
DISTRIBUTED FAULT DETECTION AND

DIAGNOSTICS USING ARTIFICIAL

INTELLIGENCE TECHNIQUES

Dissertation submitted in fulfilment of the requirements for the degree

Magister Ingeneriae at the Potchefstroom campus of the

North-West University

A. Lucouw, B.Eng

12763349

Supervisor: Prof. C.P. Bodenstein

May 2009

Distributed fault detection and diagnostics using artificial intelligence techniques 2/101

Declaration

I hereby declare that all the material incorporated in this dissertation is my own

original, unaided work except where specific reference is made by name or in the form

of a numbered reference. The words herein have not been submitted for a degree at

another university.

Signed: .

Alexander Lucouw

Distributed fault detection and diagnostics using artificial intelligence techniques 3/101

Distributed fault detection and diagnostics using artificial intelligence techniques 4/101

Acknowledgements

I would firstly like to thank and acknowledge my heavenly Father and the following people and

institutions, in no particular order, for their contributions during the course of this project:

• Mercia Schutte

• Prof. C.P. Bodenstein

• Prof. G. van Schoor

• Morné Neser

• Morné Pretorius

• Pierre Lucouw

• Susan Lucouw

• M-Tech Industrial

• PBMR

• THRIP

THE FEAR OF THE LORD IS THE BEGINNING OF WISDOM, AND THE
KNOWLEDGE OF THE HOLY ONE IS UNDERSTANDING.

Proverbs 9:10

Distributed fault detection and diagnostics using artificial intelligence techniques 5/101

Distributed fault detection and diagnostics using artificial intelligence techniques 6/101

Abstract

With the advancement of automated control systems in the past few years, the focus

has also been moved to safer, more reliable systems with less harmful effects on the

environment. With increased job mobility, less experienced operators could cause more

damage by incorrect identification and handling of plant faults, often causing faults to

progress to failures. The development of an automated fault detection and diagnostic

system can reduce the number of failures by assisting the operator in making correct

decisions. By providing information such as fault type, fault severity, fault location

and cause of the fault, it is possible to do scheduled maintenance of small faults rather

than unscheduled maintenance of large faults.

Different fault detection and diagnostic systems have been researched and the best

system chosen for implementation as a distributed fault detection and diagnostic

architecture. The aim of the research is to develop a distributed fault detection and

diagnostic system. Smaller building blocks are used instead of a single system that

attempts to detect and diagnose all the faults in the plant.

The phases that the research follows includes an in-depth literature study followed by

the creation of a simplified fault detection and diagnostic system. When all the aspects

concerning the simple model are identified and addressed, an advanced fault detection

and diagnostic system is created followed by an implementation of the fault detection

and diagnostic system on a physical system.

Keywords: Fault detection, Fault diagnostics, Artificial intelligence, Fault model bank, Robot

Opsomming

Die vooruitgang van geoutomatiseerde stelsels het die fokus verplaas na veiliger,

betroubaarder stelsels met ’n minder skadelike uitwerking op die omgewing.

Verhoogde werksvloeibaarheid, vaardigheidstekorte en ’n gebrek aan ervaring kan

Distributed fault detection and diagnostics using artificial intelligence techniques 7/101

lei tot die foutiewe identifikasie en hantering van diensonderbrekings deur minder

ervare operateurs. Die hantering van defekte by aanlegte kan tot grootskaalse

falings ontwikkel. Die ontwikkeling van ’n geoutomatiseerde defekopsporings- en

diagnostiese stelsel kan die voorkoms van diensonderbrekings minimaliseer deur

operateurs by te staan in besluitneming. Beter besluite kan geneem word aan die hand

van informasie oor die aard en omvang van die defek, sowel as die bepaling van die

posisie en oorsaak daarvan. Deur die gebruik van hierdie inligting kan geskeduleerde

instandhouding van gediagnoseerde klein defekte die onbeplande herstel van groot

defekte voorkom.

Verskeie defekopsporings- en diagnostiese stelsels is nagevors en die mees werkbare

stelsel vir verspreide defekopsporings- en diagnostiese ontwerp is gekies. Die

navorsings doelwit is die ontwikkeling van ’n verspreide defekopsporings- en

diagnostiese stelsel waarin verskeie kleiner boustene/dele eerder as ’n enkele stelsel,

gemik op die opspoor en diagnose van alle defekte by ’n aanleg, gebruik word.

Die navorsingsfases sluit ’n indiepte literatuurstudie in gevolg deur ’n vereenvoudigde

defekopsporings- en diagnostiese stelsel. Nadat alle relevante aspekte in dié model

geı̈dentifiseer en ontrafel is, is ’n meer gevorderde defekopsporings- en diagnostiese

stelsel geskep. Hierdie fase is met ’n bestudering van die optimaliseringsmoontlikhede

van die ontwerpte defekopsporings- en diagnostiese stelsel opgevolg.

Sleutelwoorde: Defekopsporing, Defekdiagnose, Kunsmatige intelligensie, Defekmodelbank,

Robot

Distributed fault detection and diagnostics using artificial intelligence techniques 8/101

Contents

Contents

List of Figures 13

List of figures . 14

1 Introduction 16

1.1 Background . 16

1.2 Problem statement . 17

1.3 Objectives . 18

1.4 Issues to be addressed . 18

1.4.1 Exploring fault detection and diagnostic techniques 18

1.4.2 Fault detection and diagnostics for a simple system 18

1.4.3 Fault detection and diagnostics for an advanced system 19

1.4.4 Fault detection and diagnostics for a physical system 19

1.5 Research methodology . 19

1.5.1 Exploring fault detection and diagnostic techniques 19

1.5.2 Fault detection and diagnostics for a simple system 20

1.5.3 Fault detection and diagnostics for an advanced system 21

1.6 Beneficiaries . 22

1.6.1 North-West University . 22

1.6.2 M-Tech Industrial, PBMR, THRIP 22

Distributed fault detection and diagnostics using artificial intelligence techniques 9/101

Contents

1.7 Cost . 23

1.8 Overview . 23

2 Fault detection and diagnostics 24

2.1 Approaches to fault detection . 25

2.1.1 Quantitative model-based . 25

2.1.2 Qualitative model-based . 26

2.1.3 Process history-based . 27

2.1.4 Hybrid methods . 28

2.2 Approaches to fault diagnosis . 28

2.2.1 Pattern recognition . 28

2.2.2 Fault model bank approach . 29

2.3 Desirable characteristics . 31

2.4 Faults . 32

2.4.1 Sources of error . 33

2.5 Summary . 35

3 Artificial intelligence 37

3.1 Artificial neural networks . 37

3.1.1 Multi-layer perceptron . 38

3.1.2 Time delay neural network . 40

3.1.3 Recurrent neural network . 41

3.1.4 Radial basis function networks . 42

3.2 Evolutionary algorithms . 43

3.2.1 Genetic algorithms . 43

3.3 Summary . 45

Distributed fault detection and diagnostics using artificial intelligence techniques 10/101

Contents

4 FDD on a linear model 46

4.1 Introduction . 46

4.2 Method . 46

4.2.1 Fault model bank . 47

4.2.2 Pattern recognition . 49

4.3 Results . 49

4.3.1 Pattern recognition . 52

4.3.2 Fault model bank . 53

4.4 Conclusion . 57

5 Advanced model 59

5.1 Introduction . 59

5.2 Active Magnetic Bearing . 60

5.2.1 Actuators . 61

5.2.2 Sensors . 61

5.2.3 Controller . 62

5.2.4 Power amplifier . 62

5.3 Method . 63

5.3.1 AMB model . 63

5.3.2 FDD system . 67

5.4 Results . 70

5.4.1 Effects of noise . 70

5.4.2 FDD performance . 72

5.5 Conclusion . 79

6 Physical system 81

Distributed fault detection and diagnostics using artificial intelligence techniques 11/101

Contents

6.1 Introduction . 81

6.2 Mission . 82

6.3 Method . 83

6.3.1 Neural network implementation 87

6.3.2 Noise in the intruder game . 88

6.4 Results . 89

6.5 Conclusion . 91

7 Conclusion 92

7.1 Objectives achieved . 95

7.2 Recommendations for future research . 95

References . 97

Bibliography 97

Appendices

A Data CD 100

A.1 Linear model simulation . 100

A.2 AMB simulation . 101

A.3 Physical system . 101

Distributed fault detection and diagnostics using artificial intelligence techniques 12/101

List of Figures

List of Figures

2.1 Detecting faults with a redundant system 24

2.2 Diagram of the pattern recognition approach 30

2.3 Diagram of the fault model bank approach 30

2.4 Representation of an abrupt fault and an incipient fault 33

3.1 Perceptron (neuron) . 38

3.2 Layered architecture of a neural network 40

3.3 The time delay neural network . 41

3.4 The Elman network . 42

3.5 Basic operation of genetic algorithm . 44

4.1 Distributed FDD setup using the fault model bank approach for a
system with two transfer functions in series 48

4.2 Collected FDD setup using the fault model bank approach for a system
with two transfer functions in series . 48

4.3 Distributed FDD setup using the pattern recognition approach for a
system with two transfer functions in series 50

4.4 Collected FDD setup using the pattern recognition approach for a
system with two transfer functions in series 50

4.5 Distributed pattern recognition (m = modelling error, f = fault, s =
settling time) . 54

Distributed fault detection and diagnostics using artificial intelligence techniques 13/101

List of Figures

4.6 Collected pattern recognition (m = modelling error, f = fault, s = settling
time) . 54

4.7 Distributed fault model bank (f1 = fault in plant 1, f2 = fault in plant 2) . 56

4.8 Collected fault model bank (f = fault in plant) 58

5.1 Block diagram representation of basic AMB system 60

5.2 Representation of the simulated AMB model 65

5.3 Plot of apparent time dependence between input and output 69

5.4 Residuals for the sensor . 71

5.5 The most likely current condition for actuator 2 71

5.6 Rotor displacement . 72

5.7 Detection speed mean squared error . 73

5.8 Diagnostic accuracy mean squared error 74

6.1 Layout of distributed FDD . 86

6.2 A red 2D object seen through the robot camera 86

6.3 A red 2D object after colour segmentation 87

Distributed fault detection and diagnostics using artificial intelligence techniques 14/101

List of Figures

Nomenclature

AMB Active Magnetic Bearing

BPTT Back Propagation Through Time

FDD Fault Detection and Diagnostics

FFNN Feed Forward Neural Network

MLP Multi Layer Perceptron

MSE Mean Squared Error

NN Neural Network

RBF Radial Basis Function

RNN Recurrent Neural Network

SNR Signal to Noise Ratio

TDNN Time Delayed Neural Network

Distributed fault detection and diagnostics using artificial intelligence techniques 15/101

Background

Chapter 1

Introduction

1.1 Background

In the modern world industrial plants have grown to be large complex systems. As

expected, faults will occur within such complex systems. A fault is a deviation from

normal operating conditions and may have some severe effects. The primary effects

of a fault are financial loss, reduced safety and damage to the environment [1, 2]. The

financial loss is a result of production loss (which is a result of equipment downtime

caused by maintenance or failure of the system due to a fault). It is usually the

responsibility of a human operator to detect and diagnose the fault, when occurring.

This method of human fault detection and diagnostics is unreliable due to the limited

knowledge of the human operator. It is virtually impossible for a few human operators

to detect and diagnose all the faults in large, complex plants because of the large variety

of possible faults that can occur with apparent similar symptoms.

An automated fault detection and diagnostics (FDD) system could be implemented

in almost all plants that will help the operator detect and classify the faults. A FDD

system would increase the availability of the plant and facilitate the health trending

of the plant [2]. When the health trend is known, the maintenance schedule can

be optimised according to the plant health. Thus an automatic FDD system would

Distributed fault detection and diagnostics using artificial intelligence techniques 16/101

Problem statement

promote the plant reliability, the safety of both the equipment and operators and the

economic aspects associated with the plant [3]. These advances would most notably

result in financial gain and in plants where dangerous processes are present, would be

invaluable due to the increased safety such a system would provide.

There are several different approaches available when a FDD system is needed,

including quantitative model-based methods, qualitative model-based methods and

process history-based methods [1, 4]. These approaches have also been called

analytical approaches, knowledge-based approaches and data-driven approaches in

other literature [5]. A model-based system is based on the concept of redundancy

where, instead of having redundant hardware to detect faults, a model of the plant in

place of the redundant hardware is created.

Neural networks are invaluable to many modern modelling and classification

applications. This is due to the ability of a neural network to model or classify a

system when that system is considered a ‘black box’. A black box system refers to the

complexity and inability of humans to describe the inner workings of such a system

within cost and time constraints. Neural networks can be considered a process history-

based method since it uses past information to predict or classify present trends or

data. The advancement of neural networks has made it possible to quickly train a

network that can model an unknown system very accurately.

1.2 Problem statement

Faults and failures are present in almost all machines and processes. When machines

and processes are developed to be more complex and have better performance, a

larger number of possible faults with more complexity is introduced. The effects that

these faults have on workplace safety, business finances and the general environment

can be devastating. The occurrence of faults and failures can be reduced with the

proper detection and diagnostic systems. Although there are many fault detection and

diagnostic strategies and techniques available in the modern industry, these strategies

Distributed fault detection and diagnostics using artificial intelligence techniques 17/101

Issues to be addressed

and techniques have to be continually improved. The continual development and

improvement of fault detection and diagnostic techniques and strategies is needed in

order to keep up to the fast-paced development of modern machines and processes.

1.3 Objectives

The purpose of the proposed research is to develop and evaluate a FDD system that

uses process history-based methods grouped in blocks of intelligence. These blocks of

intelligence are then applied to sub-components of the plant contrary to the collected

method where a single FDD system is used for the whole plant. It is expected that the

implementation of blocks of intelligence will ease the task of fault isolation and that

the overall complexity of the FDD system will be reduced. A secondary objective is to

compare and evaluate different methods used in these intelligence blocks.

1.4 Issues to be addressed

The following main issues have been identified and will be addressed in this study.

1.4.1 Exploring fault detection and diagnostic techniques

The first task is to do a literature study and gain some general knowledge of FDD

systems and possible FDD techniques.

1.4.2 Fault detection and diagnostics for a simple system

The next step is to test and compare FDD techniques on a simplified model. This

simple model should not have many inputs and outputs and should not have a

Distributed fault detection and diagnostics using artificial intelligence techniques 18/101

Research methodology

complex transfer function. The purpose of this phase is to gain insight into some of

the aspects regarding the difference in the distributed and collected approach.

1.4.3 Fault detection and diagnostics for an advanced system

A FDD system should then be developed for a more complex system. This complex

system should test all aspects of the distributed FDD system in order to gain insight

into its behaviour and performance in conditions approximating the real world. The

advanced system will involve a simulation of a real process.

1.4.4 Fault detection and diagnostics for a physical system

A distributed FDD system will be implemented on a physical system. The purpose of

this phase will be to determine the aspects to consider when a FDD is implemented.

1.5 Research methodology

The method used to complete each of the indicated phases of the project will be

discussed.

1.5.1 Exploring fault detection and diagnostic techniques

Background study

The literature study will be accomplished by reading articles and books related to FDD.

The fields related to this research might include aspects such as artificial intelligence,

active magnetic bearings, and even robotics. Active magnetic bearings and robotics

are considered known application domains of FDD.

Distributed fault detection and diagnostics using artificial intelligence techniques 19/101

Chapter 1 Research methodology

Listing strengths and weaknesses of methods

Once all the different FDD methods have been researched their respective strengths

and weaknesses can be identified and listed. Although the use of AI process history-

based methods have been decided upon, it is still necessary to determine the possible

application domains of other methods.

Selection of AI process history-based methods

The choice of AI process history-based methods will be well motivated and discussed.

The domain of application should be well defined since it is improbable that AI can

solve every FDD problem in every situation.

Investigating AI with respect to FDD

An investigation into the different AI techniques and their possible use within a

FDD environment will follow. Certain AI techniques will have better performance

in different parts of the FDD system.

1.5.2 Fault detection and diagnostics for a simple system

A simple model of a plant will be created on Matlabr.

Implementing FDD on simulated system

Implementing a FDD system on a simple simulated system can provide insight into

the operation of such a FDD system while helping to determine possible problems

that might be encountered in the advanced system. In contrast to a physical system,

a simulated system can easily be manipulated, which will prove very useful during

Distributed fault detection and diagnostics using artificial intelligence techniques 20/101

Chapter 1 Research methodology

development and testing of a FDD system.

1.5.3 Fault detection and diagnostics for an advanced system

An advanced simulated model will be created to test the efficiency of the FDD in a

complex system when aspects such as noise are considered.

Implementing FDD on complex simulated system

Once the simple simulated system has been designed and tested sufficiently, an

advanced simulated system can be created. The purpose of the advanced system

is to test the FDD system in a complex environment where external factors such as

interference and noise play a role. If the FDD system achieves good results in this

complex system, it is likely that it would achieve good results in the physical world as

well.

Design parameters

After the FDD system has been tested sufficiently on the advanced simulated system,

the optimal design parameters can be determined. These optimal design parameters

will be determined by investigating what design parameters yield the best results in

what circumstances.

Implementing FDD on a physical system

The final step of the design of the FDD system is to implement it on a physical system.

The FDD on a physical system will be the true test of the system’s efficiency and

usefulness in the physical world.

Distributed fault detection and diagnostics using artificial intelligence techniques 21/101

Chapter 1 Beneficiaries

1.6 Beneficiaries

1.6.1 North-West University

Requirements for output

The NWU requires a thesis that contains all the research and information regarding the

project. The thesis will be the main outcome for the completion of a masters degree.

The NWU has its main focus on academic outcomes.

Impact on beneficiaries

Research on FDD systems and neural networks have some academic significance in

terms of the expansion of knowledge in both fields. Since the NWU is primarily

an educational institution the research can be considered very important since

the knowledge base of the electric and electronic engineering department will be

expanded.

1.6.2 M-Tech Industrial, PBMR, THRIP

Requirements of output

M-Tech Industrial, PBMR and THRIP require a FDD system for most of their industrial

plants and processes. Because FDD using process history-based methods are well

researched, finding a method that fits the needs of the system requires further research

into these various methods. At the completion of the project M-Tech Industrial, PBMR

and THRIP expect well-documented research to result from the various FDD methods

and their possible adaption to fit the needs of the appropriate plant or process.

Distributed fault detection and diagnostics using artificial intelligence techniques 22/101

Chapter 1 Overview

Impact on beneficiaries

FDD is an important requirement for almost any modern system since failures can

be catastrophic, both in terms of the safety of humans and the financial implications.

Overall FDD implemented in the systems that M-Tech Industrial, PBMR and THRIP

intend manufacturing will increase the reliability of the product and also the customer

satisfaction.

1.7 Cost

Apart from student subvention and administrative costs, the only cost involved with

this project is the cost of the hardware system on which the FDD will be tested. Both the

simple and advanced models will be created in Matlabr and, since the NWU already

has a license for Matlabr, there are no costs involved with these phases. For the phase

where the FDD system is tested on a physical system, a mobile robot will be acquired.

This mobile robot has an estimated cost of less than R10 000. Thus the total cost of this

project should not be more than R10 000.

1.8 Overview

In this chapter it was shown that there exists a need for FDD systems in almost all

systems and processes. Such a FDD system could have a lot of benifits in terms of

safety, productivity and cost implications. The problem and objectives of this research

was stated and a roadmap of the issues that need to be adressed was introduced. It was

stated that this research intends on reaching the research objectives by using blocks

of intelligence coupled in a distributed method. The needs and contributions of the

beneficiaries as well as the cost involved with this research was discussed.

Distributed fault detection and diagnostics using artificial intelligence techniques 23/101

Chapter 2 Chapter 2. Fault detection and diagnostics

Chapter 2

Fault detection and diagnostics

In order to detect a deviation from normal operating conditions (a fault), it is important

to know what these conditions are. The method used most often is that of redundancy,

in other words, two similar systems are run in parallel. Figure 2.1 shows the process

of fault detection using a redundant system. The one system is used to verify the other

system. When a fault occurs in one system it is unlikely to also occur in the other

system. Therefore, as soon as the two systems deviate in terms of responses it is a

fairly accurate indication that there is a fault in one of the systems. The problem with

hardware redundancy is that it is expensive to duplicate all components in a system.

Another method of redundancy can be used, namely analytical redundancy.

Figure 2.1: Detecting faults with a redundant system

Distributed fault detection and diagnostics using artificial intelligence techniques 24/101

Chapter 2 Approaches to fault detection

In an analytical redundant system a model (usually some mathematical form) of the

system is used instead of a duplicate physical system. It should be noted that the model

of the system cannot be used as a replacement for the actual hardware system as is the

case for truly redundant systems. In FDD, methods that use analytical redundancy are

often called model-based methods. There are several approaches, some of which are

discussed below, that can be followed when model-based methods are used.

2.1 Approaches to fault detection

When analytical redundancy is considered there are four different approaches that

can be followed. These approaches are: quantitative model-based, qualitative model-

based, process history-based and hybrid methods [1]. The fourth approach cannot be

considered a unique approach since it combines methods of the other three approaches,

but it is nevertheless accepted as an approach.

2.1.1 Quantitative model-based

According to definitions proposed by the IFAC SAFEPROCESS technical committee,

a quantitative model-based approach is one in which static and dynamic relations

between system variables and parameters are used to create a model of a system using

quantitative mathematical terms [6].

The word quantitative is an adjective used to describe the model as one that relies on

measures of quantity for its operation. This means that the model uses physical values

such as amount and size. An example would be a model of a regulator for a geyser

that controls the temperature at 65 degrees Celsius. In this case the temperature of the

water is used as input into the model. If it is a quantitative model the temperature

of the water would be a physical value such as 50 degrees Celsius. The model can

then determine that the required heat is 15 degrees Celsius more and would give an

appropriate output.

Distributed fault detection and diagnostics using artificial intelligence techniques 25/101

Chapter 2 Approaches to fault detection

Residuals are the difference between the actual system output and the output from

the model of the system. One of the main advantages of quantitative model-based

detection is that there is accurate control over the way the residuals behave. In other

words, because the model is built from first principles and it is understood how the

model works, it is easy to make changes to the way it works [5].

Quantitative model-based detection is, however, not without problems. Factors that

can complicate the task of creating an accurate model include system complexity, lack

of data and process non-linearity.

2.1.2 Qualitative model-based

According to definitions proposed by the IFAC SAFEPROCESS technical committee

a qualitative model-based approach is one in which static and dynamic relations

between system variables and parameters are used to create a model of a system using

qualitative terms such as if-then rules and causalities [6].

Qualitative models use heuristic information to model a system. Although most

heuristic information can be quantified, it is sometimes sufficient and even desirable to

use only the qualitative aspects of a system such as trends and causalities [7]. Using the

same example as earlier, suppose a qualitative model of the regulator of the geyser (that

controls the temperature to ensure the water is hot) should be created. As the water

temperature is used as input into the model, the model determines that the water is at

a medium temperature. Without using mathematical operations the model determines

that more heat is needed and gives the corresponding output. This can be achieved

with if-then rules.

The main advantage of qualitative model-based methods is that the model is more

intuitive and is thus easier to understand. The main disadvantage of qualitative

methods is that modelling errors are much more common than in quantitative

methods.

Distributed fault detection and diagnostics using artificial intelligence techniques 26/101

Chapter 2 Approaches to fault detection

2.1.3 Process history-based

The process history-based approach uses historical data of the process to be modelled

to make present conclusions and future predictions. This approach can further be

subdivided into quantitative methods and qualitative methods [1, 8].

Using the previous example of a geyser that should control the temperature of the

water, a process history-based model would accept the temperature of the water as

either quantitative or qualitative input. Let us assume that the temperature is 50

degrees Celsius. The model will then adjust its output to be similar to a previous

case when the water was 50 degrees Celsius. The model then noticed that when the

water temperature is 50 degrees Celsius, an output was given that activated the heating

elements. Using that experience from the previous state, the model can conclude

that the right course of action would be to give an output that activates the heating

elements. Thus it can be concluded that the process history-based model is only as

good as the amount and relevancy of the historical data.

One of the biggest advantages of process history based-methods is that the process

does not have to be understood in order to create the model [8]. For instance, in the

previous example the designer did not have to know how a geyser works or why it

was necessary to turn on the heating elements, since all he had to know was that it

worked in the past.

A major disadvantage of process history-based methods is that the accuracy of the

model is only as good as the amount and quality of the data available. The training

data is also difficult to obtain and might not provide enough information to cover

the input space. The process history-based approach is not as commonly used as the

quantitative model-based approach, since the information is hidden and not easily

accessible [5].

Distributed fault detection and diagnostics using artificial intelligence techniques 27/101

Chapter 2 Approaches to fault diagnosis

2.1.4 Hybrid methods

Hybrid methods are actually a combination of the methods already discussed, and

refer to models that consist of a subset of different methods [8]. For instance, in the

geyser example both quantitative and qualitative models can be created and the output

of both models can be considered to derive a conclusion on the action that needs to be

taken.

Although hybrid methods are widely used, they do not differ from individual

methods, and will not be discussed further.

2.2 Approaches to fault diagnosis

The previous section was primarily concerned with the various methods of detecting

a fault. In this section the process of diagnosing that fault is considered. According to

the IFAC SAFEPROCESS technical committee, fault diagnosis is the combined acts of

fault isolation and fault identification and follows the process of fault detection. Fault

isolation is concerned with determining the type, location and time of fault detection.

Fault identification is concerned with determining the size and time-variance of the

fault [6]. Thus during fault diagnosis, the type, location, time, size and behaviour

of a fault is determined. It is, however, not always necessary to determine all these

properties. Two popular diagnosis techniques include pattern recognition and the fault

model bank approach.

2.2.1 Pattern recognition

In pattern recognition, one of the models is created as discussed in section 2.1 and

compared to the actual system to create a residual. Features have to be extracted

from these residuals in order to obtain meaningful information from the signal. These

features can be mapped to a pattern space where a classifier can be used to make

Distributed fault detection and diagnostics using artificial intelligence techniques 28/101

Chapter 2 Approaches to fault diagnosis

distinctions between the different classes of features [9]. Figure 2.2 illustrates this

process.

The pattern recognition approach has both advantages and disadvantages. Based on

experience, advantages include good detection and classification capabilities of both

multiple simultaneous and incipient faults. However, accurate models of the physical

system are needed since modelling errors are easily recognised as faults. To create

more accurate neural network models requires that more complex neural networks are

created that are also trained better. A major disadvantage of the pattern recognition

approach is that feature extraction is needed. It is often difficult to determine what

features are needed and usually detailed knowledge is needed of the expected signals.

2.2.2 Fault model bank approach

A fault model bank uses multiple models each modelling the physical system and a

possible fault in that system. Thus a physical system will have a model for the faultless

state and also a model for each faulty state that is expected. The fault model bank is

similar to the multiple model estimation approach discussed by Goel [10]. Residuals

are created by comparing each model’s output to the output of the physical system.

All these residuals are used as inputs to a classifier that examines the trend in each

residual. Thus when the system is in the faultless state the residual created by the

faultless model should be near zero, while all residuals of the faulty models will not be

near zero. In a faulty state the residual of the model modelling the fault present within

the system will be closest to zero, while all other residuals will be further from zero.

By monitoring the trends in the residuals it is possible to determine the current state of

the system and also the future state of the system as indicated by the trends. Figure 2.3

illustrates the fault model bank approach.

As with the pattern recognition approach, there are several advantages and

disadvantages for the fault model bank approach. From experience, the most notable

advantage of fault model bank approach is that it is not as sensitive to modelling errors

Distributed fault detection and diagnostics using artificial intelligence techniques 29/101

Chapter 2 Approaches to fault diagnosis

Figure 2.2: Diagram of the pattern recognition approach

Figure 2.3: Diagram of the fault model bank approach

Distributed fault detection and diagnostics using artificial intelligence techniques 30/101

Chapter 2 Desirable characteristics

since there are more models to consider. This means that less complicated models can

be used. In the case of neural networks these models will also have shorter training

times. Another advantage is that feature extraction is not needed. The fact that only

system states that are modelled can be diagnosed is certainly a disadvantage, since this

requires prior knowledge on all system states that can possibly be encountered. When

an unknown system state is reached, the fault model bank would be able to detect the

presence of a fault but would not be able to give any diagnostic information on the

state of the system.

2.3 Desirable characteristics

The desirable characteristics of a FDD system are discussed next. These characteristics

are not essential in all FDD systems, but the more a FDD system incorporates the more

useful it might be. The following list [1] gives a general overview of the type of desired

characteristics that might be useful in a FDD system:

• Quick execution

• Ability to isolate fault

• Robustness

• FDD of novel faults

• Certainty of fault state to be displayed

• Adaptability

• Explanation capability of faults

• Ability to detect multiple simultaneous faults

Distributed fault detection and diagnostics using artificial intelligence techniques 31/101

Chapter 2 Faults

2.4 Faults

FDD is a process that attempts to detect and diagnose faults in a system. Since faults

are the main focus, some definitions are needed for clarity. According to the IFAC

SAFEPROCESS technical committee, a fault is deviation of a system’s parameter from

its normal operating condition [6]. A fault is often confused with a failure, but a failure

is the interruption of a system’s normal operation due to a fault [6]. In layman’s terms

a fault is when a small error occurs within the system but as a whole the system

still functions properly. A failure is when that fault becomes larger and affects the

performance of the system in terms of incorrect output or no output at all. Most

failures can be traced back to faults that were not noticed or handled correctly, hence

the importance of FDD.

There are two types of faults, abrupt faults [11] and incipient faults [4, 12].

Representations of abrupt faults and incipient faults are shown in figure 2.4. Abrupt

faults happen suddenly and the error value looks similar to a step response. On the

other hand an incipient fault progresses slowly over a period of time. Usually an

incipient fault starts at an unnoticeable error value and then grows in magnitude as

time passes. Incipient faults are much harder to detect since a comparison to normal

operating conditions is difficult to make due to the element of time involved.

An example illustrating both abrupt faults and incipient faults would be when a car

gets a flat tyre. Assume the tyre is at normal operating pressure when the car hits

a pothole and the tyre bursts. This illustrates an abrupt fault since the system (tyre)

operated normally until a sudden change took place (burst tyre).

Next consider the tyre to be at normal operating pressure when the car drives over a

nail in the road leaving a small hole in the tyre. At first nothing noticeable happens,

but as time passes the tyre loses air pressure. This can be considered an incipient fault

since the deviation from the normal operating condition is small, but increases over

time.

Distributed fault detection and diagnostics using artificial intelligence techniques 32/101

Chapter 2 Faults

Figure 2.4: Representation of an abrupt fault and an incipient fault

In order to notice the incipient fault present in the tyre, the FDD system should

remember what the normal operating conditions were in the past. This can sometimes

be a long period ago. For instance, in order to detect the incipient fault within the

tyre that has progressed over a three-month period, you (as the FDD system) have to

remember what the tyre pressure was three months ago. Although this is relatively

simple in the tyre example, it becomes quite difficult in dynamic systems where the

normal operating conditions are constantly changing.

2.4.1 Sources of error

There are several sources of errors that should be considered when a FDD system is

designed or implemented. The most important source of error is obviously the system

faults that should be detected and diagnosed. The other sources of error are considered

an inconvenience since they only hamper the ability of the FDD system to detect and

diagnose the system faults, and that is why they are important to consider.

Distributed fault detection and diagnostics using artificial intelligence techniques 33/101

Chapter 2 Faults

Noise

In almost every physical system noise plays an important role when designing and

operating the system. The effects of noise can be devastating in systems where noise

was not considered during the design phases. Noise can be encountered in both the

model and the plant. There are different kinds of noise with different properties, with

some common types being white, pink, brown and black noise [13].

Pink noise is often found in engineering where for instance, the fluctuations in voltages

or currents in transistors are characterised as pink noise [14]. Pink noise is also

called
1
f

-noise, where f is frequency, because the power spectrum is dependent on

the frequency with the relation
1
f

.

Brown noise and black noise have power spectrum relations of
1
f β

with β = 2 for

brown noise and β > 2 for black noise. Many natural disasters are governed by black

noise since they appear in clusters [13].

White noise is the best-known noise and often any noise is incorrectly called white

noise. White noise has a power spectrum that is independent of frequency. Although

black, brown and pink noise might be present in many systems, for simplicity all noise

will be considered as white noise for FDD systems.

System faults

System faults are the errors that need to be detected and diagnosed by the FDD system.

There is a possibility that the system fault is novel, and thus the classifier didn’t expect

to see such a fault. It is important to be able to handle novel faults. The occurrence

of novel faults usually means that all fault conditions were not determined during the

design phase of the FDD system.

Distributed fault detection and diagnostics using artificial intelligence techniques 34/101

Chapter 2 Summary

Modelling errors

When the plant and the model differ, it is assumed to be a fault but it is possible that

it could be a modelling error. A modelling error occurs when the model incorrectly

predicts the behaviour of the plant, meaning the model is wrong and not the plant.

Minimising modelling errors is very difficult and depends on the model being used.

For process history-based detection methods, modelling errors can be minimised with

additional training, additional training data or a better model architecture, among

other aspects.

Unknown inputs

Unknown inputs is a type of fault that is similar to modelling errors. When the model

receives inputs that are unknown to it, it might act in unpredictable ways with the most

likely result being incorrect output, similar to the output of modelling errors. Thus

when the model is subject to unknown inputs, the model outputs become unreliable.

It should, however, be noted, that most process history-based methods have good

interpolation capabilities and may yield satisfactory results [9], when the unknown

input has a similar response as known inputs.

2.5 Summary

In this chapter some of the most notable fault detection and diagnostic techniques have

been considered and discussed. It has been shown that each technique has various

advantages and disadvantages. The process history-based method of fault detection is

selected as the method most useful in this research. It is the most generic method and

can be implemented wherever enough training data is available. The process history-

based method also does not require a lot of knowledge of the system being modelled,

and thus installation time is reduced.

Distributed fault detection and diagnostics using artificial intelligence techniques 35/101

Chapter 2 Summary

The following chapter introduces and discusses a type of process history-based

method known as artificial intelligence.

Distributed fault detection and diagnostics using artificial intelligence techniques 36/101

Chapter 3 Artificial neural networks

Chapter 3

Artificial intelligence

There is currently no processor more powerful than the human brain. The human brain

is a massive parallel computer capable of extremely complex tasks. It is the power of

the brain that inspired researchers to more fully understand the working of the human

brain. They hoped to unleash great computing power by using similar principles.

3.1 Artificial neural networks

The brain consists of a few basic building blocks that work together to form networks.

These basic building blocks are neurons and they connect to other neurons through

synaptic connections. A neuron consists of several dentrites (inputs), a nucleus and an

axon (output) [15]. The axon of one neuron is connected to dentrites of another neuron

through a synapse to form networks. A neuron is like an on-off switch. When enough

of its dentrites are activated, the neuron sends an on signal through its axon. When the

input on the neuron’s dentrites is insufficient a signal is not sent through the axon. The

signal strength that arrives at the other neuron is determined by the synaptic strength.

The synaptic strength is determined by the chemical composition in the synapse [15].

Distributed fault detection and diagnostics using artificial intelligence techniques 37/101

Chapter 3 Artificial neural networks

3.1.1 Multi-layer perceptron

Mathematical neurons were created to simulate the basic operating principle of

biological neurons. These mathematical neurons (just neurons from now on) also have

inputs, a processing element and outputs. The inputs are connected through weights,

that simulate synaptic strength, to the processing element [15]. In 1958 Rosenblatt

created such a mathematical system that is called the perceptron. The perceptron has

inputs, weights, processing elements where the inputs are added together and then

passed to a nonlinearity. The most common nonlinearity used is the sigmoid function.

Linear functions are often used for the output nodes [16].

The perceptron can be mathematically represented by equations 3.1 and 3.2 where y is

the output of the processing element, xk is the kth input, wk is the weight corresponding

to the kth input and n is the amount of inputs to the perceptron. In equation 3.2 f (·) is

the nonlinearity function and u is the output to the perceptron [17, 9].

y =
n

∑
k=1

xkwk (3.1)

u = f (y) (3.2)

The process described in equations 3.1 and 3.2 is illustrated in figure 3.1.

The perceptron can be considered a model of a neuron. To create neural networks (NN)

these neurons are connected in parallel to form layers and then the layers are connected

Figure 3.1: Perceptron (neuron)

Distributed fault detection and diagnostics using artificial intelligence techniques 38/101

Chapter 3 Artificial neural networks

to each other. Networks are created by connecting the outputs of one layer of neurons

to the inputs of another layer of neurons. Figure 3.2 depicts the layered structure of a

neural network. To improve clarity not all connections between layers are shown.

The most common network used is the multi-layer perceptron (MLP). Multi-layer

perceptrons are basically perceptrons connected front to back to form a network [17].

The MLP is also commonly referred to as a feed forward neural network (FFNN). The

MLP is a static network: the output of the network is only a function of the current

inputs to the network, and thus the network has no memory. A dynamic network has

memory and the output of the network is a function of the current inputs together with

past inputs or states [16].

Equation 3.3 gives the mathematical representation of a 2-layer MLP. The input layer

is not counted as a layer since it does not do any processing, thus a 2-layer network

consists of one hidden layer and one output layer. In equation 3.3 u2,i represents the

output of the ith neuron on the 2nd (output) layer, wj,i is the weight on the connection

between the jth neuron and the ith neuron, N0 is the amount of inputs, N1 is the amount

of neurons in the hidden layer.

u2,i = f2(
N1

∑
j=1

f1(
N0

∑
k=1

u0,kwk,j)wj,i) (3.3)

The MLP is capable of both classifying data into sets and modelling an input output

relationship. It has been proved that a 2-layer MLP can be used to create complex

decision boundaries and also approximate any continuous function [16, 9]. The most

widely used training method for MLPs is the backpropagation learning algorithm [18].

Backpropagation is a gradient descent algorithm, in other words, backpropagation

always tries to keep the error between the network’s output and the correct output

to a minimum.

Distributed fault detection and diagnostics using artificial intelligence techniques 39/101

Chapter 3 Artificial neural networks

Figure 3.2: Layered architecture of a neural network

3.1.2 Time delay neural network

Although time delay neural networks (TDNN) are capable of representing temporal

data it is still not considered a truly dynamic network. The TDNN is more similar to

static networks such as MLP. The architecture of a TDNN looks the same as that of the

MLP but for the TDNN time is considered as another input dimension [16, 18]. Figure

3.3 shows the time delay line and the similarity to the MLP.

The inputs to a TDNN feed into a tapped delay line. When a new input is received all

other inputs are shifted to the next input node. Equation 3.4 shows the mathematical

representation of the TDNN. In equation 3.4, u(k) is the output of the network, F(·)

is the function performed by the MLP, x(k) is the present input while x(k − 1) is the

input delayed one timestep, etc. [16].

u(k) = F(x(k), x(k− 1),, x(k− n)) (3.4)

The TDNN is easily trained using the backpropagation algorithm since there are only

forward connections [18]. Temporal data is easily handled with the TDNN but the time

sequence is finite and related to the number of delays in the time delay line [16, 18].

This means that the TDNN is of limited usefulness when the problem is not understood

Distributed fault detection and diagnostics using artificial intelligence techniques 40/101

Chapter 3 Artificial neural networks

Figure 3.3: The time delay neural network

or the required number of time delays cannot be determined.

3.1.3 Recurrent neural network

Recurrent neural networks (RNN) can be described as networks that connect some

nodes to previous nodes in the network with a delay, which is known as feedback [19].

There are a few architectures that can be considered but the most prominent are output

feedback and state feedback. During output feedback the output of the network is fed

back to the input layer. This can also result in a delay, since the current output will be

the next input to the network. During state feedback the output of a neuron is fed back

to the neuron’s input and also to the inputs of other neurons within the layer or within

the network [16, 18].

Examples of RNNs are the Jordan and Elman networks, where the Jordan network

is an output feedback network and the Elman is a state feedback network. Both the

Jordan and Elman networks have context layers that are used to store the state of some

other neurons. Jordan and Elman networks are very simple recurrent networks and

can be easily trained using the standard backpropagation algorithm [18]. It is this

lack of complexity both in network architecture and training that make the Jordan and

Elman networks attractive. It should, however, be noted that they are not as powerful

Distributed fault detection and diagnostics using artificial intelligence techniques 41/101

Chapter 3 Artificial neural networks

as other recurrent networks. Other recurrent neural networks can be trained with a

technique known as backpropagation through time (BPTT) [18]. A discussion on BPTT

is beyond the scope of this research. Figure 3.4 shows an Elman network where the

bottom three neurons in the input layer store the context of the hidden layer. Note that

not all connections between neurons are shown.

Figure 3.4: The Elman network

3.1.4 Radial basis function networks

The radial basis function (RBF) network is a static 2-layer network. Kernel functions are

used to represent data either during function approximation or during classification.

The most common kernel function used is the gaussian function [17]. The hidden layer

of the RBF network represents the position of the kernel function while the output

layer determines the activation or amplitude of the kernel function. The variance of

the kernel function is often determined using the structure of the data as a guide [16].

Distributed fault detection and diagnostics using artificial intelligence techniques 42/101

Chapter 3 Evolutionary algorithms

3.2 Evolutionary algorithms

Evolutionary algorithms use the principles of evolution as proposed by Darwin in

an attempt to optimise some function [17]. Evolutionary algorithms can be used to

optimise the parameters of a classifier or model. For instance, the optimal amount of

hidden nodes in a NN can be determined by using an evolutionary algorithm. There

are several techniques that can be collectively considered as evolutionary algorithms,

but the most prominent are genetic algorithms.

3.2.1 Genetic algorithms

Genetic algorithms in computational intelligence and genetics in biology are similar,

hence the common name. The theory of evolution includes the idea that genetic

information is passed to next generations through the concept of survival of the

fittest combined with mutation. This process is known as natural selection. Natural

selection relies on the concept that the strong survive while the weak perish, thus

resulting in a next generation that is better adapted to survival in a constantly changing

environment.

In computational intelligence the theory of evolution can be used in optimisation

problems [2]. Similar to the way that strong individuals are better at surviving in

biological systems, solutions that yield better results to the optimisation problem

will survive longer in the computational environment. In both biological and

computational environments there is a certain function that determines how well the

individual is adapted. In biological systems it is the individual’s ability to survive,

while in a computational environment it is a measure of how good the solution to the

problem is.

The genetic algorithm starts by creating a population of unique individuals that

contain the variables that will influence the solution to the optimisation problem.

These individuals are called chromosomes [2]. The chromosomes are evaluated

Distributed fault detection and diagnostics using artificial intelligence techniques 43/101

Chapter 3 Evolutionary algorithms

according to a fitness function that determines how good a solution a certain

chromosome is to the problem [17]. Once all chromosomes are evaluated they are

sorted from best solution to worst solution, and thus the chromosome with the highest

fitness should have the highest probability of being chosen for reproduction. During

crossover two chromosomes are selected according to their probability of selection

and certain elements from one chromosome are combined with certain elements of the

other chromosome, creating a child chromosome that belongs to the next generation.

This process of crossover is repeated until a new population is created. The whole

process is then repeated. With each iteration there should be a better solution to the

optimisation problem [15, 2].

Besides crossover two other operations, elitism and mutation, can also be included

in the genetic algorithm. Elitism is when a certain amount of the best chromosomes

are included into the next generation without change. The chromosomes selected for

elitism still generate offspring through crossover, but are also included into the new

generation. This prevents the best solutions from being lost, since there is no guarantee

that the offspring of two good solutions will result in a good solution. Mutation is

when random information is inserted into some chromosomes in an attempt to reduce

the chances of the population getting stuck at a local minimum in the optimisation

problem [15, 17].

Figure 3.5 shows the basic operation of genetic algorithms. Note that the figure only

illustrates the sequence of operations used in the creation of a next generation.

Figure 3.5: Basic operation of genetic algorithm

Distributed fault detection and diagnostics using artificial intelligence techniques 44/101

Chapter 3 Summary

3.3 Summary

In this chapter some of the different artificial intelligence approaches were discussed.

It has been shown that both static and dynamic neural networks are powerful

classification and modelling tools. Although radial basis function networks and

evolutionary algorithms have a definite part in FDD, their implementation is beyond

the scope of this research. In the next chapter a simple transfer function system will be

created and various FDD strategies will be tested on it.

Distributed fault detection and diagnostics using artificial intelligence techniques 45/101

Chapter 4 Method

Chapter 4

FDD on a linear model

4.1 Introduction

The purpose of creating a simple model is firstly to gain an understanding of the

workings of a FDD system and secondly to determine the improvement (if any) of

the distributed method over the collected method of FDD. The simple model will also

provide a platform to compare two of the most notable approaches to FDD, namely the

pattern recognition approach and the fault model bank approach. The simple model

provides a scenario that can be easily computed, thus making the implementation of

the FDD easier. Generally speaking, using a simple model is like learning to crawl

before starting to walk.

4.2 Method

Two transfer functions were created. Both the fault model bank approach and the

pattern recognition approach were implemented on these functions.

Distributed fault detection and diagnostics using artificial intelligence techniques 46/101

Chapter 4 Method

In all experimental setups the first transfer function is

y1(s)
u1(s)

=
2

s + 0.5
(4.1)

and the second transfer function is

y2(s)
u2(s)

=
s + 4

s2 + 2s + 3
(4.2)

4.2.1 Fault model bank

Refer to section 2.2.2 for a discussion on the fault model bank approach.

Figure 4.1 shows the distributed FDD setup for a simple two-function system while

figure 4.2 shows the collected FDD setup. In both figures the simple system has two

transfer functions connected in series. In other words the output of the one transfer

function is connected to be the input of another transfer function. In figure 4.1 each

transfer function has its own FDD system while in figure 4.2 there is a single FDD

system for all transfer functions.

In both figures the FDD consists of the various models of the transfer function, the

summation block for creating the residuals and the classifier. The transfer functions do

not represent specific physical systems, but are general in form and represent generic

models of a number of plants. The models are analytical redundant versions of the

transfer function in a certain state, and thus the model receives the same input as the

transfer function and then attempts to behave in a similar way as the transfer function

would when in that state. Residuals are created by comparing the output of each

transfer function (or all transfer functions for the collected setup) with the output of

each model. All these residuals are used as input for the classifier.

For the systems used in these simple models, neural networks are used as the models

in the fault model bank while fuzzy logic classifiers are used for identification of the

system states. When a transfer function has time transient behaviour, time-delayed

neural networks are used instead of recurrent neural networks. If the number of delays

Distributed fault detection and diagnostics using artificial intelligence techniques 47/101

Chapter 4 Method

Figure 4.1: Distributed FDD setup using the fault model bank approach for a system
with two transfer functions in series

Figure 4.2: Collected FDD setup using the fault model bank approach for a system
with two transfer functions in series

Distributed fault detection and diagnostics using artificial intelligence techniques 48/101

Chapter 4 Results

of such a time-delay neural network is sufficient, it would provide sufficient modelling

capabilities since modelling errors are less important than in the pattern recognition

approach. Time-delay neural networks have a significant shorter training time than

recurrent neural networks since no backward connections are present in the time-delay

neural network.

4.2.2 Pattern recognition

Refer to section 2.2.1 for a discussion on the pattern recognition approach.

Figures 4.3 and 4.4 show the distributed FDD setup and the collected FDD setup

respectively. The models are analytical redundant versions of the transfer function,

and thus the model receives the same input as the transfer function and then attempts

to behave in a similar way as the transfer function would. From both figures it can

be seen that the pattern recognition approach contains only one model per component

being diagnosed and also contains a feature extraction block. Extracting meaningful

information from the residuals created by the model is the task of the feature extraction

process. Once the residuals have been separated into features the classifier can

determine whether there was a fault and what it was.

The setup shown in figures 4.1 to 4.4 was created in Matlabr.

4.3 Results

The results obtained from the Matlabr simulations will be shown and discussed next.

The results were obtained by implementing the different FDD systems discussed in the

previous section and then allowing the transfer function to progress to a faulty state.

The performace of the FDD system is then determined from the figures created by the

simulations. In all figures illustrating the output of the plant, the output of the NN

model is shown as a dashed line and the output of the plant is a solid line.

Distributed fault detection and diagnostics using artificial intelligence techniques 49/101

Chapter 4 Results

Figure 4.3: Distributed FDD setup using the pattern recognition approach for a system
with two transfer functions in series

Figure 4.4: Collected FDD setup using the pattern recognition approach for a system
with two transfer functions in series

Distributed fault detection and diagnostics using artificial intelligence techniques 50/101

Chapter 4 Results

The transfer functions in all simulations could be in either the fault free state or in one

of two faulty states. The two faulty states simulated consists of introducing either a

bias error or a gain error to the output of the transfer function. The type of fault is not

important in this chapter and any fault could have been introduced. The main concern

is how the different techniques respond to such a generic fault.

Table 4.1 gives a comparison between the different methods simulated. All the

information in table 4.1 is subjective or calculated roughly, except for the training

speed. For the detection capability and diagnostic accuracy only rough estimates based

on current data were used. Many factors such as initial weights in the NN and different

fault durations can influence those results. The simplicity is a subjective value based

on the perceived simplicity of the system structure and ease of implementation. A

higher number means more simple. The simplicity should correlate with the training

time of the FDD system.

Table 4.2 gives a comparison of the training times for the respective components of the

FDD system. Note that the fault model bank approaches have zero classifier training

time because a fuzzy logic classifier is used. For this simple simulation the fuzzy logic

classifier was set up before training, but in other implementations it might be necessary

to use adaptive fuzzy logic where training is needed. The classifier training time for

the pattern recognition approach includes the time taken to create the training data.

The differences in model training time between the pattern recognition approach and

the fault model bank approach can be attributed to the difference in quantity and

Table 4.1: Comparison between FDD approaches
Training Detection Diagnostic Simplicity
time (s) capability (%) accuracy (%)

Pattern recognition
Distributed 2932 100 25 5
Collected 3877 70 10 5

Fault model bank
Distributed 486 100 70 8
Collected 397 100 70 10

Distributed fault detection and diagnostics using artificial intelligence techniques 51/101

Chapter 4 Results

quality of NN that had to be trained. The pattern recognition approach had to train

only one or two NNs while the fault model bank had to train more than 5 NNs. The

pattern recognition approach had to train larger networks however, since time-delayed

NN were used. Recurrent NN would take even longer to train. The fault model bank

approach used feedforward networks that have no temporal dimension, causing them

to have a much smaller structure.

Table 4.3 shows the parameters of the various NNs that were used to generate the

results. Note that the fault model bank has a fuzzy logic classifier, thus no information

can be displayed in the table regarding the classifier.

4.3.1 Pattern recognition

Distributed FDD

Figure 4.5 shows the results obtained from the distributed pattern recognition

simulation for the first and second FDD systems respectively. The layout of the system

can be seen in figure 4.3.

Note the large settling time of the plant after the occurrence of the first fault in figure

4.5(a). The classifier still recognises the residual as a faulty condition. Settling time is

expected in all simulations and all classifiers would indicate faults to some degree.

Table 4.2: Training time comparison
Total training Model training Classifier training

time (s) time (s) time (s)
Pattern recognition

Distributed 2932 282 2650
Collected 3877 241 3636

Fault model bank
Distributed 486 486 0
Collected 397 397 0

Distributed fault detection and diagnostics using artificial intelligence techniques 52/101

Chapter 4 Results

Table 4.3: Parameters for NNs
Hidden neurons Epochs Network type

Pattern recognition
Distributed model 1 3 100 TDNN
Distributed model 2 8 150 TDNN
Distributed classifier 1 10 500 TDNN
Distributed classifier 2 10 500 TDNN
Collected model 15 200 TDNN
Collected classifier 20 500 TDNN

Fault model bank
Distributed all models 10 100 FFNN
Collected all models 10 100 FFNN

At nearly 200 timesteps in figure 4.5(a) there is a modelling error in the NN model

which can be seen since the classifier claims a faulty state when no fault was induced

in the simulation. In practice a modelling error will be very hard to detect.

In figure 4.5(b) a fault occurs at the same timestep when a fault is present in the first

plant. Note, however, that the classification in the second plant is not affected by a fault

in the first plant. It is desirable to have classifiers uninfluenced by unknown inputs (as

is the case here) as it is a sign of a well-trained classifier.

Collected FDD

Figure 4.6 shows the classifier output and the overall plant output. The collected

pattern recognition simulation shows poor results for the classification of faults.

4.3.2 Fault model bank

Distributed FDD

Figure 4.7 shows the classifier outputs and the residuals between the plant and all

models for plants 1 and 2 respectively. In both figures, regions are marked where a

Distributed fault detection and diagnostics using artificial intelligence techniques 53/101

Chapter 4 Results

(a) Classifier 1 output and plant 1 output (b) Classifier 2 output and plant 2 output

Figure 4.5: Distributed pattern recognition (m = modelling error, f = fault, s = settling
time)

Figure 4.6: Collected pattern recognition (m = modelling error, f = fault, s = settling
time)

Distributed fault detection and diagnostics using artificial intelligence techniques 54/101

Chapter 4 Results

fault is present in both plants, f1 denoting a fault in plant one while f2 denotes a fault

in plant two. When the residuals for all the plant states are considered, the residual

closest to zero is the most likely current state. The trend of each residual is also taken

into account when the most likely current state is decided.

In the second fault in figure 4.7(a) it can be seen that the third state is correct but notice

that the second state is classified before and after the correct state. This is a rising

and settling period in the plant. The rising and settling period in the classifier can be

attributed to settling time of the plant and the fact that it is an incipient fault. The

incipient fault can clearly be seen when the residuals are considered.

The first fault in figure 4.7(b) is classified as the third state and sometimes the second

state as well. The reason can be seen when the residual for the third state is considered.

Notice the noise in the residual. The noise in the residual of the third state is caused

by modelling errors in the model for the third state, and is known since no noise was

introduced in the simulation. In practice, however, distinguishing between real noise

and modelling errors would be difficult. The classifier does, however, classify the plant

as being in state three the majority of the time.

Collected FDD

Figure 4.8 shows both the classifier output and the residuals for a single FDD system

for both plants. Similar faults were induced as in the simulation for the distributed

fault model bank. States 2 and 3 indicate faults in plant 1 while states 4 and 5 indicate

faults in plant 2.

Similar observations regarding rising and settling time can be made as in the

simulation for the distributed fault model bank.

Distributed fault detection and diagnostics using artificial intelligence techniques 55/101

Chapter 4 Results

(a) Classifier 1 output and plant 1 output (b) Classifier 2 output and plant 2 output

Figure 4.7: Distributed fault model bank (f1 = fault in plant 1, f2 = fault in plant 2)

Distributed fault detection and diagnostics using artificial intelligence techniques 56/101

Chapter 4 Conclusion

4.4 Conclusion

In this chapter the collected method of FDD and the distributed method of FDD is

discussed, illustrated and tested. Also of secondary importance the pattern recognition

approach and the fault model bank approach to modelling were discussed and tested.

Through the results it could be seen that the distributed systems and the collected

systems compare equally in terms of detection accuracy, but the distributed systems

have a clear advantage in terms of fault isolability. Thus when diagnostic accuracy

is required in terms of isolability, the distributed FDD method should be considered.

The training time difference between the pattern recognition approach and fault model

bank approach should indicate the advantage of using a brute force type approach

when features are difficult to obtain from the residuals.

In the next chapter a distributed FDD system will be implemented on a simulation of

an active magnetic bearing (AMB). For the next chapter the fault model bank approach

is chosen because of the reduced training time and the absence of a feature extraction

system. The simulated AMB system is considered more complex than the transfer

function systems discussed in this chapter. Aspects such as noise and the effects of

noise on the FDD system will be discussed in the next chapter.

Distributed fault detection and diagnostics using artificial intelligence techniques 57/101

Chapter 4 Conclusion

Figure 4.8: Collected fault model bank (f = fault in plant)

Distributed fault detection and diagnostics using artificial intelligence techniques 58/101

Chapter 5 Introduction

Chapter 5

Advanced model

Although much insight was gained with the simple model and the implementation of

the FDD system on it, a need exists to determine the efficiency of a distributed FDD

system on a model that has more practical importance. It was imperative to test the

FDD system on a bigger, more complex problem with specific real world obstacles such

as noise and unknown inputs. Although the advanced model in this chapter is still

only a simulation of a real world problem, it is a needed stepping stone in a controlled

environment in order to realize a real world system.

5.1 Introduction

A simulation of an active magnetic bearing (AMB) was chosen as the advanced system

on which to implement FDD. An AMB is inherently unstable, meaning without any

assistance or control, the system will fail and stop operating. This inherent instability

makes the AMB the ideal candidate for a FDD system. The FDD system for the AMB

will follow the fault model bank approach. Its strengths regarding fault isolation

without the need for feature extraction were shown in chapter 4.

Distributed fault detection and diagnostics using artificial intelligence techniques 59/101

Chapter 5 Active Magnetic Bearing

5.2 Active Magnetic Bearing

An active magnetic bearing (AMB) is a device that levitates a rotor so that no part of the

rotor makes contact with any part of the bearing. When an AMB is suspended it can

rotate with very little frictional loss. AMBs are very useful for high-speed applications,

operation in a vacuum, operation in a sterile environment or any other application

where conventional bearings would not be applicable [20].

There are five basic components needed to create an AMB. The actuators are

responsible for creating a magnetic field that acts on the rotor in such a way as to

suspend or levitate it. The actuators are basically electromagnets that are controlled

from a controller circuit via power amplifiers. The control circuit receives positional

information from sensors that sense the position of the rotor as it is suspended [20].

Figure 5.1 shows a basic representation of the main components of an AMB system.

The component named plant is in fact the rotor and the rotor dynamic effects.

A short discussion on each component of the AMB will follow where the expected

faults will be discussed. A more in-depth discussion on the modelling and FDD of the

AMB is given in section 5.3.

Figure 5.1: Block diagram representation of basic AMB system

Distributed fault detection and diagnostics using artificial intelligence techniques 60/101

Chapter 5 Active Magnetic Bearing

5.2.1 Actuators

In an AMB system the actuators are responsible for creating a magnetic field that in

turn generates a force that acts on the rotor of the AMB. In many ways the actuator in

an AMB is similar to coils in any rotating machinery except that in rotating machinery

the coils are responsible for the rotational force. In AMBs the coils are responsible for

the force that suspends the rotor but has no rotational component.

Since actuators in AMBs can be reduced to nothing more than coils carrying current,

there are only a limited number of states that each coil can be in. Except for the normal

operating state there are two faulty states, short circuit and open circuit.

The short circuit faulty state is the most common and occurs when two coil windings

short, thus giving the current a shorter path to follow. This changes the inductance of

the coil which in turn changes the amount of magnetic field that can be created. When

one of the coils is in a short circuit state the effects can be seen as excessive heating of

the coil and an imbalance in the magnetic field.

The open circuit faulty state occurs when one of the windings in the coil is broken

and not allowing current to pass through. An open circuit fault usually means total

actuator failure. Since the current cannot flow through the actuator no magnetic field

can be created, and it is as if the actuator does not exist.

5.2.2 Sensors

In the case of an AMB, sensors are employed so that the controller can perceive the

position and state of the rotor. There are many possible sensor technologies that can be

used in an AMB system and most of them have at least four states. These states are the

normal operating state, transducer malfunction state, biased state and gained state.

The transducer malfunction state refers to the state where either the sensor gives no

output or the sensor gives totally incorrect output. On the other hand the biased and

Distributed fault detection and diagnostics using artificial intelligence techniques 61/101

Chapter 5 Active Magnetic Bearing

gained states also give incorrect output, but the output is still based on the correct

information. In the biased state the output given by the sensor is similar to the normal

operating state’s output, but an offset is added. In the gained state the output of the

sensor seems to be the output of the normal operating state of the sensor multiplied by

some constant value.

5.2.3 Controller

The controller can be considered as the brain of the whole system. The controller

perceives the position of the rotor through the sensors. It then computes the actuation

required to maintain the rotor at a specified position. The controller consists mostly

of input/output (I/O) channels and a digital computer for the calculations. The three

main faulty states are the loss of an I/O channel, software errors and hardware errors.

These three faulty states can be subdivided into more detailed faulty states, but they

are difficult to determine without detailed knowledge of the controller used and the

software used on the controller.

The faulty state where an I/O channel is lost means that one of the sensor’s values

can’t be read or the values of one of the power amplifiers can’t have an output. This

faulty state is serious and without corrective control the rotor will become unstable

and failure of the whole system will occur. Early detection of this state is therefore

very important.

The two faulty states of software errors and hardware errors could be difficult to

distinguish from each other, since a software error can have the same characteristics

as a hardware error and vice versa.

5.2.4 Power amplifier

The power amplifier receives signals from the controller indicating the required output

current to the actuators. In an ideal world the power amplifier can be considered as a

Distributed fault detection and diagnostics using artificial intelligence techniques 62/101

Chapter 5 Method

gain function, in other words: the input is multiplied with some constant and then

sent as an output. In the real world there are, however, restrictions to the power

amplifier. Similar to sensors the power amplifier has four states. In addition to the

normal operating state, there is a state where the power amplifier fails or malfunctions,

a biased state and an incorrect gain state.

In the state where the power amplifier malfunctions or fails, the only characteristic

is that the output is either incorrect or not present. In the case where a bias fault is

present the output of the power amplifier is added to a constant offset. In the case of

an incorrect gain the expected amplification does not match the actual amplification.

5.3 Method

5.3.1 AMB model

Any good simulation should start with an accurate model of the event or process that

needs to be simulated. In this chapter a AMB system with the rotor limited to one

degree of freedom is simulated.

In a one degree of freedom system, the rotor can only move up or down, while in a

two degree of freedom system the rotor can move up, down, left and right. Simulating

only one degree of freedom might seem overly simplistic, but the components used in

a single degree of freedom system can be exactly duplicated and added to the existing

system to create a two degree of freedom system. Thus no extra information about

FDD for an AMB could be obtained with a two degree of freedom system that can

not be obtained with a single degree of freedom system. In practice however, a FDD

system should cover all degrees of freedom in the AMB.

The model for the AMB was coded in Matlabr based on a similar model created by

Ranft [20]. The processes within the AMB are described by analytical equations and

conditional statements. The following steps illustrate the AMB simulation:

Distributed fault detection and diagnostics using artificial intelligence techniques 63/101

Chapter 5 Method

1. Compare user-defined reference position with current rotor position to find the

error value.

2. The PID controller receives the error value as input and gives a current value as

output.

3. The current value is added and subtracted from a bias current value. A current

value for each actuator should exist.

4. Both current values are amplified through power amplifiers (PA).

5. The currents are applied to the actuators that exert a force on the rotor.

6. The position of the rotor is determined.

7. The whole process repeats.

The model can be seen in figure 5.2.

The analytical model for the power amplifiers (PA) consists of a gain function and

a saturation condition. This is implemented by multiplying the input with the gain

constant and then using conditional statements to implement the saturation effect. The

analytical model for the power amplifiers is given by equation 5.1 for the gain part and

equation 5.2 for the saturation part. In equations 5.1 and 5.2, u(k) is the input to the PA,

y(k) is the output of the PA, kPA is the gain constant of the PA and ksat is the saturation

constant of the PA.

y(k) = kPA ∗ u(k) (5.1)

y(k) =

0 for y(k) ≤ 0 ,

y(k) for 0 < y(k) < ksat ,

ksat for y(k) ≥ ksat .

(5.2)

The analytical model for the actuators receive the current from the PA and the position

of the rotor as input, while in a physical system only the current from the PA is used as

Distributed fault detection and diagnostics using artificial intelligence techniques 64/101

Chapter 5 Method

Figure 5.2: Representation of the simulated AMB model

input. This is because the position of the rotor directly affects the force exerted on it by

the actuators. In a physical system the actuator would be considered the component

that receives current as input and has magnetic flux as output, while in simulation the

actuator is considered as the component that has current as input and force as output.

Therefore, if the simulation is to be exactly the same as the physical system there would

be two phases. Firstly the phase that simulates the actuator, and secondly the phase

that simulates the magnetic effects of the actuator on the rotor. The position of the rotor

would then be used in the second phase of the simulation, but since both phases are

combined in the current simulation, both current and position of the rotor are received

as input.

The mathematical model for the actuator is given in equation 5.3 and the equation for

km is given in 5.4. In equation 5.3, f (k) is the force exerted by the actuator on the rotor,

km is a constant given by equation 5.4, im(k) is the current input from the PA and xs(k)

is the position of the rotor. In equation 5.4, u0 is a constant known as the permeability

of air, n is the amount of coil windings on the actuator through which current can flow

and A is the surface area of the magnetic conductor. The value of θ is the radians that

the actuators differ from the vertical reference position. The actuators are aligned to be

Distributed fault detection and diagnostics using artificial intelligence techniques 65/101

Chapter 5 Method

22.5 degrees from vertical. That means that θ will have a value of 0.3927 radians.

f (k) =
kmi2

m(k)
x2

s (k)
(5.3)

km = u0n2Acos(θ) (5.4)

The position of the rotor is determined from the force acting on it which is, however,

not part of the model for the sensor. In a physical system the distance is measured

with a sensor. The distance can therefore be seen as input, while an analog or digital

representation of the distance is the output of the sensor.

In the simulation the distance is calculated by differentiating the acceleration obtained

from the force. This calculated value is already in a digital form usable by the next

component in the simulation. In other words, a model for the sensor is not necessary

in this simulation. We are faced with the problem of how to do FDD on the sensor

when the sensor does not exist as a component in the simulation.

Equations 5.5, 5.6 and 5.7 are used to determine the position of the rotor. In equation

5.5, a(k) is the acceleration of the rotor, f (k) is the resulting force acting on the rotor

from the actuators and gravitation and m is the mass of the rotor. In equation 5.6, v(k)

is the speed of the rotor and τ is the timestep used in the simulation. In equation 5.7

d(k) is the displacement of the rotor.

a(k) =
f (k)
m

(5.5)

v(k) = v(k− 1) + a(k)τ (5.6)

d(k) = d(k− 1) + v(k)τ (5.7)

In the simulation a PID controller was used to minimise the error between the reference

position and the current position of the rotor. In a physical system the controller can be

much more complex, but a PID controller would suit the purposes of this simulation.

Distributed fault detection and diagnostics using artificial intelligence techniques 66/101

Chapter 5 Method

A PID controller uses a proportional, integral and derivative component of its input

to calculate the output. Equation 5.8 gives the mathematical representation of the PID

controller. In equation 5.8, u(t) is the output of the controller, e(t) is the error signal to

the controller, Kp is the proportional gain of the controller, Ki is the integral gain of the

controller and Kd is the derivative gain of the controller.

u(t) = Kpe(t) + Ki

∫ t

0
e(τ)dτ + Kd

de
dt

(5.8)

5.3.2 FDD system

Once a working AMB model is available the FDD system can be created. The FDD

system has neural network models for the sensors, actuators and power amplifiers in

the AMB. These components were chosen since most internal faults in an AMB occur in

either the sensors or the actuators [21]. Sensors, actuators and power amplifiers cover

most of the AMB system. The only component that does not have a FDD system is the

controller, where a FDD system would have limited usefulness.

The following steps illustrate the process of training the neural network models:

1. Run the AMB simulation.

2. Save the relevant data created by the simulation to be used as training data.

3. Plot input vs. target data and decide on type of neural network to use:

(a) Standard feedforward network - if there is no time dependence in the data.

(b) Time delay neural network - if there is an apparent time dependence (when

number of delays can be estimated) in the data.

(c) Recurrent neural network - if the time dependence is complex or unknown.

4. Decide on the amount of hidden nodes to use in the neural networks through

either trial and error or genetic algorithms.

Distributed fault detection and diagnostics using artificial intelligence techniques 67/101

Chapter 5 Method

5. Determine all the faulty states of the specified component.

6. Train the neural networks with data obtained from simulation after altering the

data to correspond to the faulty state the neural network should model.

7. Save neural networks for later use.

The task in step 3 is shown in figure 5.3 where the apparent time dependence between

the input and output can be seen. When the input transitions to a new value, the output

starts from its old value and slowly over time reaches the new output value. Either the

time-delayed neural network or the recurrent neural network can be used to model the

output when only the input is available. The time-delay neural network would work

well since the amount of delayed inputs can be judged easily, and it trains much faster

than the recurrent neural network.

Step 6 describes training of a fault model bank where a neural network model is created

for every state that the components have. If, for instance, the component has three

faulty states then four neural network models will be created: one model for the fault

free state and a model for each of the faulty states.

The next step would be to run the simulation with some fault induced in one of the

components and execute the FDD system to determine whether the fault could be

detected and identified correctly.

The following steps illustrate the process used when the FDD system is executed:

1. Run the AMB simulation with fault induced at some point in time.

2. Save relevant data to be used as input to the FDD system.

3. Execute FDD neural networks with supplied input.

4. Calculate residuals by comparing supplied output with output from neural

networks.

5. Filter residuals to remove high frequency components.

Distributed fault detection and diagnostics using artificial intelligence techniques 68/101

Chapter 5 Method

Figure 5.3: Plot of apparent time dependence between input and output

6. Determine the trend of the residual.

7. Input residual and trend of residual into fuzzy logic classifier.

8. Compare outputs of fuzzy logic classifier to determine most likely current

condition of the component.

9. Plot most likely current condition to show the state of the component.

Figure 5.4 shows the residuals of the sensor for each fault condition after they

were calculated in step 4. Notice there are multiple plots in figure 5.4, each plot

corresponding to a residual created between the actual output and the output from

the neural network model for that specific state.

In step 8 the fuzzy logic classifier rated each sample in each residual series according

to the likelihood that it is the current state of the component. All that is left to do is to

compare all the rated likelihoods for a component and award the label of current state

to the state with the highest likelihood of being the current state.

Distributed fault detection and diagnostics using artificial intelligence techniques 69/101

Chapter 5 Results

Figure 5.5 shows step 9 for one of the actuators.

5.4 Results

5.4.1 Effects of noise

The results obtained from the AMB simulation focusses more on noise and unknown

inputs and the effect they have on the detection and diagnostics.

Figures 5.6(a) to 5.6(f) show the effect of noise on the AMB system. Normally

distributed gaussian white noise was used as the source of disturbances within the

simulations. In figure 5.6(a) it can be seen that noise at a signal to noise ratio (SNR) of

60 in both sensor and actuator is hardly visible on the rotor position.

In figure 5.6(b) the rotor position is hardly affected by noise with a SNR of 20 when the

noise originates within the actuators. Although the noise is fairly large with respect to

the signal in figure 5.6(b), the resulting rotor disturbance is very small, indicating that

noise does not play a big role in the actuators and is corrected easily within the system

controller. Even when the noise in the actuator has becomes severe it does not result

in rotor instability. A small oscillation, instead of the rotor settling, is detected at some

point.

Figures 5.6(c) to 5.6(f) show the effect of sensor noise on the rotor position. From the

figures it can be seen that the system becomes unstable if the sensor noise becomes

too large. For SNRs of 52 and smaller, the rotor might hit the backup bearing during

startup, but settles eventually. When the SNR is too low, the rotor might not settle at

all. It is not very desirable for the rotor to hit the backup bearings and such incidences

should be considered a system failure. At timestep zero the rotor rests on the backup

bearing and is acceptable as a common startup position.

The effects of power amplifier noise are not shown in any of the figures since they

Distributed fault detection and diagnostics using artificial intelligence techniques 70/101

Chapter 5 Results

Figure 5.4: Residuals for the sensor

Figure 5.5: The most likely current condition for actuator 2

Distributed fault detection and diagnostics using artificial intelligence techniques 71/101

Chapter 5 Results

hardly affect the rotor position at all. The reason that the power amplifiers are more

immune against noise is because they are operated in a saturated state during most of

the startup of the rotor. Noise in the power amplifiers is also quickly corrected by the

controller.

(a) SNR of 60 in both sensor and actuators (b) SNR of 20 for the actuators

(c) SNR of 55 for the sensor (d) SNR of 52 for the sensor

(e) SNR of 40 for the sensor (f) SNR of 20 for the sensor

Figure 5.6: Rotor displacement

5.4.2 FDD performance

In the AMB simulation there are 14 possible states for the system to be in. One state

is the fault-free state where all components work correctly. The 13 faulty states are

Distributed fault detection and diagnostics using artificial intelligence techniques 72/101

Chapter 5 Results

Table 5.1: Fault performance at SNR of 80

Detection speed Diagnostic accuracy False positives
(timesteps) (%) (component)

Sensor fault
Transducer malfunction 13 100 PA2, ACT1
Bias offset 13 0 ACT2
Gain offset 11 100 ACT2

PA 1 fault
PA failure 6 100 PA2
Bias offset 10 100
Gain offset 589 100

PA 2 fault
PA failure 91 100
Bias offset 182 100
Gain offset 332 100

Actuator 1 fault
Coil failure 11 100 PA2
Short circuit 15 100

Actuator 2 fault
Coil failure 121 100
Short circuit 69 100

Figure 5.7: Detection speed mean squared error

Distributed fault detection and diagnostics using artificial intelligence techniques 73/101

Chapter 5 Results

Table 5.2: Fault performance at SNR of 55

Detection speed Diagnostic accuracy False positives
(timesteps) (%) (component)

Sensor fault
Transducer malfunction 10 100 PA2, ACT1
Bias offset 18 0
Gain offset 10 100 PA2

PA 1 fault
PA failure 7 100 PA2
Bias offset ND 0
Gain offset ND 0

PA 2 fault
PA failure 7 100
Bias offset ND 0
Gain offset ND 0

Actuator 1 fault
Coil failure 20 100 PA2
Short circuit ND 0

Actuator 2 fault
Coil failure 614 100 PA1
Short circuit ND 0

Figure 5.8: Diagnostic accuracy mean squared error

Distributed fault detection and diagnostics using artificial intelligence techniques 74/101

Chapter 5 Results

Table 5.3: Fault performance at SNR of 55, networks trained at SNR of 55

Detection speed Diagnostic accuracy False positives
(timesteps) (%) (component)

Sensor fault
Transducer malfunction 12 100 PA2, ACT2
Bias offset 18 0 ACT2
Gain offset 10 100 ACT2

PA 1 fault
PA failure 2 100 PA2
Bias offset ND 0
Gain offset ND 0

PA 2 fault
PA failure 9 100
Bias offset ND 0
Gain offset 519 12

Actuator 1 fault
Coil failure 17 100
Short circuit 16 82

Actuator 2 fault
Coil failure 635 100 PA1
Short circuit 413 100

Distributed fault detection and diagnostics using artificial intelligence techniques 75/101

Chapter 5 Results

distributed over 5 components: the sensor, two power amplifiers and two actuators.

The faulty states for each component were discussed in section 5.2.

Various simulations were created with a single fault at a predefined time in the

simulation. Only one fault is simulated at a time to reduce the complexity of the results.

Unless stated otherwise, all NN models were trained with data from an AMB system

with a SNR of 80.

All the simulations were run for 15000 timesteps, each timestep is 10 microseconds,

thus a time period of 0.15 seconds is simulated. In all the simulations the fault has

a duration of 4000 timesteps or 40 milliseconds. Although this seems very small, it

should be more than enough time for the FDD system to detect and diagnose the fault.

The FDD is not done in a real time manner where each timestep would be considered

after it has occurred. All 15000 timesteps are calculated and then passed to the FDD

system for processing. The implication of this is that the FDD system has future

information when it has to determine whether a fault occurred on a certain timestep.

The reason for this approach is that the simulation times are greatly reduced compared

to the step-by-step approach. With some rewriting the simulations could pass through

the FDD system on a timestep basis. In both approaches the results would look similar

except that the step-by-step approach would have longer detection times.

Table 5.1 shows the results of 13 simulations where each of the faulty states were

induced in the AMB. The results in table 5.1 correspond to simulations with sensor

SNR of 80, since sensor noise has the biggest effect on the AMB system. The FDD

system’s performance is measured with respect to detection speed, robustness and

diagnostic accuracy as mentioned by Pettersson [5].

The detection speed is shown as the number of timesteps between the start of the fault

and the time it is first detected. From table 5.1 it can be seen that all faults have a

detection time of less than 600 timesteps, which corresponds to a time of less than 6

milliseconds. The simulation where a sensor bias fault was induced was incorrectly

diagnosed as a sensor gain fault, meaning the diagnostic accuracy for that simulation

Distributed fault detection and diagnostics using artificial intelligence techniques 76/101

Chapter 5 Results

is 0%. All other faulty states were 100% correctly diagnosed.

From the results in table 5.1 it can be seen that faulty components in the AMB can affect

the fault detection in other components. In other words, a component in a fault-free

state might indicate a fault if another component in the system is in a faulty state. This

is shown in the false positives column of the table. In other words a fault positive is

when the system shows that a fault occurred when it has indeed not. This problem can

be solved by providing the NN models of the components with better training data.

Training data that contains information about the system when a fault is present in

some component should be used. The models in these simulations are only trained

simplistically due to time constraints.

Table 5.1 shows that the diagnostic accuracy is 100% in some cases where false positives

are present. Diagnostic accuracy refers to the performance of the fault diagnosis part

of the system, while false positives refers to the performance of fault detection part

of the system. Thus when a fault is induced in an AMB component the performance

of the fault diagnostic part of the FDD system can be expressed as a persentage of

time that fault is correctly classified. In the case where no fault is induced in a specific

component of the AMB but the FDD system detects a fault it is indicated as a false

positive since it refers to the detection capability of the FDD system. In order to get an

overall performance measure for the system both diagnostic accuracy and the amount

of false positives have to be considered.

Because of the large number of false positives in the simulations, it would not be

practical to attempt simulations with multiple simultaneous faults induced. Multiple

faults would be too difficult to separate from the false positive outputs with the simple

training data available. It is, however, possible to detect multiple faults with relative

ease if the NN models can be trained more completely.

Table 5.2 shows results similar to those in table 5.1. All the simulations in table 5.2

had a SNR of 55. A SNR of 55 is considered the limit of noise in the AMB simulation

before the system becomes unstable. In table 5.2 it can be seen that in 6 simulations the

Distributed fault detection and diagnostics using artificial intelligence techniques 77/101

Chapter 5 Results

induced fault was never detected, as indicated by ND. The faults that were detected

had similar detection time as those in table 5.1. When a fault is detected, it is often

diagnosed correctly, except for the sensor bias fault that was again classified as a sensor

gain fault. The reason for the good diagnostic accuracy (when the fault was detected)

is a consequence of the fault model bank approach.

When the residuals were considered for the results in table 5.2 it can be seen that the

fault residuals do converge to zero, but noise from other residuals hamper the detection

capability of the FDD system. Although the noise is filtered out to some degree in the

simulation it is often hard to find the optimal filter parameters.

In an attempt to reduce the effects of noise on the FDD system, all NN models were

trained with data from a AMB system with SNR of 55. The fault performace of the

simulations when the FDD is trained with SNR of 55 is shown in table 5.3.

In table 5.3 an improvement can be seen, where 6 faults could not be detected in table

5.2, now only 3 faults cannot be detected. The sensor bias fault is again classified as

a sensor gain fault, indicating a possible problem with the training of the sensor bias

fault model. The similarity between sensor bias faults and sensor gain faults might be

too big, causing the sensor gain residual to approach zero closer than the sensor bias

residual.

The performance of the FDD systems with all three sets of simulations is shown in

figures 5.7 and 5.8.

In figure 5.7 the mean squared error (MSE) of the detection speed is shown on a bar

plot. To calculate the MSE the detection time for faults that weren’t detected (ND) was

chosen as the fault duration (4000 timesteps). From the bar plot it can be seen that the

FDD system for an AMB system with a SNR of 80 performed best. The FDD that was

trained with data from an AMB system with SNR of 55 has a MSE of almost half that

of the FDD trained with data from an AMB with SNR of 80.

In figure 5.8 the MSE of the diagnostic accuracy is shown on a bar plot. The results

Distributed fault detection and diagnostics using artificial intelligence techniques 78/101

Chapter 5 Conclusion

are similar to those in figure 5.7, indicating FDD is most effective in low noise

environments. When a low noise environment is not available, training the neural

networks with noisy data may improve the detection and diagnostic performance.

The most elegant method would be to filter noise out completely but that is outside

the scope of this research.

5.5 Conclusion

In this chapter the effectiveness of the distributed FDD was shown on an AMB

simulation. The results indicated a high degree of isolability and diagnostic accuracy

when system noise is small. The FDD system performed very well within the tolerable

noise area.

As noise increases, the isolability and diagnostic accuracy is reduced, but still displays

useful information. The effects of noise on both the AMB and FDD systems can be

greatly reduced with proper noise filtering techniques. The only noise filtering in this

simulation was a very simple wavelet filter. It is therefore possible to improve the

isolability and diagnostic accuracy of the FDD when sufficient preprocessing of the

data is done.

The effects of a non-linear system on the performance of the distributed FDD approach

should be studied in detail in future research. The complexity of the models in the

FDD would have to be increased and huge amounts of training data would have to be

supplied in order to train such complex models. There should however not be problem

with the concept of a distributed approach, but this is only speculation since there is

no data to prove or disprove this statement. In other words, the general limitation

for detecting and diagnosing faults in non-linear systems would most probably be

associated with the limitations of the models used in the FDD system and not with

the FDD approach itself.

This chapter provided some valuable insight into the problems that might be

Distributed fault detection and diagnostics using artificial intelligence techniques 79/101

Chapter 5 Conclusion

encountered in a physical implementation. It should be mentioned that the simulated

faulty states of the AMB can be improved. The AMB faults induced in this simulation

might not correspond to the faulty states in a physical AMB. It is proposed that more

accurate fault models be researched in future work. Although the current simulated

faulty states are not completely accurate compared to a physical AMB, they were

sufficient for the scope of this research.

In the next chapter a distributed FDD system is implemented in a physical system.

Distributed fault detection and diagnostics using artificial intelligence techniques 80/101

Chapter 6 Introduction

Chapter 6

Physical system

In this chapter a distributed FDD system will be implemented in a mobile robot. In

the previous chapters the FDD system was always an observer, much like a policeman

blowing the whistle when a crime is committed but not interfering with the crime. In

this chapter the FDD system will be implemented as part of the robot controller, and

thus instead of just observing the robot execution, it will be part of the decision-making

process.

6.1 Introduction

The purpose of having a physical implementation of an FDD system is to determine

whether it is possible to implement the distributed FDD physically and what problems

and issues need to be addressed to implement such a system.

The Surveyor SRV-1 Blackfin Robot was chosen as the physical system on which to

implement a distributed FDD system. The reason for choosing a mobile robot as

physical implementation is because a mobile robot provides a useful platform to test

various implementation ideas and strategies. Mobile robots are also relatively cheap

compared to other physical implementation options where additional hardware would

Distributed fault detection and diagnostics using artificial intelligence techniques 81/101

Chapter 6 Mission

have to be installed.

The robot consists of several main parts, including the chassis with tank type tracks,

laser pointers, colour camera and wireless communication. The robotic platform was

created with image processing in mind and has all the features needed to implement a

FDD system.

6.2 Mission

In order for a FDD system to be illustrated, some mission or task has to be given to the

robot. The FDD system can then monitor the mission and determine the faults or, as in

this case, the FDD system will be responsible for decision-making during the mission.

Without changing anything, the FDD as a monitoring process is therefore implemented

as a controlling process.

The mission the robot has to complete with the help of a FDD system is called

the intruder game. The intruder game involves learning an environment and then

attempting to detect changes in that environment. The intruder game is a direct

implementation of FDD.

As an analogy, imagine a human entering a room with 5 chairs in it. The person can

look around and is then asked to leave the room. While the person is outside a chair is

moved or changed with another chair. The person is again allowed to enter the room

and asked to identify the intruder. The person should say what changed in the room.

An implementation of the intruder game for a robot can be accomplished by letting the

robot look at a wall with objects glued onto it. Then something is changed on the wall

and the robot is allowed to look again, this time trying to find the intruder.

Although two-dimensional objects are easier to detect because of the lack of shadows,

three-dimensional objects can be used. In this chapter two-dimensional objects are

used. Three-dimensional objects increase the complexity of the image processing

Distributed fault detection and diagnostics using artificial intelligence techniques 82/101

Chapter 6 Method

required, which is outside the scope of this research.

The FDD system is designed to distinguish between three states of an object, namely

the position, colour and shape. Thus the robot examines the wall taking note of the

positions, colours and shapes of the objects. Once the robot has learned of all the

objects in its environment it would be able to conclude things like red objects are round

while blue objects are square, and region 1 contains a square while region 2 contains

a round disk. The fact that there are multiple states means that the FDD system can

be implemented as a distributed system. In other words each state of an object can be

handled like a component or process of a system was handled in previous chapters.

When the robot is in intruder detection mode it again observes its environment

and tries to detect objects. Once an object is detected the robot decides whether it

corresponds with the previously learned environment or whether it is an intruder. For

instance, it might find a red square and flag it as the intruder because in the past red

objects were round.

The intruder game is a fun implementation of a FDD system. A FDD system is

designed to distinguish between system states and to detect faults. When faults are

detected more information is needed such as the nature and location of the fault. The

environment in the intruder game can be seen as the system that has to be checked for

faults. For the intruder game fault detection and diagnosis is almost one task, because

when a fault is detected there is already enough information available for diagnosis. A

red square for instance is changed to a blue square, in order to detect the fault colours

that have to be compared. When a fault is detected the diagnosis is that the object’s

colour changed.

6.3 Method

The robot has a 500MHz Analog Devices Blackfin processor that runs custom firmware

compiled with an open source compiler. Functions were written and compiled as part

Distributed fault detection and diagnostics using artificial intelligence techniques 83/101

Chapter 6 Method

of the firmware that is responsible for the intruder game and the FDD procedures.

Many useful functions were already written and included in the firmware such as

image processing and pattern recognition procedures.

The operation of the robot for the intruder game is described by the following steps:

1. Observe the environment (wall with objects).

2. Consider each region of the environment and find objects.

(a) Use colour segmentation.

(b) Look for red and green blobs.

(c) Use a NN trained with predefined patterns to determine blob pattern.

3. Store colour, shape and position (region) of object.

4. Once the environment is explored three NNs can be trained:

(a) The first NN receives position as input and gives colour as output

(b) The second NN receives colour as input and gives pattern as output

(c) The third NN receives position as input and gives pattern as output

5. Wait 10 seconds after training to allow changes in environment to be made.

6. Once again observe the environment.

7. Give the NNs the newly-observed input data.

8. Compare the outputs of the NNs to the newly-observed output data.

9. Mark object as intruder when output’s don’t compare.

10. Mark intruder by flashing lights and output on console, then return to step 1.

In step 1 the robot stands still and observes the wall with objects on it. It is possible

for the robot to move around in its environment, but that would not contribute to

Distributed fault detection and diagnostics using artificial intelligence techniques 84/101

Chapter 6 Method

the mission where the main concern is FDD. For this specific mission only the colour

camera of the robot could have been used, since the robot doesn’t move.

All the functions used in step 2 were written by Surveyor Corporation and included

with the robot firmware. In step 2a a colour range is defined and all other colours are

filtered out of the environment. This enables the robot to ‘see’ certain colours only and

simplifies the task of object detection. When only a certain colour can be seen, areas of

uniform colour known as blobs become visible. Refer to figure 6.3 for an example of a

red blob.

Step 4 is where the distributed nature of the FDD system is seen. Instead of one NN

trained to match all three object variables, three NNs were trained to display certain

relationships between the object variables. The first NN matches position to colour,

in order to detect colour differences in regions. The second NN matches colour to

pattern, thus a new colour pattern combination can be detected. The third NN matches

position to pattern, as a method of introducing redundancy. It is possible to use only

two NNs without losing any information, but three NNs include a certain amount of

redundancy. With the correct classifier the redundant system would be more resistant

to possible modelling errors.

Figure 6.1 shows a block diagram of the layout of the distributed FDD system. The

inputs and outputs of each NN can be seen in figure 6.1. The information shown in

figure 6.1 corresponds to the information in step 4.

Step 5 requires the robot to wait a predefined time, allowing the user to introduce

intruders to the environment.

Figures 6.2 and 6.3 show the same two-dimensional red object. In figure 6.2 no

processing has taken place on the image, while in figure 6.3 colour segmentation was

applied to the image to show only red. The red part in figure 6.3 is known as a red blob

since it is an area with uniform colour.

Distributed fault detection and diagnostics using artificial intelligence techniques 85/101

Chapter 6 Method

Figure 6.1: Layout of distributed FDD

Figure 6.2: A red 2D object seen through the robot camera

Distributed fault detection and diagnostics using artificial intelligence techniques 86/101

Chapter 6 Method

Figure 6.3: A red 2D object after colour segmentation

6.3.1 Neural network implementation

In this section the detailed implementation of neural networks will not be discussed.

A common problem encountered with embedded systems is that it is difficult to

implement objects, such as neural networks, in a non-object-oriented programming

language.

Object-oriented code can, however, be implemented with the use of pointers and

structures. Consider a neural network object. A neural network has certain members

and methods. Some members of a NN object are: weights, neurons, number of input

neurons, number of hidden neurons, etc. Some methods of a NN object are: train

network, calculate network, determine error, etc.

The members of a network can be created by defining a structure that contains the

members. If the network will be created and initialised during program execution,

only pointers could be created within the structure. When the program is executed

the structure is used to define a variable, named net1 for instance. A pointer of net1

Distributed fault detection and diagnostics using artificial intelligence techniques 87/101

Chapter 6 Method

can now be passed to a constructor method. The constructor method will receive some

parameters that describe the network structure, and these parameters are used to create

the correct size of weight array, etc. The weight pointer within net1 is then set to point

to the memory location of the newly-created weight array.

When the network has to be trained, the address of the network net1 is passed to

the training method. The address points to net1 and net1 is a structure that contains

pointers to the weight array (and others). The training method can now directly change

the weight values for a certain network during training.

Using this implementation of objects the only limit to the amount of objects, NNs in this

case, that can be created is the memory available. This object-oriented implementation

lends itself to easily creating multiple objects of the same type, exactly what is needed

for a distributed FDD system.

6.3.2 Noise in the intruder game

Noise plays an important part in the intruder game. The colour camera of the robot

is very sensitive to light conditions. Conditions that have proved to be troublesome

include low light, bright light and artificial light. In all light conditions it becomes

difficult to determine the pattern of a colour blob, because of shadows and interference

of other colours. Figure 6.2 shows an example of the effects of shadows on the image:

notice the shadow from the right. The shadow in figure 6.2 is easily removed in

the colour segmentation procedure, but that is only because the image was taken in

acceptable light conditions. In other words, although the shadow is visible it is not yet

severe enough to cause noise in the colour-segmented image.

The best solution to almost all the problems related to light noise would be to make

the colour segmentation more robust. This can be achieved by setting the colour

ranges used in colour segmentation dynamically. The colour range can therefore be

set according to the quality of the ambient light. This approach would not solve the

problem of artificial light where flashing is seen on the camera. Artificial light also

Distributed fault detection and diagnostics using artificial intelligence techniques 88/101

Chapter 6 Results

make objects appear more yellow.

6.4 Results

The purpose of this chapter was to illustrate that a distributed FDD system is

physically implementable. Thus a comparison of the distributed method with the

collected method would be outside the scope of this chapter. For a comparison between

the distributed method and collected method refer to 4. The results in this section will

illustrate the performance of the robot for the intruder game. The intruder game was

played in a real world environment with noise, unknown inputs and various other

disturbances present in the real world. The primary results of the intruder game are

discussed in the following paragraphs, but for in-depth discussions on the various

problems encountered, refer to the previous chapters.

The objects used in the intruder game included a red square, red circle, green square

and green circle. The objects had different sizes. The size of the object is irrelevant to

the game. It should, however, be noted that bigger objects have a better probability of

being detected correctly in respect of both colour and pattern.

It is possible to use a large variety of colours and patterns in the intruder game.

The addition of new colours and patterns should not have a significant effect on the

results of the intruder game. The NN models would have to be trained sufficiently

to accommodate the new patterns and colours. More patterns and colours in the

environment would require larger NN models. For the purpose of illustrating the

implementability of the distributed FDD system, two colours and two patterns are

more than sufficient.

For the purpose of playing the intruder game with two colours and two patterns,

the NN models were created with 3 input neurons, 5 hidden neurons and 3 output

neurons. The NN models were trained for 10000 epochs.

Distributed fault detection and diagnostics using artificial intelligence techniques 89/101

Chapter 6 Results

Table 6.1: Results from the intruder game
Game Position Object before Object after Classifier False
number output positive
1 1 Green square Empty Col. don’t match
2 1 Empty Green square Col. don’t match 3
3 2 Red circle Red square Pat. don’t match
4 1 Green square Red square Col. don’t match

2 Red square Green square Col. don’t match
5 3 Green square Empty Col. don’t match
6 3 Empty Red circle Col. don’t match
7 1 Red square Green circle Col. don’t match
8 3 Red circle Red square Pat. don’t match 1
9 2 Green square Green circle Pat. don’t match 1
10 0 No intruder found
11 0 Pat. don’t match 3
12 0 No intruder found

Table 6.1 shows the results of 12 executions of the intruder game. In the table it can

be seen that the robot detected the intruder whenever it was present and accurately

diagnosed the change in the environment. False positives were present in a few

instances. In the case of a false positive an object was marked as an intruder when

it was not.

In the 12 games played 4 cases of false positives appeared. In the second game, a

false positive is indicated in position 3. The classifier claims that the object’s colour

changed, whereas the problem is actually that the object was not ‘seen’ on the wall

before an intruder was introduced. This is most likely because of light noise within

the environment and can be solved with a robust colour segmentation approach, as

discussed earlier.

The remainder of the false positives is a result of modelling errors. In an attempt

to increase the execution speed of the game, the NN were trained with a minimum

number of hidden neurons. This limited number of hidden neurons and the limited

number of training epochs could result in less accurate modelling results. The problem

can be easily solved by increasing the number of hidden neurons, increasing the

number of training epochs or providing the neural network with more training data.

Distributed fault detection and diagnostics using artificial intelligence techniques 90/101

Chapter 6 Conclusion

By implementing a more complex diagnostic system, a measure of confidence in the

classifier output can be calculated. The fact that redundant data is available, in the

form of three NNs instead of two, will make the calculation of confidence possible. A

more complex diagnostic system was not implemented because of time constraints.

Note that nothing was changed to the environment in the last three games in table 6.1.

6.5 Conclusion

In this chapter it was shown that a distributed FDD system can be implemented in a

real world application. A brief discussion was given on a simple method of achieving

object-oriented programming in a non-object-oriented programming language.

From the results it can be concluded that the robot showed good performance while

executing the intruder game. Although the results are not perfect, the problems

encountered can be easily reduced. Aspects such as the correct NN structure and

environment conditions will greatly aid in improving the performance during the

intruder game.

In the next chapter the conclusion of the research will be given.

Distributed fault detection and diagnostics using artificial intelligence techniques 91/101

Chapter 7 Chapter 7. Conclusion

Chapter 7

Conclusion

The effects of faults on a system or process can be severe. Faults in a working

environment can gravely reduce the safety within that environment. Faults also have

some significant financial implications. Implementing systems that reduce the severity

of faults by proper detection and diagnosis are of great importance. Not only will such

systems help to maintain the safety in a working environment, but they can also result

in significant financial savings.

A large number of fault detection and diagnostic systems exist in the modern industrial

community. All of these FDD systems have certain strengths, weaknesses and

application domains. With the continual development of faster, more powerful and

more complex machines and processes, the faults within these systems also become

more complex. In order to keep up to this next generation of faults, the field of FDD

has to be researched and developed.

The research in this document was primarily concerned with a technique of FDD

known as distributed FDD. The effects of distributing the modelling and diagnostic

units over the system that has to be monitored was considered. The distributed FDD

system was primarily implemented using artificial intelligence techniques.

Artificial intelligence techniques were used because of their ability to model a system

Distributed fault detection and diagnostics using artificial intelligence techniques 92/101

Chapter 7 Chapter 7. Conclusion

even when the underlying principle of the system is not understood. This property of

artificial intelligence allows the models to be more generic, and thus suitable for many

application domains.

The research started with an in-depth literature study of both FDD and artificial

intelligence. Many different fault detection approaches were studied, which can be

broadly categorised as quantitative model-based, qualitative-model based and process

history-based. Although there are many approaches to fault diagnosis, the two

approaches of interest are the pattern recognition approach and the fault model bank

approach (also known as the multiple model method).

Aspects that can influence the performance of a FDD system were researched and

discussed.

Several artificial intelligence approaches were studied in depth. Some of the most

prominent artificial intelligence approaches were investigated and evaluated. After

careful consideration it was decided that artificial neural networks would best be

suited as modelling units and fault classifiers. The remainder of the research used

neural networks as models and either neural networks, fuzzy logic inference or if-then

rules to classify faults.

FDD systems were implemented on a linear system, simulation of an AMB and

physical system. The purpose of the linear system was to provide a simplistic

platform where all FDD approaches can be tested. This was done to determine

the advantages and disadvantages the distributed FDD approach has over other

approaches. The distributed FDD system was implemented on an AMB system in

an attempt to determine the performance of the distributed FDD system in more

complex environments. In the physical implementation of the distributed FDD system

on the mobile robot, the primary purpose was to determine what problems might be

encountered in such a physical implementation.

In the experimentation with the linear system, different approaches to FDD were

implemented. The two FDD approaches implemented were the collected method

Distributed fault detection and diagnostics using artificial intelligence techniques 93/101

Chapter 7 Chapter 7. Conclusion

and the distributed method. The collected method uses only one model for the

linear system, while the distributed method has multiple models distributed over the

components of the linear system.

During the experimentation of the linear system, two diagnostic approaches were

considered. The pattern recognition approach requires feature extraction of the

residuals in order to provide accurate classification of states. The fault model bank

approach creates multiple models, one for each expected state of the system. For

the fault model bank approach only the residuals are considered during classification.

The model creating the residual closest to zero usually models the current state of the

system.

In the experimentation with the linear system, it was found that the distributed FDD

approach aids fault isolation. Better fault isolation means that the location of the fault

can be found more easily. It was also found that the fault model bank approach has a

shorter training time and yields better results.

The distributed FDD approach, using the fault model bank method to diagnose,

was then implemented in a simulation of an active magnetic bearing. The general

performance of a distributed FDD system in a noisy environment was researched. It

was found that noise plays an important part in FDD and should be considered when

a FDD system is designed. The distributed FDD system provided good classification

results even in the presence of a lot of noise.

The distributed FDD system was implemented on a robot. The robot had a mission

to detect intruders in its environment. The FDD system was actually the cornerstone

of the whole mission. The robot could find almost all intruders in all the games it

played. The implementation of the distributed FDD on the robot not only proves

that it is possible to implement the distributed FDD system physically, but that it is

relatively easy to implement. The main problems encountered during the physical

implementation was firmware programming-related. Programming efficient firmware

can easily be accomplished by an experienced programmer, possibly resulting in even

Distributed fault detection and diagnostics using artificial intelligence techniques 94/101

Chapter 7 Recommendations for future research

better FDD performance.

7.1 Objectives achieved

In the introductory chapter it was stated what the objectives of this research were.

The primary objective was to develop a distributed FDD system that uses artificial

intelligence. During the course of this research it was shown how a distributed FDD

system was developed that used artificial intelligence. The primary advantages of the

distributed FDD approach were found to be improved fault isolability and reduced

implementation complexity. It was found that by distributing the FDD system the

overall complexity of FDD is reduced.

The secondary objective of this research was to compare different methods of FDD.

Two methods were compared, namely the pattern recognition method and the fault

model bank method. It was found that each method has strengths and weaknesses,

but the fault model bank proved the easiest to implement.

7.2 Recommendations for future research

It is proposed that the complexity of the simulations and physical implementations is

increased in future research.

The simulation of the AMB used in this research was sufficient to determine the

performance of the distributed FDD, but in future research this simulation is far too

simplistic. An AMB is a complex system, and the current simulation only scratches the

surface as far as the workings of an AMB is concerned.

Although the mobile robot showed a fun implementation of a distributed FDD system,

it is proposed that a more complex physical system be used in future research. The

Distributed fault detection and diagnostics using artificial intelligence techniques 95/101

Chapter 7 Recommendations for future research

limited number of inputs and outputs of the mobile robot also limited the size and

complexity of the FDD system.

Distributed fault detection and diagnostics using artificial intelligence techniques 96/101

Chapter 7 Bibliography

Bibliography

[1] V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S. N. Kavuri, “A review of

process fault detection and diagnosis: Part i: Quantitative model-based methods,”

Computers & Chemical Engineering, vol. 27, no. 3, pp. 293–311, Mar. 2003.

[2] A. Saxena and A. Saad, “Evolving an artificial neural network classifier for

condition monitoring of rotating mechanical systems,” Applied Soft Computing,

vol. 7, no. 1, pp. 441–454, Jan. 2007.

[3] R. Isermann, “Supervision, fault-detection and fault-diagnosis methods – an

introduction,” Control Engineering Practice, vol. 5, no. 5, pp. 639–652, May 1997.

[4] R. Patton, J. Chen, and S. Nielsen, “Model-based methods for fault diagnosis:

some guide-lines,” Transactions of the Institute of Measurement & Control, vol. 17,

no. 2, p. 73, 1995.

[5] O. Pettersson, “Execution monitoring in robotics: A survey,” Robotics and

Autonomous Systems, vol. 53, no. 2, pp. 73–88, Nov. 2005.

[6] R. Isermann and P. Balla, “Trends in the application of model-based fault detection

and diagnosis of technical processes,” Control Engineering Practice, vol. 5, no. 5, pp.

709–719, May 1997.

[7] V. Venkatasubramanian, R. Rengaswamy, and S. N. Kavuri, “A review of process

fault detection and diagnosis: Part ii: Qualitative models and search strategies,”

Computers & Chemical Engineering, vol. 27, no. 3, pp. 313–326, Mar. 2003.

Distributed fault detection and diagnostics using artificial intelligence techniques 97/101

Chapter 7 Bibliography

[8] V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri, and K. Yin, “A review of

process fault detection and diagnosis: Part iii: Process history based methods,”

Computers & Chemical Engineering, vol. 27, no. 3, pp. 327–346, Mar. 2003.

[9] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford University Press,

November 1995.

[10] G. R. S. S. G. Goel, P. Dedeoglu, “Fault detection and identification in a mobile

robot using multiplemodel estimation and neural network,” IEEE International

Conference on Robotics and Automation, vol. 3, pp. 2302–2309, 2000.

[11] A. Vemuri and M. Polycarpou, “Neural-network-based robust fault diagnosis in

robotic systems,” Neural Networks, IEEE Transactions on, vol. 8, no. 6, pp. 1410–

1420, 1997, hard copy.

[12] P. M. Frank, “Fault diagnosis in dynamic systems using analytical and

knowledge-based redundancy : a survey and some new results,” Automatica,

vol. 26, no. 3, pp. 459–474, 1990.

[13] M. Schroeder, Fractals, chaos, power laws. Minutes from an infinite paradise. Freeman,

1991.

[14] M. Keshner, “1/f noise,” Proceedings of the IEEE, vol. 70, pp. 212– 218, 1982.

[15] K. Wang, Intelligent condition monitoring and diagnosis systems: A computational

intelligence approach, ser. Frontiers in artificial intelligence and applications, R. H.

L.C. Jain, Ed. IOS Press, 2003, vol. 93.

[16] D. Hush and B. Horne, “Progress in supervised neural networks,” Signal

Processing Magazine, IEEE, vol. 10, no. 1, pp. 8–39, 1993.

[17] M. Neser, “Neuro-fuzzy techniques for intelligent control,” Master’s thesis, The

School of Electrical and Electronic Engineering, North-West University, 2006.

[18] M. Boden, “A guide to recurrent neural networks and backpropagation,” Swedish

Institute of Computer Science. The DALLAS project. Report from the NUTEK-

Distributed fault detection and diagnostics using artificial intelligence techniques 98/101

Chapter 7 Bibliography

supported project AIS-8: Application of Data Analysis with Learning Systems,

Tech. Rep., 2002.

[19] H. Ohta and Y. P. Gunji, “Recurrent neural network architecture with pre-synaptic

inhibition for incremental learning,” Neural Networks, vol. 18, pp. 1106–1119, 2006.

[20] E. Ranft, “The development of a flexible rotor active magnetic bearing system,”

Master’s thesis, Electrical and Electronic Engineering North-West University, May

2005.

[21] R. Gouws, “Condition monitoring of active magnetic bearing systems,” Ph.D.

dissertation, North-West University, May 2007.

Distributed fault detection and diagnostics using artificial intelligence techniques 99/101

Chapter A Linear model simulation

Appendix A

Data CD

A.1 Linear model simulation

To run a simulation of the collected pattern recognition approach, execute the file

RTFDD overall trad.m in MATLABr. A menu will appear, before the FDD system can

be tested it is necessary to train the models and then to train the classifier.

To run a simulation of the distributed pattern recognition approach, execute the file

RTFDD overall.m in MATLABr. A menu will appear, before the FDD system can be

tested it is necessary to train the models and then to train both the classifiers.

To run a simulation of the collected fault model bank approach, execute the file

ModelBank2.m in MATLABr. In order to train the models the variable named mode

has to be changed to 1. Once the models are trained the simulation can be re-run with

mode changed to 2.

To run a simulation of the distributed fault model bank approach, execute the file

ModelBank.m in MATLABr. In order to train the models the variable named mode

has to be changed to 1. Once the models are trained the simulation can be re-run with

mode changed to 2.

Distributed fault detection and diagnostics using artificial intelligence techniques 100/101

Chapter A Physical system

A.2 AMB simulation

The simulation of the AMB can be started by executing the file AMBFDD1f.m in

MATLABr. The models are trained with the file targets.m. The FDD system is executed

by running the file FDD.m.

The following steps indicate the process of executing the AMB simulation:

1. Remove faults from AMB simulation by editing the fault man variable.

2. Run AMBFDD1f.m.

3. Run targets.m.

4. Put faults in the AMB simulation by editing the fault man variable.

5. Run AMBFDD1f.m.

6. Run FDD.m.

7. Observe results.

A.3 Physical system

The firmware of the robot is included on the CD. The files of interest is my func.c and

genneural.c. The intruder game is coded in my func.c. The neural networks are coded in

genneural.c. Note all other files of the firmware were written by Surveyor Corporation

and distributed under the GNU public license.

Distributed fault detection and diagnostics using artificial intelligence techniques 101/101

	List of Figures
	List of figures

	Introduction
	Background
	Problem statement
	Objectives
	Issues to be addressed
	Exploring fault detection and diagnostic techniques
	Fault detection and diagnostics for a simple system
	Fault detection and diagnostics for an advanced system
	Fault detection and diagnostics for a physical system

	Research methodology
	Exploring fault detection and diagnostic techniques
	Fault detection and diagnostics for a simple system
	Fault detection and diagnostics for an advanced system

	Beneficiaries
	North-West University
	M-Tech Industrial, PBMR, THRIP

	Cost
	Overview

	Fault detection and diagnostics
	Approaches to fault detection
	Quantitative model-based
	Qualitative model-based
	Process history-based
	Hybrid methods

	Approaches to fault diagnosis
	Pattern recognition
	Fault model bank approach

	Desirable characteristics
	Faults
	Sources of error

	Summary

	Artificial intelligence
	Artificial neural networks
	Multi-layer perceptron
	Time delay neural network
	Recurrent neural network
	Radial basis function networks

	Evolutionary algorithms
	Genetic algorithms

	Summary

	FDD on a linear model
	Introduction
	Method
	Fault model bank
	Pattern recognition

	Results
	Pattern recognition
	Fault model bank

	Conclusion

	Advanced model
	Introduction
	Active Magnetic Bearing
	Actuators
	Sensors
	Controller
	Power amplifier

	Method
	AMB model
	FDD system

	Results
	Effects of noise
	FDD performance

	Conclusion

	Physical system
	Introduction
	Mission
	Method
	Neural network implementation
	Noise in the intruder game

	Results
	Conclusion

	Conclusion
	Objectives achieved
	Recommendations for future research
	References

	Bibliography
	Data CD
	Linear model simulation
	AMB simulation
	Physical system

