
Chapter 3

Cosmic ray transport

3.1 Introduction

The heliosphere modulates the intensity of the galactic cosmic ray spectrum (traditionally ex-

pected at the heliopause) as these particles enter the heliosphere, changing the cosmic ray

intensities as a function of time, position and energy. A recent study by Scherer et al. (2011)

suggests there may even be modulation of cosmic rays beyond the heliopause, even up to the

bow shock/wave, suggesting a difference between what can be called a heliopause spectrum

and a local galactic or interstellar spectrum. However, this aspect is beyond the scope of this

work and it is assumed that the heliopause is the modulation boundary where a heliopause

spectrum is specified.

As shown in Chapter 2, cosmic ray modulation produces a∼11 year cyclic variation of intensi-

ties as observed by neutron monitors at the surface of Earth and also by different spacecraft in

the heliosphere. The level of cosmic ray modulation varies in anti-correlation with solar activ-

ity i.e. low cosmic ray intensities are observed during solar maximum periods and vice versa

for solar minimum. Furthermore, cosmic ray modulation is also dependent on the energy of

these particles.

The four major processes which modulate cosmic ray intensities in the heliosphere are:

1. Convection: Cosmic rays entering the heliosphere are convected out with the solar wind

which blows radially outwards from the Sun (see Parker, 1958, 1960).

2. Energy changes: Cosmic rays are adiabatically cooled (decelerated) (e.g. Parker, 1965) or

heated (accelerated) (see Langner et al., 2006; Ferreira et al., 2007b) as the plasma expand

or being compressed. They may also be accelerated at the solar wind TS via diffusive

shock acceleration (see Bell, 1978a,b; Blandford and Ostriker, 1978; Pesses et al., 1981; Drury,

1983; Le Roux et al., 1996) or continuous stochastic acceleration in the inner heliosheath

(see Axford, 1981; Moraal et al., 2006; Zhang, 2006; Ferreira et al., 2007b; Fisk and Gloeckler,

2009; Strauss et al., 2010b).
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3. Diffusion: Cosmic rays are diffused along the HMF (parallel) and across HMF lines (per-

pendicular) (e.g. Bieber et al., 1994; Schlickeiser and Miller, 1998; Teufel and Schlickeiser, 2003;

Shalchi et al., 2004; Engelbrecht, 2008).

4. Drift: Cosmic rays drift due to the gradient and curvature of the HMF or due to changes

in the magnetic field direction as in the HCS (see Jokipii et al., 1977; Potgieter and Moraal,
1985; Hattingh and Burger, 1995b; Visser, 2010).

In this chapter, the focus is on cosmic ray diffusion and drifts, where the corresponding spatial

and energy dependence of these transport coefficients are discussed as they are implemented

in the numerical model used in this work.

3.2 Parker transport equation

The above-mentioned modulation processes were combined by Parker (1965) into a transport

equation (TPE) which was later re-derived by Gleeson and Axford (1967) and then refined by

Gleeson and Axford (1968) and Jokipii and Parker (1970). The TPE is given as,

∂f

∂t
= − (V + 〈vd〉) · ∇f +∇ · (KS · ∇f) +

1

3
(∇ ·V)

∂f

∂ lnP
+Q. (3.1)

Here t is the time, P is rigidity, Q is any particle source inside the heliosphere, V is the solar

wind velocity, KS is the isotropic diffusion tensor and 〈vd〉 the pitch angle averaged guiding

center drift velocity (e.g. Burger et al., 2000; Stawicki, 2005a) for a near isotropic distribution

function f . The differential intensity j is related to f by j = P 2f . This equation is solved

numerically in this work in terms of time and rigidity in two-dimensional space (r, θ) with

r the radial distance and θ the polar angle. The rigidity P is defined as the momentum per

charge for a given particle i.e P =
pc

q
with p the particle’s momentum, q the charge and c the

speed of light.

Equation 3.1 contains all the important cosmic ray modulation processes. The first term on

the right hand side of the equation represents the outward convection due to the solar wind,

the second term represents the drift effects due to the background magnetic field, the third

term represents the spatial diffusion parallel and perpendicular to the background magnetic

field, the fourth term represents the energy changes and the fifth term represents possible

sources inside the heliosphere e.g. jovian electrons or anomalous cosmic rays as discussed

in the previous chapter. The term on the left hand side represents the changes in cosmic ray

distribution with time.

The TPE in a three-dimensional (3D) spherical coordinate system rotating with the Sun (as-
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suming spherical symmetry) is given as
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∂t
=

[
1

r2
∂

∂r
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r sin θ
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− V

]
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∂r
(3.2)

+
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where Krr, Krθ, Krφ, Kθr, Kθθ, Kθφ, Kφr, Kφθ and Kφφ are the different elements in the diffu-

sion tensor K which will be discussed in section 3.3, Ω the angular speed of the Sun and V the

solar wind speed.

For a two-dimensional (2D) approach, as assumed in this work, an azimuthal symmetry is

assumed in Equation 3.2 (i.e
∂

∂φ
= 0) and the equation becomes
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This 2D TPE (Le Roux, 1990) is solved numerically in this work to compute cosmic ray inten-

sities inside the heliosphere, assuming no particle sources inside the heliosphere (i.e Q = 0).

The different transport coefficients are discussed next.

3.3 Difffusion tensor

The symmetric diffusion tensor Ks in Equation 3.1 in an average background HMF aligned

coordinate system can be represented as

Ks =

K|| 0 0

0 K⊥θ 0

0 0 K⊥r

 . (3.4)

In Equation 3.4 (see e.g. Effenberger et al., 2012), K|| is the diffusion coefficient parallel to the

average HMF, K⊥θ the diffusion coefficient perpendicular to the average HMF in the θ (polar)

direction and K⊥r, the diffusion coefficient perpendicular to the average HMF in the r (radial)

direction. Figure 3.1 shows a graphical representation of the elements of Ks with respect to a

HMF B. The direction along which K|| acts is in or out of the page, K⊥θ towards the polar di-

rections of the Sun and K⊥r directed radially towards or away from the Sun. Also the average

HMF B is shown directed out of the page at a given position.
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Figure 3.1: A graphical representation of the elements of Ks, Equation 3.4. K|| is the diffusion coefficient
parallel to the average HMF (into or out of the page), K⊥θ and K⊥r are the diffusion coefficients per-
pendicular to the average HMF in the θ (polar) direction and in the r (radial) direction respectively. Also
shown is B which represents the average HMF direction (out of the page) at a given position. Adapted
from Scherer et al. (2006b).

The asymmetric drift tensor KA, with KA the drift coefficient, is

KA =

0 0 0

0 0 KA

0 −KA 0

 . (3.5)

See Section 3.7 for a thorough discussion of the drift coefficient.

The full diffusion tensor K in HMF aligned coordinates can be written as a sum of Ks, the

spatial diffusion tensor and KA, the drift tensor,

K = Ks + KA. (3.6)

This results in

K =

K|| 0 0

0 K⊥θ KA

0 −KA K⊥r

 . (3.7)

Using this tensor K, Equation 3.1 can be rewritten as,

∂f

∂t
= −V · ∇f +∇ · (K · ∇f) +

1

3
(∇ ·V)

∂f

∂ lnP
+Q. (3.8)

To transform the field-aligned coordinates of K to spherical coordinates, the spiral angle ψ, the

angle between the radial and the average HMF direction at a given position, is used. The base
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Figure 3.2: The base vector representations of the magnetic field aligned coordinate system and the
spherical polar coordinate system. Here e|| is the unit vector parallel to the average heliospheric mag-
netic filed line (blue line), e⊥θ the unit vector perpendicular to e|| in the polar direction and e⊥r the unit
vector perpendicular to e|| in the radial direction, while er, eθ and eφ are the unit vectors in the spherical
polar coordinate system. Also shown is the spiral angle ψ, the angle between er and e||.

vectors for the field aligned coordinates are,

e|| = cosψer − sinψeφ (3.9)

e⊥θ = eθ

e⊥r = sinψer + cosψeφ.

Note that e|| × e⊥θ = e⊥r to ensure a right-handed coordinate system. A graphical represen-

tation of the relation between the two coordinate systems (as discussed above) is shown in

Figure 3.2. The figure shows the base vector representations of the magnetic field aligned coor-

dinate system and the spherical polar coordinate system. Here e|| is the unit vector parallel to

the average heliospheric magnetic filed line (blue line), e⊥θ the unit vector perpendicular to e||

in the polar direction and e⊥r the unit vector perpendicular to e|| in radial direction, while er,

eθ and eφ are the unit vectors in the spherical polar coordinate system. The figure also shows

the spiral angle ψ, the angle between er and e||.

The transformation matrix from spherical to field aligned coordinates is given as,

T′ =

cosψ 0 − sinψ

0 1 0

sinψ 0 cosψ

 = TT (3.10)

= T−1.

Here, superscript T denotes the transpose of the matrix. The inverse of the matrix is also the

transpose since the matrix is orthogonal. The inverse of the above matrix, given in Equation
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Figure 3.3: Shown here are the magnitude of cos2 ψ and sin2 ψ in Equation 3.13 as a function of radial
distance for polar angles θ = 10o (polar regions) and θ = 90o (equatorial plane).

3.10, is the transformation matrix from field aligned coordinates to spherical coordinates and

is given by

T =

 cosψ 0 sinψ

0 1 0

− sinψ 0 cosψ

 . (3.11)

Therefore the diffusion tensor can be represented in spherical coordinates as,

K′ =

Krr Krθ Krφ

Kθr Kθθ Kφφ

Kφr Kφθ Kφφ

 (3.12)

= TKTT

=

 cosψ 0 sinψ

0 1 0

− sinψ 0 cosψ


K|| 0 0

0 K⊥θ KA

0 −KA K⊥r


cosψ 0 − sinψ

0 1 0

sinψ 0 cosψ



=

K|| cos2 ψ +K⊥r sin2 ψ −KA sinψ (K⊥r −K||) cosψ sinψ

KA sinψ K⊥θ KA cosψ

(K⊥r −K||) cosψ sinψ −KA cosψ K|| sin
2 ψ +K⊥r cos2 ψ

 .
Two diffusion coefficients of particular concern for this study, which utilises a modulation
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model in a spatial 2D-space (r and θ), are Krr and Kθθ and are given by,

Krr = K|| cos2 ψ +K⊥r sin2 ψ (3.13)

Kθθ = K⊥θ.

Figure 3.3 shows cos2 ψ and sin2 ψ as a function of radial distance for values of polar angle θ =

10o and θ = 90o respectively. Shown in the figure is that the magnitude of cos2 ψ decreases from

a maximum value 1 with increasing radial distance, while the magnitude of sin2 ψ increases

with radial distance to reach a maximum value of 1 and thereafter stays constant throughout

the outer heliosphere. In the inner heliosphere the magnitude of cos2 ψ is larger than sin2 ψ

which results in Krr being dominated by K|| while in the outer heliosphere the magnitude

of sin2 ψ is considerably larger than cos2 ψ and results in a K⊥r dominated Krr. The figure

also shows a latitude dependence of cos2 ψ and sin2 ψ. At the equatorial region (θ = 90o) a

steeper decrease in the magnitude of cos2 ψ is found when compared to the near polar region

(θ = 10o). However, for sin2 ψ a steeper increase in magnitude is found at the equatorial region

when compared to the near polar region.

Next, the different transport coefficients (K||, K⊥r and K⊥θ) and how they couple to the back-

ground plasma and magnetic field are discussed. However, to appreciate this, some back-

ground on turbulence is first given.

3.4 Turbulence

Turbulence is regarded as a result of some random fluctuations in certain physical processes

and is irregular in both space and time. An external force or addition of energy is required

to sustain it against dissipation, without which it will eventually decay (see e.g. Hinze, 1975;

Falkovich and Sreenivasan, 2006). The heliosphere is filled with the magnetised, supersonically

expanding solar wind, which is highly fluctuating and turbulent (see e.g. Erdos, 2003; Erdos and
Balogh, 2005; Marino et al., 2009). Cosmic ray transport in the heliosphere cannot be explained

without including magnetic field fluctuations in the solar wind plasma. Cosmic ray diffusion

is directly related to the structure of the HMF and the scattering of cosmic rays as a result of

fluctuations in this field (see e.g. Zank et al., 1996a; Burger et al., 2000; Teufel and Schlickeiser,

2002; Shalchi et al., 2004; Bruno and Carbone, 2005).

3.4.1 Turbulence power spectrum

The random fluctuations in the solar wind transform a wave packet with a certain wavelength

to a shorter or longer wavelength. However, there is also a chance for a wave to decay to

a shorter wavelength. This trend forms a cascade process in which the energy of fluctua-

tions flows from long wavelengths (smaller wave numbers) to short wavelengths (larger wave

numbers). From the spectrum of fluctuations, called the turbulence power spectrum (see Bieber
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Figure 3.4: A schematic representation of a turbulence power spectrum (Bieber et al., 1994; Goldstein
et al., 1995; Teufel and Schlickeiser, 2003). The power spectrum can be divided into three regions, namely
the energy range which here is independent of the wave number (k), the inertial range, where it is
proportional to k−5/3 and the dissipation range where it is proportional to k−3. The dotted vertical lines
represents kmin the spectral break point between the inertial and energy range and kd the spectral break
point between inertial and dissipation range.

et al., 1994; Goldstein et al., 1995; Choudhuri, 1998; Teufel and Schlickeiser, 2003; Matthaeus et al.,
2007), three regions can be identified namely the energy range, inertial range and the dissipa-

tion range.

Figure 3.4 shows a schematic representation of a power spectrum of magnetic fluctuations or

fluctuations of the total energy of solar wind. The energy range in the figure shows the region

where the energy in fluctuations per wave number is traditionally assumed as independent of

the wave number k (Bieber et al., 1994; Goldstein et al., 1995; Teufel and Schlickeiser, 2003). This

region is not yet clearly understood and it is still under debate with suggestions that the en-

ergy in fluctuations per wave number in this range could also be proportional to k−1 (Bruno
and Carbone, 2005; Shalchi, 2009). The middle region is inertial range where the energy is just

transferred from low wave numbers to high wave numbers without being generated or con-

sumed (Erdos, 2003). In this region the energy in fluctuations per wave number as predicted

by Kolmogorov (1941) is proportional to k−5/3, representing what is called a Kolmogorov cas-

cade. Later, for a magnetohydrodynamics (MHD) case, Kraichnan (1965) introduced a spectrum

with a spectral index -3/2, where the small scale fluctuations are influenced by the large scale

magnetic field and the correlation between the velocity and magnetic field is weak. The inertial

range spectra of the magnetic fluctuations measured at several spacecraft (e.g. Voyager, Helios,

Mariner 10, Ulysses) in the solar wind support the Kolmogorov spectrum (Goldstein et al., 1995;
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Horbury and Balogh, 2001; Erdos and Balogh, 2005; Bruno and Carbone, 2005). Recently authors like

Horbury et al. (2008); Podesta (2009) and Luo and Wu (2010) examined inertial range spectra us-

ing magnetic field data from Ulysses and both STEREO spacecraft and found that when the

local mean magnetic field direction is anti-parallel (towards the Sun) or parallel (away from

the Sun) to the solar wind flow, the spectral index decreases from -1.6 and it approaches -2 (see

e.g. Forman et al., 2011).

The third region is the dissipation range where the cascade is terminated. Here the energy per

wave number decreases more rapidly than in the inertial range and the energy is converted

into heat which in turn leads to significant heating of background plasma (e.g. solar wind)

(see e.g. Leamon, 1999; Leamon et al., 2000; Erdos and Balogh, 2005; Smith et al., 2007). In this

region, the energy in fluctuations per wave number is proportional to k−3 according to Bieber
et al. (1994). A varying spectral index from -2 to -4 is also suggested by several authors (see e.g.

Leamon et al., 1998; Smith et al., 2006a; Howes et al., 2007).

The spectral break between the energy range and the inertial range is represented as kmin and

the spectral break between the inertial and dissipation range is represented as kd (see e.g. Bieber
et al., 1994; Goldstein et al., 1995; Teufel and Schlickeiser, 2003). The power spectrum of solar wind

fluctuations is not solely a function of wavenumber but it also depends on heliocentric distance

r (see review by Bruno and Carbone, 2005). Horbury et al. (1996) and Engelbrecht (2008) showed

that kmin and kd moves to a lower wave number as the plasma travels to larger distances

from the Sun. Later, Perri et al. (2010) showed that using Ulysses and MESSENGER spacecraft

solar wind data, that while kmin depends on radial distance from the Sun kd is independent of

distance from the Sun.

3.4.2 Turbulence models

A turbulent total magnetic field B can be represented by means of a uniform mean background

magnetic field with magnitude B0 and directed along the z-axis of a Cartesian coordinate sys-

tem and a fluctuating component δB as,

B = B0ez + δB(x, y, z) (3.14)

where the mean fluctuation 〈δB〉 = 0, i.e. 〈B〉 = B0ez. The root mean square amplitude

of δB in the present study is denoted as δB, while δB2 represents the total energy in these

fluctuations known as the magnetic field variance.

According to the turbulence geometry, turbulence can be represented by three models namely

slab or one-dimensional (1D) turbulence, two-dimensional (2D) turbulence and the composite

(or two-component) turbulence. In slab turbulence the magnitude of fluctuations δBslab(z) are

only a function of z along the mean magnetic field and are independent of the (x, y) coordi-

nates.
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Figure 3.5: Magnetic flux tubes for two turbulent magnetic field models. Left panel: Pure slab turbu-
lence with no transverse structure. The magnetic field lines shift in space while retaining their position
and magnitude relative to one another. Right panel: Composite turbulence with 80 % of its energy in
2D mode and 20 % slab mode, exhibiting considerable transverse complexity leading to braiding and
shredding of the field lines. From Matthaeus et al. (2003).

The left panel of Figure 3.5 (from Matthaeus et al., 2003) shows a graphical representation of

pure slab turbulence geometry where the magnitude of fluctuations are identical along all

magnetic field lines for the same z coordinate. The slab turbulence generate synchronised

fluctuations in each magnetic field line keeping their position and magnitude relative to one

another. The turbulent total magnetic field in a slab geometry can be represented as,

B = B0ez + δBslab(z) (3.15)

= B0ez + δBslab,x(z)ex + δBslab,y(z)ey,

and the slab variance is given by

δB2
slab = δB2

slab,x + δB2
slab,y.

For turbulence that is axisymmetric with respect to mean magnetic field direction z, the x and

y components of fluctuations are identical i.e. δBslab,x(z) = δBslab,y(z), therefore,

δB2
slab = 2δB2

slab,x = 2δB2
slab,y.

In 2D turbulence, fluctuations are assumed to reside in planes orthogonal to the mean mag-

netic field. The magnitude of fluctuations δB2D(x, y) in 2D turbulence are independent of the

coordinate z along the mean magnetic field. This leads to braiding and shredding of the mag-

netic flux tubes and hence different flux tubes starting at different (x, y) positions would not

be similar, as in the case of slab turbulence. The turbulent total magnetic field in a purely 2D

geometry can be represented as,

B = B0ez + δB2D(x, y) (3.16)

= B0ez + δB2D,x(x, y)ex + δB2D,y(x, y)ey,
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and the 2D variance is given by,

δB2
2D = δB2

2D,x + δB2
2D,y.

Again for turbulence that is axisymmetric with respect to mean magnetic field direction i.e.

δB2D,x(x, y) = δB2D,y(x, y) leads to,

δB2
2D = 2δB2

2D,x = 2δB2
2D,y.

Theory and observations (e.g. Matthaeus et al., 1990; Bieber et al., 1996; Matthaeus et al., 2007)

suggest a composite turbulence model with a 70%-90% of turbulent inertial energy range as

2D in the magnetic field fluctuations and remaining as slab. It is commonly assumed that 80%

of the fluctuating inertial range energy as 2D and remaining 20% as slab, which is considered

as a realistic scenario in the solar wind at 1 AU heliocentric distance (Bieber et al., 1996; Giacalone
and Jokipii, 1999; Shalchi, 2009).

The right panel of Figure 3.5 shows the composite turbulence model where the magnetic field

lines are braided and shredded due to the dominant 2D turbulence in the model. The ampli-

tude of the fluctuations can be represented as,

δB =
√
δB2

slab + δB2
2D.

Assuming an axisymmetric turbulence,

δB2 = 2δB2
slab,x(z) + 2δB2

2D,x(x, y).

When a 20/80 ratio of slab to 2D variance is assumed throughout the heliosphere,

δB2
slab = 0.2δB2,

and

δB2
2D = 0.8δB2.

These variances (especially the time-dependence therein) are important for this study because

it will be shown later how the different diffusion parameters depend on these.

3.5 Parallel diffusion coefficient

The parallel diffusion coefficient K|| describes cosmic ray diffusion along the average HMF.

Parallel diffusion is mainly due to pitch angle scattering by the turbulent HMF. Figure 3.6

shows a graphical illustration of parallel diffusion experienced by a charged particle scattering

in a turbulent magnetic field due to changes in the particle’s pitch angle. The pitch angle is

the angle between the particle’s velocity vector and the magnetic field direction. K|| can be

expressed in terms of the parallel mean free path λ|| and particle speed v as

K|| =
vλ||

3
. (3.17)
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Figure 3.6: A graphical illustration of parallel diffusion experienced by a charged particle scattering in
a turbulent magnetic field due to changes in the particle’s pitch angle. For example, as a result of pitch
angle scattering at 90o the particle can be scattered back to its initial position. From Shalchi (2009).

Figure 3.7: Cosmic ray parallel mean free path λ|| as a function of rigidity. Filled and open symbols
denote results derived from electron and proton observations respectively. The shaded area represents
the observational consensus of Palmer (1982). The dotted line represents the prediction of standard
quasi-linear theory for magnetostatic, dissipationless turbulence with purely slab geometry. From Bieber
et al. (1994).
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Figure 3.8: The top panel shows the parallel mean free paths at Earth for electrons (e−), positrons (e+)
and protons (p+) for the damping model (DT) of dynamical turbulence and bottom panel shows the
same but for the random sweeping model (RS). The crosses are the numerical results and the lines are
the approximations. From Teufel and Schlickeiser (2003).
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Figure 3.9: The proton parallel mean free path λ||, at Earth as a function of rigidity. The shaded box
represents the Palmer consensus (Palmer, 1982).

According to the quasi linear theory (QLT) (Jokipii, 1966; Hasselmann and Wibberenz, 1970; Earl,
1974; Teufel and Schlickeiser, 2002), the pitch angle averaged parallel mean free path is related to

the pitch angle Fokker-Plank coefficient Dµµ as,

λ|| =
3v

8

∫ 1

−1

(1− µ2)2

Dµµ(µ)
dµ. (3.18)

Here µ is the cosine of the particle’s pitch angle and can be represented as µ =
v||

v
, where v||

is a component of v parallel to the magnetic field direction. Dµµ is calculated using the power

spectrum of the magnetic field fluctuations as shown in Figure 3.4, Section 3.4.

3.5.1 Rigidity dependence

Palmer (1982) and later Bieber et al. (1994) compared the theoretical λ|| (Equation 3.18), pre-

dicted by Standard QLT (which used a magnetostatic slab model for the turbulence and the

neglected dissipation range) with the solar particle observations and noticed that the theoreti-

cal λ|| is much smaller than the observations for smaller rigidity values. This problem of small

λ|| predicted by QLT, when compared to observations, is coined by Bieber et al. (1994) as the

“magnitude problem”. This is shown in Figure 3.7 with filled and open symbols represent-

ing results derived from electron and proton observations and the dotted line representing the

predicted λ|| by QLT.

The theoretical λ|| decreases with decreasing rigidity whereas the observations generally stay-
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ed constant for rigidities in the range 0.5 MV to 5000 MV implying no rigidity dependence

for λ||. Bieber et al. (1994) also named this second problem as the “flatness problem”. The

shaded area shows the Palmer consensus values (Palmer, 1982), which shows the range of

parallel mean free path for rigidities between 0.5 MV and 5000 MV, as 0.08 AU to 0.3 AU.

These consensus values of the mean free paths near 1 AU was found by Palmer (1982) after

analysing the intensity time profiles in solar cosmic ray events.

As mentioned above, by neglecting the dissipation range of the power spectrum and using

the magnetostatic slab model during the above stated theoretical λ|| prediction, resulted in a

very small λ|| for low rigidities and also an incorrect rigidity dependence (Bieber et al., 1994).

During resonant scattering of low energy particles where the pitch angle reach 90o, the dissipa-

tion range is significant (Smith et al., 1990). The magnetometer and plasma wave observations

(see Coroniti et al., 1982) show that magnetic turbulence spectra do exhibit a dissipation range.

However, for low energy proton modulation in the heliosphere the λ|| (derived without the

dissipation range) is applicable because the cosmic ray protons undergoes significant adiabatic

energy changes below ∼300 MeV. The proton modulation appears unaffected by λ|| variations

for these lower energies (see Potgieter, 1996; Potgieter and Ferreira, 1999; Ferreira, 2002). Note

that this is not the case for electrons.

When the dissipation range (steep wave spectra with spectral index -3) was introduced to

Equation 3.18, the λ|| was calculated to be infinity (Bieber et al., 1994; Shalchi, 2005b). This was

due to the fact that theDµµ quickly tends to zero as pitch angle approaches 90o when compared

to the case without dissipation range. To overcome this, various techniques were proposed by

different authors, e.g. “mirroring” by fluctuations of the magnetic field magnitude (Goldstein
et al., 1975), strong turbulence, weak coupling theory (Goldstein, 1976), dynamical turbulence

(Bieber and Matthaeus, 1991; Bieber et al., 1994) and second-order QLT by calculating second-

order pitch angle Fokker-Plank coefficient (Shalchi, 2005b; Tautz et al., 2008).

The introduction of the effect of dynamical turbulence model by Bieber and Matthaeus (1991)

and Bieber et al. (1994) which solved the flatness problem of electrons is considered as an ac-

ceptable approach which caused Dµµ not to approach zero for small µ for lower rigidities (see

Hattingh, 1998). However, Equation 3.18 can only be solved numerically after incorporating the

dissipation range and composite turbulence (geometry other than pure slab model solved the

magnitude problem), due to its complexity. Bieber et al. (1994) included the effects of dynami-

cal turbulence by defining two models namely the damping model and the random sweeping

model.

Utilising the set of parameters suggested by Bieber et al. (1994), which are appropriate for inter-

planetary conditions, Teufel and Schlickeiser (2003) predicted a λ|| at Earth using damping (DT)

and random sweeping (RS) models as shown in Figure 3.8. The top panel of the figure shows

the λ|| at Earth for electrons (e−), positrons (e+) and protons (p+) for the DT model and the

bottom panel shows the same but for the RS model. The crosses in the figure represents the

numerical solutions of λ|| and the lines are their piecewise continuous analytical approxima-
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tions.

The analytical approximations of λ|| (in AU) at Earth as given by Teufel and Schlickeiser (2003)

using the DT model for protons for three different rigidity ranges are:

λ|| ∝
(
P

P0

)2

for P > 104 MV,

λ|| ∝
(
P

P0

) 1
3

for 10−1 MV ≤ P ≤ 104 MV, (3.19)

λ|| ∝
(
P

P0

)
for P < 10−1 MV,

where Po = 1 MV. The λ|| for electrons and positrons using the DT model is given as

λ|| ∝
(
P

P0

)2

for P > 104 MV,

λ|| ∝


(
P

P0

) 1
3

+
3.57((

Pe
P0

)2
+
(
P
P0

)2) 1
4

 for 10−1 MV ≤ P ≤ 104 MV, (3.20)

λ|| ∝

[
P1

P

(
1 +

(
P1

P

)2
)

arctan

(
P

P1

)]
for P < 10−1 MV,

where Pe = 0.511 MV and P1 = 0.003 MV.

The analytical approximations of λ|| for the RS model for protons is given by

λ|| ∝
(
P

P0

)2

for P > 104 MV,

λ|| ∝
(
P

P0

) 1
3

for 10−1 MV ≤ P ≤ 104 MV, (3.21)

λ|| ∝
(
P

P0

)
for P < 10−1 MV.

Also the λ|| as given by RS model for electrons and positrons

λ|| ∝
(
P

P0

)2

for P > 104 MV,

λ|| ∝

 2.27√(
Pe
P0

)2
+
(
P
P0

)2 + 0.018

(
P

P0

) 1
3

 for 10−1 MV ≤ P ≤ 104 MV, (3.22)

λ|| ∝
(
P

P0

)
for P < 10−1 MV.

The expression for λ|| as proposed by Teufel and Schlickeiser (2002, 2003) at Earth for protons

(damping model) is used in this study and is valid for 10−1 MV≤ P ≤ 104 MV is λ|| ∝ P
1
3 (see

Figure 3.8 top panel). Therefore, for the rigidity dependence it is assumed,

λ|| = C1

(
P

P0

) 1
3

. (3.23)



CHAPTER 3. COSMIC RAY TRANSPORT 65

Figure 3.10: The parallel mean free path λ|| of Burger et al. (2008); Engelbrecht (2008) as illustrated by
Strauss (2010), as a function of radial distance for 1 GV protons in the equatorial plane. The TS position
is indicated by an arrow at 90 AU.

Here C1 is a constant in units of AU which determines the absolute value of the mean free path

at Earth.

Figure 3.9 shows the proton parallel mean free path λ||, at Earth as a function of rigidity using

Equation 3.23 with C1 = 0.6 AU. Note that this value of C1 is for illustration purpose only

and is changed later. Also a solar cycle (time) dependent function will be added later to this

expression. The shaded box in the figure represents the Palmer consensus values.

3.5.2 Radial dependence

The λ|| used for this study is similar to that used by Burger et al. (2008); Engelbrecht (2008);

Strauss (2010). These authors used λ|| for protons (neglecting the dissipation range of turbu-

lence spectrum) based on the results of Teufel and Schlickeiser (2003) giving

λ|| =
3s

π(s− 1)
kminR

2
L

(
B

δBslab,x

)2(
1

4
+

2(kminRL)−s

(2− s)(4− s)

)
(3.24)

with s = 5
3 the spectral index of the inertial range derived by Kolmogorov,RL = P

Bc the Larmor

radius and c the speed of light. The kmin by Engelbrecht (2008) is used in this study and is given

as

kmin ∝
(
r

r0

)−0.4
m−1 for r ≤ rts, (3.25)
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Figure 3.11: The parallel mean free path λ||, as a function of radial distance for 1 GV protons in the
equatorial plane. Three scenarios of λ|| in Equation 3.27 is shown namely: C1 = 1.5 and C2 = 1.0,
C1 = 3.0 and C2 = 0.8 and C1 = 7.0 and C2 = 0.6 as indicated. The TS position is indicated by an arrow
at 90 AU. Note that the value of the TS position and the absolute value of these coefficients are varied
over a solar cycle later on.

where ro = 1 AU and rts is the TS position. This kmin is similar as given by Burger et al. (2008);

Strauss (2010). In the heliosheath kmin is unknown, and therefore Strauss (2010) assumed it as

a constant. In this work, this will also be the case.

The slab component of variance is assumed as (Burger et al., 2008; Strauss, 2010)

δB2
slab,x = 13.2

(r0
r

)2.5
nT2 for r < rts. (3.26)

Also the slab component of variance is unclear in the heliosheath and it is assumed in this

region that, δB2
slab,x ∼ B2.

Figure 3.10 shows the λ|| from Strauss (2010) as a function of radial distance for 1 GV protons

in the equatorial plane with λ|| ∝ r∼1.2 for larger radial distance (r > 5 AU) inside the rts,

which is located at 90 AU. Across the rts, λ|| drops as s2k and then decreases as λ|| ∝ r−1, where

sk = 2.5, the compression ratio assumed by Strauss (2010).

In this work it is therefore assumed that

λ|| = C1

(
P

P0

) 1
3
(
r

r0

)C2

for r < rts. (3.27)

Here C2 is a dimensionless constant determining the radial dependence resulting in a similar

radial dependence as used by e.g. Strauss (2010); Manuel et al. (2011a). In Chapter 6 a modifi-

cation to this is proposed which includes a time-dependence.
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Figure 3.11 shows the λ|| as a function of radial distance for 1 GV protons in the equatorial

plane. Shown are three different scenarios each with different radial dependence determined

by the value ofC2 and magnitude byC1. Three scenarios (differentC1 andC2 as will be used in

the following chapters) are shown as dashed, solid and dotted lines in the figure respectively.

The C1 value determines the magnitude of λ|| and C2 the radial dependence i.e. λ|| ∝ rC2 .

Figure 3.11 also shows that λ|| is smaller at Earth for C1 = 1.5 and C2 = 1.0 when compared

to the other two scenarios. However, in the outer heliosphere for C1 = 1.5 and C2 = 1.0, λ||
becomes larger compared to the other two scenarios.

The TS position in Figure 3.11 is represented by an arrow (in this case at 90 AU) and here the

λ|| is decreased by a factor sk = 2 (Richardson et al., 2008), and then further decreases as r−1

(see Manuel et al., 2011a,c) up to the heliopause. This is in accordance with Voyager observa-

tions of B which indicates that B ∝ r (Burlaga et al., 2007) for r > rts. Similar assumptions

for the diffusion parameters were made previously by e.g. Florinski et al. (2003), Ferreira and
Scherer (2006), Ferreira et al. (2007a), Ferreira et al. (2007b) and Strauss et al. (2010a) in order to

compute realistic anomalous and galactic cosmic ray intensities. These authors assumed that

the transport coefficients are roughly inversely proportional to the HMF magnitude B. This

field increases suddenly over the TS and then increases toward the heliopause due to flow

deceleration. Therefore, in this region

λ|| =
C1

sk

(
P

P0

) 1
3
(
r

r0

)C2 (rts
r

)
for r ≥ rts. (3.28)

Note that the position of the shock is not necessarily stationary in this model. This will be

discussed in more detail in the following chapters.

3.6 Perpendicular diffusion coefficient

The perpendicular diffusion coefficientK⊥ describe the diffusion perpendicular to the average

HMF. The perpendicular particle scatterings are mainly as a result of the gyrocentres of the

particles being displaced transverse to the mean magnetic field due to the fluctuations or the

random walk of the magnetic field lines (Jokipii, 1966; Minnie et al., 2009). Furthermore in 2D,

K⊥r is defined as the perpendicular diffusion coefficient in the radial direction and K⊥θ is

defined as the perpendicular diffusion coefficient in the polar direction respectively.

Due to the complexity of perpendicular diffusion theoretical work on this coefficient pro-

gressed slowly. However, to solve the problem of cosmic ray diffusion across the mean mag-

netic field, different approaches have been developed by various authors (e.g. Jokipii, 1966; Kota
and Jokipii, 2000; Matthaeus et al., 2003; Shalchi et al., 2004; Webb et al., 2006). Quasilinear theory

(QLT) by Jokipii (1966), where a slab turbulence geometry was assumed, is considered as the

first theoretical description of parallel and perpendicular transport of charged particles. The

QLT described perpendicular transport via the Field Line Random Walk (FLRW) limit which
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Figure 3.12: The ratio of Ulysses cosmic ray observations to IMP observations (solid line) is compared
with a classical drift model (dotted line) by Potgieter and Haasbroek (1993). The observed cosmic ray
ratio between the two spacecraft is shown as a function of time and latitude (top). In this time interval
Ulysses left the equatorial plane and returned after passing the Sun around the South Pole. The two
panels represent observations and model results at different rigidities with the higher rigidity (1.2 GV)
in the lower panel and the lower rigidity (679 MV) in the top panel. From Smith (2000).

predicted a diffusive behaviour while computer simulations of test particles (e.g. Qin et al.,
2002a,b; Minnie et al., 2009) discovered subdiffusion, implying that the QLT is not appropriate

for perpendicular transport. This approach neglected pitch angle scattering, and as a result,

failed to explain perpendicular transport of low energy particles. Also, this approach was

doubtful while considering particle transport in nonslab models such as slab/2D composite

model turbulence geometry.

A new approach which seems to agree with simulations was developed by Matthaeus et al.
(2003) called the NonLinear Guiding Centre (NLGC) theory, which describes perpendicular

diffusion in non-slab models. This approach assumed that the velocity of the particle gyrocen-

tres that follow magnetic field lines determines the perpendicular particle transport and the

magnetic field lines undergo diffusive separation (Matthaeus et al., 2003). However, for slab

turbulence the NLGC theory provides a diffusive result which disagrees with the numerical

results (see Shalchi, 2009, for a review). Later, several authors suggested different approaches

to improve this theory (e.g. Shalchi et al., 2004; Shalchi, 2005a; Stawicki, 2005b; Shalchi, 2006;

Qin, 2007; Dosch et al., 2009; Le Roux et al., 2010; Shalchi, 2010). Due to the complexity of these

theories, a more simpler approach is used for this study, which is discussed below.
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Figure 3.13: The function F (θ) given by Equation 3.32 as a function of polar angle for four different

values of d. The vertical dashed line represents the polar angle θ = 55o where F (θ) =
d+ 1

2
.

The importance of K⊥, especially for low energies, was reported by e.g. Potgieter and Ferreira
(1999) and Ferreira et al. (2000) who studied galactic electron modulation in the heliosphere.

As a first-order approach it has been standard practice by different authors using modulation

models to scale K⊥ with K||, e.g. K⊥ ∝ K|| (see Potgieter and Haasbroek, 1993; Jokipii et al., 1995;

Le Roux et al., 1996; Giacalone, 1998; Hattingh, 1998; Burger et al., 2000; Ferreira et al., 2000; Strauss,

2010).

Before the Ulysses spacecraft mission, which explored higher heliographic latitudes, it was

commonly believed that a significant latitudinal gradient existed in cosmic ray proton intensi-

ties in the heliosphere during the A>0 polarity cycle. The reason behind this belief was that the

cosmic ray protons mostly enter the heliosphere through polar regions during an A>0 HMF

polarity cycle. This was proved not to be the case when Ulysses observations showed that the

latitudinal gradients are not that significant as predicted by classic drift models (e.g. Potgieter
and Haasbroek, 1993; Haasbroek et al., 1995; Heber et al., 1996).

Figure 3.12 shows the ratio between the observations from the Ulysses and IMP 8 spacecraft

compared to the prediction by a classical drift modulation model by Potgieter and Haasbroek
(1993). This ratio shows the extent of the latitudinal gradients in the heliosphere as Ulysses

went to higher latitudes compared to IMP 8, which stayed in the equatorial regions. The time

interval shown in the figure represents the time Ulysses left the equatorial plane near Jupiter’s

orbit and moved towards the South Pole of the Sun, then executing a fast latitude scan from

the South Pole to the North Pole.
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The top and bottom panels in Figure 3.12 also show the model results (dotted lines) of Potgieter
and Haasbroek (1993) compared to the observations (solid lines) for different proton rigidities,

with lower rigidity (679 MV) in the top panel and higher rigidity (1.2 GV) in the bottom panel.

The top panel shows that, for lower rigidity protons, the classical drift models predicted a

significant increase in cosmic ray intensities from equator to the poles by as much as ∼300%.

However, the observations only show a ∼25-30% increase. For higher rigidities, shown in the

lower panel of the figure. The observations showed a∼15-20% increase between the equatorial

and polar regions, while the model predicted a ∼150% increase. These Ulysses observations

showed that the latitudinal gradients in the inner heliosphere were much smaller than initially

thought, suggesting amongst other reasons, a largerK⊥ towards the poles to be assumed in the

modulation models in order to compute compatible results when compared to observations.

A new concept of K⊥ was formed in which this coefficient could be anisotropic and that K⊥ is

larger towards the polar direction than the radial direction (see e.g. Kota and Jokipii, 1995; Potgi-
eter, 1996; Kota and Jokipii, 1997; Potgieter, 1997; Potgieter et al., 1997). Potgieter (1997) and Potgi-
eter et al. (1997) showed that assuming an anisotropic K⊥ meaning K⊥r 6= K⊥θ and increasing

K⊥θ towards the polar direction leads to a significant increase in the radial dependence in

cosmic ray intensities, which has to be compensated for by reducing the drifts in order to pro-

duce a realistic computed result compatible with the observations both in latitude and radial

distance.

Concerning modulation studies (e.g. Jokipii and Kota, 1995; Jokipii et al., 1995; Potgieter, 1996;

Burger et al., 2000; Ferreira, 2002; Moeketsi et al., 2005; Ndiitwani, 2005; Strauss, 2010; Manuel et al.,
2011a,c; Ngobeni and Potgieter, 2011), it has become standard practice to assume K⊥θ > K⊥r

to attain more realistic latitudinal gradients for cosmic ray intensity computations. It was also

shown via simulations that both K⊥r and K⊥θ can be scaled as the K|| (Le Roux et al., 1999;

Giacalone and Jokipii, 1999; Qin et al., 2002a) i.e. K⊥ ∝ K||, so for this study

K⊥r = aK|| (3.29)

and

K⊥θ = bK|| (3.30)

where a and b are either dimensionless constants or functions of rigidity (see Burger et al., 2000;

Ferreira, 2002; Ndiitwani, 2005; Manuel et al., 2011c). These constants will be more thoroughly

discussed later.

In this study, in order to reproduce the observed Ulysses cosmic ray intensity gradients, an

enhanced latitudinal transport as suggested by Burger et al. (2000) is used i.e. K⊥θ increases

towards the poles. This is done by introducing a function and a modified K⊥θ is assumed as

K⊥θ = bF (θ)K||. (3.31)

Here F (θ) is a function enhancing K⊥θ towards the pole by a factor d, as suggested by Burger



CHAPTER 3. COSMIC RAY TRANSPORT 71

et al. (2000), and is given by

F (θ) = A+ −A− tanh

[
1

∆θ
(θ − 90o + θF )

]
, (3.32)

where A± =
d± 1

2
, ∆θ =

1

8
and θF = 35o. Figure 3.13 shows the function F (θ) (in one

quadrant only) as a function of polar angle for different d values namely 1.0, 3.0, 6.0 and 12.0.

The magnitude of F (θ) increases from 1.0 at the equatorial plane towards the poles and reaches

value d near the polar regions. The vertical dashed line represents the polar angle θ = 55o

where F (θ) =
d+ 1

2
.

Enhancing the cross-field diffusion in the polar direction using the function F (θ) was moti-

vated by Burger et al. (2000) using Ulysses observations during its fast latitude scan periods.

These authors argued that the observations showed an increase in variance δB2 normal to

the magnetic field lines than in the radial direction, which possibly indicated a more effective

cross-field diffusion. Since for this study a Parker field is used, an enhancedK⊥θ is achieved by

introducing the function F (θ) (see also Ferreira and Potgieter, 2004; Ngobeni and Potgieter, 2010).

A discussion on Fisk field (Fisk, 1996) is presented in Chapter 2. Such a HMF with a meridional

component may also lead to more effective perpendicular diffusion (Burger and Hattingh, 2001;

Burger and Hitge, 2004; Sternal et al., 2011). Furthermore, Ngobeni and Potgieter (2011) introduced

an asymmetry in how K⊥θ depends on polar angle.

In addition, Ferreira et al. (2003a,b) and Moeketsi et al. (2005) pointed out the need for a time-

dependence in this function to fully describe low-energy electron modulation during moder-

ate to extreme solar maximum conditions. Moeketsi et al. (2005) proposed to relate the function

F (θ) to the latitudinal dependence of the solar wind speed. Ferreira et al. (2003a,b) investigated

the effect of different d dependence on 7 MeV electron intensities along the Ulysses spacecraft

trajectory. When compared to 3–10 MeV electrons observations by the KET instrument on-

board the Ulysses spacecraft (Heber et al., 2002), they found that varying d over a solar cycle

resulted in improved compatibility between model results and low energy electron observa-

tions.

3.7 Drift coefficient

Cosmic ray particles drift in and out of the heliosphere under the influence of gradient and

curvatures in the HMF and the HCS. However, the importance of drift was neglected in initial

modulation model studies until Jokipii et al. (1977) pointed out its significance. Jokipii et al.
(1977) reported that, even though gradient and curvature drifts have been incorporated into

the formal theory of cosmic ray transport as studied by e.g. Parker (1965); Gleeson and Axford
(1967); Jokipii and Parker (1970), most modulation models neglected drifts in the heliosphere.

Jokipii et al. (1977), using a Parker HMF, showed that the particle drifts contribute substantially

to cosmic ray transport. Later, the importance of drift was confirmed by models incorporating

drift effects (e.g. Jokipii and Davila, 1981; Potgieter and Moraal, 1985).
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In a heliosphere with an assumed background Parker spiral HMF, cosmic ray particles undergo

drifts due to physical phenomena such as gradients in the magnetic field, curvature of the field

lines and any abrupt changes in the field direction, such as that at the HCS, where a sudden

switch in HMF polarity occurs across the HCS. These drift processes are embedded in the TPE

as given by Equation 3.1 or 3.2.

For clarity, the TPE in a 3D spherical coordinate system as given in Equation 3.2 can be rewrit-

ten to highlight the different drift velocities and showing each process namely diffusion, drift,

convection and adiabatic energy changes (in this work only energy changes due to adiabatic

cooling is considered) as,

∂f

∂t
=

diffusion︷ ︸︸ ︷[
1

r2
∂

∂r
(r2Krr) +

1

r sin θ

∂Kφr

∂φ

]
∂f

∂r
+

[
1

r2 sin θ

∂

∂θ
(Kθθ sin θ)

]
∂f

∂θ
(3.33)

+

diffusion︷ ︸︸ ︷[
1

r2 sin θ

∂

∂r
(rKrφ) +

1

r2 sin2 θ

∂Kφφ

∂φ
+ Ω

]
∂f

∂φ

+

diffusion︷ ︸︸ ︷
Krr

∂2f

∂r2
+
Kθθ

r2
∂2f

∂θ2
+

Kφφ

r2 sin2 θ

∂2f

∂φ2
+

2Krφ

r sin θ

∂2f

∂r∂φ

+

drift︷ ︸︸ ︷
[−〈vd〉r]

∂f

∂r
+

[
−1

r
〈vd〉θ

]
∂f

∂θ
+

[
− 1

r sin θ
〈vd〉φ

]
∂f

∂φ

+

convection︷ ︸︸ ︷
−V ∂f

∂r

+

adiabatic energy change︷ ︸︸ ︷
1

3r2
∂

∂r
(r2V )

∂f

∂ lnP

+

sources︷︸︸︷
Q .

The first three lines of the above equation are the terms describing the inward diffusion of the

particles, the fourth line describes the drift effects caused by the magnetic field, the fifth line

the outward convection caused by the solar wind, the sixth line represents the adiabatic energy

change and the last line represents any sources inside the heliosphere, and Ω represents the

angular speed of the Sun. The components of the gradient, curvature and current sheet drifts

in Equation 3.33 are given as,

〈vd〉r = − A∗

r sin θ

∂

∂θ
(Kθr sin θ)er, (3.34)

〈vd〉θ = −A
∗

r

(
∂

∂r
(rKrθ) +

1

sin θ

∂

∂φ
(Kφθ)

)
eθ,

〈vd〉φ = −A
∗

r

∂

∂θ
(Kθφ)eφ
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where,

A∗ =

 +1 if qA > 0

−1 if qA < 0

with q is the particle charge. Here A = ±1 a constant denoting the polarity of the HMF which

switches between a positive and a negative value ∼11 years, and is considered positive when

HMF is directed outwards, and negative when directed inwards in the northern hemisphere

of the Sun.

The average drift velocity of a nearly isotropic particle distribution is given by

〈vd〉 = ∇×KAeB, (3.35)

with eB =
B

B
a unit vector in the direction of magnetic field B and KA the drift coefficient.

The average drift velocity in the Parker magnetic field follows from Equation 3.35 (see Hattingh,

1998; Ferreira, 2002) as,

〈vd〉 = ∇×KAeB(1− 2H(θ − θ′)) + 2δd(θ − θ′)KAeB ×∇(θ − θ′). (3.36)

Here the first term represents the gradient and curvature drifts due to the Parker HMF and the

second term represents the drift as a result of the HCS. The Heaviside step function is given as

H (see Equation 2.15) and θ the polar angle with θ′ the polar angle describing the position of

the neutral sheet (HCS) and δd the Dirac function given by,

δd(θ − θ′) =

 0 if θ 6= θ′

∞ if θ = θ′.
(3.37)

The Wavy Current Sheet1 (WCS) model, as introduced by Hattingh and Burger (1995b); Burger
and Hattingh (1995); Hattingh (1998) is used in this work to simulate the HCS in a 2D time-

dependent modulation model. In this WCS-model the three-dimensional drift velocity is re-

placed by a two-dimensional drift velocity, which is obtained by averaging Equation 3.36 over

one solar rotation and is given by,

〈vd〉 = g(θ)∇×KA
B

B
+

2PrvΓ

3cAπ(1 + Γ2)

(
(α+ ∆θns)2 +

(π
2
− θ
)2) 1

2

er. (3.38)

The above expression is divergence free and is difficult to solve numerically, so an approxi-

mation is derived by these authors in such a way that it remains nearly divergence free and is

given as,

〈vd〉 ≈ g(θ)∇×KA
B

B
+

PrvΓ′

3cA(1 + Γ′2)(α+ ∆θns)
er (3.39)

1Originally called Wavy Neutral Sheet (WNS) model.
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Figure 3.14: The HCS region for a tilt angle of α = 30o. From Hattingh (1998).

with

g(θ) =


1, if 0 ≤ θ ≤ π

2 − α−∆θns,

2

π
sin−1

( π
2 − θ

α+ ∆θns

)
, if π

2 − α−∆θns < θ < π
2 + α+ ∆θns,

−1, if π
2 + α+ ∆θns ≤ θ ≤ π

(3.40)

where r the radial distance from the Sun, Ω the angular speed of the Sun, V the magnitude of

radial solar wind velocity, α the tilt angle, ∆θns =
2RL
r

the angle spanned by two gyroradii

(Larmor radii), RL =
P

Bc
the Larmor radius, v the particle speed, P rigidity, c the speed of

light, Γ = tanψ =
Ω(r − r�)

V
, ψ the spiral angle, Γ′ =

Ω(r − r�)

V
cos

(
α√
2

)
and r� the radius

of the Sun.

Equation 3.38 represents the sum of the curvature and the gradient drift 〈v∗d〉 and the HCS drift

〈vnsd 〉, i.e.

〈vd〉 = 〈v∗d〉+ 〈vnsd 〉. (3.41)

The first term of Equation 3.38 represents the curvature and gradient drift and is given by,

〈v∗d〉 = g(θ)∇×KA
B

B
. (3.42)

The function g(θ) has the effect of scaling the curvature and gradient drift down over the HCS

region so that it is zero at θ =
π

2
.

The HCS drift is represented by the second term of Equation 3.38,

〈vnsd 〉 =
PrvΓ′

3cA(1 + Γ′2)(α+ ∆θns)
er. (3.43)

The HCS drift outside the HCS regions 0 ≤ θ ≤ π
2 −α−∆θns and π

2 +α+ ∆θns ≤ θ ≤ π where

g(θ) = ±1 is zero. The HCS region π
2 − α −∆θns < θ < π

2 + α + ∆θns is defined as the region
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Figure 3.15: Meridional projection of drift trajectories for 2 GeV protons during an A > 0 magnetic
polarity cycle i.e. when the HMF is directed outward in the northern hemisphere and inwards in the
southern hemisphere of Sun. The arrows will change to opposite direction during an A < 0 HMF
polarity cycle or when electron drifts are considered. From Jokipii and Thomas (1981).

swept out by particles drifting along the HCS during one solar rotation. In this way the effect

of the HCS is simulated by the WCS-model. A graphical representation of the HCS region for

a tilt angle of α = 30o is shown in Figure 3.14.

Figure 3.15 shows a graphical representation showing a meridional projection of gradient, cur-

vature and current sheet drift velocity directions for 2 GeV protons during an A > 0 magnetic

polarity cycle. The HMF polarity cycle is A > 0 when the HMF is directed outward in the

northern hemisphere and inwards in the southern hemisphere of the Sun and it is considered

as A < 0 HMF polarity cycle when the HMF switches its direction in the northern hemisphere

inward and the southern hemisphere outwards. During an A > 0 HMF polarity cycle, posi-

tively charged particles (protons) drift into the heliosphere, primarily from the polar regions

down onto the equatorial regions and outwards along the HCS. The wavy curve in Figure 3.15

represents the drift along the HCS which dominates the equatorial motion. However, during

an A < 0 HMF polarity cycle positively charged particles drift in along the HCS towards the

Sun and exit through the polar regions. i.e. the arrows in the Figure 3.15 change to opposite

direction during an A < 0 HMF polarity cycle or when negatively charged particle (electron)

drifts are considered.

Under the assumption of weak scattering, the drift coefficient KA in Equation 3.35 and 3.36
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as given by the standard approach (Forman et al., 1974; Jokipii and Kopriva, 1979; Potgieter, 1984;

Burger and Potgieter, 1989) is,

KA = KA0
βP

3B
(3.44)

where β =
v

c
, the ratio of the particle speed to the speed of light, B is the modified HMF

magnitude (Jokipii and Kota, 1989) where the mean field magnitude is increased compared to a

pure Parker type field in the heliospheric polar regions and KA0 is a dimensionless constant

which scale KA and has a value from 0 to 1 representing zero drift to full drift (Potgieter and Le
Roux, 1989).

The drift coefficient used in this work is from Burger et al. (2000, 2008) and is given by

KA = KA0
βP

3B

(
P
P∗

)2[(
P
P∗

)2
+ 1
] (3.45)

where P ∗ =
1√
10

GV.

This modified approach results in a decrease ofKA for P < 600 MV which is steeper compared

to the standard approach as given in Equation 3.44. A justification for this modification is based

on calculations of the rigidity dependence for proton latitudinal gradients and comparisons

with major Ulysses observations (Burger et al., 2000). The fact that drift is reduced by the

presence of turbulence has been established by direct numerical simulations (e.g. Giacalone
et al., 1999; Minnie et al., 2007). This choice of modified drift coefficient is consistent with the

numerical simulations of Giacalone et al. (1999) as well as the observational results of Lockwood
and Webber (1992). The reduction at low rigidity is also in agreement with the results of Webber
et al. (1990).

3.8 Example steady-state solutions

Figure 3.16 shows example model solutions depicting the effects of different K⊥r (different a

value as given in Equation 3.29), the effects of differentK⊥θ (different b value as given in Equa-

tion 3.31) and also the effects of different d values, as given in Equation 3.31, on computed 2.5

GV cosmic ray radial profiles during an A < 0 polarity cycle. During an A < 0 polarity cycle,

the protons drift in along the HCS towards the Sun and depart through the polar regions. A 2D

steady-state transport model with an assumed tilt angle of 10o is utilised to compute the inten-

sities. The purpose of these figures is to show how these parameters influence the cosmic ray

distribution in the heliosphere. A steady-state model is used to remove time-dependent effects

and to focus on the sensitivity of the spatial distribution of cosmic rays on these parameters.

The 2.5 GV proton differential intensity as a function of radial distance is shown in the top left

panel, Figure 3.16(a), which is regarded as a reference scenario showing the computed intensi-

ties with parameters a = 0.01, b = 0.01 and d = 6.0. Computed intensities for different polar
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Figure 3.16: Computed 2.5 GV proton differential intensity as a function of radial distance for the A < 0
polarity cycle. (a) Top left panel shows the reference scenario of computed intensities when a = 0.01,
b = 0.01 and d = 6.0 is assumed. (b) Top right panel shows the computed intensities when the a value
is changed to a = 0.03 while keeping b and d the same as for the reference scenario. (c) Bottom left
panel shows the computed intensities when the value of b is changed from b = 0.01 to b = 0.03 while
keeping a and d the same as for the reference scenario and (d) bottom right panel shows the computed
intensities when the value of d is changed from d = 6.0 to d = 3.0 while keeping a and b the same as for
the reference scenario. Also shown in all panels are the computed intensities for different polar angles
in steps of 10o with 90o the equatorial plane (top line) and 10o the near polar region (bottom line).

angles from 10o near polar regions (bottom line) to 90o equatorial plane (top line) are shown in

steps of 10o. Note that the idea is not to fit any data but just to show the sensitivity of the com-

puted intensities to different a, b and d values. The top right panel, Figure 3.16(b), shows the

same as in the reference scenario Figure 3.16(a) except that the a value is changed to a = 0.03

while keeping b and d the same. By comparing these two figures it follows that an increase in

a leads to increase in cosmic ray intensities throughout the heliosphere. The computed radial

gradient in the outer heliosphere (e.g. r ≥ ∼80 AU) is decreased while the computed radial

gradient in the inner heliosphere (r < ∼80 AU) is increased. Also, the latitudinal gradient in

the outer heliosphere is significantly reduced by an increase in a value because less modulation
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Figure 3.17: Same as in Figure 3.16 but for the A > 0 polarity cycle. Also shown on all panels are
computed intensities for different polar angles in steps of 10o with 90o the equatorial plane (bottom line)
and 10o the near polar region (top line).

occurs.

Figure 3.16(c) shows the same as in reference scenario (a) but now with an increase in b value

to b = 0.03, while keeping all other parameters same as in (a). Figure 3.16(c) shows that an in-

crease in b value from 0.01 to 0.03 results in a decrease in the cosmic ray intensities in the inner

heliosphere (r < ∼80 AU) and it also leads to an increase in the radial dependence of cosmic

ray intensities in the outer heliosphere, r ≥ ∼80 AU. The result is a decrease in the radial de-

pendence for distances with a larger radial dependence and an increase in radial dependence

for distances with a smaller radial dependence. Also an increase in the b value decreased the

latitudinal dependence in the cosmic ray intensities (see Potgieter, 1997; Potgieter et al., 1997;

Ferreira, 2002). Figure 3.16(d) shows the effect of a reduced d value. Here the enhancement

towards the poles is reduced from 6.0 to 3.0, when compared to reference scenario (a). This

in-turn increased the latitudinal gradient inside the heliosphere. For a decreased d value, an

increase in latitudinal gradient towards the polar regions is computed.
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Figure 3.17 shows same as in Figure 3.16 but for an A > 0 polarity cycle. During this polarity

cycle, protons drift in from the polar regions towards the Sun and exit along the HCS. The

computed intensities for different polar angles from 10o near polar regions (top line) to 90o

equatorial plane (bottom line) are shown in steps of 10o. Figure 3.17(a) is again considered as

the reference scenario with a = 0.01, b = 0.01 and d = 6.0.

For an increased a value given by scenario in Figure 3.17(b), the computed cosmic ray inten-

sities increase in the whole heliosphere. The radial gradient in the outer heliosphere, r ≥ ∼80

AU is decreased but increased in the inner heliosphere, r < ∼80 AU. This figure also shows a

more pronounced effect in the equatorial regions compared to the polar regions. Also the lat-

itudinal gradient in the outer heliosphere is significantly reduced by an increase in the value

of a, similar to Figure 3.16(b). Figure 3.17(c) (bottom left panel) shows a scenario with an in-

creased b value from 0.01 as in Figure 3.17(a) to 0.03. The cosmic ray intensities in the whole

heliosphere is decreased by an increased b value. However, the radial gradient increases for

distances which have previously had a relatively smaller radial gradient (i.e. as in reference

scenario (a) with b = 0.01) and the radial gradient decreases for distances which previously had

a relatively larger radial gradient Ferreira (2002). Scenario (c) also shows an overall decrease

in latitudinal gradient when compared to the reference scenario (a). Figure 3.17(d) shown in

the bottom right panel shows computations with d = 3.0 and is compared to d = 6.0 in Figure

3.17(a). Here a decrease in d value increases the latitudinal gradient significantly in the inner

heliosphere and moderately in the outer heliosphere. Also, the latitudinal gradient increases

towards the polar regions for a smaller d value when compared to the reference scenario (a).

3.9 Summary

In this chapter, an overview of the Parker transport equation, which contains all the major

modulation processes namely convection, energy changes, diffusion and drift were discussed.

The diffusion tensor K in a HMF aligned coordinate system was elaborated on distinguishing

between a symmetric diffusion tensor Ks and a asymmetric drift tensor KA. The symmetric

diffusion tensor Ks describes the cosmic ray diffusion along and perpendicular to the average

HMF i.e. the parallel diffusion coefficient K|| is responsible for cosmic ray diffusion along

the average HMF, perpendicular diffusion coefficient K⊥θ for diffusion perpendicular to the

average HMF in θ (polar) direction and perpendicular diffusion coefficient K⊥r for diffusion

perpendicular to the average HMF in r (radial) direction respectively. The asymmetric drift

tensor KA, contains the drift coefficient KA which represents gradient, curvature and current

sheet drifts. The transformation of diffusion tensor from field aligned coordinate system to a

spherical coordinate system was shown for the 2D modulation model used in this work.

Before discussing the different transport coefficients, a brief background on turbulence was

given. This includes a discussion on the turbulence power spectrum and the different turbu-

lence geometry models, i.e. the slab or 1D turbulence, 2D turbulence and the composite (or
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two-component) turbulence. The total energy in the magnetic field fluctuations known as the

magnetic field variance δB2 from a slab and a 2D geometry are important for this study since

the diffusion parameters depend on these variances, as will be discussed later in Chapter 6.

The parallel diffusion coefficient K|| used in this work is based on the calculations of Teufel and
Schlickeiser (2002, 2003) at Earth using the damping (DT) model (see Figure 3.8) which assumed

a set of interplanetary parameters as suggested by Bieber et al. (1994). The analytical approxi-

mations by these authors (at 1 AU for protons) are assumed for the rigidity dependence of K||,

as given in Equation 3.23 and was shown in Figure 3.9. The radial dependence is similar as

used by Burger et al. (2008); Engelbrecht (2008) and Strauss (2010) and is given by Equation 3.27

for distances inside the TS. The constants C1 and C2 in Equation 3.27 determines the absolute

value of parallel mean free path at Earth and the radial dependence. At the TS position K|| is

decreased by a factor sk = 2 (Richardson et al., 2008) and then further decreases as r−1 inside

the inner heliosheath as given by Equation 3.28 (see Manuel et al., 2011a,c).

Due to the slow progress and complexity of perpendicular diffusion theory, it has been stan-

dard practice by different authors using modulation models to scale K⊥ with K|| (see Potgieter
and Haasbroek, 1993; Jokipii et al., 1995; Le Roux et al., 1996; Giacalone, 1998; Hattingh, 1998; Burger
et al., 2000; Ferreira et al., 2000; Strauss, 2010), e.g. K⊥ ∝ K||. It has also become standard

practice to assume K⊥θ > K⊥r to attain a more realistic latitudinal gradients for cosmic ray

intensity computations (e.g. Jokipii and Kota, 1995; Jokipii et al., 1995; Potgieter, 1996; Burger et al.,
2000; Ferreira, 2002; Moeketsi et al., 2005; Ndiitwani, 2005; Strauss, 2010; Manuel et al., 2011a,c).

For this study K⊥θ and K⊥r are scaled with K|| as given in Equations 3.29 and 3.31. Also, in

order to reproduce the observed Ulysses cosmic ray intensity gradients, an enhanced latitudi-

nal transport, as suggested by Burger et al. (2000), is implemented by introducing a function as

given in Equation 3.31.

In a heliosphere with assumed background Parker spiral magnetic field, the cosmic ray par-

ticles experience gradient, curvature and current sheet drift motions. These drift processes

are also embedded in the Parker transport equation. To simulate the HCS in this 2D time-

dependent modulation model, the WCS model proposed by Hattingh and Burger (1995b) is

utilised. In this model, the 3D drift velocity is replaced by a 2D drift velocity by averaging

drift velocity over one solar rotation and the result is then approximated, to remain nearly

divergence free, in order to solve it numerically. The drift coefficient KA used in this work is

adapted from Burger et al. (2000, 2008) as given in Equation 3.45 which resulted in KA decrease

for P < 600 MV as a function of decreasing rigidity much faster than KA in a standard ap-

proach (Forman et al., 1974; Jokipii and Kopriva, 1979; Burger and Potgieter, 1989). The fact that

drift is reduced by the presence of turbulence has been established by direct numerical sim-

ulations (e.g. Giacalone et al., 1999; Minnie et al., 2007). The choice of diffusion coefficient by

Burger et al. (2000, 2008) is consistent with the numerical simulations of Giacalone et al. (1999),

the observational results of Lockwood and Webber (1992) and agree with the result of Webber et al.
(1990) for the low rigidities.
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Lastly steady-state example solutions of cosmic ray intensities were shown to illustrate the

effect of different diffusion parameters on the distribution of cosmic rays in the heliosphere,

i.e. a, the ratio of perpendicular diffusion coefficient in the radial direction to parallel diffusion

coefficient, b, the ratio of perpendicular diffusion coefficient in the polar direction to parallel

diffusion coefficient and d, the enhancement factor ofK⊥θ towards the poles. By varying these,

the effect on cosmic ray intensities were shown for A < 0 and A > 0 polarity cycles.

In the next chapter an overview of the numerical transport model used in this work is dis-

cussed.


