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Abstract 

 

There are many practical decision problems that fall into the category of network flow 

problems: numerous examples of applications can be found in areas such as 

telecommunications, logistics, distributions, engineering, computer science and so on. One of 

the most popular and valuable tools to solve network flow problems of a topological nature is 

the use of linear programming models. An important extension of these models is that of 

integer programming models that deal with problems where some, or all, of the variables are 

required to assume integer variables. A significant application in this class of problems is the 

knapsack problem that arises in different contexts such as loading containers in aircraft or 

satisfying the demand for various lengths of cloth which must be cut from fixed length bolts 

of fabric. 

 

In this study, the feasibility of representing a network flow model in a tree network model 

and subsequently solving it using a tree knapsack approach is investigated. To compare and 

validate the proposed technique, a specific case study was chosen from the literature that can 

be used as a basis for the research project. The said study was an oil pipeline design problem, 

addressed by Brimberg et al. (2003). This focuses on the optimal design of an oil pipeline 

network for the South Gabon oil field in Africa. The objective was to reduce oil 

transportation costs to a major port. Following an overview of different network flow and 

knapsack models, an overview of the said matter is presented. A description of the proposed 

tree knapsack approach and the application of this approach to the given problem is given. 

Results have indicated that it is feasible to apply a tree knapsack approach to solve network 

flow problems. 

 

Keywords: Linear programming models, integer programming, network flow, tree knapsack, 

oil pipeline network. 

 

 

 

 

 



vii 
 

Uittreksel 

 

Daar bestaan baie praktiese besluitnemingprobleme wat geklassifiseer kan word as 

netwerkvloei probleme. Voorbeelde hiervan kan gevind word in verskeie velde soos 

telekommunikasie, logistiek, ingenieurswese, rekenaarwetenskap, ens. Een van die mees 

waardevolle tegnieke om „n netwerkvloei probleem op te los is die gebruik van lineêre 

programmeringsmodelle. „n Belangrike uitbreiding van lineêre programmering modelle is 

heeltallige modelle waar sekere, of alle, veranderlikes heeltallige waardes het. „n Belangrike 

toepassing binne hierdie klas van probleme is die “knapsak” probleem wat in verskillende 

kontekste aangewend kan word, byvoorbeeld, die laai van houers in „n vliegting of die vraag 

na sekere lengtes materiaal wat gesny moet word. In hierdie studie word die moontlikheid en 

toepaslikheid van die gebruik van „n boom knapsak metode, om „n netwerkvloei probleem op 

te los, ondersoek.  

 

Om hierdie metode te vergelyk, en die geldigheid daarvan te toets, is „n spesifieke 

gevallestudie uit die literatuur gekies. Die gevallestudie wat gekies is, handel oor die ontwerp 

van „n oliepypleiding probleem (Brimberg et al., 2003). Die oliepypleiding probleem fokus 

op die optimale ontwerp van ‟n oliepypnetwerk vir die Suid-Gaboen olie veld in Afrika. Die 

doel hiervan is om die vervoerkoste van olie na „n hawe te verminder. „n Oorsig van 

verskillende soorte netwerkvloei modelle asook knapsak modelle sal aangebied word. Die 

oliepypleiding probleem sal ook bespreek word. „n Beskrywing van die voorgestelde boom 

knapsak benadering asook die toepassing hiervan op die oliepypleiding probleem sal gegee 

word. Resultate het aangedui dat netwerkvloei probleme wel deur „n boom knapsak 

benadering opgelos kan word. 

  

Sleutelwoorde: Lineêre programmering, heeltallige programmering, netwerkvloei, boom 

knapsak, oliepypleiding netwerk. 
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11      
Introduction 

                              

1.1 Introduction 

 

Many management decisions are focused on the best way to achieve certain objectives 

subject to certain restrictions. These may take the form of limited resources such as time, 

labour, energy, materials or money; or they could assume the form of restrictive guidelines 

such as a recipe or engineering specifications. Whenever a decision maker or researcher 

attempts to solve a type of problem by seeking an objective subject to restriction, a 

management science technique called linear programming is frequently used (Taylor, 2002). 

 

It can be defined as a mathematical programming model with a linear objective and linear 

constraints. Mathematically such a model can be represented as follows (Weatherford and 

Moore, 2001) 

 

      Maximize (or minimize) f(x1,……..xn), 

     

      subject to the constraints that 

                 g1(x1,……..xn)   ≥,  =, ≤   b1, 

                       . 

                       .                                                                    

                       . 

                gm(x1,……..xn)   ≥,  =, ≤   bm, 

      where f and g1, . . . . .,gm are linear functions. 
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1.2. PROBLEM STATEMENT 

 

There are different types and extensions of general linear programming problems. Network 

problems, for example, constitute a large and special class of linear programming models and 

are used to solve a variety of problems such as shortest route, maximum flow, minimal 

spanning tree and the like. Another important extension of these models is found in integer 

programming models that deal with problems where some, or all, of the variables are required 

to assume integer variables. A significant application in this class of problems is the knapsack 

problem that arises in different contexts such as loading containers in aircraft or satisfying the 

demand for various lengths of cloth which must be cut from fixed length bolts of fabric. 

 

The purpose of this chapter is to guide the reader into the research project by explaining the 

problem statement, objectives of the study and the methodology that will be followed. A 

layout of the study, explaining the purpose of each chapter, is also presented. 

  

1.2 Problem statement 

 

Network flow problems represent a huge number of practical decision problems; many 

examples of applications can be found in the area of logistics, distribution, engineering, 

computer science etc. One of the most popular and valuable tools to solve problems of this 

type is the use of linear programming models. Consider for example the case where the 

shortest distance between an origin and a specific destination point in a network has to be 

determined. The classical linear program formulation for this network problem can be 

represented by 

 

 Minimize    
,

,ij ij

i j

c x

                                                                                             (1.1)

 

 

            subject to 

                        
1

1,
m

ij

j

x          1,.....,i m         (origin node i)                                     (1.2) 
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1 1

0,
m n

ij ij

i j

x x

   

 1,.....,i m , 1,......,j n  (transshipment nodes)           (1.3) 

 

   
1

1,
n

ij

i

x           1,......,j n     (destination node j)                                  (1.4) 

  where 

  ijc  = the distance, time or cost associated with the arc from node i to node j, 

  1ijx  if the arc from node i to node j is on the shortest route, and 

  0ijx  otherwise, 

                         and m and n indicate the appropriate numbers of nodes. 

 

A good exposition of the technical detail regarding how to construct and solve network flow 

models can be found in Moore and Weatherford (2001). 

 

One of the challenges that researchers have to deal with is to constantly try and enhance the 

models or to try and improve the time taken to solve these types of models. Recently a study 

by Van der Merwe and Hattingh (2006) has applied a tree knapsack approach to local area 

telecommunications networks in order to try and address these issues. See also Van der 

Merwe and Hattingh (2010). 

 

For this research study it was decided to investigate the feasibility of representing a network 

flow model as a tree network model and subsequently solve it using a tree knapsack approach 

in a similar way to that in which Van der Merwe and Hattingh (2006) solved the local area 

telecommunication network problem. Furthermore, to compare and validate the proposed 

technique, it was decided to choose a specific case study in the literature that could be used as 

a basis for this research project. The problem selected was an oil pipeline design problem 

addressed by Brimberg et al. (2003) 

 

During 2003, these authors performed a research study in an attempt to design an optimal oil 

pipeline network for the South Gabon oil field in Africa. They formulated a standard                                          
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1.3. RESEARCH OBJECTIVES 

 

mathematical network model to determine the “best path” for oil flow. The model was solved 

heuristically by Tabu Search and Variable Neighborhood Search methods. They also solved it 

exactly using a branch-and-bound method. In this proposed study the given oil pipe network 

will be transformed into a tree structure and thereafter solved by a tree knapsack model 

analogous to the tree knapsack model used by Van der Merwe (2002).  

 

1.3 Objectives of the study 

 

The primary objective of this study is consequently to investigate the feasibility of using an 

extended tree knapsack approach to solve a network flow problem. This will be accomplished 

by addressing the following secondary research objectives. 

 

 Gain a clear understanding of and present an introductory overview of general 

network flow and tree knapsack models; 

 

 Select and provide a suitable case study from the literature that can be used in the 

research project; 

 

 Describe and formulate the tree knapsack and extended tree knapsack approach and 

model; and 

 

 Describe and present the results of the tree knapsack approach when applied to the 

selected case study. 

 

1.4 Research Methodology 

 

The research study will start with a general literature survey that will be used to give an 

overview of network flow models, knapsack and tree knapsack models and examples of 

applications of these models. This will be followed by empirical work to formulate and apply  
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1.6. CONCLUSION 

 

a tree knapsack model to the selected network flow problem in order to test the feasibility of 

using the tree knapsack approach. 

 

1.5 Chapter outline 

 

This section explains the purpose of each chapter and how it is structured. 

 

Chapter 2 will offer an overview of the network flow models, knapsack and tree knapsack 

models. The most important types of problems will be briefly reviewed and where 

appropriate, the mathematical formulation will also be provided. Chapter 3 will be devoted to 

a description of the chosen case study – the oil pipeline design problem – while Chapter 4 

will concentrate on the research design and methodology followed to develop the tree 

knapsack model. In Chapter 5 the said model is applied to the oil pipeline design problem and 

the results will be presented and discussed. The last chapter, Chapter 6, will then summarize 

the goals set forth for the study and how they were achieved. Opportunities for further studies 

will also be pointed out. 

 

The abovementioned chapters are supplemented by a set of appendices which contain details 

of work related to the study.  

 

1.6 Conclusion 

 

Chapter 1 served as an introduction to the research project and explained the problem 

statement, objectives of the study and the methodology that will be followed. A layout of the 

study, explaining the purpose of each chapter, was also furnished. 
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An overview of network flow models and tree knapsack 

problems 

 

2.1 Introduction 

 

The objective of this study, to investigate the feasibility of representing a network flow 

problem as a tree structure and to solve it using a tree knapsack approach, implies that two 

main areas of research will be involved in the project; namely network flow and knapsack 

models. To provide sufficient background and to gain an understanding of these two areas, 

this chapter presents an introductory overview of such models. The main types and 

applications of both models as well as a discussion on tree knapsack models will be 

furnished. 

 

2.2 Network flow models 

 

2.2.1 Introduction 

 

A network is an arrangement of paths connected to various points through which one or more 

items move from one point to another (Taylor, 2002). Network models have become very 

popular and are used in a variety of application areas such as the transmission of information, 

transportation of people, distribution of goods etc. Another reason for the popularity of 

networks models is that they can be drawn as diagrams – this literally provides a picture of 

the system under analysis and enables a manager or researcher to visually interpret a system. 



7 
 

2.2. NETWORK FLOW MODELS 

 

A network diagram consists of two main components; nodes and branches (arcs). Nodes, 

usually denoted by circles, represent junction points (e.g. cities, intersections, air or railroad 

terminals etc.) while arcs connect the nodes and allow the flow from one point in the network 

to another. The network shown in figure 2.1 is an example of a network diagram. The nodes 

are numbered from 1 to 5 while a branch is denoted by the pair (i, j): for example, the branch 

form node 2 to node 4 will be denoted by the pair (2, 4).  cij denotes the cost of traversing the 

branch (i, j) and uij denotes the capacity along route (i, j) 

 

 

 

 

 

 

 

 

                                                  

                                                  Figure 2.1 Example of a network diagram 

 

According to Black and Tanenbaum (2010) a network or a graph can be described as a set of 

items connected by arcs. Each item is called a vertex or node and in terms of graph theory, 

the graph can be defined as a pair (V, E), where V is a set of vertices, and E is a set of edges 

between the vertices so that E ⊆ {(u,v) | u, v ∈ V}.  

A number of practical decision problems fall into a general class of models known as 

network flow models. The most basic and familiar type of network models include projects to 

find the shortest path through a network (shortest-route), to establish the maximum flow of  

4 1 

3 

5 

2 

u 53 

C43 
C34 

C53 

C24 

u 45 

u 34 

C45 u 24 

u 43 

C23 

u 23 

u12 

C12 

u 25 

C25 

http://www.itl.nist.gov/div897/sqg/dads/HTML/vertex.html
http://www.itl.nist.gov/div897/sqg/dads/HTML/node.html
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any quantity or substance through a network (maximum-flow) and to determine a path 

through a network that connects all the nodes while minimizing total distance or cost 

(minimal spanning tree). In addition to these models there are also three well known types of 

models involving sources and destinations that are members of the class of network flow 

models. These special types of models are known as transportation, transshipment and 

assignment problems. 

The remainder of this section will present a brief overview of the network models mentioned 

above, starting with the three special cases. 

 

2.2.2 Transportation problems 

 

Transportation or shipping problems arise frequently in practice and involve determining the 

amount of goods or items to be transported from a number of origins (supply locations) to a 

number of destinations (demand locations). Typically the quantity of goods available at each 

origin is limited and the quantity needed at each destination is known. The objective is to 

minimize total shipping costs or distances. 

The constraints in this type of problem deal with capacities at each origin and requirements at 

each destination. Figure 2.2 illustrates a network representation for a typical transportation 

problem with 3 origins and 4 destinations. 
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Figure 2.2 Network representation of a transportation problem  

 

This network problem can now be solved by formulating it as a linear programming model, 

as follows. 

Let xij = number of units shipped from origin i to destination j where i = 1, 2, 3 and j = 1, 2, 3, 

4. 

   Minimize  

3 4

1 1

,ij ij

i j

c x

                                                                                                       (2.1)

 

  subject to 

                   

4

1

,ij i

j

x S           1,2,3,i                                                                                  (2.2) 

 

1 

2 

1 

3 

4 

3 

2 

Destinations 

Origin

s 

S2 

2 

S1 

S3 

2 

D1 

D4 

D3 

D2 

Demands 
Distribution routes (arcs) Supplies 

C1,2 

 

C1,1 

 

C3,4 
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3

1

,ij j

i

x D         1,2,3,4,j                                                                               (2.3) 

                   0.ijx
                                                                                                               (2.4)

 

The above formulation is a basic model whereas in real world problems different variations 

of the model may occur. The following offer examples of situations where the model would 

need certain modifications: 

 Total supply is not equal to total demand. 

 

 Maximization of the objective function. 

 

 Route capacities or route minima. 

 

 Unacceptable routes. 

A discussion on how to deal with these situations can be found in Anderson et al. (2009)   

 

2.2.3 Assignment problems 

 

Assignment problems involve determining the most efficient assignment of people to jobs, 

machines to tasks, police cars to city sectors, salespeople to territories etc (Render et al., 

2006). A distinguishing feature of the assignment problem is that one person is assigned to 

one and only one task. The problem can therefore be viewed as a special case of the 

transportation problem in which the supply at each origin and the demand at each destination 

is a single issue. The objective function in an assignment problem is usually to minimize time 

or costs or to maximize effectiveness and can be formulated as follows. 

If m people need to be assigned to n tasks and cij denotes the cost of assigning person i to task 

j, then 

 let xij = 1 if person i is assigned to task j, 0 otherwise.  
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      Minimize 
     1 1

,
m n

ij ij

i j

c x
                                                                                                                    (2.5) 

       subject to 

                   
1

1,
n

ij

j

x                      1,2,..... ,i m                                                                                           
(2.6) 

                   
1

1,
m

ij

i

x                    1,2,..... ,j n                                                                                            
(2.7) 

                    {0,1}ijx                  for all i and j.                                                                                        
(2.8) 

As with the transportation model, different variations are possible: e.g., an unacceptable 

assignment. A discussion on these variations can be found in Anderson et al. (2009).   

 

2.2.4 Transshipment problems    

          

 A transshipment model is an extension of the transportation model. If items are being 

transported from a source through an intermediate point (called a transshipment point) before 

reaching a final destination, this is called a transshipment problem. Figure 2.3 depicts an 

example, with 2 origins, 2 transshipment nodes and 4 destinations.    
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Figure 2.3 Network representation of a transshipment problem 

 

The general linear programming model to solve a transshipment problem is formulated as 

follows. 

Minimize  
1 1

,
m n

ij ij

i j

c x

                                                                                                      (2.9) 

  subject to 

               
1

 ,
n

ij i

j

x S

            

1,2,..... ,i m

                                                                         (2.10) 

                
1

m

ij j

i

x D

             

1,2,..... ,j n

                                                                        (2.11) 
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1 1

0,
m n

ij ij

i j

x x

                                                                                           (2.12) 

                 
0.ijx

                                                                                                               (2.13)
 

where  

         xij = number of units shipped from node i to node j, 

          cij = cost per unit shipping from node i to node j,  

         Si = supply at origin node i,   

          Dj = demand at destination node j, 

          and m and n indicate the appropriate numbers of nodes.      

As with transportation and assignment problems, transshipment problems may be formulated 

in terms of several variations, e.g. with route capacities. Anderson et al. (2009) discusses the 

various modifications required for different variations. 

Transshipment problems frequently occur in management decision problems and many 

examples exist in the literature where these types of models were applied. For instance, 

Sharma and Jana (2009) describe a transshipment planning model for the petroleum refinery 

industry. The problem involves the transportation of refined oil from different refineries 

(origin) to various depots (transshipment nodes) and finally to various sales areas 

(destinations). The transportation mediums include pipelines, rail road and road tankers. This 

problem was solved by using a transshipment model and considering different objective 

functions such as minimization of costs, maximization of production capacity, minimization 

of oil storage at depots and so forth. 

Other examples in the literature where a transshipment model approach was applied include 

the work of Klincewicz (1990) which focuses on solving a freight transport problem using 

facility location techniques. The objective of his model is to discover the minimum cost path 

either direct or indirect for shipments using shipping economics. Wee and Dada (2005)  
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developed a formal model that focuses on the role of transshipment in a system of retailers 

who stock goods, while the work of Grahovac and Chakravarty (2001) focuses on 

transshipment of inventory in a supply chain with expensive low-demand items.  

 

2.2.5 Shortest route problem 

 

According to Weatherford and Moore (2001), a shortest route model refers to a network for 

which arc (i, j) has an associate number cij, which is interpreted as the distance (cost, time) 

from node i to node j. A route, or a path, between two nodes is any sequence of arcs 

connecting the two nodes. The objective, therefore, is to establish the shortest (least cost, 

least time) route from a specific node (origin) to another node (destination) in the network. 

This problem can be viewed and solved as a transshipment problem where the origin node 

has a supply of 1 and the destination node a demand of 1. All other nodes in the network have 

a demand (or supply) of 0. The formulation of the shortest route problem can be represented 

by the following. 

   

Minimize  
,

,ij ij

i j

c x

                                                                                                           (2.14) 

subject to 

               
1

1,
m

ij

i

x               1,2,..... ,j n     (origin node i )                                              (2.15) 

               
1 1

0,
m n

ij ij

i j

x x                       (transshipment nodes)                                  (2.16) 

                
1

1,
n

ij

j

x         1,2,..... ,i m        (destination node j )                                      (2.17) 
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where 

           cij = the distance (time, cost) associated with the arc from node i to node j, 

           xij = 1 if the arc from node i to node j is on the shortest route,   

           xij   = 0 otherwise, 

           and m and n indicate the appropriate numbers of nodes. 

Shortest route problems have many applications; below are a few examples quoted from the 

literature to demonstrate the significance of these types of models. 

Ragsdale (2007) stated that the equipment replacement problem is a common type of 

business issue that can be modelled as a shortest route problem. This involves determining 

the least costly schedule for replacing equipment over a specified length of time. 

A school bus routing problem is described by Schittekat et al. (2006) where the shortest route 

model was applied to discover the optimal bus route. Some of the other recent applications of 

the shortest route model can be found in Lee et al. (2003) which focuses on optimal routing 

in non geostationary satellite ATM networks with inter satellite link capacity constraints. The 

model explores the routing of broadband communication services such as high definition TV 

(HDTV), video conferencing, high-speed data transfer and videophone on satellite 

asynchronous transfer mode (ATM) networks. 

 The work of Modarres and Zarei (2002) focuses on an application of network theory and the 

AHP (analytic hierarchy process) in urban transportation to minimize earthquake damage. 

Their objective is to determine the priority of trips, shortest paths, the fastest routes for daily 

trips, and the safest ones during an earthquake. Erkut and Verter (1998) modelled  transport 

risks for hazardous materials with the objective of discovering the optimal path, taking into 

account the risk involved in transporting hazardous materials. 
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2.2.6 Maximum flow problem 

 

In a maximal flow model the objective is to determine the maximum amount of flow (e.g. 

vehicles, messages, fluid etc.) that can enter and exit a network system in a given period of 

time. The amount of flow on each arc is usually limited by capacity restrictions, e.g. 

diameters of pipelines will limit the flow of oil in an oil distribution system. The maximum or 

upper limit on the flow in an arc is referred to as the flow capacity of the arc. Flow capacities 

for the nodes are not specified, the only requirement being that for each node (except the 

origin and destination nodes) the flow balance equation (flow into the node = flow out of the 

node) must be satisfied. 

The formal model formulation for solving the maximal flow problem is provided by 

Weatherford and Moore (2001) as follows. 

Let node 1 be the origin node and node n the destination and let xij denote the flow across the 

arc (i,j) connecting node i and node j. The model is then given as 

 

 Maximize   f,                                                                                               (2.18) 

 

 subject to 

              

 if   = 1,

 if   = ,   

0 otherwise, 

ij ji

j j

f i

x x f i n

                                                                               (2.19)

 

               

                0 ,ij ijx n               for all arcs (i, j) in the network,                                    (2.20) 

where 

         nij denotes the flow capacities on the various arcs. 
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The following examples from the literature show that the maximal flow problem is an 

important type of issue that frequently occurs in practice.         

Gutierrez-Jarpa et al. (2009) made use of the maximal flow technique in a multi-objective 

model where one of the objectives is to maximize traffic on an existing bus route or railway 

line while minimizing the cost of the selected route. Stroup and Wollmer (1992) also 

incorporated the maximal flow technique in a fuel management model for the airline industry 

where the objective is to devise a minimum cost fuel tankering policy for an airline flight 

schedule based on fuel prices, station constraints and supplier constraints.  

Other examples in the literature where the maximal flow technique was used can be found in 

the work of Fishman (1987) and Rosenthal (1981).  

 

2.2.7 Minimal spanning tree problem 

 

The minimal spanning tree problem is the last type of network problem that will be 

mentioned briefly in this introductory overview of these problems. 

Ragsdale (2007) defines a minimal spanning tree as follows. Consider a network with n 

nodes: a spanning tree is a set of n-1 arcs that connects all the nodes and contains no loops. A 

minimum spanning tree involves determining the set of arcs that connects all the nodes in a 

network while minimizing the total length (cost) of the selected arcs. 

According to Anderson et al. (2009) the minimum spanning tree problem is usually solved by 

a simple algorithm that employs a basic greedy heuristic. The algorithm is given by them as 

follows. 

Step 1:   

 Arbitrarily begin at any node and connect it to the closest node in terms of the 

criterion being used (e.g. time, cost or distance). The two nodes are referred to as 

connected nodes, while the remaining ones are referred to as unconnected nodes. 
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Step 2:  

 Identify the unconnected node that is closest to one of the connected nodes. Break 

ties arbitrarily if two or more nodes qualify as the closest node. Add this new node to 

the set of connected nodes. Repeat this step until all nodes have been connected. 

 

As with all the other network flow models, the minimal spanning tree problem has many 

applications in areas such as local area network design, communication services and the like. 

Some of these applications include the work of Kawatra and Bricker (1998) which focuses on 

a multi-period model for a capacitated minimal spanning tree problem. The objective of the 

problem was to minimize the total cost of transmission capacity. The work of Hage et al. 

(1996) deals with the minimum spanning tree problem in archaeology while the work of Jain 

and Mamer (1988) focused on approximations for a random minimal spanning tree in the 

design of communication networks.  

 

2.2.8   Network design issues 

Following the brief overview of some of the well known network models, it is important to 

note that certain network problems can be solved by linear programming models and 

relatively simple algorithms or heuristics such as Dijkstra‟s algorithm (Kershenbaum, 1993) 

can be used for example to determine the shortest route through a network. Another 

advantage in certain network models is the integer property for specific cases (Weatherford 

and Moore, 2001). It is well known that linear programming models do not in general yield 

optimal solutions that have integer-valued solutions for the variables. The integer property is 

stated by Weatherford and Moore (2001) as follows. 

If all the RHS [right hand side] terms and arc capacities are integers and the coefficient 

matrix of the constraints are unimodular, there will always be an integer-valued optimal 

solution to the model. The motivation for the above integer property can be found in the 

unimodularity of the coefficient matrices. Briefly this can be explained as follows. 
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Consider the following problem 

Maximize Z = cx, 

subject to 

           Ax = b, 

            x  ≥ 0, 

where A is a m x n matrix and all the other vectors are of appropriate size. 

The matrix A is said to be unimodular if the determinant of every square sub matrix of A is 0, 

+1 or -1. This means that A is unimodular if and only if every submatrix is unimodular. 

According to Salkin and Mathur (1989) the following is then true. If the coefficient matrix A 

is unimodular and b is integer-valued then every basic feasible solution and therefore the 

optimal linear programming solution will be integer. Examples of network models which 

may have a unimodular coefficient matrix, and thus can be solved by a linear programming 

model, include classical transportation problems, assignment problems and minimum cost 

network flow problems. 

A good technical exposition of the integer property and unimodularity, as well as examples, 

can be found in Salkin and Mathur (1989). 

Another aspect relevant to the discussion of networks models is network design. The models 

and examples discussed so far described problems related to existing networks. For example, 

determine the shortest path, or maximum flow through an existing network. Network design 

problems usually involve decisions regarding network topology and capacity planning to 

satisfy certain demands or requirements. A good example of a network design problem can 

be found in Terblanche (2008) where a study was  performed that deals with solving a 

survivable network design problem by considering uncertainty in traffic requirements. 

The network design problem is, to a certain extent of  particular interest in this study where a 

selection from different pipe capacities for chosen links in an oil field has to be made. This 

section is therefore concluded with a brief overview of general network design issues that  
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need to be considered by a network designer. The discussion is based on the work of 

Kershenbaum (1993). 

Some of the major issues in network design include the following: 

Justifying a network 

The most basic question is whether a network is justified at all. In certain instances needs 

may be satisfied with a simple point-to-point connection while other applications may require 

a more sophisticated network for specific needs. 

Scope 

The scope of a network is usually bounded by the communication facilities in the network as 

well as by the type of applications which it interconnects. The geographic scope of a network 

is another important aspect. In some instances domestic or international networks may be 

required. The volume of traffic may also have an impact on the scope of a network. 

Manageability 

A network comprised of many different types of facilities and specialized control procedures 

may be cost effective but it may be difficult to manage in terms of, for example, constant 

tuning. Networks that are homogeneous and as simple as possible may be easier to manage. 

Network architecture 

Network architecture presents a number of issues related to the overall “shape” of the 

network. Issues such as the type of node or type of link need to be considered. A decision is 

also necessary on whether the network should be decomposed into subnetworks for the sake 

of design and operation. 

Switching mode 

One of the main reasons for building a network, as opposed to giving each application its 

own dedicated facilities, is to share resources, specifically transmission facilities. There are a  
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number of different ways of doing this, e.g. packet switching, circuit switching, random 

access etc. 

Node placement and sizing 

In theory, it is possible to place nodes anywhere. In practice, the placement of nodes is 

usually limited to a finite set of candidate sites. The selection of network node sites is seen as 

a fundamental problem and encompasses problems such as determining which sources and 

destinations should be part of the network, where to place the nodes, type and size of devices 

etc. 

Link topology and sizing 

Link topology and sizing involves selecting the specific links interconnecting the nodes. This 

is where the architecture of the network is determined and also the specific number and types 

of links 

Routing 

Routing involves selecting paths for each requirement and involves aspects such as selecting 

the routing procedure, type of routes, protocol selection etc. 

Solving general network models 

 When modeling aspects that address the above network planning decisions, it is often 

necessary to model the situation as an integer linear program. These problems are often very 

difficult to solve and the planner is often forced to be satisfied with approximate solutions. 

See Terblanche (2008). 

Section 2.2 (network flow models) has provided a brief introductory overview of some of the 

most basic and commonly known network flow models. This section is by no means an 

exhaustive review as there exist many variations of the models discussed. Furthermore, other 

network flow models are not discussed here: e.g. network analysis techniques known as CPM 

and PERT that are primarily used in project management tasks. The next section (section 2.3) 

will present a brief discussion of knapsack models. 
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2.3 The knapsack problem and extensions  

 

2.3.1 Introduction 

 

The knapsack or rucksack problem derives its name from an exercise where soldiers had to 

fill their knapsacks by selecting from a variety of objects that could be included. De Villiers 

(2004) describes the problem as a scenario where a hiker who carries a knapsack with him 

must choose objects to fill the bag. Each object he selects has a weight and associated value/ 

profit. The goal is to choose those objects that will yield the maximum total value/profit, 

subject to the weight capacity of the knapsack. 

This zero-one version of the knapsack problem can be mathematically formulated (Van Der 

Merwe, 2002) by numbering the possible objects from 1 to n and introducing a vector set of 

binary variables   which is defined as follows. 

                       
1 if object  is selected,

0 otherwise. 
j

j
x  

Let  be the profit (value) assigned to object j and the weight of the specific object. Let c 

be the weight capacity of the knapsack. The problem is then formulated as 

 

         Maximize       
1

,
n

j j

j

p x                                                                                            (2.21) 

   

         subject to 

                               
1

.
n

j j

j

w x c                                                                                         (2.22) 

         and              {0,1}jx   for  j = 1, 2, …,n.                                                               (2.23) 
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The above formulation represents a specific type of knapsack problem whereas several other 

types of knapsack problems also exist. The following section will cover some of the common 

ones. 

        

2.3.2 Types of knapsack models 

 

In this section a brief overview of various types of knapsack models will be given. The 

discussion is based on the work of Van Der Merwe (2002) and certain sections are quoted 

from this work without referencing the source again. 

 

2.3.2.1  Zero one knapsack 
 

The 0 – 1 binary knapsack problem has been given in paragraph 2.3.1 above and is applicable 

where the decisions involve the selection (or not) of specific items for the knapsack. 

According to Martello and Toth (1990) the 0 – 1 knapsack problem is the most important 

type of knapsack problem and also one of the most frequently studied discrete programming 

problems.  

 

2.3.2.2 Bounded knapsack 

 

Knapsack problems where there are certain item types with only a limited number of items 

available of each type are referred to as bounded knapsack problems. The challenge is to 

choose the combination of items of each type that maximizes the total profit while a capacity 

constraint is not violated. Assume that there are n types of items and also that, 

         = the profit of an item type ,  

        = the weight of an item of type ,  
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        = the upper bound on the number of items of type , and 

        = the weight capacity of the knapsack. 

 

The problem is based on selecting a number  ( ) of items of each type to 

maximize the total profit. This is formulated as the following integer programming (IP) 

model: 

Maximize   Z =   
1

,
n

j j

j

p x                                                                                                 (2.24) 

subject to      

                        
1

,
n

j j

j

w x c                                                                                               (2.25) 

 

  

                            and integer,                                                   (2.26)   

 

 

It is usually assumed that: 

                  

                         , ,  and  are positive integers, 

 

                         
1

,
n

j j

j

b w c                                                                                              (2.27)   

 

 

                                                                                                         (2.28)  

  

2.3.2.3 The multi-dimensional knapsack problems  

 

Hill and Hiremath (2000) describe a multi-dimensional knapsack problem as a type of 

knapsack problem where a set of n items are packed in m knapsacks with capacities  (i =1, 

…m). The formulation of the multi-dimensional knapsack problem is as follows.  

Assume that 
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            = profit of item j, 

 = weight associated with item j in knapsack  and 

 

ci = capacity of the i-th knapsack, 

then the mathematical formulation  is given by 

 

Maximize   Z =  
1

,
n

j j

j

p x                                                                                                  (2.29) 

subject to   

                         
1

,
n

ij j i

j

w x c                                                                        (2.30) 

                           .                                                                                              (2.31) 

 

2.3.2.4 Stochastic knapsack 

 

According to Carraway et al. (1993) stochastic knapsacks occur in situations where the cost 

associated with each item is known with certainty but the return from including an item is 

uncertain. In this case returns are modelled as independent, normally distributed random 

variables. The objective is to maximize the probability that the total return is equal to or 

exceeds a specified goal value where n object classes exist. 

Let 

 = the stochastic return gained by including one item of type j,     

                       

 = the cost for including one item type j,   
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W = the total cost constrained or the capacity of the knapsack,                         

C = a specified target that the overall returns should exceed or equal, and  

P = probability of return.          

The stochastic linear knapsack can now be formulated as follows:      

            

Maximize 
1

p C ,
n

j j

j

c x                                                                                               (2.32)    

 

 

subject to       
1

W
n

j j

j

w x ,                                                                                             (2.33) 

 

                      2,…},                                                                        (2.34) 

 

                                     

2.3.2.5 Multiple–choice knapsack 

 

Van der Merwe (2002) explains multiple-choice knapsack problems in this manner. The 

multiple-choice knapsack problem is formulated as having a set of n items and m knapsacks 

(m < n),  

where 

 = profit for including item j, 

 

 = weight associated with item j in knapsack  and 

 

ci = capacity of the i-th knapsack. 
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The challenge is to select m disjoint subsets of items so that the total profit is maximized and 

that none of the individual knapsack capacities are exceeded. The following is an IP 

formulation of the problem: 

Maximize 
1 1

,
m n

j i j

i j

p x

                                                                                                       (2.35) 

subject to 

             
1

,
n

j i j i

j

w x c                                                                                     (2.36)       

             
1

1,
m

i j

i

x                                                                                          (2.37) 

 

   xij = 0 or 1,                                                                     (2.38) 

where 

        xij = 
1 if item  is assigned to knapsack ,

0  otherwise.

j i
 

  

 Assume that the weights wij are positive integers and also assume the following: 

pj and ci are positive integers,            

             

                                
1

,
n

ij i

j

w c                                                                       (2.39) 
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2.3.2.6 Tree Knapsack 

 

The tree knapsack problem is of special interest in this study because it will be explored as an 

alternative for solving a specific network flow model. A brief overview of a tree knapsack 

based on the work of Van der Merwe and Hattingh (2006) will be given here. 

 

A tree knapsack problem can be regarded as choosing a subtree of a tree and is described as 

follows by Van der Merwe and Hattingh (2006). Given an undirected tree T = (V, E) with n 

nodes rooted at node 0, V = {0, 1 …n-1} is the set of nodes that can be labeled in either depth 

or breadth first fashion while E denotes the defined edges. Also assumed are the following, 

 

= demand used by including node i in the subtree, 

 

 = profit gained by including node i in the subtree, 

 

= the predecessor or parent of node i, and 

 

 = the total capacity of the knapsack. 

 

The task then is to find the subtree T’ = (V’, E’) of T rooted at node 0 such that 

           
'

,i

i V

d H  

and 

         
'

i

i V

c  

is maximized. 
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Let       xj = 
1 if node  is chosen,

0 otherwise.

j
 

The problem can then be formulated as an integer linear programming problem. 

 

Maximize Z =  
0

,
n

j j

j

c x                                                                                                    (2.40) 

 

 subject to  

                      
jp jx x ,                                                                                  (2.41) 

 

                      
0

,
n

j j

j

d x H
                                                                                            (2.42) 

 

                                                                                                                          (2.43) 

 

 

In the subtree a node can only be included if the parent of the node is also included in the 

subtree; see (2.41) above. This can also be stated in such a way that if a node i is to be 

included, all the nodes in the unique path between node i and the root node 0 must be 

included – this is referred to as the contiguity assumption (Van der Merwe, 2002). It may be 

noted that the zero-one knapsack is a special case where the tree consists only of the root 

node and one level of leaves of the tree. 

 

To understand the contiguity assumption, refer to figure 2.4 below which is a representation 

of a sample tree with nodes labeled in a breadth first manner. Note that node 8, for example, 

cannot be included in a subtree without including nodes 0, 1, and 4. 
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                               Figure 2.4 Sample tree network 

 

It is clear from figure 2.4 that multiple subtrees may exist connected to node 0. The choice of 

which subtree to consider depends on the objective of the knapsack problem and is normally 

based on either maximizing a profit function or minimizing a cost function. 

 

2.3.2.7 Extended tree knapsack 

 

The extended tree knapsack is a more general form of the tree knapsack model discussed in 

the previous section. The model is discussed in detail in Shaw (1997) and is only briefly 

introduced here as the same principles will be applied to the case study under investigation in 

this research project. 

 

In the extended tree knapsack model there is also a cost involved in transmitting yi units from 

node i to  predecessor pi, say fi(yi) where fi is an arbitrary function that satisfies the condition 

that fi (0) = 0. Van Der Merwe (2002) defines the model as follows. 
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Let T = (V, E) be an undirected tree with n nodes labeled in depth-first order rooted at 0 and 

with V = {0, 1,.., n-1). Let T̂ = (V, A) be a directed out-tree derived from T, where an out-tree 

is a tree derived by giving direction to undirected edges in the initial tree. Let the set A be 

defined as follows, A = {(pi, i) | i ∊ V}. Define B as an n x n node-arc incidence matrix of T̂ , 

excluding the row corresponding to the root node (node 0). In B, each row corresponds to a 

node and each column corresponds to an arc. This means that the ith column of B has  entries 

of zero, except in row i and row pi (≠ 0), which have values of respectively 1 and -1. Let yi be 

the amount of traffic sent from node i to its parent pi and let 

       

             xi = 
1 if node  is selected to be served,

0 otherwise,

i
 

 

let
1 2 = ( , ,..., ) .

n

ny y y y  Define the matrix D as, D = diag(dj). The extended tree knapsack 

problem can now be formulated as follows, where H is the capacity of the knapsack:  

  

Maximize Z =  

1 1

0 0

( ),
n n

j j j j

j j

c x f y

                                                                                  (2.44) 

 

Subject to  

           ,
jj px x                    1,  2,...,  -1,j n                                                                  (2.45) 

            -    0,Dx By
                                                                                                        (2.46) 

            

1

1

,
n

j j

j

d x H                                                                                                           (2.47) 

            0,y                                                                                                                    (2.48) 

            {0,1},jx                    0,  2,...,  -1,j n                                                                (2.49) 

 

where 0 denotes the n-dimensional zero vector. 
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2.3.3 Knapsack problem applications  

 

A wide variety of problems exhibit the structure of the knapsack problem (Bretthauer and 

Shetty, 2002). The purpose of this section is to provide only a few examples from the 

literature where the knapsack approach was used to solve specific real world problems. 

 

The work performed by Bretthauer and Shetty (2002) furnishes a survey of algorithms and 

applications for nonlinear knapsack problems. They also mentioned the work of other 

researchers in this area; e.g. the application of the knapsack problem to a manufacturing 

capacity problem and a health care capacity planning problem. In both cases there are costs to 

be minimized, subject to an upper limit budget value. Wang and Hu (2010) devised a 

quadratic knapsack type public-key cryptosystem and showed that, using this approach, a 

system can be secured against brute-force attacks. 

 

Other recent applications included areas such as mining, resource allocation scheduling and 

network problems. Moreno et al. (2010) discussed an algorithm using a precedence 

constrained knapsack approach to address an open-pit mine production scheduling problem 

while Kolliopoulos and Steiner (2007) made use of a partially ordered knapsack approach to 

address specific scheduling problems.  

 

In the area of resource allocation Vanderster et al. (2009) formulates an allocation problem as 

a variant of the 0-1 multi-choice multidimensional knapsack problem while Melachrinoudis 

and Kozanidis (2002) described a mixed integer knapsack model for allocating funds to 

highway safety improvements. 

 

Knapsack approaches are also often considered for network problems and Song et al. (2008) 

described the use of a multiple multidimensional knapsack problem applied to cognitive radio 

networks. The work of Shaw and Cho (1996) and Shaw et al. (1997) focused on the use of a  

tree knapsack problem as part of designing a local access telecommunication network. This 

work was further considered by Van der Merwe (2007),  Van der Merwe and Hattingh (2006) 

and Van der Merwe and Hattingh (2010).  
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Other examples of knapsack problems and applications in the literature can be found in 

Patterson and Rolland (2002) where a knapsack approach is used in the hybrid fiber coaxial 

network design while Kuah and Perl (1989) focused on a feeder bus network design problem 

using a knapsack approach. More examples can be found in Ceri et al. (1982), Morita et al. 

(1989) and Jang and Wang (1993). 

 

2.4 Conclusion  

 

Chapter 2 supplied an introductory overview of some network and knapsack models with 

extensions. Aspects covered included a review of the basic and familiar types of network 

models, a discussion of the various types of knapsack models and examples from the 

literature. 

 

The next chapter will offer an overview of the pipeline design problem that was chosen as a 

case study for this research project. 
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An overview of the oil pipeline design problem 

  

3.1 Introduction 

 

In order to investigate the feasibility of solving a network design problem using a tree 

knapsack approach, it was decided to select a specific case study from the literature that could 

be used as a basis for the research project. The case study selected describes the optimal oil 

pipeline design for the South Gabon oil field (Brimberg et al., 2003). The aim of this chapter 

is therefore to furnish a brief description of the chosen case study as well as the models and 

solution suggested in the case study. The complete discussion in this chapter is based on the 

work of Brimberg et al. (2003) and some of the sections are quoted from this source without 

referencing it again. 

 

3.2 The oil pipeline design problem 

 

In this case study Brimberg et al. (2003) explore a specific real world problem. 

The project considers a set of offshore platforms and onshore wells, each producing a known 

or estimated amount of oil that needs to be connected to a port. These connections may take 

place directly between platforms, well sites and the port, or may go through connection points 

at given locations. The objective of the pipeline system is to try and reduce the cost of 

transporting oil to a specific port in order to allow for expansion of production to enable 

increased profitability – this implies that the configuration of the network and sizes of pipes 

must be chosen to minimize construction cost. Figure 3.1 is a representation of the South 

Gabon oil field network. 
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                               Figure 3.1 South Gabon oil field (Brimberg et al., 2003) 

Port Gamba 

Arc distance 

Unit production 
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From figure 3.1 it is evident that the South Gabon oil field network consists of 33 nodes. 

These represent the offshore platforms, onshore wells (both represented by circles in figure 

3.1), seven connection points (represented by squares in figure 3.1) and one port called 

Gamba (node 33). The number inside each circle and square identifies the node while the 

numbers adjacent to the circles are the production rates at those sites. There are 129 potential 

arcs and the numbers on the arcs indicate the distance between the nodes. All the oil 

production in this region is transported to Gamba, from where it is then exported by sea. 

 

3.3 The model suggested by Brimberg et al. (2003) 

 

The pipeline design problem was formulated by Brimberg et al. (2003) as a mixed integer 

program. The flow of oil in the pipeline system was modelled by a network (N, A) with node 

set N and arc set A. 

The node set N = {i | i = 1, 2, ..., n} corresponds to the wells, i.e. both those on offshore 

platforms and at onshore sites, as well as to potential connection points between pipeline 

segments and to the port. 

The arc set A corresponds to potential layouts of pipeline segments between offshore 

platforms, onshore production sites, connection points and the port. Arcs are assumed to be 

oriented, but, in some of the arcs, flow may be sent either from i to j or from j to i. This 

means that there are two potential directions for the flow, only one of which will be chosen in 

the optimal solution. 

A set of pipe diameters is associated with each arc (i, j) of A and it is assumed that the pipe 

capacity is fixed once the diameter is fixed. The capacities are chosen among a given set 

which may vary with the pair of nodes i and j – not more than 5 or 6 capacities were 

considered by Brimberg et al. (2003). 
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The mathematical model of the pipeline design problem considered by Brimberg et al. (2003) 

was formulated as follows: 

Let the flow in arc (i, j) be denoted by fij ≥ 0, for all (i, j)  A and let  = 1 if a pipe with the 

k
th

 capacity is placed between nodes i and j, and 0 otherwise, for all (i, j) and k values. The 

model formulation is represented by 

    Minimize 
( , )

,k k

ij ij

i j A k

E y
                                                                                              (3.1) 

   subject to 

                     
1,k

ij

j N k

y
                         for all i except the port node ,                          (3.2) 

                     
,ji i ij

j N j N

f p f
             for all i except the port node,                           (3.3) 

                     
,k k

ij ij ij

k

f C y
                  (i, j) ∊ A ,                                                      (3.4) 

                        fij   0,                                   (i, j) ∊ A,                                                        (3.5)         

                       ∊ {0, 1},                                (i, j) ∊ A, and all k-values.                                         (3.6) 

 

The objective function (3.1) is the sum of costs  for all pipes. The first set of constraints 

(3.2) consists of multiple-choice constraints while constraints (3.3) express the conservation 

of flow; i.e. the total flow entering node i plus the flow due to production (pi) at the node 

should equal the leaving flow. Constraints (3.4) express limitations on flow due to pipe 

capacity ( ) while constraints (3.5) ensure that flows are non negative. Constraints (3.6) 

indicate that pipes are set up entirely or not at all. 
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3.4 Solution methods 

 

Two heuristics (tabu search and variable neighborhood search) and an exact algorithm 

(branch and bound) were proposed by Brimberg et al. (2003) to solve the problem suggested 

in section 3.3. The two heuristics are used to obtain an upper bound for the branch and bound 

procedure while lower bounds are obtained by means of linear relaxation as well as through 

the use of two new types of inequalities suggested by these authors. A complete step by step 

implementation of the two heuristics as well as the description of the new inequalities can be 

found in Brimberg et al. (2003). 

Another approach suggested by Brimberg et al. (2003) is the possible decomposition of the 

problem according to geographical considerations. They describe and motivate this 

decomposition as follows. Pipeline design problems possess a particular geometric structure 

which may sometimes be exploited to simplify their solution. For instance, reservoirs may be 

geographically dispersed, which induces some natural decomposition. If the network (N, A) 

has a cut vertex, i.e., a vertex j the suppression of which disconnects the network, the 

problem can be solved for the subnetwork(s) so obtained and not containing the port, 

considering vertex j as a port. Then a smaller problem is obtained by deleting these 

subnetworks except node j and adding their production to that at j. A less powerful 

decomposition scheme may be used in the case where (N, A) has a small disconnecting set of 

nodes, say {i, j}; then the subproblem corresponding to the different distribution of flow at i 

and j must be considered. 

The third approach to solving the problem involves the branch and bound procedure. An 

interactive approach was suggested by the researchers in order to exploit the geographic 

structure of the matter at hand. In brief, the proposed interactive method entails decomposing 

the problem and applying the tabu search and the variable neighbourhood search heuristics to 

the decomposed problem. Branching and the control of bounds are then handled by the 

heuristics results as well as the newly suggested inequality mentioned earlier. A complete 

description of the different steps in the proposed interactive branch and bound procedure can 

be found in Brimberg et al. (2003). 
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3.5 Model results  

 

Different pipe capacities were considered and (as it was done in Brimberg et al. (2003)), the 

total cost of a section of pipe was obtained by multiplying the arc distance by the unit price 

for each pipe capacity. Applying the heuristics to the problem, it was found that both the tabu 

as well as the variable neighborhood search yielded a heuristic solution value for the 

objective of 1423; this solution is also shown in figure 3.1 (bold printed arcs). 

The oil field network was then decomposed into two subnetworks, a northern and southern 

part with node 17 as the articulation or junction point. See figure 3.2 (at the end of the 

chapter) for a graphical representation of the decomposed network. The problem involving 

the southern subnetwork has nodes 18 to 32 with node 17 (the articulation point) being a port. 

Solving this subproblem using CPLEX 7.0, an optimal value of 672 was obtained.  

The second problem, which is the northern subnetwork, consists of nodes 1 to 17 with node 

33 as a port. The connection point 17, being the articulation point of the northern and 

southern subnetworks, was given a total production equal to the sum of all productions in the 

southern subproblem. Applying the suggested inequalities to control the bounds of the 

problem, it was found that the same value as the heuristic solution was obtained, or in some 

cases larger or infeasible solutions were generated. This led to the conclusion of Brimberg et 

al. (2003), that the heuristics solution must be optimal for the case under consideration. 

 

3.6 Conclusion 

   

This chapter provided some brief background information on the case study selected as a 

basis for the research project. The discussion focuses on the design problem, the suggested 

model and possible solution methods. A complete technical discussion which is beyond the 

scope of this research report can be found in Brimberg et al. (2003). 
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SOUTH GABON OIL PIPELINE NETWORK 

 

 

 

                                               Figure 3.2 Subnetworks of South Gabon oil field  

Southern part subnetwork 

(node17-32) 

 

Northern part subnetwork    

(node1-17) 
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44   
Model development for the oil pipeline design problem 

 

4.1 Introduction 

 

This chapter concentrates on the research design and methodology followed to develop a tree 

knapsack model that can be used to test the feasibility of solving the pipeline design in an 

alternative way. The tree knapsack model described in this chapter is based on the extended 

tree knapsack problem considered by Van der Merwe (2007) and explained in chapter 2 

(section 2.3.2.7). The next chapter will thereafter focus on the application of the model to the 

pipeline design problem and the results obtained. 

 

4.2 Methodology and model development 

 

The methodology followed in this study comprises two main steps. In the first, the network 

representation of the pipeline design problem was converted into a tree structure to facilitate 

the use of a tree knapsack method as a solution. Second, a mathematical programming model 

based on an extended tree knapsack model was then formulated and solved in order to be able 

to express an opinion on the feasibility of the proposed methodology. The following two 

sections (section 4.2.1 and 4.2.2) will describe the details of the two steps. 

 

4.2.1 Converting the pipeline network into a tree network structure 

 

Prior to model development and applications, the South Gabon oil field network (see chapter 

3) had to be converted into a tree structure. This process involves a series of steps i.e. 

identification of the root node, creating adjacent node lists for each node in the network, and  
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finally building a tree network structure by creating paths based on the  adjacency list. To 

illustrate this process, consider the following small network in figure 4.1.  

 

 

 

 

 

 

                        

                                          Figure 4.1 Illustrative network 

 

Identifying the root node  

Suppose that in figure 4.1 the root node of the network is node 5 and assume that it is the 

final destination or sink node. 

 

Creating adjacent nodes list 

An adjacent node list for a specific node is a set of nodes that are directly connected to that 

specific node. From figure 4.1 the following adjacency node lists can be generated. 

           Node                                         Adjacency list 

5                                                       {3, 4} 

 

4                                                       {2, 3, 5} 

 2 

 4 

 5 

 3 

 1 
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3                                                       {1, 2, 4, 5} 

 

2                                                       {1,3, 4} 

 

1                                                       {2, 3} 

 

Building the tree network 

Once the root node has been identified and all the appropriate adjacency node lists have been 

constructed, the tree can be completed. This is done as follows: 

 

 First, all the adjacency nodes of the root node are added to the tree (see figure 4.2 (a)). 

 

 Next, the child nodes of the root node are now expanded and added to the tree (see 

figure 4.2 (b)). 

 

 Subsequently, the child nodes of nodes added in the previous step are expanded and 

added to the tree – nodes already included in a specific path must not be added to the 

tree again (see figure 4.2 (c)). Continue this process until there are no nodes left to 

expand in the adjacency node list. 

 

(a) Adjacency nodes of the root node are expanded and added to the tree  

   

                     

                                                

                  

 

 

  3   4 

  5 



44 
 

4.2. METHODOLOGY AND MODEL DEVELOPMENT 

 

 (b) Node expansion of nodes 3 and 4 

 

                                                

 

 

 

 

(c) Repeat until no adjacent node list is left for expansion.  

 

                                  

 

 

 

 

 

 

 

 

                            Figure 4.2 Converting a network into a tree network  

 

  5 

  4   3 

  1   4   2   2   3 

  5 

  4 
  3 

  1   4   2   2   3 

  2   1   4   2   1   3   1   2 

  4   1   3   1   2   1 
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4.2.2 Model development 

 

The next step in the proposed methodology is to formulate a mathematical programming 

model which is based on an extended tree knapsack model, and which will be used to solve 

the tree structure constructed in the first step.  

 

4.2.2.1  The objective function 

 

The objective function in the mathematical model suggested by Brimberg et al, (2003) was 

given in section 3.3 (Chapter 3) as 

 

Minimize
,

k k

ij ij

i j A k

E y , 

where 

              A is the set of arcs (i,j), 

           
k

ijE  = Cost to place a pipe of capacity k between nodes i and j, 

           
1 if a pipe with capacity  is placed between nodes  and ,

0 otherwise.

k

ij

k i j
y  

 

The cost in the above objective function was based on the different pipe capacities i.e. a 

certain 
1

ijf flow would require a cost of 
1

ijE  (capacity k = 1).  If the flow increases above 

capacity 1, a new capacity (k = 2) pipe is required. This implies that for flow 
2

ijf a cost of 
2

ijE

is required. This process then repeats itself every time flow rises above current capacity. 

Figure 4.3 shows a graphical representation of this cost function.  
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Figure 4.3 Graphical representation of cost function in Brimberg et al (2003) 

 

To be able to make use of the extended tree knapsack approach, detailed in section 2.3.2.7 in 

Chapter 2, it was decided to make use of a fixed charges cost model as opposed to the cost 

model described above. This cost model can be explained as follows. 

Assume that a flow of ijf  is sent from node i to node j (the predecessor of node i). Before 

any flow can be sent on a link, certain fixed costs need to be paid. Whenever the flow 

increases, a variable cost, aij, is incurred. If the fixed cost is represented by Eij then the fixed 

charges cost model can graphically be explained as follows in figure 4.4 

 

 

 

 

         

Figure 4.4 Graphical representation of a fixed charges cost model 

 

The slope of the graph represents the variable cost. In the next chapter, chapter 5, a detailed 

description of how the specific aij values were determined will be given. 

1

ijE

 

2

ijE

 

3

ijE

 

1

ijf  2

ijf  3

ijf  

ijE

 

ijf  

ija  
cost 

flow 

Cost 

Flow 
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 A more detailed description of this cost model can be found in Van der Merwe (2007) and 

Shaw (1997). 

The objective function for the oil pipeline design problem in this research project was then 

formulated as follows. 

 Minimize         
( , ) ( , )

,ij ij ij ij

i j i j

E a f                                                                                   (4.1)                                   

 where 

 is the fixed cost associated with each arc (i,j), 

 

  is the cost incurred of a unit of the flow ijf (the slope of the straight line in the 

fixed charge model) 

 

ijf represents the flow between node i and its predecessor node j. This flow comprises 

of two parts such that ijf  = 
1ijf + 

2ijf where 
1ijf represents the flow which is less 

than ij and 
2ijf represents the flow greater than ij (a small positive number). 

 

1 if arc ,  in the tree is chosen,

0 otherwise.
ij

i j

 

 

The above objective function is interpreted as the minimization of the sum of costs of 

selected pipe links plus a variable cost determined by the flow above capacity level. For more 

detail see Van der Merwe (2007). 
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4.2.2.2 Model constraints 

 

Several different constraints form part of the model; each set of constraints will be discussed 

in this section. 

 

Contiguity constraints 

The tree knapsack model was introduced in Chapter 2 (section 2.3.2.6). In that section the 

contiguity assumption was explained as follows. If node j is included in a tree all the nodes 

on the unique path between node j and the root node must also be included.  This is 

accomplished by adding the following constraint. 

                                     0
jj px x         j = 1, 2,…, n-1,                                               (4.2)                                  

 where pj is the predecessor or parent of node j and   is an indicator with a value of 1 if node 

j is selected and zero otherwise.       

With respect to the oil pipeline network, assume that the tree structure in figure 4.5 below 

represents a flow from the root node (node 0) to nodes 1, 2, 3 and 4. The above constraint 

will now ensure that flow from the root node to a specific node will pass through that node‟s 

predecessors before it reaches its final destination. For example, flow from node 0 to node 4 

will pass through node 2 (the predecessor of node 4) before reaching node 4. These same 

considerations will also ensure a path for flow from any node to the root node. 

 

 

 

 

 

 

             Figure 4.5 Example of the contiguity assumption constraint instance 

 

  0 

  3 

  1 

  4 

  2 
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Node selection constraints 

A set of constraints is needed to ensure that nodes in the tree structure are chosen only once 

and thus avoid duplicate paths. To achieve this, a 0 – 1 variable is used as follows. 

Suppose xi = 0 or 1 for i = 1, 2,…..,n. The constraint x1 + x2 + ……xn = k implies that exactly 

k alternatives of n possibilities can be selected. 

This general logical condition constraint was introduced in the following manner to the 

pipeline network problem. 

 Consider a five node network that was expanded into a nine node tree. (See figure 4.6 

below.) Since the original number of nodes in the network has increased to nine in the tree, it 

is clear that duplicate nodes on some of the paths in the tree must exist. To overcome this 

problem, index numbers are allocated to the nodes in the tree; these numbers are then used to 

ensure that duplicated nodes are selected only once. Each original node thus has a 

corresponding set of index numbers. 

 

      1 

   

                             3 2  

 

 7 6 5 4 

 

 

 9 8 

 

                                              Figure 4.6 An indexed tree network 

 

  2 

  2 

  0 

  4 

  1   3 

  3   2 

  1 
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Original node 1 in figure 4.6 has for example the set of index numbers {5, 7} associated with 

it. In the case of the example depicted in figure 4.6, a set of original nodes was constructed: 

say S0, S1, S2, S3 and S4. Each one of these sets consists of different indexed nodes. For 

example, 

 

S0 = {1}, 

 

 S1 = {5, 7},  

 

S2 = {3, 4, 9},  

 

S3 = {6, 8}, 

 

S4 = {2}.  

 

        

1 if node  is selected,

0 otherwise,
j

j
x

                     j = 1, 2, 3,…….9,      

then the summation of a specific indexed node set equal to one, will ensure that the node will 

only be selected once. For example, to ensure that the original node number 2 is selected only 

once, the following constraints related to S2 can be added, i.e.  

            x3 + x4 + x9 = 1.  

The node selection constraint for the model is then formulated as follows. 

            
1,

j

i

i S

x          j = 1, 2, 3,…….n,          = { i | N(i) = j},                                    (4.3)                                  

where 

If 
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i is the index number allocated to the original node number N(i). 

 

Flow balance constraints 

To ensure flow balance in the tree network, a set of flow balance constraints is necessary. The 

said constraints are of the form 

                   total flow out of node j = total flow into node j + production at node j. 

The following set of constraints for the pipeline design problem will ensure flow balance in 

the tree network. 

                  Dx–B( 1f + 2f ) = 0,                                                                                            (4.4) 

where 

 D is a diagonal matrix with diagonals dj giving the production at node j and B is a   

node-arc incidence matrix. 

 In the vectors 1f and 2f , 
1ijf represents the flow below pipe capacity and 

2ijf

represents the flow above existing pipe capacity. If no pipeline exists between i and j 

both these flows must be zero. In the case of a network expansion problem one may 

visualize 
1ijf  as a flow that is available at zero cost (up to the capacity). If no 

pipeline exists, this capacity is zero. 

B and D are two matrices used to create the set of constraints and can be explained as 

follows. Consider the indexed tree network with a production for each node in figure 4.7 

below. Production at the nodes is indicated in the square boxes next to each node, except the 

root node which has a production of zero. 
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 1  

    

                             3 2  

 

 7 6 5 4 

 

 

 9 8 

 

                       Figure 4.7 An indexed tree network with production at nodes 

 

A diagonal matrix D, can now be constructed showing the production at each node. See 

figure 4.8 below.  

 

 

 

 

 

 

 

                      Figure 4.8 Diagonal matrix with production  

 

 

 1 2 3 4 5 6 7 8 9 

1 -30         

2  2        

3   4       

4    4      

5     3     

6      5    

7       3   

8        5  

9         4 

  2 

  2 

  4 

  1   3 

  3   2 
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  0 
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4 

3 5 

4 
5 

4 

Production 
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Matrix B is called a node – arc incidence matrix and exhibits the following structure. See 

figure 4.9. 

 

 

 

                

                   

                      

                   

                            Figure 4.9 Node-arc incidence matrix 

 

The incidence matrix not only shows nodes linked to other nodes but also the node at which 

flow originates and where it terminates. For example in figure 4.9 above, flow through arc 2-

1 originates at node 2, hence a 1, and terminates at node 1 (the root node) indicated by a -1.  

The two matrices are combined in the form Dx – B( 1f + 2f ) = 0 to construct the necessary 

flow constraints.  

When looking at row 2 (node 2) and row 5 (node 5) for example, the following flow 

constraints can be derived. 

 Node 2 flow constraint: 2x2 - (f2-1,1 + f2-1,2) + (f4-2,1 + f4-2,2) + (f5-2,1 + f5-2,2) = 0. 

 

 Node 5 flow constraint: 3x5 - ( 5-2,1 + 5-2,2) + ( 8-5,1 + 8-5,2) + ( 9-5,1 + 9-5,2) = 0. 

This implies that the flow generated and sent from node 5 or 2 to its parent should be equal to 

the flow generated in itself, plus the flow being sent from its child nodes – in this manner the 

flow balance is ensured in the tree network. 

 2-1 3-1 4-2 5-2 6-3 7-3 8-5 9-5 

1 -1 -1       

2  1  -1 -1     

3   1   -1 -1   

4   1      

5    1   -1 -1 

6     1    

7      1   

8       1  

9        1 
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Production constraints 

A set of constraints to ensure that flow generated at nodes does not exceed the total capacity 

of the tree network is also necessary. In the example above, the total production at all nodes 

is 30 units (from the diagonal matrix D) and therefore total production of flow at the nodes 

should not exceed 30. For the pipeline design model, the constraints are formulated as  

 

                         
1ijf + 

2ijf    ij C,                                                                                  (4.5) 

where C is the total capacity at the root of the tree network and δij {0,1}. 

 

Flow bound constraints 

There are two sets of flow bounds incorporated in the oil pipeline design problem model. 

Flow bound constraints are necessary to ensure that flow remains within capacity.  For the oil 

pipeline design problem these constraints are formulated as 

                           0≤ 
1ijf ≤                                                                                              (4.6) 

 where  is the existing pipe capacity on arc (i,j) and 
1ijf  is the flow less than the capacity. 

In the case where no pipeline exists,  may be taken as a very small positive number (close 

to zero). 

 A second set of constraints for the flow greater than capacity is formulated as 

                         
2ijf ≥ 0.                                                                                                        (4.7) 

 

Binary constraints 

The following binary constraints are needed. 
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For arc selection: 

           
1 if arc ,  is selected,

0 otherwise,
ij

i j
       for all arcs.                                                                        (4.8) 

 

For node selection: 

              
1 if node  is chosen,

0 otherwise,
i

i
x           i = 1,2,3,…n.                                                                   (4.9)                                                                                 

 

4.2.2.3 The complete model 

 

Following the discussion and explanation presented in sections 4.2.2.1 and 4.2.2.2, the 

complete model for the pipeline design problem can be formulated as follows. 

Minimize  1 2

( , ) ( , )

( )ij ij ij ij ij

i j i j

E a f f
                                                                    (4.10) 

subject to 

                 0,
jj px x                              for all j,                                                             (4.11) 

               
1,

j

i

i S

x
                               j = 1, 2, 3,..n,         = { i | N(i) = j},                (4.12)                                      

                Dx -B 1( f + 2 )f = 0,                                                                                            (4.13) 

              
1ijf + 

2ijf    ij C                                                                                             (4.14) 

                0 ≤ 
1ijf ≤                              for all arcs (i,j),                                                (4.15) 
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2ijf  ≥ 0,                                      for all arcs (i,j),                                                (4.16) 

               
1 if arc ,  is selected,

0 otherwise,
ij

i j
     for all arcs (i,j).                                               (4.17) 

                   
1 if node  is chosen,

0 otherwise,
i

i
x           for all nodes  i,                                                 (4.18) 

where    

            ijE is the fixed cost for arc (i,j) and  aij is a variable cost of flow. 

 

4.3 Conclusion 

 

Chapter 4 offered an overview of the research design and methodology followed to develop a 

tree knapsack model for the oil pipeline problem. A description of how to convert the 

pipeline network into an extended tree knapsack structure, as well as a formulation of the 

mathematical programming model to solve the issue, was given. The next chapter will 

describe the results of the model applied to the pipeline design problem.  
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     Empirical experiment and results 

 

5.1  Introduction 

 

In the previous chapter an overview of the research design and methodology followed in this 

research, was provided. This chapter is devoted to the application of the model to the oil 

pipeline problem (Brimberg et al., 2003). The empirical experiment as well as the results will 

be described. The chapter will then be concluded with a discussion of the results obtained.  

 

5.2 Empirical experiment 

 

As explained in chapter 1, a specific case study was selected from the literature to investigate 

the feasibility of solving a network flow model using a tree knapsack approach. It will be 

recalled that the case study selected and discussed in chapter 3 is an oil pipeline design for 

the South Gabon oil field (Brimberg et al., 2003). The purpose of this section is to describe 

how the proposed model (described in chapter 4) was applied to this specific case. For easy 

reference and completeness‟ sake, the oil pipeline network is again illustrated below in figure 

5.1. 
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                                                   Figure 5.1 South Gabon oil field network 

 

Port Gamba (node 33) 
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5.2.1 Data used 

 

The following basic data required by the proposed model can be obtained directly from figure 

5.1. 

 The oil field consists of 33 nodes with 129 possible arcs.  

 

 The root node (in a tree structure) is node 33 which is a port called Gamba. 

 

 The distance between each pair of connected nodes is indicated by the numbers on the 

arcs, e.g. the distance from node 1 to node 2 is 3.5. These distances are the pipe 

lengths required to connect the platforms and wells (see appendix A for a complete 

list of pipe lengths). 

 

 The oil production at each site (node) is indicated by the number adjacent to each 

node, e.g. the production at node 1 is 5 (see appendix B for a complete list of 

production at each site). 

It is unclear from the article that describes the case study what the units of measure were for 

arc distances and oil production. For the purpose of this study the term “units” will be used 

for both arc distances and oil production/flow: e.g. the distance from node 1 to node 2 is 3.5 

units and the oil production at node 1 is 5 units.  

In addition to the data mentioned above, there was also a cost associated with each pipe 

connecting the different nodes. The total cost of a section pipe is obtained by multiplying the 

arc length by the unit price for each pipe capacity. The following monetary units and 

corresponding pipe capacities were given for the oil field. 
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             Table 5-1: Monetary units and pipe capacities. 

                       

 

5.2.2 Tree generation  

 

In order to set up and solve the tree knapsack model, the network was first converted into a 

tree structure as explained in chapter 4. Using node 33 (the port of Gamba) as the root node 

and following the steps detailed in section 4.2.1 of chapter 4, the South Gabon oil network 

was converted into a tree network. It should be noted that the representation assumes that 

there will not be flow splitting or loops in the network. 

A program was written in C++ to perform the tree generation. Appendix C contains the 

pseudo code for the tree generation procedure while the complete program can be found on 

the CD at the back of the dissertation.  

The result of this step was an indexed tree consisting of 7030 nodes and 4183 paths. Figure 

5.2 below represents a very small abstract of the generated tree for illustrative purposes. 

Appendix D provides a small sample list of the nodes generated from the program. A 

complete list can be found on the CD attached to this dissertation. 
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                                         Figure 5.2  Abstract of tree representation 
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5.2. EMPIRICAL EXPERIMENT 

 

5.2.3 The extended tree knapsack model 

 

The objective function for the extended tree knapsack model was formulated in Chapter 4 

(section 4.2.2.1) as 

                     Minimize        
( , ) ( , )

.ij ij ij ij

i j i j

E a f
                                                          (4.1) 

 

 The Eij represents the fixed cost of installing a pipeline on arc (i,j). The aij represents a unit 

of the variable cost of installing a pipeline of larger capacity on arc (i,j). The aij is found by 

first calculating the cost of each pipe capacity for the arc (i,j). This cost is the product of the 

monetary unit associated with each pipe capacity multiplied by the length of the arc (i,j). 

 Table 5.2 below shows the calculation of cost for the three arcs (1-2), (1-3) and (1-4) 

 

                                         Table 5-2: Calculated cost of each pipe      

                                                                 

                                                                                                                                                                             

The aij and Eij values used in this dissertation were then calculated as follows. 

Consider the following table (table 5.3) with data for arc (1-2) that was taken from table 5.2.    
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5.2. EMPIRICAL EXPERIMENT 

 

                             Table 5-3: Calculated cost for arc (1-2)                

                              

A variable cost value for a12 is now computed by fitting a straight line, of the form y = mx + c, 

to the capacity versus computed cost values in the table above. This resulted in the following 

equation:  y = 1.9938x + 32.736. The value m = 1.9938 now represents the variable cost value 

for a12. The 32.736 is taken to be the fixed cost E12 to install the pipeline on arc (1-2). It 

should be noted that this method gives a relaxation of the real problem. The discrete costs are 

replaced by a fixed charge function. Figure 5.3 is a graphical representation of the calculation 

of the a12 value. 

                           

 

                                               Figure 5.3 Computed cost incurred for arc 1-2  

   Capacity Sizes 

Cost per 

capacity size 
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5.2. EMPIRICAL EXPERIMENT 

 

The above procedure was carried out for each arc (i,j) in order to obtain all the values. A 

complete list of all arcs and their associated values can be found in Appendix E.  

The model was then formulated as explained in chapter 4 with the data from the Brimberg et 

al. (2003) case study with the values described above. The complete formulation and 

programs to run and solve the model are included on the CD at the back of this dissertation. 

The model was solved using CPLEX software; the results will be discussed in the next 

section. 

 

5.3 Results and discussion 

 

Solving the extended tree knapsack model in CPLEX, a solution was obtained after 70.15 

seconds. Table 5.4 shows the selected arcs in the solution. The pipe capacities suggested are 

given in the last column. 

Comparing the results of the extended tree knapsack model with the results presented in the 

case study, it was found that in 6 instances the tree knapsack solution has chosen different 

arcs from those in the case study. The differences are reported in table 5.5.  
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5.3. RESULTS AND DISCUSSION 

 

                                       Table 5-4: Selected arcs for the solution 
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5.3. RESULTS AND DISCUSSION 

 

                           Table 5-5: Solution comparison         

                        

 

Figure 5.4 depicts the oil pipeline network indicating the original solution from the Brimberg 

et al. (2003) study as well as that obtained by solving the tree knapsack model. The arcs 

shown by dotted lines connecting the nodes are the arcs obtained with the tree knapsack 

model.  

The difference in the two solutions can be attributed to the relaxation used for the objective 

function that was used in the extended tree knapsack model (See 4.2.2.1). The relaxation in 

general results in an over or under estimation of the costs. Figure 5.5 illustrates this situation 

for arc (1, 4) 
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5.3. RESULTS AND DISCUSSION 

 

 

 

                      Figure 5.4  Tree knapsack solution for South Gabon oil pipeline network 
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5.3. RESULTS AND DISCUSSION 

 

 

                           

  

  

            Figure 5.5 Illustration of possible over and underestimation of costs for arc (1,4) 

 

In figure 5.5 it can be seen that A and D show an underestimation of the cost incurred above 

capacity level while B and C indicate an overestimation. E indicates the precise cost incurred 

for a capacity of 10 units.  

To compare this study‟s results meaningfully with those of Brimberg et al. (2003), the cost 

was calculated using the actual pipe costs for the solution obtained with the extended tree 

knapsack model. 

For example: 

The flow from node 1 to node 3 is 5 (see figure 5.4) which requires a pipe capacity of at least 

5. The cost of a pipe with capacity 5 was given as 10 units and the length of the pipe is 1.9. 

The cost for arc 1,3 is therefore 10 x 1.9 = 19 units. 

 

 

   Capacity Sizes 

Cost per 

capacity size 
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D 

B 

A 
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5.4. CONCLUSION 

 

The flow from node 3 to node 7 is 5 (coming through arc 1-3) plus 5 (generated at node 3). 

This flow of 10 requires a pipe capacity of 10 with an associated cost of 15 and the pipe 

length between 3 and 7 is 2.6. The cost for arc 3, 7 is therefore 15 x 2.6 = 39 units. 

 

The cost for all selected arcs in both solutions was calculated in this way. This resulted in a 

cost of 1423 units for the Brimberg et al. (2003) study and 1461 units for the tree knapsack 

model – a deviation of 2.6 %. 

The results of the study can be summarized as follows. 

 The result of this study was within 2.6 % of that in the Brimberg et al. (2003) study. 

The low percentage deviation proves that it is definitely feasible to use a tree 

knapsack approach to solve network flow problems. By refining the cost function 

used in the tree knapsack model the 2.6% gap could be further reduced or may even 

be more efficient than the original case study. 

 

 The feasibility is further proved by the relatively short time it took to solve the model 

(70.15 seconds using CPLEX). 

 

 The case study investigation was a fairly large network comprising 33 nodes and 129 

arcs. With modern software, e.g. CPLEX, large network flow problems may be solved 

in a reasonable time using the tree knapsack approach. 

 

5.4 Conclusion 

 

A detailed description of the empirical experiment and results was furnished in this chapter. 

The data used, the tree generation process and the tree knapsack model were discussed. This 

was followed by a consideration of the results which showed that it is feasible to use a tree 

knapsack approach for solving a network flow problem. 
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66                
                                           Summary and conclusions 

 

6.1 Introduction 

 

Chapter 6 presents the final comments and concluding remarks of the study. The objectives 

of the study and how they were achieved will be summarised. New problems and 

opportunities for further study that presented themselves during the research project will also 

be outlined.  

 

6.2 Objectives of the study 

 

Chapter 1 stated that the primary objective of this study was to investigate the feasibility of 

using an extended tree knapsack approach to solve a network flow problem. To accomplish 

this, a list of four secondary research objectives was defined that needed to be achieved: 

 

 Gain a clear understanding of and present an introductory overview of general 

network flow and tree knapsack models; 

 

 Select and provide an overview of a suitable case study from the literature that can be 

used in the research project; 

 

 Describe and formulate the tree knapsack and the extended tree knapsack approach 

and model; and 

 

 Describe and present the results of the tree knapsack approach when applied to the 

selected case study. 
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6.2. OBJECTIVES OF THE STUDY 

 

A summary of how these objectives were achieved is now provided. 

 

Gain a clear understanding of and present an introductory overview of general network flow 

and tree knapsack models 

 

Network flow problems are an important class of linear programming models and can be 

modelled in a variety of ways. Equally important are integer programming models of which 

the knapsack problem is an important application. In this study a network flow problem was 

solved using a tree knapsack approach and therefore it is imperative to gain a clear 

understanding both of network flow models as well as of knapsack models. 

 

The objective was achieved by describing network flow models and the important and 

familiar applications such as transportation, assignment, transshipment, shortest route, 

maximum flow and minimum spanning tree problems (Chapter 2, section 2.2.1 – 2.2.7). An 

overview of knapsack models was supplied (Chapter 2, sections 2.3.2.1 – 2.3.2.7).  

 

Select and provide an overview of a suitable case study from the literature that can be used in 

the research project 

 

To compare and validate the proposed technique, a specific case study was chosen from the 

literature and was solved using the extended tree knapsack approach. The case study selected 

was an oil pipeline design problem by Brimley et al. (2003), which aimed at designing an 

optimal oil pipeline network for the South Gabon oil field. 

 

The objective was achieved by affording an overview of the oil pipeline design problem 

(Chapter 3, section 3.2). A survey of the models suggested in the literature (Chapter 3, 

section 3.3) as well as solution methods and results was also presented (Chapter 3, sections 

3.4 – 3.5). 
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6.2. OBJECTIVES OF THE STUDY 

 

Describe and formulate the tree knapsack and extended tree knapsack approach and model 

 

It is important to obtain a clear understanding of the research design and methodology 

followed to develop a tree knapsack model that can be used to assess the feasibility of solving 

the pipeline network problem in an alternative way. 

 

This objective was achieved by providing a comprehensive discussion on the methodology 

followed in this study. First, a description was given of how to convert the pipeline network 

into a tree structure (Chapter 4, section 4.2.1). This was followed by an explanation of the 

mathematical programming model that was used to solve the tree structure (Chapter 4, 

section 4.2.2). 

 

Describe and present the results of the tree knapsack approach when applied to the selected 

case study 

 

In order to express an opinion on the feasibility of the suggested tree knapsack approach, the 

proposed model was applied to a specific case study. 

 

This objective was achieved by performing an empirical experiment using the oil pipeline 

design data in the proposed tree knapsack model (Chapter 5, section 5.2). The results and a 

comparison with the solution presented in the literature were also furnished (Chapter 5, 

section 5.3). All information concerning this final objective was considered in chapter 5. 

 

To summarise, all objectives set forth in chapter 1 were achieved. Based on the results and 

discussion presented in chapter 5, it was concluded that, 

 

 It is feasible to solve network flow problems by employing a tree knapsack approach. 

 

 Relatively large problems can be solved with this approach using modern software 

such as CPLEX. 
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6.4. POSSIBILITIES FOR FURTHER RESEARCH 

 

 These types of problems can be solved in a relatively short time. 

 

6.3 Problems experienced 

 

To compare a model‟s results with the results of other models is one way of validating work 

that was performed. There is a lack of case studies (containing sufficient data) such as the oil 

pipeline problem that could be used to strengthen the empirical evidence for the proposed tree 

knapsack approach. 

Another difficulty (to a lesser extent) experienced was the lack or unavailability of existing 

software that can be used to convert network flow models into tree networks. For larger 

networks, like the oil pipeline network, the indexed tree structure may become fairly large 

and care must be taken when writing programs to handle the tree structure: memory 

management may be especially difficult. 

In this study an approximation was used to represent the objective function. The 

approximation can be made more precise at the expense of introducing more discrete 

variables. This approach was not pursued further in this dissertation. 

 

6.4 Possibilities for further research 

 

Experiments with different cost functions, used in the objective function of the proposed 

model, could be performed in an effort to refine the model and to further improve results. 

To strengthen the empirical evidence for the feasibility of using a tree knapsack approach in a 

network flow problem, other case studies might also be investigated. 

Techniques to improve and enhance model performance, such as those suggested by Van der 

Merwe and Hattingh (2006), could be incorporated in this study to provide solutions for even 

larger network flow models.  
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6.5. CONCLUSION 

 

6.5 Conclusion 

 

Chapter 6 is the final chapter of this study. It furnished a summary of the initial objectives 

and of how they were achieved. In the conclusion, problems and possible future research 

opportunities were outlined.  
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AAppppeennddiixx  AA  

 

ARC DISTANCES 

 

This appendix shows all the arc distances between some well sites of the South Gabon oil 

field. For example, the length of arc (2, 3) is 3.7. 
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AAppppeennddiixx  BB  

 

PRODUCTION AT EACH WELL SITE 

 

Appendix B shows the amount of oil produced at each well site in South Gabon oil field. It is 

not clear what the units of measure used for the production at each well site, were. 
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AAppppeennddiixx  CC  

 

PROGRAM PSEUDO CODE TO GENERATE A TREE NETWORK  

 

Begin 

Set class of Node { 

  Set public member as; 

       Initialize node n, lvl 

       level (lvl) { 

        Set number to n 

        Increment total Nodes Created; 

    } 

   Set Copy constructor for all members  

} 

   Initialize number, level, and index 

   Set total Nodes Created as static 

   Set pointers to adjacent node 

   Friend bool operator is greater than (First level, second level)   { 

 If pointer to the first level is great than pointer to the second level then 

   Return true; 

  Else 

   Return false; 

 } 

    Free Nodes { 

      Decrement total Nodes Created 
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APPENDIX C  

 

     } 

Create class tree { 

  Set public members as; 

    Vector of network 

    Pointer to the root node 

    Pointer to the output file 

    A string of output File Name  

    Pointer to the construct Tree 

    Tree (Initialize vector net, n, set file Name as string) 

    Set empty list Paths (initialized destination Node) 

    Set attach Index (); 

    Set myBubbleSort (); 

        Index all node incenses 

        Keeps track of the allocated memory; 

}; 

Initialize the static variable   { 

  If there is no output exit 

   Else 

      Attach Index      } 

If current Node exists { 

  If the current node in the list of nodes visited exist then 

   Return 0 

  Else 

  Insert the current node into the list of nodes visited 

} 

Control the depth of the tree 

} 
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APPENDIX C  

 

Go down one level in tree { 

  Record all the memory allocated 

    Optimize indexing and move the correct row 

     } 

 Go up one level { 

      Return previous Node 

  } 

 Open the file containing the output file once done  

   Print paths 

Sort the level data member { 

   Attach the index  

     Return 

} 

Initialize Main () { 

  Set length to 33 

  Raw input { 

     Enter the input file 

      If no file found exit 

     Else 

       Read the file     

 } 

Enter the name of the output file; 

   Enter the source node and enter the destination node 

     Return 0 

} 

End 
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AAppppeennddiixx  DD  

 

GENERATED TREE NETWORK 

 

This appendix contains a small sample of the tree network results obtained from the 

execution of the tree generation program. Columns A to I represent the actual nodes from the 

South Gabon oil field network. 
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AAppppeennddiixx  EE  

 

COMPUTED COST INCURRED (aij) 

 

Appendix E shows a complete list of all arcs and their associated aij.  
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