
Chapter 4

Numerical cosmic ray transport
equation

4.1 Introduction

In this chapter an overview of the numerical method used to solve the 2D time-dependent

Parker (1965) transport equation (TPE) in a spherical coordinate system is given. Also a brief

history on numerical models, which compute cosmic ray intensities in the heliosphere, is given.

All these models solve the TPE which is a parabolic differential equation. In this work, an

unconditionally stable numerical procedure called the ADI method, which is a modification

of the Crank-Nicolson method for two spatial dimensions, is used to solve the TPE. This 2D

time-dependent model is originally an extension of steady-state 2D model used by Potgieter
(1984) and Potgieter and Moraal (1985) and was extended to a time-dependent 2D model by Le
Roux (1990) and Potgieter and Le Roux (1992). This model is also discussed in this chapter.

4.2 A brief history on numerical modulation models

In this section, a brief history of steady-state and time-dependent numerical modulation mod-

els are given. Note that this overview is not discussing shock acceleration modulation models

since this study deals with galactic particles where TS acceleration is considered not significant.

For a detailed history see Langner (2004).

The history of modulation models, which solve the TPE numerically, began with Fisk (1971)

where a one-dimensional (1D) spherically symmetric steady-state model with radial distance

as the only spatial variable was developed. Later Fisk (1975, 1976) included polar angle depen-

dence and modified his 1D steady-state model to develop a 2D steady-state model, but without

drifts. At the same period Moraal and Gleeson (1975) and Cecchini and Quenby (1975) also devel-

oped 2D steady-state models. Moraal et al. (1979) and Jokipii and Kopriva (1979) improved the

2D steady-state model by including gradient and curvature drifts for a flat HCS. Later Jokipii
and Thomas (1981), Potgieter (1984), Potgieter and Moraal (1985), Burger (1987) improved the 2D
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Figure 4.1: Shown are electron spectra computed by 2D and 3D drift models. Left panel shows the
differential intensities in units of particles.m−2.sr−1.s−1.MeV−1 at 1 AU and 60 AU for a polar angle of
θ = 30o, a tilt angle of α = 20o and an A > 0 polarity cycle. Right panel shows the results for a polar
angle of θ = 90o (equatorial plane). Note that the spectra for the two models coincide with the LIS
specified at 100 AU. From Ferreira et al. (1999).

models to emulate the waviness of HCS. This was followed by Hattingh and Burger (1995b),

Burger and Hattingh (1995) who further improved the waviness of HCS by introducing the

Wavy Current Sheet (WCS) model. In WCS-model, the 3D drift velocity is replaced by a 2D

drift velocity by averaging drift velocity over one solar rotation. A general HCS-approach was

later derived by Langner (2004) and compared with the WCS-model and found that the differ-

ence between the two models decreases with increasing radial distance and with decreasing tilt

angles. Langner (2004) concluded from his study that the WCS-model is a good approximation

and can be used for qualitative studies.

The first 3D steady-state modulation model was developed by Kota and Jokipii (1983) including

drifts and a fully wavy HCS. Later Hattingh and Burger (1995b), Burger and Hattingh (1995), Hat-
tingh (1998) also developed a 3D steady-state drift model with an improved wavy HCS. These

authors compared it with the 3D model developed by Kota and Jokipii (1983) and found an

excellent compatibility, i.e. within 4% between the two results (Burger and Hattingh, 1995). Hat-
tingh (1998) and Ferreira et al. (1999) did comparative study between the 2D steady-state drift

model which included the WCS-model to simulate the HCS and the 3D steady-state model

which included an actual wavy current sheet and found a good agreement between the two

models.

Figure 4.1 shows the study done by Ferreira et al. (1999) showing a comparison between the

modulated spectra computed with 2D and 3D drift models with a local interstellar spectra

(LIS), in this work specified as heliopause spectra (HPS), assumed at 100 AU. The left panel

shows the differential intensities at 1 AU and 60 AU respectively for a polar angle of θ = 30o

and a tilt angle of α = 20o. The right panel is similar but for a polar angle, θ = 90o (equatorial

plane). Both solutions in the left and right panel figures are computed during anA > 0 polarity

cycle because during this cycle, electrons drift in along the HCS and the largest difference
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Figure 4.2: The ratio of electron differential intensities computed with 2D and 3D drift models as a
function of tilt angle. Top left panel shows the ratio for 1.94 GeV electrons for both the A > 0 and A < 0
polarity cycles at 1 AU. Top right panel shows the same as top left panel but at 60 AU. Bottom left panel
shows the same as top scenarios but for 0.3 GeV electrons at 1 AU and bottom right panel for 0.3 GeV
electrons at 60 AU. From Ferreira et al. (1999).

between the two models are computed. The left and right panel figures show that the electron

spectra computed by both 2D and 3D models coincide despite the use of a complex rigidity

dependence for K|| and K⊥ (Ferreira et al., 1999).

The 2D and 3D model differ significantly in the way that the HCS is treated, so a comparison

between the two in terms of tilt angle was done by Ferreira et al. (1999). Figure 4.2, from these

authors, shows the ratio of computed 2D and 3D differential intensities as a function of tilt

angle during both the A > 0 and A < 0 polarity cycles using same modulation parameters

used in computing the results for Figure 4.1. The top left panel of Figure 4.2 shows the ratio for

1.94 GeV electrons for bothA > 0 andA < 0 polarity cycles at 1 AU. The top right panel shows

the same but at 60 AU. Both top left and right panel figures, i.e. at 1 AU and 60 AU, shows

that for 1.94 GeV electrons the ratio varies with tilt angle to <∼ 1% for both A > 0 and A < 0

polarity cycles. However, for 0.3 GeV electrons (bottom left panel of Figure 4.2) during A < 0

polarity cycle at 1 AU the ratio varies not more than ∼ 5%. But for A > 0 polarity cycle the

ratio varies to nearly 25%. Bottom right panel shows 0.3 GeV electrons at 60 AU, here during



CHAPTER 4. NUMERICAL COSMIC RAY TRANSPORT EQUATION 85

an A < 0 polarity cycle ∼ 3% variation in ratio is calculated but during an A > 0 polarity

cycle a peculiar tilt dependency is computed for the varying ratio which vary between 15% to

25% comparatively larger than computed at 1 AU. The study by Ferreira et al. (1999) showed

that during A < 0 polarity cycle the solutions were essentially identical but during A > 0

polarity cycle the solutions differ to a largest extent of 25% for 0.3 GeV electrons (intermediate

energies) but essentially identical for 1.94 GeV (high energies). Also similar studies were done

by Hattingh (1998). These studies revealed that between the solutions of the 2D and 3D models

there are insignificant quantitative difference and no qualitative difference. Thus taking into

account the amount of computing time and resources needed for the 3D drift model, the use of

the 2D drift model for modulation studies is justified especially when intensities are computed

over various solar cycles, as in this work.

Concerning other 3D models, Fichtner et al. (2000) and Ferreira (2002) developed a 3D steady-

state model including a Jovian magnetosphere as a source of low energy electrons. Later

Moeketsi (2004); Moeketsi et al. (2005) included a realistic solar wind speed and coupled it with

the perpendicular diffusion coefficient in the polar direction in a 3D steady-state Jovian mod-

ulation model. See also the work done by Nkosi et al. (2011); Nndanganeni (2012).

Shifting to time-dependent models, Perko and Fisk (1983) developed the first time-dependent

1D spherically symmetric model. Later Le Roux (1990) and Potgieter and Le Roux (1992) also

developed a time-dependent modulation model including two spatial dimensions for a spher-

ically symmetric time-dependent heliosphere with drifts. The model computed long-term cos-

mic ray modulation also including the effects of Global Merged Interaction Regions (GMIRs)

(see Potgieter and Le Roux, 1994; Le Roux and Potgieter, 1995). Kota and Jokipii (2001b) developed a

3D time-dependent modulation model including drift, diffusion, adiabatic cooling and acceler-

ation. During the same period Fichtner et al. (2001) also developed a 3D time-dependent model

for electrons neglecting adiabatic cooling of electrons at low energies by doing a momentum

averaging of TPE. Afterwards, Kissmann et al. (2004) developed a 3D time-dependent model

with an approximated energy dependence of the distribution function which therefore allows

a study of the effect of Corotating Interaction Regions (CIRs) on energetic electron fluxes. Later,

Sternal et al. (2011) introduced a Fisk-type HMF into this time-dependent model.

At the same period, hybrid models which used TPE coupled with hydrodynamic (HD) or mag-

netohydrodynamics (MHD) models were developed by authors like Scherer and Ferreira (2005a)

and Florinski and Pogorelov (2008) including all physical processes in the TPE. Scherer and Fer-
reira (2005a) coupled the 2D time-dependent TPE to a HD model and solved the modulation

of anomalous and galactic cosmic ray intensities in the heliosphere over a solar cycle. While

Florinski and Pogorelov (2008) coupled the 3D time-dependent TPE to a MHD model also sim-

ulating cosmic ray transport in the heliosphere but for certain conditions only. Also several

self-consistent, time-dependent HD and MHD models of various complexity were also devel-

oped by various authors (Pauls and Zank, 1996, 1997; Le Roux and Fichtner, 1997, 1999b; Florinski
and Jokipii, 1999; Florinski et al., 2003; Scherer and Fahr, 2003a,b; Pogorelov et al., 2008a; Muller
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et al., 2008, 2009; Katushkina and Izmodenov, 2010) also simulating to some extend cosmic ray

transport.

For an overview on shock acceleration models with the inclusion of the heliospheric TS, con-

tinuous and discontinuous transition of the solar wind, particle acceleration at CIRs, particle

acceleration due to diffusive shock acceleration (Fermi I), stochastic acceleration (Fermi II) etc.,

see e.g. Jokipii (1986); Potgieter and Moraal (1988); Kota and Jokipii (1991); Steenkamp and Moraal
(1995); Steenberg and Moraal (1996); Langner (2004); Strauss (2010); Ngobeni and Potgieter (2010).

For more recent models which employs stochastic differential equations (SDEs) to solve the

cosmic ray transport see e.g. Krulls and Achterberg (1994); Zhang (1999); Florinski and Pogorelov
(2009); Pei et al. (2010); Strauss et al. (2011, 2012a).

4.3 Numerical solution of 2D time-dependent transport equation

4.3.1 Numerical scheme

The TPE is a second order linear parabolic partial differential equation and can be solved by

the Alternating Direction Implicit (ADI) method developed by Peaceman and Rachford (1955)

and Douglas (1955). The ADI method is a stable numerical procedure with a discretization

error of the second order in both space and time (or rigidity) variables. The ADI method is

a modification of the Crank-Nicholson finite difference method for two spatial dimensions

which computes derivatives at half-way time and/or rigidity intervals on the spatial grid.

Later the ADI method was improved by Douglas (1962) to solve parabolic equations with three

spatial coordinates and a time coordinate.

For the numerical solution the TPE in Equation 3.3 can be written as,

a0(r, θ, P, t)
∂2f

∂r2
+ b0(r, θ, P, t)

∂2f

∂θ2
+ c0(r, θ, P, t)

∂f

∂r
(4.1)

+d0(r, θ, P, t)
∂f

∂θ
+ e0(r, θ, P, t)

∂f

∂ lnP
+ h0(r, θ, P, t)

∂f

∂t
= 0

where

a0(r, θ, P, t) = Krr,

b0(r, θ, P, t) =
Kθθ

r2
,

c0(r, θ, P, t) =
1

r2
∂

∂r
(r2Krr) +

1

r sin θ

∂

∂θ
(Kθr sin θ)− V,

d0(r, θ, P, t) =
1

r2
∂

∂r
(rKrθ) +

1

r2 sin θ

∂

∂θ
(Kθθ sin θ),

e0(r, θ, P, t) =
1

3r2
∂

∂r
(r2V ),

h0(r, θ, P, t) = −1.

In the case of the steady-state TPE i.e. ∂f
∂t = 0, the rigidity variable is equivalent to the time

variable (see Potgieter, 1984). The steady-state TPE model of Potgieter (1984) and Potgieter and
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Moraal (1985) utilised the standard ADI method and solved two successive finite difference

equations. For this study however, a 2D time-dependent model, which utilises a modified ADI

method as developed by Le Roux (1990) and Potgieter and Le Roux (1992), is used to solve TPE

with two spatial dimensions, rigidity and time. The advantage of this 2D time-dependent TPE

model is that it still has the same number (i.e. two) of successive finite difference equations

when compared to the steady-state model, which had to be solved over the whole spatial

grid. An alternate way to solve the same problem numerically is to implement the standard

ADI method for three spatial coordinates developed by Douglas (1962). Where rigidity P is

considered as a third spatial coordinate and time t is considered as the only implicit coordinate.

As a result of this approach, three finite difference equations are formed which have to be

solved in succession. Also two boundary conditions have to be defined for P instead of one

as in a modified ADI method. This aspects would make the numerical scheme even more

complicated when compared to the modified ADI method.

The two finite difference equations produced by the modified ADI method can be represented

as a tridiagonal matrix and then solved by Gauss elimination, utilising a straight forward algo-

rithm. The first finite difference equation (i.e. Equation 4.6) treats only the spatial derivatives

in the r directions as implicit in both P and t. The first estimated result of f is obtained from

this first finite difference equation for a half (intermediate) P and t interval ahead. These es-

timated results are then substituted into a second finite difference equation (i.e. Equation 4.7)

where the spatial derivatives in the θ directions are treated implicitly in both P and t. The re-

sults obtained from this equation then gives the predicted values for f at full P and t interval

ahead.

To solve the 2D time-dependent TPE (Equation 3.3), a radial grid with r = i∆r (where i =

1, 2, 3, ..., N ) is considered. The distance r = ∆r = r1 represents near the Sun (inner boundary)

while r = N∆r = rb represents the heliospheric modulation boundary (outer boundary). Also

a θ grid with θ = j∆θ (where j = 1, 2, 3, ...,M ) running from the solar North Pole θ = 0o to the

equatorial plane at θ = 90o is considered. The rigidity steps decrease logarithmically from an

initial large value where modulation is negligible i.e. ∆ lnP = 0.08, while the time steps may

start at any chosen time. The distribution function f in terms of the grid points is represented

as,

f(r, θ, P, t) = f(i∆r, j∆θ, k∆P, l∆t)

= fijkl

Note that f [(i + 1)∆r, (j − 1)∆θ, k∆P, l∆t] is equivalent to f(i+1)(j−1)kl and f [(i − 1)∆r, (j +

1)∆θ, (k + 1)∆P, (l + 1)∆t] is equivalent to f(i−1)(j+1)k′l′ etc. Also note that k′ and l′ is used

instead of (k+1) and (l+1) since k and l both have only +1 interval when compared to i and j

which has both ±1 intervals. Further on in the text, to save space and for greater clarity, these

notations are used.

The Taylor expansion of a function f(x), up to first three terms about an interval ∆x, are given
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by,

f(x−∆x) = f(x)− f ′(x)∆x+
f ′′(x)(∆x)2

2
(4.2)

f(x+ ∆x) = f(x) + f ′(x)∆x+
f ′′(x)(∆x)2

2
(4.3)

The first order f ′(x) and the second order f ′′(x) derivatives centred around x can be obtained

by subtracting and adding Equations 4.2 and 4.3.

f ′(x) =
f(x+ ∆x)− f(x−∆x)

2∆x
(4.4)

f ′′(x) =
f(x+ ∆x)− 2f(x) + f(x−∆x)

(∆x)2
. (4.5)

The first and second finite difference equations of TPE are obtained by substituting the above

first and second order derivative equivalent for r, θ, P and t in Equation 4.1. For the first finite

difference equation, the derivatives in the r direction specified at both half a P interval and t

interval ahead are obtained by substituting a quarter of the central finite difference (Equations

4.4 and 4.5) analogue of r in Equation 4.1. The derivatives in the θ direction are also specified

at half a t interval ahead, but at the present P value and therefore only half of the central finite

differences in θ are substituted in Equation 4.1. As a result Equation 4.1 becomes,

a0
4(∆r)2

[
(f(i+1)jkl − 2fijkl + f(i−1)jkl) + (f∗(i+1)jk′l − 2f∗ijk′l + f∗(i−1)jk′l) (4.6)

+ (f(i+1)jkl′ − 2fijkl′ + f(i−1)jkl′) + (f∗(i+1)jk′l′ − 2f∗ijk′l′ + f∗(i−1)jk′l′)

]
+

b0
2(∆θ)2

[
(fi(j+1)kl − 2fijkl + fi(j−1)kl) + (fi(j+1)kl′ − 2fijkl′ + fi(j−1)kl′)

]
+

c0
8∆r

[
(f(i+1)jkl − f(i−1)jkl) + (f∗(i+1)jk′l − f

∗
(i−1)jk′l)

+ (f(i+1)jkl′ − f(i−1)jkl′) + (f∗(i+1)jk′l′ − f
∗
(i−1)jk′l′)

]
+

d0
4∆θ

[
(fi(j+1)kl − fi(j−1)kl) + (fi(j+1)kl′ − fi(j−1)kl′)

]
+

e0
2(−∆ lnP )

[
(f∗ijk′l − fijkl) + (f∗ijk′l′ − fijkl′)

]
+

h0
2(∆t)

[
(fijkl′ − fijkl) + (f∗ijk′l′ − f∗ijk′l)

]
= 0

where i = 1, 2, 3, ...., (N − 1) and j = 1, 2, 3, ....,M.

Here fijkl is the presently known solution for the kth P -step at lth t-step and fijkl′ is the pre-

dicted solution for the kth P -step at (l + 1)th t-step. Also f∗ijk′l and f∗ijk′l′ are the presently

known intermediate (estimate) solution for the (k + 1)th P -step at lth t-step and the interme-

diate predicted solution for the (k + 1)th P -step at (l + 1)th t-step respectively.

The spatial derivatives in Equation 4.6 are treated implicitly in both P and t in the radial di-

rection while the spatial derivatives in the θ direction are treated implicitly only in t (not in P ).
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For each time step t, from l = 1, 2, 3, ....∞, at the rigidity from k = 1, 2, 3, ...., NP Equation 4.6

is solved for the spatial grid (i∆r, j∆θ).

The second finite difference equation is then obtained by assigning the derivatives in the θ

direction at both full P interval and t interval ahead by substituting a quarter of the central

finite difference analogue of θ in Equation 4.1. This time the derivatives in θ direction is treated

implicitly in both t and P . The resulting second finite difference equation is given as,

a0
4(∆r)2

[
(f(i+1)jkl − 2fijkl + f(i−1)jkl) + (f∗(i+1)jk′l − 2f∗ijk′l + f∗(i−1)jk′l) (4.7)

+ (f(i+1)jkl′ − 2fijkl′ + f(i−1)jkl′) + (f∗(i+1)jk′l′ − 2f∗ijk′l′ + f∗(i−1)jk′l′)

]
+

b0
4(∆θ)2

[
(fi(j+1)kl − 2fijkl + fi(j−1)kl) + (fi(j+1)kl′ − 2fijkl′ + fi(j−1)kl′)

+ (f∗∗i(j+1)k′l − 2f∗∗ijk′l + f∗∗i(j−1)k′l) + (f∗∗i(j+1)k′l′ − 2f∗∗ijk′l′ + f∗∗i(j−1)k′l′)

]
+

c0
8∆r

[
(f(i+1)jkl − f(i−1)jkl) + (f∗(i+1)jk′l − f

∗
(i−1)jk′l)

+ (f(i+1)jkl′ − f(i−1)jkl′) + (f∗(i+1)jk′l′ − f
∗
(i−1)jk′l′)

]
+

d0
8∆θ

[
(fi(j+1)kl − fi(j−1)kl) + (fi(j+1)kl′ − fi(j−1)kl′)

+ (f∗∗i(j+1)k′l − f
∗∗
i(j−1)k′l) + (f∗∗i(j+1)k′l′ − f

∗∗
i(j−1)k′l′)

]
+

e0
2(−∆ lnP )

[
(f∗∗ijk′l − fijkl) + (f∗∗ijk′l′ − fijkl′)

]
+

h0
2(∆t)

[
(fijkl′ − fijkl) + (f∗∗ijk′l′ − f∗∗ijk′l)

]
= 0

where i = 1, 2, 3, ...., (N − 1) and j = 1, 2, 3, ....,M.

Here f∗∗ijk′l and f∗∗ijk′l′ are the presently known solution for the (k + 1)th P -step at lth t-step

and the predicted solution for the (k + 1)th P -step at (l + 1)th t-step, respectively. The grid

point (i, j, k+ 1
2 , l+

1
2) where the spatial derivatives specified in r-direction and θ-direction are

treated implicit in both P and t, is used to calculate the coefficients in both Equation 4.6 and

Equation 4.7. For each time step t, from l = 1, 2, 3, ....∞, at the rigidity from k = 1, 2, 3, ...., NP ,

the second difference Equation 4.7 is also solved over the whole spatial grid (i∆r, j∆θ).

The first and second finite difference equations thus form a system of tridagonal linear equa-

tions which can be easily solved by Gauss elimination method. Using Gauss elimination

method the estimated values, f∗ijk′l′ in Equation 4.6, is calculated. Then this results (i.e. f∗ijk′l′)

are incorporated into Equation 4.7 to find the predicted values of f∗∗ijk′l′ . However, in order

to solve these system of tridiagonal linear equations using a Gauss elimination method, initial

and boundary conditions have to be defined.
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4.3.2 Boundary conditions and initial values

A spherical heliosphere with a steady-state condition is assumed at time t = 0, preferably a

solar minimum period. This assumption makes the heliosphere relatively stable and undis-

turbed at initial state when compared to a solar maximum period where a polarity reversal

of HMF takes place. This steady-state condition is computed by the standard ADI method as

used by Potgieter (1984). Also the model assumes that at high rigidity values there is no cosmic

ray modulation i.e. f = fg, the HPS, over the entire spatial grid at k = 1. The HPS values are

assumed to be time independent so that the initial condition in P is used at each time step in

the modified ADI method.

The boundary conditions used are as follows,

• The inner modulation boundary, r1 (r1 = i∆r, when i = 1) was chosen to be located

at a distance near the surface of the Sun i.e. r1 > r�. Also a reflective boundary was

assumed which imply that no particles enter or leave the Sun.[
∂f

∂r

]
r=r1

= 0. (4.8)

Siluszyk and Alania (2001) showed that an absorbing Sun could be a more appropriate

boundary condition. i.e. [
∂f

∂r

]
r=r1

6= 0.

The comparison between the model with reflective and absorbing Sun showed that the re-

sults are only sensitive for the first 0.25 AU to this boundary conditions (see e.g. Potgieter,

1984; Le Roux, 1990; Siluszyk and Alania, 2001; Ferreira, 2002).

• For the outer heliospheric boundary, rb (rb = i∆r, when i = N), a HPS for a particular

species of cosmic rays is used as the input spectrum (see Chapter 6 for a discussion on

HPS).

f(rb, θ, P, t) = fg. (4.9)

• The polar angle boundary condition at 0o and 90o, (θ = j∆θ = 0o, when j = 1 and

θ = 90o, when j = M ). The heliosphere is assumed to be symmetrical about the poles

and the equitorial plane, so the boundary conditions at the polar region and the equatorial

plane is specified as,

[
∂f

∂θ

]
θ=0o,90o

= 0. (4.10)
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4.3.3 Numerical transport equation

The first finite equation (Equation 4.6) of TPE can be rearranged as given below,

Aif
∗
(i−1)jk′l′ +Bif

∗
ijk′l′ + Cif

∗
(i+1)jk′l′ = −D1,if(i−1)jkl −D2,ifijkl −D3,if(i+1)jkl (4.11)

−D4,if
∗
(i−1)jk′l −D5,if

∗
ijk′l −D6,if

∗
(i+1)jk′l

−D7,if(i−1)jkl′ −D8,ifijkl′ −D9,if(i+1)jkl′

−D10,ifi(j−1)kl −D11,ifi(j+1)kl

−D12,ifi(j−1)kl′ −D13,ifi(j+1)kl′

Where i = 1, 2, 3, ...., (N − 1) and j = 1, 2, 3, ....,M .

Here,

Ai =
a0

4(∆r)2
− c0

8(∆r)
,

Bi = − a0
2(∆r)2

− e0
2(∆ lnP )

+
h0

2(∆t)
,

Ci =
a0

4(∆r)2
+

c0
8(∆r)

,

D1,i = Ai

D2,i = − a0
2(∆r)2

− b0
(∆θ)2

+
e0

2(∆ lnP )
− h0

2(∆t)
,

D3,i = Ci,

D4,i = Ai,

D5,i = − a0
2(∆r)2

− e0
2(∆ lnP )

− h0
2(∆t)

,

D6,i = Ci,

D7,i = Ai,

D8,i = − a0
2(∆r)2

− b0
(∆θ)2

+
e0

2(∆ lnP )
+

h0
2(∆t)

,

D9,i = Ci,

D10,i =
b0

2(∆θ)2
− d0

4(∆θ)
,

D11,i =
b0

2(∆θ)2
+

d0
4(∆θ)

,

D12,i = D10,i,

D13,i = D11,i.
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A second finite difference equation can be obtained by subtracting Equation 4.6 from Equation

4.7,

A′jf
∗∗
i(j−1)k′l′ +B′jf

∗∗
ijk′l′ + C ′jf

∗∗
i(j+1)k′l′ = −D′1,jfi(j−1)kl −D′2,jfijkl −D′3,jfi(j+1)kl (4.12)

−D′4,jf∗∗i(j−1)k′l −D
′
5,jf

∗∗
ijk′l −D′6,jf∗∗i(j+1)k′l

−D′7,jfi(j−1)kl′ −D′8,jfijkl′ −D′9,jfi(j+1)kl′

−D′10,jf∗ijk′l −D′11,jf∗ijk′l′

Where j = 1, 2, 3, ....,M and i = 1, 2, 3, ...., (N − 1).

Here,

A′j =
b0

4(∆θ)2
− d0

8(∆θ)
,

B′j = − b0
2(∆θ)2

− e0
2(∆ lnP )

+
h0

2(∆t)
,

C ′j =
b0

4(∆θ)2
+

d0
8(∆θ)

,

D′1,j = −A′j ,

D′2,j =
b0

2(∆θ)2
,

D′3,j = −C ′j ,

D′4,j = A′j ,

D′5,j = − b0
2(∆θ)2

− e0
2(∆ lnP )

− h0
2(∆t)

,

D′6,j = C ′j ,

D′7,j = −A′j ,

D′8,j = D′2j ,

D′9,j = −C ′j ,

D′10,j =
e0

2(∆ lnP )
+

h0
2(∆t)

,

D′11,j =
e0

2(∆ lnP )
− h0

2(∆t)
.

After including the boundary conditions, the first finite difference Equation 4.11 forms a sys-

tem of (N − 1) linear equations. These linear equations can be represented as a tridiagonal

matrix and then solved with the Gauss elimination method for j = 1, 2, 3, ....,M .
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

B1 (A1 + C1) 0 .... 0 0 0

A2 B2 C2 .... 0 0 0
...

...
...

. . .
...

...
...

0 0 0 .... A(N−2) B(N−2) C(N−2)

0 0 0 .... 0 A(N−1) B(N−1)





f∗1jk′l′

f∗2jk′l′
...

f∗(N−2)jk′l′

f∗(N−1)jk′l′


= (4.13)

−



D2,1 (D1,1 +D3,1) 0 .... 0 0 0

D1,2 D2,2 D3,2 .... 0 0 0
...

...
...

. . .
...

...
...

0 0 0 .... D1,(N−2) D2,(N−2) D3,(N−2)

0 0 0 .... 0 D1,(N−1) D2,(N−1)





f1jkl

f2jkl
...

f(N−2)jkl

f(N−1)jkl



−



D5,1 (D4,1 +D6,1) 0 .... 0 0 0

D4,2 D5,2 D6,2 .... 0 0 0
...

...
...

. . .
...

...
...

0 0 0 .... D4,(N−2) D5,(N−2) D6,(N−2)

0 0 0 .... 0 D4,(N−1) D5,(N−1)





f∗1jk′l

f∗2jk′l
...

f∗(N−2)jk′l

f∗(N−1)jk′l



−



D8,1 (D7,1 +D9,1) 0 .... 0 0 0

D7,2 D8,2 D9,2 .... 0 0 0
...

...
...

. . .
...

...
...

0 0 0 .... D7,(N−2) D8,(N−2) D9,(N−2)

0 0 0 .... 0 D7,(N−1) D8,(N−1)





f1jkl′

f2jkl′
...

f(N−2)jkl′

f(N−1)jkl′



−



D10,1 (0 0 .... 0 0 0

0 D10,2 0 .... 0 0 0
...

...
...

. . .
...

...
...

0 0 0 .... 0 D10,(N−2) 0

0 0 0 .... 0 0 D10,(N−1)





f1(j−1)kl

f2(j−1)kl
...

f(N−2)(j−1)kl

f(N−1)(j−1)kl



−



D11,1 (0 0 .... 0 0 0

0 D11,2 0 .... 0 0 0
...

...
...

. . .
...

...
...

0 0 0 .... 0 D11,(N−2) 0

0 0 0 .... 0 0 D11,(N−1)





f1(j+1)kl

f2(j+1)kl

...

f(N−2)(j+1)kl

f(N−1)(j+1)kl


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−



D12,1 (0 0 .... 0 0 0

0 D12,2 0 .... 0 0 0
...

...
...

. . .
...

...
...

0 0 0 .... 0 D12,(N−2) 0

0 0 0 .... 0 0 D12,(N−1)





f1(j−1)kl′

f2(j−1)kl′
...

f(N−2)(j−1)kl′

f(N−1)(j−1)kl′



−



D13,1 (0 0 .... 0 0 0

0 D13,2 0 .... 0 0 0
...

...
...

. . .
...

...
...

0 0 0 .... 0 D13,(N−2) 0

0 0 0 .... 0 0 D13,(N−1)





f1(j+1)kl′

f2(j+1)kl′

...

f(N−2)(j+1)kl′

f(N−1)(j+1)kl′



X1 =
A1 + C1

B1
;

Xi =
Ci

Bi −AiXi−1
; i = 2, 3, ..., N − 1;

and

Y1 =
D1

B1
;

Yi =
Di −AiYi−1
Bi −AiXi−1

; i = 2, 3, ..., N − 1;

with

Di = −D1,if(i−1)jkl −D2,ifijkl −D3,if(i+1)jkl

−D4,if
∗
(i−1)jk′l −D5,if

∗
ijk′l −D6,if

∗
(i+1)jk′l

−D7,if(i−1)jkl′ −D8,ifijkl′ −D9,if(i+1)jkl′

−D10,ifi(j−1)kl −D11,ifi(j+1)kl

−D12,ifi(j−1)kl′ −D13,ifi(j+1)kl′

The boundary conditions, with the P and t indices suppressed, are,

f0j = f2j ; fNj = fg; fi0 = fi2; fi(M−1) = fi(M+1)

The intermediate (or estimated) solution is then,

f∗(N−i)jk′l′ = Y(N−i) −X(N−i)f
∗
(N−i+1)jk′l′ (4.14)

where i = 1, 2, 3, ...., (N − 1) and j = 1, 2, 3, ....,M.

The solution of the second system of M linear Equations 4.12 is obtained by calculating for
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i = 1, 2, 3, ...., (N − 1).

B′1 (A′1 + C ′1) 0 .... 0 0 0

A′2 B′2 C ′2 .... 0 0 0
...

...
...

. . .
...

...
...

0 0 0 .... A′(M−1) B′(M−1) C ′(M−1)

0 0 0 .... 0 A′M B′M





f∗∗i1k′l′

f∗∗i2k′l′
...

f∗∗i(M−1)k′l′

f∗∗iMk′l′


= (4.15)

−



D′2,1 (D′1,1 +D′3,1) 0 .... 0 0 0

D′1,2 D′2,2 D′3,2 .... 0 0 0
...

...
...

. . .
...

...
...

0 0 0 .... D′1,(M−1) D′2,(M−1) D′3,(M−1)

0 0 0 .... 0 D′1,M D′2,M





fi1kl

fi2kl
...

fi(M−1)kl

fiMkl



−



D′5,1 (D′4,1 +D′6,1) 0 .... 0 0 0

D′4,2 D′5,2 D′6,2 .... 0 0 0
...

...
...

. . .
...

...
...

0 0 0 .... D′4,(M−1) D′5,(M−1) D′6,(M−1)

0 0 0 .... 0 D′4,M D′5,M





f∗∗i1k′l

f∗∗i2k′l
...

f∗∗i(M−1)k′l

f∗∗iMk′l



−



D′8,1 (D′7,1 +D′9,1) 0 .... 0 0 0

D′7,2 D′8,2 D′9,2 .... 0 0 0
...

...
...

. . .
...

...
...

0 0 0 .... D′7,(M−1) D′8,(M−1) D′9,(M−1)

0 0 0 .... 0 D′7,M D′8,M





fi1kl′

fi2kl′
...

fi(M−1)kl′

fiMkl′



−



D10,1 (0 0 .... 0 0 0

0 D10,2 0 .... 0 0 0
...

...
...

. . .
...

...
...

0 0 0 .... 0 D10,(M−1) 0

0 0 0 .... 0 0 D10,M





f∗i1k′l

f∗i2k′l
...

f∗i(M−1)k′l

f∗iMk′l



−



D11,1 (0 0 .... 0 0 0

0 D11,2 0 .... 0 0 0
...

...
...

. . .
...

...
...

0 0 0 .... 0 D11,(M−1) 0

0 0 0 .... 0 0 D11,M





f∗i1k′l′

f∗i2k′l′
...

f∗i(M−1)k′l′

f∗iMk′l′



X ′1 =
A′1 + C ′1
B′1

;

X ′j =
C ′j

B′j −A′jX ′j−1
; j = 1, 2, 3, ...., (M − 1);
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and

Y ′1 =
D′1
B′1

;

Y ′j =
D′j −A′jY ′j−1
B′j −A′jXj−1

; j = 1, 2, 3, ...., (M − 1);

with

D′J = −D′1,jfi(j−1)kl −D′2,jfijkl −D′3,jfi(j+1)kl

−D′4,jf∗∗i(j−1)k′l −D
′
5,jf

∗∗
ijk′l −D′6,jf∗∗i(j+1)k′l

−D′7,jfi(j−1)kl′ −D′8,jfijkl′ −D′9,jfi(j+1)kl′

−D′10,jf∗ijk′l −D′11,jf∗ijk′l′

Only the following boundary conditions are needed in this case:

fi0 = fi2; fi(M−1) = fi(M+1)

The final solution then is

f∗∗i(M−j)k′l′ = Y ′(M−j) −X
′
(M−j)f

∗∗
i(M−j+1)k′l′ (4.16)

where j = 1, 2, 3, ...., (M − 1). and i = 1, 2, 3, ...., (N − 1)

with the solution in the neutral sheet, where j = M ;

f∗∗iMk′l′ =
D′M − (A′M + C ′M )Y ′(M − 1)

B′M − (A′M + C ′M )X ′(M − 1)

with

D′M = −(D′1,M +D′3,M )fi(M−1)kl −D′2,MfiMkl − (D′4,M +D′6,M )fi(M−1)k′l

−D′5,Mf∗iMk′l − (D′7,M +D′9,M )fi(M−1)kl′

−D′8,MfiMkl′ −D′10,Mf∗iMk′l −D′11,Mf∗iMk′l′.

4.4 Summary

This chapter gave a brief overview on the history of different cosmic ray modulation models.

These models had evolved in the last four decades from a 1D steady-state model to recent 3D

time-dependent models. A comparative study between the 2D time-dependent drift model

and the 3D steady-state drift model by Hattingh (1998) and Ferreira et al. (1999) revealed the in-

significant differences between the 2D drift model compared to a 3D approach. These authors

found that during A < 0 polarity cycle the 2D and 3D electron differential intensity solutions

were essentially identical and duringA > 0 polarity cycle the solutions differ to a largest extent

of∼25% for intermediate energies and essentially identical for high energies. However, taking

into account the amount of computing time and resources needed for the 3D drift model, the



CHAPTER 4. NUMERICAL COSMIC RAY TRANSPORT EQUATION 97

use of the 2D drift model for long-term modulation studies is justified due to the insignificant

quantitative difference and no qualitative difference between the two models.

The numerical scheme used in this work to solve the 2D time-dependent Parker (1965) transport

equation (TPE) was discussed. A modified ADI numerical scheme developed by Le Roux (1990)

and Potgieter and Le Roux (1992), by including time-dependence to the steady-state model of

Potgieter (1984) and Potgieter and Moraal (1985), is used for this work. This model solves the TPE

for two spatial coordinates, a rigidity and a time coordinate. The advantage of this modified

ADI method is that it still has the same number of successive finite difference equations when

compared to the standard ADI method, which had to be solved over the whole spatial grid.

A spherically symmetric heliosphere is assumed in this numerical model. The radial grid is

assumed as r = i∆r and the polar grid is assumed as θ = j∆θ with i = 1, 2, 3, ...., N and

j = 1, 2, 3, ....,M . The rigidity was chosen from a high value with no modulation is assumed

as an initial condition which then decreases as ∆ lnP = 0.08. The boundary conditions are

specified with r1, the inner heliospheric boundary assuming a reflective Sun which means

that no particles can enter or leave this boundary. Outer boundary, rb is assumed where the

HPS for the particular cosmic ray species is used as the input spectrum, fg. The two finite

difference equations produced as a result of the modified ADI approach can be represented as

a tridagonal matrix which can be solved using Gauss elimination method in succession such

that the results (estimate values) from the first finite difference equation is implemented into

the second finite difference equation to find the predicted values of the distribution function at

a full P and t step ahead.


