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ABSTRACT 


Title: Establishing the protocol validity of an electronic standardised measuring instrument 

Key terms: Protocol validity, item response theory, neural networks, well-being instruments 

Over the past few decades, the nature of work has undergone remarkable changes, resulting 

in a shift from manual demands to mental and emotional demands on employees. In order to 

manage these demands and optimise employee performance, organisations use well-being 

surveys to guide their interventions. Because these interventions have a drastic financial 

implication it is important to ensure the validity and reliability of the results. However, even 

if a validated measuring instrument is used, the problem remains that wellness audits might 

be reliable, valid and equivalent when the results of a group of people are analysed, but 

cannot be guaranteed for each individual. It is therefore important to determine the validity 

and reliability of individual measurements (i.e. protocol validity). However, little information 

exists concerning the efficiency ofdifferent methods to evaluate protocol validity. 

The general objective of this study was to establish an efficient, real-time method/indicator 

for determining protocol validity in web-based instruments. The study sample consisted of 14 

592 participants from several industries in South Africa and was extracted from a work­

related well-being survey archive. A protocol validity indicator that detects random responses 

was developed and evaluated. It was also investigated whether Item Response Theory CIRT) 

fit statistics have the potential to serve as protocol validity indicators and this was compared 

to the newly developed protocol validity indicator. 

The developed protocol validity indicator makes use of neural networks to predict whether 

cases have protocol validity. A neural network was trained on a large non-random sample and 

a computer-generated random sample. The neural network was then cross-validated to see 

whether posterior cases can be accurately classified as belonging to the random or non­

random sample. The neural network proved to be effective in detecting 86,39% ofthe random 

responses and 85,85% of the non-random responses correctly. Analyses on the misclassified 

cases demonstrated that the neural network was accurate because non-random classified cases 

were in fact valid and reliable, while random classified cases showed a problematic factor 
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structure and low internal consistency. Neural networks proved to be an effective technique 

for the detection ofpotential invalid and unreliable cases in electronic well-being surveys. 

Subsequently, the protocol validity detection capability of IRT fit statistics was investigated. 

The fit statistics were calculated for the study population and for random generated data with 

a uniform distribution. In both the study population and the random data, cases with higher 

outfit statistics showed problems with validity and reliability. When compared to the neural 

network technique, the fit statistics suggested that the neural network was more effective in 

classifying non-random cases than it was in classifying random cases. Overall, the fit statistics 

proved to be effective indicators of protocol invalidity (rather than validity) provided that 

some additional measures be imposed. 

Recommendations were made for the organisation as well as with a view to future research. 
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OPSOMMING 


Titel: Vasstellingvan die protokolgeldigheid van In elektroniese gestandaardiseerde 

meetinstrument 

Sleutelterme: Protokolgeldigheid, item-responsteorie, neurale nehverke, welstand 

instrumente 

Die aard van werk het die afgelope paar dekades merkwaardige veranderings ondergaan, wat 

gelei het tot In verskuiwing van behoeftes van fisiese tot verstands- en emosionele eise aan 

werkers. Om hierdie eise te bestuur en werknemerprestasie te optimeer, maak organisasies 

gebruik van welstandsondersoeke om hulle intervensies te lei. Aangesien hierdie intervensies 

drastiese finansiele implikasies inhou, is dit belangrik om die geldigheid en betroubaarheid 

van die resultate te verseker. Indien In geldige meetinstrument egter gebruikword, is die 

probleem nog steeds dat welstandsoudits betroubaar, asook geldig en ekwivalent mag wees 

wanneer die resultate van In groep mense geanaliseer word, maar nie vir elke individu 

gewaarborg kan word nie. Daarom is dit belangrik om die geldigheid en betroubaarheid van 

individuele metings (d.L protokol-geldigheid) te bepaal. Min inligting is egter beskikbaar oor 

die doeltreffendheid van verskillende metodes om protokolgeldigheid te evalueer. 

Die algemene doelwit van hierdie studie was om In doeltreffende, intydse metode/aanduider 

vir die vasstelling van protokolgeldigheid in web-gebaseerde instrumente daar te steL Die 

steekproefhet bestaan uit 14592 deelnemers vanuit verskeie industriee in Suid-Afrika wat uit 

In werksverwante welwees ondersoekargief getrek is. In Protokolgeldigheidsaanduider wat 

lukraak response vasstel, is onhvikkel en geevalueer. Ondersoek is ook ingestel na die Item 

Respons Teorie (IRT) en of passingstatistiek die potensiaal het om as protokol­

geldigheidsaanduider te dien en dit is vergelyk met die nuutontwikkelde protokol­

geldigheidsaandui der. 

Die onhvikkelde protokolgeldigheidsaanduider maak van neurale nehverke gebruik om te 

voorspel watter gevalle geldig is ofnie. In Neurale nehverk is op In groot nie-lukraak monster 

en In rekenaargegeneerde lukraak monster geoefen. Die neurale nehverk is daarna gekruis­
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valideer om te sien watler later gevalle akkuraat geklassifiseer kan word as behorende aan die 

lukraak of nie-lukraak monster. Die neurale netwerk was doeltreffend met die korrekte 

opsporing van 86,39% van die lukraak response en 85,85% van die nie-lukraak response. 

Analises van die foutief-geklassifiseerde gevalle het aangetoon dat die neurale netwerk 

inderdaad akkuraat was, omdat nie-lukraak geklassifiseerde gevalle inderwaarheid geldig en 

betroubaar was, terwyl lukraak geklassifiseerde gevalle In problematiese faktorstruktuur 

getoon het asook lae interne konsekwentheid. Neurale netwerke het getoon dat dit In 

doeltreffende tegniek was vir die vas stelling van potensiele ongeldige en onbetroubare 

gevalle in elektroniese welstand ondersoeke. 

Gevolglik is die protokol geldigheidvasstellingskapasiteit van IRT-passingstatistiek 

ondersoek. Die passingstatistiek is bereken vir die studiebevolking en vir lukraak 

gegenereerde data met In uniforme verspreiding. In beide die studiebevolking en die lukraak 

data, het gevalle met hoer uitsetstatistiek probleme getoon met geldigheid en betroubaarheid. 

Wanneer dit met die neurale netwerktegniek vergelyk is, het die passingstatistiek aangedui dat 

die neurale netwerk meer doeltreffend was met die klassifikasie van nie-lukraak gevalle as 

wat die geval was in die klassifikasie van lukraak gevalle. Oorkoepelend beskou, het die 

passingstatistiek geblyk om meer doeltreffende aanduiders te wees van protokolongeldigheid 

(eerder as geldigheid) indien sekere addisionele maatreels toegepas is. 

Aanbevelings is vir organisasies asook met die oog op toekomstige navorsing gemaak. 
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CHAPTER 1 

INTRODUCTION 

This dissertation is concerned with whether measurements by a self-report instrument can be 

trusted as being valid and reliable on an individual level. 

This chapter provides the background and the problem statement of this study. The research 

objectives and the significance of the study are also presented. Finally, the research method is 

explained and the division of chapters is provided. 

1.1 PROBLEM STATEMENT 

Over the past few decades, the nature of work has undergone remarkable changes. According 

to Schreuder and Coetzee (2006), these changes include the increased utilisation of 

information and communication technology, the expansion of the services sector, the 

globalisation of the economy, the changing structure of the workforce, the increasing 

flexibilisation of work, the creation of the 24-hour economy, and the utilisation of new 

production concepts. Barling (1999) points out that the nature of work has changed from 

manual demands to mental and emotional demands. In addition, job resources such as choice 

and control at work and organisational support are often lacking, which might affect the 

energy and motivation of employees (Nelson & Simmons, 2003; Schaufeli & Bakker, 2004; 

Turner, Barling, & Zacharatos, 2002). In order to survive and prosper in a continuously 

changing environment, organisations need energetic, healthy and motivated employees 

0/Veinberg & Cooper, 2007). 

As a first step to promote health and well-being in organisations, Rothmann and Cooper 

(2008) recommend that well-being audits, which focus on both positive and negative aspects 

of work-related well-being, should be implemented and feedback should be given at 

individual, group and organisational levels. Questionnaires are often used to assess 

psychological well-being dispositions and states in South Africa. It is believed that these 

instruments can contribute to the efficiency of management of human resources (Pieterse & 

Rothmann, 2009; Sieberhagen, Rothmann, & Pienaar, 2009). Huysamen (2002) stresses the 
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importance of responsible use of psychological assessment instruments. The responsible use 

of well-being audits implies that they should be reliable, valid, and equivalent for different 

demographical groups (Rothmann & Cooper, 2008; Van de Vijver & Rothmann, 2004). 

Two psychological assessment instruments have been developed for the purpose of 

conducting well-being audits in South Africa, namely the South African Employee Health 

and Wellness Survey (SAEHWS) (Rothmann & Rothmann, 2006) and the South African 

Psychological Fitness Index (SAPFI) (Rothmann, 2008). The SAEHWS is used to assess the 

health and wellness of employees in South African organisations, while the SAPFI is used to 

assess the psychological fitness of employees. These instruments are administered 

electronically via the internet. Each participant receives an online personal feedback report 

after completion. Management also receives feedback at a group level. These instruments 

have been standardised for use in South Africa and have been proven to be internally 

consistent, valid and equivalent for different language, race and gender groups (Rothmann, 

2008; Rothmann & Rothmann, 2006). This is especially important considering the following 

stipulation of the Employment Equity Act, 55 of 1998, Section 8 (South Africa, 1998): 

"Psychological testing and other similar assessments are prohibited unless the test or 

assessment being used - (a) has been scientifically shown to be valid and reliable, (b) can be 

applied fairly to all employees, and (c) is not biased against any employee or group." 

However,the problem remains that wellness audits might be reliable, valid and unbiased 

when the results of a group of people are analysed, but cannot be guaranteed for each 

individual. The validity and reliability of an individual measurement is termed protocol 

validity (see Kurtz & Parrish, 2001). Protocol validity is an area of concern for any 

psychological measuring instrument (Johnson, 2004). Problems with protocol validity arise 

when the participant completes the instrument in such a way that the ability of the instrument 

to accurately measure the intended constructs is compromised (Ben-Porath, 2003). 

There are several threats to protocol validity. A linguistically incompetent participant will be 

unable to produce a valid protocol even for a well-validated test. Reasons for linguistic 

incompetence includes limited vocabulary, poor verbal comprehension, a particular way of 

interpreting item meaning, and/or cultural differences in item interpretation. Negligence or 

inattentiveness may result in random responding or using the same response pattern 
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repeatedly. Participants might also deliberately attempt to respond uncharacteristically 

(Johnson, 2004). 

The direct result ofprotocol invalidity is that the scores of the outcomes of the instrument are 

invalid. This has serious implications in the case of wellness audits, where decisions are 

based upon the outcomes of these instruments. Because wellness instruments are used as a 

basis for the referral of individuals for counselling and group interventions, valid and reliable 

results for each individual is important. The protocol validity should therefore be determined 

directly after the completion of the instrument to determine if the results can be trusted. If the 

outcomes are not trustworthy, individuals might be misdiagnosed and resources will be spent 

on ineffective and expensive interventions. It would also be beneficial to have information 

about the validity of individual cases during group analyses so that invalid cases may be 

discarded and kept from distorting the outcomes. 

Quite a number of attempts have been made to determine protocol validity across a wide 

range of psychometric instruments. Goldberg and Kilkowski (1985) suggested a semantic 

antonym approach, where the instrument's items for a single construct are semantic 

opposites. The participant should then answer in opposite directions on the scale. The 

respondent's answers on the opposite items are correlated to determine if the person 

responded in the desired direction of the scale. The Minnesota Multiphasic Personality 

Inventory (MMPI) and the Revised NEO Personality Inventory (NEO-PI-R) are examples 

where these types of correlational indicators are used to determine protocol validity (Schinka, 

Kinder, & Kremer, 1997). Unfortunately, these indicators are flawed in the sense that they 

assume all items to be answered equally in order to be reliable. 

The use of correlational indicators to determine protocol validity fits the paradigm of 

Classical Test Theory (CTT). However, the danger with using the CTT-based correlational 

approach is that inconsistent but valid protocols are routinely misdiagnosed (Johnson, 2005). 

During group analyses, CTT techniques also pose some problems. The typical CTT 

techniques that are used to determine validity and reliability are factor analysis and internal 

consistency tests like Cronbach's alpha (Allen & Yen, 2002). However, these statistics 

provide no information about individual cases. Although a large group of invalid cases is 

highly unlikely to provide acceptable group-level statistics, acceptable group-level statistics 
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carmot guarantee the validity of each and every protocol. Acceptable CTT statistics simply 

mean that a large part of the group of cases is acceptable. 

The modem approach to test theory is Item Response Theory (IRT). In IRT, the identification 

of invalid protocols is potentially less of an issue because fit statistics are generated for each 

individual. These fit statistics indicate whether an individual's responses fit the chosen IRT 

model (Bond & Fox, 2007). If the fit statistics are unacceptable, it is an indication that the 

case is probably invalid. Literature also suggests that reasons for misfitting responses might 

be related to the threats of protocol validity (see Linacre, 2002; Smith, 1996). Furthermore, 

different items have different difficulty (intensity) and discrimination levels. Therefore, one 

may expect a valid protocol to have inconsistent responses depending on the items 

(Hambleton & Rogers, 1990). A possible problem with IRT is that scores are not calculated, 

but estimated with dedicated software implementing complex iterative algorithms like the 

Maximum Likelihood Estimation algorithm (Bond & Fox, 2007). This might complicate the 

calculation of fit statistics in real time on the internet. 

It is clear that organisations in South Africa have to make responsible decisions regarding the 

health and wellness of their employees. Therefore a need exists not only for reliable, valid 

and equivalent measuring instruments, but also for proof of protocol validity. Currently, little 

information exists concerning the efficiency of different methods to evaluate protocol 

validity. If methods could be developed to assess protocol validity, individual responses on 

wellness audits could be analysed, which could improve human resource decisions. This 

research will make a contribution to the science oflndustrial Psychology by contributing to a 

better understanding regarding the possibilities of more computationally advanced protocol 

validity indicators for use in electronic measuring instruments. This study will also contribute 

to the practice of Industrial Psychology in organisations by providing possible tools for 

determining the validity and reliability of individual measurements, promoting evidence­

based practices and sound intervention investments. 

From the above-mentioned description of the research problem, the following research 

questions arise: 

• What are the major threats to protocol validity? 
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• 	 Can a more advanced protocol validity indicator be developed for use III electronic 

wellbeing surveys? 

• 	 Can IRT fit statistics be used as protocol validity indicators? 

• 	 Can these measures be implemented programmatically for an online instrument? 

1.2 RESEARCH OBJECTIVES 

1.2.1 General objective 

The general objective of this study is to establish an efficient, real-time method/indicator for 

determining protocol validity in web-based instruments. 

1.2.2 Specific objectives 

The specific objectives of this study are as follows: 

• 	 To study the major threats to protocol validity. 

• 	 To develop and evaluate a protocol validity indicator that detects random responses in 

electronic well-being surveys. 

• 	 To evaluate the IRT fit statistics for use as protocol validity indicators and to compare the 

IRT fit statistics with the developed protocol validity indicator. 

• 	 To discuss the practical implications of implementing the protocol validity indicators in 

an online wellness instrument. 

1.3 RESEARCH METHOD 

The research method for each of the two articles consists of a brief literature review and an 

empirical study. The reader should note that a literature review is conducted for the purposes 

of each article. This section focuses on aspects relevant to the empirical· study that is 

conducted. 
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1.3.1 Research design 

A survey design is used to reach the specific research objectives (Huysamen, 2001). In this 

type of research, data is collected by posing questions and recording people's responses. 

1.3.2 Participants and procedure 

The study sample consists of 14592 participants from several industries in South Africa, 

including financial, engineering, mining, human resources and manufacturing. The data is 

gathered from a survey data archive (see Vlhitley, 2002, p. 383). The survey archive contains 

people's responses to survey questions in wellness audits and demographic data concerning 

the respondents. The data is kept on computer files. Survey archives are useful because they 

have been collected for research purposes; consequently, great care is taken to ensure the 

reliability and validity of the data. The following criteria are considered when evaluating 

archived survey data (Whitley, 2002): 

• 	 What was the purpose of the original study? Data collected for some purposes (e.g. 

influencing legislation) may be biased in ways that support the purposes. 

• How valid was the data collection? There should be documentation that includes 

information such as how respondents are sampled and the validity and reliability of 

measures. 

• What information was collected? The data set should include all the variables needed to 

test the research hypotheses. 

• 	 \¥hen was the data collected? Social attitudes and processes can change over time and 

responses in old data sets might not represent the ways in which responses are currently 

related. 

1.3.3 Measuring instrument 

One subscale of the South African Employee Health and Wellness Survey is used, namely 

Exhaustion (5 items, e.g. "I feel tired before I arrive at work"). A seven point rating scale is 

used, ranging from 0 (never) to 6 (always). The SAEHWS is a self-report instrument based 

on the dual-process model of work-related well-being (Rothmann & Rothmann, 2006) and is 

based on the assumption that employees' perceptions and experiences represent important 
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information regarding the wellness climate in the organisation. The SAEHWS measures 

organisational climate, wellness, health and lifestyle, organisational commitment, and 

personal variables (Rathmann & Rathmann, 2006). 

1.3.4 Statistical analysis 

Statistical analyses are conducted with SPSS 16.0 (SPSS, 2008) and Winsteps 3.68 (Linacre, 

2009). Descriptive statistics (e.g. means and standard deviations) are used. Pearson's product­

moment correlation (Tabachnick & Fidell, 2001) is used to investigate the relationship 

between variables. Exploratory factor analyses, specifically principal component analyses 

(Kline, 1994), are conducted to determine the validity of the constructs that are measured in 

this study. Coefficient alpha (Cronbach, 1951) is used to assess reliability, as it contains 

important information regarding the proportion of variance of the total variance of a scale that 

consists of true variance. 

The Multilayer Perceptron (MLP) neural network is used as a possible alternative for 

determining protocol validity. The MLP is a feed-forward neural network that can be trained 

to store knowledge, based on the relationship between the dependent and independent 

variables, and to predict values for posterior cases. The MLP is used for the following 

reasons: 

• 	 Neural networks can approximate either a linear or a non-linear relationship, depending 

on the relationship in the data (Haykin, 1998). 

• 	 A model does not have to be hypothesised in advance (Haykin, 1998). 

• 	 Minimal demands are made on assumptions (SPSS, 2008). 

In addition, the Rasch IRT model is used with several of its statistics (Bond & Fox, 2007). 

First, Rasch reliability is used to provide an estimate of the reproducibility of measures. 

Rasch reliability is a more conservative estimate for the ratio of real person variance than 

Cronbach's alpha (Linacre, 2002). Second, item measures (indicated by 5) are used to assess. 

the severity of items' measurement of the latent construct. Last, infit statistics are used to 

assess how accurately or predictably the items fit the Rasch model. Outfit statistics are used 

to assess person-fit for the purposes of protocol validity, because the outfit statistic is not 

adjusted for outliers (Bond & Fox, 2007). 
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Cross-validation (Tabachnick & Fidell, 2001) is used to ensure repeatability by testing the 

model against an unknown sample. If the protocol validity indicator is based on one sample 

and tested against an unknown sample of cases, the efficiency of the indicator can be 

determined with more confidence. Tucker's coefficient of congruence phi (¢) is used to 

compute structural equivalence between factors for different samples (Tucker, 1951). 

Structural equivalence can be used to prove differences in factor structures for non-random 

and random predicted cases, confirming the validity of the neural network prediction. 

Tucker's ¢ is defmed by the following formula: 

¢ = LXiYi 

JLXf LYf 

In this formula, Xi and Yi represent the respective component loadings. Tucker's ¢ ranges 

from -1,00 to +1,00 (perfect similarity). Values above 0,95 can be taken to indicate factorial 

similarities, while values below 0,85 show unavoidable incongruencies (Van de Vijver & 

Leung, 1997). 

The better-than-chance effect size index I is used to determine the success of the neural 

network (Huberty & LOVi-'illan, 2000). This index adjusts the observed hit rate of a category 

for incidental correct classification of cases. In other words, it indicates if the classification 

was correct by chance or not. The better-than-chance index is calculated by the following 

formula: 

Ho -He 
1= 1 H 

e 

In this formula, Ho represents the observed hit rate (correct classifications divided by total 

cases); while He represents the chance rate, which is the proportional prior probabilities of 

classification. Huberty and Lowman (2000) provides guidelines for the interpretation of 1. 

Values below 0,10 are seen as a small effect, while values above 0,35 represent a large effect. 
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1.4 OVERVIEW OF CHAPTERS 


In Chapter 2, a potential protocol validity indicator is developed and evaluated. The protocol 

validity indicator is based on a specific predictive modelling technique called neural 

networks. The neural network is trained to distinguish between non-random and random data 

and then cross-validated against a second sample. Validity, reliability and structural 

equivalence tests are used to evaluate the effectiveness of the neural network's classification. 

In Chapter 3, it is investigated whether the Rasch IRT model fit statistics can be used as 

protocol validity indicators. The fit statistics are also compared to the neural network 

technique from Chapter 2. Conclusions, recommendations and limitations of the study follow 

in Chapter 4. 

1.5 CHAPTER SUMMARY 

This chapter discussed the problem statement and research objectives. The measuring 

instruments and research method that are used in this research were explained, followed by a 

brief overview of the chapters that follow. 
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THE DEVELOPMENT Al~D EVALUATION OF A PROTOCOL VALIDITY 
INDICATOR 


ABSTRACT 


The aim of this study was to develop and evaluate a protocol validity indicator that 

detects random responses in electronic well-being surveys. The study sample consisted 

of 14 592 participants from several industries in South Africa. A literature review 

indicated that neural networks could be used to evaluate protocol validity. A neural 

network was trained on a large non-random sample and a computer-generated random 

sample. The neural network was then cross-validated to see whether posterior cases can 

be accurately classified as belonging to the random or non-random sample. The neural 

network proved to be effective detecting 86,39% of the random protocols and 85,85% 

of the non-random protocols correctly. Analyses on the misc1assified cases demonstrated 

that the neural network was accurate because non-random classified cases were in fact 

valid and reliable, whereas random classified cases showed a problematic factor structure 

and low internal consistency. Neural networks proved to be an effective technique for the 

detection ofpotential invalid and unreliable cases in electronic well-being surveys. 

OPSOMMING 

Die doe I van hierdie studie was om':n indikator van protokolgeldigheid te ontwikkel en te 

evalueer wat lukraak response in elektroniese weistandopnames kan identifiseer. ':n 

Literatuuroorsig het aangedui dat neurale netwerke gebruik kan word om protokol­

geIdigbeid te evalueer. Die steekproef het bestaan uit 14592 deelnemers uit verskeie 

industriee in Suid-Afrika. 'n Neurale netwerk is opgelei op ':n groot nie-ewekansige 

steekproef en ':n ewekansige steekproefwat met behulp van 'n rekenaar gegenereer is. Die 

neura1e netwerk is met behulp van kruisvalidering getoets om te bepaal of protokolle 

akkuraat geklassifiseer kan word as behorende tot die ewekansige of die nie-ewekansige 

steekproef. Die neura1e netwerk was effektief in die opsporing van 86,39% van die 

lukraak protokolle en 85,85% van die nie-lukraak protokolle. Ontleding van die gevalle 

wat verkeerd geklassifiseer is, het aangetoon dat die neurale netwerk akkuraat wasomdat 

nie-ewekansige geklassifiseerde gevalle gel dig en betroubaar was, terwyl ewekansige 

geklassifiseerde gevalle ':n problematiese faktorstruktuur en lae interne konsekwentheid 

getoon het. Neurale netwerke blyk 'n effektiewe tegniek te wees om potensieel ongeldige 

en onbetroubare gevalle in e1ektroniese welstandopnames te identifiseer. 
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Questionnaires are increasingly used to assess psychological well-being dispositions and 

states in South Africa. These questionnaires are used by managers to understand the strengths 

and weaknesses within the organisation before implementing expensive organisational 

development interventions (Rothmann & Cooper, 2008). It is believed that these instruments 

can contribute to the efficiency of management of human resources (Pieterse & Rothmann, 

2009; Sieberhagen, Rothmann, & Pienaar, 2009). Huysamen (2002) stresses the importance 

of responsible use of psychological assessment instruments. The responsible use of well­

being audits implies that they should be reliable, valid, and equivalent for different 

demographical groups (Rothmann & Cooper, 2008; Van de Vijver & Rothmann, 2004). 

Two psychological assessment instruments have been developed for the purpose of 

conducting well-being audits South Africa, namely the South African Employee Health 

and Wellness Questionnaire (SAEHWS) (Rothmann & Rothmann, 2006) and the South 

African Psychological Fitness Index (SAPF!) (Rothmann, 2008). The SAEHWS is used to 

assess the health and wellness of employees in South African organisations, whereas the 

SAPFI is used to assess the psychological fitness of employees. These instruments have been 

standardised for use in South Africa and have been show'll to yield reliable, valid and 

unbiased scores for different language, race and gender groups (Rothmann, 2008; Rothmann 

& ROthmann, 2006). This is important considering the following stipulation of the 

Employment Equity Act 55 of 1998, Section 8 (South Africa, 1998): "Psychological testing 

and other similar assessments are prohibited unless the test or assessment being used - (a) has 

been scientifically shown to be valid and reliable, (b) can be applied fairly to all employees; 

and (c) is not biased against any employee or group." 

Both the SAEffiVS and the SAPF! are self-report inventories (SRIs) which are administered 

online, providing the employee with an immediate feedback report upon completion. 

However, Ben-Porath (2003) points out that intentional or unintentional distortion is the 

primary limitation to SRIs. He further explains that even if the SRI is psychometrically 

sound, individuals might approach the assessment in a manner that compromises the ability to 

respond accurately on the item measuring the construct. Thus, in these cases, a reliable and 

valid psychometric instrument might yield invalid test results. This is referred to as protocol 

validity. 
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The reality of protocol validity for well-being audits is that scores might be reliable, valid and 

equivalent across groups when a group of people are analysed, but that the validity of 

individual assessments cannot be guaranteed. These individual assessments are often used as 

the basis for decisions regarding the health, well-being and/or fitness of respondents, creating 

an immediate concern. The user of the well-being audits needs to consider the validity of the 

responses before using the results. If a decision is made utilising invalid information, the 

decision might have harmful effects on the employee and/or the organisation which could 

result in labour issues given the rights of employees (South Africa, 1995). Therefore, a need 

exists for efficient protocol validity indicators on these instruments. 

To develop protocol validity indicators, it is necessary to understand the different threats to 

protocol validity. Ben-Porath (2003) classifies the threats into two broad categories, namely 

non-content-based invalid responding and content-based invalid responding. These categories 

reflect the role of the instrument item content in invalid responding. Non-content-based 

invalid responding refers to responding without reading, processing or comprehending the 

items. This has adverse effects on the protocol validity of the measurement, because the 

individual did not portray an answer related to the item or construct. Content-based invalid 

responding occurs when a respondent reads and comprehends the item content, but distorts 

answers (intentionally or unintentionally) to create a misleading impression (social 

desirability and acquiescence). 

Non-content-based invalid responding is categorised into three modes, namely non­

responding, random responding and fixed responding (Ben-Porath, 2003). These modes are 

all different behaviours to the same threat, i.e. that participants did not evaluate the content of 

items before responding. Non-responding occurs where a participant fails to respond to a 

certain number of items. Random responding takes place when an individual provides a 

random answer without considering the content of the item. Fixed responding occurs when a 

participant adopts a systematic response approach by providing the same answer to multiple 

items in the SRl, thereby creating a response pattern. 

Content-based invalid responding is organised into two mam categories, namely over­

reporting and under-reporting (Ben-Porath, 2003). These categories are defined by an 

individual providing an answer that is more (over-reporting) or less (under-reporting) severe 
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than the actual situation. Both of these categories of threats might occur intentionally or 

unintentionally. 

In the context of the electronic well-being surveys, certain threats are more problematic than 

others. Non-responding is dealt with by forcing participants to answer a question before 

continuing to the next one. The risk of this approach is that participants might provide a 

random answer because they are unable to non-respond. Thus, to a certain extent, non­

responding is replaced with random responding. Fixed responding is also less of an issue 

because the surveys consist of multiple pages with a limited number of items on a single 

page. If a participant should provide a fixed response pattern, that exact pattern will in all 

probability not be repeated continuously, because the participant starts on a new page every 

few items. This, to a certain extent, also substitutes random responding for fixed responding. 

Furthermore, fixed responding can easily be identified by investigating an algorithm that 

detects patterns in the responses. 

These arguments stress the importance of the random response threat in electronic well-being 

surveys. 'When a decision is made or money invested based upon the outcome of such a 

survey, it is important to have confidence in the outcome of the survey. Knowing if random 

response was evident during the completion of the survey will provide more confidence in the 

decisions made. Therefore, a need exists to develop and evaluate a protocol validity indicator 

that can be used to detect random responding in an electronic well-being survey. 

The aim of this study was thefore to develop and evaluate a protocol validity indicator that 

detects random responses in electronic well-being surveys. 

Random responding 

Ben-Porath (2003) defines random responding as an unsystematic response approach that 

occurs when an individual provides a random answer without reading or comprehending a 

test item. It is described as not being dichotomous, i.e. it presents itself in varying intensities 

throughout the instrument. This non-content-based protocol validity threat can be divided into 

three categories, namely intentional random responding, unintentional random responding 

and response recording errors. 
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Intentional random responding comes about when a respondent has the capacity to respond 

appropriately to an item, but chooses to respond in an unsystematic way (Ben-Porath, 2003). 

A typical example of this would be an uncooperative individual who would respond 

randomly just to complete the instrument, thereby avoiding conflict with third parties. 

Unintentional random responding occurs when an individual does not have the capacity··to 

provide an answer to a specific item (Ben-Porath, 2003). Instead of non-responding, 

individual provides an answer without having an understanding of the item. Reasons for 

unintentional random responding might include reading difficulties or comprehension 

deficits. 

The final category of random responding is response recording errors. This is related to the 

user-friendliness of the instrument presentation (Ben-Porath, 2003). Some instruments are 

presented in a booklet and answer sheet format, others in a booklet-only format, and others 

are electronic. If the respondent makes a mistake by marking the answer in the wrong 

position, the response is essentially random. A well constructed electronic instrument should 

be less prone to response recording errors than conventional methods, because there is little 

room for error if only one question is displayed at a time. 

Currently, random responding is detected predominantly with inconsistency scales and 

examples can be found in the Minnesota Multiphasic Personality Inventory (:M1v1PI; e.g. 

Butcher, Dahlstrom, Graham, Tellegen, & Kaemmer, 1989; Butcher et aI., 1992) and the 

Revised NEO Personality Inventory (NEO-PI-R; Goldberg & Kilkowski, 1985). Scores on 

these scales are fairly simple to compute, which makes it possible for psychologists to 

calculate the scores without computers. The MMPI utilises the Variable Response 

Inconsistency Scale (VRIN) and the NEO-PI-R makes use of the INC inconsistency scale 

(Schinka, Kinder, & Kremer, 1997). The inconsistency scales focus on comparing scores on 

items from a test with scores on other items from the same test. Highly correlated (similar 

and opposite) items within the test are selected, and the expectation is that respondents should 

provide similar on all these items (Kurtz & Parrish, 2001). Confidence intervals are 

then created based on deviations from the normative means or dissimilarity between 

distributions from a known random and non-random sample. 

There are, however, problems with these inconsistency scales. Costa and McCrae (1997) 

found that most participants who score high on the inconsistency scale of the NEO-PI-R are 
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III fact not responding randomly. Piedmont, McCrae, Riemann and Angleitner (2000) 

indicated that the NEO-PI-R's inconsistency scales lack utility. Kurtz and Parrish (2001) 

found that cases identified as invalid by NEO-PI-R inconsistency scales, were in fact 

psychometrically valid and reliable. According to Archer, Handel, Lynch and Elkins (2002), 

the MMPI-A's inconsistency scale is limited in detecting partially random responses. 

Another approach to random response is to compare an individual case to a normative sample 

of other cases. Item Response Theory (IRT; Reise & Widaman, 1999) uses person-fit 

statistics to calculate how a participant's responses fit to theoretical expectations based on a 

normative sample. The items are scaled according to how they are rated in the larger group of 

cases, and for a respondent to have a good person-fit they should rate items according to their 

estimated level for the construct (Johnson, 2005). 

Neural networks (De Ville, 2001) present another alternative for evaluating the protocol 

validity of a measure. Neural networks are discussed in the next section. 

The use of neural networks to evaluate protocol validity 

Predictive classification techniques can model and infer trends from a large database and 

apply them to individual, posterior cases (SPSS, 2008). These techniques are widely used in 

data mining applications for creating business intelligence (De Ville, 2001). It would be 

possible to create a random response classification model based on a large training sample, 

and apply it to individual posterior cases. The power of predictive modelling is that the model 

is only created once. This model is then used for posterior classification with little 

computational effort. If a predictive model were built to understand what a valid and reliable 

response is, it would be able to identify a similar case with a certain probability. In essence, 

these predictive classification techniques can model and infer response styles from a large 

group of protocols and apply them to individual protocols for calculating individual protocol 

validity and reliability. 

Several classification techniques can serve as candidates for this purpose, namely 

discriminant analysis, special cases of regression, decision trees, or neural networks. Neural 

networks are very sophisticated modelling techniques capable of modelling extremely 

complex functions. They have been found to outperform discriminant analysis and logistic 
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regression especially where the latter's assumptions are violated (Sommer, Olbrich, & 

Arendasy, 2004). This study utilises neural networks for the following reasons: 

• 	 Neural networks can approximate a linear or non-linear relationship, depending on the 

relationship in the data (Haykin, 1998). 

• 	 A model does not have to be hypothesised in advance (Haykin, 1998). 

• 	 Minimal demands are made on assumptions (SPSS, 2008). 

Haykin (1998) defines a neural network as a massively parallel distributed processor that has 

a natural propensity for storing experiential knowledge and for making it available for use. It 

resembles the brain in two respects. First, knowledge acquisition is done by training the 

neural network and second, interneuron connection strengths known as "synaptic weights" 

are used to store the knowledge. 

Neural networks, similar to regression analysis, learn through a series independent and 

dependent variables. Just as regression analysis acquires knowledge through least-squares 

method, and saves the knowledge in regression coefficients, a neural network acquires 

knowledge through minimising the prediction error in the dependent variable (training), and 

saves it as synaptic (SPSS, 2008). 

The Multilayer Perceptron is an important class of neural networks that have been used 

widely for forecasting, prediction and classification across several disciplines of science (see 

Reifrnan & Feldman, 2002). Multilayer Perceptron networks are also commonly available in 

modem statistical packages. Haykin (1998) explains that Multilayer Perceptron networks 

consist of a series sensory units (independent variables) that constitute the input layer, one 

or more hidden consisting of computational nodes, and an output layer (dependent 

variables). The input signal propagates forward through the different layers of the network 

(usually referred to as feed-forward). 

The Multilayer Perceptron is trained to create the structure of neural network. During 

training, the weights between the input, hidden and output layers are optimised. Different 

training algorithms could be applied to optimise these weights, but the backpropagation 

algorithm is most widely used (Agirre-Basurko, Ibarra-Berastegi, & Madariaga, 2006). It 
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might happen that too much detail is included in the neural network, causing it to lose its 

ability to generalise (Haykin, 1998). This is referred to as over-training. To solve over­

training, a testing sample can be assigned to track errors made during training and guarantee 

the generalisation of the network (SPSS, 2008). After the neural network has been trained, it 

can be used for classification ofunknown cases. 

Figure 1 depicts the structure of the Multilayer Perceptron neural network. When classifying 

unknown cases, a series of independent variables (Xj •••xp ) is provided to the input layer. The 

input layer then distributes the values in the variables to the neurons in the hidden layer. The 

neuron in the hidden layer multiplies the value by a weight (Wji), and the resulting weighted 

values are summed to produce a combined value Uj. This weighted sum (Uj) is then provided 

to a transfer function, cr, which outputs a value hj. These outputs are distributed to the output 

layer where the value from each hidden layer neuron is again multiplied by a weight (Wkj). 

The resulting weighted values are summed to produce a combined value Vj' weighted 

sum (Vj) is provided to a transfer function, cr, which outputs a value Yk. They values are the 

outputs of the network. 

=y 

Figure 1. Structure of the Multilayer Perceptron Neural Network 

When the Multilayer Perceptron classifies posterior cases, it also generates pseudo­

probabilities for each classification. These pseudo-probabilities estimate the level of certainty 

that the case belongs to the predicted group (SPSS, 2008). 

lfnon-random and random samples are created, the construct's items are used as inputs ofthe 

neural network, and the familiar source of the cases (random or non-random) as outputs. The 

neural network will model neurons and synaptic weights based on the relationship between 
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the items of the construct for the applicable sample. A posterior case can then be classified as 

belonging to either the random or non-random sample of data. 

METHOD 

Research design 

This research follows the quantitative research tradition. A cross-sectional survey design was 

used (Huysamen, 2001). In this type of research, data is collected by posing questions and 

recording people's responses. A correlational approach was followed where each individual 

the sample was measured on variables (i.e. items of a scale) at the same point in time and 

the relationship between these variables were analysed. 

Participants 

The study sample consisted of 14592 participants from several industries in South Africa, 

including financial, engineering, mining, human resources and manufacturing. Descriptive 

information of the sample is given in Table 1. The mean age of the participants was 40,24 

(SD 9,98). Slightly more males (62,49%) than females (37,51 %) were represented in the 

study population. In terms of race, 27,42% of participants were black and 36,64% white. The 

race values were missing for 4288 (29,39%) participants, due to the sensitivity of posing 

questions relating to racial differences in South Africa. Almost half of the study population 

(49,75%) had a qualification of grade 12 or lower, 13,38% a certificate, 15,48% a diploma or 

a degree and 10,38% a postgraduate qualification. 



Table 1 
Characteristics ofthe Participants 

Item Category Frequency Percentage 

Gender Male 9119 62,49 

Female 5473 37,51 

Race Black 4001 27,42 

White 5346 36,64 

Coloured 586 4,02 

Indian 359 2,46 

Other 12 0,08 

Missing 4288 29,39 

Qualification Up to grade 12 7260 49,75 

Certificate 1953 13,38 

Diploma or degree 2259 15,48 

Postgraduate qualification 1515 10,38 

Missing 1605 11,00 

Measuring instrument 

Two qualitative questions measuring helping and restraining factors at work were used for 

selecting the cases where respondents took care in completing the survey. One subscale ofthe 

South African Employee Health and Wellness Survey (SAEHWS), namely Exhaustion, was 

used to reach the objective of this study. The SAEHWS is a self-report instrument based on 

the dual-process model of work-related well-being and is based on the assumption that 

employees' perceptions and experiences represent important information regarding the 

wellness climate in the organisation (Rothmann & Rothmann, 2006). The SAEHWS 

instrument measures an employee's health and wellness status, relates the data to the 

organisational climate and compares the results to the South African norm (Rothmann & 

Rothmann, 2006). factor structures of all the subscales in the SAEHWS support the 

validity of the scales and are equivalent for different ethnic groups and organisations. The 

internal consistencies are also acceptable and above the cut-off point of 0,70 (Rothmann & 

. Rothmann, 2006). 

The exhaustion scale was used because the items are posed amongst the first 15 items in the 

239-item survey_ Research has shown that consistent responding is more likely to occur in the 
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beginning of the test before participants get bored, tired or impatient (see Berry et aL, 1991). 

Exhaustion was measured with 5 items (e.g. "I feel tired before I arrive at work") on a 7-point 

scale varying from 0 (never) to 6 (always). Helping and restraining factors were measured 

with two items (e.g. "Which factors are helping you to be motivated and effective in your 

current job and organisation?") where participants provided unrestrained and spontaneous 

answers. Exploratory and confirmatory analyses showed that the factor structure of the 

exhaustion scale is valid and equivalent different ethnic groups and organisations. 

Statistical analyses 

Statistical analyses were conducted with the SPSS 16.0 program (SPSS, 2008). Descriptive 

statistics (e.g. means and standard deviations) were used. Histograms, skewness and kurtosis 

were used as measures of spread (Tabaclmick & Fidell, 2001). Pearson's product moment 

correlations were used to assess the relationship between variables (Tabaclmick & Fidell, 

2001). Exploratory factor analyses, specifically principal component analyses (Kline, 1994), 

were conducted to determine the validity of the construct that was measured in this study. 

Coefficient alpha (Cronbach, 1951) was used to assess reliability as it contains important 

information regarding the ratio of true variance to observed variance explained by the 

particular scale. 

As discussed earlier, a multilayer perceptron neural network was used for the predictive 

classification of data. In addition, cross-validation (Tabaclmick & Fidell, 2001) was used to 

ensure repeatability by testing the model against an unknown sample. If model is trained 

on one sample and tested against an unknown sample of cases, the efficiency of the model 

can be determined for classifying posterior unknown cases. 

Tucker's coefficient of congruence phi (¢) was used to compute structural equivalence 

between factors for different samples (Tucker, 1951). Structural equivalence analysis can be 

used to detect differences in factor structures for non-random and random predicted cases, 

supporting the validity of the neural network prediction. Tucker'S ¢ is defined by the 

following formula: 

¢ = LXiYi 

JLxt LYf 
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In this formula, Xi and Yi represent the respective component loadings. Tucker's ¢ ranges 

from -1,00 via 0 to +1,00 (perfect similarity). Values above 0,95 can be taken to indicate 

factorial similarities, while values below 0,85 show non-avoidable incongruencies (Van de 

Vijver & Leung, 1997). 

The better-than-chance effect size index 1 was used to determine the success of the neural 

network (Huberty & Lowman, 2000). This index adjusts the observed hit rate of a category 

for incidental correct classification of cases. In other words, it indicates if the classification 

was correct by chance or not The better-than-chance index is calculated by the following 

formula: 

In this formula, Ho represents the observed hit rate (correct classifications divided by total 

cases), while represents the chance rate, which is the proportional prior probabilities of 

classification. Huberty and Lowman (2000) provides guidelines for the interpretation of L 

Values below 0,10 could be seen as a small effect, while values above 0,35 represent a large 

effect. 

Research procedure 

The data was gathered from a survey data archive (see Whitley, 2002). The survey archive 

contains responses to survey questions in the well-being audits and demographic data 

concerning the respondents. This data is kept on computer databases. Survey archives are 

useful because they have been collected for research purposes; consequently, great care was 

taken to ensure the reliability and validity of the data. 

In order to build a predictive model that classifies non-random responses, certain assumptions 

had to be made regarding the definition of non-random responses. A non-random response set 

was defined as a response set that belongs to a group of cases that were found to be valid and 

reliable. To minimise the effect of potential individual unreliable responses in the training 

sample, some cases were filtered out based on sufficient time spent answering the survey and 

an adequate amount of qualitative data provided in items measuring helping and restraining 

factors at work. A total of 3496 cases were discarded based on the criteria, resulting in a 
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sample of 11 097. Subsequently, the sample was split equally by means of random sampling 

for cross-validation purposes. The sample sizes were 5 549 for the training sample and 5 548 

for the cross-validation sample. The factor structures (in support of validity), reliability and 

structural equivalence were computed for both samples. 

Next, random data was generated for each sample to serve as rejection samples. The purpose 

of the rejection sample is to train the neural network in what a case should not look like. To 

ascertain a prior probability of 50,00%, random data was generated to match the amount of 

non-random data in each sample. The property of the random number generator was to assign 

an equal probability to each element (uniform distribution). The random and non-random data 

were marked appropriately, and would be used to train the predictive model. Descriptive 

statistics were computed on the items and the exhaustion construct (mean of the items) for 

both the random and non-random data. These statistics were used to analyse the 

comprehensiveness of the samples. 

The neural network was then trained on the first sample and cross-validated against the 

second sample. The cross-validation was done by comparing the known classification with 

the predicted classification. In this comparison, known random and non-random cases can 

either be correctly classified or misclassified by the neural network. To more precisely assess 

the performance of the neural network, the factor structures (in support of validity), reliability 

and structural equivalence were calculated for the correctly classified and misclassified non­

random and random cases. 
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RESULTS 


Minimising the effect of unreliable response in the sample 

On average, 65 minutes were spent completing the 239-item questionnaire. Twenty percent of 

individuals (2 638) took less than 25 minutes to complete the questionnaire. It was assumed 

that these individuals have answered the questions excessively fast (less than 6 seconds per 

question). This data was discarded, resulting in a sample of 11 955 valid cases. 

Subsequently, the data of the two qualitative questions was analysed. Of the 11 955 cases, the 

average length of the qualitative data (the sum of both items) was 137 characters. After 

inspecting the data, it was concluded that responses longer than nine characters provided 

meaningful responses. There were 766 participants (6,41%) who provided less than nine 

characters on both of the qualitative questions. These cases were also discarded, resulting in a 

sample of 11 097 usable cases. 

Splitting the dataset for cross-validation purposes 

The large sample (n = 11097) was divided into two smaller samples by means of random 

sampling. Sample 1 was used to train the neural network, and sample 2 for cross-validation. 

The sample sizes were 5 549 for sample 1 and 5 548 for sample 2. Table 2 shows the 

characteristics of the samples. The mean age of the participants was 40,71 (SD = 9,86) in 

sample 1 and 40,81 (SD = 10,02) in sample 2. Sample 1 contains 3436 (61,92%) male 

respondents, while sample 2 has 3 394 (61,18%). In total, 25,57% of the respondents in 

sample 1 were black, and 38,78% white, which is in line with the 25,34% black and 39,26% 

white respondents in sample 2. In terms of qualification, sample 1 included 2 703 (48,71 %) 

respondents with grade 12 or lower, similar to the 2 729 (49,19%) respondents in sample 2. 
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Table 2 
Characteristics ofthe Samples 

Item 	 Category Sample 1 Sample 2 
(n=5549) 	 (n=5548) 

Frequency Percentage Frequency Percentage 

Gender 	 Male 3436 61,92 3394 61,18 

Female 2113 38,08 2154 38,83 

Race 	 Black 1419 25,57 1406 25,34 

White 2152 38,78 2178 39,26 

Coloured 193 3,48 230 4,15 

Indian 126 2,27 117 11 

Other 5 0,09 6 0,11 

Missing 1654 29,83 1611 29,00 

Qualification 	 Up to grade 12 2703 48,71 2729 49,19 

Certificate 715 12,89 695 12,53 

Diploma or degree 916 16,51 838 1 10 

Postgraduate 574 10,34 622 11,21 
qualification 

Missing 641 11,55 664 11,97 

Table 3 shows the descriptive statistics for the Exhaustion items in both samples. Item 4 has 

the highest mean of 3,09 (SD = 1,67) in sample 1 and 3,13 (SD = 1,67) in sample 2. Item 3 

has the lowest mean of 1,69 (SD = 1,56) in sample 1 and 1,76 (SD = 1,58) in sample 2. It is 

apparent that the means and standard deviations are quite similar in both samples. 

Table 3 

Descriptive Statistics ofthe Exhaustion Items in the Samples 

Item ,Mean 	 SD 

Sample I Sample 2 Sample I Sample 2 

Item 1 2,93 2,95 1,55 1,56 

Item 2 2,79 2,84 1,63 1,64 

Item 3 1,69 1,76 1,56 1,58 

Item 4 3,09 3,13 1,67 1,65 

Item 5 2,57 2,60 1,65 1,65 
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Table 4 shows the Cronbach alpha coefficients of the samples. The internal consistencies of 

the samples are both acceptable (a >0,70). Principle components analyses extract a one­

factor model for both samples, with 61,75% of the variance explained in sample 1 and 

60,67% of the variance explained in sample 2. The component loadings of the samples are 

structurally equivalent with a Tucker's ¢ of 1,00. 

Table 4 

Internal Consistency ofExhaustion in the Samples 

Sample a 

Sample 1 0,84 

Sample 2 0,84 

Next, an Exhaustion dimension score was created by calculating the mean of the items for 

both samples. Table 5 contains the descriptive statistics of the Exhaustion dimension. The 

non-random data is skewed in both samples (z 2': 2,58). Non-random sample 1 has a mean of 

2,61 (SD = 1,27) and sample 2 a mean of2,66 (SD = 1,26). The random data has a mean of 

2,99 (SD = 0,89) in sample 1 and 3,01 (SD = 0,89) in sample 

Table 5 

Descriptive Statistics ofthe Exhaustion Dimension 

Sample Random Minimum Maximum Mean SD Skewness Kurtosis 

z z 

Sample 1 Non-random 0,00 6,00 2,61 1,27 4,69 -5,48 

Sample 1 Random 0,20 5,80 2,99 0,89 0,20 -4,07 

Sample 2 Non-random 0,00 6,00 2,66 1,26 4,18 -4,99 

Sample 2 Random 0,20 5,80 3,01 '0,89 -0,19 -4,70 

Figure 2 to Figure 5 depict histograms to show the distribution of the data. One can easily 

slight difference in distributions between the random and non-random data .. 
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Figure 2. Histogram of the non-random Figure 3. Histogram of the non-random 
Exhaustion dimension in sample 1 Exhaustion dimension in sample 2 

Exh"u:s'tion 

. Figure 4. Histograin of the random Figure 5. Histogram of the random 
Exhaustion dimension in sample 1 Exhaustion dimension in sample 2 

Training the neural network 

The neural network was trained on the first dataset. To prevent overtraining, 70,00% of the 

cases were used for training the neural network and 30,00% were assigned to a testing 

sample. The exhaustion items were used .as independent variables in the input layer, and the 

random/non-random classification as the dependent variable in the output layer. 

Table 6 shows the post hoc classification results of the neural network. It is apparent that the 

neural network performed quite well in predicting both the random and non-random cases. 

Approximately 87,00% of the non-random cases were predicted correctly in both the training 

and testing samples, while 86,82% and 85,41 % of the random cases were predicted correctly 

in the training and testing samples respectively. 

30 




Table 6 

Neural Network Classification Results for Dataset 1 

Sample Observed n Predicted 

Non-random Random Percent 
Correct 

Training Non-random 3857 3354 503 86,96 
(n=78 02) Random 3945 520 3425 86,82 

Testing Non-random 1692 1472 220 87,00 
(n=3296) Random 1604 234 1370 85,41 

Subsequently, the neural network was cross-validated against the second dataset. 

Table 7 shows the results of the cross-validation. The neural network performed equally well 

in the prediction of unfamiliar cases, predicting 85,85% and 86,39% of the respective non­

random and random cases correctly. The better-than-chance index 1 shows a value of 0,72, 

which implies a large effect (l 2:: 0,35), meaning that the correct predictions did not occur by 

chance. 1 was calculated with a prior probability of 0,50 for both samples. This provides an 

acceptable level of confidence in the performance of the neural network when classif:ying 

unfamiliar cases. 

Table 7 

Neural Network Cross Validation Classification Results 

Observed n Predicted 

Non-random Random Percent Correct 

Non-random 5548 4763 785 85,85 

Random 5548 755 4793 86,39 

Reliability and validity of the predicted outcomes 

A total of 785 misclassified non-random cases were identified during cross-validation. To 

investigate whether these cases were misclassified because of the incompetence of the neural 
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network or because they were in fact random responses by individuals, reliability, validity 

and construct equivalence analysis procedures were performed. 

Cronbach's alpha statistic was used to determine the reliability ofth~ correctly classified and 

misclassified cases (see Table 8). The correctly classified cases have an acceptable level of 

reliability (a ~0,70), whereas the misclassified cases present with a Cronbach alpha of 0,35, 

indicating a low level of intemal consistency that group of cases. 

Table 8 

Cronbach Alphas for the Non-Random Classification Groups 

Classification a 

Correctly classified non-random cases 0,89 

Misclassified non-random cases 0,35 

In a principal components factor analysis, the correctly classified cases yield a one-factor 

model for the Exhaustion dimension (Eigenvalues> 1), as would be expected, which explains 

69,38% of the variance. The component loadings are all sufficiently high (indicated in Table 

9), with item 3 showing the lowest component loading ofO,75. In addition, all the items have 

practically significant (large effect) correlations with each other (r >0,50). This provides 

sufficient evidence about the reliability and validity of the correctly classified non-random 

cases. 

Table 9 

Component Matrixfor the Correctly Classified Cases 

Items Component 1 

Item 1 0,85 

Item 2 0,84 

Item 3 0,75 

Item 4 0,84 

Item 5 0,89 

Interestingly, the misclassified cases yield a two-factor model in a principal components 

analysis (Eigenvalues ~ 1), explaining 28,16% and 22,81% of the variance respectively. In 

addition, these cases fail to provide a practically significant correlation between any of the 
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items (r ::;0,30). The Exhaustion dimension should theoretically yield a one-factor model 

(Rathmann & Rathmann, 2006). This indicates instability in the factor structure for the 

misclassified cases. Given this instability and the low internal consistency of the 

misclassified cases, one can assume that these cases are problematic. 

Analysis of nllsclassified random data 

Table 7 shows that 755 random cases were misclassified as non-random by the neural 

network. Again, it should be investigated whether these cases were misclassified because of 

the incompetence of the neural network or whether the random data might actually have been 

similar to the non-random data. 

As would be expected, the correctly classified random cases generate an undesirable 

Cronbach alpha (see Table 10), indicating that there is indeed no internal consistency in the 

random data. The misclassified cases produce an alpha of 0,77, indicating an acceptable level 

of internal consistency (a ;:::0,70). 

Table 10 

Cronbach Alpha for the Random Classification Groups 

Classification a 

Misclassified random cases 0,77 

Correctly classified random cases -0,25 

Confirming the inherent nature of the random data, the correctly classified random cases 

yield a totally unrelated four-factor model (Eigenvalues>1) explaining 21,56%, 20,95%, 

20,71 % and 20,21 % of the variance respectively. These cases also fail to provide a practically 

significant correlation between any of the items (r 0,30). 

The misclassified random cases yield a one-factor model (Eigenvalues > 1) explaining 

52,85% of the variance. The component loadings are sufficiently high (see Table 11), \vith 

item 3 having the lowest component loading of 0,62. All the items have practically significant 

(medium effect) correlations with each other (r >0,30). 

Table 11 
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Component Matrix for the Misclassified Random Cases 

Items Component 1 

Item 1 0,80 

Item 2 0,63 

Item 3 0,62 

Item 4 0,76 

Item 5 0,80 

In order to calculate structural equivalence between the correctly classified non-random cases 

and the misclassified random cases, their component loadings (see Table 9 and Table 11 

respectively) were compared using Tucker's ¢. The Tucker's ¢ proportionality coefficient of 

the misclassified random cases and the correctly classified non-random cases is 1,00. This 

suggests that the components are largely equivalent (¢ ;:::0,95), keeping in mind that with a 

small number of items Tucker's ¢ is often misleadingly high. 

DISCUSSION 

The aim of this study was to develop and evaluate a protocol validity indicator that detects 

random responses in electronic well-being surveys. A predictive model that classifies an 

individual case as being random or non-random was used to achieve this. The results showed 

that 14,15% of participants could be regarded as random responders according to the neural 

network. These cases showed a low internal consistency and instability in the factor structure, 

while the non-random classified cases showed acceptable internal consistency and extracted 

the expected factor structure. 

In total, 13,61 % of the computer-generated random data was classified as non-random by the 

neural network. These cases proved high internal consistency, an acceptable factor structure 

and structural equivalence with the non-random natural sample. The structural equivalence 

implies that the factor structure extracted from these misclassified random cases corresponds 

to the expected factor structure of the non-random cases provided by participants in the 

natural sample. 

The misclassified random cases serve as evidence that the non-random classification of the 

neural network cannot guarantee the absence of the random response threat Though it does 
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particularly well in detecting random responses (86,39% of the random cases), it is not 

infallible. A random responder might coincidentally display a response pattern similar to that 

of a non-random responder. In such as case, the random response would be regarded as valid 

and reliable. 

Although the neural network is inadequate to classifY the random response threat perfectly, 

these fmdings do provide evidence that when the neural network classifies cases as non­

random they can be trusted to be valid and reliable on group level. The opposite is also true: 

when the neural network classifies cases as random, problems with validity and reliability 

should be expected. This is potentially powerful, because as it is quite difficult to put a single 

response set in relation to a certain factor structure or reliability level. The assumptions of 

factor analysis and Cronbach's alpha both include an adequate sample size, and it would not 

be possible to calculate these statistics on only one case (see Kline, 1994; Cronbach, 1951). 

The only other technique that potentially provides for the identification of invalid individual 

cases is IRT (Bond & Fox, 2007). 

Exploring reasons why the neural network performs well in detecting valid and reliable cases 

requires an understanding of exactly what the neural network does when classifYing the data. 

When the neural network is trained with a construct's items as inputs, it infers a model of 

which responses tend to correspond with different values for the other items. Such a model is 

inferred for each of the input items and stored in neurons and paths with synaptic weights (the 

hidden layer). It merely provides a model of which responses tend to "go together" in a large 

training sample. If the neural network classifies a case as not corresponding to the training 

sample, it means that the specific response pattern would in all probability not exist in the 

training sample, and the neural network will reject the case. Thus, if the training sample is 

valid and reliable, the neural network will classifY similarly valid and reliable cases on an 

individual level. 

When a response does not correspond with the training sample, it either means that certain 

threats to protocol validity were evident or that the training sample was not comprehensive 

enough. The threats might be a combination of content- or non-content-based invalid 

responding. Fixed response, random response or response recording errors could have been 

evident or the participant could have over- or underreported inconsistently. Any threat (or 
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combination thereof) that distorts the response pattern would cause rejection by the neural 

network. 

The nature of the training sample is fundamentally important as it has a direct influence on 

the effectiveness of the neural network. The neural network can, at best, only perform as well 

as its training sample (Haykin, 1998). The training sample consists of a natural sample and a 

rejection sample. The natural sample trains the neural network in what a valid and reliable 

case should look like, while the rejection sample does exactly the opposite. During post hoc 

classification, the neural network decides to which sample an individual case belongs. 

If the natural sample is too small, the neural network will not correctly classify all possible 

valid and reliable cases. If the natural sample contains too many invalid responses, the neural 

network will again misclassify posterior invalid responses as valid. If the distribution of the 

items is heavily skewed on the Likert scale (i.e. individuals tend to respond very high or very 

low on the scale), the neural network will only classify individual cases correctly if they are 

similarly skewed. However, an interesting argument arises regarding the skewness of the 

natural data. If a very large group of participants provided skewed responses for a specific 

construct, one could argue that individuals tend to embrace or reject the construct easily. This 

trend should be expected from a posterior case. On the other hand, it might be risky to 

restrain the level of the construct measured by limiting the valid responses on the scale. This 

should be thoroughly tested and investigated when implementing a neural network in this 

context. 

Furthermore, the importance of the composition of the rej ection sample should be stressed. 

The same criteria apply for this sample as for the natural sample. The difference between the 

inherent properties of the natural and rejection sample also plays an important role in the 

success of the neural network classification. In this article, the rejection sample was 

populated with computer-generated random data because it was used to test for random 

responding and also provided an adequate picture ofwhat responses should not look like. 

Another critical factor is the number of items used as inputs. Using a limited number of items 

restricts the range of possible response distribution, contributing to the coincidence of having 

random data (in the rejection sample) correspond to non-random data (in the natural sample). 

Items worded semantically opposite could also influence effectiveness of the neural 
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network. Semantic opposites refer to wording certain items as antonyms of other items 

(Goldberg & Kilkowski, 1985). The expectation is that the antonyms should be answered in 

the opposite direction of the other items on the scale (Johnson, 2005). When using more 

items (including semantic opposites) as inputs for the neural network, a more precise nature 

of response would be inferred from the natural sample. More precision in the response 

patterns of the network structure should minimise overlap between the natural and rejection 

samples. 

In conclusion, the neural network learns from a large group of cases and predicts whether a 

posterior individual case would also belong to that group of cases. The neural network does 

not identify protocol validity threats, but gives an indication a collection of threats have 

corrupted the case to the extent that it would not belong to the group of valid and reliable 

cases. This serves as valuable information for a facilitator who should make a decision based 

on the outcome of the SAEHWS. It also creates the opportunity for data analysts to exclude 

single cases from a group analysis because of validity and reliability issues. 

There are several limitations to this study: Firstly, only one construct with five items was 

used as input for the neural network. Moreover, these items did not include semantically 

opposite items. The neural network might respond differently to other constructs and items 

(or combinations thereof). Secondly, it is indefinite whether the natural training sample 

included all possible valid and reliable combinations of responses on the five items. The 

neural network might classify potentially valid and reliable responses as invalid because such 

a response did not feature strongly in the natural sample. Thirdly, the inherent property of the 

computer-generated random data in the rejection sample is that every element has an equal 

probability to be selected (uniform distribution). This might not be the case when human 

beings are providing the data randomly. Different rejection samples were not tested in this 

study. Finally, the neural network was validated with group reliability and validity techniques 

(i.e. factor analysis and Cronbach a) that do not provide fit statistics for individual cases. 
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RECOMMENDATIONS 


Predictive modelling has proved effective in detecting possible invalid and unreliable cases 

on an individual level. However, it does not indicate the applicable threats that were apparent 

in the individual case. It is recommended that a neural network be implemented in the 

SAEHWS to provide facilitators with a validity and reliability indicator. Facilitators should 

evaluate the indicator before making decisions based on the results of the survey. The 

indicator should be used with caution and if a problem is evident, the facilitator should 

conduct an interview with the participant to investigate possible threats to the validity of the 

protocol. This interview can be structured within Ben-Porath's (2003) framework for protocol 

validity threats by asking questions such as "Did you read all the questions before providing 

an answer?", "Did you understand all the questions?", and "Do you feel you were totally 

honest in answering all the questions?". 

The neural networks can be used when performing group analyses on the SAEHWS data. 

Although it is straightforward to determine reliability and validity on a group level, it is 

difficult to identify cases that contribute to the invalidity or unreliability of the group. Cases 

that prove to be invalid and unreliable on an individual level can be excluded from the group 

analyses to fortify the case for organisations to invest in expensive interventions. 

Implementing the neural network in the SAEHWS requires the model structure to be 

exported after training. This model structure includes information about the trained neurons 

and synaptic weights. A neural network prediction algorithm should then be used to classify 

posterior cases based on the model structure when each individual SAEHWS report is 

generated. 

Future research should be conducted to further validate the neural network 'Nith techniques 

beyond factor analysis and Cronbach's a, such as IRT. Also, interviews should be conducted 

with individuals identified as random responders to establish if they had indeed responded 

randomly. Reasons for random responding should also be investigated. The effect of 

predicting validity and reliability with more than 5 items as inputs in the neural network 

should be investigated. It would be beneficial to include semantically opposite items in this 

research, as more items would minimise the probability of random data being valid and 

reliable by coincidence. The relationship between the size of the training sample, the number 

38 




of independent variables and the prediction success of the neural nework should be 

investigated. This should include an attempt to determine the optimal number of cases that 

would prevent overtraining, yet provide the neural nework with enough information to make 

accurate predictions. 

In addition, future research should observe whether it is more effective to include items for 

several constructs into one neural nework for use as a validity and reliability score, or to use 

mUltiple neural neworks for each construct for creating an aggregated validity and reliability 

score. It is proposed that the relationship beween the validity, reliability and pseudo­

probabilities be investigated. If a linear relationship is found, the pseudo-probabilities could 

potentially be used to indicate a severity score for protocol validity. Norms, benchmarks and 

cut-off points should also be considered for the pseudo-probabilities. These norms, 

benchmarks and cut-off points can then be used by facilitators to decide about the validity 

and reliability of cases in different situations. 
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APPLYING THE RASCH MODEL TO ASSESS PROTOCOL VALIDITY 

ABSTRACT 

The aim of this study was to evaluate Rasch model fit statistics for use as protocol 

validity indicators and to compare these fit statistics to a newly developed neural network 

technique. Literature suggests that reasons for unacceptable fit statistics are in with 

the threats to protocol validity. Rasch model fit statistics were calculated for a study 

population of 5548 participants who completed a wellness survey in several industries in 

South Africa. Fit statistics were also calculated for random generated data with a uniform 

distribution. In both the study population and the random data, cases with higher outfit 

statistics showed problems with validity and reliability. When compared to the neural 

network technique, the fit statistics suggested that the neural network was more effective 

in classifying non-random cases than it was in classifying random cases. Reasons for this 

are given and discussed in this article. Overall, the fit statistics proved to be effective 

indicators of protocol invalidity (rather than validity) provided that some additional 

measures be imposed. 

OPSOMMING 

doe1 van hierdie studie was om te evalueer of Rasch-model passtatistiek geskik is vir 

gebruik as protokolgeldigheidsaanduiders en om hierdie passtatistiek met In 

nuutontwikkelde neurale netwerktegniek te vergelyk. Volgens die literatuur is die redes 

vir onaanvaarbare geskiktheidstatistiek in lyn met bedreigings vir protokol-geldigheid. 

Rasch-model geskiktheidstatistiek is bereken vir In studiepopulasie van 5548 deelnemers 

wat In we1weesondersoek by verskeie industriee in Suid-Afrika voltooi het. Passtatistiek 

is ook bereken vir lukraak gegenereerde data met In eenvonnige verspreiding. In beide 

studiepopulasie en die lukraak data, het gevalle met hoer uitsetstatistiek probleme getoon 

met geldigheid en betroubaarheid. Wanneer dit met die neurale netwerktegniek vergelyk 

word, het passtatistiek aangedui dat die neurale netwerk meer doeltreffend was om nie­

lukraak gevalle te klassifiseer as wat dit was met die klassifikasie van lukraak gevalle. 

Redes is hiervoor gegee en bespreek in hierdie artikel. Oorkoepelend beskou, het die 

passtatistiek aangedui dat dit meer doeltreffende aanduiders was van 

protokolongeldigheid (eerder as ge1digheid) indien sekere addisionele maatreels ingestel 

IS. 

Keywords: Protocol validity, Rasch model, fit statistics, neural networks 
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Self-report questionnaires are often used in research in organisational behaviour. Research 

based on self-report questionnaires is used by managers to understand the strengths and 

weaknesses within the organisation before implementing expensive organisational 

development interventions (Rothmann & Cooper, 2008). The South African Employee Health 

and Wellness Survey (SAEHWS) is a self-report questionnaire used for well-being audits in 

South Africa (Rothmann & Rothmann, 2006). The SAEHWS has been standardised for use in 

South Africa and has been proven to be internally consistent, valid and equivalent for 

different language, race and gender groups (Rothmann, 2008; Rothmann & Rothmann, 2006). 

When important decisions are made based upon the outcomes of an instrument, it is crucial to 

have confidence in the validity and reliability of the measurement. However, a valid and 

reliable instrument does not guarantee the reliability and validity of measurement in every 

instance (Ben-Porath, 2003). Reliability and validity tests are usually conducted on group 

level, and even if these tests are conducted before feedback is provided, reliability and 

validity are still not guaranteed for each individual. Protocol validity is thus concerned with 

the validity and reliability of a single case. 

Protocol validity can be compromised by several threats. These threats fall into two broad 

categories (Ben-Porath, 2003), namely non-content-based invalid responding and content­

based invalid responding. These categories reflect the role of item content when invalid 

response was evident. Non-content-based invalid responding refers to threats where 

participants responded without reading, processing or comprehending the items. This has 

obvious consequences for the protocol validity of the measurement, because the individual 

did not provide an answer related to the item or construct. Content-based invalid responding 

occurs when a respondent reads and comprehends the item content, but tries to create a 

misleading impression by distorting the answers (intentionally or unintentionally).. 

Non-content-based invalid responding is categorised into three specific behaviours, namely 

non-responding, random responding and fixed responding (Ben-Porath, 2003). These 

behaviours are all related to the same threat, i.e. that participants did not evaluate or 

understand the content of items before responding. Non-responding occurs where a 

participant fails to respond to a certain number of items. Random responding is when an 

individual provides a random answer without considering the content of the item. Fixed 

responding occurs when a participant adopts a systematic response approach by providing the 
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same answer to mUltiple items, following some kind of pattern. Content-based invalid 

responding is characterised by two main behaviours, namely over-reporting and under­

reporting (Ben-Porath, 2003). These behaviours are defined by an individual providing an 

answer that is more (over-reporting) or less (under-reporting) severe than the actual situation. 

This might occur intentionally or unintentionally. 

Rathmann (in press) investigated the use of a neural network to detect the random response 

threat. The neural network was trained with large random and non-random datasets and was 

then used to classify posterior cases as being random or non-random. The neural network 

classified 14,15% of individuals as random responders during cross-validation. The posterior 

classifications (random and non-random) were then SUbjected to factor analysis, internal 

consistency and structural equivalence tests. These tests showed that the neural network was 

accurate in its prediction as the non-random data proved to be valid, reliable and structurally 

equivalent to other non-random cases (on a group level), while the random data had problems 

with reliability, validity and structural equivalence. It is, however, still uncertain whether 

there were individual misclassified cases, because only group level statistical techniques were 

used. 

Another statistical technique that can be useful for reliability and validity in individual cases 

is the Rasch model (Rasch, 1960), which is widely used for the calibration of measuring 

instruments in the human sciences (Bond & Fox, 2007). The Rasch model gains information 

about items measuring a construct based on the responses of a calibration sample of 

individuals. It then derives an estimate for the latent trait location of each individual and 

provides fit statistics for each item and each person. These fit statistics provide the researcher 

with more information on how well the items and individuals fit the Rasch modeL 

Wben an individual does not fit the Rasch model, it means that the individual did not respond 

to the items as would be expected, given the difficulties of the items and the individual's 

standing on the trait. Linacre (2002), Smith (1996) and Bond and Fox (2007) provide reasons 

for unacceptable person-fit statistics. These reasons are in line with the threats to protocol 

validity, building a case that fit statistics could be used as protocol validity indicators. If the 

responses to the items are not as would be expected, one could expect that one of the threats 

of protocol validity was evident. Although the fit statistics would not necessarily be able to 

determine the possible threat, they could provide evidence of a threat. Given that the Rasch 
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model provides information for individual cases, it would also be valuable to investigate the 

fit statistics for the Rothmann (in press) neural network to further investigate its prediction 

success. 

The aim of this study was to evaluate the Rasch fit statistics for use as protocol validity 

indicators in the SAEHW"S, and to compare these fit statistics to the neural network 

technique. 

The Rasch model 

In psychometrics, there are essentially two large bodies of theory to guide instrument 

development, namely Classical Test Theory (CTT) and Item Response Theory (IRT; 

Embretson & Reise, 2000). CTT was initially the leading theory for the development and 

analysis of standardised instruments. IRT has now replaced CTT to a large extent and has 

become the major theoretical framework in instrument development (Hambleton & Rogers, 

1990). 

CTT is based on the assumption that an individual has a true score and an observed score 

(Allen & Yen, 2002). The difference between the true score and the observed score is due to 

measurement error. CTT principles are evident in measurement methods ranging from 

reliability assessment and confirmatory factor analysis to scale development procedures. An 

advantage of CTT is that it relies on few assumptions; it is also relatively easy to interpret 

(Allen & Yen, 2002). The main criticism of crr is that the observed score relies on the 

content of the test, meaning that individuals with similar trait levels may score differently 

depending on the item bias (Fan, 1998). 

IRT was originally developed to overcome the problems associated with CTT (Hambleton & 

Rogers, 1990). The basic assumption of IRT is that the latent trait (the characteristic 

underlying the total scores) is independent of the content of the instrument. This implies that 

different items could be used to estimate the trait level for different individuals and the latent 

trait score would still be comparable. According to IRT, an individual with a high level of the 

trait being measured should have a high probability of endorsing the items (Fan, 1998). There 

are different IRT models with varying complexity. These models include the one-, two- and 

three-parameter IRT models. 
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The Rasch model is a unidimensional, latent trait model developed by the Danish 

mathematician, Georg Rasch (Rasch, 1960). It was originally developed, in its simplest form, 

for dichotomous data in the educational setting to calibrate tests in order to determine item 

difficulty and to derive person ability (Bond & Fox, 2007). Although some see the Rasch 

model as a special case of IRT, others (see Shaw, 1991) argue that the Rasch model is a 

practically and theoretically unique archetype. Nevertheless, the Rasch model is related to the 

paradigm ofIRT (Andrich, 1989). 

The Rasch model emphasises the basic criterion of invariance, which is a crucial feature of 

fundamental measurement (Bond & Fox, 2007). Invariance means that an instrument is 

required to work in the same way for all individuals. This implies invariant functioning 

across any group of respondents. For example, when comparing heights of men and women, 

it is assumed that the measuring tape works the same way for both genders. 

The Rasch model states that the probability of a person to correctly answer an item is a 

logistic function of the person's ability minus the item difficulty (Bond & Fox, 2007). Each 

item is weighted according to how it is rated in the sample. Person ability is then derived 

from the answers to the items given the properties of the items. It is important to note that 

person ability refers to the level of the construct being measured (e.g. exhaustion). In the 

context of perception or attitude measurement, item difficulty refers to the intensity of the 

item rather than the difficulty of the item. Thus, certain items measure the variable (e.g. 

exhaustion) more intensely than others. 

The model used in this article is a special case of the Rasch model, called the rating scale 

model (Andrich, 1978). The rating scale model allows for the analysis of polytomous or 

Likert scale data (Smith, 1996). The basic functioning of the Rasch model still applies to this 

model, except that the different categories on the scale are also weighted and taken into 

account (Bond & Fox, 2007). In this model, a person with the same ability (or level of the 

construct) will respond differently for items of different difficulties (intensities). These 

difficulties are weighted by extracting the thresholds between categories on the Likert scale. 

The threshold is concerned with the construct intensity required to rate a category higher on 

the scale (Shaw,Wright, & Linacre, 1992). The probability of a person to select a certain 

point on a scale is thus a logistic function of the person ability minus the item difficulty, plus 
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the difficulty of the threshold between the current scale category and the next category (Bond 

& Fox, 2007). 

The required structure of response is a probabilistic Guttman pattern, which implies that for 

the same person ability, the probability to endorse an easy item has to be higher than the 

probability to endorse a more difficult item, and vice versa (Bond & Fox, 2007). Wben 

comparing persons with different abilities, a person with a higher ability is expected to 

endorse all items endorsed by a person with lower ability and additionally one or more 

difficult items. Thus, only certain response patterns are in accordance with the Guttman 

pattern. Since the responses are not necessarily required to be deterministic, but rather 

probabilistic, there is room for random variation. Bond and Fox (2007) explain that all 

response strings are possible; some are just less probable than others. 

There are two popular chi-square-based fit statistics to determine how probable a person's 

responses are, namely infit and outfit. These statistics are reported as mean-squares in the 

form of chi-square statistics divided by their degrees of freedom (Linacre, 2002). The outfit 

statistic is an outlier-sensitive fit statistic that is more sensitive to responses where the item 

difficulty and person ability differs drastically (Lin acre, 2002). Outfit is based on the 

conventional sum of squared standardised residuals. Meaning that, for each person, the 

standardised residuals (observed minus expected response) for the items are squared, summed 

and divided by the number of items (Bond & Fox, 2007). The infit statistic is an information 

weighted (inlier-sensitive) fit statistic that is more sensitive to responses where item difficulty 

and person ability are matched (Linacre, 2002). Infit is calculated like the outfit statistic, 

except that each squared standardised residual is first weighted by its variance before it is 

summed. The total is then divided by the sum of variances (Bond & Fox, 2007). 

Linacre (2002) explains that outfit statistics are more likely to indicate lucky guesses and 

careless mistakes, while in fit statistics report smaller differences in the comprehension of the 

items. Infit statistics are usually used during scale construction to identify problems with the 

measurement items. It is for this reason that infit was used to assess the fit of the Exhaustion 

items. Outfit, on the other hand, is used to identify problematic cases to discard during scale 

construction, and will thus be used as an indicator of person-fit for the purposes of protocol 

validity. 
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Table 1 contains recommendations from '¥right and Linacre (1994) for the interpretation of 

parameter-level mean-square fit statistics. These recommendations follow informal 

simulation studies and experience in analysing a number of datasets. 

Table 1 

Interpretation o/Parameter-level Mean-square Statistics 

Mean Implication for Measurement 

square 

> 2,00 Distorts or degrades the measurement system. 


1,50 2,00 Unproductive for construction of measurement, but not degrading. 


0,50 - 1,50 Productive for measurement. 


< 0,50 productive for measurement, but not degrading. May produce 


misleadingly high reliability coefficients. 

Mean-square values greater than 2,00 indicate distortion in the measurement, possibly posing 

problems for protocol validity. Smith (1996) provides reasons for these high mean-square 

values. Firstly, respondents could have avoided engaging in the rating scale, creating a 

problematic relationship between the responses and the construct. Secondly, the items might 

have been misunderstood. Finally, respondents might have responded randomly to the items. 

These reasons help build the case as to why fit statistics could be used as protocol validity 

indicators. 

Values between 1,50 and 2,00 are unproductive for measurement, but do not imply a corrupt 

case. This category defines a grey area in the fit statistics. Some of the cases in this category 

might still be valid, while others, depending on the measurement structure, might be due to 

problematic responses (see Smith, 1996). Mean-square values between 0,50 and 1,50 imply 

that the case fits the Rasch model optimally, and would thus also indicate good protocol 

validity. 

Values below 0,50 indicate overfitting, meaning that the responses are not corrupted, but too 

predictable. Although they are too predictable, producing misleadingly high reliability 

coefficients, they still agree with the model (Smith, 1996). This category is more applicable 

to the creation of the measurement system, as it provides information that categories of 
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the rating scale are not being used with enough variance. For the purposes of this article, the 

overfitting cases were regarded as valid. 

METHOD 

Research design 

A survey design was used to reach the specific research objectives (Huysamen, 2001). In this 

type of research, data is collected by posing questions and recording people's responses. The 

data will be gathered from a survey data archive (see Whitley, 2002). The survey archive 

contains responses to survey questions in the well-being audits and demographic data 

concerning the respondents. This data is kept on computer databases. Survey archives are 

useful because they have been collected for research purposes; consequently, great care was 

taken to ensure the reliability and validity of the data. 

Participants 

To make the results in this article comparable with the results from Rothmann (in press), the 

same study population was used. The study population consisted of 11 097 participants from 

several industries in South Africa, including financial, engineering, mining, human resources 

and manufacturing. In Rathmann (in press), the large sample (n=11097) was divided into two 

smaller samples by means of random sampling. Sample 1 (n=5549) would be used to build 

models, and sample 2 (n=5548) for cross-validation. In the present study, the cross-validation 

sample 2 was used to calculate the fit statistics and compare them to the neural network 

developed by Rathmann (in press). Table 2 shows the characteristics of the samples. The 

mean age of the participants was 40,81 (SD=10,02). There were 3394 (61,18%) male 

respondents. Looking at racial groups, 25,34% of the respondents were black and 39,26% 

white. In terms of qualification, the sample included 2 729 (49,19%) respondents with grade 

12 or lower. 
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Table 2 
Characteristics afthe Participants 

Item 

Gender 

Race 

Qualification 

Category 

Male 

Female 

Black 

White 

Coloured 

Indian 

Other 

Missing 

Up to grade 12 

Certificate 

Diploma or degree 

Postgraduate qualification 

Missing 

Sample 


(n = 5548) 


Frequency Percentage 


3394 61,18 

2154 38,83 

1406 25,34 

2178 39,26 

230 4,15 

117 2,11 

6 0,11 

1611 29,00 

2729 49,19 

695 12,53 

838 15,10 

622 11,21 

664 11,97 

In addition, Rothmann (in press) generated 5548 (equal to sample 2) random cases from a 

uniform distribution to compare results with. This sample was referred to as the random 

sample, while the study population was referred to as the non-random sample. 

Measuring instrument 

One subscale of the South African Employee Health and Wellness Survey (SAEmVS), 

namely Exhaustion, was used for the purposes of this study. The SAEHWS is a self-report 

instrument based on the dual-process model of work-related well-being (Rothmann & 

Rothmann, 2006). The SAEHWS is based on the assumption that employees' perceptions and 

experiences represent important information regarding the wellness climate in the 

organisation. The SAEHWS instrument measures an employee's health and wellness status, 

relates the data to the organisational climate and compares the results to the South African 

norm (Rothmann & Rothmann, 2006).· The SAEHWS measures organisational climate, 

wellness, health and lifestyle, organisational commitment, and personal variables. Exhaustion 

was measured with 5 items (like "1 feel tired before 1 arrive at work") on a 7 -point scale 
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varying from 0 (never) to 6 (always). Exploratory and confirmatory analyses were used to 

assess the factor structures of all the components of the measurement model of the SAEHWS 

(Rothmann & Rothmann, 2006). Furthermore, it was found that the factor structures of the 

measuring instruments are equivalent for different ethnic groups and organisations. The 

internal consistencies of all the subscales of the SAEHWS are acceptable (a> 0,70). 

Statistical analyses 

Statistical analyses were conducted with SPSS 16.0 (SPSS, 2008) and Winsteps 3.68 

(Linacre, 2009). Descriptive statistics (e.g. means and standard deviations) were used. 

Pearson's product-moment correlation (Tabachnick & Fidell, 2001) was used to investigate 

the relationship between variables. Exploratory factor analyses, specifically principal 

component analyses (Kline, 1994), were conducted to determine the validity of the construct 

that was measured in this study_ Coefficient alpha (Cronbach, 1951) was used to assess 

reliability, as it contains important information regarding the proportion of variance of the 

items of a scale in terms of the total variance explained by the particular scale. 

In addition, the following statistics were used in conjunction with the Rasch model (Bond & 

Fox, 2007). First, Rasch reliability was used to provide an estimate of the reproducibility of 

the measures. Rasch reliability is a more conservative estimate the ratio of real person 

variance than Cronbach's a (Linacre, 2002). Second, item measures (indicated by 6) were 

used to assess the severity of the item's measurement of the latent construct Last, infit 

statistics were used to assess how accurately or predictably the items fit the Rasch model and 

outfit statistics were used to assess person-fit for the purposes ofprotocol validity. 

The Multilayer Perceptron (MLP) neural network was used for predictive modelling. The 

MLP is a feed-forward neural network that can be trained to store knowledge, based on the 

relationship between the dependent and independent variables, and to predict values for 

posterior cases. Neural networks were used for the following reasons: 

• 	 Neural networks can approximate a linear or non-linear relationship, depending on the 

relationship in the data (Haykin, 1998). 

• 	 A model does not have to be hypothesised in advance (Haykin, 1998). 

• 	 Minimal demands are made on assumptions (SPSS, 2008). 
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Cross-validation (Tabachnick & Fidell, 2001) was used to ensure repeatability by testing the 

model against an unknown sample. If the model is based on one sample and tested against an 

unknown sample of cases, the efficiency of the model can be determined for classifying 

posterior unknown cases. 

Tucker's coefficient of congruence phi (if;) was used to compute structural equivalence 

between factors for different samples (Tucker, 1951). Structural equivalence can be used to 

prove differences in factor structures for non-random and random predicted cases, confirming 

the validity ofthe neural network prediction. Tucker's if; is defined by the following formula: 

if; = 2: x iYi 

J2: xt 2:Yt 

In this formula, Xi and Yi represent the respective component loadings. Tucker's if; ranges 

from -1,00 via 0 to +1,00 (perfect similarity). Values above 0,95 can be taken to indicate 

factorial similarities, while values below 0,85 show unavoidable incongruencies (Van de 

Vijver & Leung, 1997). 

The better-than-chance effect size index I was used to determine the success of the neural 

network (Huberty & Lowman, 2000). This index adjusts the observed hit rate of a category 

for incidental correct classification of cases. In other words, it indicates if the classification 

was correct by chance or not. The better-than-chance index is calculated by the following 

formula: 

I 

In this formula, Ho represents the observed hit rate (correct classifications divided by total 

cases), while He represents the chance rate, which is the proportional prior probabilities of 

classification. Huberty and Lowman (2000) provides guidelines for the interpretation of 1. 

Values below 0,10 could be seen as a small effect, while values above 0,35 represent a large 

effect. 
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Research procedure 

First, the Exhaustion items on both datasets were tested against the Rasch model with the 

Winsteps program. The item and person m.easures and the fit statistics were then evaluated to 

investigate whether there were problems with the Exhaustion dimension. Ifproblems with the 

fit statistics were evident for the Exhaustion items, the person-fit indicators would be less 

reliable (Bond & Fox, 2007), which would be problematic for the aim of this study. The 

person measures and fit statistics were then exported from Winsteps for further statistical 

analyses. 

Subsequently, the cross-validation data in the sample was categorised according to the person 

outfit mean-square statistics. The categorisation was based on the criteria for fit described in 

Wright and Linacre (1994). Outfit mean-square statistics below 0,50 defined the overfitting 

category, 0,50 to 1,50 the good fit category, 1,50 to 2,00 the slightly underfitting category, 

and greater than 2,00 the underfitting category. Descriptive statistics, reliability and validity 

were then assessed for each of the categories. Structural equivalence was computed for each 

of the categories with every other category. 

The random sample was also categorised according to the person outfit mean-square statistics 

for comparison with the non-random data. The same categorisation of outfit statistics was 

followed. Descriptive statistics, reliability and validity were assessed for each of the 

categories and structural equivalence tests were conducted on every category with its non­

random counterpart. 

Lastly, the outfit statistics were compared with the outcomes of the Rathmann (in press) 

neural netvvork. The comparison was done by assessing outfit descriptive statistics for the 

neural netvvork predicted categories and a cross tabulation of the outfit categories versus the 

neural network categories. Furthermore, internal consistency, a principal component analysis 

and structural equivalence were computed for each of the outfit categories within each neural 

network prediction to get a clearer picture of the nature of the cases the neural network 

misclassified. The better-than-chance index 1 was also calculated to determine the neural 

network's prediction success in spite ofmisclassified outfit statistics. 
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RESULTS 


Calculating Rasch model fit statistics 

The Rasch model fit statistics were computed on the 11 097 cases with the Winsteps program 

(Linacre, 2009). The Rasch item reliability was 1,00, providing evidence that the items would 

measure similarly if measured again. Table 3 shows the item measure, infit and outfit statistics 

for each item. 

Table 3 

Rasch Model Item Fit Statistics for Exhaustion 

Item {) Infit Mean Square Outfit Mean Square 

Item 1 -0,24 1,00 0,99 

Item 2 -0,16 0,94 0,93 

Item 3 0,79 1,26 1,22 

Item 4 -0,45 0,99 0,98 

Item 5 0,06 0,82 0,81 

It is evident that Item 3 is the most sever~ measurement of Exhaustion (6 = 0,79) and Item 4 

the least severe (6 = -0,45). The criterion for acceptable item fit was chosen as an infit value 

of below 1,30 and above 0,75 (Bond & Fox, 2007). All items fulfilled the infit criteria, 

indicating that the items contribute to a single underlying construct. Even the oufit values, 

which tend to be more volatile due to their sensitivity for outliers, match these criteria. 

In terms of person statistics, the Rasch person reliability is 0,84. The mean person measure 

(6) for exhaustion levels amounts to -0,31 (SD = 1,14). The root mean square error (RMSE) 

of the model is 0,45. The mean of both the infit and outfit person statistics are 0,99 

(SD=1,12). This provides sufficient evidence about the fit and applicability of the Rasch 

model for the Exhaustion construct. 

57 




Fit statistics, traditional validity and reliability on non-random data 

Table 4 contains descriptive statistics, reliability and validity measures for different outfit 

mean-square categories for the cross-validation non-random data. The statistics for each of 

the categories are used to investigate the validity and reliability for different levels of fit 

according to the Rasch outfit statistics. 

Table 4 

Descriptive statistics, Cronbach a and Factor Analysis for Dijferent Outfit Categories on 

Non-random data 

Outfit mean- N % Mean SD a Components Component 
extracted variance 

<0,50 0,94 1 81,802436 43,90 0,26 0,13 

0,50-1,50 0,86 1 64,082032 36,63 0,88 0,28 

1,50 - 2,00 0,73 1 48,43380 6,86 1,70 0,15 

>2,00 0,30 2 30,47700 12,61 3,41 1,40 

The largest number of cases (43,90%) has an outfit mean-square below 0,50, with a mean of 

0,26 (SD = 0, l3). When introduced in a principal component analysis, one component is 

extracted (Eigenvalues > 1), explaining 81,80% of the variance. These cases produce a 

Cronbach a of 0,94. A total of2 032 cases (36,63%) has an outfit mean-square between 0,50 

and 1,50, with a mean of 0,88 (SD 0,28) and a Cronbach a of 0,86, also extracting one 

component explaining 64,08% of the variance. The slightly underfitting category (outfit 

mean-square between 1,50 and 2,00) consists of only 6,86% of the cases with an outfit mean 

of 1,70 (SD = 0,15). Interestingly, these cases still yield one component that explains 48,43% 

of the variance, and contribute to an alpha of 0,73. 12,61% of the cases had an outfit mean­

square greater than 2,00, with a mean of 3,41 (SD=1,40). These cases yield two components, 

with the first component only explaining 30,47% of the variance. These cases show low 

internal consistency (a = 0,30). 

Table 5 contains the structural equivalence (Tucker's ¢) between the outfit categories. It is 

evident that the component loadings are all highly equivalent (¢ > 0,95), except for the outfit 

mean-square statistics above 2,00. This category shows unavoidable incongruencies with the 
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other categories (¢ <0,85). Because this category yields a two-factor model, Tucker's ¢ was 

calculated on the first factor. 

Table 5 

Tucker's ¢ ofthe Outfit Mean-square Categories 

Infit mean-square 1 2 3 

1. < 0,50 1,00 

2. 0,50 - 1,50 1,00 1,00 

3. 1,50 2,00 0,99 1,00 1,00 

4. > 2,00 0,72 0,73 0,75 

Fit statistics, traditional validity and reliability on random data 

Table 6 contains descriptive statistics, reliability and validity measures for different outfit 

mean-square categories for the cross-validation random data. 

Table 6 

Descriptive Statistics, Cronbach Alpha and Factor Analysis for Different Outfit Categories 

on Random Data 

Outfit mean- n % Mean SD a Components Component 
extracted variance 

< 0,50 116 2,09 0,34 0,13 0,95 1 82,14 

0,50 1,50 919 16,56 1,05 0,28 0,78 1 53,69 

1,50 - 2,00 599 10,80 1,76 0,15 0,44 1 31,23 

> 2,00 3914 70,55 3,82 1,36 -0,57 4 22,33 

Most of the random cases (70,55%) have an outfit value greater than 2,00, with a mean of 

3,82 (SD = 1,36). There is indeed low internal consistency (a < 0,70) and, as would be 

expected from random data, four components are extracted from a principal component 

analysis. The first component explains 22,33% of the variance. A total of 599 (10,80%) cases 

have outfit values between 1,50 and 2,00, with a mean of 1,76 (SD 0,15). In contrast with 

the non-random data, these cases also lack internal consistency (a < 0,70), but still extract 

one component that explains 31,23 % of the variance. A total of 919 (16,56%) of the cases fit 
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satisfactorily with an outfit of between 0,50 and 1,50 (mean = 1,05; SD = 0,28). These cases 

produce internally consistent responses and yield one component explaining 53,69% of the 

variance in a principal component analysis. Only 116 (2,09%) cases have an outfit mean 

square below 0,50, with a mean of 0,34 (SD = 0,13). These cases have high internal 

consistency (0: 0,95) and yield one component that explains 82,14% of the variance. 

Table 7 shows the structural equivalence between the principal component analyses for the 

non-random (Table 4) and the random data (Table 6). It is evident that the only category that 

is not equivalent for both the non-random and random data is where outfit is greater than 2,00 

(¢ <0,95). 

Table 7 

Structural Equivalence betvveen Non-random and Random Outfit Categories 

Outfit mean-square Tucker's ¢ 

< 0,50 1,00 
0,50 - 1,50 1,00 
1,50 2,00 0,97 
> 2,00 -0,15 

Rasch model fit statistics and neural network comparison 

Table 8 contains the descriptive statistics of the outfit mean-square statistics for the different 

classifications of the Rathmann (in press) neural network. Outfit mean-squares range from 

0,02 to 7,61, with a mean of 0,71 (SD = 0,74) for the non-random classified cases. The 

random classified cases have a mean outfit mean-square of 2,64 (SD 1,59) ranging from 

0,36 to 9,90. 

Table 8 
Outfit Descriptive Statistics ofthe Different Neural Netvvork Classifications 

Neural network n Outfit Outfit Outfit Outfit 
classification Minimum Maximum Mean SD 

Non-random 4763 0,02 7,61 0,71 0,74 

Random 785 0,36 9,90 2,64 1,59 
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Table 9 shows the cross tabulation of the neural network predicted categories against the 

outfit categories. Only 5,31 % of the non-random predicted cases have an outfit mean-square 

statistic above 2,00, while 55,92% of the random predicted cases have an outfit mean-square 

statistic above 2,00. Surprisingly, 23,31 % of the random cases indicate good fit. 

Table 9 

Cross Tabulation ofthe Neural Network Prediction versus the Outfit Categories 

Neural network prediction Rasch model Outfit statistics 

< 0,50 0,50 - 1,50 1,50 - 2,00 > 2,00 

Freq % Freq % Freq % Freq % 

Non-random 2440 51,23 1852 38,88 218 4,58 253 5,31 

Random 3 0,38 183 23,31 160 20,38 439 55,92 

To determine the success of the neural network spite of the misclassifications (in Table 9), 

the better-than-chance index was calculated. Outfit values greater than 2,00 were seen as 

misc1assification in the non-random category, and values smaller than 2,00 defined 

misc1assification in the random category. If the prior probabilities are set to the probability of 

an outfit value being greater or smaller than 2,00 in the total non-random sample (see Table 

4), the total chance-hit rate is 0,78. The observed hit rate is 0,89. This provides us with a 

better-than-chance index ofO,51, which still shows a large effect (I 2::0,35). 

Table 10 contains the internal consistencies, principal component analyses and structural 

equivalence of the outfit categories for the neural network predictions. The non-random 

predicted cases show acceptable internal consistencies and component structures for the outfit 

categories below 1,50. The random predicted cases show problematic component structures 

and low internal consistency for the cases with outfit values greater than 2,00. 

The non-random predicted cases with higher outfit values and the random cases with lower 

outfit values are of interest. The cases with outfit values between 1,50 and 2,00 prove to be 

internally consistent for the non-random predicted cases (a=0,76), but not for the random 

predicted cases (a=0,54). Their component structures, however, are still equivalent to cases 

with good fit (¢=0,99) for both predictions although they extract a second component in a 

principal component analysis. 
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It is further evident that the non-random predicted cases with outfit values greater that 2,00 

have problems with internal consistency (a=0,60) and structural equivalence (¢ 0,79). The 

random predicted cases that present good outfit statistics between 0,50 and 1,50, show 

acceptable internal consistency (a=0,78). Interestingly, the structural equivalence is slightly 

lower (¢=0,97) than would be expected, given that the equivalence was tested for other cases 

within this same category, but is still acceptable. 

Table 10 

Internal Consistency, Factor Analysis and Strnctural Equivalencefor the Neural network 

Prediction and Outfit Categories Cross Tabulation 

Prediction Outfit a Components* First cf>+ 
Component 

Variance 

Non-random 	 < 0,50 0,94 1 81,80 1,00 
0,50 - 1,50 0,87 1 65,07 1,00 

1,50 - 2,00 0,76 2 51,60 0,99 

> 2,00 0,60 2 44,12 0,79 
Random <0,50 NIA NIA NIA NIA 

0,50 - 1,50 0,78 1 53,51 0,97 

1,50 2,00 0,54 2 36,07 0,99 

> 2,00 -0,05 3 25,88 0,08 
*Number of components with Eigenvalues> 1 

+ 	Tucker's ¢ calculated on the first component against the 0,50 - 1,50 category component for the entire 

sample. 

DISCUSSION 

The aim of this study was to evaluate the Rasch fit statistics for use as protocol validity 

indicators in the SAEHWS and to compare these fit statistics to the Rothmann (in press) 

neural network technique. It was evident from the literature that the reasons provided for 

misfitting outfit mean square statistics are related to the threats to protocol validity (Smith, 

1996; Linacre, 2002). Furthermore, 87,39% of the non-random data showed outfit values 

under 2,00 while 70,55% of the random data showed outfit values above 2,00. It also seemed 
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that outfit values above 2,00 had problems with internal consistency and provided dissimilar 

structures in principal component analyses. 

In comparison to the Rothmann (in press) neural network, 94,69% of the predicted non­

random cases proved outfit values less than 2,00. The random prediction showed less success, 

with only 55,92% of the cases having outfit values larger than 2,00 and 23,31 % showing 

good outfit statistics between 0,50 and 1,50. 

When looking at the cases with outfit statistics below 0,50 in both datasets, extremely high 

internal consistency is evident with a=0,94 for non-random cases and a=0,95 for random 

cases. Outfit statistics below 0,50 could be seen as overfitting cases, meaning that they are 

too predictable according to the Rash model (Lin acre, 2002). The high internal consistencies 

are confirmed by Bond and Fox (2007) where they state that the statistical implications of 

overfitting are deflated standard errors and inflated reliabilities. However, Bond and Fox 

(2007) point out that there are no practical implications of overfitting. Smith (1996) describes 

that overfitting cases could be due to the underuse of categories on the scale. This has a 

practical implication for protocol validity, because a symptom of fixed responding is the 

underuse of categories on the scale. Fortunately, fixed responding could easily be detected by 

an algorithm that finds patterns in the data. For these reasons, it could only be assumed that 

the overfitting cases are valid when controlling for the fixed response threat. 

The cases with outfit statistics between 0,50 and 1,50 are described as good fitting cases 

(Linacre, 2002). Only 36,63% of the non-random cases matched these criteria, providing 

some evidence that the Exhaustion scale could be optimised, although the item fit statistics 

are sufficient. On the downside, 16,56% of the random cases also matched these criteria. This 

provides evidence that the random data could have good fit statistics due to chance. It is 

important to take note when using the outfit statistics as protocol validity indicators that good 

fit does not completely eliminate threats to protocol validity. Although certain threats are 

evident, it is possible that the response pattern could still show good fit. A potential problem 

with the outfit statistics in this category is fixed responding at the extreme points of the scale 

- in other words, cases where all the items have been answered with either zeros or sixes. 

These cases are seen as minimum or maximum item measures by the Rasch model algorithm, 

and are awarded an outfit mean square of 1,00. This problem could be minimised by wording 
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items in the opposite direction (semantic opposites; see Goldberg & Kilkowski, 1985), or 

again by controlling for fixed response with a pattern detection algorithm. 

Cases with outfit values between 1,50 and 2,00 were described as unproductive but not 

degrading (Linacre, 2002). This contrast is confirmed by the results. The non-random sample 

for these outfit statistics proved internal consistency (0:=0,73) while the random sample 

showed problems (0:=0,44). Although the internal consistencies differed between groups, the 

components extracted in a principal component analysis were equivalent for the non-random 

and random data (¢ ~0,95). From these findings, it is evident that outfit values between 1,50 

and 2,00 should be handled with caution. Moderate threats should be expected although the 

case could still be valid. Protocol validity threats to this outfit category might include 

moderate random responding, mildly inconsistent over- or under-reporting or any other threat 

that causes moderate inconsistency in response. 

Analyses of the cases with outfit values above 2,00 provide a good indication of problematic 

responses. Linacre (2002) describes these cases as distortion to the measurement system. In 

both the non-random and random data samples, unstable factor structures and low internal 

consistencies were evident. In addition, there was no structural equivalence of components 

extracted in the principal component analyses. When cases show outfit values greater than 

2,00, threats to protocol validity should be expected. Bond and Fox (2007) describe these 

cases as too unpredictable, and state that conclusions cannot be drawn about the level of 

measurement in these specific cases. There is, however, no definite indication of the specific 

threats. Threats might include severe random responding, over- or under-reporting or any 

other threat that causes severe inconsistency in response. 

One of the limitations of the Rothmann (in press) study was the uncertainty whether certain 

classified non-random cases were in fact valid and reliable. The results in this article show 

that only 5,31 % of the non-random classified cases were problematic according to the outfit 

statistics. This serves as evidence that the non-random classification of the neural network 

performed well, given that it was blindly trained with two datasets, one with responses from 

individuals and the other with computer-generated random data. 

The random prediction was somewhat less accurate, vvith only 55,92% of the cases that had 

outfit values greater than 2,00. In fact, 23,31% of the random cases had good fit statistics 
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between 0,50 and 1,50. The validity and reliability tests on these misclassification categories 

provided interesting results. It was evident that although the random predicted cases with 

outfit values between 0,50 and 1,50 were internally consistent, they showed slight (but still 

acceptable) invariance with non-random cases from that category. The non-random and 

random predicted cases with outfit values between 1,50 and 2,00 extracted two components, 

of which the first component was equivalent to cases with outfit values of 0,50 to 1,50. The 

internal consistency was higher for the non-random predicted cases than for the random 

predicted cases. This evidence shows that even though the outfit values were similar, there 

were still some minor differences between the non-random and random data. 

Rothmann (in press) calculated the better-than-chance index of the neural network after 

training. The index was 0,72, which provided evidence that the neural network performed 

well in classification (J 2:0,35). The better-than-chance index was calculated again in this 

article to investigate the performance of the neural network given the misclassifications. 

Although the index was somewhat lower (1=0,51) given the misclassifications, the neural 

network still proved a large effect size (J 2:0,35), providing evidence that the neural network 

is a good predictor of cases with misfitting outfit statistics. 

One reason for the misclassified random cases might be that the neural network was over­

trained (see SPSS, 2008), implying that too much noise was inferred during training. This 

problem could have been solved by increasing the number of cases in the testing sample (see 

Rothmann, in press). Another reason might be that the random sample used to train the neural 

network was either insufficient or contradicting. The neural network might have performed 

better if trained with a sample containing cases with outfit values larger than 2. Of course, 

this defeats the purpose of using a neural network as a protocol validity indicator if outfit 

statistics can be calculated. Given the scientific background of the Rasch model (see Bond & 

Fox, 2007), the literature behind the fit statistics (Smith, 1996; Lin acre, 2002) and the 

evidence in this study, it can be concluded that the fit statistics provide a more accurate 

indication of general protocol invalidity than the neural network in Rothmann (in press). 

The neural network, however, did prove to be reasonably effective in discriminating between 

datasets. The outfit statistics only provide information about how the case fits the Rasch 

model. Neural networks can derive a custom model for specific samples, given that it was 
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trained appropriately. Deriving custom models from samples creates the possibility of using 

neural networks to detect specific threats within cases. 

It is evident that outfit statistics are more powerful indicators of protocol invalidity than 

validity. Large outfit statistics imply problematic responses, but smaller outfit statistics do not 

guarantee protocol validity. Certain threats might still be evident, even if the outfit statistics 

show good fit. Specific protocol validity threats, especially fixed response, should be 

controlled for in addition to the outfit statistics. Neural networks have the ability to 

discriminate between datasets, and it might be worth investigating whether neural networks 

can be used to detect specific threats in conjunction with the outfit statistics, especially when 

outfit statistics are acceptable. 

There were several limitations to this study. Firstly, outfit statistics were only evaluated 

against random data with a uniform distribution. Different threats were not tested against 

these outfit statistics. Secondly, the Rasch model was only implemented in the rating scale 

context and other facets of measurement were not taken into account. Thirdly, methods for 

calculating outfit statistics on posterior cases without re-running the entire Rasch model 

algorithm were not investigated. Finally, participants were not followed up to investigate 

whether they had in fact provided invalid responses. 

RECOMMENDATIONS 

Rasch model fit statistics have proved to be effective protocol invalidity indicators. It is, 
recommended that these fit statistics be implemented in conjunction with other measures in 

the SAEHWS. When a profile has high outfit statistics (:2: 2,00), the facilitator can be sure 

that there was a problem with the validity of the protocol. However, if the outfit statistics are 

smaller than 2,00, no guarantees can be made about the validity of the protocol. Other 

measures such as a pattern recognition algorithm that detects fixed response - should also 

be evaluated by the facilitator. When any problems are evident, the facilitator should conduct 

an interview with the participant to determine whether there were problems with the 

completion of the instrument. The interview can be structured within Ben-Porath's (2003) 

framework for protocol validity threats by asking questions such as "Did you read all the 

questions before providing an answer?", "Did you understand all the questions?", and "Do 

you feel you were totally honest in answering all the questions?". 
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It is recommended that further research be conducted to investigate the usefulness of fit 

statistics as indicators of protocol validity. It would be beneficial to gather data where 

specific threats were evident. Participants could be asked to complete an instrument 

accurately, randomly, time-constrained and from sketched scenarios where they would over­

and under-report. Fit statistics should be investigated for these different threats. It would then 

also be beneficial to train similar neural networks with data from specific threats to determine 

whether it can be used to test a protocol for the existence of a specific protocol validity threat. 

These neural networks can then be used in accordance with the outfit statistics. 

In addition, less computationally intensive methods should be investigated for calculating 

outfit statistics on posterior cases. If certain values are pre-calculated on a large sample and 

stored, it should be possible to determine the outfit of a posterior case with fewer 

calculations. It might also be possible to train a neural network to predict outfit statistics from 

the answers on the items. 

Further research should be done into the multi-faceted Rasch model (Bond & Fox, 2007) and 

its fit statistics. This model is an extension of the unidimensional Rasch model that takes 

other aspects of measurement into account (Bond & Fox, 2007). The SAEHWS is supported 

by a causal model (Rathmann & Rothmann, 2006), making it possible to include the causes 

of certain dimensions as facets to be controlled for in the multi-faceted Rasch model. When 

including more dimensions, the fit statistics will have a more holistic picture of the context of 

certain responses and might serve as more powerful protocol validity indicators. 
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CHAPTER 4 

CONCLUSIONS, LIMITATIONS AND RECOMMENDATIONS 

In this chapter, conclusions are made concerning the literature findings and the results of the 

empirical study. Furthermore, the limitations of the present study are discussed and 

recommendations are presented to the organisations and with a view to future research. 

4.1 CONCLUSIONS 

The general aim of this study was to establish an efficient, real-time method/indicator for 

determining protocol validity in web-based instruments. More specifically, the objectives 

were to 1) study a framework for the threats to protocol validity; 2) develop and evaluate a 

protocol validity indicator that detects random responses in electronic well-being surveys; 3) 

evaluate the IRT fit statistics for use as protocol validity indicators 4) compare the IRT fit 

statistics with the developed protocol validity indicator; and 5) discuss the practical 

implications of implementing the protocol validity indicators in an online wellness 

instrument. 

The following conclusions can be made regarding the specific objectives: 

A framework for the threats of protocol validity 

Knowing the possible threats to protocol validity is fundamental in the application of a 

measuring instrument. If threats are to be anticipated and detected, one should have a 

framework for these threats. Different threats also have different causes and consequences for 

instrument scoring. The threats are mainly divided into categories that reflect role of item 

content in the response behaviour. Ben-Porath (2003) classifies the threats to protocol 

validity into two broad categories, namely non-content-based invalid responding and content­

based invalid responding. These categories reflect the role of the instrument item content in 

invalid responding. 

Non-content based responding is where the item meaning and content plays no role in the 

response provided by the participant and includes mainly three different behaviours, namely 
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non-responding, fixed responding and random responding. There might be several reasons for 

these behaviours. Typically, an unwilling participant might show fixed and random response 

behaviours with varying intensities throughout the instrument. A participant that does not 

understand the items due to language or comprehension deficiencies might also respond 

randomly (even if it is not intentionally), or fail to respond at alL Instrument presentation also 

plays a role because response recording errors might present themselves as random 

responses. 

Content-based invalid responding refers to participants portraying themselves different to the 

real situation. Participants with a certain motive may intentionally try to distort their 

responses in a positive or negative way. The distortion might be total fabrication or mere 

exaggeration. Unfortunately, intentional distortion is not the only problem. Self-report 

instruments rely on individuals' subjective perceptions of the instrument content. There are 

several factors that can influence that perception. Negative emotionality is a personality trait 

that causes individuals to perceive their environment more threatening than it really is. Other 

self-misperceptions or social desirability may also cause participants to minimise 

psychological difficulties or negative characteristics. 

Minimising these threats is not just about detecting them. It should be ensured that instrument 

content are valid, unbiased, non-threatening and easily interpretable. The presentation of the 

instrument should also minimise the opportunity for error. Participants should also 

understand why they are completing the instrument and who the applicable parties are that 

have access to results, in order to gain cooperation and honesty. 

The development and evaluation of a protocol validity indicator 

A protocol validity indicator was developed by utilising neural networks. Neural networking 

is a technology that is mainly used in the field of data mining to infer models from a large 

dataset and predict posterior values based on that model. In this study, neural networks was 

used to identify random response in individual cases by classifying it as belonging to either a 

random or non-random sample of cases. The random and non-random samples differed in 

properties like response distribution. Neural networks showed that they were effective in 

discriminating between datasets with different properties. This is mainly due to the non-linear 

inference capability ofneural networks. 
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It is important to understand the paradigm ofusing neural networks for discrimination. Where 

other approaches might assume a model and fit the data to the model, neural networks infer 

models from the data. This means that every model will be unique, depending on the data 

used. This stresses the critical role the datasets have in ensuring the success of the neural 

network. In this study, computer-generated random data was used to train the neural network. 

Although the neural network did an acceptable job in discriminating between random and 

non-random data, it still made some errors due to the overlap in dataset properties. 

The overlap between datasets (in this study) is a function of the odds of a random response 

string being potentially non-random. Using a larger amount of items will decrease the overlap 

between datasets. Items that one would strongly expect to relate in a certain way to other 

items would also reduce overlap. One advantage of neural networks is that a testing sample 

can be included during training that will reduce the noise inferred in the model, thereby also 

minimising the effect of overlapping properties between datasets. 

It would be safe to conclude that a neural network is an effective tool for determining 


potential random responses given certain considerations. Firstly, enough data should be 


available. Secondly, a rejection dataset should be identified where the threat was evident. As 


in this study, a random dataset could always be generated to train the neural network to 


discriminate, but it is still unclear whether random responses by participants would be similar 


to generated random data. Thirdly, the rejection dataset should not have a large amount of 


. overlap with the valid dataset. When these considerations are met, neural networks can show 


optimum performance in discriminating between datasets for the determination of potential 


random responses. 

The evaluation of IRT fit statistics for use as protocol validity indicators 

In contrast to the neural network paradigm of inferring a model from data, the fit statistics 

calculated in IRT illustrate to what degree an individual's responses fit the expected, 

predefmed IRT modeL This model is customised by item parameters such as the intensity of 

the construct measured by the item (termed item difficulty in IRT). In this study the Rasch 

model fit statistics were used. The Rasch model relates to the one-parameter (l-PL) IRT 

model, because it only takes item difficulty into account (in conjunction with person ability). 
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Fit statistics can either overfit or underfit the predefined model. Overfit refers to overly 

predictable responses while underfit refers to unpredictable responses. 

In this study it was investigated whether the fit statistics provide an adequate indication of 

protocol validity. The result was that when responses underfit, protocol validity issues may 

be expected. These underfitting responses are unpredictable by nature and one would have 

expected the respondent to answer differently. Overfitting responses also have an implication 

because it shows the possible underuse of categories on a scale. Fixed response would 

typically result in overfitting responses. The problem is that not all overfitting responses are 

invalid, especially if a Likert scale is used. In fact, when using Cronbach's alpha, one 

typically wants responses to different items of the same dimension to not vary too much. 

Thus, in certain cases, overfitting responses could also be valid. Adequate fitting responses 

seemed to be less problematic, but this does not guarantee protocol validity. Participants that 

get a maximum or minimum score on the dimension are awarded perfect fit. The Rasch 

model cannot compute fit statistics for these scores and participants are given the benefit of 

the doubt. The problem is that fixed response at the extreme end of the scale will also result 

in a minimum or maximum score, and the responses will be considered a perfect fit. 

Given these considerations it can be concluded that fit statistics are better indicators of 

protocol invalidity than protocol validity because validity could not be guaranteed by 

adequate or overfitting fit statistics. In addition, these fit statistics would only be good 

indicators of protocol invalidity when used in conjunction with an algorithm that detects 

fixed responses. Fixed response is not specific to a dimension, meaning that it occurs on a 

page regardless of the dimension measured. This makes it possible to design a pattern 

recognition algorithm that can detect fixed response in electronic instruments by looking at 

all the responses throughout the instrument. 

Comparing IRT fit statistics with the neural network 

In comparison to the neural network technique, it may be argued that fit statistics are the 

superior indicators of protocol invalidity. This is mainly because the fit statistics have a more 

structured, scientific way of determining invalid responses. Certain items measure the 

construct more intense than others, and one would expect that posterior responses should also 

fit this pattern. The neural network creates a model from the data, which makes it difficult to 
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be sure that certain response patterns won't be misc1assified, especially because it is difficult 

to provide for all the considerations of training datasets. While neural networks have potential 

for other applications in protocol validity, the conclusion is thus that fit statistics provide a 

better indication of general protocol invalidity. It can, however, not determine what specific 

threat was evident, but just provide an indication of whether a certain threat (or a collection 

thereof) has corrupted a case so much that it fails to fit the predefined IRT model. 

Practical implications of implementing the protocol validity indicators 

In terms of implementing these methods electronically, both the neural network and the IRT 

fit statistics are computationally intensive methods that would not be possible to calculate by 

hand. Although computational power is available in modem computers, it is important to note 

that in the context of internet based surveys computational power is easily limited because of 

a large number of users utilising the system simultaneously. Algorithms should be optimised 

to minimise the calculations. 

Neural networks utilise extensive computational power to infer a modeL The advantage of 

neural networks is that the model is only inferred once, after which the model is saved in 

synaptic weights. Posterior classification then only involves a few straightforward algebraic 

calculations. It is for this reason that neural networks show large potential for implementation 

in online surveys. 

IRT fit statistics has a larger implication for online surveys. The only aspect that can be pre­

processed would be the item parameters. After a survey has been completed, the person 

parameters need to be estimated. The fit statistics can be calculated only after the person 

parameters have been estimated. Calculating the fit statistics involve the implementation of 

an algorithm like Maximum Likelihood Estimation CMLE). MLE iterates to find the 

parameters until it converges to a certain criterion. Although modem computers can 

implement MLE gracefully, the necessary computational power can increase drastically as 

the number of concurrent users increase, especially ifMLE needs to estimate based on a large 

number of polytomous items. Methods should be investigated that guarantees instant 

convergence of the algorithm used. If effective methods are implemented, the fit statistics 

also have great potential for implementation in online surveys. 
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4.2 LIMITATIONS OF THE PRESENT STUDY 

Apart from the limitations mentioned in articles 1 and 2 there are limitations to the study in 

general. The main limitation is that only statistical methods were investigated for use as 

potential protocol validity indicators. Therefore there was not a specific focus on content­

based indicators such as social desirability scales. Another limitation is that the data used 

from the survey archive did not have any indication on which specific threats were evident. 

Participants that were identified with invalid protocols were not followed up to determine if 

they had in fact responded invalidly. Finally, this study focused on only one dimension of a 

large instrument. It is unsure how other dimensions would behave with the methods 

investigated in this study. 

4.3 RECOMMENDATIONS 

Recommendations pertaining to the organisation as well as recommendations for future 

research are made in this section. 

4.3.1 Recommendations for the organisation 

It is recommended that an algorithm be implemented that calculates the fit statistics online 

directly after completion of both the SAPFI and the SAEHWS. The indicator should present 

itself on the report for interpretation by facilitators. Facilitators should evaluate the indicator 

before making decisions based on the results of the survey. Because the indicator can't 

provide for the specific threats evident, the facilitator should conduct an interview with the 

participant to investigate possible threats to the validity of the protocol. This interview can be 

structured vvithin the framework for protocol validity threats (Ben-Porath, 2003) by asking 

questions, such as "Did you read all the questions before providing an answer?", "Did you 

understand all the questions?", and "Do you feel you were totally honest in answering all the 

questions?" . 
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4.3.2 Recommendations for future research 

The following recommendations can be made for future research: 

• 	 The effect of predicting validity and reliability with more than five items as inputs in 

the neural network should be investigated. It would be beneficial to include 

semantically opposite items in this research, as more items would minimise the 

probability of random data being valid and reliable by coincidence. The relationship 

between the size of the training sample, the number of independent variables and the 

prediction success of the neural network should be investigated. This should include 

an attempt to determine the optimal number of cases that would prevent overtraining, 

yet provide the neural network with enough information to make accurate predictions. 

• 	 It should be investigated whether it is more effective to include items for several 

constructs into one neural network for use as a validity and reliability score, or to use 

multiple neural networks for each construct for creating an aggregated validity and 

reliability score. 

• 	 It is proposed that the relationship between the validity, reliability and pseudo­

probabilities be investigated. If a linear relationship is found, the pseudo-probabilities 

could potentially be used to indicate a severity score for protocol validity. Norms, 

benchmarks and cut-off points should also be considered for the pseudo-probabilities. 

These norms, benchmarks and cut-off points can then be used by facilitators to decide 

about the validity and reliability of cases in different situations. 

• 	 Research that focuses on the existence of specific threats needs to be conducted. For 

example, participants could be asked to complete an instrument accurately, randomly, 

time-constrained and from sketched scenarios where they would over-and under­

report. Fit statistics should be investigated for these different threats. Neural networks 

should also be trained with data from specific threats to determine whether it can be 

used to test a protocol for the existence of a specific protocol validity threat. These 

neural networks can then be used in accordance with the fit statistics. 

• 	 Less computationally intensive methods should be investigated for calculating outfit 

statistics on posterior cases. 

• 	 It should be investigated whether the multi-faceted Rasch model provides a better 

indication of protocol validity. Other related dimensions from the same instrument 
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can be included as facets in the modeL When including more dimensions, the fit 

statistics will have a more holistic picture of the context of certain responses and 

might serve as more powerful protocol validity indicators. 
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