
IMPLEMENTING ARTIFICIAL
INTELLIGENCE SEARCH METHODS TO

SOLVE CONSTRAINED TWO-DIMENSIONAL
GUILLOTINE-CUT CUTTING STOCK

PROBLEMS

Jan Adriaan Oberholzer
M.Com., Hons. B.Com.

Thesis submitted in fulfilment of the requirements for the degree

DOCTOR PHILOSOPHIAE IN
COMPUTER SCIENCE

at the

POTCHEFSTROOMSE UNIVERSITEIT VIR CHRISTELM
HOER ONDERWYS

PROMOTER: Prof T. Steyn
CO-PROMOTER: Prof. J.M. Hattingh

Potchefstroom, November 2003

Potchefstroomse Universiteit
vir Christelike H o t Onderwys

DECLARATION

I, Jan Adriaan Oberholzer, hereby declare on this 4th day of
November 2003 that:

i the work within this thesis is my own original work;

ii all sources used or referred to have been documented and recognised; and

. . .
111 this thesis has not been previously submitted in full or partial fulfilment of

the requirements for an equivalent or higher qualification at any other

recognised educational institution.

. Oberholzer F

I would like to express my thanks to:

My promoters, Professors Tjaart Steyn and Giel Hattingh, for their interest and

guidance even at times when their own schedules were hectic;

My parents for their support, patience, understanding, love and enthusiasm. As

always, you remain the only constant in my life. I love you!

Abstract

The main focus of this thesis will be on the constrained twodimensional

guillotine-cut cuffing stock (C2DGC) problem. Stock cutting involves the

process of cutting certain small demand items from a larger object. During this

process, waste material is generated, which is called trim loss. The cutting

stock problem presents itself in many industrial processes where the cutting of

material is concerned, for instance the cutting of wood in the furniture

industry, the cutting of glass and plastic sheets in the glass industry, the

cutting of paper in the cardboard industry and the cutting of steel bars in

metallurgy, to name but a few. The cutting stock problem aims to find one or

more solutions to a cutting problem so that the optimal amount of the stock

sheet is utilized. This, in turn, implies that the trim loss (waste) will be kept to

a minimum.

Artificial intelligence search methods as well as existing exact C2DGC

problem solution methods are investigated and evaluated critically. Different

artificial intelligence search methods are then combined with the existing

C2DGC problem solution methods, forming feasible algorithms to solve

C2DGC problems. Existing C2DGC problem solution methods are also

enhanced using innovative ideas. Numerical tests are then conducted to test

the effectiveness and efficiency of each original and enhanced algorithm.

Die sentrale fokus van hierdie proefskrif is die sogenaamde begrensde fwee-

dimensionele guillotine-snit materiaalsny (C2DGC) probleem. Materiaalsny-

probleme behels die sny van gegewe kleiner bestel-items vanuit 'n groter

voorraadplaat. Materiaalsnyprobleme kom te voorskyn in verskeie industrigle

prosesse waar materiale gesny moet word. Voorbeelde hiervan is die sny van

hout in die skrynwerkbedryf, die sny van glas en plastiek in die glasbedryf, die

sny van papier in die kartonbedryf en die sny van staalstawe in die

staalbedryf. In die oplossing van materiaalsnyprobleme word gepoog om een

of meer oplossings vir 'n gegewe probleem te vind sodat die voorraadplaat

optimaal benut word. Hierdie proses impliseer dat onbenutte dele op die

voorraadplaat tot 'n minimum beperk sal word.

Kunsmatige intelligensie soekmetodes asook bestaande eksakte C2DGC

probleem-oplosmetodes word ondersoek en krities gegvalueer. Verskillende

kunsmatige intelligensie soekmetodes word dan met die bestaande C2DGC

probleem-oplosmetodes gekombineer om uitvoerbare algoritmes te vorm

waarmee C2DGC probleme opgelos kan word. Bestaande C2DGC probleem-

oplosmetodes word ook verbeter deur middel van innoverende idees.

Numeriese toetse word dan gedoen om die effektiwiteit en kwaliteit van elke

bestaande en verbeterde algoritme te toets.

TABLE OF CONTENTS

...
Table of figures ... VIII

Table of tables xi

Table of charts .. xiv

1.1 Introduction ... I

1.2 Problem statement .. 2

1.2.1 Exact methods.. 2

1.2.1 .I Problem areas concerning exact methods.. ... 3

1.2.2 Non-exact methods..4

1.2.2.1 Problem areas concerning non-exact methods 4

1.3 Scope of the work .. 5

1.4 Objectives of the study ... 6

1.4.1 Gaining an understanding of what artifcia1 intelligence

search methods are and how they function 6
1.4.2 Gaining an understanding of what the C2DGC problem

models and algorithms entail 6

1.4.3 Developing algorithms that solve C2DGC problems.. 7

1.4.4 Investigate the effectiveness and efficiency of these

algorithms 7

1.4.5 To develop an integrated software package implementing

these algorithms.. 7

1.5 Methodology .. 7

1.6 Organization of the thesis ... 8

.. 1.6. I Chapter 1: Introduction 8

.............................. 1.6.2 Chapter 2: Defining key concepts and terms 9

.................................... 1.6.3 Chapter 3: Uninformed search methods 9

....................................... 1.6.4 Chapter 4: Informed search methods 9

............................ 1.6.5 Chapter 5: C2DGC problem solution methods 9

...................................... 1.6.6 Chapter 6: Algorithmic enhancements 10

..................................... 1.6.7 Chapter 7: Numerical tests and results 10

... 1.6.8 Chapter 8: Conclusion 10

ICHAPTER 2: Defining key concepts and terms1

2.1 Introduction ... I I

2.2 Defining key concepts .. 11

.. 2.2.1 Artificial intelligence 11

....................................... 2.2.1.1 Thought processes and reasoning 12

... 2.2.1.2 Behaviour 12

2.2.2 Search methods .. 13

2.2.2.1 Uninformed search methods ... 13

2.2.2.2 Informed search methods ... 13

.. 2.2.3 The C2DGC problem 14

2.2.3.1 Mathematical formulation ... 15

.............................. 2.2.3.2 Problems related to the C2DGC problem 16

2.3 Previous research done in the field of 2DGC problems 17

2.4 Summary .. 18

~HAPTER 3: Uninformed search methods1

3.1 Introduction ... 19

3.2 Evaluating different search methods .. 19

3.2.7 Asymptotic notation ... 20

3.3 Types of uninformed search methods 21

3.3.7 Breadth-first search .. 21

3.3.2 Uniform-cost search .. 25

3.3.3 Depth-first search ... 27

3.3.4 Depth-limited search ... 29

3.3.5 lterative-deepening depth-first search 30

3.4 Final thoughts .. 30

3.5 Summary .. 31

[CHAPTER 4: Informed search methodsl

4.1 Introduction ... 32

4.2 Types of informed search methods .. 32

4.2.7 Generate.and.test .. 33

4.2.2 Hill climbing .. 34

4.2.2.1 The foothill problem .. 36

4.2.2.2 The ridge problem .. 36

4.2.2.3 The plateau problem ... 36

.. 4.2.3 Dynamic hill climbing 37

4.2.3.1 Dynamic coordinate frame ... 38

4.2.3.2 Exploitation of local optima ... 38

... 4.2.4 Beam search 39

iii

4.2.5 Best-tirst search ... 47

4.2.6 Branch-and-bound search .. 43

4.2.7 Branch-and-bound search with underestimates 45

4.2.8 Branch-and-bound search using the dynamic

programming principle .. 48

4.2.9 The A* search method ... 50

4.2.9.1 Admissibility of the A* method ... 50

4.2.9.2 Monotinicity of the A* method ... 50

4.2.9.3 lnforrnedness and the A* method ... 51

4.2.9.4 Underestimation of h ... 51

4.2.9.5 Overestimation of h .. 52

4.2.9.6 Graceful decay of admissibility .. 53

4.3 Summary .. 54

\CHAPTER 5: C2DGC ~roblem solution methods(

5.1 Introduction ... 56

5.2 Exact methods to solve the C2DGC problem 57

5.2.1 The Wang method .. 58

5.2.1 . 1 Rectangle building with the bottom-up approach 59

5.2.1.2 Trim loss .. 60
5.2.1.2.1 Internal trim kss .. 60

5.2.1.2.2 External trim loss .. 61

5.2.1.2.3 Total trim loss ... 62

5.2.1.3 Acceptable waste percentages (R) 62

5.2.1.4 Wang's two original algorithms .. 62

5.2.1.5 Specifying values for R and optirnality conditions 65

5.2.1.6 Solving sample C2DGC problem instances with

Wang's method ... 66

5.2.1.6.1 Implementing Wang's method using breadth-first search 67

5.2.2 A computational improvement to Wang's algorithm one 75

5.2.2.1 Horizontal completeness .. 75

5.2.2.2 Vertical completeness ... 75

5.2.2.3 Dynamically diminishing the I3 value 76

5.2.3 The modified Wang method (WAM) ... 77

.. 5.2.3.1 Trim loss 78

5.2.3.1.1 Estimated external trim loss ... 78

5.2.3.1 . 1 . 1 Unbounded two-dimensional knapsacks .. 83

5.2.3.1.2 Estimated total trim loss ... 87

5.2.3.2 Solving sample C2DGC problems with the modified

................. Wang method (WAM) using the A* search method 87

5.3 Nonexact methods to solve the C2DGC problem 90

5.4 Exact methods' algorithmic properties and considerations 91

5.4.1 Problems with the Wang method ... 91

5.4.2 Problems with the WAM method ... 92

.. 5.5 Summary 93

PHAPTER 6: Algorithmic enhancements)

... 6.1 Introduction 94

6.2 Optimization techniques ... 95

6.2. I Detection of duplicate patterns: symmetric strategies 95
6.2.1.1 Pattern coding ... 96

6.2.1.2 Pattern domination ... 98

6.2.1.3 Symmetric (duplicate) patterns on opposite directions 99

6.2.1.4 Symmetric (duplicate) patterns on the same direction 100

6.2.2 Cutting order ... I01

6.2.3 Demand rectangle rotation ... 102

6.3 Improving the lower bounds of the WAM method 103

6.3.1 Partial stock sheet propagation (PSSP) method I11

6.4 Upper bounds and the waste gap ... 123

6.4.1 Upper bound propagation and the waste gap 124

6.4.2 Beam search, upper bounds and the waste gap 129

6.5 Strategies for handling the value of beta (a) 131

6.5.1 Lower bound using the WAM lookup table 132

6.5.2 Increasing the value of beta (a) ... 133

6.6 Summary .. 136

 CHAPTER 7: Numerical tests and results1

7.1 Introduction ... 138

7.2 Numerical results ... 138

7.2.1 AWA and AWAM.algorEthms versus DWA and DWAM

... algorithms 139

.......... 7.2.2 A WA and A WAM algorithms versus the MA WAM algorithm 145

7.2.3 AWA and AWAM algorithms versus A*WA and A*WAM

algorithms ... 150

7.2.4 Adding symmetrical duplicate pattern removal to the

A*WA and A*WAM algorithms .. 156

7.2.5 Partial stock sheet propagation (PSSP) algorithm 159

7.2.6 Normalized results ... 163

7.2.7 Increasing the beta (L3) value .. 168

7.2.8 Industry-sized problem instances ... I71

................ 7.2.8.1 PSSP algorithm with initial underestimations of zero 175

7.3 Summary .. 178

8.1 Introduction ... 180

... 8.2 Objectives of the study 182

8.2.1 Gaining an understanding of what artificial intelligence

............................... search methods are and how they function 182

8.2.2 Gaining an understanding of what the C2DGC problem

models and algorithms entail ... 183

..................... 8.2.3 Developing algorithms that solve C2DGC problems 183

8.2.4 Investigate the effectiveness and efficiency of these algorithms 184

8.2.5 To develop an integrated software package implementing

these algorithms .. 184

8.3 New research ... 184

... 8.4 Further research 185

.. BIBLIOGRAPHY 187

TABLE OF FIGURES

/CHAPTER 2: Defining key concepts and term4

Figure 2.1: Two cutting patterns. where (a) is a guillotine

... pattern and (b) is not 15

 CHAPTER 3: Uninformed search methods1

Figure 3.1 : Showing that f(n) = 8n + 128 = 0(n2) 20

............ Figure 3.2. The order of node generation for breadth-first search 22

Figure 3.3. A breadth-first search algorithm 24

Figure 3.4: Uniform-cost search example: (a) The state space .
(b) Progression of the search. each node labeled

with a value g(n) .. 25

Figure 3.5. A uniform-search algorithm ... 27

Figure 3.6. The order of node generation for depth-first search 28

Figure 3.7. A depth-first search algorithm .. 29

 CHAPTER 4: Informed search methods(

Figure 4.1: Hill climbing: (a) The foothill problem .
(b) The ridge problem . (c) The plateau problem 35

Figure 4.2. A hill climbing search algorithm .. 37

.................... Figure 4.3. The order of node generation for beam search 39

Figure 4.4. A beam search algorithm .. 40

................ Figure 4.5. The order of node generation for best-first search 42

Figure 4.6. A best-first search algorithm .. 43

Figure 4.7: Node generation considerations for

branch-and-bound search .. 44

Figure 4.8. A branch-and-bound search algorithm 45

Figure 4.9: Node generation for branch-and-bound search

with underestimates .. 46

Figure 4.10: A branch-and-bound search algorithm using

underestimates ... 47

Figure 4.11. The principal of dynamic programming 48

Figure 4.12: A branch-and-bound search algorithm using

................................ the dynamic programming principle 49

Figure 4.13. Underestimation of h .. 52

Figure 4.14. Overestimation of h .. 53

Figure 4.15. An A* search algorithm ... 54

~ H A P T E R 5: CPDGC problem solution methods1

Figure 5.1: An illustration of the bottom-up rectangle

building approach ... 59

Figure 5.2: Internal trim loss. as generated by horizontal and

vertical builds ... 60

Figure 5.3. External trim loss .. 61

Figure 5.4. Wang's first algorithm (using RI) 63

Figure 5.5. Wang's second algorithm (using &) 64

Figure 5.6: Partial representation of all stored nodes for example

problem EPI using breadth-first search combined

with Wang's algorithm (R = 0.24) 69

Figure 5.7: All stored nodes. in the sequence they are generated.

for problem instance EPI using breadth-first search

and Wang's algorithm ... 71

.......... Figure 5.8. Wang's method does not generate non-guillotine cuts 72

Figure 5.9: Partial representation of generated nodes for problem

instance P5 using breadth-first search and Wang's

algorithm (I3 = 0.00) ... 74

Figure 5.10: Estimated external trim loss. generated by placing

... rectangles over the L section 79

Figure 5.11. Dividing the L section into different views 80

Figure 5.12: Partial representation of generated nodes for problem

instance P5 using A* search and the modified Wang

algorithm (I3 = 0.00). .. 89

Figure 5.13. The modified Wang algorithm .. 90

(CHAPTER 6: Alaorithmic enhancements)

Figure 6.1. Some constructed patterns. as entered into CList 97

Figure 6.2.The effect of cut ordening .. 101

Figure 6.3. Demand rectangle rotation .. 102

Figure 6.4. Example problem instance .. 103

Figure 6.5. An example generated rectangle 104

Figure 6.6. Propagated builds ... 105

Figure 6.7. An optimal solution for EPI ... 107

Figure 6.8. The PSSP algorithm .. 123

TABLE OF TABLES

 CHAPTER 3: Uninformed search methods]

Table 3.1: Time and space complexity examples for a problem

where b = 10 ... 24

 CHAPTER 5: CPDGC problem solution methods]

Table 5.1. Set of nine C2DGC problems (Pl-P8 as presented by Daza) ... 56

Extract from table 5.1: Two problem instances (P5 and EP1)

from table 5.1 ... 67

 CHAPTER 6: Algorithmic enhancement4

Table 6.1: Original underestimates as generated by the

unbounded knapsack function .. 108

Table 6.2. Maximum trim loss values for each dimension 108

Table 6.3. Maximum trim loss allowed by beta 109

Table 6.4: Internal trim loss of builds generated by the original

............... Wang method when solving the simplified problem 109

Table 6.5. Altered values ... 110

Table 6.6. Altered underestimates .. 110

Table 6.7. Final updated underestimates .. 1 1 1

Table 6.8. Original underestimates as stored in array A 114

Table 6.9. Array B. initialization values .. 116

Table 6.10: Updated values of array B after running the

original Wang method .. 117

Table 6.11: Further updated values in array B after the

propagation algorithm was run .. 120

............ Table 6.12. Final values in array A after comparison with array B 122

Table 6.13: Initial upper bounds before propagation for P8 and

beta = 0.00 .. 125

Table 6.14. Propagated upper bounds for P8 and beta = 0.00 126

............... Table 6.1 5: Propagated upper bounds for P8 and beta = 0.01 128

Table 6.16: Least total trim loss of sclution patterns using

beam search ... 130

Table 6.17. Initial lower bound on beta (R) ... 133

Table 6.18. Calculation of beta (8) increase fraction 136

 CHAPTER 7: Numerical tests and results1

Reference table 7.1. DWA. DWAM. AWA and AWAM algorithms 140

Table 7.1. Results for AWA and AWAM versus DWA and DWAM 141

Reference table 7.2. MAWAM algorithm ... 146

Table 7.2. Admissible heuristic function ... 147

Reference table 7.3. AWA and AWAM algorithms 152

Table 7.3. A* search algorithms ... 153

Reference table 7.4. SAWA and SAWAM algorithms 157

Table 7.4: A* search algorithms with symmetrical duplicate

pattern removal ... 158

Table 7.5. PSSP algorithm results .. 160

Table 7.6. Results for other partial areas to solve the sub-problem 163

Table 7.7. Summary of results before normalization 165

Table 7.8. Normalized results using the AWA algorithm as the norm 167

Table 7.9. Constant versus fractional beta (R) value increases 170

Table 7.10: Set of four C2DGC problem instances from

PG Glass Pty . Ltd .. 1 7 1

xii

Table 7.11: Numerical results for larger problem instances 173

Table 7.12: PSSP algorithm with initial underestimates of zero 177

xiii

TABLE OF CHARTS

[CHAPTER 6: Algorithmic enhancements1

Chart 6.1. Change in total trim loss as the value of beta increases 134

/CHAPTER 7: Numerical tests and results1

DWA, DWAM. AWA and AWAM algorithms

Chart 7.1. N Values for all problem instances 142

...................................... Chart 7.2. L Values for all problem instances 144

MAWAM algorithm

Chart 7.3. N Values for all problem instances 148

...................................... Chart 7.4. L Values for all problem instances 149

Chart 7.5. Execution times for all problem instances 150

A* search algorithms

Chart 7.6. N Values for all problem instances 154

Chart 7.7. L Values for all problem instances 155

Chart 7.8. Execution times for all problem instances 156

Chart 7.9. Scalability of the MAWAM method 174

Chart 7.10: Scalability of the PSSP algorithm with initial

underestimates of zero .. 178

xiv

CHAPTER 1 : Introduction

"Enthusiasm without knowledge is like running in the dark. "

- Fred Haffield.

1.1 Introduction

According to Fred Hatfield, enthusiasm is not the sole driving force behind all

success stories. In order to achieve a set goal, it is important to remember

that being aware of a few facts concerning a specific problem are better than

being aware of none at all. Therefore, always attempt to define your problem

and the possible solutions as best you can before attempting to solve the

problem itself. Hatfield states another simple truth in this famous quote and

although it can be applied to many situations, it is particularly well suited to

the field of Computer Science, and especially Artificial Intelligence. It clarifies

the fact that no matter how eager a researcher is, without the proper scientific

knowledge of a subject or field of study and a thorough comprehension of its

principles, it is impossible to predict and realize its possibilities and potential.

Stock cutting involves the process of cutting certain small demand items from

a larger object. During this process, waste material is generated, which is

called trim loss. The cutting stock problem presents itself in many industrial

processes where the cutting of material is concerned, for instance the cutting

of wood in the furniture industry, the cutting of glass and plastic sheets in the

glass industry, the cutting of paper in the cardboard industry and the cutting of

steel bars in metallurgy, to name but a few. The cutting stock problem aims to

find one or more solutions to a cutting problem so that the optimal amount of

the stock sheet is utilized. This, in tum, implies that the trim loss will be kept to

a minimum (Morabito & Garcia, 1998:469).

As the heading implies, this chapter guides the reader into the work by

explaining the problem statement, the scope of the work, objectives of the

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

study and the methodology that was followed. After having read this chapter it

should be clear what the work is all about and what to expect from it.

1.2 Problem statement

It is imperative to describe why it is necessary to further research the specific

subject, namely the practical implementation of artificial intelligence search

methods to solve constrained two-dimensional guillotine-cut cutting stock

problems. From this point onward, the constrained two-dimensional guillotine-

cu: atting stock problem will be referred to as the C2DGC problem, as it is

used in the literature concerning cutting problems.

Morabito and Garcia (Morabito & Garcia, 1998:469-470) state that a large

Brazilian hardboard industry generates waste material in their cutting process

at an estimated amount of 20 tons per day. This translates to a financial loss

of $1 million per year because of good quality hardboard scraps that has to be

discarded. These pieces are seen as useless for practical purposes because

of their small size.

In the area of the nesting problem, which involves the packing of irregular

shapes and is often used in the ship building industry, a European company

(Esprit Automation Ltd.) has recently granted f50,000 to research concerning

the development of more efficient algorithms that will provide solutions to

nesting problems, resulting in less trim loss (Kendall, 2000:21).

It should be noted that methods do exist that can be implemented to solve

C2DGC problems, and among these exact and non-exact methods can be

identified.

1.2.1 Exact methods

A method is exact if it finds the highest-quality (optimal) solution when a

problem has several different solutions. Christofides and Whitlock (1977),

2
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

Nilsson (1980), Wang (1983), Bagchi and Mahanti (1983), Pearl (1984) Sen

and Bagchi (1989), Vasko (1989) and Oliveira and Ferreira (1990), amongst

others, have done work concerning exact methods to solve C2DGC

problems. This thesis and the research done for it deals with exact methods

to solve constrained stock cutting problems, focusing on the method

proposed by Wang (1983). Vasko (1989) and Oliveira and Ferreira (1990)

made enhancements to the original method as proposed by Wang and these

enhancements are also considered. Even though much work and research

have been done in the C2DGC field, some problems still remain with respect

to exact methods, which will be described shortly.

1.2.1 .I Problem areas conceminq exact methods

Stock cutting problems, including C2DGC problems, are inherently difficult

combinatonal optimization problems. An exponential explosion of possible

search paths quickly materializes when solving all but the most trivial of

textbook problems. This leads to a situation where the practicality of these

methods are questioned where industry problems are concerned. For this

reason, Wang proposed a method (which later became known as the Wang

method) that utilizes a proportion parameter called beta (R) that is used to

inhibit the exponential explosion of explored alternatives. It accomplishes

this by not generating patterns containing more trim loss (waste) than is

allowed by beta (R). This parameter prunes away significant portions of the

problem search space when its value (possible range is 0 SB 51) is low,

but even with this enhancement, larger problems still suffer from an

exponential explosion of possible search paths. For this reason, Vasko

introduced computational improvements to the Wang method, but the real

revolution came when Oliveira and Ferreira introduced the modified Wang

method (WAM method). The WAM method is still an exact one, but uses a

heuristic function to lead the search more efficiently, thereby generating

optimal solutions quicker. It was believed that this algorithm would be the

answer to solve larger problem instances, but as will be shown, the

3
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

calculation of the values required by the WAM heuristic function becomes

ineffective for larger, industry sized problems.

A second problem where the Wang method is concerned, is determining an

initial value for beta. If the value is underestimated, it has to be increased

and the search must then be undertaken again, resulting in unnecessary

work being done. If the value is overestimated, the algorithm searches

through unnecessary portions of the search space. The last problem is

determining by what amount the beta value is to be incremented if the initial

va!tie was an xderestimation.

1.2.2 Nonexact methods

Non-exact methods to solve stock cutting problems, including the C2DGC

problem, exist in the form of heuristic search methods such as greedy

searches, beam searches, depth-limited searches and hill-climbing searches

(refer to chapter 3 and 4 for further details concerning these search

methods).

1.2.2.1 Problem areas concernins nonexact methods

A great deal of uncertainty exists regarding the efficiency and effectiveness

of algorithms based on these methods. Furthermore, it is difficult to evaluate

the results given by the algorithms derived from the non-exact methods, as

the solutions are not always optimal (the method does not guarantee that it

finds the highest-quality solution if there are several different solutions).

Non-exact methods are therefore not very well suited for academic research

or scientific experimentation. For this reason, non-exact methods are only

used here for algorithmic enhancements. For example, beam search will be

used to calculate upper bounds for the Wang and WAM methods because it

finds a solution fast, even if it is more often than not a non-optimal solution.

4
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

These facts demonstrate that the C2DGC problem is indeed a worthwhile and

active topic with many opportunities for further research.

1.3 Scope of the work

Rigorous research efforts in the field of stock cutting have led to the

emergence of a myriad of sub-problem areas. These research areas are all

complex and multifaceted in their own right, and for this reason, definitive and

concrete boundaries are placed on the scope of this study. The main focus of

this work will be tha constrained two-dimensional guillotine-cut cutting stock

problem. The following describes the above-mentioned phrase:

Constrained: An upper bound is placed on the number of each

required demand rectangle size that can be cut from the stock sheet.

Therefore, with a given set of demand rectangles of type ri (i = 1, 2, 3,

... n), each type will have a demand constraint of bi (Viswanathan &

Bagchi, 1993:768). This implies that the given problem will indicate the

maximum number of demand bi for rectangles of type ri that may be

cut from the stock sheet;

Two-dimensional: This aspect of the problem implies that each

demand rectangle type ri, will have given dimensions (4, q) for each i,

where 4 is the length and q the width of type ri. Furthermore, these

demand rectangles will be cut from a stock sheet of length L and

width W (Fayard & Zissimopoulos, 1995:620). On the other hand,

one-dimensional cutting problems consist of a stock sheet of length t

and width W, and demand rectangles r ~ , r2, r* r,,, where ri represents

the ith demand rectangle with length 4 and width W(Gau & Wascher,

1995:573). In three dimensional situations, an extra parameter is

added to the two-dimensional cutting problem in the form of a third

dimension;

Guillotine-cut According to Wang (Wang, 1983:573), guillotine cuts

are obtained by only considering successive edge-to-edge cuts made

5
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

on the stock sheet and successively produced sheets. Cutting from

one edge of the stock sheet to another is always required when cutting

glass and almost always when cutting wood or thin metal (Christofides

& Hadjiconstantinou, 1995:21); and

9 Cutting stock problem: This is normally used as a generic term for the

entire class of cutting and packing problems.

It is assumed that the constraints mentioned above are placed on the

research criteria. These limits will therefore direct the research.

1.4 Obiectives of the study

The next step is an attempt to define objectives for the research.

1.4.1 Gaining an understandina of what artificial intelligence search

methods are and how thev function

The first objective is essential, as in our context, this provides the theoretical

background that is needed to solve cutting stock problems. Firstly, it shows

that search methods are indeed a suitable means for representing and

solving cutting problems. Secondly, it presents options available from which

to choose the best-suited search methods for the problem.

1.4.2 Gaining an understandina of what the C2DGC problem models

and alnorithms entail

In section 1.3, a short description of the C2DGC problem was given, showing

its complexity. For a clear and unambiguous understanding of the problem,

however, an indepth discussion is necessary. Firstly, this discussion defines

the C2DGC problem thoroughly. Secondly, it highlights previous research

efforts that provided useful results that are applicable to this study.

Therefore, only by reaching this objective is it possible to continue with the

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

task of developing effective problem solving algorithms, and improve on

previous results obtained by other researchers.

1.4.3 Develo~ina alaorithms that solve C2DGC ~roblems

A very important part of this research includes developing working, efficient

and preferably exact algorithms, which investigate the practicalities of the

theoretical results. The best-suited search methods will be identified to use

as the basis for these algorithms. From the execution of the algorithms,

results are attained and recorded.

I .4.4 Investigate the effectiveness and efficiencv of these algorithms

The results obtained from solving sample problems serve as a measure of

how efficiently and effectively the algorithms performed, by comparing the

results of the various approaches.

1.4.5 To develou an intearated soltware ~ackaae im~lementina these

alaorithms

All the algorithms that were developed will be implemented in an integrated

software package. This will demonstrate the effectiveness of different

problem-solving algorithms.

1.5 Methodoloay

When planning a thesis of this nature, a comprehensive study of existing

literature needs to be done, identifying all possible sources from which facts,

statistics, data, diagrams and any other form of useful information pertaining

to the subject and field of study can be obtained. These sources could be

obtained in the university library by doing a comprehensive search on the

computer database using the title of the thesis or key concepts in the title. The

7
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

articl

textbooks, interviews, lntemet sites and electronic full-text databases.

The full-text lntemet databases used for this study include:

9 ScienceDirect at htt~:l/sciencedirect.com/; and

9 Citeseer at htt~://citeseer.ni.nec.com/.

Resources used for the planning and development of the integrated software

package includes software engineering coding standards as set forth by the

Ellemtel Telecommunication Systems ~aboratories'. Borland C++ Builder is

used as a coding platform. With the help of the integrated software package,

empirical studies will be done, using textbook-sized problems as well as

larger, industry-sized problems. This will help to determine how well certain

problem solving methods scale when given larger problems to solve.

1.6 Oraanization of the thesis

In this section a description is given to explain the purpose of each chapter

and its structure.

1.6.1 Cha~ter 1: Introduction

The first chapter discusses the problem statement, objectives of the study,

methodology and the organization of the thesis.

' Copyright O 1990-1992 by Ellemtel Telecommunication System Laboratories
Box 1505

125 25 Alvsj6
Sweden
Tel: international extension + 46 8 727 30 00

8
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

1.6.2 Chapter 2: Definina kev concepts and terms

The key terms necessary for fluently reading and understanding the thesis

are defined in this chapter. Definitions for concepts such as artificial

intelligence, search methods and the C2DGC problem will be given. These

are standard definitions as it is used in the field of stock cutting and artificial

intelligence research areas and communities.

1.6.3 Chapter 3: Uninformed search methods

The main goal of this chapter is to introduce the reader to search methods.

These methods are very basic and form the building blocks from which

informed search methods are constructed. Problem solving search methods

are essential for writing algorithms that have to make decisions by finding

sequences of actions that lead to desired states.

1.6.4 Chapter 4: Informed search methods

The concepts introduced in chapter 3 are expanded upon in chapter 4, where

informed search methods are discussed. As the name implies, informed

search methods utilize domain specific knowledge about a problem to guide

a search in the correct direction.

1.6.5 Cha~ter 5: C2DGC ~rob lem solution methods

Existing exact and non-exact C2DGC problem solving methods are

discussed in this chapter. These methods are analyzed and problems are

identified with algorithmic implementations of these methods. A list of

possible problems to investigate is given, and these will be looked at in

further chapters.

9
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

1.6.6 Chapter 6: Alqorithmic enhancements

Chapter 6 introduces modifications to the existing algorithmic

implementations of the Wang and modified Wang methods. These

modifications aim at enhancing the performance of these algorithms and also

at eliminating the problems identified in chapter 5. These enhancements

include optimization techniques, beta handling strategies for the Wang and

modified Wang methods, calculating sharper lower bounds and explicitly

managing upper bounds.

1.6.7 Chapter 7: Numerical tests and results

By solving standard problem instances with the algorithms discussed in

chapters 5 and 6, and implementing the enhancements made in chapter 6,

numerical results will be obtained and these results will be discussed in

chapter 7.

1.6.8 Chapter 8: Conclusion

The last chapter summarizes the goals set forth for the study and how these

goals were achieved. Furthermore, new problems that arose, which falls

outside of the scope of this study, and opportunities that presented itself

during the study are discussed to outline possible ideas that can be used as

the basis for further study in this field. Lastly, the new research and newly

developed algorithms are highlighted, which shows the contributions of the

study.

10
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

CHAPTER 2: Defining kev concepts and terms

2.1 Introduction

In this chapter the key terms and concepts used throughout this thesis are

defined. In section 2.2, the terms artificial intelligence, search methods and

the C2DGC problem are defined. Descriptions of related fields of study within

the cutting and packing (CP) problem environment are also given, with

supplied definitions for each field. Section 2.3 discusses previous research

done in the field of C2DGC problems, and section 2.4 summarizes the

contents of the chapter.

2.2 Definina kev concepts

If the title of this thesis is carefully studied, three terms are identified that need

to be defined. The first, and most obvious, is the term artificial intelligence.

Secondly, the term search methods are described and lastly the C2DGC

problem is defined.

2.2.1 Artificial intelliaence

Winston defines the concept of artificial intelligence very broadly, and states

that it is "the study of ideas which enable computers to do things that make

people seem intelligentn and continues in stating "the central goals of artificial

intelligence are to make computers more useful and to understand the

principles which make intelligence possible" (Winston, 1977:l).

Although it is a general definition, the idea of using artificial intelligence as a

problem-solving tool becomes apparent when Winston's description of the

concept is considered. This attribute of artificial intelligence provides a

means by which cutting problems may be solved.

11
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

-- - - - - -

An indepth definition can be found in the book a Modem approach to

artifcia1 intelligence by Russel and Norvig (Russel & Norvig, 1995:4), in

which they state that there are two major paths taken when defining artificial

intelligence; the first being thought processes and reasoning, whereas the

second deals with behaviour.

In short, Russel and Norvig (Russel & Norvig, 1995:5) divide the definitions

into the two above-mentioned categories. These two categories will then be

subdivided, each into two more categories, which will then form four basic

definitions:

2.2.1.1 Thouaht Drocesses and reasoning

They state that where thought processes and reasoning are concerned,

systems can be developed that think like humans and systems that think

rationally.

In this category a few definitions have been introduced by different authors,

some of the best-known being: 'The study of mental faculties through the

use of computational models." (Charniak and McDermott, 1985) and "The

exciting new effort to make computers think. .. machines with minds, in the

full and literal sense." (Haugeland, 1985).

2.2.1.2 Behaviour

Furthermore, Russel and Norvig (Russel & Norvig, 1995:5) distinguish

between systems that act like humans and systems that act rationally.

Once again reference has been made to different authors' definitions, which

reads: "The arf of creating machines that perform functions that require

intelligence when pehrmed by people." (Kurzweil, 1990) and "A field of

study which seeks to explain and emulate intelligent behaviour in terms of

computational processes." (Schalkoff, 1990).

12
Implementing artificial intelligence search methods to solve constrained two-
dimensional grullotine-cut cutting stock problems

2.2.2 Search methods

Search methods are universal problem solving mechanisms, used in the field

of artificial intelligence. The steps required to solve problems that are

addressed by search methods, which include cutting stock problems, are not

known in advance, and have to be determined by a systematic trial-and-error

exploration of alternatives (Korf, l996:l).

The alternatives generated by the trial-and-error process, can be viewed as

part of the state spaca, which consists of en initia! state, the alternative

states, and a goal state. The problem is therefore reduced to reaching the

goal state from the initial state. For this reason, searches undertaken by

search methods are often referred to as state space searches (Bundy,

l99i':ll5).

Two forms of search methods that are useful in the study of cutting problems

are uninformed and informed search methods.

2.2.2.1 Uninformed search methods

Uninformed search 'methods, also called brute-force or blind search

methods, require no domain specific knowledge to function (Korf, 1996:l).

Although uninformed search methods are an impractical tool for solving

nontrivial problems (problems where the state space is too large to consider

every possibility), it serves as an invaluable tool in describing the basic

ideas behind informed search methods (discussed in chapter 4).

2.2.2.2 lnformed search methods

lnformed search methods, also referred to as heuristic search methods,

implement rules that expand nodes in the state space that are most likely to

lead to an acceptable problem solution. These rules, used for decision-

making, are based on domain specific knowledge of the state space.

13
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

Unfortunately, like all rules of discovery and invention, heuristics are fallible.

A heuristic' is only an informed guess of the next step to be taken in solving

a problem (Luger & Stubblefield, 1993: 1 16-1 17).

2.2.3 The C2DGC ~roblem

The C2DGC problem belongs to a well-known family of problems called CP.

These problems are natural combinatorial optimization problems, as found in

the fields of Computer Science, Industrial Engineering, Logistics,

Manufacturing, a:c. (Cdng a, 200C:186).

The C2DGC problem forms that part of the CP problem domain where

rectangles are cut from a rectangular stock sheet, with the aim of minimizing

the total trim loss (waste material) generated by the cutting process. The size

of the problem domain is fortunately reduced by two constraints that are

placed on feasible cuts that have to be explored as possible solutions. The

first constraint is an upper bound assigned to every demand rectangle, which

is the number of times a certain demand rectangle type can be cut from the

stock sheet. The second constraint is that all cuts have to be guillotine cuts,

which are made from the one edge of the stock sheet to the other and are

parallel to the edges of the stock sheet (Daza 9, 1995633).

Figure 2.1, adapted from Christofides and Hadjiconstantinou (Christofides &

Hadjiconstantinou, 1995:22), illustrates the difference between a guillotine

and a non-guillotine cutting pattern. In the figure, pattern (a) is a guillotine

cutting pattern because all cuts are edge-to-edge cuts and parallel to the

edges of the stock sheet or successively produced sheets. Pattem (b), on

the other hand, does not conform to the definition of a guillotine cutting

pattern.

' Refer to chapter 4, section 4.1, page 32, for information pertainhg to heuristics
14

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

Figure 21: Two cutting patterns, where (a) is a guillotine
oattern and &h is not. I I

The cuts in figure 2.1 (a) ars numbered in the order in which they could be

made, although other sequences are obviously also possible.

Due to the combinatorial characteristics of the C2DGC problem, it is possible

to represent the search space as a formal tree structure, which integrates

seamlessly with artificial intelligence search methods. Artificial intelligence

search methods offer the capability of constructing these tree-like search

spaces facilitating searching through it for possible optimal solution patterns.

2.2.3.1 Mathematical formulation

Let S be a stock sheet of length L and width W, and let R be a set of

demand rectangles of type 6 (i = 1, 2, 3, ... n), where each type will have a

demand constraint of bi, a length of 4 and a width of W. From this, the

guillotine cutting pattern with a minimum trim loss must be determined that

uses no more than bi replicates of demand rectangle 6 (i = I, 2, 3, ... n)

(Wang, 1983574). The problem statement, as adapted from Wang (Wang,

1983:574), can also be stated in the form

Subject to 0 S xi S bi
xi integer (a = 1,2, ..., n)

15
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

where is an integer indicating the number of times the demand rectangle

0 appears in the guillotine cutting pattern G under consideration.

2.2.3.2 Problems related to the C2DGC ~rob lem

As noted in chapter 1, rigorous research efforts in the field of stock cutting

have led to the emergence of a myriad of modeling areas. These will shortly

be described, as knowledge obtained from research in some of these fields

will be used and referred to in this thesis.

9 Assortment problem: Assortment problem solutions intend to

minimize the number or area of stock sheets used by optimally

placing given demand rectangles. Solutions to the problem are

applied in the industry, for example solving cutting stock problems of

rectangular steel bars (Li & Tsai, 2001:1245-1246). According to

Baker (Baker, 1999:84), it is not possible to place all required

demand rectangles on a single stock sheet, and therefore solution

algorithms have to decide which rectangles to hold and which to use

to reach optimal cutting patterns spanning two or more stock sheets.

I+ Bin-packing: Bin-packing problem solutions attempt to partition or

pack a certain number of objects into a minimum number of bins

(Chao Ual, 1995:133). Problems where all the objects must be

loaded into the bin are differentiated from those where some objects

might be left out of the solution. The first type of problem is referred

to as the three-dimensional bin-packing problem and the second

type is known as the three-dimensional knapsack problem (Bottfeldt

& Gehring, 2001:143).

9 Knapsack problem: The knapsack problem often presents itself as a

relaxation methodology in one-, two-, and three-dimensional cutting

and packing problems. When given demand rectangles need to be

cut from a stock sheet, or objects need to be optimally placed in a

container or bin, the knapsack approach may be used to help solve

16
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

the problems (Fayard & Zissimopoulos, 1995:618). This problem

can be viewed as a bin-packing problem when some additional

constraints are placed on the value assigned to each object

(Kendall, 2000:12).

9 Nesting problem: The twodimensional nesting problem concerns

itself with the optimal placement of irregularly shaped stencils onto

an irregularly shaped surface. The problem usually presents itself in

the fabric and clothing industry. Some constraints are placed on the

stencil placement, for instance on the allowable degrees of stencil

rotation and on the area of placement if the fabric contains any

patterns (Heckmmn & Lengauer, 1998:473).

2.3 Previous research done in the field of 2DGC ~rob iems

Numerous approaches have been proposed to solve both constrained and

unconstrained two-dimensional guillotine-cut cutting stock problems (2DGC),

and the techniques used range from dynamic programming and linear

programming to recursive procedures, incremental development algorithms

and artificial intelligence search methods.

According to Cung (Cung Ual, 2000:186), the study of cutting problems

started nearly sixty years ago, but during the last ten years a renewed interest

in the field has sparked the imaginations of numerous researchers and it has

led to the development of new problem solving models.

The unconstrained two-dimensional guillotine-cut cutting stock (U2DGC)

problem was extensively studied by Gilmore and Gomory (1965, 1967) and

Beasley (1985). They implemented dynamic programming and linear

programming methods to solve the U2DGC problem, where the number of

times a specific demand rectangle is allowed to be used in the cutting pattern

is unlimited. Herr (1972) solved the same problem by using recursive search

procedures. Hinxman (1976) and later Morabito, Arenales and Arcaro (1992)

17
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

used the problem reduction methodology to solve unconstrained cutting

problems.

Christofides and Whitlock (1977) used the results obtained by Gilmore and

Gomory (1967) and a classical transportation problem to devise an exact tree

search algorithm to solve the C2DGC problem. This solution implemented

dynamic programming procedures to solve the constrained cutting problem.

Wang (1983) proposed and implemented two incremental development

algorithms to solve the C2DGC problem, and Vasko (1988) and Oliveira and

Ferraira (1 996) impraved upcn some aspests of these algo:ithms.

Viswanathan and Bagchi (Viswanathan & Bagchi, 1993:768) state that

artificial intelligence search methods and their application to constrained

cutting problems have been studied extensively by Nilsson (1980), Bagchi

and Mahanti (1983), Pearl (1984) and Sen and Bagchi (1989). Viswanathan

and Bagchi proposed the use of the best-first search method to solve the

C2DGC problem. Furthermore, Held and Karp (1971) proposed an

implementation of the travelling salesperson problem to solve the C2DGC

problem.

2.4 Summary

This chapter introduced the reader to the C2DGC problem, and also

discussed the basic principles behind artificial intelligence search methods.

Chapter 3 continues with an indepth study of uninformed search methods,

which lays the foundation for the discussion of informed search methods in

chapter 4. As was stated in section 2.2.3, artificial intelligence search methods

are ideally suited for searching through C2DGC search spaces (represented

as tree structures).

18
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

CHAPTER 3: Uninformed search methods

3.1 Introduction

This chapter deals with uninformed artificial intelligence search methods.

These methods are discussed by explaining how to implement them.

Furthermore, the methods are evaluated with certain criteria as listed in

section 3.2. Section 3.3 introduces and discusses uninformed search

methods, and sections 3.4 and 3.5 conclude the chapter with final thoughts

and a summary of the chapter content.

3.2 Evaluatinq different search methods

A simple yet effective criterion to measure the effectiveness and efficiency of

search methods has been proposed by Russel and Nowig (Russel & Norvig,

1995:73). The majority of work in search methods has gone into finding the

most effective search method for a given problem. To aid researchers in the

evaluation process of the different search methods, the following four criteria

can be used:

9 Completeness: is the method guaranteed to find a solution when one

exists for the problem?

9 Time complexity: how long does it take to find a solution?

9 Space complexity how much memory does it need to perform the

search?

9 Exactness: does the strategy find the optimal solution when there are

several different solutions?

The results obtained for these four measures when the method is tested, are

all important factors to consider when deciding on a search method for a

specific problem. If, for instance, a method's time complexity is acceptable

(the method finds a solution within an acceptable period of time) but its space

complexity is infeasible (the method cannot find a solution because not

19
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

enough physical memory is available) for many problem instances, the

method is not an acceptable tool for solving the problem. Furthermore, it can

be logically deduced that if a method is exact it is also complete, but if it is

complete it is not necessarily exact (Russel & Norvig, 199573).

3.2.1 Asvmptotic notation

According to Preiss (Preiss, 1999:36-37), P. Bachman devised a notation in

1982, which describes the asymptotic behaviour of functions. This notation

later became knawn as the big oh (0) notaeon. Big oh flotation is ussd to

describe the asymptotic upper bound of functions, with omega notation

describing a lower bound. The big oh notation will be used for the evaluation

of worst-case time-complexities of search methods.

I [Fiiurr 31: Showiug that Cn) - 8n+l28 = qd)]

The following defines big oh notation mathematically:

Consider a function f(n) that is non-negative for all integers n so. It is said

that "f(n) is big oh g(n), " which is written as f(n) = O(g(n)), if there exists an

integer no and a constant c > 0 such that for all integers n a,,, f(n) ag(n).

20
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

Preiss (Preiss, 1999:36-37) gives an illustrative example that demonstrates

the functioning of big oh. When the function f(n) = 8n + 128 is considered, it is

shown in figure 3.1 that f(n) is non-negative for all integers n a. To show that

the asymptotic complexity of the function f(n) is 0(n2), it is necessary,

according to the definition of big oh, to find an integer no and a constant c > 0

such that for all integers n ao, f(n) scnz. It does in fact not matter what these

constants are, as long as they exist.

Working with the function f(n) mentioned above while the value of 1 is chosen

for the constant c, we have:

Since (n+8) > 0 for all values of n 20, it can be deduced that f(n) l c n Z if

(n - 16) 20. Therefore no can be chosen as 16. It is thus clear that for c = 1

and no = 16, f(n) scn2 for all integers n >no. From this follows that f(n) is

O(nZ). It is indeed possible to further prove a stronger result for this function

f(n) so that f(n) = O(n).

3.3 Tvoes of uninformed search methods

The following is a discussion of different types of uninformed search methods.

The methods are evaluated according to the four criteria described in section

3.2.

3.3.1 Breadth-first search

Barr (Barr, 1981:47) defines breadth-first search as a "method that expands

nodes in the order of their proximity to the start node, measured by the

number of arcs between them". In other words, the start node is expanded

first, and then all nodes expanded from the start node are expanded next,

21
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

and so on. All nodes on the n'th level of the search tree are expanded before

the algorithm moves on to the level n+l.

Breadth-first search is therefore a strategy that systematically searches

through all possible nodes on level one of the search tree, and only then it

moves on to the second level. Figure 3.2 shows how breadth-first search

expands nodes in a simple binary tree. When a solution for a problem exists,

breath-first search will always find the shallowest goal node first In terms of

the four criteria (according to section 3.2, page 19), breadth-first search is

complete, and it is exact provided the path cost is a non-decreasing fundion

of the depth of the node (Russel 8 Nowig, 1995:74).

I F v 3 2 T h e order ofno& gensrationfm breadth4kt search

According to Bundy (Bundy, 1997:27), the breadth-first search method is

admissible', because of the fact that the strategy is guaranteed to terminate

with the minimal cost path to the goal node.

At this point it might seem as if breadth-first search is indeed a practical and

acceptable method for problems that require state-space searches. When

' An admissible method guarantees to find a solution path of minimal cost for any problem instance if
any solution path exists. Chapter 4, page 50, introduces a formal dehnition of the concept of
admissibility.

22
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

the time and space complexity of this method is evaluated, however, their

impeding influences are revealed. The main reason for excessive time and

memory usage is the branching factors encountered by almost all non-trivial

problems. This can be illustrated with a state space where each state can be

expanded to yield b new states, where b is referred to as the branching

factor. Suppose now that the problem's solution has a solution depth of d,

then the maximum number of nodes that will be expanded before the

solution is reached, is:

The result obtained from equation 3.1 is the maximum number of nodes that

could be expanded, but the possibility to find the goal node before reaching

the last node of the final layer is high. This implies that the actual number of

expanded nodes will most likely be less than G. The asymptotic time and

space complexity of the breadth-first search algorithm can therefore be

expressed as O(bd).

According to Ciesielski (Ciesielski, 2001), under some quite reasonable

assumptions the space and time complexity at different depths of the search

tree for a problem with a branching factor of 10 can be summarized as in

table 3.1. The branching factor value of 10 represents that of a reasonable

C2DGC problem's branching factor. The depth of a search tree for a C2DGC

problem can easily reach a depth of 10 or more, and table 3.1 shows that at

least 1 terabyte of memory and 128 days of processing time is required to

solve it at depth 10. The values for table 3.1 were calculated assuming that

100 bytes of memory are used for storing a single node and that 1000 nodes

can be expanded per second.

23
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

1 I Table 3.1:Time and mace comaledtv exmules I I
for aprob lk where b=10 - I

rC OPEN and CLOSED are lists */

OPEN = Start node. CLOSED = empty. I
w e OPEN is not emptg do I
(

Remove leftmost node h n OPEN, call it X. I
EX is a goal

return success.
else
{
Generate children of X
Put X on CLOSED.
Elimintate the children of X already on
OPEN or CLOSED
Put remairdng children of X on the right
end of OPEN

Include the discussion on breadth-first search, a general breadth-first

search algorithm is given in figure 3.3.

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

--- -

3.3.2 Uniformcost search

A slightly modified version of the breadth-first search algorithm results in the

uniform-cost search method. According to Barr (Barr, 1981:47), uniform-cost

search will always find the 'cheapest path from the start state to the goal

state." The cheapest path implies that the solution will not necessarily find

the shortest solution path, but the least-cost solution path. An important

factor for uniform-cost algorithms is that a nonnegative cost must be

associated with every path (arc) joining two nodes in a search tree. The

algorithm produces a pure breadth-first search when the costs associated to

all nodes are equal. Russel and Nowig (Russel & Nowig, 199575) depict an

instance of the systematic functioning of the uniform-cost strategy graphically

as in figure 3.4.

T i 3.4 (a) The state space. @)Progression
of the search, eachnode labeled
with a vatue &I)

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

The figure shows the state space in (a), with the cost of each path (arc)

associated with it. The problem is to traverse from the start state S to the

goal state G and to minimize the path cost. As shown in (b) in figure 3.4, the

first iteration of the algorithm expands the initial state, yielding the nodes A, B

and C. The costs of these nodes are evaluated and the least-cost node,

which is A in this instance, is expanded next. Once A is expanded, the path

SAG is generated with a cost of 11. Since SAG represents a path from the

start state to the goal state, it is a solution path, but is not yet recognized as

the best solution because nodes B and C have not yet been considered for

expansion. The next step is to expand node B, which generates SBG with a

cost of 10. The only incomplete path left is SC with a path cost of 15 before

expansion. Therefore, the path SBG is the cheapest possible solution path

and is therefore the optimal solution.

The uniform-cost search method is also known as the Dijkstra single-source

shortest-path algorithm. The method is complete and it also guarantees that

whenever a node is expanded, a lowestcost path to that node has been

found (exactness) provided the path cost is a nondecreasing function of the

depth of the node (Russel & Norvig, 1995:76). The worst-case asymptotic

time complexity of uniform-cost search is O(b*), where c is the cost of an

optimal solution and rn is the minimum cost arc within the state space. The

algorithm unfortunately requires the same order of memory as breadth-first

search algorithms to solve problems, in other words O(bd). (KorF, 1996:7).

Figure 3.5 gives a uniform-cost algorithm, which closely resembles the

breadth-first search algorithm in figure 3.3. One difference is that whenever a

new node is selected that will be expanded, the algorithm does not select the

node sequentially. It directs the selection process by evaluating the costs of

the currently expanded child nodes, and selecting the minimum value.

In the uniform-cost algorithm given below, the cost of the path from node X to

node X, is denoted by c(X,X$. The cost of a path from the start node to any

26
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

node X (or in other words the cost of node X) is denoted by g o . The cost of

the start state will be set to zero.

PL OPEN and CLOSED are ksts */

OPEN = Start no&, CLOSED = empty

While OPEN is not empty do
I

Select the node whh the minimum cost &om
OPEN, call it X.

IfX is a goat node
return success

else
(

Generate ciddren of X
Put X on CLOSED.
For every successor node Xs of X, comp&
the cost ofXs as fi) = g0 + c(XXs)
Place all successor nodes on the OPEN
list.

1
1

F i 35. Adfotm;cost search alg-

3.3.3 Depth-first search

Luger and Stubblefield (Luger & Stubblefield, 1993:89-96) state *depth-first

search goes deeper into the search space whenever this is possible. Only

when no further descendants of a state can be found are its siblings

considered." Depth-first search methods implement a strategy known as

backtracking. This strategy starts its search at the start state (usually the root

node) and pursues that path until it reaches a goal node or a dead end in the

state space. If the algorithm determines that a goal node has been reached,

it terminates and returns the solution path. Otherwise it backtracks to the

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

most recent node in the path that has unexamined siblings and continues

down one of those branches.

Figure 36: The order of node generation for depth-&st search

The advantage of depth-first search is that it requires much less memory

than breadth-first search does. The amount of memory that is required

increases linear to the search depth, as opposed to exponentially for breadth

first search. This is easily explained, as only those nodes that are in the path

from the root node to the current node need to be stored. The asymptotic

space-complexity is therefore favorable and can be expressed as O(b.4

(where b is the branching factor for the problem and d is the depth of the

maximumdepth node). Another way to express the space-complexity is that

the method only requires storage space for b.d nodes, where b is equal to

the branching factor for the problem and d is equal to the depth of the

maximumdepth node. Time-complexity, on the other hand, still remains a

problem as the same number of nodes is expanded for depth-first search as

was expanded for breadth first search. The only difference is the order in

which these nodes are expanded, and the asymptotic time-complexity will

therefore also be O(bd). One of the main disadvantages of depth-first search

is that it may not terminate on an infinite tree and simply go down the

28
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

leftmost path forever (Korf, 1996:8). Depth-first search is therefore neither

exact nor complete (Russel 8 Nowig, 1995:78).

To conclude the discussion on depth-first search, a general depth-first

algorithm is given in figure 3.7.

-- - - -

I* OPEN and CLOSED are lists Y

OPEN = Start node. CLOSED = empty

W e OPEN is not empty do
(

Remove leftmost node fiom OPEN, call it X

IfX is a goal
return success.

else
(

Generate all successors o f X
Put X on CLOSED.
Elminate any successors that are already 01

OPEN or CLOSED.
Put remaining successors on LEFT end
of OPEN

1
1

l5gun 3.7: A depth-&st search algmittm~

3.3.4 De~th-limited search

To solve the depth-first search's problem of getting stuck on an infinite path

in a search tree, depth-limited search was proposed. This algorithm places a

bound on the maximum depth the algorithm is allowed to search to, therefore

preventing all nodes on lower levels than the bound in the graph to be

expanded. This leads to a search method that neither guarantees to find a

shortest path to a solution if one exists, nor to find a solution even if one

29
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

exists (Bundy, 1997:33). Therefore the method is neither complete nor exact.

The time complexity for the method is O(bd) where b is the branching factor

and d is the depth limit. The space complexity is O(b.4.

3.3.5 lterativedeepenina depth-first search

According to Ciesielski (Ciesielski, 2001), iterative-deepening search

performs a depth-first search of the state space with a depth-bound of 1. If

this search fails to find a solution for the problem, it continues with a depth-

first search of the search si;ace with dapth-bound 2. This continues with the

depth-bound increased for every iteration.

It might seem, at first glance, as if the iterative-deepening strategy is

inefficient, because when the depth-bound is increased from level d to level

d+ l , the search is repeated for all levels up to level d. However, since typical

search spaces grow exponentially with the increase of the search depth d,

the search on level d+l dominates the total search time. In fact, iterative-

deepening performs very well where asymptotic time (O(bd)) and space

(O(b.4) complexities are concerned (Bundy, 1997:61). Furthermore, the

method is complete and exact (Russel & Norvig, 199579-80).

3.4 Final thourrhts

Luger and Stubblefield (Luger & Stubblefield, 1993:99) state that all the

uninformed search strategies, as discussed in this chapter, namely breadth-

first, uniform-cost, depth-first, depth-limited and iterativedeepening search

methods, can be shown to have worst-case exponential time complexities.

This fact is true for all uninformed search methods, and the only searching

approaches that reduce this complexity, employ heuristics to guide the

search. Therefore, chapter 4 introduces informed search methods that

implement heuristics to guide the search more effectively.

30
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

3.5 Summary

Uninformed search methods have now been discussed and evaluated with

the set criteria. The next chapter deals with informed search methods that

expand upon uninformed search methods.

3 1
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

CHAPTER 4: Informed search methods

4.1 Introduction

George Polya (Polya, 1945) defines heuristic as 'the study of the methods

and rules of discovery and invention". Heuristics form the basis of informed

search methods and according to Bundy (Bundy, 1997:52), informed search

methods is an advanced technique to do state space searches, with the state

space normally represented in the form of a graph or tree.

The word heuristic comes, in fact, fmm the Greek word heuriskein, meaning

"to discover". It is also the origin for the word eureka, derived from

Archimedes' reputed exclamation heurika ("I have found"), uttered when he

had discovered a method for determining the purity of gold.

As mentioned in chapter 2, heuristics, like all rules of discovery, are fallible.

Heuristics are often based on previous experience or intuition, and therefore it

leads to an informed guess of the next step that should be taken to solve a

specific problem. Even though heuristics cannot predict the exact branching of

the state space tree, it can drastically improve .the performance of the search

methods (Luger & Stubblefield, 19931 17).

This chapter deals with different heuristic search methods in section 4.2 and

section 4.3 summarizes the contents of the chapter.

4.2 Types of informed search methods

The following is a discussion of different types of informed search methods.

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

In the literature concerning search methods, various authors voice different

opinions pertaining to the generate-and-test search method. Barr (Barr,

1981:30) states that the generate-and-test method merely generates new

states in the state space and then tests them against a specific goal state.

This translates to an uninformed search method that utilizes no information

concerning the state space. Rich and Knight (Rich & Knight, 1991:64), on the

other hand, explain that only in its most basic form can the generate-and-test

method 5e seen as an uninformed search method. The method car! be

implemented by using the following algorithm:

9 Step 1: Generate a possible solution: Some methods require that a

path be generated from the start state, and for other problems this

means generating a particular state in the state space;

9 Step 2: Test to see whether the generated state is indeed equal to

the goal state; and

9 Step 3: If, at this stage, a solution has been found, terminate the

algorithm. Othewise return to step 1.

In its most basic form, the generate-and-test algorithm is an exhaustive

depth-first search algorithm, which generates all possible states of the

search tree and tests them. The method can also generate random

searches, which does not guarantee that a solution will be found. Random

generate-and-test algorithms are often referred to as British Museum

algorithms, which is a reference to a method for finding an object in the

British Museum by wandering around in random directions (Rich & Knight,

1991 :64).

Up to this point, the generate-and-test algorithm still presents itself as an

uninformed search method, but by implementing a general purpose heuristic

such as the nearest neighbor heuristic, some states that seem unlikely to

lead to a solution, are not expanded further. Researchers studying the

33
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

traveling salesperson problem, where the algorithm selects a city that has

not been visited and is closest to the current city, devised the nearest

neighbor heuristic. The nearest neighbor heuristic is similar to the heuristic

implemented by best-first search algorithms. This conforms to the idea of

informed search, and therefore such a generate-and-test search method is

regarded as an informed search method (Rich & Knight, 1991:41).

4.2.2 Hill climbing

\PJins:an (Winston, 1992:70) describes ths classical hill clirnbing search

method intuitively by stating that search efficiency may improve spectacularly

if there exists a way to order the branches under each node so that the most

promising ones are explored. In some situations, measurements can be

made to determine a reasonable ordering. Some examples are:

9 The temperature in a room is uncomfortably hot. The thermostat in

the room can be used to change the temperature, but the markings

on it have been removed, leaving it up to the user to choose which

way to move the thermostat switch; and

9 The television's picture has deteriorated over a period of time. The

brightness, color, tint and tuning controls have to be adjusted to

obtain a better picture.

Both of these problems conform to an abstraction in which there are some

adjustable parameters and a way of measuring the performance associated

with any particular set of values for the parameters. Hill climbing is therefore

a depth-first search method which implements a heuristic that orders the

alternatives at each decision point. Movement proceeds through the

alternative that offers the best improvement to the situation in one step. The

required measurements may be absolute or relative, precise or appropriate

(Winston, 1992:70-73).

34
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

Figwe dJ: (3 The foothill problem @) The ridge problem (c) The plateau problem.

Bundy (Bundy, 199754) writes that hill climbing is a search method that is

used to determine the maximum or minimum value of an evaluation function.

The method considers the local neighborhood of a node, calculates the

maximum or minimum values for all the neighbors and chooses those nodes

with the largest or smallest values. Hill climbing differs from other methods

that use evaluation functions in that it does not implement backtracking. It

rather follows one path down the search tree and does not retain previous

unexpanded nodes that were promising. This property is what makes the

method computationally very efficient, but also explains why it is not

guaranteed to find a solution for all problem instances.

35
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

Winston (Winston, 1992:72-74) states that the foothill, ridge and plateau

problems are the three main pitfalls that hinder hill climbing and illustrates it

as in figure 4.1.

4.2.2.1 The foothill problem

The source of the foothill problem is secondary peaks in the state space,

which causes hill climbing to find only locally exact solutions. Unfortunately,

secondary peaks usually divert the search in wrong directions, preventing

the discovery of global exact solutions. This situation is depicted in figure

4.1 (a).

4.2.2.2 The ridqe problem

A more subtle and frustrating problem is the ridge problem, shown in figure

4.1 (b). The contour map shows that each decision made by the hill

climbing method moves the current position across contour lines, even

though no local or global maximum is near the current position. Increasing

the number of search directions might help solve the problem.

4.2.2.3 The plateau problem

The plateau problem occurs when mostly flat area in the state space

separates the peaks. The local improvement operation fails to yield

meaningful paths and all standard-step probes leave the performance

unchanged. This will ultimately lead to a situation where no solution is

offered by the method, as depicted in figure 4.1 (c).

Figure 4.2 shows a general implementation of the hill climbing search

method. The main difference between the depth-first and hill climbing search

methods are indicated by the text written in italic in figure 4.2.

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

I* OPEN and CLOSED are lists *I

OPEN = Start node, CLOSED = empty

Wide OPEN is not empty do
{

Remove leftmost node kom OPEN, call it X

EX is a goal
return success.

else
(

Generate all successors of X.
Put X on CLOSED.
Runlnate any successors that are already on
OPEN or CLOSED.
Sbrt the new successors by the estimated
distances between these nodes and the
goal.
Put remaining successors on LEFT end
of OPEN.

4.2.3 Dynamic hill climbing

Yuret and De la Maza (Yuret & De la Maza, 1993:2) recognize the same

three problems encountered by basic hill climbing, but offer solutions to the

first two, namely the foothill and ridge problems. The plateau problem,

though, is referred to as a hopeless one by Yuret and De la Maza, because

the state space offers no information about its structure. In this case, any

random search method will perform as well as any other heuristically

informed method. A dynamic hill climbing method is proposed, which

implements measures that attempt to resolve the effects of the foothill and

the ridge problems.

37
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

4.2.3.1 Dynamic coordinate frame

Basic hill climbing techniques usually implement static coordinate frames,

with which movement is restricted to, for instance, the four basic compass

directions: north, wes!, south and east. As shown in figure 4.1 (b), these

directions may sometimes all lead to worse states. One solution to the ridge

problem might be, as mentioned in section 4.2.2.2 (page 36), to increase

the number of search directions to also include combinations of search

directions for instance.northwest, northeast, southwest and southeast. This,

ufifortunately, presents the praS!ern of combinatorial explcsicns of search

states that is difficult or impossible to resolve. Dynamic hill climbing, on the

other hand, adopts a dynamic coordinate frame approach. This implies that

whenever the basic hill climber gets stuck, a more appropriate coordinate

frame is automatically calculated. The process leads to a situation where

the number of search directions remains constant, but these directions are

only changed when necessary (Yuret & De la Maza, 1993:2-3).

4.2.3.2 Ex~loitation of local optima

A possible measure against the foothill problem is to consider the

advantage of individual optimal solutions as an advantage in the selection

procedure. This implies that as in many genetic algorithms, whenever a

local optimum is reached its chance of survival surpasses that of other

possible solutions. The goals of diversity-based strategies are to protect the

search from early convergence and to explore the state space as

homogeneously as possible. In practice, these strategies usually take into

account the fitness and diversity of locally optimal solutions (Yuret & De la

Maza, 1993:3).

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

4.2.4 Beam search

Beam search employs a simple heuristic to alter the breadth-first search

method. The search still progresses in a level-by-level fashion through the

search space, but only the best m nodes are considered for further

exploration and the rest of the nodes on the level are ignored. Each node on

a certain level is evaluated with a chosen heuristic evaluation function and

the m nodes with the lowest cost are then chosen and the rest is ignored.

Beam search ensures that the number of nodes explored remains

menageable, even if tha branchifig :aZor is large and the search needs to

probe deeply into the search tree. This search method does not, however,

ensure that a solution for the problem instance will be found even if one

exists, or that if a solution is found that it will be optimal. As with basic hill

climbing, beam search does not implement backtracking, but rather than

following only the one most promising path down the search tree like hill

climbing does, beam search follows the m most promising paths. Figure 4.3

illustrates the first few steps of how beam search expands a search tree

where the beam width m is 2. The values next to the nodes indicate the cost

associated with each node (Luger & Stubblefield, 1993:147).

F-43: The order ofnode generationforbemsearch

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

P* OPEN and CLOSED are lists *I

OPEN = Start node. CLOSED = empty

Remove leftmost nodeeom OPEN, call it X
IfX is a goal

return success.
else
(

Generate clddren of X
Put X on CLOSED.
b a t e clddren of X already on OPEN or CLOSED.
Put remairdng nodes on OPEN.

1
Evahrate the costs of all nodes on OPEN, keep only the
m best nodes on OPEN
Delete the rest of the nodes on OPEN

W e OPEN is not empty do
I

For Count = 1 to m

{
Remove leftmost nodeftom OPEN, c d it X
EX is a god

return success.
else
(

Generate children of X
Putx on C L O W .
E h k t e children of X already on OPEN or CLOSED.
Put remairdng nodes on nght end of OPEN.

1

Evaluate tho costs ofad nodes on OPEg choose oonly the
m best nodes and put these orr the left end of OPEN
Delete the rest of the nodes on OPEN.

1
Figue4.4: A beam search algorithm

To conclude the discussion on beam search, an algorithmic implementation

of the method is displayed in figure 4.4. The algorithm closely resembles a

breadth-first search algorithm, except that it only chooses the m best nodes

40
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

on every level of the search tree to explore further, whereas breadth-first

search explores all possible paths on any level of the search tree.

4.2.5 Best-first search

Best-first search differs only slightly from basic hill climbing. In best-first

search methods, the focus shifts after each cycle to the best node found

globally. Basic hill climbing, on the other hand, moves its attention to the best

node found locally, meaning that forward motion is always generated through

the seemingly best descendant. Best-first ssarch generates forward motion

from the best node so far, no matter where it is located in the partial

developed search tree (Winston, 1992:75).

The best-first search method uses an estimate value to determine the next

node that should be expanded. It is calculated using a heuristic evaluation

function h that estimates the minimum path cost from the current node to the

goal. The cost of node n is denoted as h(n).

Figure 4.5, adapted from Rich and Knight (Rich & Knight, 1991:74), shows

the first few steps for the best-first search procedure. Initially, only the root

node (node 0) is part of the state space, therefore it will be expanded first.

This expansion yields nodes 1, 2 and 3, with respective costs of 3, 6 and 1.

These values represent the estimated costs of reaching a goal node from the

current position (h(n)). This number must be minimized, and if nodes 1, 2

and 3 are analyzed, node 3 is found to have the minimum cost. Therefore

node 3 is expanded next and the same procedure is followed until a goal

node is found.

41
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

5 i m 4 . 5 : The Dider ofnode generationfor best-&st search

Rich and Knight (Rich & Knight, 1991:74) concludes their discussion on best-

first search by stating that a bit of depth-first search is done at the most

promising node in the state space. Eventually, if a goal node is not found, the

current branch will start to look less promising than one of the top-level

branches that had previously been ignored. The now more promising,

previously ignored branch will be explored. The old branch is not forgotten

however, and its last node is placed in the set of generated but unexplored

nodes. The search can return to it whenever all the others get bad enough

that it is again the most promising path.

A general algorithm for the best-first search method is given in figure 4.6.

The algorithm displays similarities to that of the basic hill climbing algorithm,

with two differences. The first is that for every iteration the lowest cost node

in the list OPEN is placed in X and not the leftmost node in the list. Secondly,

the newly generated successors of the current node is not sorted, but merely

placed in the OPEN list.

42
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

r* OPEN and CLOSED art lists Y

OPEN = Start node, CLOSED = empty

W e OPEN is not empty do
{

Remove lefhnost nodekxn OPEN, call it X.

IfX is a goal
return success

else
{

Generate all successors ofX.
Put X on CLOSED.
For every successor node & of X,
compute the cost ofXs as h&) =
remaining distance to the goal.
Eahninate any successors that are aJready
on OPEN or CLOSED.
Put remaining successors on OPEN.
Sort the entire OPEN list with least-cost
nodes (lowest h) in the Eont of the list.

1

F i i 4 . 6 : Abest-&st search algorithm

4.2.6 Branchand-bound search

A method that can be implemented to generate optimal solutions for problem

instances is called branch-and-bound search. The branch-and-bound

method always keeps track of all nodes that could be expanded next. It

therefore globally selects the lowest cost node at any given time during the

search process and expands it (generates its children). At this stage it might

seem to be exactly the same as best-first search, but the heuristic evaluation

function used to determine the best node (node to be explored next) differs

slightly from that of best-first search.

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

The branch-and-bound method uses the exact cost of every node (the cost

of reaching the current node from the start node) and denotes it as g(n). The

lowest-cost, globally unexplored node is then chosen as the node to be

expanded next. This process repeats until the goal is reached, and because

the lowest cost node is always the one chcsen for expansion, the first goal to

be found is likely to be the optimal solution.

To turn likely into certain, all nodes in the OPEN list have to be expanded

until their costs are equal to or more than that of the solution. The reason for

this is that the last step 3ken to reach the gaal m y Do costly enough to

make another open node able to generate a less costly solution.

Figure 4.7, adapted from Winston (Winston, 1992:83), shows how branch-

and-bound search functions when searching for an optimal solution. The cost

to reach node 7 (a goal node) is 13. Similarly, the cost to reach node 5 is

also 13 and any additional movement along that branch will make it more

expensive than 13. Therefore, node 5 does not need to be expanded further,

because any resulting node including node 5 in the solution, will have a more

expensive cost than node 7.

Fiiure 4.7: Node generation considerations fm branch-and-bound selach

44
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cuhg stock problems

I* OPEN and CLOSED are lists */

OPEN = Start node, CLOSED = empty

W e OPEN is not empty do
(

Remove leftmost node &om OPEN, call it X

E X is a god
return success.

else
(.

Generate all successors o fX
Put X on CLOSED.
For every successor node Xs of X, compute
the cost of& as a s) = cost of reacinng
node Xs &om the start node.
Elmdnate my successors that arc already
on OPEN or CLOSED.
Put remaining successors on OPEN.
Sort the entire OPEN list with least-cost
nodes (lowest g) in the kont of the list.

1
1
Figne4.E: A bratuhnd-bound search algodb

A general algorithm for the branch-and-bound search method is given in

figure 4.8.

4.2.7 Branchand-bound search with underestimates

In some cases, you can improve branch-and-bound search greatly by

guessing the remaining cost of reaching the goal from the current node, as

well as using facts about costs already accumulated to get to the current

node.

The branch-and-bound method with underestimates consists of two

components. The first is the exact cost of reaching the current node n from

45
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

the start node, which is denoted as g(n). The second component is the

underestimated cost from the current node n to a goal node and is denoted

as h(n). Therefore, the following function is used to guide the branch-and-

bound method with underestimates:

f(n) = estimated cost of the cheapest solution through n

which can be written as

according to Russel and Nowig (Russel & Nowig, 199577). Note that by

using underestimates (h(n)) the optimal path will never be overlooked,

because an underestimate of the remaining cost of reaching the goal node

from the current node n added to the exact cost of reaching the current node

n from the start node will always yield an underestimate of the total cost of

reaching the goal. Therefore, if a goal node is reached by expanding the

lowest-cost (underestimated values) nodes repeatedly, no extra work need to

be done after all nodes in the OPEN list have been expanded with a cost of

less than or equal to that of the goal node.

(Fii-4.9: Node generation for brauch-andbound seafchwithundere&ates I
46

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotineat cutting stock problems

Branch-and-bound search augmented by underestimates determines that a

solution through the nodes 0-2-4-6-7 is optimal. In figure 4.9 the numbers

beside the nodes are accumulated distance (g(n)) plus underestimates of

distance remaining (h(n)). Underestimates quickly push up the lengths

associated with bad solutions. In the example in figure 4.9, fewer nodes are

expanded than would be expanded with branch-and-bound search operating

without underestimates.

A general algorithm for the branch-and-bound search method using

underestimates is given in figure 4.10. The algorithm closely resembles

branch-and-bound search, and the only addition is the inclusion of the h(n)

value when computing the costs of each successor node.

I* OPEN and CLOSED are lists *I

OPEN = Start node. CLOSED = empty

I OPEN is not empty do

I Remove leftmost no& E m OPEN, call it X

I IfXisagoal
return success.

else
i

Generate all successors o f X
Put X on CLOSED.
Calculate node costs for each successor & of X
by adding the values of g(&) and h(Xs).
Urmitlzltc any successors that are already
on OPEN or CLOSED.
Put remairdng successors on OPEN.
Sort the entire OPEN hst wbh least-cost
nodes (lowest g +h= f) in the &ont of the list.

1

Fg"le4.10: Akaanch-and-bound search algigmithm
using undererrimates

47
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

4.2.8 Branchand-bound search using the dynamic ~roaramming

principle

A second method to improve the basic branch-and-bound method is by

eliminating portions of the search tree str~cture. This is accomplished by

ignoring (not expanding) more expensive duplicate nodes that also exist in

other portions of the search space.

Figure 4.11 illustrates this concept. The numbers beside the nodes are

accumulated distances (g(n)). There is no poin! in expanding the instaxe of

node D at the end of S-A-D, because getting to the goal via the instance of D

at the end of S-D is obviously more efficient.

-Expanded next

4

7 8

F i i 4 . l l : The principal of dynamic programming

This example illustrates a general principle. Assume that the path from a

starting point S to an intermediate point I does not influence the choice of

paths for traveling from I to a goal point G. Then the minimum cost from S to

G through I is the sum of the minimum cost from S to I and the minimum cost

from I to G. Consequently the dynamic-programming principle holds that,

when a least-cost path from S to G is required, all paths from S to any

intermediate node I can be ignored except the minimal-length path from S to

1.

48
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

A general definition of the dynamioprogramming principle:

The best way through a patticular, intermediate place is the best way to it

from the stafting place, followed by the best way from it to the goal. There

is no need to look at any other paths to it or from the intermediate place.

A general algorithm for the branch-and-bound search method using the

dynamic-programming principle is given in figure 4.12. Note that this

algorithm does not include underestimates.

I* OPEN and CLOSED are lists Y

OPEN = Start node, CLOSED = empty

While OPEN is not emptg do

(

Remove leftmost node &om OPEN, call it X

IfX is a goal
return success

else
(

Generate all successors ofX
Put X on CLOSED.
Calculate node costs for each successor Xs of X
as g&) = cost of re* Xs &om the start node.
Eliminate any successors that am akeady
on OPEN or CLOSED.
Iftwo or more nodes are identical, delete all
but the least-cost node &om OPEN.
Put remaking successors on OPEN.
Sort the eniire OPEN list with least-cost
nodes (lowest g) in the front of the list.

I

-
using the dplamic progrsmndng principle 1

49
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

4.2.9 The A* search method

The A* search method is a branch-and-bound search, with an estimate of

remaining distance (h(n)), combined with the dynamic programming

principle. If the estimate of remaining distance is a lower bound on the actual

distance, then the A' method is exact and it produces optimal solutions.

4.2.9.1 Admissibilitv of the A* method

If the A* method is used with an evaluation function in which h(n) (estimated

cost of reaching the goal from node n) is less than or equal to the exact cost

of reaching the goal from node n, for all n, the resulting algorithm is

admissible. Therefore, in the interests of admissibility, the value of h(n) for

all n must never be overestimated (Luger & Stubblefield, 1993:132-133).

Admissible heuristics are by nature optimistic, because they think the cost

of solving the problem is less than it actually is. This optimism transfers to

the f function as well, and therefore if h is admissible, f(n) never

overestimates the actual cost of the best solution through n (Russel &

Norvig, 1995:97).

If an algorithm is admissible, it implies that the algorithm is guaranteed to

terminate with the least-cost solution, if such a solution exists (Bundy,

1997: 12).

4.2.9.2 Monotinicitv of the A* method

According to Luger and Stubblefield (Luger & Stubblefield, 1993:133), a

heuristic function h is monotone if:

50
Implementing attificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

1. For all states ni and nj, where nj is a descendant of ni,

h(ni) - h(ni) <cost(ni, ni), where cost(ni, ni) is the actual cost of

going from state ni to ni.

2. The heuristic evaluation of the goal state is zero, or h(Goa1) = 0.

In other words, if a search space is examined that was created with a

monotone heuristic function, the node costs (value of function f) never

decreases as one moves down any given path in the search space (Russe!

& Norvig, 1995:97).

The advantage of a monotone heuristic function is that it guarantees that if

a state is discovered using that heuristic, the same state will not be found

later in the search at a cheaper cost.

4.2.9.3 lnfonnedness and the A* method

For two A* heuristics hl and hz, if hl ihz , for all states n in the search

space, heuristic h2 is said to be more informed than hl. Therefore, if a

heuristic h2 is more informed than h,, then the set of states examined by h2

is a subset of those expanded by h l (Luger 8 Stubblefield, 1993:135).

4.2.9.4 Underestimation of h

Consider the situation shown in figure 4.13. According to Rich and Knight

(Rich 8 Knight, 1991:78) all arc costs are fixed and equal to one. For each

node, f is indicated as the sum of g and h, as is specified by the definition of

the A* method.

The figure depicts a situation where five iterations of an algorithm

implementation of the A* method have been executed and nodes 1, 2, 3,4

and 5 have been expanded. Initially, though, only node 0 is expanded.

51
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

When the node costs are evaluated, node 1 is identified as the lowest-cost

node with f(1) = 4, therefore, it is expanded first. Suppose node 1 has only

one successor namely 4, which also appears to be three steps away from a

goal state. If the cost of node 4 is evaluated, it is shown to be f(4) = 5. This

is, in fact, the same as the cost for node 2, but this situation is resolved by

favoring the path that is currently being followed. This implies that node 4 is

expanded next and for this problem instance, node 4 also has only one

successor namely node 5. Node 5 also appears to be 3 steps away from

reaching a goal node and it becomes clear that unnecessary steps are

being used up and no progress is made. The node cost of n d e 5 is,

however, f(5) = 6. This is greater than that of node 2, therefore the current

path is abandoned and node 2 is expanded next. It is deduced that by

underestimating the value of h, some effort will possibly be wasted in the

search.

Fgun4.13: Unduestimatk ofh

4.2.9.5 Overestimation of h

Now the instance in figure 4.14 is considered. As was the situation in figure

4.13, the initial nodes' costs are once again evaluated and node 4 is

expanded. The expansion sequence remains the same as that for the

52
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillofinscut cutting stock problems

instance illustrated in figure 4.13 up until node 5 is expanded. Then, the

node costs of nodes 5, 2 and 3 are evaluated. Node 5 is still the most

promising node and is expanded to yield node 6, which represents a goal

state. The length of the solution path is therefore 4.

Suppose, however, that a direct path exists between node 3 and a goal

state. This path will never be found because h(3) = 5 is an overestimate,

even though it has a path length of only 2.

4.2.9.6 Graceful decav of admissibilih

For most real world problems, the only way to guarantee that h is never

overestimated, is to set it to zero. Then, unfortunately, the method

degenerates to basic branch-and-bound search. A corollary to this theorem

does exist, however, which is called graceful decay of admissibility.

According to Rich and Knight (Rich 8 Knight, 1991:79), the graceful decay

of admissibility is defined as follows:

53
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

If h is rarely overestimated by more than 6, then an A * algorithm will rarely

find a solution whose cost is more than 6 greater than the cost of the

optimal solution.

To conclude the discussion of the A* method, a general algorithmic

implementation of the method is given in figure 4.15.

P OPEN and CLOSED are lists */

OPEN = Start node, CLOSED = empty

White OPEN is not empty do
(

Remove lef!mostnode fiom OPEN, caU it X

IfX is a goal
rebm success

else
{

Generate all successors of X.
PutXonCIX)SED.
Calculate node costs for each successorXs ofX
by ad- the values of g(&) and h(Xs).
Elrminate any successors that are akeady
on OPEN or CLOSED.
Iftwo or more nodes are identical, delete all
but the least-cost node &om OPEN.
Put remaining successors on OPEN.
Sort the entire OPEN hst w h least-cost
nodes (lowest g+h= f) in the Eont of the kt .

1

4.3 Summary

Chapter 4 concludes the discussion on the basic and more advanced ideas

behind search methods. Chapter 5 leads the reader into a detailed discussion

54
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

on different existing exact and non-exact problem solving methods. These

methods are analyzed and problems are identified with algorithmic

implementations of these methods.

55
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinscut cutting stock problems

CHAPTER 5: C2DGC problem solution methods

5.1 Introduction

As was mentioned in chapter 1 , the C2DGC problem has a wide range of

commercial and industrial application areas. The need for optimal solutions for

the problem arises in the steel, glass, wood and metallurgy industries to name

but a few. Therefore, well-defined, structured, effective, efficient and

sometimes exact algorithms are required by industries and this chapter acts

as a guide to understanding the methods that exist (em& and non-exact)

from which these algorithms can be deduced.

Sample problem instances are also solved throughout this chapter illustrating

the functioning of the discussed solution methods.

11 Problem 1 Stock plac lenglh I Demand rectangles' IengMW), width (w)

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

Daza et (Daza a, 1995642) present a set of eight C2DGC problem

instances in their article, some of which were also studied by Christofides and

Whitlock (1977). These eight problem instances were solved by algorithms

developed by Daza, and the problem specifications are summarized in table

5.1.

Section 5.2 discusses existing exact C2DGC problem solving methods,

whereas section 5.3 describes existing non-exact methods. Section 5.4

concentrates on the properties of algorithms based on these methods, and

also identifies certain problem- areas within these algorithms that require

further investigation. Section 5.5 summarizes the content of the chapter.

5.2 Exact methods to solve the C2DGC oroblem

As discussed in chapter 2, section 2.3 (pages 17-18), the C2DGC problem

has been researched by Christofides and Whitlock (1977). They used

dynamic programming procedures and results obtained by Gilmore and

Gomory (1965, 1967) who studied the U2DGC problem, to solve the C2DGC

problem. Furthermore, Held and Karp (1971) proposed an implementation of

the travelling salesman problem to solve the C2DGC problem. Lastly, Wang

(1983), Vasko (1988) and Oliveira and Ferreira (1990) used a rectangle-

building method, as proposed by Wang, to solve the C2DGC problem. This

approach (referred to as the Wang method or Wang's method in the literature)

will be used as the foundation from which modified algorithms will be derived

in this thesis.

The Wang method is used as a basis because:

9 It integrates effectively with artificial intelligence search methods and

the tree structures they use to represent state spaces; and

9 It can be shown that when an effective pruning criterion is used, the

Wang method (and algorithms derived from it) is exact.

57
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

5.2.1 The Wana method

The Wang method (WA), as was presented by Wang (Wang, 1983:573-577)

in 1983, proposed an ingenious way of building larger rectangles by joining

smaller ones. Wang proposed two algorithms based on this method to solve

C2DGC problems. By using her method, rectangles are gradually generated

considering the original demand rectangles, rotated versions of the original

demand rectangles and new rectangles generated in each state of the

algorithm. Every newly generated rectangle may or may not contain trim

loss. This trim loss is called intend trim loss. From the discussion of the

C2DGC problem in chapter 2, section 2.2.3 (pages 14-17), the problem is

defined as:

Let S be a stock sheet of length L and width %t! and let r be a set of demand

rectangles of type ri (i = 1, 2, 3, ... n), where each type will have a demand

constraint of bi, a length of .$ and a width of W. From this, the guillotine

cutting pattem with a minimum trim loss must be determined that uses no

more than bi replicates of demand rectangle r;. (i = 1, 2, 3, . . . n). 1

Daza et (Daza et, 1995:635) state that for each newly generated

rectangle, three feasibility criteria are considered:

9 Rectangle dimensions must be less than or equal to the stock sheet

dimensions2. These rectangles are referred to as feasible rectangles;

9 Internal trim loss must be less than or equal to a certain

predetermined percentage of the stock sheet; and

9 The number of demand rectangles of a specific type cut from the stock

sheet must be less than or equal to its upper bound.

' Refer to chapter 2, section 2.2.3.1, pages 15-16, for the mathematical formulation of the problem
2 Note that for each newly generated rectangle only the comparisons C<= L and w <= Wneed to be done

58
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

5.2.1 .I Rectanale buildina with the bottom-ur, a ~ ~ r o a c h

The bottom-up rectangle building approach is based on the observation that

by using horizontal and vertical builds on demand rectangles and their

rotated equivalents, al! the possible guillotine cuts3 can be obtained on the

initial stock sheet. Wang (Wang, 1983:573-577) first proposed these

construction methods for guillotine-cutting problems, but it can be linked to

particular cases of methods used by Albano and Sapuppo for solving the

irregular-shape cutting stock problem (Cung a, 2000:188).

A vertical build of two rectangles A = & x WA and B = b x ug is a rectangle

Sy having dimensions max(&,&) x (wA + +) and containing A and 6. A

horizontal build of A and B is a rectangle SH of dimensions (& + b) x

max(w~,ws) that contains A and 6.

Figure 5.1 illustrates how vertical (b) and horizontal (c) builds are

constructed by using given demand rectangles (a).

Demand rectangles Vntical build 1 H & d build k

Refn to chapter 2, section 2.2.3, pages 14-15, for more information pertaining guillotine cuts
59

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

5.2.1.2 Trim loss

Trim loss, or waste as it is sometimes referred to, arise if there is a

mismatch in the relevant dimensions of the rectangles being combined,

andlor if a complete4 rectangle (a rectangle which cannot be used

successfully as a component in a further vertical or horizontal build because

then the resulting build would exceed either the length or width of the stock

sheet, or both) does not have the same dimensions as the stock sheet.

Three types of trim loss may occur, namely internal trim loss, external trim

loss and total trim loss.

5.2.1.2.1 lnternal trim loss

Internal trim loss is the area within a generated rectangle that is wasted.

This idea is illustrated in figure 5.2, where (a) represents the demand

rectangles and (b) and (c) illustrate how internal trim loss is generated for

vertical and horizontal builds respectively.

Vertical build Hkontal build

Fiim 5.2: Inttmaltdmloss, as gmerntcd by
horirontal and vntical builds

' Section 5.2.2, pages 75-77, uses the concept of completeness to enhance the original Wang algorithm
60

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

5.2.1.2.2 External trim loss

External trim loss is the area outside a complete demand rectangle or

complete generated rectangle that is wasted when it is placed on (cut

from) the stock sheet. To grasp the concept of external trim loss, consider

figure 5.3. In this instance, rectangles A and 6 and rectangles C and Dare

combined to form E and F respectively. Subsequently, joining E and F

generates rectangle G. From the previous definition of internal trim loss, it

is evident that the shaded sections in rectangles E and F represent the

internal trim loss of these rectangles respectively. Rectangle G, however,

has its own internal trim loss, which is the sum of the internal trim loss of

rectangles E and F, plus the trim loss generated when they were joined.

When the newly generated rectangle G is placed over (cut from) the stock

sheet, an L section is formed as a residual on the stock sheet. If rectangle

61
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

G is a complete rectangle (a rectangle which cannot be used successfully

as a component in a further vertical or horizontal build), then the external

trim loss is the unused area remaining on the stock sheet, as indicated in

figure 5.3.

5.2.1.2.3 Total trim loss

Total trim loss for a complete demand rectangle or complete generated

rectangle is defined as the internal trim loss plus the external trim loss of

that rectangle.

5.2.1.3 Acceptable waste Dercentaaes 18)

As was stated earlier (section 5.2.1, page 58), Wang proposed two

algorithms that are based on her method of rectangle generation. Both

algorithms utilize internal trim loss to evaluate whether a cut is feasible by

comparing it to a parameter R, which represents the maximum acceptable

waste percentage of any generated rectangle produced by the algorithms.

Wang's first algorithm uses a parameter R1 that is measured with respect to

the area of the stock sheet L x W The second algorithm utilizes the

parameter I& that is measured with respect to the area of a rectangle that

was generated with either a horizontal build SH or a vertical build Sv.

5.2.1.4 Wana's two oriainal alaorithms

The method as proposed by Wang will now be described and two

algorithms to implement this method will follow the discussion. Firstly, at

most bi demand rectangles of type ri must be specified with dimensions (4,
q) for each i, where i = 1, 2, 3, ... n and i; is the length and y the width of

type r,. Furthermore, these demand rectangles will be cut from a stock

sheet of length L and width W Wang's method will now start an iterative

building process where each rectangle i is combined horizontally and

vertically with every other rectangle i. This combinatory process will then

62
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

form new rectangles that may contain internal trim loss, which must in tum

also be combined with all the original demand rectangles and the newly

generated rectangles. Only those generated rectangles with an internal trim

loss of less than R.LW will be stored for further consideration, the rest is

discarded. It should be noted that rotated demand rectangles are also

considered in this process, therefore the original demand rectangles are

rotated and these rotated versions are also seen as part of the original

demand rectangles in the building process. The combinatory process

continues until no further rectangles can be generated with horizontal and

vertical builds. The best solution (cutting pattern) for the predetermined Rj

value is then chosen as the generated rectangle with the least total trim loss

(internal + external trim loss).

The two algorithms, as proposed by Wang (Wang, 1983576-577), are

illustrated in figure 5.4 and figure 5.5.

Step 2x4 Compute F(W whichis the set of dlrectangles T satiEfying:
@ T is fonnedby a feasible M t a l orvnticalbuild of two

rectangles fromL&-l) ;
(in) the amountoftrhalossinT doesnot exceed B A W ; and
(mi those rectangles ri a p p e e i n T donotviolate the bound

co- bl, b, ... b,,;
@) ~ e t ~ [~ = L [~ - ~ U fin . Remove any identical cutbng pattem

from L@';

Stcp 3 . I f ~ ~ is nonempty, set k c k+ 1 and go to Step 2. Othemise,

Step4.(a)SetM=k- 1;
@)Choose the rectangle f r o m ~ [~] thathas the d e s t rotaltrhnloss

when placedinthe stock sheet(L x W).

~ i i 5.4: Wangs first algodthm (using 83 I

As is lucidly apparent when comparing the algorithms presented in figures

5.4 and 5.5, the only difference between the two algorithms is that for

63
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

algorithm two, 81 is replaced with R2 in step l.(a) and step 2.(a)(ii) of

algorithm one is replaced in algorithm two by:

(a)(ii) the amount of trim loss in T does not exceed 8 2 . area(T).

Step 2Xa) Cmnpure FM whichis the set of allrectangles T satisfying
.@ T is formed by a feasible h k n t a l o r vettical build of two

rectangles from L@-') ;
(J) the amount oftrhnloss inT doesnot exceed 4 . e r e a ;
(4 those rectangles ri appeatingmT do not violate the bound

constraints bl, b, ... bn;
@) set LM = LItfl U FM . Remove any identical cutting pattern

from LO ;

Step 3 . d k 1 is nonempty, s e t k c k+ 1 and go to Step 2. Otherwise.

Step4<a)SetM=k-1;
@)Choose the recrsngle of LIMl that has the d e s t totaltrhn loss when

placedinthe stock sheet@ x*

Figure 5.5: W&s second algorithm(using&)

The algorithms in figures 5.4 and 5.5 show the iterative process of rectangle

building used by Wang's method. It should be noted, however, that it only

uses a single, predetermined beta value and executes the iterative process

only once with this value. It is up to the user that implements the algorithm

to increment the value of beta (by some chosen value) when an optimal

(section 5.2.1.5, pages 65-66, deals with the optimality condition for the

Wang algorithm) solution is not found with the initial beta, as Wang did not

specify how this value is to be handled. Later in the thesis this problem is

discussed further.

Furthermore, the Wang algorithms (WA) based on Wang's method of

rectangle building are categorized as uninformed search strategies

(breadth-first search) because no information concerning the problem

64
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

domain is considered when solving the cutting problem. The method merely

sequentially generates all possible combinations with horizontal and vertical

builds, and rejects those nodes (rectangles) that do not satisfy both the

feasibility criteria of the problem and the pruning criterion. The pruning

criteria for the two algorithms are based on the values assigned to Rj and

R2. Furthermore, the best solution is found only if the cost of each pruned

away node is higher than the optimum value.

The method used by WA is therefore classified as an uninformed method

although a numerical function is associated with each rectangle. The reason

for this is that the function only prunes away some branches of the search

tree, but it does not direct the search process.

5.2.1.5 Specifvina values for B and o~tirnalitv conditions

The two algorithms as given by Wang are nearly identical except for the two

small differences as noted in section 5.2.1.4 (pages 62-65). For the

purposes of this study, Wang's algorithm 1 will be used as a basis for

further research (as used by Vasko and Daza). Therefore when referring to

Wang's algorithm and R it is assumed that reference is being made to

Wang's algorithm 1 and R1.

In her article Two algorithms for constrained two-dimensional cuffing stock

problems, Wang (Wang, 1983:573-577) does not explicitly specify which

method to use to obtain an initial value for R. Neither does she state how

this value should be handled if an optimal solution is not found using the

initial chosen R value. From the literature, it would seem that many

researchers have adapted a policy of starting with an initial R value of zero

and systematically incrementing the value until an optimal solution is

reached (refer to chapter 6, section 6.5, pages 131-136) for more

information on initial R values and incrementing R values).

65
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

-- -- - -

Wang (Wang, 1983:578) proves that the optimality condition for algorithm

one can be written as shown in the following theorem:

Theorem TI: If the total trim loss X of the pattern T obtained from

algorithm one with a fixed value of K satisfies X I 8 . t W then T is an

optimal pattern.

where L and W represents the stock sheet length and stock sheet width

respectively and the pattern T is the pattern with the least total trim loss

found by algorithm one. It should be noted that Wang did not inciude this

optimality condition in the two algorithms in figures 5.4 or 5.5. It is up to the

user that implements these algorithms to determine whether a solution

found by the algorithm using an initial beta value is optimal (with the

optimality condition stated above), and if it is not, the beta value should be

increased and the process repeated until an optimal value is found.

Sample C2DGC problems will now be solved with the Wang method to

graphically illustrate how the rectangle building process functions.

5.2.1.6 Solvina s a m ~ l e C2DGC ~rob lem instances with Wands method

The process of solving a C2DGC problem, with the use of artificial

intelligence search methods and an algorithm based on Wang's method,

requires the integration of these two concepts. Firstly, artificial intelligence

search methods offer a means by which the rectangle building process can

be represented in a formal tree search structure. Secondly, the method

conceived by Wang then provides the mechanism required to generate the

nodes that form the search tree.

To better grasp the combinatorial process involved in the Wang method,

illustrations are given of a breadth-first search representation of the Wang

method utilizing horizontal and vertical builds to generate new rectangles,

and then Wang's method is implemented using the A* method.

66
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

5.2.1.6.1 lm~lementina Wanq's method usinq breadth-first search

By implementing the Wang method using a breadth-first search5 method,

an algorithm is created that also expands nodes on a level-by-level

fashion, but where some nodes are not considered for further expansion

due to its excessive internal trim loss (in other words they are pruned). The

value of beta (8) as defined by the Wang method, is used to determine

whether a node is to be expanded further by determining if the internal trim

loss of the node is less than or equal to stock sheet length @).stock sheet

width (wj.8.

[problem 1 Stock plate lengm I Demand rectangles' IengChW, width (W) 1

Two problem instances will be solved for the purposes of demonstrating

how breadth-first search combined with the Wang algorithm functions. The

first is a very small instance named EPI introduced in table 5.1. Because

of its small size, all possible feasible builds that can be obtained with the

Wang method using breadth-first search will be shown (figure 5.7). The

second problem, P5 as shown in table 5.1, is a slightly larger problem

instance where all possible builds cannot be shown due to paper size

constraints (these two problem instances are also shown in the table

extract above).

Figure 5.6 is a partial representation of how feasible builds for problem

EPI is obtained by the Wang rectangle building process with a beta value

Refer to chapter 3, section 3.3.1, pages 21-24
67

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

of 0.24. The least total trim loss pattern for this problem contains a total

trim loss of 6, and only when the value of beta reaches 0.24 can it be

proven that this is the optimal solution (6 15.5.(0.24)) (amording to theorem TI).

As figure 5.6 demonstrates:

the initial step taken by the algorithm is to generate patterns using

only the basic demand rectangles as well as their rotated

equivalents (builds 1-3, in part [a], figure 5.6). These three initial

builds are located on the first level of the breath-first search tree;

Now, the first step is to start combining rectangle number 1, as

indicated in part [a], figure 5.6, with itself (by means of horizontal

and vertical builds) if possible. A horizontal build with itself is not

possible, as the new build would exceed the stock sheet length,

therefore the fourth build is a vertical combination of build number 1

with itself (build 4, part [a], figure 5.6);

Next, build number 1 must be combined horizontally and vertically, if

possible, with build 2. Horizontal and vertical builds between builds 1

and 2 are possible, therefore builds 5 (part [b], figure 5.6) and 6 (part

[c], figure 5.6) are generated;

Next, build number 1 must be combined horizontally and vertically, if

possible, with build 3. Horizontal and vertical builds between builds 1

and 3 are possible, therefore builds 7 (part [dl, figure 5.6) and 8 (part

[el, figure 5.6) are generated;

68
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

Figutn Sd: Parlid representation of aU storednodes for example problemEP1 using breadth-fust search combined& Wangs nlgorithm(0 = 0.24)

Next, build number 1 must be combined horizontally and vertically, if

possible, with build 4. Neither a horizontal nor vertical build can be

made between builds 1 and 4. In both instances the stock sheet

dimensions would be exceeded;

Next, build number 1 must be combined horizontally and vertically, if

possible, with build 5. A horizontal build is not possible, because the

stock sheet length would be exceeded. A vertical build is possible,

but if it is made, the resulting build would contain an internal trim

loss value of 7. This is not allowed by the beta value, therefore the

build is not stored;

Next, build number 1 must be combined horizontally and vertically, if

possible, with build 6. Neither a horizontal nor vertical build can be

made between builds 1 and 6. In both instances the stock sheet

dimensions would be exceeded;

Next, build number 1 must be combined horizontally and vertically, if

possible, with build 7. A horizontal build is not possible, because the

stock sheet length would be exceeded. A vertical build is possible,

and build number 9 (part [q, figure 5.6) is generated and stored;

Next, build number 1 must be combined horizontally and vertically, if

possible, with build 8. A horizontal build is not possible, because the

stock sheet length would be exceeded. A vertical build is possible,

and build number 10 (part [g], figure 5.6) is generated and stored;

Next, build number 1 must be combined horizontally and vertically, if

possible, with build 9. Neither a horizontal nor vertical build can be

made between builds 1 and 9. In both instances the stock sheet

dimensions would be exceeded;

Next, build number 4 must be combined horizontally and vertically, if

possible, with build 10. Neither a horizontal nor vertical build can be

made between builds 1 and 10. In both instances the stock sheet

dimensions would be exceeded;

At this time, the end of the list of stored nodes has been reached,

now to continue the process, all stored nodes will be combined with

build number 2. Therefore, build number 2 must be combined

70
Implementing dficial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

horizontally and vertically, if possible, with build 1. Horizontal and

vertical builds between builds 2 and 1 are possible, therefore builds

11 (part [h], figure 5.6) and 12 (part [i], figure 5.6) are generated;

and

This process continues until all stored nodes have been wmbined,

if possible, with themselves as well as each other.

Figure 5.6 shows that the sequence of node generation is accomplished by

always combining the node that has to be expanded next with itself as well

as all other currently stored nodes. This process will continue until the final

stored node must be combined with itself as well as all the other stored

nodes, but no feasible build is possible.

Figure 5.7 illustrates all stored builds that are generated by the Wang

method wmbined with a breadth-first search. They are also shown in the

order in which they are generated.

7 1
Implementing artificial intelligence search methods to solve constrained two-
dimensional guiliotine-cut cutting stock problems

By examining the total trim loss of each complete build (a build which

cannot be used successfully as a component in a further vertical or

horizontal build because then the resulting build would exceed either the

length or width of the stock sheet, or both) it is evident that several optimal

solutions are found by the Wang method for this problem instance.

Reasons for this are either unique placements of the original demand

rectangles on the stock sheet, or symmetrical duplicate patterns. An

example of an optimal solution for problem EPI is:

with a total trim loss of 6, which is less than or equal to rW.R

((5).(5).(0.24) = 6), and according to theorem T I (section 5.2.1.5, page 66)

the build shown above is then an optimal solution.

An important aspect that is illustrated by figure 5.7, which might not be

obvious at first glance, is that the Wang method refrains from generating

non-guillotine cutting patterns. For instance, the pattern shown in figure 5.8

could be generated for problem EPI and is one that contains no trim loss

(in other words it represents the best possible layout for a non-guillotine

cutting pattern), but it is not a guillotine pattern. This pattern is therefore

not generated by the Wang method.

F&M 58: Wands method does not
g e n d e ncm-@dotine cuts

72
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

Figure 5.9 illustrates the initial steps when solving problem instance P5. As

figure 5.9 demonstrates, the first step taken by the algorithm is to generate

initial patterns using only the basic demand rectangles as well as their

rotated equivalents. Figure 5.9 is a partially generated breadth-first search

tree, with nodes that are pruned if the internal trim loss of the node is less

than or equal to stock sheet length @).stock sheet width (W.R. It should

be noted though that because of paper-size constraints the entire second

and third level of the search tree could not be displayed in figure 5.9. This

is why the children of.node 10 are numbered n+l, n+2, ..., n+5, where n is

equal tc the number of the final build of level 2. Furthermore, shaded areas

within builds indicate the internal trim loss of those builds, and builds with

lines drawn underneath them, are not expanded further because their

internal trim losses exceed that allowed by beta.

These first patterns (patterns 1 to 6) also include the rotated equivalents of

the original demand rectangles. It should be noted though that if an initial

demand rectangle is square it has the exact same length and width

(demand rectangles 2 and 4), then only one pattern is created, because if

the pattern is rotated its dimensions stay exactly the same. This simple

addition to the algorithm prevents the generation of costly and

unnecessary duplicate sub-trees in the search space. Equally important is

to note that only the initial demand rectangles are rotated in the rectangle

generation process. Rectangles containing more than one demand

rectangle is not explicitly rotated because rotated versions of these

rectangles will be created when the rotated original demand rectangles are

combined. As an example, observe in figure 5.9 that rectangle number 9

originates from the horizontal combination of rectangles 1 and 4. A rotated

equivalent to rectangle 9 will be created once rectangles 2 and 5 are

vertically combined, therefore eliminating the need to explicitly rotated

rectangle 9. In other words, the process of rectangle combination

considers both horizontal and vertical builds, as well as the rotation of

original demand rectangles (implying the rotation of all other, more

complex builds).

73
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

I F i g m 5.9: Partial representation of generatednodes for problem instance PS
using brsadth-fist search and Wanis algorithm 03 = 0.04 I

By completing the iterative process as described in figure 5.4 (Wang's

algorithm I), the optimal solution for any given C2DGC problem will always

be found, given a large enough value for beta, enough time and computer

memory (Wang, 1983). It is, however, possible to enhance the

performance of the Wang method by using an informed search method

(such as the A* search method) that will guide the search more effectively

and efficiently through the search space.

5.2.2 A computational improvement to Wana's alaorithm one

Vasko (Vasko, 1989:109-115) studied the two algorithms as proposed by

Wang, and made some computational improvements to the first of the two

algorithms. He based this improvement on the ideas of horizontal and

vertical completeness of cutting patterns, as well as dynamically diminishing

the value of R. These three concepts will now be defined.

5.2.2.1 Horizontal completeness

A rectangle, resulting from successive vertical andlor horizontal builds,

which cannot be used successfully as a component in a horizontal build

because combining it with any fi (or rotated fi) would result in a rectangle

with length exceeding t (stock sheet length) is said to be horizontally

complete. Once a rectangle has been identified as horizontally complete,

then it is no longer considered as a candidate component for horizontal

builds. Also, once a rectangle is known to be horizontally complete, then its

length is increased to t and its internal trim loss is recalculated.

5.2.2.2 Vertical completeness

A rectangle, resulting from successive vertical and/or horizontal builds,

which cannot be used successfully as a component in a vertical build

because combining it with any fi (or rotated r;) would result in a rectangle

with width exceeding W(stock sheet width) is said to be vertically complete.

75
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

Once a rectangle has been identified as vertically complete, then it is no

longer considered as a candidate component for vertical builds. Also, once

a rectangle is known to be vertically complete, then its width is increased to

Wand its internal trim loss is recalculated.

5.2.2.3 Dvnamicallv diminishina the I3 value

Before a rectangle enters pk) (refer to figure 5.4, section 5.2.1.4, pages 62-

65) it is tested for both horizontal and vertical completeness. If a rectangle

is complete (both horizontally and vertically) its length is increased to L, its

width is increased to w(and its internal trim loss (which is equal to its total

trim loss because the rectangle is the same size as the stock sheet) is

recalculated. If this internal trim loss is less than or equal to R.WL (Wang's

optimality condition, theorem T I) the build is stored in fik) , otherwise it is

not. Its internal trim loss is then compared to the best total trim loss known.

If it is less than the best known total trim loss, the value of R is recalculated

according to this new best total trim loss. It should be noted that when using

an algorithm based on the branch-and-bound search method that utilizes

the dynamic programming principle (chapter 4, section 4.2.8, pages 48-49)

or algorithms based on methods derived from it (for instance the A' search

method as discussed in chapter 4, section 4.2.9, pages 50-54), this

dynamic diminishing of the beta value is accomplished implicitly. The

reason for this is that an algorithm based on the branch-and-bound method

utilizing the dynamic programming principle will never expand a rectangle

with an internal trim loss that is greater than the total trim loss of the best

known total trim loss rectangle.

The following is a description of the enhancements that Vasko made to

Wang's algorithm one (figure 5.4, section 5.2.1.4, page 63):

> When defining L(O) each f i and rotated r;. is checked for both vertical

and horizontal completeness. If a rectangle is either horizontally or

vertically complete (or both), then its length or width dimension (or

76
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

both dimensions) as well as its internal trim loss are appropriately

adjusted. If a horizontally complete rectangle, vertically complete

rectangle or a rectangle that is both horizontally and vertically has

an internal trim loss greater than R.WL (Wang's optimality

condition, theorem TI), then it is not included in L"); otherwise it is

included.

In Step 2a6, if a rectangle T is horizontally (vertically) complete,

then it is not considered during the horizontal (vertical) building

process.

In Step 2a5, once a horizontal (veitical) rectangle has been built, as

part of the process of determining if a rectangle T should be

included in Pk), a check for horizontal (vertical) completeness is

made. If the rectangle just built is horizontally (vertically) complete,

then its length (width) dimension and internal trim loss are adjusted

appropriately. If the newly calculated internal trim loss of rectangle

T is less than or equal to R.WL the rectangle is included in Pk),
otherwise it is not.

If a rectangle T should enter Pk) and it is complete (both

horizontally and vertically), then its length and width dimension as

well as its internal trim loss are adjusted appropriately. If the newly

calculated internal trim loss of rectangle T is less than or equal to

R.WL the rectangle is included in F(~) , otherwise it is not. If it is

entered into F") the internal trim loss of T is compared to the best

total trim loss known; R is updated if the internal trim loss is less

than the best total trim loss.

5.2.3 The modified Wanq method WAM)

According to Daza a (Daza a, 1995:635), Oliveira and Ferreira (1990)

studied Wang's method and resulting algorithms extensively and they

developed an improvement on her method. It is denoted as the WAM

method, which is an abbreviation for the phrase Wang's modified method.

Refer to Wang's algorithm one, Step 2% section 5.2.1.4, figwe 5.4, page 63
77

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

The WAM method, according to Daza (Daza a, 1995:635), requires

that for each newly generated rectangle three feasibility criteria be

considered:

Rectangle dimensions must be less than or equal to the stock sheet

dimensions;

The estimated total trim loss (internal trim loss + estimated external trim

loss) must be less than a certain percentage of the stock sheet's area.

The concepts of estimated external trim loss and estimated total trim

!oss are described in sections 5.2.3.1.1 (pages 78-83) and 5.2.3.1.2

(page 87) respectively; and

The number of demand rectangles of a specific type cut from the sheet

must be less than or equal to its upper bound.

These three criteria closely resemble those listed for Wang's original method,

but the second criterion differs slightly. The WAM method now requires

internal as well as estimated external trim loss (instead of only internal trim

loss as for WA) to be taken into account when evaluating the criteria.

5.2.3.1 Trim loss

Internal, external and total trim loss were discussed in sections 5.2.1.2.1 -

5.2.1.2.3 (pages 60-62) as it is used extensively by WA as well as by the

WAM method. Estimated external trim loss and estimated total trim loss, on

the other hand, are new concepts introduced and used by the WAM

method.

5.2.3.1.1 Estimated external trim loss

To grasp the concept of estimated external trim loss, consider figure 5.10.

In this instance, rectangles A and B and rectangles C and D are combined

to form E and F respectively. Subsequently, joining E and F generates

rectangle G. From the previous definition of internal trim loss, it is evident

78
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

that the shaded sections in rectangles E and F represent the internal trim

loss of these rectangles respectively. Rectangle G, however, has its own

internal trim loss, which is the sum of the internal trim loss of rectangles E

and F, plus the trim loss generated when they were joined.

Rg.n 5.l& Estimated extemal tdm loss, generated by placing
rectangles over the L section

When the newly generated rectangle G is placed over the stock sheet, an

L section is fonned as a residual on the stock sheet. At this point in the

rectangle building process, it is evident that remaining available demand

rectangles must be used to fill the area shown as the L section in figure

5.10. If this area could be filled exactly with the remaining demand

rectangles leaving no extra trim loss, the situation would have been ideal,
79

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

but unfortunately this does not happen often. Therefore, a method is

needed that can estimate the amount of trim loss that will be generated

when remaining demand rectangles are placed over the L section. Since

we are working with guillotine cuts this L section can be viewed in different

ways. According to figure 5.10 one way is to consider it to be a

combination of two rectangles with dimensions (c x b) and (d - b) x (c - a),

and another is by viewing it as a combination of two rectangles with

dimensions (a x b) and ((c - a) x d). These two views are illustrated in

figure 5.1 1.

Piece (c xb)

Piece (ax b)

j Piece

I &me 5.11 :Dividingtbe L sectioninto different views I

80
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

Each rectangle (c x b), (d - b) x (c - a), (a x b) and ((c - a) x d) may be cut

according to a certain pattern and this process generates some internal

and external trim loss. An estimate of the total trim loss for such rectangles

is therefore required, and consequently a method to accomplish this is

discussed.

Oliveira and Ferreira (1990) proposed a method of estimating this trim

loss. Firstly, the L section is divided (as shown in figure 5.11) and by using

the exact method as prescribed by Gilmore and Gomory (1966). rectangles

are theoretically assigned over the divided L section. This exact process

involves solving an unbounded two-dimensional knapsack problem

(section 5.2.3.1 .I .I, pages 83-87, explains this problem and process)

once, before the rectangle building process starts, for the entire stock

sheet dimension (dw. This unbounded knapsack is solved using a

dynamic programming procedure, therefore every possible dimension

included within the larger stock sheet dimension will have an internal trim

loss value associated to it when the procedure finishes. These values are

then stored in a lookup table and used as estimated external trim loss for

any given dimension within the stock sheet. These values are

underestimates of the exact external trim loss that could be incurred,

because of the relaxation (the upper bound bi on the maximum number of

demand rectangles for each type ri is ignored) of the model that was used.

If T,,i denotes the estimated internal trim loss on node n in the search

space when rectangles are assigned over piece i, and additionally it is

denoted that, according to figure 5.1 1, (which is a typical representation of

a node n) i has been defined to be the following sequence of pieces7:

> i = 1, the piece of dimensions c x b;

> i = 2, the piece of dimensions (d- b) x (c - a);

> i = 3, the piece of dimensions a x b; and

> i = 4, the piece of dimensions (c - a) x d.

8 1
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

Then the value of h(n) in function 5.1 represents the estimated trim loss of

node n in the search space:

According to Daza et (Daza a, 1995:639), however, by using small

examples it can be shown that function 5.1 is neither monotones nor

admissible6. This situation may be improved upon by taking future trim loss

into account, with the purpose of diminishing the value of h(n). The reason

for-this is that, because function 5.1 is not admissible, it yields values for

h(n) that are greater than the exact ones (overestimatesg). To satisfy the

admissibility condition, the following function is defined by :

where Tn5 is the unconstrained trim loss of the rectangle in the upper right

hand comer of the stock sheet of node n. In reference to figure 5.10 (page

79), this is the rectangle of dimensions b x (c - a). Note that as a condition

h2(n) sh(n) must be valid, and that if Tn5 zTnl + TM then the condition

hz(n) = 0 is satisfied. On the other hand, if Tn5 < Tnl + TM, two possibilities

exist. The first possibility is that h(n) = T,, + Tn:! and h2(n) = Tnl + TM - Tn5

also satisfies the condition because TM sTn2 + Tn5. Secondly, if h(n) = Td

+ TM and hz(n) = T ~ I + TM - Tn5, then similarly we have Tnl fln3 + Tfi.

Function 5.2 is more effective than function 5.1, but Daza et (Daza a,
1995:639-641) proves that in order to obtain monotonicity, the function

should be rewritten as:

Max{T,,, + T, - T,, , 0) if h3 (n)is monotone,
h3 fn) =

gfn) + hfni) - gfnj) in other cases (5.3)

* Refer to chapter 4, sections 4.2.9.1 and 4.2.9.2, pages 50-51, for further information prrtaining to
admissibility and monotonicty

Refer to chapter 4, sections 4.2.9.4 and 4.2.9.5, pages 51-53, for further information pertaining to
underestimating and overestimating the value of h(n)

82
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

Where node n is obtained from a horizontal or vertical build between nodes

ni and nj. Note that the admissibility of this function is a direct consequence

of its monotonicity. A generalization of the monotonicity requirement for

C2DGC problems is represented by the following inequality:

where c(ni, ni) is the additional trim loss generated by the horizontal or

vertical build resulting from the combination of nodes ni and n, so that we

can write thn! g(n) = g(ni) + g(n,) A c(ni, nj). Refer to section 42.9.2, pages

51-52, for further information pertaining the cost function c(ni,ni).

5.2.3.1.1.1 Unbounded twodimensional kna~sacks

As stated above, the unbounded two-dimensional knapsack problem is

solved by the exact method as described by Gilmore and Gomory (1966).

Gilmore and Gomory (Gilmore & Gomory, 1966:1045) give a broad

definition of problems falling in the knapsack category:

'Knapsack problems can arise directly in two ways. Firstly, a portion of

space is being packed with objects, each having a value, and the

knapsack problem is then to find the most valuable packing.

Alternatively and equivalently, if a portion of space is being cut into

pieces of different values, the knapsack problem is to find the most

valuable way of cutting."

An example of the first set of problems would be the packing of

containers in one, two or three dimensions. An example of the second set

of knapsack problems would be the cutting of glass or any other material

from a larger stock sheet or multiple stock sheets, also in one, two or

three dimensions. The difference between the bounded and the

unbounded problems are that with bounded problem instances only a

certain number of each demand rectangle is required, and with

83
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

unbounded problem instances an unlimited number of each demand

rectangle is required. Gilmore and Gomory (1966:1046) define a so-called

two-dimensional knapsack function G as follows:

"One is given rectangles of positive dimensions (4 , ~) ~ i = 1, ..., rn that

have nonnegative values 111, ..., II, associated with them; then G(x,y) is

the maximum of g Z 1 + ... + II,Jm, where Z1, ..., Z, are nonnegative

integers such that there exists a way of dividing a rectangle (x,y) into Zi

rectangles (t , ~) , for i = 1, ..., rn."

The calculation of G(x,y) for given x and y is not an easy task. Therefore,

for problem instances utilizing the guillotine cutting constraint, Gilmore

and Gomory (Gilmore & Gomory, 1966:1046) defines another knapsack

function F similar to G.

"F is defined like G except that in dividing a rectangle (x,y) into Zi

rectangles (6 , ~) for i = 1, ..., rn, the following restriction is imposed: The

division must take place by a series of straight lines that extend from

one edge of a stock sheet to the opposite edge, parallel to the other two

edges; we will call them 'guillotine cuts'."

Furthermore, they prove a functional theorem for such knapsack functions

F. From the discussion above it is clear that when the rectangles (6 , ~) of

worths IIi, i = 1, ..., rn, are given, the knapsack function F(x,y) defined

from them satisfies the following three sets of inequalities:

Inequalities (5.5) and (5.7) speak for themselves. The inequalities (5.6)

are a consequence of the permitted method of cutting a large rectangle

84
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

(x,y) into the smaller rectangles (kwi) F is not the only function to satisfy

these inequalities, although it is the minimal function in the sense of the

following theorem.

Theorem 12: F is a knapsack function defined from the rectangles

(4 , ~) with values g, i = 1, ..., m, if and only if F satisfies (5.5), (5.6),

(5.7) and (5.8), and (5.8) is: For any G satisfying (5.5) to (5.7), F(x,y) I

G(x,y) for all x and y.

An efficient method for computing the two-dimensional knapsack functi~n

F, according to Gilmore and Gomory (Gilmore & Gomory, 1966:1051) is

by a modified dynamic programming technique that is based upon the

functional equation:

F&Y) = maxifo(x,y), F(x7,y) + F(x2,y), F(x,yl) + F(X,YZ); (5.9)

X>=XI+X~ OCX~<=X~, p=y,+y2, and O<y,c=yz)

where Fo(x,y) = max{O,Il; bc=x and yc=y}.

They then prove the following theorem to justify the above-mentioned

method.

Theorem T3: The functional equation (5.9) is satisfied only by the

knapsack function.

Using these fundamental theorems and refining them computationally,

Gilmore and Gomory (Gilmore & Gomory, 1966:1067-1068) eventually

propose an algorithm they call the 'Basic Two-Dimensional Step-Off

Algorithm'. It can be divided into four major parts, and in part I only

general initializations take place. In parts II and Ill it is assumed that a

general step-off point has been defined. In part II step-offs from (xayz)

take place along the line y = y2 while in part Ill step-offs take place

along the line x = x2, where the former step-off are taken first. Finally in

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

part IV a new step-off point is determined in the order discussed above.

Recall that Fo is defined in equation 5.9:

I. Let F(x, y) = Fo(x, y) for O<=x<=L and O<=y<=W Let /*(Ii, wi) = li and

w*(li, wi) = wi for i=l, . . . ,m, and let l*(O,O) = w*(O,O) = 0. Let x2 = y2

= I and go to step 11. 1;

11. 1. Let xl = 1;

2. If x~+x~<=L then let V=F*(xf,yj + F8(x2+& and go to step 11.3.

Otherwise go to step Ill. 1;

3. If V>F*(x,+x2, y2) then let F*(xl+xz y2)=V, let I*(xf+x2,y2)=xl, and

let w*(xl+x~,y2)=y2 and go to step 11.4. If V=F*(xf+xz,yz) then let

l*(xl+x~,yz)=xl and go to 11.2. Otherwise go to step 111.1.

4. If xl<x2 then let xl=xl+l and go to step 11.2. Otherwise go to step

111.1;

111. 1. Let y1 = I ;

2. If yf+y2<=W then let V=F*(xz,yl) + F*(xz+yT) and go to step

111.3. Otherwise go to step IV. 1;

3. If V>F*(x2,yr+y2) then let F*(x2,y,+yz)=V, let w*(x2,yl+y2)=y1,

and let I * (x~ ,Y~+Y~)=x~ and go to step 111.4. If V=F*(xz,yf+y2) then

let w*(x2,yl+y2)=y and go to 111.4. Otherwise go to step 111.4;

4. If y l ~ y 2 then let yl=yl+l and go to step 111.2. Otherwise go to

step IV. I ;

IV. 1. If x2<L then let x2=~2+1 and go to step 11.1. Otherwise go to step

111.2;

2. If y2cW then let y2=y2+1 and x2=1 and go to step 11. I. Otherwise

stop.

Finally, the following implication of the Gilmore and Gomory method for

computing knapsack functions is worthy of notification. Since the

knapsack function considered by Gilmore and Gomory differ from the

C2DGC problem considered in this thesis and more specifically from the

model treated by Wang, it is interesting that since they treat the

86
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

unconstrained problem, they find knapsack function values F(x,y) for the

relevant (x,y) points on the grid by solving a relaxation of the C2DGC

problem. As such, the solutions give underestimates of the (internal) trim

loss. These values are then used to compute estimated external trim loss.

5.2.3.1.2 Estimated total trim loss

Estimated total trim loss is defined as the sum of the internal and

estimated external trim loss for any given original demand rectangle or

generated rectangle. -

5.2.3.2 Solvinq s a m ~ l e C2DGC ~rob lems with the modified Wang

method WAM) using the A* search method

Oliveira and Ferreira (1990) studied the Wang method (WA) extensively

and developed an improved version of the method. The new method was

called the modified Wang method (WAM) and introduced the idea of using

future information concerning the state space to predict which partial cuts

would potentially yield better results than other partial cuts when evaluated

further. The result of their study was the introduction of estimated external

trim loss, calculated by solving an unconstrained two-dimensional knapsack

problem as described in section 5.2.3.1.1.1 (pages 83-87). The heuristic

evaluation function 5.1 (section 5.2.3.1.1, page 81) as proposed by Oliveira

and Ferreira (Oliveira and Ferreira, 1990:257-259), can be used to calculate

the estimated external trim loss (h(n)). Unfortunately, this evaluation

function is neither admissible nor monotonelo. Therefore, it is suggested

that the evaluation function 5.3 (section 5.2.3.1.1, page 82) as proposed by

Daza et (Daza et, 1995:639) be used for the calculation of the

estimated external trim loss.

As described in chapter 4, the A* search method uses a heuristic function to

evaluate the cost of each node as it is constructed during the search

'O Refer to section 5.2.3.1.1, pages 78-83, for a detailed discussion of the evaluation function - -
87

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

process, and if the cost of the node is less than a certain set cost, the node

will be expanded and stored, otherwise it will be not be expanded or stored.

The A* method's heuristic function (refer to chapter 4, section 4.2.9, pages

50-54) requires two parameters to determine whether a node should be

evaluated or not, and can be written as:

where g(n) is the cost of the node up to the current state, and h(n) is an

estimated cost thst may be incurred if !he node is part of a complete cutting

pattern for the sheet. By adding these two values, a node cost, f(n), is

calculated.

To use the A* method employing the modified Wang method's pruning

criteria, the value of g(n) will be set to the internal trim loss of the current

node, and the value of h(n) will be set to the estimated external trim loss as

shown in evaluation function 5.3 (section 5.2.3.1.1, page 82). This leads to

a situation where some domain specific knowledge as well as future

information is used to evaluate the current node. Furthermore, throughout

the process of rectangle combination, the three feasibility criteria, as

described in section 5.2.3 (page 78), are constantly kept under

consideration.

When the pruning criterion as presented by Wang is employed with a B

value of 0.00 for problem P5, then the pruning value is:

&.stock length.stock width = (0.00).(8).(4) = 0

With a pruning value of 0, all nodes in the search space with an estimated

total trim loss (internal trim loss plus estimated external trim loss) of more

than 0 are not considered for further evaluation.

88
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

a
3 - ~ o d e numbers

-Internal plus estimated
external ttim loss

Ffgrus 5J2: P d a l representation of generatednodes for probleminstance P5
using A* search and the modified Wang algorithm (R - 0.00) I

Figure 5.12 shows the partially developed search tree with estimated total

trim loss associated with each node shown in the boxes next to the node

numbers. These values are calculated using evaluation function f(n) = g(n)

+ h(n), and the value of R is chosen as 0.00. The value of h(n) is calculated

using the evaluation function 5.3 (section 5.2.3.1.1, page 82). As was

discussed in section 5.2.1 (page 58), the method employed by the Wang

algorithms P A) is an uninformed method that utilized a pruning criterion.

The WAM method, on the other hand, can be classified as an informed

method because information about the search space is used to guide the

sezrch. This domain-specific knowledge is represented in the form of

estimated external trim loss and can be calculated as illustrated in section

5.2.3.1.1, pages 78-83. Figure 5.13 represents the WAM algorithm:

1 Stepl.(a)Choose aoaiueforB.05R5 1;
@)Define LIq = F@ = {rt.rp, ... ,rn}. and set k = 1;

Step 2.(a) Compute P) wbichis the set of allrectangles T satisfying:
(I) T is formed b y a feasible horizontal or vettical build of two

rectangles f r o m ~ (~ - ~) ;
(k) the amountofedmatedtotalttimlossofT doesnot exceedBLW
(iii those rectengles ri appe-inT do not violate the bound

from L'U ;

Step 3 1 f f l is nonempty, s e t k c k + 1 and go to Step 2. Otherwise,

Step4.(a)SetM-k- 1;
@)Choose the reetsngle ofL(W thathas the smallesttotalCdmloss when

placedinthe stock sheet@ xW')

I F i i 5.13: The modified Wang algorithm I
- - -

5.3 Nonexact methods to solve the CZDGC ~roblem

As was stated in chapter 1, section 1.2.2 (pages 4-5), non-exact methods to

solve stock cutting problems, including the C2DGC problem, exist in the form

of heuristic search methods such as greedy searches, beam searches, depth-

90
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

limited searches and hill-climbing searches. These search methods can be

combined with the Wang and modified Wang methods, but it yields algorithms

that are not guaranteed to find the optimal solution for any given problem

instance. This does not mean that non-exact algorithms are of no use. On the

contrary, some of these algorithms will be implemented and used to calculate

upper bounds for beta (R). Refer to chapter 6, section 6.4.2 (pages 129-131)

for numerical results obtained from using beam search to generate upper

bounds for R and defining a waste gap.

5.4 Exact methods' alaorithmic properties and considerations

One of the advantages of using non-exact methods to derive problem solving

algorithms, is that in most cases it executes and finds solutions faster than

exact methods. Therefore some industries, where raw materials are cheap

and time is a more important resource, will prefer to use non-exact algorithms

that do not necessarily find optimal solutions but do find acceptable solutions

fast.

Exact algorithms, on the other hand, will usually spend more time than non-

exact ones when solving a given problem instance, but the quality of the

solution will be better. For this reason, and in the interest of scientific

experimentation, exact methods and algorithms are preferred for this study.

As was stated in section 5.2 (page 57), the Wang and modified Wang

methods will be used as the basic methods from which enhanced algorithms

will be derived in this thesis. After completing a theoretical study of the Wang

and modified Wang methods, a few problems presented itself, as indicated

below.

5.4.1 Problems with the Wana method

As was stated in section 5.2.1.4 (pages 62-65), algorithms derived from the

Wang method are uninformed, because it only prunes certain areas of the

91
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

search space, with no heuristic function that leads the search in a certain

direction. This is the first major drawback of the Wang method. Secondly,

Wang did not define a strategy for the handling of the beta value. Neither in

terms of calculating an initial value for beta nor for the increase of the beta

value when an optimal solution was not fwnd by the algorithm with the initial

beta value. Lastly, algorithms based on the Wang method generate great

amounts of data in the rectangle building process, and the inherent

information in this data is mostly ignored and not utilized.

5.4.2 Problems with the WAM method .

To remedy the fact that the Wang method is an uninformed one, Oliveira and

Ferreira (1990) devised the modified Wang method (WAM). The WAM

method utilizes a heuristic function (see section 5.2.3, pages 77-87) that

guides the search process and this may yield computational improvements

over the Wang method as were demonstrated by using example instances

by Oliveira and Ferreira (Oliveira & Ferreira, 1989:260-265). The heuristic

function uses lower bounds that represent underestimates of external trim

loss. These are calculated once at the beginning of the solving process.

These bounds are calculated using Gilmore and Gomory's unbounded two-

dimensional knapsack function (refer to section 5.2.3.1 .I .I, pages 83-87).

The problem is that these bounds are not tight enough, causing the algorithm

to underestimate the value of h(n) significantly, therefore generating more

nodes in the process than a more informed heuristic would. Secondly, the

lack of a good strategy to handle the value of beta still remains a problem as

for the Wang method. Lastly, for small textbook problems, the calculation of

lookup tables for the lower bounds using the unbounded two-dimensional

knapsack function is feasible. Unfortunately though, for larger industry sized

problems, the calculation of these lower bounds becomes tedious and a

time-consuming process (refer to chapter 7, section 7.2.8, pages 171-178).

The problems mentioned in sections 5.4.1 and 5.4.2 lead the author to believe

that there is still much opportunity to enhance these methods and the

92
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

algorithms derived from it. Therefore, an effort will be made to investigate the

following aspects:

9 lower bounds as it is used by the modified Wang method. Sharper

lwe r bounds are needed and this should lead to faster execution times

for algorithms derived from the WAM method;

9 the use of non-exact methods to generate upper bounds;

9 the use of information contained in the data generated by the building

process involved in the Wang and modified Wang method's algorithms.

It was observed that the alsori:hms prcduce a grest deal of data, but

most of it is discarded and not used by the algorithms. Firstly, the

author proposes the use of this data to generate upper bounds for the

problem instance. Secondly these upper bounds can be used to

manage the value of beta by defining a waste gap;

> strategies to handle the value of beta, as this is a problem for both the

Wang and modified Wang methods; and

> lower bound calculation and lookup table generation for larger,

industry-sized problems. For larger problems the lower bound

calculation process becomes tedious and time-consuming.

5.5 Summary

Chapter 5 concluded the discussion on existing exact and non-exact problem

solving methods for the C2DGC problem. Furthermore, it postulated that

inefficiencies still exist within these existing methods (section 5.4, pages 90-

93). Chapter 6 will delve deeper into these issues by presenting algorithmic

modifications and additions, most of which is proposed by the author, to

enhance the performance of the existing algorithms.

93
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

CHAPTER 6: Alaorithmic enhancements

6.1 Introduction

The Wang (chapter 5, section 5.2.1, pages 58-75) and modified Wang

(chapter 5, section 5.2.3, pages 77-87) methods are basically enumeration

methods that generate cutting patterns by means of successive horizontal and

vertical builds. These methods also use a pruning criterion, which allows only

builds containing less than a certain amount of trim loss to be stored, and the

rest is discaidecl. This pr~ning criterion utilizes a value ca!led beta (R), as 3

proportion parameter, from which an upper bound on the amount of trim loss

that is allowed for builds is calculated. Therefore, upper bounds play an

important role in the Wang and modified Wang methods. Usually, algorithms

based on these methods will start with a beta value equal to 0.00 and if the

optimal solution is not found using this initial value, beta is increased by an

arbitrary value (usually 0.01). For many problems 0.00 is not a suitable initial

value for beta, and for problems requiring a large value of beta to reach an

optimal solution, the arbitrary increase of 0.01 for the value of beta is arguably

not the best strategy. Therefore, it is obvious that an initial lower bound on the

value of beta would also be useful, as well as a strategy to manage the value

of beta.

Furthermore, the modified Wang method relies heavily on lower bounds as

produced by Gilmore and Gomory's unbounded two-dimensional knapsack

function. These lower bounds are mostly not sharp enough, and for this

reason an improvement to the lower bounds may expedite the solution

process.

This chapter deals with certain algorithmic enhancements that can be made to

the existing algorithms derived from the Wang and modified Wang methods.

Section 6.2 will describe optimization techniques that can be applied to the

existing algorithms to increase performance. Section 6.3 describes a method

devised by the author to sharpen the underestimates as given by the

94
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

unbounded two-dimensional knapsack, which is used by the modified Wang

method. Section 6.4 describes a method devised by the author to generate

upper bounds using data generated by the Wang and modified Wang

methods, and indicates how these upper bounds can be used to manage the

value of beta. Furthermore, section 6.4 describes a beam search method to

also calculate upper bounds. Section 6.5 further describes strategies for

determining an initial lower bound on the value of beta and also effective

means of incrementing the beta value.

6.2 Optimization techniauos

The basic knowledge to find solutions for the C2DGC problem using the Wang

and modified Wang methods has now been discussed. It should, however, be

noted that some other strategies such as the exploitation of symmetry, the

order of cutting and demand rectangle rotation may lead to better results

when implemented effectively. Therefore, these concepts will now be

discussed.

6.2.1 Detection of dudicate patterns: svmmetric strateaies

When algorithms for solving the C2DGC problem are derived from, for

example, the WA and WAM methods, the probability of generating

symmetrically duplicate patterns is high. To prevent these algorithms from

generating duplicate patterns, all previously generated and accepted

patterns are stored in a list, denoted as CList. Any new qualifying pattern is

compared to the patterns in CList to establish whether the specific pattern

already exists or is symmetrically equivalent to a pattern in CList.

According to Cung et (Cung &il, 2000:196), authors such as TschBke

and Holthofer (1995) have proposed that a procedure be applied to every

newly generated pattern in order to detect an equivalent pattern throughout

CList. Although their strategy is very effective and detects many duplicate

patterns, it requires a great deal of computational effort because of the great

95
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

number of comparisons that have to be made. This procedure's time

complexity is therefore unacceptable.

6.2.1 .I Pattern coding

To improve upon the time complexity, Cung et (Cung et, 2000:196) has

proposed a method whereby patterns that are stored in CList are coded,

and tests are then defined that use these codes to avoid duplicate patterns

from being stored. The pattern coding system can be defined as follows:

"Let A be a pattern obtained by combining vertically (respectively

horizontally) a set of sub-patterns Avl, AV2, ..., AVr (respectively A~,, Aha ...,
A~,), where Avi (respectively A?) denotes an NV-pattern (respectively NH-

pattern). Let IA (respectively wA) be the length (respectively width) of

pattern A.

On one hand, it is assumed that each pattern A that is an NV pattern

(respectively an NH pattern) has two identifiers denoted by /"A and PA,

where /"A (respectively PA) represents the ordered set that indicates how A

is obtained in CList from the NV (respectively NH) pattern, where CList is

the list of stored best sub-problems transferred from the Open list to CList

on account of the fact that it has the best upper bound for the evaluation

function. It is assumed that the identifiers of each pattern of the Open list

are undefined, where the Open list refers to the list of patterns that still

have to be considered for further builds. Refer to figure 4.15, section 4.2.

On the other hand, if A is not an NV-pattern (respectively NH-pattern), then

/"A (respectively /''A) is represented by the set of identifiers of the NV-

pattern (respectively NH-pattern) which contribute to construct A, in other

words the set of identifiers represented by /"A,, /"A2. ..., rAr (respectively

PA,, ..., PAs). The number of distinct NV-patterns, which contribute to

produce A (which have different identifiers), is denoted by DV,q and the

number of the same NV-patterns (with the same identifier), which

conttibute to construct A, is denoted by f i Let R be the rectangle

obtained by combining horizontally two patterns A and B. Then, the code

96
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

of R is obtained as follows (because of an error in the article by Cung a
(Cung Wal, 2000:196), these definitions have been altered slightly):

Horizontal: lhR = order of insertion; D ~ R = I; NhR = I.
Vertical: I", = IvA U IvB; DvR = I IvR I (the cardinality of DVR) and if DVR = 1 then N ~ R = N~~

+ NhE, otherwise, N h ~ = undefined.

Now, let S be the rectangle obtained by combining vertically two patterns A

and B. Then, the code of S is obtained as follows:

Horizontal: lhs = l h ~ U lh~; DhS = 1 lhs ! (the cardinality of Ps) and if DhS = I then NhS =
NhA + NhE, otherwise. NhS = undefined.

Vertical: IVs = order of insertion; DVs = 1; NVs = 1

PattmrH Pattmrl

4 4

11

F+re 63 : Soma conatuetedpattrmp, as entered
intomst

The code for each produced pattern is computed as follows:

9 Piece A: Initial piece (NH-pattern and NV-pattern):

D ~ A = & = I , M A = N ~ ~ = ~ , ~ A = P ~ = { ~ } ;
9 Piece B: (NV-pattern but not a NH-pattern), vertical combination of

two instances of the pattern A:

9 Piece C: lnitial piece (NH-pattern and NV-pattern):

~ ~ c = d l c = l , ~ c = ~ c = 1 , ~ ~ = ~ ~ = { 4 } ;

97
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

Piece E: (NH-pattern but not a NV-pattern), horizontal cornbination

of A and C:

D v ~ = 2 , f l ~ = ~ n d e t , ~ E = { 3 , 4) , D h ~ = l , ~ ~ = l , f ~ = { 6) ;

Piece F: (NH-pattern but not a NV-pattern), horizontal combination

of two instances of C:

~ ~ F = l , f l F = 2 , r F = { 4) , D h ~ = l , p F = 1 , f F = ~) ;

Piece G: (NV-pattern but not a NH-pattern), vertical combination of

two instances of C:

D v ~ = l , f l ~ = ? , r G = { 8) , ~ ~ G = 1 , p G = 2 , l h G = { 4) ;

Piece H: (NH-pattern but not a liV-pattern), horizontal cambination

of the patterns A and G:

D v ~ = 2 , f l ~ = ~ n d e f , r H ' { 3 , 8) , D h H = 1 , p H = 1 , ~ H = { 9) ;

Piece J: (NH-pattern but not a NV pattern), horizontal combination of

the patterns A and I?

D v ~ = 2 , N / ~ = u n d e f . , ~ ~ = { 3 , 8) , D h ~ = l , ~ ~ = l , i h ~ = { ~ ~) ;

Piece K: (NV-pattern but not a NH-pattern), vertical combination of

two instances of the pattem E

D V ~ = l , f l ~ = 1 , r;(={11), D ~ K = I , N ~ K = ~ , ~ K = { ~) .

Piece M: (NH-pattern but not a NV-pattern), horizontal combination

of the patterns G and 6:

D V ~ = 2 , f l ~ = U d d f r ~ = { 5 , 8) , D ~ M = ~ , ~ M = I , ~ M = { I ~) .

Now that a method for coding patterns has been established, it is possible

to show how these codes may be implemented to reduce computational

effort at every new node that is generated by a C2DGC algorithm. Three

basic methods are described by Cung @aJ (Cung Ual, 2000:197-201),

namely pattern domination, symmetrical duplicate patterns in the same

direction and symmetrical duplicate patterns in opposite directions.

6.2.1.2 Pattern domination

The fact that patterns are constructed by consecutive horizontal andlor

vertical builds creates a situation where two or more patterns with the same

98
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

dimensions may be created. By doing a few translations on these patterns,

it might become obvious that one of these patterns contains fewer pieces

than another with the same dimensions. This is demonstrated in figure 6.1,

where the pattern H is dominated by the patterns K and M.

The following proposition shows that some patterns can be neglected,

because of pattern domination, if some conditions are satisfied.

Proposition 1: Let A and B be two patterns. Suppose that R is a feasible

pattern obtained using a horizontal DuiM befiveen A and 5. Let b\, k 9 S =

{ l , . . ., n}, be the number of times the k-th piece is used in R. Then R is a

dominated pattern if and only if

where WR = WA - WB and /R = $ if WA > WB, WR = WB - WA and IR = IA

othenvise.

Cung a (Cung Ual, 2000:198) provides a proof for this proposition in

their article, and states that proposition 1 only treats horizontal builds

between patterns A and B, but that the same principle can be applied to

vertical builds to eliminate dominated patterns.

6.2.1.3 Svmmetric (duplicate) patterns on opposite directions

The second symmetric strategy builds on the first one. It states that patterns

are symmetrical duplicates if they are the same size and are composed of

exactly the same demand rectangles. Once again referring to figure 6.1,

patterns K and M can be identified as duplicate patterns.

Proposition 2 describes how these duplicate patterns can be identified when

they are generated and therefore more than one instance of a pattern, or its

symmetrical duplicate, will not be stored in CList.

99
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

Let A denote a pattern obtained by combining horizontally the NH-patterns

A?, Az, ..., A, and B is a pattern obtained by combining horizontally the NH-

patterns B,, B2, ..., Bs, with d = /A - 18 where d 20.

Proposition 2: A vertical build between two patterns A and B has a

symmetric pattern i f there exist two vectors x = (xd where i = 7, 2, .. ., randy

= (yo where j = 1, 2 . . ., s satisfying the following inequalities:

S

E x , < r and E y j < s
j=1

xi E {0,7} and y E {0,7}

To avoid exponential growth of the lists that need to be maintained for this

proposition, Cung et (Cung Ual, 2000:200) states that a simpler

approach can be taken to eliminate only some symmetrical constructions.

Therefore, let A and B be two patterns and suppose the following inequality

exists, 0 I / ~ i - Isi I d, where /A, and lei represent respectively the

subpatterns of A and B, stored in CList according to their lengths. In this

case, a vertical build between the previous A and B patterns are forbidden.

6.2.1.4 Svmmetric (duplicate) patterns on the same direction

The third symmetric strategy is implemented to cover symmetric patterns

that might be generated but are not covered by propositions 1 and 2. It

rejects the storage of patterns that were constructed by combining two

patterns vertically (respectively horizontally), for instance A and B. It is

assumed that both patterns A and B are composed of different sub patterns

combined vertically (respectively horizontally). For example, the pattern J in

figure 6.1 could be constructed by combining the patterns F and A

horizontally, but also by horizontally combining the patterns E and C. The

100
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

following proposition handles the horizontal instance, but the vertical

instance could be treated in the same way.

Proposition 3: The horizontal build between two patterns A (taken from the

list Open) and a pattern B (taken from CList) is discarded if one of the three

following cases are verified:

Cung et (Cung a, 2000:201) finally states that proposition 3, if

implemented correctly, eliminates many unnecessary branches that would

have been developed in the search tree. More complex build combinations

could, however, be rejected if other competitive strategies were to be

formulated using the coding standard.

6.2.2 Cuttina order

F v 6 2 : The effect of cut ordning

101
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

Another form of pattern duplication that may occur, results from the order in

which pieces are cut from the stock sheet. Christofides and Hadjiconstantinou

(Christofides & Hadjiconstantinou, 1995:20) explain the situation as follows: Let

the chosen rectangle (i) be cut into smaller rectangles (a, y) and (x-a, y) by

an x-cut at r = a. A second x-cut is performed on (x-a, y) at r = b such that a

c b &(x-a)J at some successor node results in producing three rectangles

A, B and C as shown in pattern (i) in figure 6.2. The same set of rectangles

can be generated by pattern (ii) in figure 6.2, where the numbers next to the

x-cuts indicate the order in which the cuts are made.

The consequence of implementing cut ordering is to eliminate from explicit

consideration different sequences of cuts when these lead to the same final

cutting pattern. This can be done, without missing any unique cutting pattern,

by introducing an arbitrary cut ordering so that if a rectangle (x, y) is cut at,

for instance, r = a, then all subsequent x-cuts on the two resultant rectangles

must be greater than or equal to a (Christofides & Hadjiconstantinou,

1995:21).

6.2.3 Demand rectanale rotation

F i 63 : Demaadactangle rotation

Demand rectangle rotation is an optional feature that can be included in the

algorithms derived from C2DGC problem solving methods. An example of a

rotated demand rectangle is demonstrated in figure 6.3. Christofides and

Hadjiconstantinou (Christofides & Hadjiconstantinou, 199523) and

102
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

Viswanathan (Viswanathan, 1993:769) both state that their algorithms

assume the following:

P The orientation of the demand rectangles is considered to be fixed,

in other words a demand rectangle of length Cand width w is not the

same as a demand rectangle of length wand width L

When rotated demand rectangles are considered, as by Wang (Wang,

1983:573-586) and Cung et (Cung Ual, 2000:188), it can be proven that

the method is complete, therefore genersting all possibk c~iKing pagerns.

The demand constraint b, for the r'th demand rectangle still holds though,

implying that only bi instances of the demand rectangle as well as its rotated

equivalent are allowed to be cut from the stock sheet. For this reason this

situation is preferred to the one where rotated demand rectangles are not

considered.

6.3 lm~rovinci the lower bounds of the WAM method

It can be observed that the Wang and modified Wang methods produce

information in the process of searching for solutions using a certain value of

beta. If, for instance, all generated builds (if any is found) are considered that

has a certain dimension ([w) using a specific beta value, the one that

produces the least internal trim loss will in general be an improved lower

bound over the one found by the unbounded twodimensional knapsack

function for the same dimension ([w). This improved lower bound for the

dimension ([w) is only a valid underestimate for the specific beta value that

was used to calculate it.

and upper bound f@

103
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

On the other hand, the underestimates calculated by the unbounded two-

dimensional knapsack function are valid for all values of beta. The concept of

improved underestimates can be illustrated using a simple example. Consider

the small example problem instance EPI (table 6.4), first introduced in

chapter 5, section 5.1, table 5.1, page 56, where the stock sheet has

dimensions (55) and two demand rectangle types exist that may be cut from

the stock sheet. Firstly, because a demand rectangle with the dimensions

(1,l) exists, the unbounded two-dimensional knapsack will use the fact that it

has an unlimited number of these at its disposal, and fill the demand rectangle

with it. This happecs even thcugh only one instanse is allcwed to be cut from

the stock sheet, and therefore produces underestimates of 0 at each

dimension within the larger stock sheet. It is already obvious that the

unbounded knapsack fails to generate good lower bounds for this problem

instance. When the iterative process of rectangle generation (based on

Wang's method) is executed, different rectangular builds are produced with

different dimensions. Figure 6.5 shows one of these possible generated

rectangles (see also chapter 5, figure 5.6, build number 7 for a demonstration

of how the build in figure 6.5 is constructed).

104
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

The build that is illustrated in figure 6.5 is a horizontal build constructed by

combining demand rectangles 1 and 2 and will only be stored by the Wang

method if a beta value of 0.04 or larger is used. It forms a new rectangle with

dimensions (4,2) and an internal trim loss of 1. This build is also the best

possible build for the dimension (4,2) (refer to chapter 5, figure 5.7, page 71)

for a complete illustration of all stored builds using a beta value of 0.24. In

figure 5.7 it can be seen that no build with less than 1 unit of internal trim loss

exists for the dimension (4,2) when using a beta value of 0.24) and 1 is

therefore an acceptable lower bound for that dimension if a beta value of 0.04

or larger is used ta solve the prablem. The underestimates produced by the

unbounded twodimensional knapsack function that is equal to 0 for the

dimension (4,2), can therefore be replaced with the value of 1, which is a

more accurate underestimate. This concept is used in the stock sheet

propagation algorithm proposed by the author in section 6.3.1, pages 111-

123.

A further 0bse~ation is that the Wang and modified Wang methods may not

generate builds with internal trim loss values allowed by beta for each

dimension within the stock sheet (L,w). Figure 6.6 illustrates this concept,

using problem instance EP1 .

I

105
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

Problem instance EPI contains one demand rectangle of dimensions (1,1),

and if it is placed at position (0,O) on the stock sheet, no more demand

rectangles exist with a length or width dimension of 1 and no demand

rectangle of dimensions (2,2) exists either. This implies that through

inspection (for this small problem instance) it is impossible to generate builds

with the following dimensions (as shown in the shaded sections in figure 6.6

(this can also be seen in chapter 5, figure 5.7, which shows all possible builds

for EPI with a beta value of 0.24)):

It may however be possible to artificially construct builds for the dimensions

stated above. This can be achieved by adding trim loss to slightly smaller

builds (the build (1,l) in this instance) that were constructed, which will fill the

dimensions to the required size. This process of constructing missing builds is

called propagation, and section 6.3.1, pages 111-123, introduces a method

created by the author (PSSP method), which uses propagation and data

obtained by the building process to improve the WAM lower bounds.

Before continuing with the discussion of the PSSP method, a small example

instance (EPI, figure 6.4) will be used to further illustrate the concepts of

underestimate updating and build propagations, as they form very important

parts of the PSSP method. Firstly, the optimal guillotinecut cutting pattern

obtainable for EPI (using a beta value of 0.04 or higher) is a pattern with a

total trim loss of 6 (internal trim loss of I), and is illustrated in figure 6.7 (see

also chapter 5, section 5.2.1.6.1, figure 5.7, page 71, for an illustration of this

pattern in the complete list of stored nodes for EPI using a beta value of

0.24).

lo6
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinscut cutting stock problems

(Fig- 6.7: An optrmal solution for EP1(

Even though a pattern with a total trim loss of 6 (internal trim loss of 1) for this

problem instance could already be generated with a beta value of 0.04, it is

necessary to increase the beta value to 0.24 ((0.24).5.5 56) to prove that 6 is

indeed the best obtainable trim loss value for the problem (according to Wang,

chapter 5, section 5.2.1.5, theorem T1, page 66), and that figure 6.7 indeed

illustrates an optimal solution.

As noted earlier, if the problem is solved with the modified Wang method

(WAM) and underestimates are calculated using an unbounded two-

dimensional knapsack function (chapter 5, section 5.2.3.1 .I .l, pages 83-87,

Gilmore and Gomory (1966)), all underestimate values should be 0 for this

problem instance (EPI). This is due to the unbounded nature of the knapsack

function and the fact that one demand rectangle of dimensions (1,l) exists.

These values can be improved upon though, by solving a simplified problem

instance using a smaller stock sheet but the same demand rectangles and

demand constraints. The solving of this simplified problem instance is fast and

can lead to better underestimates. This principle will now be demonstrated

using an example problem instance (EPI). The calculated underestimates

107
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

using an unbounded two-dimensional knapsack function for the WAM method

for problem (EPI) is given in table 6.1:

These underestimates are not accurate enough, but it is possib!e to incresse

the values by following a few steps. Firstly, initialize values in an array with

values calculated as follows:

where x and y indicate index values for cells (stored elements) within the two-

dimensional array and at the index (x,y) the value of x.y should be stored.

Note that where cells are referenced, the x indicates the row and the y

indicates the column, therefore the reference cell(x,y) is equal to

cell(row,column). These values indicate the maximum trim loss that could

exist for every dimension in the twodimensional array, and is represented in

table 6.2:

It should be noted that a lot of these values exceed the maximum internal trim

loss as allowed by the currently used beta value (which is 0.24 in this case).

Therefore, replace the values in the array in table 6.2 that are larger than

L5.5.(0.24)J+l = 7 with the integer value 7. It should be noted that it is not

108
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

absolutely necessary to replace the values that is larger than 7 with 7, but it

establishes uniformity in the table and shows with clarity which values exceed

the maximum intemal trim loss as allowed by the currently used beta value.

The array has been initialized, and to take the process further, the problem

instance will be solved with the original Wang method. Note that only half of

the stock sheet length (3) will be used and the full stock sheet width, resulting

in a simplified problem to be solved. The dimensions and upper bounds of the

demand rectangles will remain the same as for the original problem. Refer to

chapter 5, section 5.2.1.6.1, figure 5.7, page 71, for a representation of all

possible feasible builds (R=0.24) that are stored by the Wang method for EPI.

When the simplified problem is solved, builds with internal trim loss as

indicated by table 6.4 are attained, where -1 indicates the algorithm did not

find a build for that specific dimension. These values are now compared with

those in table 6.3 (maximum internal trim loss allowed by beta). If a build was

found with the Wang method and it's internal trim loss (represented in table

109
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

6.4) is less than that of the maximum allowed by beta (represented in table

6.3), the value in table 6.3 is replaced by the value in table 6.4. When this is

complete, the following table is produced:

Unfortunately, some values in table 6.5 are still overestimates of the maximum

internal trim loss that could be generated by certain builds. For instance, cell

(2,l) has a value of 2, but a build with an internal trim loss of 1 could be

constructed by taking the build with dimensions (1,l) and adding 1 unit of trim

loss at the bottom of the build (build propagation). This will lead to a build with

an internal trim loss of 1. Therefore, we need to run a propagation algorithm to

verify that no overestimated internal trim losses remain in table 6.5. After this

algorithm (the propagation algorithm is discussed in more detail in section

6.3.1, pages 11 1-123) was run, the values in table 6.6 are generated.

Compare the values stored in table 6.6 with the propagated builds in figure

6.6. The values in table 6.6 represent the internal trim loss as illustrated in the

propagated builds of figure 6.6.

All that remains to be done now is to compare the values in table 6.1 with the

values in table 6.6. Keep in mind that the values in table 6.6 are

110
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

underestimates of internal trim loss that could occur in any build, therefore it is

acceptable underestimates for the modified Wang method. If the value for a

given dimension in table 6.6 is larger than its corresponding value in table 6.1,

the value in table 6.1 must be replaced by the value in table 6.6. In this

instance, all the values in table 6.1 are 0, and table 6.6 can be used as the

first part of an updated lookup table for the modified Wang method. It should

be noted that this is an exceptional case, and that usually the values in the

original lookup table will not be all 0. In those instances, the two tables must

be carefully compared. Table 6.7 represents the new table of underestimates

to be used with the WAM method:

It is obvious that table 6.7 represents much sharper underestimates than table

6.1, and this guarantees that the modified Wang method using the updated

underestimates will perform better (or in certain cases the same) than the

modified Wang method that used the original underestimates. This statement

is explained further in the next section.

6.3.1 Partial stock sheet pro~aqation IPSSP) method

The partial stock sheet propagation (PSSP) method is a new method devised

by the author. It uses the modified Wang method and its characteristics as a

basis and then refines the estimates used by the method. Characteristics of

the modified Wang method (WAM) are:

111
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

9 An unbounded two-dimensional knapsack function is solved once at

the beginning of the problem solving process providing

underestimates of internal trim loss for each smaller dimension

within the larger stock sheet. This unbounded knapsack function is

based on a dynamic programming recursion function (Gilmore &

Gornory, section 5.2.3.1 .I .I, pages 83-87);

The solutions obtained from this function is stored in a two-

dimensional array (named array A), used as a lookup table to

determine estimated external trim loss; and

9 These values are never updated.

The problems that can be identified with the method are:

9 The unbounded nature of the twodimensional knapsack function

often causes the underestimates to be unrealistically low (section

6.3 highlights this fact with the use of example problem EPI); and

9 Unnecessary builds are generated because the value of h(n) is too

optimistic as a result of the impractical underestimates.

As a result, the author proposes an extension to the modified Wang method.

The previous section (section 6.3) introduced concepts used by the proposed

extension to the modified Wang method, which is called the PSSP method.

This section will aim at solving a larger example problem instance with this

method and then at defining a formal PSSP algorithm based on the method.

The PSSP method aims at updating the values in the two-dimensional array

(array A) containing the underestimates of the external trim loss. This will be

accomplished by solving a smaller instance of the given original C2DGC

problem instance by using only part of the given stock sheet, but still using all

the original demand rectangles. For instance, if the stock sheet has

dimensions (70,40) any possible smaller part of the stock sheet may be

used. Through empirical studies (refer to chapter 7, table 7.6, pages 161-

163) it was found that half of the stock sheet length and the full width is

normally a good choice, which translates to a stock sheet of dimensions

112
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

(35,40). The full stock sheet length and half of the width ([(0.5)~) could be

an even better choice, but for the sake of uniformity the dimensions ((0.5).[;

W) will once again be used as it was also used with problem instance EPI.

Therefore, the original C2DGC problem will be solved with the original Wang

(WA) method using the given demand rectangles and a chosen beta value,

but a smaller ((0.5).[W) stock sheet. While the smaller instance of the

original problem is being solved, newly generated builds are constantly

evaluated and if it contains the least internal trim loss for that specific

dimension at that stage, it is stored. When the smaller instance of the original

probiem has been soived, a propagation algorithm must be run to ensure

that no overestimates exist within the new underestimates. The least internal

trim loss for any given dimension (x,y) can then be compared with the

underestimate as generated by the unconstrained two-dimensional knapsack

function at the same dimension. If the least internal trim loss value is greater

than that of the knapsack function, the knapsack function's value can be

replaced with the least total trim loss value for dimension (x,y). By repeating

this comparison process for each dimension falling in the smaller stock

sheet, it is possible to tighten the underestimates. The updated

underestimates can be used with the WAM method to solve the original

C2DGC problem instance with the chosen beta value, the original demand

rectangles and a stock sheet of dimensions (70,40). Note that these updated

underestimates are only valid for the beta value that was used to calculate

them. When the PSSP algorithm is executed with a different beta value, the

updated underestimates must be calculated again for the new beta value.

To demonstrate the idea behind the algorithm, a larger sample problem

instance will be used than the one that was used to illustrate the basic

concepts (problem EPl, figure 6.4, page 103). The sample problem consists

of a stock sheet of dimensions 70x40 and ten demand rectangles'. The

optimal solution for this problem is found using the Wang or modified Wang

algorithm (utilizing h$f) with a beta (13) value of 0.02~. The original

' Refer to chapter 5, section 5.1, table 5.1, problem F3, page 56
Refer to chapter 5, section 5.2.3.1.1, function 5.3, page 82

113
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

underestimates as given by the unbounded two-dimensional knapsack

function for this problem instance are shown in table 6.8. Unfortunately,

because of paper size constraints only part of the table is shown.

' Refer to chapter 7, section 7.2.2, table 7.2, page 147, for results when solving problem P3 with the
Wang and modified Wang methods

114
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

The PSSP algorithm will then be implemented using the following steps:

Firstly, allocate memory for a new two-dimensional array, named

array B, (recall that the array used as a lookup table to determine

estimated external trim loss is called array A and it contains the

underestimates as calculated by the unconstrained two-dimensional

knapsack function), with dimensions 35x401 Note that it is half of the

stock sheet length by the stock sheet width of the example problem

instance;

Fill the new array (may B) with values calculated as follows:

where x and y indicate index values for cells (stored elements)

within the twodimensional array B and at the index (x,y) the value of

x.y should be stored;

Replace the values in array B that is larger than L~~.~o.(o.o~)J+I =

29 with the integer value 29;

Table 6.9 represents the initialization values in array B.

> Solve the given problem instance with the original Wang method,

using the original ten demand rectangle types and a beta (R) value

of 0.02, but use only half of the original stock sheet dimensions

(35x40);

> The values in array B are replaced with the internal trim loss of the

best build found for any given dimension (x,y) with the original Wang

method, if any build for dimension (x,y) was found;

Table 6.10 represents the values stored in array B after the original Wang

method has been executed. The highlighted values in array B, table 6.10,

represent builds that were generated and stored by the Wang method.

115
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

116
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

- - - -- -

--- - - - .- - --. --- - -- - -- - -

117
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

----- ------- - - ------

'. T
..

11'
.;t.;'

14 ,, !f 1920' !2 23 ;24'
n ,.,,,,"

29 31"
N......""w "'..

35.!:, '3 4 5 6 7 8 9 10 12 13 16 '18 . 26 21 28 30 32 33,:34

1". 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 29 29 29 29 29

2 2 4 6 8 10 12 14 16 18 20 22 24 26 28 29"'

3' 3 6 9 12 15 18 21 24 27 29

4, 4 8 12 16 20 24 28 29

;5 5 10 15 20 25 29 -0 29 29 29 29 29 29

6 6 12 18 24 29

:7 7 14 21 28 29

.8 8 16 24 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 0: 29 29 29 29 29 29 29 29 29 29 29 29 29
'A ,

9 9 18 27 29 '28 29 29 29 29 29 29

1'0 10 20 29

11; 11 22 29 29 29 29 29 29 29 29 29 29 29 29 29 O. 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29

12 12 24 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 0 29 29 29 29 29 29 29 29 29 29 29 29 29

3 13 26 29

14 14 28 29 0 29 29 29 29 29 29

15 15 29

16 16 29 29 29 29 29 29 29 29 29 0 29 29 29 29 29 29 29 qi 29 29 0 29 29 29 29 29 29 29 0 29 29 29 29 29

17 17 29-
18 18 29 28 29 29 29 29 29 29

19. 19 29 29 29 29 29 29 29 29 29 29 29 29 29 29 0 29 29 29 29 29 29 29 29 29 29 29 29 0 29 29 29 29 29 29

: 20 29 0 29 29 29 29 29 29 29 29 29 29 29 29 29

-21 Di
..

21 29 .5: 29 29 29 29 29

22 22 ;0. '23:
/ .t

29 29 c,C! 29 29 29 0 29 29 29 0 29 29 29 ,0 29 29 29 0 29 29 29 29 29 23 '1) , 29 29 29 29 29 .23

23 23 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 O. 29 29 29 4: 29 29 29 8$\ 29 29 29 29 29 29

24 24 29 0 29 29 29 8 29 29 29 29 29 29 29 29 29

'25' 25 29 4 29 29 29 ,1;6 29 29 29 29 29 29 29 29

:26 26 29 8 29 29 29 29 29 29 29 29 29 29 29

.11 27 29 i3 29 29 1 29 29 29 29 29 29 29 29 29 29

1!: 28 29 "01 29 29 29 29 29 29 a;: 29 29 29 29 29 29

'2i 29 29 29 29 :0 29 29 29 . 29 29 29 29 0 29 29 29 28 0 29 29 29 29 29 29 29 9, 29 29 29 29 29 29 29

39 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 j 29 29 29 29 5 29 29 29 29 29 29 29 29 14 29 29 29 29 .19,
31 29 23 29 29 [28 29 29 29 29 29 29 29 29 29 29

29 29 29 29 29 29 29 29 29 29 :,0 29 29 29 29 15 29 29 Ii> 29 29 29 29 1i 29 29 29 29 '28: Of 29 29 29 29 :1.

: 29 12 29 29 29 29 24 o 29 29 29 29 29 29

34, 29

.35 29 ': 29 29 29 29 29 29 29 ti 29 29 29 29 29

3i 29 29 29 29 29 29 29 29 ''0 29 29 29 29 29 29 29 29 0 29 29 29 29 29 23 29 29 29 29 29 29 29 29 29 29 29

371 29

38 29

. Jii
-

29 29 29 29 29 29 29 29 29 29 29 29 29 '.1!129 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29

,..0
-...."

7!29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 18 29 29 29 29 29 24 29 29 29 29 29 29 29 29 29 29

able 6.10: Updated values of array B after running the original Wang metho

All builds that were found with the original Wang method are highlighted in

table 6.10. After this process is completed, some of the values in table 6.10

are still overestimates of the internal trim loss. The highlighted values

represent exact builds with the least amount of internal trim loss that were

found by the original Wang method on the specific dimensions, therefore

these values are not overestimates. On the other hand, examine as an

example ce11(5,22), that contains the value of 29 (which is an overestimate)

and is situated directly beneath (in the next row) a build found by the original

Wang method with an internal trim loss of 0. To calculate the value that, say

all cells(x,y) should contain (except for exact builds), the fallowing

propagation formula can be used:

Min{value(cell(x, y)), value(cell(x-I, y))+y, value(cell(x, y- l))+x} (6.1)

This formula is intended to be applied in a recursive manner. Starting for

example in cell(l,l), continuing in the row to ce11(1,2), then to ce11(1,3),

constantly updating and adjusting the estimates in these cells according to

formula 6.1. When the end of row 1 is reached, the algorithm moves to row 2

and so forth. Note that the minimum of three different cells are calculated

when formula 6.1 is used, and that if, for instance, cell(1,l) is examined, only

the first of the three possibilities refer to a valid cell (falling within the stock

sheet dimensions). Whenever a cell is examined by formula 6.1, the

algorithm must first determine which of the three cell references are valid,

and only use the valid cell references for function 6.1.

The basic idea behind the recursive propagation algorithm, utilizing function

6.1, is that for any cell(i,j) that has to be allotted an underestimate that is

valid for the current value of beta, the internal waste and resulting further

waste for every build found by the Wang method (within the (ij) dimension) is

considered and the cell with minimal waste is chosen.

118
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

Therefore, the value of ce11(5,22) will be calculated as:

A further example could be ce11(5,23):

where in this case, the result of 27 is based on underestimates developed by

Lhi; rsctirsive formula 6.1 for cells (4,23) and (5,22).

When formula 6.1 is used to examine the values in table 6.10 and updates it

if it is overestimates, the values in table 6.11 is produced. To complete the

process, follow the following simple steps for every corresponding cell(x,y) in

array A and array B:

9 Compare the value of each cell(x,y) in array A (table 6.8) with the

value of each cell(x,y) in array B (table 6.1 1); and

9 If the value in array B is larger than the value in array A, replace the

value in array A with the value in array B.

119
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

.~ ~,~I'r~lI7IN~1 ~~ ~Bjt2il;~9i:r'25;~ ;2T~1
~~~:~,}'~ ~~ ~""';;M'~~~ -,:,.",-""~'<.h~~f::-',--i}'>,

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 28 29 29 29 29 29 29

2 4 6 8 10 12 14 16 18 20 22 24 26 28 29

k3.9121518212<2729

4 8 12 16 20 24 28 29 29 29 29 29 29 29 29 29 29 29 29 29 29!p . ,..~ ;. (~])'~ J!i .29 29 29 29 ...~. 29
5 10 15 20 25 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 !2fc2.!29 29 29 29 29 "'rifi',;;XA1l1E.~1'~29

6 12 18 24 29

7 14 21 28 29

8 16 24 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 0 +S'1Sli 29 29 29 29 29 29 29 29 29 29

..9. 9 18 27 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 ~: 29 29 29 29 29 29!:2.§ 29 29 29 29 29 29
~-~=
10' 10 20 29

1111 22 29 29 29 29 29 29 29 29 29 29 29 29 291fQ,i !~~i .~~ 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29

.12 12 24 29 29 29 29 29 29 29 29 29 29 29 29 29 ;~i~~~~i 29 29 29 29 1/\ .~??.4i 29 29 29 29 29 29 29 29 29 29 29

(tl~ 13 26 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 ,?? 29 29 29 29 29 29 29 29 29 29 29 29 29

;il14 28 29

1.15 15 29

i~ 16 29 29 29 29 29 29 29 29 29 i'P~6 29 29 29 29 29 29 ~Q;'Ije!29P .~~.29 29 29 29 29 29 iF ~~ 29 29 29 29

m17292929292929292929~.292929292929~2929~29292929292929292929292929

i!ii'18 29 29 29 29 29 29 29 29 291~1 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 i!~:§:~29 29 29 29 29 29

19. 19 29 29 29 29 29 29 29 29 29 29 29 29 29 29 ~igiI11~,29 29 29 29 29 29 29 29 29 29 29 ~iig~ ~ 29 29 29 29 29

~i 20 29 29 29 2

..

9

..

29 29 29 29 29 29 29 29 29 29 ~i~ 29 29 29 29 29 i~ 29 29 29 29 29 29 29 29 29 29

..

29

...~J 21 29 ~E 29 29 29 29 29 f~W29 29 29 2~
I2J 22 29 29 rg~I~ 29 2922.! 29 29 I[~~

.
#

.

...

..

!~ 29 29~ 29 29 ~t9.~! 29 1~;F~;

.

.""~1 29 ~",~iI v, ,,,",,,,,,29 r!~I29 29 29.~,1

~ 23 29 29~ 29 29 29 29 29:~1: 29 29 291!m29 29 29

11
9 2.4'. 29 28 8 29 29 29 29 29 29

if!; 24 29 2911f; 29 29 29 29 29 29 29 29 29 29 29 29 29 29 291~~ 29 29 29 29 29 29 29 29 29

r~~ 25 29 291i~129 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 291tii?:429 29 29 29 29 29 29 29

1
26 29 29129 29

.

...

.. .

...

27 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29

.

29

.

29 29

1
9 29 :'\6 29 29

.

29 29 29 29 29 29 29 29

~

..

.

.

28

.

-
...

.. 28 29 291",; 29 29 29 29 29 29 29 29 29 29 29 29 29 29 2

.

9

.

29 29 29 29 29 29

.

2

.

9

..

29 29 29 29 29

t~29 29 29 .~ 29 29 29 28 29 29 29 291i1f29 29 ~_29 29 29 29 29 29 . 29 29 29 29 29 29 29
.31 29 29 29 29 29 29 29 29 29 29 29 29]jj29 29~ 2911I129 29 29 29 29 29 .~ 29 29 29 29 29

29 29 29 29li~129 29 29 29 29li'iJ 29 29 29 29 29 291m 29 29 29129 29 29 29 29 29 29 291m

29 29 29 291~:129 29 29 29 29W
..

'

.
.. 29 29 29 29 29 29 291ii129 29 29 29 29 29 29~~! 29 29 29 29 29 29

129 29 29 29 Ii 29 29 29 29 29 :~i29 29 29 29 29 29 29 29 29 29 29. 29 29 29 29 29 29 29 29 29 29 29 29 29

29 m 29~29 29 29 29 29 .. 29 29 29 29 29

1~29 29 29 29 29 29 29 29W29 29 29 29 29 29 29 29 "29 29 29 29 29.11129 29 29 29 29 29 29 29 29 29 29
11I29 29 29 29 29 29 29 29.29 29 29 29 29 29 29 29 m29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29

~!i129 29 29 29 29 29 29 29129 29 29 29 2929 29

129 29 29 29 29 29 29 29 29 29 29 29 29 ~ 29

.. 29 29 29 29 29 29 29 29 _129 29 29 29 29 29 29 29B 29 29 29 29 29 &g1 29 29:ii 29 29 29 29 29 29 29 29

~able 6.11: Further updated values in array B after the propagation algorithm was run!

120

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

Through this process we have increased the values of some of the

underestimates in array A, but the updated values still remain

underestimates (valid only for the beta value that was used to calculate

them). The resulting updated values in array A is represented in table 6.12,

and this array can now be used with the modified Wang method (WAM) as a

lookup table for estimating external trim loss. Table 6.12 represents only half

of the final array A (full size of array B), because only that part of array A is

updated. A few important facts to note about the partial stock sheet

propagation (PSSP) algorithm are:

9 It uses the same or better underestimates than the modified Wang

method, therefore the values of the heuristic evaluation function

(h(n)) used by the PSSP algorithm will always be greater than or

equal to the values of the heuristic evaluation function (h(n)) of the

modified Wang method. Therefore the PSSP heuristic is more

informed than the WAM heuristic and therefore the set of states

examined by PSSP is a subset of those expanded by the modified

Wang method (refer to chapter 4, section 4.2.9.3, page 51 for a

detailed explanation of this statement);

9 According to section 5.2.3.1.1 (page 82), when using the heuristic

evaluation function 5.1 as proposed by Oliveira and Ferreira (1990)

to calculate the values of h(n), overestimates of the actual external

trim loss may occur. Therefore, the PSSP algorithm should be

implemented using the heuristic evaluation function hs(n) (refer to

chapter 5, section 5.2.3.1.1, function 5.3, page 82), which is both

admissible and monotone;

9 The PSSP algorithm can be implemented using any partial stock

sheet size. This implies that the partial stock sheet size (in our

example 35x40) used in the first part of the algorithm may vary in

dimensions. For instance, the dimensions 70x20 could have been

used, or any other partial dimensions of the original stock sheet;

9 The propagation of values will never extend further into array A than

the dimensions of array B; and

121
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

~ The PSSP algorithm will only be initialized for B values larger than o.

If the original WAM method cannot find a solution for a problem

instance with a B value of 0, then the PSSP algorithm will be used.

122
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

119 1'1 19' i:ti'
:C'- 'Zf

l§' 1;;r1 !1 '19. '20 '>1
It; I ;.!!Ut3U,*fW,... ';'>

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102 105

40 44 48 52 56 60 64 68 72 76 80 84 0 4 8 12 16 20 24 28 32 36 40 44 48 52

IJ 50 55 60 65 70 75 80 85 90 95 100 105 22 27 32 37 42 47 52 0 5 10 15 20 25 30

6' 60 66 72 78 1:14 90' 96 102 108 114 120 126 44 50 56 62 68 74 80 29 35 41 47 53 59 65

70 77 84 91 98 105 112 119 126 133 140 147 66 73 80 87 94 101 108 58 65 72 79 86 93 100

80 68 96 104 112 120 128 136 144 152 160 168 0 8 16 24 32 40 48 56 64 72 80 88 96 104

90 99 108 117 126 135 144 153 162 171 180 189 22 31 40 49 58 67 76 28 37 46 55 64 73 82
<,""

40 50100 110 120 130 140 150 160 170 180 190 200 210 44 54 64 74 84 94 104 30 60

Irt'j 143 0 22 33 55 66 77 88 99 110 121 132 29 40 51 33110 121 132 154 165 11 44

1?f112O 132 144 156 168 180 16 28 40 52 64 76 0 12 24 36 48 60 72 58 70 82 32 44 56 68

. 130 143 156 169 182 195 32 45 58 71 84 97 22 35 48 61 74 87 100 56 69 82 64 77 90 103

14 140 154 168 182 196 210 48 62 76 90 104 118 44 58 72 86 100 114 128 0 14 28 42 56 70 84

:15 150 165 180 195 210 225 64 79 94 109 124 139 66 81 96 111 126 141 156 h29 [":z9i 30 40 55 70 85

$; 160 0 16 32 48 64 80 96 112 0 16 32 0 16 32 48 64 80 96 29 0 161;Q)Sri '; 32

7, 170 11 28 45 62 79 96 113 130 19 36 53 22 39 56 73 90 107 124 58 30 47 47 33 50 67

180 22 40 58 76 94 112 130 148 38 56 74 44 62 80 98 116 134 152 28 46 64 79 66 84 102

190 33 52 71 90 109 0 19 38 57 76 95 66 85 104 123 142 33 52 0 19 38 38 57

200 44 64 84 104 124 16 36 56 76 96 116 0 20 40 60 80 60 80 32 44 64 84

76 97 118 139 32 53 74 95 116 137 22 0 21 42 63 84 105 29 5 26 30 41 62

44 66 0 22 44 66 0 22 44 66 0 22 44 23 0 22 44 23 0 22 35 23 t2Q'] 35 23
54 77 12 35 58 81 16 39 62 85 20 0 23 46 24 4 27 50 28 8 31 54 32 35

64 88 24 48 72 96 32 56 80 104 40 21 0 24 48 29 8 32 56 40 48-
74 99 36 61 86 111 48 73 98 123 60 42 22 4 29 54 34 16 41 42 37 40

, -
84 110 48 74 100 126 64 90 116 m8044V83460 29 364040

-
94 121 60 87 114 141 80 107 134 33 60 84 23 50 32 16 43 70 52 40 33 38 53

104 132 72 100 128 156 96 124 152

52 80 105 0 28:1180 0 ; .. 47 52 80

29 58 56

1:.
29 58 28

01" 22 8 "O"
40 70 69 0 30 46 19 5 35 31 40 28 ': 30 19
51 82 82 28 30 16 47 64

38 ... 26 23 1m"" 48 52 55 39

30 0 32 64 42 40 15 47 79

o 52 '" m 52 15 42" 47 ..O. 52 '" 52 15

40 11 44 77 56 55 i"' 33 66 19 44 ji9QC#I,?Q)12 40 24 0 30 55 33

I 50 22 56 90 70 70 50 84 38 64 41 35 35 37 ,,; 38 52 "91r 39 32 ! 30
60 33 68 103 84 85 32 67 102 57 84 62 23 58 48 40 52 53 80 \21. 19 30 49
36 44 80 56 35 71 48 84 0 36 44 80 35 23 48 56 36': 35 48 55=,./!!

fR-J* 46 55 92 69 49 86 64 101 18 55 64 101 56 48 j 31 ,"" 33 45

66E I. 1,tl34
-

56 54 101 :: 35 39 32 42 54 30 39 ', 36 49-
39 77 67 50 36 50 55 39 U29 3229; 36

::,-,iot:J'....,.,)jt t,1*m -
Il1 49 88 40 80 64 29 69 18 33 44 49 39 24 38 72 42 29,: 33#:

trable 6.12: Final values in array A after comoarison with array

figure 6.8.

To solve probleminstance with dimensions lm%h(L) and width(W) with the PSSP
I l godh , f o b w these steps:

Iaitials*s:

-Choose avalue forbeta(gfeaterthau or equalto 0 andless than or equalto 1);
- Allocate memory for arrays named A and G with dimensions (L,W);
- Execute the unbounded two-dimensional knapsack function as proposed by Gilmore
and Gomory (1966) and fill each dimension of auay G with the value returned for that
dimensionby the EsspsackfunctionThe value represents an underestimation of
internal ta%n loss for that dimension;

- Allocate memmy for another two-dimensional array named B, with dimensions
(L*3.W), where S ideates a certain percentage of the stock sheet (3 is
greaterthan 0 andless than or equalto 1);

-SetA=G,
- Fill array B withvalues indicating the maximum intnnal ttim loss for a pattern in each
dimension of array B. In other words cell(x,y) = x * y,

- Replace values in array B that is larger than that allowed by beta withbeta *L * WJ + 1;
- Solve the CZDGC probleminstance with the original Wang method using the

original demand pieces forthe problem as wen as the upper bounds placed on these
pieces but oniypatt ofthe stocksheet(l*S,W),effectivehj simplifymgtheproblem;
While the problem is being solved compare eachnewly generatedfeasible ((€6 w c W :
build'sintemdttimlosswiththevahres sioredinasayB.Iftheintemeltrimloss of
any newly generated buildis lower than the due forthat same dinensionthat is
stored in array B, the value in may B should be replaced by the intemd &loss of
the new build;

- When the Wang method has finished its iterations, exec& a propagation alg+
whichmust ensure that no values storedin cmapB are overestimations forthe specific D

- For evesy conesponding ce11(x,fi in array A and may B:
* Compare the value of ceW& in ~ a p A withthe value of c*x,y) in array B; and
* If the value in array B is larger than the vaiue in may A, replace the vaiue in

auayAwiththevatreinmayB.
- Solve the miginalpsoblaminstance with the WAM algoihnusing the iqhkf lower
bounds represented in auay A;

-If an optimal sohrtionwas foundforthe probleminstance, stnp; othmvise r e d atthe
ncursives*s.but choose alargerdue forbeta (referto paragraph65 for abeta

6.4 Umer bounds and the waste aar,

When delving further into the significance of the beta value and its inherent

properties, it becomes obvious that although lower bounds are necessary to

determine good estimations of future trim loss as well as initial beta values,

the range of possible beta values that might be used remains huge. For
123

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

instance, if an initial beta value of 0.02 is calculated using lower bounds, the

waste gap still remains at 0.02 <= R <= 1. In the literature concerning the

modified Wang method (WAM), a vast amount of work has been done

regarding lower bounds and its usefulness. The author has also contributed in

the lower bound field with the PSSP algorithm (section 6.3.1, pages 11 1-123),

which aims at computing sharper lower bounds by updating the original lower

bounds as given by Gillmore and Gomory (chapter 5, section 5.2.3.1.1.1,

pages 83-87).

Twa strategies wil: be ilti:ized tc determine upper bounds for C2DGC

problems. Firstly, a method utilizing information from the Wang method's

building process is discussed from which an upper bound could be calculated.

Secondly, a beam search algorithm is used that calculates good solutions for

C2DGC problems, which could in turn be used as upper bounds.

6.4.1 Umer bound ~ropaaation and the waste aap

As an extension to the PSSP algorithm research, the author proposes a

method of using information obtained from the building process in the original

Wang method by storing all builds (feasible and infeasible (internal trim loss

exceeds the pruning criterion (t.W.R)), falling within the stock sheet area)

and using these as upper bounds. If a specific build was not found that is

equal to the stock sheet dimensions, a propagation algorithm is used to find

the best cut with the same dimensions as the stock sheet. When this value

has been acquired, the waste gap might be reduced.

Problem P8 (chapter 5, section 5.1, table 5.1, page 56) will be used to

demonstrate the effectiveness of this algorithm addition. Firstly, the algorithm

is executed with an initial beta value of 0.00. All builds (feasible and

infeasible, falling within the stock sheet area) are stored. When two or more

builds are found with the same dimensions, the build with the least internal

trim loss will be used. Table 6.13 shows part of the upper bound array, as it

is stored in memory after the algorithm has been executed with a beta value

124
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

of 0.00. Due to paper size constraints, the whole array can unfortunately not

be displayed.

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

Table 6.13 shows all the builds (feasible and infeasible) that were found by

the original Wang method. All cells with stars (*) indicate dimensions where

builds were not found.

126
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

Even though a build was found in the last cell (50,55), it is not necessarily the

optimal upper bound, because in this instance, the cell (49,55) contains a

build with internal trim loss of 31. This implies that cell (50,55) can contain a

build with an internal trim loss of 31 + 55 = 86.

For the above mentioned reason we run a propagation algorithm to fill the

empty cells with values and let it determine the best upper bound for cell

(50,55). Table 6.14 displays the array of updated, propagated upper bounds,

and it should be kept in mind that with a beta value of 0.00 the optimal

sclution for P8 was not fo~nd. Aftsr :he original Wang algorithm was

executed with a beta value of 0.00, a feasible build with a total trim loss of

104 was found (the build has an internal trim loss of 0, but is complete and

therefore when it is placed on the stock sheet has an external trim loss of

104, and the total trim loss is internal trim loss plus external trim loss). This is

not an optimal solution, because 104 is not less than or equal to

(0.00).55.50, therefore the search has to continue with larger beta values. To

minimize the waste gap, the value stored in cell (50,55), which is 86, is

important, and the gap can now be written as:

Continuing to solve the problem will imply increasing the value of beta. From

the above-stated waste gap, it is already clear that a beta value of more than

0.0313 is unnecessary. For the sake of the example, the beta value will be

increased with an arbitrary value of 0.01. Therefore, after the original Wang

method has been executed with a beta value of 0.01, table 6.15 is produced

as the propagated upper bounds. The upper bound in cell (50,55) indicates a

value of 34, implying a sharp drop in size of the waste gap. The best cutting

pattern with a beta value of 0.01 for problem P8 is again one with a total trim

loss of 104, indicating that it is not an optimal solution. The waste gap can

now be written as:

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

From this it can be deduced that any beta value of more than 0.0124 is

redundant. Therefore, the value of beta will not be increased to 0.02, but

rather kept down to 0.0124, which guarantees that an optimal solution will be

found with this value of beta.

128
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotineat cutting stock problems

The original Wang method is now executed for a third time with a beta value

of 0.0124. Upon completion of the execution, an optimal cutting pattern is

found with an internal trim loss of 34 (34 < (0.0124).55.50). This will then

terminate the search process.

6.4.2 Beam search. umer bounds and the waste aar,

A second method that could be used to determine an upper bound for any

given C2DGC problem is a greedy search method. In its simplest form a

greedy search would usually follow th3 sinsle best path down a search tree

(hence the name greedy) and terminate when the deepest node in the path

cannot be expanded any further. This will then terminate the search. Even

though greedy searches execute very fast, the quality of the solution

obtained by them is usually not very good. In order to obtain a better result

but still inhibit the exponential growth of C2DGC problem search spaces, a

beam search algorithm is used that limits the number of nodes expanded per

level (a specific depth in the search space) to the value w.

For this reason the author implemented a beam search algorithm that can be

combined with the Wang and modified Wang methods, where the value of w
can be specified. The algorithm computes a possible solution for any given

C2DGC problem instance, and depending on the size of w (beam width) the

quality of the solution may vary. As an example, problem P8 (chapter 5,

section 5.1, table 5.1, page 56) will be used to demonstrate the use of this

algorithm in determining upper bounds and the waste gap.

The first step is to choose a value for the beam width w. For this example,

the problem will be solved five times with five separate beam widths (10, 15,

20, 25 and 30) starting each time with a beta value of 0.00, which is

systematically increased. The results of the solution process are summarized

in table 6.16.

129
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

I I Beam width (m)

The first observation that can be made when examining table 6.16 is that

Wang's method will always find either the same or better quality solution than

beam search. A beam width of 30 seems to generate good quality solutions

when compared with the Wang method, but it should be taken into account

that execution times of the beam search algorithm increases as the beam

width increases. After the first iteration of the beam search algorithm with m

equal to 30, the waste gap can be defined as:

e
m
.d

i

showing that any value of beta greater than 0.04 will generate unnecessary

patterns. After the second iteration of the beam search algorithm with m

equal to 30, the waste gap can be defined as:

which implies that the value of beta lies in-between 0.01 and 0.04. After the

third iteration of the beam search algorithm with m equal to 30, the waste

gap can be defined as:

130
Implementing artificial intelligence search methods to solve constmined two-
dimensional guillotineat cutting stock problems

0.00

0.01

0.02

20

212

128

86

Wang (no

beam)

1 04

104

34

25

212

128

86

30

110

110

86

I 0

212

212

194

I 5

212

128

86

Upon completion of the iterative search process, it seems as if the

calculation of the waste gap with the upper bound propagation method, as

described in section 6.4.1, performs better. Still, the beam search method to

calculate upper bounds and the waste gap remains a simple and effective

implementation.

6.5 Strateqies for handlina the value of beta (B)

An important aspect of all algorithms based on Wang's method is choosing an

initial starting value for R. Many researcheis havz ;;reposed different

strategies to compute an initial value, and some of these methods will shortly

be described.

The most popular method is choosing an initial starting value of 0.00, and if

the optimal solution is not found, the value of R is gradually increased by a

constant value (usually 0.01) until the optimal solution is found (Daza a,
1995642). Therefore, this method uses 0 as a lower bound on the value of R.
A problem with this method is that some pmblem instances may require a

large value for I3 before the optimal solution is found, and through this lower

bound process, a great amount of unnecessary work may be done to iterate

through small 8 values.

Another method to calculate a lower bound for the value of R was proposed by

Zissimopoulos (Zissimopoulos, 1984) and Hifi (Hifi, 1994), and Hifi (Hifi,

1997:730-732) introduced an improved version of the method a few years

later. This method involves the implementation of a one-dimensional bounded

knapsack for creating a set of horizontal and vertical strips and then combines

them for obtaining a feasible cutting pattern for a given pmblem instance. If

the realized solution does not satisfy the demand constraints then solving

approximately two sets of packing problems creates a feasible cutting pattern.

From this pattern the initial value of R is then derived.

131
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

Vasko introduced the idea of calculating an upper bound on the value of R,

and then to gradually decrease (diminish) this value as the search progressed

(refer to section 5.2.2.3, pages 76-77, for more information on dynamically

diminishing the R value). The upper bound on R is calculated using an

algorithm called SPAM, which quickly generates solutions to the constrained

two-stage cutting stock problem. These solutions are then used to obtain an

initial upper bound for the minimum trim waste of the general (non-staged)

constrained guillotine cutting stock (C2DGC) problem (Vasko, 1988:109).

6.5.1 Lower bound usina the WAM lookup table

The author proposes a new method to find an initial lower bound on the

value of R. A sample problem with stock sheet dimensions of 70x40 and

twenty demand rectangles (refer to chapter 5, section 5.1, table 5.1, page 56,

problem P2) will be used to demonstrate the concept. The optimal solution

for this problem is found with a beta (R) value of 0.02. The method derives a

lower bound from the lookup table (array A) that was constructed using the

unbounded two-dimensional knapsack function of Gilmore and Gomory

(Gilmore 8 Gomory, 1966). Part of the resulting lookup table for the given

problem instance is displayed in table 6.17.

The highlighted value in table 6.17 is the last entry in array A at ce11(40,70).

This value is an underestimate of the minimum total trim loss of the best

feasible cutting pattern for the given problem instance. Therefore, it is a

viable value that can be used to calculate R:

S = value(cell(W t)) / (L wj (6.2)

where t is equal to the stock sheet length and W is equal to the stock sheet

width. For this specific problem instance, the initial value of R is:

132
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

The value of 13 is incremented with the value of 0.01. Therefore, the

calculated value will be rounded up to the nearest 0.01 increment and the

initial I3 value for this specific problem instance is then B = 0.01.

This method therefore generates an initial 13 value that might be less than the

optimal 13 value. Therefore, if the initial value is too small, it will gradually be

increased by 0.01 until the optimal solution is found.

6.5.2 lncreasina the value of beta I01

Whenever an initial value for beta is chosen and the optimal solution for the

problem is not found using that beta value, the value of beta is gradually

increased by a constant value (usually 0.01) until the optimal cutting pattern

is found. This process of increasing the value of beta by the arbitrary value of

0.01 is arguably not the best method to determine the next beta value,

because in some cases a very large beta value is required to solve the

problem optimally.

133
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

02

1 Oj8
i Oj6
~ Oj4o
U Oj2
~ OJ

io~
&o~
~

iOM
~~
~ 0

0.12

1
i 0.1
.11:
~ 0.08
U
~ 0.06..
'0
41 0.04=
I!D

i 0.02
~
~ 0

0.45

1 0.4

! 0.35
~ 0.3

~025
.r=

; 0.2
&0.15
~ 0.1

U 0.05ti
~ 0

Chart 6.1: Change in total trim loss as the value of beta increases

IprOblem P2: LeasttGtaltrim los81

o 0.D1 0.02

0.3

1
i 0.25
.11:
~ 02
U
41
-= 0.15
'0
& 0.1
;
~ 0.05
ti
~ 0

0.25

1
i 02
.11:..
o
U 0.15
~..
OS 0.1
41
='"
i 0.05
ti
~ 0

IProbiem P3: Least total trim 108S 1

o 0.D1 0.02

Beta value

IPrObiem P4: LeasttGtaltrim loss 1

o 0.01

Betavalue

0.02

Deta value

IprOblem PI: Least total trim loss I

I--+-LTTI

IPrOblem P8: Least total trim loss ~

I--+-LTTI

o 0.D1
Betavalue

0.02

o 0.D1

Beta value

The author proposes that the solving process for any given C2DGC problem

instance be started with an initial beta value as calculated in section 6.5.1.

134
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

When all patterns have been constructed using the initial beta value and the

optimal solution were not generated, the value of beta should be

incremented by a specific fraction. To calculate this increment fraction, chart

6.1 shows specific problem instances (P2, P3, P4, P7 and P8 from chapter 5,

section 5.1, table 5.1, page 56) that were solved with the original Wang

method using a starting beta value of 0 and an increment value for beta of

0.01. The idea is that when the problem is solved with an initial beta value (in

these cases 0.00, but it can be any other starting value), the pattern with the

least amount of total trim loss is identified. This total trim loss is then

converted to a percentage value (in terns of !he stock sheet area) and

multiplied by a certain fractional value to obtain the next value for beta. Chart

6.1 will be used to determine a trend for the change in total trim loss value as

the value of beta increases by 0.01, and from this a fractional increase value

will be determined.

The least total trim loss (LTT) line for all problems basically shows the same

characteristics. If the value of beta is 0 (the initial value), the value of the

least total trim loss is relatively high. As the value of beta increases (leading

to more, and better pattems being generated) the value of the least total trim

loss for the best pattern found using the given beta value decreases. This

trend continues until the optimal solution for the specific problem instance is

found, and then the LTT line will flatten and remain on the same stock sheet

percentage value.

Table 6.18 summarizes the values given in chart 6.1. The table also gives

the percentage values needed to reach the beta value required to generate

the optimal solution.

135
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

The fraction value for each problem (P2, P3, P4, P7 and P8) was calculated

using the value of the least total trim loss value of the optimal pattern divided

by the least total trim loss value of the best pattern found with the initial beta

value. For instance, for P2 the value of fraction was calculated as follows:

This implies that the value of beta should be set to 5.60% of the value of the

least total trim loss as generated by a beta of 0.00 to find the optimal

solution. The fraction values were then calculated for all other problem

instances and an average fraction value was produced from these. The

average fraction value is then 5.67%, meaning that if the optimal solution is

not found with the initial beta value, it should be set to the current beta value

plus 5.67% of the least total trim loss found with the initial beta. This process

should then be iterated until the optimal solution is reached. Refer to chapter

7, section 7.2.7, pages 168-170, for numerical results when the increase

fraction is implemented to solve problem instances.

6.6 Summary

Chapter 6 delved into the problems that were identified in chapter 5

concerning algorithms based on the Wang and modified Wang methods. It

started off by introducing the reader to optimization techniques that could be

136
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

used to enhance the performance of C2DGC problem solving algorithms. The

optimization techniques included pattern coding and elimination of

symmetrical duplicate patterns. Chapter 6 continued with a discussion of

lower bounds and the problems encountered by the modified Wang method

when these bounds are not tight enough. It then introduced the PSSP

algorithm that was proposed by the author, which attempted to calculate

better lower bounds and improve the efficiency of the WAM algorithm. Lastly,

the importance of upper bounds was discussed and how it can be used in

accordance with other techniques to construct a strategy to manage the value

of beta.

Chapter 7 supplies numerical results that were obtained by practically

implementing the ideas that were represented in this chapter and then solving

problems PI through P8.

137
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

CHAPTER 7: Numerical tests and results

7.1 Introduction

By practically implementing existing algorithms and the author's proposed

PSSP algorithm, numerical results were obtained and these results will now

be discussed. Firstly, a comparison will be made between the results obtained

by the author's implementation of the Wang algorithms' (WA) and modified

Wang algorithms (WAM) and the WA and WAM algorithms of Daza 0
(Daza U, 1995543). Secondly, the results obtained by implementing

algorithm enhancements (symmetrical duplicate pattern removal, partial stock

sheet propagation algorithm) will be discussed.

7.2 Numerical results

Numerical tests were done on the eight C2DGC problem instances given in

table 5.1 (chapter 5, section 5.1, page 56). These problems were also solved

by Daza U (Daza Ual, 1995543) and the different results will be

compared. All problems were solved on the same personal computer, with the

following specifications:

9 Intel Gigabyte motherboard and an Athlon XP 1.8 GHz CPU;

9 256 MB of RAM;

9 40 gigabyte hard disk drive; and

k running Microsoft Windows 2000 Service Pack 2.

The programming language that was used is Borland C++ Builder 6.0 using

Microsoft's DirectX application programming interface (API).

' Refer to chapter 5, section 5.2, pages 57-90, for information pertaining the author's implementation of
the Wang and modified Wang algorithms.

138
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

7.2.1 AWA and AWAM alaorithms versus DWA and DWAM alaorithms

In this section, results obtained by solving the eight C2DGC problem

instances given in chapter 5, are summarized. No algorithm enhancements

were added (partial stock sheet propagation algorithm or symmetrical

duplicate pattern removal). The WA and WAM algorithms, as was

implemented by Daza e, will be referred to as the DWA and DWAM

algorithms The results as given in table 7.1 for these two algorithms are

taken directly from Daza's article (Daza a, 1995:643). On the other hand,

the algorithms as implemented by the author will be referred !o as the AWA

and AWAM algorithms. The AWA and AWAM algorithms utilise the

improvements made by Vasko (refer to chapter 5, section 5.2.2, pages 75-

77) to the original Wang method. The modified Wang methods (both the

author's and Daza's) use the heuristic evaluation function as presented by

Oliveira and Ferreira (refer to chapter 5, section 5.2.3.1 .I, function 5.1, page

81). Section 7.2.4 gives numerical results when the admissible, monotone

heuristic function 5.3 (refer to chapter 5, section 5.2.3.1.1, function 5.3, page

82) is used instead of function 5.1.

Table 7.1 summarizes the results obtained by Daza for the DWA and DWAM

algorithms and by the author with the AWA and AWAM algorithm. The

following codes are used as headings for the various columns in the table:

Problem: Indicates which problem instance (refer to table 5.1,

chapter 5, section 5.1, page 56) was solved;

Algorithm: The specific algorithm that was used to solve the

different problem instances;

6: The value of beta that was used by the specified algorithm to

solve a specific problem instance;

N: The exact number of nodes that were generated by each

algorithm. This implies that every pattem that is generated by

Wang's method is counted, even if it does not represent a feasible

pattem to be stored;

139
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotineat cutting stock problems

--

L: The exact number of nodes that were stored in memory by each

algorithm. This value represents only the feasible patterns that

were generated by Wang's method and that were stored;

Processing time: The time taken by each algorithm to solve a

specific problem instance, written in the form

(minutes'sewnds.mi11iseconds"); and

Trim loss: The least amount of total trim loss for the optimal cutting

pattern generated by a specific algorithm for a specific problem

instance.

As this chapter progresses, a large number of algorithms will be introduced,

each of which will be assigned a specific abbreviation. As new algorithms are

introduced, a reference table will be updated with the new abbreviations and

a short description of the characteristics of the new algorithm. Reference

table 7.1 introduces the first four algorithms, named DWA, DWAM, AWA and

AWAM.

Algorithm

I I heuristic function (h(n)) and pruning miteria (using a propxiion parameter eta and intemai I

Description

-

DWAM

DWA (Daza's implementation of the original Wang method. This algorithm u t i l i i a breadth-first

search method combined with Wang's rectangle building method and pruning miteria (using

a proportion parameter Beta and intend trim ioss).

Daza's implementation of the modified Wang method. This algorithm u t i l i i a breadth-fimt

search method combined with Wang's rectangle building method and Oli i ira and Feneira's

I I im-ments made by Vasko (m d e t e builds) to the Wang method. I

AWA

AWAM

I I
. . .

keferemce tsble 7.1: DWA, DWAM, AWA and AWAM algorithm
I

trim as well as estimated external trim loss).

The a h f s implementation of the original Wang method. This algorithm utikes a breadth-
first search method mmbined with Wang's rectangle building method and pruning criteria

(using a proportion parameter Beta and intemal trim loss). This algorithm also implements

me impwsments made byvasko (complete builds) to the Wang memod.

I Ie authoh implementation of mod'fisd Wang method. This algwithm utilizes a bntadth-

first search method mb ined with Wang's rectangle building method and Oiiveira and

Feneira's heuri& function (h(n)) and pruning aiteria (using a propalion parameter Beta

and intemal trim as well as estimated extemai trim ioss). This algorithm also implements the

140
Implementing aaificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

Problem

PI

P2

P3

P4

P5

P6

P7

P8

DWA

AWA

DWAM

AWAM

DWA

AWA

DWAM

AWAM

DWA

AWA

DWAM

AWAM

DW A

AWA

DWAM

AWAM

DWA

AWA

DWAM

AWAM

DWA

AWA

DWAM

AWAM

DWA

AWA

DWAM

AWAM

DWA

AWA

DWAM

AWAM

Fable 7.1:

141
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

Processing

Time

04'25.22"

00'03.33"

03'56.01"

00'02.1 1"

35'54.01"

01'49.90"

04'14.69"

00'14.09"

16'57.76"

02'09.90"
*

00'34.09"

09'29.95"

02'17.30"

15'08.40"

02'38.90"

00'00.93"

00'00.18"

00'01.31"

00'00.18"

00'05.44"

09'10.24"

00'04.33"

03'39.58"

00'29.48"

12'00.98"

00'03.52"

16'00.91"

00'59.1 2"

29'00.00"

00'02.56"

'A and D W ~

Trim

Loss

0

0

0

0

29

29

29

29

43

43

43

31

31

100

31

0

0

0

0
*

0

0

0

8

8

I I

8

34

34

34

34

0.00

0.00

0.00

0.00

0.02

0.02

0.05

0.03

0.02

0.02

0.06

0.03

0.02

0.02

0.06

0.04

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.01

0.05

0.01

0.02

0.02

0.08

0.02

Results for

400 952

8 931

267 168

8 465

3 819 692

343470

324 942

42 808

1 750218

399440 .
105 255

989 954

393 210

1 238464

451 784

1 400

273

926

273

15 828

637 298

12 226

367 692

85 625

555 912

9 402

1 700076

171 873

1 502 852

6 961

AWA and AWN

The results displayed in the table show that for problem P1 the AWA and

AWAM algorithms perform much better than the DWA and DWAM algorithms

in terms of generated nodes and stored nodes. In terms of generated nodes

for Pl , the AWA generates only 8 929 nodes compared to the 400 952 of the

DWA algorithm.

Chart 7.1: N Values for all problem instances

PI P2 P3 P4 P5 P6 P7 P8

Problem instances

-4 - - DWAM

This is an impressive 392 023 saving in terms of number of generated

nodes. The number of stored nodes for the AWA amounts to 386 where the

DWA stores 546 nodes. Where the AWAM algorithm is concerned in problem

PI , the results are equally impressive. The AWAM algorithm generates only
142

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

8 465 nodes to find the optimal solution where the DWAM algorithm

generates 267 168. This is nearly 31 times more generated nodes for the

DWAM algorithm than for the AWAM algorithm. In terms of processing time,

the AWA and AWAM algorithms perform much better than the DWA and

DWAM algorithms. This, in part, can be ignored because of the fact that the

problems were solved on a much slower computer, but then again the AWA

and AWAM algorithms do generate, in virtually all cases, a lot less nodes

than the DWA and DWAM algorithms.

Chart 7.1 grsphically demonstrates the results. The chart displays the

number of generated nodes (N) as generated by every algorithm for each

problem instance. It is clearly visible that the AWA and AWAM algorithms

perform better for all problem instances than the DWA and DWAM

algorithms. In most cases, the performance improvement is quite drastic.

Chart 7.2 displays the number of stored nodes (L) as stored by every

algorithm for each problem instance. It is obvious that the DWA and DWAM

algorithms do not perform much better where stored nodes are concerned.

Both the AWA and AWAM algorithms perform better than the DWA and

DWAM algorithms for 6 of the 8 problem instances that were solved where

stored nodes are concerned.

Furthermore it should be noted that the DWA algorithm fails to find an

optimal solution for problem P3 (indicated by an asterisk (') in table 7.1), but

the AWA algorithm does manage to efficiently find the optimal solution for

P3. Lastly, the DWA algorithm fails to find a solution for problem P6, but the

AWA algorithm once again manages to efficiently solve the problem and

delivers an optimal solution.

With all these facts considered, and the results showing that the AWA and

AWAM algorithms outperform the DWA and DWAM algorithms, it is accepted

that the AWA and AWAM algorithms are indeed suitable algorithms for which

more efficient algorithmic enhancements may now be considered. From this

143
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

point on, the results obtained from the implementation of the AWA and

AWAM algorithms to solve the problem instances PI to P8 will be used for

reference.

/chart 7.2: L Values for all ~roblem instancest

PI P2 P3 P4 P5 P6 P7 P8

Problem instances

- r - AWA
- 4 - DWAM

144
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

AWA and AWAM alaorithms versus the MAWAM alqorithm

In chapter 5, a detailed description was given concerning the admissibility

and monotonicity of heuristic functions. In short, the original modified Wang

method as proposed by Oliveira and Ferreira utilised a heuristic evaluation

function to determine estimated external trim loss. Although this function

worked reasonably well, the method sometimes required a larger I3 value to

find the optimal solution than the original Wang method (WA) did (this is

evident when studying table 7.1 above, for instance, problem P2 requires a

beta value of 0.02 for the AWA method and a beta value of 0.03 far :he

AWAM method). This was because in some cases, the heuristic function

overestimated the value of h(n), resulting in critical patterns not being

generated. Furthermore, these overestimates could result in a situation

where the algorithm fails to find the optimal solution for a problem instance

even if the value of beta is increased to 1. Daza (Daza Hal: 1995:639)

provides a solution to this problem in the form of an admissible, monotone

heuristic function2 that never overestimates the value of h3(n). It therefore

only requires the same I3 value as the original Wang method to reach optimal

cutting patterns.

Reference table 7.2 introduces the MAWAM algorithm and shows that this

algorithm differs from the AWAM algorithm in that it uses a monotone and

admissible heuristic function h3(n) instead of the heuristic function h(n) as

introduced by Oliveira and Ferreira.

Algorithm

DWA

trim as well as estimated external trim b s) .

Description
Daza's implementation of the migiMl Wang memod. This algorithm utilks a breadthfirst

search method aanbined with Wang's rectangle building method and pruning ailetia (using

DWAM

Refer to chapter5, section 52.3.1.1, function 5 2 , page 82.

a propation parameter Beta md internal trim loss).

Daza's implementation of the modified Wang method. This algoMhm utilhes a breadth-first

search method mmbined vhth Wmg's rectangle building meihod md Olieira and Ferreira's

haurisiic function (h(n)) and pruning criteria (using a pmpor(ion parameter Beta and internal

145
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

AWA

AWAM

heuristic funcfion (hdn)) and pruning aiteria (using a proportion parameter Beta and internal

trim as well as estimated external trim loss). This algorithm also implements the

improvements made by Vasko (complete builds) to the Wang method.

beference table 7.2: MAWAM algorithml

The author's implementation of the miginal Wang method. This algorimm utilizes a breadth-
first search memod combined with Wang's rectangle building method and pruning &ria

(using a proportion parameter Beta and intemal trim loss). This elgorimm also implements

the 'mpmwments made by Vasko (complete builds) to ths Wang method.

The author's implementation of the modified Wang memod. This algwithm utilizes a breadth-

first search method combined with Wang's rectangle building method and Oliveira and

Feneira's heuristic funcIion (h(n)) and pruning uiteria (using a proportion parameter Beta

and intemal trim as well as estimated external trim loss). This algarimm also implements the

improvements made by Vasko (complete builds) to the Wang method.

MAWAM

Table 7.2 summarizes the results obtained by solving the eight example

problem instances with the MAWAM algorithm using an admissible heuristic

function (h3(n)), and it also gives results obtained from the AWA (author's

original Wang method) and AWAM (author's original modified Wang method)

algorithms for comparative purposes.

The authw's implementation of an enhanced modified Wang method. This algorithm utilizes

a breadth-first search method combined with Wang's redangle building method and Daza's

It is evident when studying table 7.2 that Daza's heuristic function holds true

to its promises. It always finds the optimal solution for all the problem

instances utilizing the same R value as the original Wang method. One

important point to note is that if the AWAM and the MAWAM algorithms find

the optimal solution at the same I3 value, it is possible for the AWAM

algorithm to outperform the MAWAM algorithm, as illustrated in problems P6,

P7 and P8. The reason for this is that even though the AWAM algorithm

sometimes overestimates the h(n) value, it may for some problems, not

discard critical builds that lead to the optimal solution. For any problem

instance, the AWAM algorithm is not guaranteed to find the optimal solution

using the same R value as the MAWAM method, and is indeed 'lucky" if it

does. The fact remains however, that if they do find the optimal solution with

the same I3 value, the AWAM algorithm could fare better than the MAWAM

algorithm.

146
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

Problem

P1

P2

P3

P4

P5

P6

P7

P8

Algorithm

AWA

AWAM

MAWAM

AWA

AWAM

MAWAM

AWA

AWAM

MAWAM

AWA

AWAM

MAWAM

AWA

AWAM

MAWAM

AWA

AWAM

MAWAM

AWA

AWAM

MAWAM

AWA

AWAM

MAWAM

Trim

Loss

0

0

0

29

29

29

43

43

43

31

31

31

0

0

0

0

0

0

8

8

8

34

34

34

147
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

Chart 7.3: N Values for all problem instances -
Admissible heuristic function

PI P2 P3 P4 P5 P6 P7 P8

Problem instances

Chart 7.3 shows the consistent and reliable performance of the MAWAM

algorithm when compared to the AWA and AWAM algorithms. It performs

better in most instances where the number of generated nodes (N) are

concerned. It should be noted that the N value represents the number of

generated nodes for the three algorithms (AWA, AWAM and MAWAM) at the

beta @) value where the optimal pattern was found for each individual

algorithm.

148
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

Chart 7.4: L Values for all problem instances -Admissible
heuristic function

- MAWAM 1

Problem instances

Chart 7.4 shows that where stored nodes (L) are concerned, the MAWAM

algorithm once again performs well with less high peaks than the AWA and

AWAM algorithms.

149
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

- - - -- -- - -

Chart 7.5: Execution times for all problem instances -
Admissible heuristic function

P I P2 P3 P4 P5 P6 P7 P8

Problem instances

Chart 7.5 shows nearly the same structure and properties as chart 7.3. This

can be expected when the heuristic function that is used do not require

excessive computational times.

7.2.3 AWA and AWAM algorithms versus A*WA and AWAM alqorithms

Up to this point, the implemented algorithms (both Daza's (DWA and DWAM)

and the author's (AWA, AWAM and MAWAM)) algorithms utilized Wang's

method of rectangle generation, combined with a breadth-first search

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

algorithm3. The DWA and AWA algorithms used the original Wang method's

pruning criteria to prune away unnecessary branches in the search tree

(where internal trim loss is greater than the value of (beta).(stock sheet

length).(stock sheet width)). The DWAM, AWAM and MAWAM algorithms

used the modified Wang method's pruning criteria combined with a breadth-

first search algorithm to prune away unnecessary branches in the search

tree (where estimated total trim loss is greater than the value of (beta).(stock

sheet length).(stock sheet width)).

These algorithms can be improved upon by replacing the breath-first search

algorithm with an A' search algorithm (which implies a branch-and-bound

search combined with the dynamic programming principle4). This implies that

nodes will be sorted as they are expanded and the most promising node

(least cost node) will always be expanded next. The most promising node is

the node with the lowest internal trim loss for the original Wang method and

the node with the lowest estimated total trim loss for the modified Wang

method. Furthermore, the search process can be terminated as soon as the

least cost node's cost (the one to be expanded next) is higher than that of

the best solution found up to that point.

The enhanced AWA and MAWAM algorithms are called the A*WA and

AWAM algorithms. The AWA and AWAM algorithms are introduced in

reference table 7.3

Refer to chapter 5, section 5.2.1.6.1, pages 67-75, for a detailed discussion on the implementation of a
breadth-first search method combined with the Wang method.

Refer to chapter 4, sections 4.2.6-4.2.9, pages 43-54, for detailed discussions of branch-and-bound
search, branch-and-bound search with underestimations, branch-and-bound using the dynamic
p r o p n d n g principle and the A* search method.

151
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

Algorithm

DWAM

AWA

AWAM

MAWAM

A W A

AWAM

Description
Daza's implementation of the mind Wang method. This algomhm utilizes a breadthfirst

search method combined with Wang's rectangle building method and pruning criteria (using

a pmportion parameter Beta and internal trim loss).

Daza's implementation of the modhied Wang memod. This algorimm u t i l i i a keadth-first

search rnemod combined with Wang's rectangle building method and Oliveira and Ferreira's

heuristic function (h(n)) and pruning criteria (using a proporlion parameter Beta and i n t e d

trim as well as estimated extemal trim loss).

The authoh implementation of the original Wang memod. This algorithm u t i l i i a breadth-

first search method ambined with Wang's rectangle building method and pruning caiteria

(using a proportion parameter Beta and intemal trim loss). Thii algorithm also implements

the improvements made by Vasko (complete builds) to the Wang M o d .

The authws implementation of the modified Wang method. This algorithm utilizes a breadth-

first search method ambined with Wang's rectangle building method and Oliveira and

Ferrelra's heuristic function (h(n)) and pruning criteria (using a pmporlion parameter Beta

and internal trim as well as esbhted external him loss). This algorithm also implements the

improvements made by Vasko (complete builds) to the Wang method.

The a w s implementation of an enhanced m d i e d Wang method. This algorithm utilizes

a breadth-first search method combined with Wang's rectangle building method and Daza's

heuristic fu- (hdn)) and pruning criteria (using a pmportion parameter Beta and internal

trim as well as estimated extemal trim loss). This algorithm also implements the

improvwnents made by Vasko (complete builds) to the Wang method.

The a m o h implementafion of an enhanced original Wang method. This algorithm utilizes

an A' search method combined with Wang's rectangle building method and pruning criteria

(using a proportion parameter Beta and internal trim loss). This algorithm also implenn?nts

the impmvements made by Vasko (complete builds) to the Wang mamod.

The a W s implementation of an enhancad modilied Wang method. This algorithm utilizes

an A' search method combined with Wang's radangle building memod and Daza's heuristic

function (hdn)) and pruning criteria (using a pmpotion paramam Beta and intemal trim as

well as eshinaied external bim loss). Thii algorithm also implements the imprwements

made by Vasko (complete builds) to the Wang mamod.

(Reference table 73: AiWA and A*WAM alRori@

The eight example problem instances were once again solved using these

new algorithms based on the A* search method and the results are

compared with that of the AWA and MAWAM algorithms. Note that the

MAWAM algorithm is used instead of the AWAM algorithm, this is because

using an admissible and monotone heuristic function (h3(n)) is preferred and

because the AWAM method also uses h & J . Table 7.3 summarizes the

results obtained by solving the example problem instances.

1.52
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

Problem

P I

P2

P3

P4

P5

P6

P7

P8

Algorithm

AWA

MAWAM

AWA

AWAM

AWA

MAWAM

A W A

AWAM

AWA

MAWAM

A W A

AWAM

AWA

MAWAM

AWA

AWAM

AWA

MAWAM

AWA

AWAM

AWA

MAWAM

A W A

AWAM

AWA

MAWAM

AWA

AWAM

AWA

MAWAM

AWA

AWAM

zqxz 0.00 8 931

0.00 8 465

0.02 343 470

0.02 38 466

0.02 140 449

0.02 17 923

0.02 399440

0.02 96 837

0.02 400 349

0.02 75 342

0.02 393210

0.02 76 858

0.02 131 184

0.02 25 369

0.00 273

0.00 273

0.00 273

0.00 273

0.00 15 828

0.00 13 549

0.00 15 828

0.00 13 549

0.01 85 625

0.01 19 020

0.01 44 395

0.01 10 627

0.02 171 873

0.02 23 161

0.02 91 015

0.02 12 935

Fable 73: A* search

L Processing

Time

386 00'03.33"

376 00'02.1 1 "

386 00'03.33"

376 00'02.1 1"

628 01'49.90"

183 00'12.47"

534 00'45.80"

170 00'05.88"

825 02'09.90"

357 00'31.62"

1 055 02'1 1.20"

397 00'24.83"

1 144 02'1 7.30"

495 00'25.95"

963 00'43.53"

279 00'08.63"

34 00'00.18"

34 00'00.18"

34 00'00.18"

34 00'00.18"

389 00'05.44"

337 00'04.58"

389 00'05.44"

337 00'04.58"

352 00'29.48"

159 00'06.52"

324 00'14.95"

144 00'03.61"

446 00'59.12"

144 00'07.97"

442 00'32.17"

138 00'04.63

~~ ~

Trim

Loss

0

0

0

0

29

29

29

29

43

43

43

43

31

31

31

31

0

0

0

0

0

0

0

0

8

8

8

8

34

34

34

34

153
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

Chart 7.6: N Values for all problem instances -A*
search algorithms

154
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

Chart 7.7: L Values for all problem instances -Aa
search algorithms

--- MAWAM
- 4- A'WA

PI P2 P3 P4 P5 P6 P7 P8

Problem instances

Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

Chart 7.8: Execution times for all problem instances - A*
search algorithms

Problem instances

--t AWA
-4- MAWAM
- 4- A*WA
-X- -A*WAM

7.2.4 Addina svmmetrical du~licate Dattem removal to the A*WA and

A*WAM algorithms

Cung (Cung u, 2000:196) studied symmetrical patterns occurring in

search lists of cutting problems and devised a pattern coding scheme to

identify these duplicates and remove them from the list. They are called the

SA*WA and SAWAM algorithms and reference table 7.4 introduces them.

IS6
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

DWAM

AWAM

MAWAM

AWAM

SAWA

SAWAM

Description

Daza's implementation of the original Wang method. This algorithm utiliues a bmadthfirst

search method mb ined with Wang's rectangle building method and pNning criteria (using

a pmportion parameter Beta and intemal trim loss).

Daza's implementation of the modhied Wang method. This algorithm utilizes a breadthfirst

search method combined wlth Wang's redangle building method and Oliwira and Femira's

heuristic function (h(n)) and pruning &ria (using a propwlion parameter Beta and internal

trim as well as estimaed external trim loss).

The authw's implementation of the original Wang methdd. This algorimm utiliues a breadth

first search method combined with Wang's redangle building memod and pruning uiieria

(using a proportion parameter Beta and internal trim loss). This algoriihm also implements

the improvements made by Vasko (mplete builds) to the Wang method.

The author's implementation d the mod*& Wang method. This algorithm utilizes a breadth

first search method canlined win* Vr'ang's ractangle building method and Oliveira and

Femira's heuristic function (h(n)) and pruning criteria (using a proportion parameter Beta

and intemal trim as welt as estimated external trim loss). This algMimm also implements the

impmvements made by Vasko (mplete builds) to the Wang method.

The author's implementation of an enhanced modhied Wang method. This algorithm utilizes

a breadth-first search method combined with Wang's rectangle building method and Daza's

heuristic function (h$n)) and pruning criteria (using a proportion parameter Beta and intemal

trim as well as estimated extemai trim loss). This algwimm also implements the

improvements made by Vasko (mplete builds) to the Wang method.

The author's implementation of an enhanced oiiginal Wang method. This algorithm utilizes

an A' search method mb ined with Wang's rectangle building method and pruning criteria

(using a proportion parameter Beta and intemal trim loss). Thiis algorithm also implements

the impmwments made by Vasko (mplete builds) to the Wang method.

The a u h h implementation of an enhanced modhied Wang method. This algorilhm utilizes

an A' search memod combined with Wang's rectangle building method and Daza's heuristic

function (hdn)) and pruning miteria (using a pmportion parameter Beta and intemal trim as

well as estimated external trim loss). Thb algomhm also i m w the imp-ents

made by Vasko (complete builds) to the Wang method.

The a W s implementation of an enhanced original Wang method. This algorithm utilizes

an A' search method combined wim Wang's redangle building rnethod and pruning criteria

(using a prwc&m parameter Beta and internal trim loss). This algorithm also implements

the improvements made by Vasko (mplete builds) to the Wang mathod as well as Cung's

W e m coding scheme to remow symmetrical duplicate patterns.

The a u h f s implementation of an enhanced modhled Wang method. This algorilhm utilizes

an A' search method combined with Wang's redangle building memod and Daza's heuristic

function (hdn)) and pruning dteria (using a propoltl'on parameter Beta and internal trim as

well as estimated external trim loss). This algorithm also implements the improvements

made by Vasko (complete builds) to the Wang method as well as Cung's pattern coding

scheme to remove symmebical duplicate pattern.

bferenee table 7A: SA'WA and SA8WAM algorithms(

Table 7.4 shows the results when the 8 example problem instances are

solved wlh the SAWA and SAWAM algorithms that utilize Cung's method

of pattern coding to remove symmetrical duplicte patterns.

157
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

Problem

P1

P2

P3

P4

P5

P6

P7

P8

SAWAM

A W A

A*WAM 0.02

SAWA 0.02

SAWAM 0.02

A W A 0.02

AWAM 0.02

SA'WA 0.02

SAWAM 0.02

A W A 0.02

AWAM 0.02

SAWA 0.02

SAWAM 0.02

A W A 0.00

AWAM 0.00

SAWA 0.00

SAWAM 0.00

A W A 0.00

A lrV AM 0.00

SAWA 0.00

SAWAM 0.00

A W A 0.01

AWAM 0.01

SAWA 0.01

SAWAM 0.01

A W A 0.02

AWAM 0.02

SAWA 0.02

SAWAM 0.02

Inble 7A: A* search algori

N

8 931

8 465

8 852

8 388

140 449

17 923

139 348

17 823

400 349

75 342

388 310

73 589

131 184

25 369

125 987

25 132

273

273

272

272

15 828

13 549

15 275

13 015

44 395

10 627

43 797

10 627

91 015

12 935

90 442

12 860

ns with symn

158
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

Processing

Time

00'03.33"

00'02.1 1"

00'03.30"

00'02.01"

Trim

Loss

0

0

0

0

00'45.80"

00'05.88"

00'45.63"

00'05.83"

29

29

29

29

02'1 1.20"

00'24.83"

02'09.22"

00'23.92

43

43

43

43

00'43.53"

00'08.63"

00'40.67"

00'08.23"

31

31

31

31

00'00.18"

00'00.18"

00'00.17"

00'00.17"

0

0

0

0

00'05.44"

00'04.58"

00'05.28"

00'04.46"

0

0

0

0

00'14.95"

00'03.81"

00'14.57"

00'03.81"

8

8

8

8

00'32.17"

00'04.63"

00'31.47"

00'04.51"

34

34

34

34

cate pattern remod

The results show that this algorithmic enhancement does not greatly

enhance the performance of the AWA and AWAM algorithms, but Cung

does state that it is possible to generate more efficient and competitive

strategies using the pattern coding scheme to reject more complex

symmetrical duplicate combinations.

7.2.5 Partial stock sheet propaaation (PSSP) alqorithm

In the previous section, the AWAM algorithm was found to be one of the

best perfarming algorithm tested so far (withou! symmetrical duplicate

pattern removal). The PSSP algorithm, as described in chapter 6 (section

6.3.1, pages 111-123), will utilize the AWAM algorithm. One of the reasons

is that an admissible heuristic function is needed if the PSSP algorithm, as

proposed by the author, is to be complete and exact.

Table 7.5 summarizes the numerical results that were obtained by practically

implementing the PSSP algorithm. The table contains data about the solving

of the partial sub-problem with the original Wang method (Sub AWA).

Furthermore, it also displays data for the complete problem that were solved

using the AWAM algorithm with updated underestimate values (PSSP).

These values are then added to show the total number of generated (N) and

stored (L) nodes as well as the combined execution time. (For more

information on the PSSP algorithm, refer to chapter 6, section 6.3.1, pages

11 1-123).

The partial sub-problems were solved using the original demand rectangles

and a stock sheet of the dimensions (~,(0.5).(~@). Although any dimensions

could be used for the sub-problem sheet, it was found that the (~,(0.5).wj)

dimension performed well (refer to table 7.6, pages 161-163). Recall that this

partial sub-problem is solved in order to update the modified Wang reference

table containing underestimate values. Lastly, as stated in chapter 6, section

6.3.1, pages 11 1-123, the partial sub-problem will only be solved if the value

of I3 is greater than 0, otherwise only the results as obtained from the

159
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

AWAM algorithm alone will be used. For all problem instances (where the

beta value is not equal to 0) the PSSP algorithm performs better than the

AWAM algorithm, both in terms of execution time and the number of nodes

that were generated.

Problem

P I

P2

P3

P4

P5

P6

P7

P8

Algorithm

AWAM

AWAM

Sub AWA
PSSP
Total
AWAM

Sub AWA
PSSP
Total
A "W AM

Sub AWA
PSSP
Total
AWAM

AWAM

AWAM

Sub AWA
PSSP
Total
AWAM

Sub AWA
PSSP
Total

-
B

-
0.00 -
0.02

0.02
0.02
-
0.02

0.02
0.02
-
0.02

0.02
0.02
-
0.00 -
0.00
-
0.01

0.01
0.01
-
0.02

0.02
0.02
-
Table ;

Processing

Time

00'02.1 1 "
00'05.88"

Trim

Loss -
0

29

29

43

43

31

31

0

0

8

8

34

34

To conclude the results for the PSSP algorithm, table 7.6 displays numerical

results obtained while testing which percentage of the stock sheet should be

used to solve the partial problem. Only problems P2, P3, P4, P7 and P8 are

included, as the other problem instances require a beta value of only 0 to

generate optimal solutions.

160
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotine-cut cutting stock problems

Problem

P2

P3

Algorithm

50% L Sub
PSSP
Total

40% L Sub
PSSP
Total

30% L Sub
PSSP
Total

50% W Sut
PSSP
Total

40% W Sut
PSSP
Total

30% W Sut
PSSP
Total

50% L Sub
PSSP
Total

40% L Sub
PSSP
Total

30% L Sub
PSSP
Total

50% W Sub
PSSP
Total

40% W Sub
PSSP
Total

30% W Sub
PSSP
Total

Processing

lime

00'01 .I25 "
00'05.343 "
00'06.468"

00'00.172 "
00'05.343 "
00'05.515"

00'00.047 "
OO"05.578 "
OO"O5.625"

00'00.082 "
00'05.740 "
00'05.822"

00'00.032 "
00'05.625 "
00'05.657"

00'00.047 "
00'05.672 "
00'05.71 9"

00'02.563 "
00'18.970 "
00'21.533"

00'00.625 "
00'23.060 "
00'23.685"

O0'OO.l72 "
00'23.780 "
00'23.952"

00'00.641 "
00'23.640 "
00'24.281"

00'00.406 "
00'25.970 "
00'26.376"

00'00.406 "
00'25.610 "
00'25.767"

Trim

Loss -
25

2E

2E

25

25

2s

43

43

43

43

43

43

161
Implementing artificial intelligence search methods to solve constrained two-
dimensional guillotinecut cutting stock problems

Problem) Algorithm

50% L Sub + I Total

40% L Sub
PSSP
Total

30% L Sub
PSSP
Total

50% W Sub
PSSP
Total

40% W Sub
PSSP
Total

30% W Sub
PSSP
Total

50% L Sub

40% L Sub
PSSP
Total

30% L Sub
PSSP
Total

50% W Sub
PSSP
Total

40% W Sub
PSSP
Total

30% W Sub
PSSP
Total

~~~~~~~~~ -~~ ~ ~~ 

Processing 

Time 

00'01.984 " 
00'06.844 " 
00'08.828" 

00'00.454 " 
00'08.437 " 
00'08.891" 

00'00.094 " 
00'08.375 " 
00'08.469" 

00'00.422 " 
00'07.797 " 
00'08.219" 

00'00.578 " 
00'08.453 " 
00'09.031" 

00'00.046 " 
00'08.750 " 
00'08.796" 

00'00.796 " 
00'03.844 " 
00'04.640" 

00'00.047 " 
00'03.610 " 
00'03.657" 

00'00.047 " 
00'03.891 " 
00'03.938" 

00'00.040 " 
00'03.71 9 " 
00'03.759" 

00'00.032 " 
00'03.782 " 
00'03.814" 

00'00.094 " 
00'03.891 " 
00'03.985" 

Trim 

Loss - 
31 

31 

31 

31 

31 

31 

8 

8 

8 

8 

8 

8 

162 
Implementing artificial intelligence search merhods to solve constrained two- 
dimensional guillotinscut cutting stock problems 



Problem 

P8 

Algorithm 

50% L Sub 
PSSP 
Total 

40% L Sub 
PSSP 
Total 

30% L Sub 
PSSP 
Total 

50% W Sub 
PSSP 
Total 

40% W Sub 
PSSP 
Total 

30% W Sub 
PSSP 
Total 

Processing 

Time 

00'00.484 " 
00'04.297 " 
00'04.781" 

00'00.094 " 
00'04.515 " 
00'04.609" 

00'00.001 " 
00'04.406 " 
00'04.407" 

00'00.141 " 
00'04. I56 " 
00'04.297" 

00'00.047 " 
00'04.109 " 
00'04.156" 

00'00.047 " 
00'04.359 " 
00'04.406" 

Fable 7.6: 

Trim 

Loss 

I 
Results for other partial area: 

The results in table 7.6 show that the 50% W Sub (t,(0.5).(~# dimension 

performs well as well as the 40% W Sub (t,(0.4).(w) dimension. It is 

therefore recommended that one of these two dimensions be used for the 

sub-problem dimensions when using the PSSP algorithm. 

7.2.6 Normalized results 

To summarize the results of sections 7.2.1 - 7.2.5, a table consisting of the 

original values for the number of generated nodes (N), the number of stored 

nodes (L) and the execution times for all problem instances (P) will be given 

in table 7.7. Table 7.8 gives normalized results using the AWA algorithm's 

results as the norm. 

Implementing artificial intelligence search methods to solve constrained two- 
dimensional guillotine-cut cutting stock problems 



Problem 

'1 

'2 

'3 

'4 

Algorithm 

AWA 

AWA 

SAWA 

AWAM 

MAWAM 

AWAM 

SAWAM 

PSSP 

AWA 

AWA 

SAWA 

AWAM 

MAWAM 

AWAM 

SAWAM 

PSSP 

AWA 

AWA 

SAWA 

AWAM 

MAWAM 

AWAM 

SAWAM 

PSSP 

AWA 

AWA 

SAWA 

AWAM 

MAWAM 

AWAM 

SAWAM 

PSSP 

Processing 

Time 

00'03.33" 

00'03.33" 

00'03.30" 

00'02.1 1 " 

00'02.1 1 " 

00'02.1 1 " 

00'02.01" 

00'02.1 1" 

01 '49.90" 

00'45.80" 

00'45.63" 

00'14.09" 

00'12.47" 

00'05.88" 

00'05.83" 

00'05.82" 

02'09.90" 

02'1 1.20" 

02'09.22" 

00'34.09" 

00'31.62" 

00'24.83" 

00'23.92" 

00'24.28" 

02'17.30" 

00'43.53" 

00'40.67" 

02'38.90" 

00'25.95" 

00'08.63" 

00'08.23" 

00'08.22" 

~~ ~ 

Trim 

Loss - 
0 

0 

0 

0 

0 

0 

0 

0 

29 

29 

29 

29 

29 

29 

29 

29 

43 

43 

43 

43 

43 

43 

43 

43 

31 

31 

31 

31 

31 

31 

31 

31 - 
164 

Implementing artificial intelligence search methods to solve constrained two- 
dimensional guillotine-cut cutting stock problems 



Algorithm 

AWA 

AWA 

SAWA 

AWAM 

MAWAM 

AWAM 

SAWAM 

PSSP 

AWA 

AWA 

SAWA 

AWAM 

MAWAM 

AWAM 

SAWAM 

PSSP 

AWA 

AWA 

SAWA 

AWAM 

MAWAM 

AWAM 

SAWAM 

PSSP 

AWA 

AWA 

SAWA 

AWAM 

MAWAM 

AWAM 

SAWAM 

PSSP 

7 7.7: 

165 
Implementing artificial intelligence search methods to solve constrained two- 
dimensional guillotine-cut cuffing stock problems 

Processing 

Time 

00'00.18" 

7 

- 

- 

- 

- 

Summary of results 

Trim 

Loss - 
0 



Problem Algorithm rL 

166 
Implementing artificial intelligence search methods to solve constrained two- 
dimensional guillotinscut cutting stock problems 

fi 

0 

Processing 

Time 

1.000 

Trim 

Loss 

0 

N 

1.000 

L 

1.000 



Problem Algorithm E Time 

1 .ooo 

Implementing artificial intelligence search methods to solve constrained two- 
dimensional guillotine-cut cutting stock problems 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.02 

0.02 

0.02 

0.02 

0.02 

0.02 

0.02 

0.02 

h e d  results 

1.000 

0.996 

1.000 

1.000 

1.000 

0.996 

1.000 

1.000 

1.000 

0.965 

0.772 

0.856 

0.856 

0.822 

0.856 

1.000 

0.518 

0.511 

0.110 

0.222 

0.124 

0.124 

0.119 

1.000 

0.530 

0.526 

0.041 

0.135 

0.075 

0.075 

0.070 

using the 

1.000 

0.971 

1.000 

1.000 

1.000 

0.971 

:.OOO. 

1.000 

1.000 

0.913 

0.799 

0.866 

0.866 

0.781 

0.866 

1.000 

0.920 

0.912 

0.355 

0.452 

0.409 

0.409 

0.403 

1.000 

0.991 

0.987 

0.182 

0.323 

0.309 

0.309 

0.343 

AWA algorithm 

1 .ooo 
0.944 

1 .ooo 
1 .ooo 
1 .ooo 
0.944 

1.300 

1 .ooo 
1 .ooo 
0.971 

0.796 

0.842 

0.842 

0.822 

0.842 

1 .OOO 

0.507 

0.494 

0.119 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

8 

8 

8 

8 

0.221 

0.129 

0.129 

0.128 

8 

8 

8 

8 

1 .ooo 
0.544 

0.532 

0.043 

0.135 

0.078 

0.076 

0.073 

34 

34 

34 

34 

34 

34 

34 

34 

as the norm] 



The original values are then converted to normalized values, using the AWA 

algorithm's results as the norm. The formula to calculate the normalized 

values are given below: 

normalized value = Any algorithm's value /A WA value 

The normalized values are given in table 7.8. The normalized results show 

that the PSSP, AWAM and SAWAM algorithms are three of the best- 

performing algorithms. It should be noted that symmetrical duplicate removal 

could also be added to the PSSP algorithm, which wi!! effectively enhance 

the PSSP algorithm even more. 

7.2.7 lncreasina the beta (81 value 

In chapter 6, section 6.5.2, pages 133-136, a fractional increase value for 

beta was calculated. This value will now be used in the solving process to 

modify the value of beta whenever an optimal solution is not found with a 

beta value of 0.00. Table 7.9 summarizes the results found when using the 

increase fraction with the AWA algorithm. In the same table, the results 

obtained by solving the problems with a constant beta increase value of 0.01 

are also displayed. 

It should be noted that for this example the AWA algorithm was used, but it 

could be substituted with any one of the other algorithms that were tested in 

sections 7.2.1 to 7.2.5. 

168 
Implementing artificial intelligence search methods to solve constrained two- 
dimensional guillotine-cut cutting stock problems 



Problem 

'I 

'2 

'3 

'4 

Algorithm 

AWA 

AWA(Con- 

stant beta 

increase) 

TOTAL 

AWA(Frac- 

tional beta 

increase) 

TOTAL 

AWA(Con- 

stant beta 

increase) 

TOTAL 

AWA(Frac- 

tional beta 

increase) 

TOTAL 

AWA(Con- 

stant beta 

increase) 

TOTAL 

AWA(Frac- 

tional beta 

increase) 

TOTAL 

Processing 

Time 

00'03.33 " 

00'03.19 " 

00'18.81 " 

01'49.90 " 

02'1 1 .SO" 

00'03.19 " 

00'20.33 " 

00'23.52" 

00'01.60 " 

00'22.12 " 

02'09.90 " 

02'33.62" 

00'01.60 " 

00'45.41 " 

02'20.13 " 

03'07.14" 

00'03.45 " 

00'18.24 " 

02'17.30 " 

02'38.99" 

00'03.45 " 

00'04.67 " 

00'29.45 " 

00'37.62" 

Trim 

Loss 

0 

520 

379 

29 

520 

29 

748 

421 

43 

748 

31 1 

43 

280 

280 

31 

280 

280 

31 

169 
Implementing artificial intelligence search methods to solve constrained two- 
dimensional guillotine-cut cutting stock problems 



Problem I Algorithm R N L I Processing Trim 

stant beta 

increase) 

TOTAL 

AWA(Frac- 

tional beta 

increase) 

TOTAL 

stant beta 

increase) 

TOTAL 

AWA(Frac- 

tional beta 

increase) 
TOTAL 

onstant versus fraction 

Time 

00'00.18 " 

00'05.44 " 

00'07.78 " 

352 0029.48 " 

551 00'37.26" 

Loss 

0 

The results in table 7.9 show that in some cases the constant increase of the 

beta value performs better, and in other cases the fractional increase fares 

better. A possible reason for this is that the beta values required to find the 

optimal solutions for these problem instances are small. As is mentioned in 

chapter 6, section 6.5.2, pages 133-136, if a problem requires a large beta 

value to generate the optimal solution, a lot of unnecessary work might be 

done while the value of beta is gradually increased with a constant value of 

0.01 (or some other arbitrary value). This method is therefore a good 

alternative to a constant increase in the value of beta. 

Implementing artificial intelligence search methods to solve constrained two- 
dimensional guillotine-cut cutting stock problems 



7.2.8 Industw-sized ~ rob lem instances 

Throughout the thesis, reference has been made to the eight C2DGC 

problems presented in chapter 5, section 5.1, table 5.1, page 56. These 

problem instances are all small textbook-sized problems that are easy to 

solve and are useful for research purposes since many authors refer to them 

in papers. (Daza Ual, 1995, Christofides and Whitlock (1977)). These 

problems, however, do not show whether the Wang and modified Wang 

methods scale well when used to solve large industry-sized problem 

instances. This last section in the numerical test chapter provides some 

results obtained from solving these larger problem instances with the Wang 

and modified Wang methods. The problem instances were obtained from a 

large local corporation (PGGlass Pty. Ltd.) that cuts and sells glass sheets. 

Table 7.10 summarizes these problem instances. 

Stock p l t c  lenm I Demand rectangles' length 0, width @f) I 

IT* 7JQ Set of four CZDCiC moblem I 

These problem instances were solved with the algorithm based on Wang's 

first algorithm with Vasko's improvements (AWA) as well as with the 

algorithm based on the modified Wang method with Daza's heuristic function 

Implementing artificial intelligence search methods to solve constrained two- 
dimensional guillotinecut cutting stock problems 



(MAWAM). The results obtained from these numerical tests are summarized 

in table 7.1 1. 

Problem Algorithm zfz 
I TOTAL 

MAWAM Table 

MAWAM 

TOTAL 

MAWAM Table 

MAWAM 

TOTAL 

Time 

00'01.203 " 

00'29.190 " 

04'40.600 " 

05'10.993" 

Loss 

1 928 960 

938 000 

96 525 

2 619 200 

2 102 225 

96 525 

4 144 620 

2 087 964 

2 087 964 

2 087 964 

327 586 

327 586 

4 144 620 

4 144 620 

4 144 620 

4 144 620 

327 586 

327 586 

172 
Implementing artificial intelligence search methods to solve constrained two- 
dimensional guillotine-cut cutting stock problems 



Problem 

'G3 

PG4 

Algorithm 

AWA 

TOTAL 

MAWAM Table 

MAWAM 

TOTAL 

AWA 

TOTAL 

MAWAM Table 

MAWAM 

TOTAL 

Processing 

Time 

00'00.218 " 

Trim 

Loss 

1 466 700 

624 300 

624 300 

517 975 

517 975 

517 975 

517 975 

289 200 

242 300 

I 466 700 

1 041 900 

1 041 900 

1 041 900 

517 975 

517 975 

517 975 

289 200 

242 300 

336 810 

12 900 

982 000 

12 900 ' 
Numerical results for 

When studying the results in table 7.11, it becomes obvious that the 

MAWAM (modified Wang method) does not fare well for problem instances 

larger problem instancd 

Implementing artificial intelligence search methods to solve constrained two- 
dimensional guillotinecut cutting stock problems 



with large stock sheets. The reason for this is that if, for instance, a lookup 

table of underestimates must to be calculated for problem PG2, one 

underestimates for each dimension within the stock sheet must be 

calculated. This translates to a staggering 2550 x 3210 = 8 185 500 

underestimates! Table 7.11 shows that to compute these values for PG2, 

approximately 1792 seconds (29'52.00") of processing time is required. To 

completely solve problem PG2 with the AWA method, requires but 568.36 

seconds (09'28.36"). This shows that the MAWAM method does not scale 

well and its performance will deteriorate even further for larger stock sheets. 

It should be noted, though, that when the underestimates have been 

calculated, the solving process completes very fast with the MAWAM 

algorithm (much faster than with the AWA algorithm). Therefore, if a method 

could be devised to calculate underestimates quicker, the MAWAM method 

might scale better. Chart 7.9 shows how the MAWAM algorithm's 

performance gets worse as the size of the stock sheet increases. 

[chart 7.9: Scalability of the MAWAM method 

I 0 2000000 4000000 6000000 8000000 10000000 

Stock Sheet Area 

. AWA 
MAWAM 

Implementing artificial intelligence search methods to solve constrained two- 
dimensional guillotine-cut cutting stock problems 



7.2.8.1 PSSP alaorithm with initial underestimates of zero 

As shown in chart 7.9, the modified Wang method's (MAWAM) lookup table 

is calculated at a great computational cost for problem instances with large 

stock sheets. This becomes such a bother that the original Wang method 

could rather be used for such problem instances. Although the original 

Wang method fares better for such problems than the modified Wang 

method, it still requires a great deal of processing time to reach an optimal 

solution. A possible solution to this problem is to use the PSSP algorithm to 

solve these instances. However, instead of utilizing a two-dimendona! 

knapsack function (Gilmore & Gomory) to calculate initial underestimates 

for the MAWAM method, set all the values in the lookup table initially to 

zero. This then eliminates the cost incurred by calculating underestimates, 

and with the PSSP algorithm, builds found by the original Wang method will 

be used as underestimate and also be propagated further. 

Table 7.12 displays the results obtained by solving the four larger, industry 

sized problems (PGl - PG4) with the AWA, MAWAM and PSSP (with initial 

underestimates of zero) algorithms: 

175 
Implementing artificial intelligence search methods to solve constrained two- 
dimensional guillotinecut cutting stock problems 



Problem 

'GI 

'G2 

Algorithm 

AWA 

TOTAL 

MAWAM Table 
MAWAM 

TOTAL 

PSSP 

TOTAL 
AWA 

TOTAL 

MAWAM Table 
MAWAM 

TOTAL 

PSSP 

TOTAL 

Processing Trim 

Time 

00'01.203 " 1 928 960 
00'29.190 " 938 000 

176 
Implementing artificial intelligence search methods to solve constrained two- 
dimensional guillotine-cut cutting stock problems 



Problem 

3G3 

'G4 

Algorithm 

4WA 

rOTAL 

UWAM Table 
vlAWAM 

I OTAL 

'SSP 

'OTAL 

MWAM Table 
AAWAM 

'OTAL 

'SSP 

'OTAL 
-tEiEiz 

- 
S 

- 
0.oc 
0.01 
0.0; 
0.02 
0.04 
0.0: 
O.Of 
0.07 
0.08 

0.OC 
0.01 
0.02 
0.02 
0.04 
0.0: 
0.06 
0.07 
0.08 

0.00 
0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
- 
0.00 
0.01 

0.00 
0.01 

0.00 
0.01 
- 
SSP a1 - 

N 

916 
4 593 
11 546 
41 148 
108 146 
185 157 
251 763 
383 881 
607 608 

1 594 758 

241 
335 
335 
496 

1 654 
12 901 
34 922 
63 928 
114 403 
229 21 5 

427 
3311 
7 290 
14 918 
33 244 
76 882 
129 141 
205 01 5 
254 168 
724 396 
18 147 

1 227 340 
1 245 487 

425 

62 659 

9 340 
480 291 
489 631 

l h  with initii 

Processing 

Time 

Trim 

Loss 

1 466 700 
624 300 
624 300 
517 975 
517 975 
517 975 
517 975 
289 200 
242 300 

1 466 700 
1041 900 
1041 900 
1041 900 
517 975 
517 975 
517 975 
289 200 
242 300 

1 466 700 
1 041 900 
624 300 
624 300 
517 975 
517 975 
517 975 
289 200 
242 300 

336 810 
12 900 

982 000 
12 900 

12 900 

Implementing artificial intelligence search methods to solve constrained two- 
dimensional guillotinecut cutting stock problems 



l ~ h a r t  7.10: Scalability of the PSSP algorithm with initial1 

I I underestimates of zero I 

0 2000000 4000000 6000000 8000000 10000000 

Stock Sheet Area 

Chart 7.10 shows that the PSSP algorithm with initial underestimates of zero 

does indeed scale well for problem instances where larger stock sheets are 

concerned. 

7.3 Summary 

Chapter 7 was an exciting path of discovery, and it showed that the theoretical 

foundations of artificial intelligence search methods are well laid. Furthermore, 

the new PSSP algorithm as proposed by the author was implemented and the 

results obtained from solving sample problems with it seem promising, 

especially for larger, industry-sized problem instances. Increasing the value of 

beta by an arbitrary value and the scalability of the modified Wang method 

were also investigated. 

178 
Implementing artificial intelligence search methods to solve constrained two- 
dimensional guillotine-cut cutting stock problems 



Chapter 8 concludes the thesis by giving a short summary of how the 

objectives set for the study were reached and it also discusses the 

possibilities that exist for further study. 

Implementing artificial intelligence search methods to solve constrained two- 
dimensional guillotine-cut cutting stock problems 

-- -- 



CHAPTER 8: Conclusion 

8.1 Introduction 

The research within this thesis concentrated on the investigation of exact 

methods and algorithms that are capable of solving C2DGC problem 

instances. Firstly, a theoretical study was undertaken concerning artificial 

intelligence search methods. Secondly, existing exact problem solving 

approaches for C2DGC problems were examined, with emphasis on methods 

proposed by Wang (1983), Vasko (1989), Oliveira and Ferreira (1990) and 

Daza et (1995). These existing methods were then combined with different 

artificial intelligence search methods. 

Through a theoretical study and empirical tests it was found that the Wang 

method is effective in solving C2DGC problem instances, but usually it does a 

great deal of unnecessary work and generates redundant patterns if the 

choice and management of the beta (R) value are not handled with care. Even 

with a meticulously conceived strategy for handling the beta value and 

implemented improvements made by Vasko to the original Wang method, the 

Wang method is still not efficient in its calculation of solutions. 

Oliveira and Ferreira (1990) conceived a method that they called the modified 

Wang method (WAM), which utilised underestimates to guide the search 

process. These underestimates were based on work done by Gilmore and 

Gomory (1966), where an unbounded knapsack problem is solved using a 

dynamic programming procedure, resulting in underestimates to be used by 

the WAM method. By solving small-sized textbook problems it was shown that 

the WAM method was very effective and efficient in solving C2DGC problems 

as opposed to the Wang method. 

Algorithmic enhancements undertaken in the thesis included a method that 

strived to find more informed heuristic functions for the WAM method (PSSP 

algorithm). This resulted in a more efficient WAM algorithm as the search 

180 
Implementing artificial intelligence search methods to solve constrained two- 
dimensional guillotine-cut cutting stock problems 



space was pruned with more accuracy. However, further empirical work on a 

system developed for this study using industry-sized problem instances 

exposed a weakness in the WAM and PSSP methods. As the stock sheet size 

became larger, the number of underestimates that needed to be calculated by 

the Gilmore and Gomory method became unrealistically high. As a result the 

calculation of the underestimate lookup table turned into a daunting task, 

translating into a method that did not scale well as problem sizes increased. 

For this reason, the PSSP algorithm was enhanced, eliminating the need for 

the lookup table calculation by starting with initial underestimates of 0. This 

algorithm was tested against the Wang (WA) and modified Wang (WAM) 

algorithms and it was showed that the PSSP algorithm using underestimates 

of 0 scaled well as the problem sizes increased. 

Further algorithmic enhancements included the definition of a waste gap as 

well as methods to determine the waste gap by using upper bounds. The first 

method used data as generated by the Wang method in the rectangle building 

process as the problem was solved. This data was then refined through a 

propagation process to determine an upper bound for the waste gap. 

Secondly, a beam search algorithm was used to generate a solution quickly 

(which was not necessarily exact but acceptable) for a C2DGC problem 

instance and then use that solution as an upper bound for the waste gap. 

Lastly, generating initial values for beta and handling these values as 

searches were undertaken with the algorithms based on the Wang and 

modified Wang methods, were undertaken. Firstly, a method to calculate 

initial beta values using the table of underestimates as generated for the 

WAM method was devised. Secondly, a fractional increase in the value of 

beta was proposed as a search was done, as opposed to a steady increase of 

for example 0.01 in the value of beta. 

At the beginning of the thesis, in chapter one, five main objectives for the 

study were identified. These objectives form the foundation of the study and in 

section two of this chapter, a summary of how these objectives were reached, 

181 
Implementing artificial intelligence search methods to solve constrained two- 
dimensional guillotine-cut cutting stock problems 



is given. Section three highlights new research, new ideas and new concepts 

that were introduced in the thesis. The fourth section deals with new research 

opportunities that presented themselves during the course of the study. 

8.2 Obiectives of the study 

The objectives can be summarised as follows: 

9 Gaining an understanding of what artificial intelligence search 

methods are and how they functlcn; 

9 Gaining an understanding of what the C2DGC problem models and 

algorithms entail; 

9 Developing algorithms that solve C2DGC problems; 

9 Investigate the effectiveness and efficiency of these algorithms; and 

9 To develop an integrated software package implementing these 

algorithms. 

Each individual objective will now be discussed to show how it was reached. 

8.2.1 Gainina an understandina of what artificial intelliaence search 

methods are and how they function 

This objective was achieved by firstly defining the concept artificial 

intelligence (chapter 2, section 2.1.1) as well as search methods (chapter 2, 

section 2.2.2). Chapters 3 and 4 dealt exclusively with search methods. 

Chapter 3 discussed uninformed artificial intelligence search methods and 

chapter 4 discussed informed artificial intelligence search methods. These 

uninformed and informed search methods were then individually analysed 

and evaluated. The effectiveness and efficiency of each method was 

measured in terms of four criteria, namely: 

9 Completeness: is the method guaranteed to find a solution when one 

exists for the problem? 

182 
Implementing artificial intelligence search methods to solve constrained two- 
dimensional guillotinecut cutting stock problems 



> Time complexity: how long does it take to find a solution? 

> Space complexity: how much memory does it need to perform the 

search? 

> Exactness: does the strategy find the highest-quality solution when 

there are several different solutions? 

Studying this material provided us with a better understanding of the 

functioning of artificial intelligence search methods. 

9.2.2 Gainina an understandina of what the C2DGC problem models 

and algorithms entail 

This objective was reached by firstly giving a theoretical definition (chapter 2, 

section 2.2.3) as well as a mathematical formulation (chapter 2, section 

2.2.3.1) of the problem. Furthermore, research efforts related to the C2DGC 

problem were listed in chapter 2, section 2.2.3.2 as well as a discussion on 

previous research done on the C2DGC problem (chapter 2, section 2.3). 

Throughout chapters 3 and 4, where the different artificial intelligence search 

methods were discussed, reference was made to the effectiveness and 

efficiency of those algorithms when solving C2DGC problems. 

8.2.3 Developing algorithms that solve C2DGC ~roblems 

The process of algorithm development was started in chapter 5, sections 5.2 

and 5.3, where different approaches were identified by which the C2DGC 

problem might be solved. An appropriate approach was chosen, namely the 

Wang method and section 5.2.1 dealt with this method. Concepts connected 

to this method were also discussed, such as trim loss (chapter 5, section 

5.2.1.2) and acceptable waste percentages (chapter 5, section 5.2.1.3). 

Furthermore, the modified Wang method was also discussed as a possible 

method from which algorithms could be derived. The PSSP algorithm that 

was developed by the author, was introduced in chapter 6 (section 6.3.1). 

183 
Implementing artificial intelligence search methods to solve constrained two- 
dimensional guillotinecut cutting stock problems 



8.2.4 lnvestiaate the effectiveness and efficiencv of these alaorithms 

Chapter 7 accomplished this task in that the implemented algorithms were 

used to solve a set of 8 C2DGC problem instances. Daza (Daza et at, 

1995:642) presented these problem instances in their article and by solving 

these problems data was recorded. Tables and graphs were derived from the 

data, which showed the effectiveness and efficiency of the derived 

algorithms, and it also highlighted which algorithms perform better than 

others. 

8.2.5 To develop an intearated software packaqe implementina these 

alaorithms 

The fourth objective could only have been achieved by doing empirical work 

using some form of computer program to solve the given problem instances. 

The fifth objective aims at transforming the computer program that had to be 

written into an integrated piece of sofhvare that is both useful and 

professionally engineered. This software can be downloaded from the 

Internet along with a complete user manual at the following URL: 

http://www.pu k.ac.za/studentelewe/scientiae/ieb/l st11 st. htm 

8.3 New research 

New concepts have been introduced in the thesis. These include: 

9 The PSSP (Partial Stock Sheet Propagation) algorithm was 

developed that updates the modified Wang lookup table to provide 

better underestimates of internal trim loss. It was proven that the 

PSSP algorithm using the updated WAM lookup table will always 

search through a smaller space than the standard WAM method 

(chapter 6, section 6.3.1); 

184 
Implementing artificial intelligence search methods to solve constrained two- 
dimensional guillotine-cut cutting stock problems 



A beam search algorithm was developed, implemented and tested. 

Tests revealed that it was difficult to manage the beam width and 

the beta parameters simultaneously resulting in a search method 

that generates mostly nonexact solutions. Therefore, the beam 

search was used to generate upper bounds in the definition of the 

waste gap, as discussed in chapter 6 (chapter4, section 4.2.4 and 

chapter 6, section 6.4.2); 

A new method was devised to calculate an initial lower bound on 

the value of .beta by utilizing the last entry in the modified Wang 

lookup table. This metficd is simple, yet very effective, and requires 

very little extra processing time (chapter 6, section 6.5.1); 

An alternative method to fractionally increase the value of beta was 

devised (chapter 6, section 6.5.2); 

A new strategy to handle the beta value was presented that 

manages the waste gap and helps in determining the next beta 

value (chapter 6, section 6.4); and 

Finally, experiments were conducted with some industry-sized 

problems that exposed weaknesses in the WAM method. By 

altering the PSSP algorithm slightly in order for it to use initial 

underestimates of 0, the need to calculate a lookup table was 

eliminated. Then these underestimates were updated with data 

obtained by solving a portion of the original problem instance with 

the Wang method. This was shown to be an effective and efficient 

substitution for underestimates as calculated by the Gilmore and 

Gomory two-dimensional knapsack function. In fact, the PSSP 

method with initial underestimates of 0 scaled very well for larger 

problem instances as compared to the WAM method. 

8.4 Further research 

It has been established, through the numerical tests done in chapter 7, that 

the PSSP algorithm is indeed a plausible algorithm with which C2DGC 

problems can be solved, and therefore further research will center on ways to 

185 
Implementing artificial intelligence search methods to solve constrained two- 
dimensional guillotine-cut cutting stock problems 



refine the search. In addition, new algorithms have been developed which 

adds new data and facts to the scientific community's pool of knowledge. 

Furthermore, a better heuristic function could be derived to calculate a more 

accurate value for h. Concepts introduced by Daza are a good starting 

point and refinements to h should also improve on the algorithms' execution 

time as well as the number of generated and stored nodes. 

Implementing artificial intelligence search methods to solve constrained two- 
dimensional guillotine-cut cutting stock problems 



Bibliography 

Bagchi, A. Mahanti, A. 1983. Search algorithms under different kinds of 

heuristics: A comparitive study. Journal of the ACM, 30: 1-21. 

Baker, B.M. 1999. A spreadsheet modelling approach to the assortment 

problem. European Journal of Operational Research, 114: 83-92. 

Barr, A. Feigenbaum, E.A. 1981. The handbook of artificial intelligence. 

Reading, Massachusetts. Addison-Wesley Publishing Company Inc. 

Beasley, J.E. 1985. Algorithms for unconstrained two-dimensional guillotine 

cutting. Journal of the Operational Research Society, 36: 297-306. 

Bortfeldt, A. Gehring, H. 2001. A hybrid genetic algorithm for the container 

loading problem. European Journal of Operational Research, 131: 143-161. 

Bundy, A. 1997. Artificial Intelligence techniques: a comprehensive 

catalogue. Fourth, revised edition. Springer-Verlag Berlin Heidelberg, Berlin. 

Chao, H. Harper, M.P. Quong, R.W. 1995. A tight lower bound for optimal 

bin packing. Operations Research Letters, 18: 133-138. 

Chamiac, E. McDermott, D. 1985. Introduction to artificial intelligence. 

Addison-Wesley, Reading, Massachusetts. 

Christofides, N. Hadjiconstantinou, E. 1995. An exact algorithm for 

orthogonal 2-D cutting problems using guillotine cuts. European Journal of 

Operational Research, 83(1): 21-38, 18 May. 

Christofides, N. Whitlock, C. 1977. An algorithm for twodimensional cutting 

problems. Operations Research, 25(1): 30-44. 

187 
Implementing artificial intelligence search methods to solve constrained two- 
dimensional guillotine-cut cutting stock problems 



Ciesielski, V. 2001. Artificial Intelligence Search. Department of Computer 

Science, RMIT University. 

[Available on the Internet:] 

http:llwww.cs.rmit.edu.auIAl-Search1 

Cung, V. Hifi, M. Le Cun, B. 2000. Constrained twodimensional cutting 

stock problems: a best-first branch-and-bound algorithm. International 

Transactions in O~erational Research, 7(3): 185-210, 1 May. 

Daza, 'J.P. De P,I'mrenga, A.G. De Diego, J. 1995. Exact solutions for 

constrained two-dimensional cutting problems. EuroDean Journal of 

O~erations Research, 84(3): 633-644,3 August. 

Eppen, G.D. Gould, F.J. Schmidt, C.P. Moore, J.H. Weatherford, L.R. 1998. 

Introductory management science. Fifth, International Edition. Prentice Hall 

Inc., Upper Saddle River, New Jersey. 

Fayard, D. Zissomopoulos, V. 1995. An approximation algorithm for solving 

unconstrained two-dimensional knapsack problems. Euro~ean Joumal of 

O~erational Research, 84(3): 618-632, August. 

Gau, T. Wascher, G. 1995. CUTGENI: A problem generator for the 

Standard One-Dimensional Cutting Stock Problem. Euro~ean Journal of 

O~erational Research, 84(3): 572-579, August. 

Gilmore, P.C. Gomory, R.E. 1966. The theory and computation of knapsack 

functions. O~erations Research, 15:1045-1075. 

Haugeland, J., editor. 1985. Artificial intelligence: The very idea. MIT Press, 

Cambridge, Massachusetts. 

188 
Implementing artificial intelligence search methods to solve constrained two- 
dimensional guillotine-cut cutting stock problems 



Heckmann, R. Lengauer, T. 1998. Computing closely matching upper and 

lower bounds on textile nesting problems. Euro~ean Journal of O~erational 

Research, $08: 473-489. 

Held, M. Karp, R.M. 1971. The travelling salesman problem and minimal 

spanning trees.: Part II. Mathematical Proaramming, 1: 6-25. 

Herz, J.C. 1972. A recursive computing procedure for two-dimensional stock 

cutting. IBM Journal of Research and Develo~ment, 16:462-469. 

Hifi, M. 1994. Study of some combinatorial optimisation problems: cutting 

stock, packing and set covering problems. PhD thesis, University of Paris, 1 

Pantheon-Sorbonne. 

Hifi, M. 1997. An improvement of Viswanathan and Bagchi's exact algorithm 

for constrained two-dimensional cutting stock. Computers & Operations 

Research, 24(8): 727-736. 

Hinxman, A.I. 1976. Problem reduction and the two-dimensional trim-loss 

problem. Artificial Intelligence and Simulation: Summer Conference, 

University of Edinburgh, 158-165. 

Kendall, G. 2000. Applying Meta-Heuristic Algorithms to the Nesting Problem 

Utilising the No Fit Polygon. Nottingham: University of Nottingham. (Thesis - 
D.Phi1.) 242 p. 

Korf, R.E. 1996. Artificial Intelligence Search Algorithms. Computer Science 

Department, University of California, Los Angeles. 

[Available on the Internet:] 

htto://citeseer,ni.nec.com/92777.htrnl 

Kumeil, R. 1990. The age of intelligent machines. MIT Press, Cambridge, 

Massachusetts. 

189 
Implementing artificial intelligence search methods to solve constrained two- 
dimensional guillotinscut cutting stock problems 



Li, H. Tsai, J. 2001. A fast algorithm for assortment optimisation problems. 

Computers & O~erations Research, 28: 12451252. 

Luger, G.F. Stubblefield, W.A. 1991. Artificial Intelligence: structures and 

strategies for complex problem solving. Second edition. The 

BenjaminICummings Publishing Company Inc, Redwood City, California. 

Morabito, R.N. Arenales, M.N. Arcaro, V.F. 1992. An And-Or-graph 

approach for two-dimensional cutting problems. European Journal of 

O~erational Research, 58:263-271. 

Morabito, R. Garcia, V. 1998. The cutting stock problem in a hardboard 

industry: a case study. Com~uters & Operations Research, 25(6): 469-485, 

June. 

Nilsson, N. 1980. Principles of artificial intelligence. Springer-Verlag, Berlin. 

Oliveira, J.F. Ferreira, J.S. 1990. An improved version of Wang's algorithm 

for two-dimensional cutting problems. Euro~ean Journal of O~erational 

Research, 44: 256-266. 

Pearl, J. 1984. Heuristics. Addison Wesley, New York. 

Polya, G. 1945. How to solve it. Princeton: Princeton University Press. 

Preiss, B.R. 1999. Data structures and algorithms with object-oriented 

design patterns in Java. John Wiley & Sons, 605 Third Avenue, New York. 

Rich, E. Knight, K. 1991. Artificial Intelligence. International Edition. McGraw- 

Hill Book Co, Singapore. 

Russel, S. Nowig, P. 1995. Artificial Intelligence: a modern approach. 

Prentice Hall, New Jersey. 

190 
Implementing artificial intelligence search methods to solve constrained two- 
dimensional guillotinscut cutting stock prob1ems 



Schalkoff, R.J. 1990. Artificial intelligence: An engineering approach. 

McGraw-Hill, New York. 

Sen, A. Bagchi, A. 1989. Fast recursive formulations for best-first search that 

allow controlled use of memory. Procedinqs of the IJCAI-89. International 

Joint Conference on Artificial Intelligence, 297-302. 

Vasko, F.J. 1989. A computational improvement to Wang's two-dimensional 

cutting stock algorithm. Computers and industrial enaineering, 16: 109-1 15. 

Viswanathan, K.V. Bagchi, A. 1993. Best-first search methods for 

constrained two-dimensional cutting stock problems. Operations Research, 

41 (4): 768-776, July-August. 

Wang, P.Y. 1983. Two algorithms for Constrained Two-Dimensional Cutting 

Stock Problems. Operations Research, 31(3): 573-586, May-June. 

Winston, P.H. 1977. Artificial Intelligence. Addison-Wesley Publishing 

Company, Inc. Philippines. 

Winston, P.H. 1992. Artificial Intelligence: Third Edition. Addison-Wesley 

Publishing Company, Reading, Massachusetts. 

Yuret, D. De la Maza, M. 1993. Dynamic Hill Climbing: Overcoming the 

limitations of optimisation techniques. Massachusetts Institute of Technology, 

Cambridge. 

[Available on the Internet:] 

htt~:llciteseer.ni.nec.com/vuret93dvnamic.html 

Zissimopoulos, V. 1985. Heuristic methods for solving (un)constrained two- 

dimensional cutting stock problems. Methods of Operations Research, 49: 

345-357. 

191 
Implementing artificial intelligence search methods to solve constrained two- 
dimensional guillotine-cut cutting stock problems 






