to chapter 6, section 6.3.1, pages
111-123).

The partial sub-problems were solved using the original demand rectangles
and a stock sheet of the dimensions (£,(0.5).(%)). Although any dimensions
could be used for the sub-problem sheet, it was found that the (£,{0.5).%))
dimension performed well (refer to table 7.6, pages 161-163). Recall that this
partial sub-problem is solved in order to update the modified Wang reference
table containing underestimate values. Lastly, as stated in chapter 6, section
6.3.1, pages 111-123, the partial sub-problem will only be solved if the value
of B is greater than 0, otherwise only the resuits as obtained from the
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A*WAM algorithm alone will be used. For all problem instances (where the
beta value is not equal to 0) the PSSP algorithm performs better than the
A*WAM algorithm, both in terms of execution time and the number of nodes

that were generated.

Problem | Algorithm B N L Processing | Trim
Time Loss

P1 A*WAM 0.00 8 465 376 00°02.11” 0

P2 A"WAM 0.02 17 923 170 00°05.88” 29
Sub AWA 0.02 71 9 00'00.08 "
PSSP 0.02 17 410 187 00'05.74 " 29
Total 17 481 176 00°05.82"

P3 A"WAM 0.02 75 342 397 00°24.83" 43
Sub AWA 0.02 1473 44 000064 -
PSSP 0.02 73 553 385 00'23.64 " 43
Total 75 026 429 00°24.28”

P4 A*'WAM 0.02 25 369 279 00'08.63"” 31
Sub AWA 0.02 859 27 0000.42 "
PSSP 0.02 22511 256 00'07.80" 31
Total 23 370 283 00’08.22”

P5 A"WAM 0.00 273 34 00°00.18”

P6 A"WAM 0.00 13 549 337 00'04.58”

P7 A*"WAM 0.01 10 627 144 00°03.81”
Sub AWA 0.01 26 13 00'00.04 "
PSSP 0.01 10 133 139 00'03.72 " 8
Total 10 159 142 00°03.76"

P8 A'WAM 0.02 12 935 138 00°04.63” 34
Sub AWA 0.02 270 16 00'00.14 "
PSSP 0.02 11760 137 00'04.16 " 34
Total 12 030 153 00°04.30”

{Table 7.5: PSSP algorithm results

To conclude the results for the PSSP algorithm, table 7.6 displays numerical

results obtained while testing which percentage of the stock sheet should be
used to solve the partial problem. Only problems P2, P3, P4, P7 and P8 are

included, as the other probiem instances require a beta value of only 0 to

generate optimal solutions.
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Problem } Algorithm | R N L Processing | Trim
Time Loss
P2 50% L Sub {0.02 3666 52 00'01.125"
PSSP 0.02 17 564 168 00'05.343 " 29
Total 21 230 220 00°06.468"
40% L Sub | 0.02 347 18 00'00.172"
PSSP 0.02 17 816 168 00'05.343 " 29
Total 18 163 186 00°05.515”
30% L. Sub | 0.02 63 6 00'00.047 ~
PSSP 0.02 17 923 170 00°05.578 " 29
Total 17 986 176 00705.625”
50% W Sub | .02 71 g 00'00.082 "
PSSP 0.02 17 410 167 00'05.740 " 29
Total 17 481 176 00°05.822"
40% W Sub | 0.02 5 2 00'00.032 "
PSSP 0.02 17 767 169 00'05.625 " 29
Total 17772 17 00°05.657"
30% W Sub | 0.02 4 2 00'00.047 *
PSSP 0.02 17 923 170 0005672 " 29
Total 17 927 172 00'05.719”
P3 50% L Sub | 0.02 7810 89 00'02.563 "
PSSP 0.62 58718 341 - 00'18.970 " 43
Total 66 528 430 00°21.533”
40% L Sub | 0.02 1808 44 00'00.625 "
PSSP 0.02 71395 389 00'23.060 " 43
Total 73 203 433 00°23.685”
30% L Sub | 0.02 378 18 00'00.172 "
PSSP 0.02 75 151 396 00'23.780 " 43
Total 75 529 414 00°23.952"
50% W Sub | 0.02 1473 44 00°00.641 "
PSSP 0.02 73 5563 385 00°'23.640 " 43
Total 75026 429 00°24.281"
40% W Sub | 0.02 716 51 00'00.406 *
PSSP 0.02 74419 392 00'25.970 " 43
Total 75135 443 00°26.376"
30% W Sub | 0.02 42 11 00'00.406 ~
PSSP 0.02 75268 398 00°25.610 " 43
Total 75 301 409 00°25.767"
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Problem | Aigorithm | B N L Processing | Trim
Time Loss
P4 50% L Sub | 0.02 5394 76 00'01.984 "
PSSP 0.02 19 539 250! 00'06.844 " 31
Total 24933 326 00'08.828"
40% L Sub | 0.02 1140 30 00'00.454 "
PSSP 0.02 24 252 2701 0008.437" 3
Total 25 392 300 00’08.891"
30% L Sub 0.02 172 11 00'00.094 "
PSSP 0.02 24 392 2751 0008.375" 3
Total 24 564 286 00°08.469"
50% W Sub | 0.02 859 27 00'00.422 "
PSSP 0.02 22 511 256 00'07.797 " 31
Total 23 370 283 00’08.219”
40% W Sub ;| 0.02 1213 97 00'00.578 "
PSSP 0.02 24 293 263 [ 0008.453" 31
Total 25 506 360 00°09.031”
30% W Sub | 0.02 16 3 00°00.046 "
PSSP 0.02 25 369 279 | 0008.750" 31
Total 25 385 282 00'08.796”
P7 50% L Sub | 0.01 2186 41 00'00.796 "
PSSP 0.01 10 003 131 00'03.844 * 8
Total 12 189 172 00°04.640”
40% L Sub | 0.01 21 8 00°00.047 ~
PSSP 0.01 10 047 138 | 0003.610" 8
Total 10 068 146 00°03.657”
30% L Sub | 0.01 12 5| 0000.047~
PSSP 0.01 10 625 147 00°03.891 " 8
Total 10 637 152 00'03.938”
50% W Sub | 0.01 26 13 00'00.040 "
PSSP 0.01 10 133 139 0003.719" 8
Total 10 159 152 00°03.759"
40% W Sub | 0.01 4 4 00'00.032 "
PSSP 0.01 10 311 139 00'03.782 * 8
Total 10 315 143 00°03.814"
30% W Sub | 0.01 3 3 00°00.094 ~
PSSP 0.01 10 627 144 00'03.891 " 8
Total 10 630 147 00°03.985”
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Problem | Algorithm | B N L Processing | Trim
Time Loss

P8 50% L Sub 0.02 1394 34 00'00.484 "
PSSP 0.02 12 383 135 00'04.297 " 34
Total 13777 169 00°04.7817
40% L Sub | 0.02 22 5] 0000.094 "
PSSP 0.02 12 935 138 00'04.515" 34
Total 12 957 143 00°04.609”
30% L Sub 0.02 3 1 00'00.001 *
PSSP 0.02 12 935 138 00'04.406 " 34
Total 12 938 139 00°04.407”
50% W Sub { 0.02 270 16 00'00.141 "
PSSP 0.02 11760 137 00'04.156 " 34
Total 12 030 153 00'04.297”
40% W Sub | 0.02 6 2 00'00.047 "
PSSP 0.02 12 016 134 00'04.109 " 34
Total 12 022 136 00'04.156"”
30% W Sub | 0.02 8 4 00'00.047 7
PSSP 0.02 12 655 135 00'04.359 " 34
Total 12 663 139 00°04.406”

fTable 7.6: Results for other partial areas to solve the sub-problem|

The results in table 7.6 show that the 50% % Sub (£,(0.5).(%)) dimension
performs well as well as the 40% % Sub (£,(0.4).(#%)) dimension. It is
therefore recommended that one of these two dimensions be used for the

sub-problem dimensions when using the PSSP algorithm.

7.2.6 Normalized results

To summarize the results of sections 7.2.1 - 7.2.5, a table consisting of the

original values for the number of generated nodes {N), the number of stored

nodes (L} and the execution times for all problem instances (P) will be given

in table 7.7. Table 7.8 gives normalized results using the AWA algorithm’s

results as the norm.
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Problem | Algorithm B N L Processing Trim
Time Loss

P1 AWA 0.00 8 931 386 00'03.33" 0
A*WA 0.00 8 931 386 00'03.33” 0

SA"WA 0.00 8 852 382 00'03.30” 0

AWAM 0.00 8 465 376 0002.11° 0

MAWAM 0.00 8 465 376 0002.11” 0

A*"WAM G.00 8 465 376 00'02.117 0

SA"WAM - 0.00 8 388 372 0002.017 ]

PSSP 0.00 8 465 376 00°62.11” 0

P2 AWA 0.02 343 470 628 01'49.90" 29
A*'WA 0.02 140 449 534 00'45.80" 29

SA"WA 0.02 139 348 530 00'45.63" 29

AWAM 0.03 42 808 222 00'14.09” 29

MAWAM 0.02 38 466 183 00'12.47" 29

A"WAM 0.02 17 923 170 00'05.88" 29

SA'WAM 0.02 17 823 169 00°05.83" 29

PSSP 0.02 17 481 176 00'05.82" 29

P3 AWA 0.02 399 440 825 02'09.90” 43
A*WA 0.02 400 349 | 1055 02'11.20° 43

SA*WA 0.02 388310 1031 02'09.22° 43

AWAM 0.03 105 255 396 00'34.09" 43

MAWAM 0.02 96 837 357 00'31.62" 43

A"WAM 0.02 75 342 397 00'24.83” 43

SA*'WAM 0.02 73 589 391 00°23.92" 43

PSSP 0.02 75 026 429 00°24.28" 43

P4 AWA 0.02 393210 | 1144 02’17.30" 31
A*WA 0.02 131 184 963 00'43.53” 31

SA'WA 0.02 125 987 889 00'40.67" 31

AWAM 0.04 451784 | 1423 02'38.90" 31

MAWAM 0.02 76 858 495 00'25.95" 31

A*"WAM 0.02 25 369 279 00'08.63" 31

SA*WAM 0.02 25132 273 00'08.23" 31

PSSP 0.02 23 370 283 00'08.22" 31
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Problem | Algorithm R N L Processing Trim
Time Loss
P5 AWA 0.00 273 34 0000.18" 0
A*WA 0.00 273 34 0000.18" 0
SA*WA 0.00 272 33 00'00.17" 0
AWAM 0.00 273 34 00°00.18” 0
MAWAM 0.00 273 34 00°00.18" 0
A*WAM 0.00 273 34 00°00.18" 0
SA*WAM 0.00 272 33 0000.17" 0
PSSP 0.00 273 34 00'00.18” 0
P6 AWA 0.00 15 828 389 00'05.44" 0
A™WA 0.00 15 828 389 00'05.44” 0
SA*"WA 0.00 156275 | 355 00'05.28" 0
AWAM 0.00 12 226 311 00'04.33" 0
MAWAM 0.00 13 549 337 00°04.58" 0
A*WAM 0.00 13 549 337 00'04.58" 0
SA*WAM 0.00 13015 304 00'04.47 0
PSSP 0.00 13 549 337 00°'04.58" 0
P7 AWA 0.01 85625 352 00'29.48" 8
A"WA 0.01 44 395 324 00'14.95" 8
SA"WA 0.01 43 797 321 00'14.577 8
AWAM 0.01 9402 125 00'03.52° 8
MAWAM 0.01 . 19020 159 0006.52" 8
A*"WAM 0.01 10627 144 00'03.81" 8
SA*WAM 0.01 10 627 144 00'03.81" 8
PSSP 0.01 10 159 142 00'03.76" 8
P8 AWA 0.02| 171873| 446 0059.12" | 34
A*WA 0.02 91015 442 003217 34
SA"WA 0.02 90 442 440 00°31.47" 34
AWAM 0.02 6 961 81 00'02.56” 34
MAWAM 0.02 23 161 144 00'07.97" 34
A'WAM 0.02 12935 138 00'04.63 34
SA"WAM 0.02 12 860 138 00°04.51" 34
PSSP 0.02 12 030 153 00'04.30" 34

[Table 7.7: Summary of results before normalization

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems




Problem| Algorithm B N L |Processing| Trim
Time Loss
P1 AWA 0 1.000 1.000: 1.000 0
A*WA 0 1.000 1.000, 1.000 0
SA*"WA 0 0.991 0.990 0.991 0
AWAM 0 0948  0.974 0.634 0
MAWAM 0 0.948, 0.974 0.634 0
A*WAM 0 0948 0.974 0.634 0
SA*WAM 0 0939y 0.964 0.604 0
PSSP 0 0.948, 0.574 0.634 0
P2 AWA 0.02 1.000 1.000 1.000 29
AYWA 0.02) 0409 0.850 0.417 29
SA*"WA 0.02] 0406, 0.844 0.415 29
AWAM 0.03 0.125 0.354 0.128 29
MAWAM 0.02 0.112 0.291 0.113 29
A'WAM 0.02 0.052 0.271 0.054 29
SA*"WAM 0.020 0.052f 0.269 0.053 29
PSSP 0.020 0.051 0.280 0.053 29
P3 AWA 0.020 1.0000 1.000 1.000 43
A"WA 0.02 1.002 1.279 1.010 43
SA*"WA 0.02f 0972 1.250 0.995 43
AWAM 0.03 0264 0.480 0.262 43
MAWAM 0.02 0.242 0.433 0.243 43
A*"WAM 0.020 0.189] 0.481 0.191 43
SA*"WAM 0.02f 0.184] 0474 0.184 43
PSSP 0.02f 0.188] 0.520 0.187 43
P4 AWA 0.020 1.000f 1.000 1.000 31
A*WA 0.02] 0.334; 0.842 0.317 31
SA*WA 0.020 0320, 0.777 0.296 31
AWAM 0.04 1.149 1.244 1.157 31
MAWAM 0.020 0.195 0.433 0.189 31
A*WAM 0.020 0.065 0.244 0.063 31
SA"WAM 0.02 0.064; 0.239 0.060 31
PSSP 0.02 0.059 0.247 0.060 31
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Problem| Algorithm R N L |Processing| Trim
Time Loss
PS5 AWA 0 1.000 1.000 1.000 0
AYWA 0 1.000 1.000 1.000 0
SA*WA 0 0996 0.971 0.944 0
AWAM 0 1.000 1.000 1.000: 0
MAWAM 0 1.000 1.000 1.000 0
A*WAM 0of 1.0000 1.000 1.000 0
SA"WAM 0 0996 0.971 0.944 0
PSSP 0 1.000 1.000 - 1.000 0
P6 AWA 0 1.000 1.000 1.000 0
A*WA 0 1.000 1.000 1.000 0
SA"WA 0f 0.965 0913 0.971 0
AWAM o 0772, 0.799 0.796 0
MAWAM 0of 0.856 0.866 0.842 0
A"WAM 0 0.856 0.866 0.842 0
SA"WAM 0 08220 0.781 0.822 0
PSSP 0f 0856 0.866 0.842 0
P7 AWA 0.01 1.000 1.000 1.000 8
A*WA 0.01 0.518, 0.920 0.507 8
SA"WA 0.01 0511 0.912 0.494 8
AWAM 0.01 0.110, 0.355 0.119 8
MAWAM 0.01| 0222 0452 0.221 8
A*WAM 0.01 0.124 0.409 0.129 8
SA"WAM 0.01 0.124; 0.409 0.129 8
PSSP 0.01 0.119] 0.403 0.128 8
P8 AWA 0.021 1.000, 1.000 1.000 34
A*WA 0.021 0530, 0.991 0.544 34
SA*"WA 0.02 0.526] 0.987 0.532 34
AWAM 0.02( 0.041 0.182 0.043 34
MAWAM 0021 0.135 0.323 0.135 34
A*WAM 0.020 0075 0.309 0.078 34
SA"WAM 0.02f 0.075( 0.309 0.076 34
lPSSP 0.02] 0.070, 0.343 0.073 34

[Table 7.8: Normalized results using the AWA algorithm as the norm
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The original values are then converted to normalized values, using the AWA
algorithm’s results as the norm. The formula to calculate the normalized
values are given below:

normalized value = Any algorithm’s value / AWA value

The normalized values are given in table 7.8. The normalized results show
that the PSSP, A*WAM and SA*WAM algorithms are three of the best-
performing algorithms. It should be noted that symmetrical duplicate removal
could also be added to the PSSP algorithm, which will effectively enhance
the PSSP algorithm even more.

7.2.7 Inc}easing the beta (B) value

In chapter 6, section 6.5.2, pages 133-136, a fractional increase value for
beta was calculated. This value will now be used in the solving process to
modify the value of beta whenever an optimal solution is not found with a
beta value of 0.00. Table 7.9 summarizes the results found when using the
increase fraction with the AWA algorithm. In the same table, the results
obtained by solving the problems with a constant beta increase value of 0.01
are also displayed.

It should be noted that for this example the AWA algorithm was used, but it

could be substituted with any one of the other algorithms that were tested in
sections 7.2.1t0 7.2.5.

168

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems




Problem ] Algorithm R N L Processing Trim
Time Loss

P1 AWA 0.0000 8 931 386 00'03.33 " 0

P2 AWA(Con- | 0.0000 | 12014 98 00'03.19" 520
stant beta 0.0100 | 65106 258 00'18.81" 379
increase) 0.0200 | 343470 628 01'49.90 " 29
TOTAL 420 590 984 02'11.90”
AWA(Frac- | 0.0000( 12014 98 00'03.19" 520
tional beta | 0.0105| 68 185 265 0020.33 " 29
increase)
TOTAL 80 199 363 00°23.52”

P3 AWA(Con- | 0.0000 7 375 73 00'01.60 ~ 748
stant beta 0.0100 | 72012 323 0022.12° 421
increase) 0.0200 | 399440 825 02'09.90" 43
TOTAL 478827 | 1221 02’33.62”
AWA(Frac- | 0.0000 7375 73 00'01.60 " 748
tional beta | 0.0125 | 133726 477 004541 " 31
increase) 0.0208 | 452 566 866 02'20.13" 43
TOTAL 593667 | 1416 03'07.14”

P4 AWA(Con- | 0.0000 9 469 89 00'03.45" 280
stant beta 0.0100 | 58647 355 0018.24" 280
increase) 0.0200 | 393210 1144 02'17.30 " 31
TOTAL 461 326 | 1588 02°38.99”
AWA(Frac- | 0.0000 9 469 89 00'03.45" 280
tional beta | 0.0057 | 15140 123 00'04.67 " 280
increase) 0.0113 | _958601 478 002945 31
TOTAL 120 210 690 00°37.62"
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Problem | Algorithm R N L Processing Trim
Time Loss
P5 AWA 0.0000 273 34 0000.18 7 0
P6 AWA 0.0000| 15828 389 000544 " 0
P7 AWA(Con- | 0.0000 | 23556 199 0007.78 " 288
stant beta 0.0100| 85625 352 00'29.48 " 8
increase)
TOTAL 109 181 551 00'37.26”
AWA(Frac- | 0.0000{ 23556 199 0007.78 7 288
tional beta 0.0109 | 110400 393 003545 " 8
increase)
TOTAL 133 956 592 00'43.23”
P8 AWA(Con- | 0.0000 6918 71 0007.39 7 1100
stant beta 0.0100 | 29807 169 00'10.21~ 683
increase) 0.0200| 171873 446 00'69.12 7 34
TOTAL 208 598 686 01’16.72”
AWA(Frac- | 0.0000 6918 71 00°07.39 1100
tional beta 0.0227 | 217 432 509 01°18.36 ” 34
increase) :
TOTAL 224 350 580 01'25.75”

[Table 7.9: Constant versus fractional beta (8) value increases

The results in table 7.9 show that in some cases the constant increase of the
beta value performs better, and in other cases the fractional increase fares
better. A possible reason for this is that the beta values required to find the
optimal soiutions for these problem instances are small. As is mentioned in
chapter 6, section 6.5.2, pages 133-136, if a problem requires a large beta
value to generate the optimal solution, a lot of unnecessary work might be
done while the value of beta is gradually increased with a constant value of
0.01 (or some other arbitrary value). This method is therefore a good
alternative to a constant increase in the value of beta.
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7.2.8 Industry-sized problem instances

Throughout the thesis, reference has been made to the eight C2DGC
problems presented in chapter 5, section 5.1, table 5.1, page 56. These
problem instances are all smal! textbook-sized problems that are easy to
solve and are useful for research purposes since many authors refer to them
in papers. {(Daza et al, 1995, Christofides and Whitlock (1977)). These
problems, however, do not show whether the Wang and modified Wang
methods scale well when used to solve large industry-sized problem
instances. This last section in the numerical test chapter provides some
results obtained from solving these larger problem instances with the Wang
and modified Wang methods. The problem instances were obtained from a
large local corporation (PGGlass Pty. Ltd.) that cuts and sells glass sheets.
Table 7.10 summarizes these preblem instances.

Problem | Stock platelength | Demand rectangles’ length (), wicth (W)

{c) and width (%) and upper bound (b}

PG1 (2000,2800) (290,1440 3y, (585,855 1Y, (925,560,17); (950,290,12)
(856,1195,2); (14401185 5y, (1480,1440,1)

PG2 (2650,3210) (1130,1150,108); (894,1130,162); (888,1264 108)
(879,1332,108); (1064,1065,108); (804,1264,108)
(733,1330,54)

PG3 (1500,2125) (290,1440,3), (585955,1), (925,560,177} (950,290,12)
(955,1185,2); (1140,1195,5); (1490,1440,1)

PG4 (1000,1500) (290,129,20); (585,355,4), (325,560,177 (950,290,12)

(555,385,2); (650,796,5), (200,324,10)

Table 7.1 Set of four C2DGC problem
instances from PGGlass Pty. Ltd.

These problem instances were solved with the aigorithm based on Wang's
first aigorithm with Vasko’s improvements (AWA) as well as with the
algorithm based on the modified Wang method with Daza’s heuristic function
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(MAWAM). The results obtained from these numerical tests are summarized

in table 7.11.
Problem | Algorithm B N L Processing Trim
Time Loss
PG1 AWA 0.00 5282 63 00'01.203 " | 1 928 960
0.01 129130 | 361 00'29.190" | 938 000
0.02 1330528 | 1232 04'40.600 " 96 525
TOTAL 1464940 | 1656 05°10.993”
MAWAM Table 13'18.400 "
MAWAM 0.00 514 18 00'00.141 " | 2619200
0.01 1274 32 00'00.343" | 2102225
0.02 15125 | 122 00'03.547 " 96 525
TOTAL 16913 | 172 13'22.431”
PG2 AWA 0.00 1963 35 00°00.050 " | 4 144 620
0.01 10 060 81 00'02.390 " | 2 087 964
0.02 61579 | 215 00'13.910 " | 2 087 964
0.03 215833 396 00'48.160 " | 2 087 964
0.04 893804 | 903 03'17.000" | 327 586
0.05 1356 179 | 1002 05'06.400" | 327 586
TOTAL 2539418 | 2632 09'28.360"
MAWAM Tabie 29'52.000 "
MAWAM 0.00 502 17 00'00.156 " | 4 144 620
0.01 645 20 £0'00.218 " | 4 144620
0.02 783 22 00'00.219" | 4 144 620
0.03 1089 26 00'00.281" | 4 144 620
0.04 17249 | 221 00'04.094 " | 327 586
0.05 75535 331 00'16.880" | 327 586
TOTAL 95803 | 637 30°13.848" '
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Problem | Algorithm B N L | Processing | Trim
Time Loss
PG3 AWA 0.00 916 25 00'00.218 " | 1 466 700
0.01 4593 54 00'01.083" | 624 300
0.02 11 546 96 00°02.640" | 624 300
0.03 41148 | 219 0009.250" | 517 975
0.04 108146 | 403 0024440 | 517 975
0.05 185157 | 554 00'42.060" | 517975
0.06 251763 | 635 00’57.060" | 517 975
0.07 383 881 816 0128.230" | 289200
0.08 607 608 | 1089 02'12.300" | 242 300
TOTAL 1594 758 | 3891 05'57.261"
MAWAM Table 05'04.300 "
MAWAM 0.00 2414 12 00'00.062 " | 1466 700
0.01 335 14 00°00.082 " | 1041 800
0.02 335 14 00°00.082" | 1041 900
0.03 496 17 00°00.108 " | 1 041 900
0.04 1654 44 0000406 | 517 975
0.05 12 901 160 00'02.953" | 517975
0.06 34922 | 286 00'07.921" | 517 975
0.07 63928 425 00'15.880" | 289 200
0.08 114403 | _543 00°25.780" | 242300
TOTAL 229215 1515 05'57.575"
PG4 AWA 0.00 18147 | 118 00'03.890" [ 336810
0.01 1227340 | 2584 04'32.400 " 12 900
TOTAL 1245487 | 2702 04°36.290"
MAWAM Table 01'25.000 "
MAWAM 0.00 425 16 00'00.078" | 982 000
0.01 62234 | 1040 00'13.800 " 12 900
TOTAL 62659 | 1056 01°38.878"

[Table 7.11: Numerical results for larger problem instances

When studying the results in table 7.11, it becomes obvious that the
MAWAM (modified Wang method) does not fare well for problem instances
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with large stock sheets. The reason for this is that if, for instance, a lookup
table of underestimates must to be calculated for problem PG2, one
underestimates for each dimension within the stock sheet must be
calculated. This translates to a staggering 2550 x 3210 = 8 185 500
underestimates! Table 7.11 shows that to compute these values for PG2,
approximately 1792 seconds (29'52.00") of processing time is required. To
completely solve problem PG2 with the AWA method, requires but 568.36
seconds (09'28.367). This shows that the MAWAM method does not scale
well and its perfformance will deteriorate even further for larger stock sheets.
It should be noted, though, that when the underestimates have been
calculated, the solving process completes very fast with the MAWAM
algorithm (much faster than with the AWA algorithm). Therefore, if a method
could be devised to calculate underestimates quicker, the MAWAM method
might scale better, Chart 7.9 shows how the MAWAM algorithm’s
performance gets worse as the size of the stock sheet increases.

Chart 7.9: Scalability of the MAWAM method
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7.2.8.1 PSSP algorithm with initial underestimates of zero

As shown in chart 7.9, the modified Wang method’s (MAWAM) lookup table
is calculated at a great computational cost for problem instances with large
stock sheets. This becomes such a bother that the original Wang method
could rather be used for such problem instances. Although the original
Wang method fares better for such problems than the modified Wang
method, it still requires a great deal of processing time to reach an optimal
solution. A possible solution to this problem is to use the PSSP algorithm to
solve these instances. However, instead of utilizing a two-dimensiona!
knapsack function (Gilmore & Gomory) to calculate initial underestimates
for the MAWAM method, set all the values in the iookup table initially to
zero. This then eliminates the cost incurred by calculating underestimates,
and with the PSSP algorithm, builds found by the original Wang method will
be used as underestimate and also be propagated further.

Table 7.12 displays the results obtained by solving the four larger, industry

sized problems (PG1 — PG4) with the AWA, MAWAM and PSSP (with initial

underestimates of zero) algorithms:
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Problem | Algorithm B N L Processing Trim
Time Loss
PG1 AWA 0.00 5282 63 00'01.203" | 1928 960
0.01 129 130 361 00'29.190 " 938 000
0.02 1330528 | 1232 04'40.600 " 96 525
TOTAL 1464940 | 1656 05'10.993"
MAWAM Table 13'18.400 "
MAWAM 0.00 514 18 00'00.141" | 2619200
0.01 1274 32 00°00.343 " | 2102225
0.02 15125 | 122 00°03.547 - 96 525
TOTAL 16913 | 172 13'22.431"
PSSP 0.00 1545 45 00'00.466 ° | 3 454 400
0.01 70 005 299 00'20.188 " 938 000
0.02 306 536 | _659 01'30.685" 96 525
TOTAL 378086 | 1003 01'51.339
PG2 AWA 0.00 1963 35 00°00.050 " | 4 144 620
0.01 10 060 81 00°02.390 " | 2 087 964
0.02 61579 | 215 00'13.910" | 2087 964
0.03 215 833 396 00'48.160° | 2087 964
0.04 893804 | 903 03'17.000" | 327586
0.05 1356179 | 1002 05'06.400 " 327 586
TOTAL 2539418 | 2632 09'28.360”
MAWAM Tabie 29'52.000*
MAWAM 0.00 502 17 0000.156 " | 4 144 620
0.01 645 20 0000.218" | 4 144 620
0.02 783 22 00'00.219" | 4 144 620
0.03 1089 26 00°00.281" | 4 144 620
0.04 17249 | 221 00'04.094 " | 327 586
0.05 75535 331 00'16.880 " 327 586
TOTAL 95 803 637 30°13.848"
PSSP 0.00 694 23 00'00.225" | 5938 108
0.01 7 042 72 0003.176 " | 2141 028
0.02 19 935 130 0007.354" | 2087 964
0.03 58 800 221 00'19.719" | 2087 964
0.04 147 292 388 00°48.543 " 327 586
0.05 282223 | _577 0t'42.122 " 327 586
TOTAL 525986 | 1411 02'21.139”
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Problem | Algorithm R N L Processing Trim
Time Loss
PG3 AWA 0.00 916 25 00'00.218 " | 1466 700
0.01 4593 54 00'01.063" | 624 300
0.02 11 546 96 00°02.640" | 624 300
0.03 41148 219 0009.250" | 517 975
0.04 108 146 | 403 00'24.440" | 517 975
0.05 185 157 554 00'42.060 " 517 975
0.06 251763 | 635 00'57.060" | 517 975
0.07 383881 | 816 01°28.230” | 289200
0.08 607 508 | 1089 02'12.300" | 242300
TOTAL 1594758 | 3891 05'57.261”
MAWAM Table 05'04.300 "
MAWAM 0.00 241 12 00°00.062" | 1466 700
0.01 335 14 00'00.082" | 1041 900
0.02 335 14 00'00.082" | 1041 900
0.03 496 17 00°00.109 " | 1041 900
0.04 1654 44 00'00.406 " 517 975
0.05 12 901 160 00'02.953" | 517 975
0.06 34922 286 0007.921" | 517 975
0.07 63928 | 425 00'15.880" | 289 200
0.08 114 403 | _543 00'25.780" | 242 300
TOTAL 229215} 1515 05°57.575"
PSSP 0.00 427 21 00°00.148 " | 1466 700
0.01 3311 50 00°01.000 " | 1041 900
0.02 7290 81 00'02.053" | 624 300
0.03 14918 | 226 00°05.157" | 624 300
0.04 33244 | 198 00'10.825" | 517 975
0.05 76 882 354 00°20.053 517 875
0.06 129141 470 00'31.122" | 517975
0.07 205 015 642 00'50.142" 289 200
0.08 254 168 709 01'37.058 " 242 300
TOTAL 724396 | 2751 02'57.558"
PG4 AWA 0.00 18147 | 118 00°'03.890" | 336 810
0.01 1227340 | 2584 04'32.400 12 900
TOTAL 1245487 | 2702 04'36.290"
MAWAM Table 01'25.000"
MAWAM 0.00 425 16 00°00.078" | 982 000
0.01 62234 | 1040 00'13.800 " 12 900
TOTAL 62659 | 1056 01°38.878"
PSSP 0.00 9 340 117 00°01.423 "
0.01 480 291 | 1804 01'11.015" 12 800
TOTAL 489 631 | 1921 01°12.438”
[Table 7.12: PSSP algorithm with initial underestimates of zero)
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Chart 7.10: Scalability of the PSSP algorithm with initial
underestimates of zero
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Chart 7.10 shows that the PSSP algorithm with initial underestimates of zero
does indeed scale well for problem instances where targer stock sheets are
concerned.

7.3 Summary

Chapter 7 was an exciting path of discovery, and it showed that the theoretical
foundations of artificial intelligence search methods are well laid. Furthermore,
the new PSSP algorithm as proposed by the author was implemented and the
results obtained from solving sample problems with it seem promising,
especially for larger, industry-sized problem instances. increasing the value of
beta by an arbitrary value and the scalability of the modified Wang method
were also investigated.

178

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems




Chapter 8 concludes the thesis by giving a short summary of how the
objectives set for the study were reached and it also discusses the
possibilities that exist for further study.
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CHAPTER 8: Conclusion

8.1 Introduction

The research within this thesis concentrated on the investigation of exact
methods and algorithms that are capable of solving C2DGC problem
instances. Firstly, a theoretical study was undertaken concerning artificial
intelligence search methods. Secondly, existing exact problem solving
approaches for C2DGC problems were examined, with emphasis on methods
proposed by Wang (1983), Vasko (1989), Oliveira and Ferreira (1990) and
Daza et al (1995). These existing methods were then combined with different

artificial intelligence search methods.

Through a theoretical study and empirical tests it was found that the Wang
method is effective in solving C2DGC problem instances, but usually it does a
great deal of unnecessary work and generates redundant patterns if the
choice and management of the beta () value are not handled with care. Even
with a meticulously conceived strategy for handling the beta value and
implemented improvements made by Vasko to the original Wang method, the
Wang method is stiil not efficient in its calculation of solutions.

Oliveira and Ferreira (1990) conceived a method that they called the modified
Wang method (WAM), which utilised underestimates to guide the search
process. These underestimates were based on work done by Gilmore and
Gomory (1966), where an unbounded knapsack problem is solved using a
dynamic programming procedure, resulting in underestimates to be used by
the WAM method. By solving small-sized textbook problems it was shown that
the WAM method was very effective and efficient in solving C2DGC problems
as opposed to the Wang method.

Algorithmic enhancemenis undertaken in the thesis included a method that
strived to find more informed heuristic functions for the WAM method (PSSP
algorithm). This resulted in a more efficient WAM algorithm as the search
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space was pruned with more accuracy. However, further empirical work on a
system developed for this study using industry-sized problem instances
exposed a weakness in the WAM and PSSP methods. As the stock sheet size
became larger, the number of underestimates that needed to be calculated by
the Gilmore and Gomory method became unrealistically high. As a result the
calculation of the underestimate lookup table turmed into a daunting task,
translating into a method that did not scale well as probiem sizes increased.
For this reason, the PSSP algorithm was enhanced, eliminating the need for
the lookup table calculation by starting with initial underestimates of 0. This
algorithm was tested against the Wang (WA) and modified Wang (WAM)
algorithms and it was showed that the PSSP algorithm using underestimates
of 0 scaled well as the problem sizes increased.

Further algorithmic enhancements included the definition of a waste gap as
well as methods to determine the waste gap by using upper bounds. The first
method used data as generated by the Wang method in the rectangle building
process as the problem was solved. This data was then refined through a
propagation process to determine an upper bound for the waste gap.
Secondly,'a beam search algorithm was used to generate a solution quickly
(which was not necessarily exact but acceptable) for a C2DGC problem
instance and then use that solution as an upper bound for the waste gap.

Lastly, generating initial values for beta and handling these values as
searches were undertaken with the algorithms based on the Wang and
modified Wang methods, were undertaken. Firstly, a method to calculate
initial beta values using the table of underestimates as generated for the
WAM method was devised. Secondly, a fractional increase in the value of
beta was proposed as a search was done, as opposed to a steady increase of
for example 0.01 in the value of beta.

At the beginning of the thesis, in chapter one, five main objectives for the
study were identified. These objectives form the foundation of the study and in
section two of this chapter, a summary of how these objectives were reached,
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Is given. Section three highlights new research, new ideas and new concepts
that were introduced in the thesis. The fourth section deals with new research
opportunities that presented themselves during the course of the study.

8.2 Objectives of the study

The objectives can be summarised as follows:

» Gaining an understanding of what artificial intelligence search
methods are and how they functicn;

» Gaining an understanding of what the C2DGC problem models and
algorithms entail;

» Developing algorithms that solve C2DGC problems;

v

Investigate the effectiveness and efficiency of these algorithms; and
» To develop an integrated software package implementing these
algorithms.

Each individual objective will now be discussed to show how it was reached.

8.2.1 Gaining an understanding of what artificial intelligence search
methods are and how they function

This objective was achieved by firstly defining the concept artificial
intelligence (chapter 2, section 2.1.1) as well as search methods {chapter 2,
section 2.2.2). Chapters 3 and 4 dealt exclusively with search methods.
Chapter 3 discussed uninformed artificial intelligence search methods and
chapter 4 discussed informed artificial intelligence search methods. These
uninformed and informed search methods were then individually analysed
and evaluated. The effectiveness and efficiency of each method was
measured in terms of four criteria, namely:

» Completeness: is the method guaranteed to find a solution when one
exists for the problem?
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> Time complexity. how long does it take to find a solution?

» Space complexity: how much memory does it need to perform the
search?

> Exactness: does the strategy find the highest-quality solution when
there are several different solutions?

Studying this material provided us with a better understanding of the
functioning of artificial intelligence search methods.

8.2.2 Gaining an understanding of what the C2DGC problem models
and algorithms entail

This objective was reached by firstly giving a theoretical definition (chapter 2,
section 2.2.3) as well as a mathematica! formulation (chapter 2, section
2.2.3.1) of the problem. Furthermore, research efforts related to the C2DGC
problem were listed in chapter 2, section 2.2.3.2 as well as a discussion on
previous research done on the C2DGC problem (chapter 2, section 2.3).

Throughout chapters 3 and 4, where the different artificial intelligence search
methods were discussed, reference was made to the effectiveness and
efficiency of those algorithms when solving C2DGC problems.

8.2.3 Developing algorithms that solve C2DGC problems

The process of algorithm development was started in chapter 5, sections 5.2
and 5.3, where different approaches were identified by which the C2DGC
problem might be soived. An appropriate approach was chosen, namely the
Wang method and section 5.2.1 dealt with this method. Concepts connected
to this method were also discussed, such as trim loss {chapter 5, section
5.2.1.2) and acceptable waste percentages (chapter 5, section 5.2.1.3).
Furthermore, the modified Wang method was also discussed as a possible
method from which algorithms could be derived. The PSSP algorithm that
waé developed by the author, was introduced in chapter 6 (section 6.3.1).
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8.2.4 Investigate the effectiveness and efficiency of these algorithms

Chapter 7 accomplished this task in that the implemented algorithms were
used to solve a set of 8 C2DGC problem instances. Daza (Daza et al,
1995:642) presented these problem instances in their article and by solving
these problems data was recorded. Tables and graphs were derived from the
data, which showed the effectiveness and efficiency of the derived
algorithms, and it also highlighted which algorithms perform better than
others.

8.2.5 To develop an inteqrated software package implementing these
algorithms

The fourth objective could only have been achieved by doing empirical work
using some form of computer program to solve the given problem instances.
The fifth objective aims at transforming the computer program that had to be
written into an integrated piece of software that is both useful and
professionally engineered. This software can be downloaded from the
Internet along with a complete user manual at the following URL:

http://www.puk.ac.za/studentelewe/scientiae/itweb/1st/1st.htm

8.3 New research

New concepts have been introduced in the thesis. These include:

» The PSSP (Partial Stock Sheet Propagation) algorithm was
developed that updates the modified Wang iookup table to provide
better underestimates of intemnal trim loss. It was proven that the
PSSP algorithm using the updated WAM lookup table will atways
search through a smaller space than the standard WAM method
(chapter 6, section 6.3.1);
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> A beam search algorithm was developed, implemented and tested.
Tests revealed that it was difficult to manage the beam width and
the beta parameters simultaneously resulting in a search method
that generates mostly non-exact solutions. Therefore, the beam
search was used to generate upper bounds in the definition of the
waste gap, as discussed in chapter 6 (chapterd, section 4.2.4 and
chapter 6, section 6.4.2); ‘

> A new method was devised to calculate an initial lower bound on
the value of beta by utilizing the last entry in the modified Wang
lookup table. This methcd is simple, yet very effective, and requires
very little extra processing time (chapter 6, section 6.5.1);

> An alternative method to fractionally increase the value of beta was
devised (chapter 6, section 6.5.2);

> A new strategy to handle the beta value was presented that
manages the waste gap and helps in determining the next beta
value (chapter 6, section 6.4); and

> Finally, experiments were conducted with some industry-sized
problems that exposed weaknesses in the WAM method. By
altering the PSSP algorithm slightly in order for it to use initial
underestimates of 0, the need to calculate a lookup table was
eliminated. Then these underestimates were updated with data
obtained by solving a portion of the original problem instance with
the Wang method. This was shown to be an effective and efficient
substitution for underestimates as calculated by the Gilmore and
Gomory two-dimensional knapsack function. In fact, the PSSP
method with initial underestimates of 0 scaled very well for larger
problem instances as compared to the WAM method.

8.4 Further research

it has been estabiished, through the numerical tests done in chapter 7, that
the PSSP aigorithm is indeed a plausible algorithm with which C2DGC
problems can be solved, and therefore further research will center on ways to
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refine the search. In addition, new algorithms have been developed which
adds new data and facts to the scientific community’s pool of knowledge.

Furthermore, a better heuristic function could be derived to calculate a more
accurate value for h. Concepts introduced by Daza et al are a good starting
point and refinements to A should also improve on the algorithms’ execution
time as well as the number of generated and stored nodes.

186

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems



Bibliography

Bagchi, A. Mahanti, A. 1983. Search algorithms under different kinds of
heuristics: A comparitive study. Journal of the ACM, 30: 1-21.

Baker, B.M. 1999. A spreadsheet modelling approach to the assortment

problem. European Journal of Operational Research, 114: 83-92,

Barr, A. Feigenbaum, EAA. 1981. The handbook of artificial intelligence.
Reading, Massachusetts. Addison-Wesley Publishing Company Inc.

Beasley, J.E. 1985. Algorithms for unconstrained two-dimensional guillotine

cutting. Journal of the Operational Research Society, 36: 297-306.

Bortfeldt, A. Gehring, H. 2001. A hybrid genetic algorithm for the container
loading problem. European Journal of Operational Research, 131: 143-161.

Bundy, A. 1997. Artificial Intelligence techniques: a comprehensive
catalogue. Fourth, revised edition. Springer-Verlag Berlin Heidelberg, Berlin.

Chao, H. Harper, M.P. Quong, RW. 1995. A tight lower bound for optimal
bin packing. Operations Research Letters, 18: 133-138.

Chamiac, E. McDermott, D.  1985. Introduction to artificial intelligence.
Addison-Wesley, Reading, Massachusetts.

Christofides, N. Hadjiconstantinou, E. 1995. An exact algorithm for
orthogonal 2-D cutting problems using guillotine cuts. European Journal of
Operational Research, 83(1): 21-38, 18 May.

Christofides, N. Whitlock, C. 1977. An algorithm for two-dimensional cutting
problems. Operations Research, 25(1): 30-44.

187

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems




Ciesielski, V. 2001. Artificial Intelligence Search. Department of Computer
Science, RMIT University.

[Available on the Internet:]

http://www.cs.rmit.edu.au/Al-Search/

Cung, V. Hifi, M. Le Cun, B. 2000. Constrained two-dimensional cutting
stock problems: a bestfirst branch-and-bound algorithm. [nternational
Transactions in Operational Research, 7(3): 185-210, 1 May.

Daza, V.P. De Alvarenga, A.G. De Diego, J. 1995. Exact soluticns for
constrained two-dimensional cutting problems. European Journal of

Operations Research, 84(3). 633-644, 3 August.

Eppen, G.D. Gould, F.J. Schmidt, C.P. Moore, J.H. Weatherford, L.R. 1998.
Introductory management science. Fifth, International Edition. Prentice Hall
Inc., Upper Saddle River, New Jersey.

Fayard, D. Zissomopoulos, V. 1995. An approximation algorithm for solving
unconstrained two-dimensional knapsack problems. European Journal of
Operational Research, 84(3). 618-632, August.

Gau, T. Wascher, G. 1995. CUTGEN1: A problem generator for the
Standard One-Dimensional Cutting Stock Problem. European Journal of
Operational Research, 84(3): 572-579, August.

Gilmore, P.C. Gomory, R.E. 1966. The theory and computation of knapsack
functions. Operations Research, 15:1045-1075.

Haugeland, J., editor. 1985. Artificial intelligence: The very idea. MIT Press,
Cambridge, Massachusetts.

188

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems



Heckmann, R. Lengauer, T. 1988. Computing closely matching upper and
lower bounds on textile nesting problems. European Joumal of Operational
Research, 108: 473-489.

Held, M. Karp, RM. 1971. The travelling salesman problem and minimal
spanning trees.: Part |l. Mathematical Programming, 1: 6-25.

Herz, J.C. 1972. A recursive computing procedure for two-dimensional stock
cutting. IBM Journal of Research and Development, 16:462-469.

Hifi, M. 1994. Study of some combinatorial optimisation problems: cutting
stock, packing and set covering problems. PhD thesis, University of Paris, 1

Pantheon-Sorbonne.

Hifi, M. 1997. An improvement of Viswanathan and Bagchi’s exact algorithm
for constrained two-dimensional cutting stock. Computers & Operations
Research, 24(8). 727-736.

Hinxman, A.l. 1976. Problem reduction and the two-dimensional trim-loss
problem. Artificial Intelligence and Simulation: Summer Conference,
University of Edinburgh, 158-165.

Kendall, G. 2000. Applying Meta-Heuristic Algorithms to the Nesting Problem
Utilising the No Fit Polygon. Nottingham: University of Nottingham. (Thesis —
D.Phil.) 242 p.

Korf, R.E. 1996. Artificial Intelligence Search Algorithms. Computer Science
Department, University of California, Los Angeles.

[Available on the Internet:]

http://citeseer.ni.nec.com/92777 .htm!

Kurzweil, R. 1990. The age of intelligent machines. MIT Press, Cambridge,

Massachusetts.

189

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems




Li, H. Tsai, J. 2001. A fast algorithm for assortment optimisation problems.
Computers & Operations Research, 28: 1245-1252.

Luger, G.F. Stubblefield, W.A. 1991, Artificial Intelligence: structures and
strategies for complex problem solving. Second editon. The
Benjamin/Cummings Publishing Company Inc, Redwood City, California.

Morabito, R.N. Arenales, M.N. Arcaro, V.F. 1992. An And-Or-graph
approach for two-dimensional cutting problems. European Journal of

Operational Research, 58:263-271.

Morabito, R. Garcia, V. 1998. The cutting stock problem in a hardboard
industry: a case study. Computers & Operations Research, 25(6): 469-485,

June.

Nilsson, N. 1980. Principles of artificial intelligence. Springer-Verlag, Berlin.
Oliveira, J.F. Ferreira, J.S. 1990. An improved version of Wang's algorithm
for two-dimensional cutting problems. European Journal of Operational
Research, 44: 256-266.

Pearl, J. 1984. Heuristics. Addison Wesley, New York.

Polya, G. 1945. How to solve it. Princeton: Princeton University Press.

Preiss, B.R.  1999. Data structures and algorithms with object-oriented
design patterns in Java. John Wiley & Sons, 605 Third Avenue, New York.

Rich, E. Knight, K. 1991. Artificial Intelligence. International Edition. McGraw-
Hill Book Co, Singapore.

Russel, S. Norvig, P.  1995. Artificial Intelligence: a modern approach.
Prentice Hall, New Jersey.

190

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems




Schalkoff, R.J. 1990. Artificial intelligence: An engineering approach.
McGraw-Hili, New York.

Sen, A. Bagchi, A. 1989. Fast recursive formulations for best-first search that
atlow controlled use of memory. Procedings of the IJCAI-89. International

Joint Conference on Artificial Intelligence, 297-302.

Vasko, F.J. 1989. A computational improvement to Wang’s two-dimensional
cutting stock algorithm. Computers and industrial engineering, 16: 109-115.

Viswanathan, K.V. Bagchi, A. 1993. Best-first search methods for
constrained two-dimensional cutting stock problems. Operations Research,
41(4): 768-776, July-August.

Wang, P.Y. 1983. Two algorithms for Constrained Two-Dimensional Cutting
Stock Problems. Operations Research, 31(3): 573-586, May-June.

Winston, P.H. 1977. Artificial Intelligence. Addison-Wesley Publishing
Company, Inc. Philippines.

Winston, P.H. 1992. Artificial Intelligence: Third Edition. Addison-Wesley
Publishing Company, Reading, Massachusetts.

Yuret, D. De la Maza, M.  1993. Dynamic Hill Climbing: Overcoming the
limitations of optimisation techniques. Massachusetts Institute of Technology,
Cambridge.

[Available on the Intemet:]

hitp://citeseer.nj.nec.com/yuret93dynamic.html
Zissimopoulos, V. 1985. Heuristic methods for solving (un)constrained two-

dimensional cutting stock problems. Methods of Operations Research, 49:
345-357.

191

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems








