Show simple item record

dc.contributor.advisorLiebenberg, Leon, Prof
dc.contributor.authorParker, Christopher Daniel
dc.date.accessioned2014-11-10T07:00:36Z
dc.date.available2014-11-10T07:00:36Z
dc.date.issued2013
dc.identifier.urihttp://hdl.handle.net/10394/12254
dc.descriptionMIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2014en_US
dc.description.abstractPosterior lumbar spinal dynamic stabilisation devices are intended to relieve the pain of spinal segments while prolonging the lifespan of adjacent intervertebral discs. This study focuses on the design of such a device, one that has the correct stiffness to stabilise the spinal segment by the correct amount. An initial literature survey covers contemporary topics related to the lumbar spine. Included topics are lumbar anatomy and kinematics, pathology of degenerative disc disease and treatment thereof, other spinal disorders such as spondylolisthesis and spinal stenosis, as well as the complications associated with lumbar dynamic stabilisation. The influence of factors such as fatigue and wear, as well as the properties of appropriate biomaterials are considered when determining the basis of the device design and development. Stabilising the spinal segment begins with correct material selection and design. Various designs and biomaterials are evaluated for their stiffness values and other user requirements. The simplest design, a U-shaped spring composed of carbon fibre-reinforced poly-ether-ether-ketone (CFR-PEEK) and anchored by polyaxial titanium pedicle screws, satisfies the most critical user requirements. Acceptable stiffness is achieved, fatigue life of the material is excellent and the device is very imaging-friendly. Due to financial constraints, however, a simpler concept that is cheaper and easier to rapid prototype was chosen. This concept involves a construct primarily manufactured from the titanium alloy Ti6Al4V extra-low interstitial (ELI) and cobalt-chrome-molybdenum (CCM) alloys. The first rapid prototype was manufactured using an additive manufacturing process (3D-printing). The development of the device was performed in three main stages: design, verification and validation. The main goal of the design was to achieve an acceptable stiffness to limit the spinal segmental range of motion (ROM) by a determined amount. The device stiffness was verified through simple calculations. The first prototype’s stiffness was validated in force-displacement tests. Further validation, beyond the scope of this study, will include fatigue tests to validate the fatigue life of the production-ready device.en_US
dc.language.isoenen_US
dc.publisherNorth-West University
dc.subjectDynamic stabilisationen_US
dc.subjectSpinal fusionen_US
dc.subjectFinite element analysisen_US
dc.subjectLumbar vertebraeen_US
dc.subjectDegenerative disc diseaseen_US
dc.subjectJoint instabilityen_US
dc.titleThe development of a posterior dynamic stabilisation implant indicated for thoraco-lumbar disc degenerationen
dc.typeThesisen_US
dc.description.thesistypeMastersen_US
dc.contributor.researchID12850071 - Liebenberg, Leon (Supervisor)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record